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ABSTRACT 

 

 

 
Gowda, Jogi. A FLEXIBLE SYNTACTIC FOAM FOR SHOCK MITIGATION. 

(Major Advisor Dr. Kunigal Shivakumar), North Carolina Agricultural and Technical 

State University. 

 

This dissertation focused on the development and assessment of flexible 

microballoons filled elastomeric foam for shock mitigation applications. The overall goal 

of the research was to develop a flexible syntactic foam that has controllable bulk 

modulus, compressibility and shock mitigation characteristics and to validate these 

characteristics by experiments. Elastomer LP-2 with solid manganese dioxide and 

uncured BJO-093 hollow Pµb were chosen for making the syntactic foam. Hand mixing 

and room temperature curing was used to make foams of 0 to 30% weight of filler, which 

amounts to 0 to 60% of volume of the filler.  Analysis using gas laws and simple 

elasticity equations showed that the compressibility of the foam and the resulting bulk 

modulus vary as a function of microballoon content. Confined compression tests 

confirmed these results and demonstrated that the bulk modulus can be changed from 19 

MPa to 9 MPa as the filler content was increased from 0 to 30% by weight. The 

compressive high strain rate behavior of the foam was determined using the Split Hopkinson 

Pressure Bar test apparatus at strain rates ranging from 3,000/s to 4,600/s. The peak strain 

and strain rate values remain unaffected irrespective of the amount of filler.  Both peak stress 

and stress rise rate decreased with increased filler content. Decrease in peak stress and 

stress rates were as high as 50% of the base material for filler content of 20% by weight. 

These characteristics show the potential of this material for shock mitigation applications. 
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CHAPTER 1 

 

INTRODUCTION 
 

1.1 Background and Challenges 

Protection of soldiers and vehicles that carry personnel and material in combat or 

noncombat against an ever-increasing firepower of ammunitions and improvised 

ammunitions by the enemy is a challenging task of the military. The lightweight and 

more agile armors are essential so that soldiers can handle it with no loss of war fighting 

capability. A continuous development and improvement of materials (metals, ceramic 

and polymer composites) have been going on for a number of years. Advancement of 

nanotechnology, computer power, and simulation models has provided an opportunity to 

develop materials by simulations.  Sometimes a simple idea could also result in a good 

solution to practical problems. Figure 1.1 is typical composite armor layup. 

 

S2 G/Ep

Ceramic

Elastomer

S2 G/Ep

Glass/Phenolic

σxσx

σ0

σ0

σx σxσx



 
 

Figure 1.1  Typical layup of a composite integral armor and stress state in the elastomer layer 
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This research is about one such idea and its assessment. Elastomers are proposed 

to be used under ceramic tiles to provide softer media and to distribute the stress shock 

waves over a larger area. Elastomers being plastic (Poisson’s ratio of 0.5) would develop 

lateral stress waves of equal magnitude of the impact stress wave (see Fig. 1.1). This can 

be derived from the theory of three dimensional elasticity; 02  zx                            

for a constrained lateral boundary condition. Also, the bulk modulus (K) of the elastomer 

 213 


E
K  could be infinite for  = 0.5. In such a scenario, the incoming shock pulse 

from the tile directly transfers to the supporting structure (composite panels). If the 

elastomer material is modified such that its Poisson’s ratio is less than 0.5, the bulk 

modulus is finite, or a part of the energy is dissipated by compressing the elastomer and 

the transmitted stress wave will be less severe. Based on a number of research reported in 

the literatures, one can hypothesize that the modification of the stress wave means 

reducing the peak stress, reducing stress rise rate and increasing the pulse width.  

Figure 1.2 shows transmitted stress waves for bulk modulus of infinite and finite 

values. Note that the area under the two stress waves are identical but the peak and rise 

rate of stress and the bandwidth of the curve are different. For convenience of assessment 

of half-power bandwidth, pulse width at stress value of 2/peak   is chosen for 

comparison. 

The challenge of this problem is how to mitigate the shock pulse without altering 

the general characteristics of the elastomer.  
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                                                 (a)       (b) 

Figure 1.2  Stress wave modification for (a) υ = 0.5 and (b) υ < 0.5 

 

 

Figure 1.3 shows the stress-strain diagrams of rigid-plastic, elastic, and elastic-

plastic-solidification (foam) type of materials. Among the three materials, the foam type 

has large compressibility followed by solidification. The compressibility of the material 

with reasonable compression strength could be chosen as a shock mitigation material. 

Furthermore, the material should also take multiple loading (shocks) and unloading so 

that it can survive multiple hits. Therefore, the challenge is how to design and develop 

elastomer material that can be hydrostatically compressible and recovers upon unloading. 

The proposed approach is to use elastomer with collapsible microballoons in a syntactic 

process to make a flexible foam. The filler content controls the bulk modulus and the 

compressibility of the material. A schematic of manufacturing the flexible syntactic foam 

is shown in Figure 1.4. These materials could also be used in packing sensitive 

instruments against shock and or protect structural components against shock and impact.  
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Figure 1.3  Stress-Strain response of different material system 
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Figure 1.4  An approach for making syntactic foam 
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1.2 Syntactic Foams 

Syntactic foams are composite materials synthesized by filling a metal, polymer 

or ceramic matrix with hollow particles called microballoons. The word "syntactic" 

means "put together"[1].  Presence of hollow particles results in lower density, higher 

strength, a lower coefficient of thermal expansion, and, in some cases, radar or sonar 

transparency. 

Tailorability is one of the biggest advantages of syntactic foams. The matrix 

material can be selected from almost any metal, polymer or ceramic. A wide variety of 

microballoons are available, including cenospheres, glass microspheres, and carbon and 

polymer microballoons. The most widely used and studied foams are glass microballoon-

epoxy, glass microballoon-aluminum and cenosphere-aluminum [2] 

The compressive properties of syntactic foams primarily depend on the properties 

of microballoons, whereas the tensile properties depend on the matrix material that holds 

the microballoons together. Changing the volume fraction and/or changing the wall 

thickness of the microballoons can adjust properties of syntactic foams. In general, the 

compressive strength of the material is proportional to its density [2]  

Syntactic foams were developed in early 1960s as buoyancy aid materials for 

marine applications [3] the other characteristics led these materials to aerospace and 

ground transportation vehicle applications [4].  Current applications for syntactic foam 

include buoyancy modules for marine riser tensioners, boat hulls, deep-sea exploration, 

underwater vehicles, parts of helicopters and airplanes, and sporting goods such as soccer 

balls [5]. 
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Another class of syntactic foams that is finding wide applications in potting, 

sealing, and packaging is the elastomer-soft microballoons foams.  These materials 

provide flexibility to fill all gaps and voids and can offer shock mitigation properties.  

Again, there is a wide variety of elastomers (example, polysulfides) and microballoons 

(such as phenolic and expancel) that are available to choose from.  This study focuses on 

polysulfide elastomer and Pµbs. Figure 1.5 shows the morphology of a syntactic foam. 

 

 

Figure 1.5  Typical syntactic foam 

 
 

 

 

1.3 Confined Compression Test 

Genesis of confined compression test starts from soil mechanics where shear 

strength of soils are measured under triaxial stress state and it dates back to 19
th

 Century. 

The method has been standardized for soils and concrete and the details are found in 

ASTM D7012 [6]. The ASTM D7012 test fixture is shown in Figure 1.6. 

 Matsuoka and Maxwell [7] developed a test fixture (see Figure 1.7) to study the 

compressibility of Nylon 66 and polystyrene matrices. Warfield [8] used the same test 
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fixture to study polyethylene. Burchett, et al. [9] studied the effect of specimen length to 

diameter on volumetric stress and strain and highlighted its importance. The current study 

uses a slightly modified version of Matsuka and Maxwell’s test fixture for ease of 

conducting the tests. The purpose of this test is to measure the bulk modulus and 

compressibility of the syntactic foam. 

 

                                                           

Figure 1.6  Test fixture for ASTM D7012 

 

 

 

 

 

Figure 1.7  Confined compression test apparatus  
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1.4 High Strain Rate Testing of Material 

 The most widely used test for determining strain rate properties of materials over 

the range of 100 and 10,000 s
-1

 is the Split Hopkinson Pressure Bar (SHPB). The test 

method was first proposed by Hopkinson [10-12] and the present form of the test 

apparatus was developed by Kolsky [13] with all the mathematical details required for 

one-dimensional wave propagation theory. The analysis was refined by Bancroft [14] and 

Davies [15]. Later on, the method was extended from compression to tension and 

torsional loadings [16,17], ceramic materials [18], and soft and viscoelastic materials 

[19,20]. The reference quoted here is only a few, but one can find a wealth of 

publications in the literature. 

The compressive SHPB consists of two elastic pressure bars that sandwich the 

specimen between them Figure 1.8. Upon impact of the striker bar on an incident bar, an 

elastic compressive wave is generated in the incident bar and that travels through the 

specimen (some reflected back) and into the transmitting bar. The strain-time response is 

measured by strain gages on bars. The velocity of the striker controls the strain rate while 

the length of the striker determines the duration of the test. By adjusting the striker bar 

velocity, a desired strain rate can be achieved. At the incident bar/specimen interface, the 

wave is partially reflected and partially transmitted into the specimen. The reflected and 

transmitted wave response is measured by the strain gages on the two bars. Typical 

incident, reflected and transmitted waves for an aluminum alloy specimen is shown in 

Fig. 1.9. 

 From these strain-time response, a complete stress-strain response of the material 
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can be determined. A detailed analysis and testing of the SHPB test facility at A&T is 

presented by Panduranga [21]. 

 

 

  
Figure 1.8  Schematic of Split Hopkinson Bar Apparatus 

 

 

 

 

Figure 1.9  Typical Strain Signal for Aluminum Specimen (Al 6061-T651-1) in a Split Hopkinson 

Pressure Bar Test 
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An ideal static or dynamic stress-strain response for a microballoon filled 

syntactic foam is shown in Figure 1.10. Notice the failure onset (compressive strength), 

microballoon collapse (crushing) and solidification/densification parts of the curve in 

Figure 1.10. Crushing strain ( crush) is an important component in energy dispersion of 

the material. In these cases, the energy absorption can be approximated by the (σo crush ).  

 

 

Figure 1.10  Typical compressive stress-strain response of foam material  

 

 

The idea of proposed research is filling the matrix with microballoon to increase 

the crush strain of the material. In the present research, flexible microballoon will be 

selected because of multiple compressibility and is used to make a syntactic foam. 

 An extensive study on high strain rate characteristics of metallic materials and 

foams can be found in the literature. However, the studies of elastomer materials are very 

limited [22, 23] and no reference was found on soft microballoon filled elastomers. The 

work of Sandia Lab [22, 23] was all on commercial materials, no details of material 
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composition was provided and the results were inconclusive.  

The study of Wasley et al. [24] on various organic foams such as polyurethane 

foams, phenolic microballoons, and polystyrene bead foam provided a guidance for good 

shock mitigation material: pulse duration was greatly lengthened, Peak stress and stress 

rise rate reduction and increased stress pulse width. This guidance was used in the present 

study to assess the flexible microballoon filled elastomer foam. Selected phenolic 

microballoons dispersed in a liquid polysulfide resin binder at 0.23 g/cc. 

 

1.5 Objective of the Research 

 The overall objective of the research is to develop a flexible syntactic foam that 

has controllable bulk modulus, compressibility and shock mitigation characteristics and 

to validate the material performance by experiments.  The specific activities of the 

research are:  

 To demonstrate that a variable bulk modulus can be developed using an 

elastomer matrix and flexible microballoons. It is also required to assess 

the material compressibility as function of microballoon content. 

 To develop flexible syntactic foams using commercial materials and to 

characterize its physical properties as a function of filler content. 

 To characterize the tensile and bulk moduli of the foam and to express the 

compressibility as a function of filler content.  

 To use A&T’s Split Hopkins Pressure Bar test apparatus to characterize  

high strain rate properties and shock mitigation performance of the foam.  
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1.6 Scope of the Dissertation 

The dissertation consists of six chapters. Chapter 1 presents the importance of 

problem, background on elastomeric syntactic foams, confined compression test, and 

compression high strain rate test.  Chapter 1 also includes the objectives of the research 

and scope of the dissertation. Chapter 2 presents the concept of variable bulk modulus  

using flexible microballoons to fill the  composite and analyzed through simple gas laws 

analysis. It also includes discussions on the elastic deformation of the elastomer and the 

microballoon wall materials. Chapter 3 focuses on the materials selection, processing of 

the foam, fabrication of the specimen, physical and the morphology characterization.  

Chapter 4 presents the tension and confined compression testing procedure, and the 

results. Chapter 5 presents details of compression high strain rate testing, test results,  

analysis and discussions. The strain rate is limited to 3,000/s to 4,600/s to get the first order 

effect and viability of the concept.  Finally, concluding remarks and future work are 

presented in Chapter 6. 
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CHAPTER 2 
 

ANALYSIS 
 

 

 

2.1 Introduction 

This chapter derives a relation between volumetric stress and volumetric strain in 

a confined compression testing of Pµbs filled LP2 elastomer composite using gas laws 

and elastic deformation of  the LP2 elastomer. A number of realistic assumptions are 

made to reduce the equation to a simple form. The lateral constraint due to a nearly rigid  

mold, the slope of axial stress and strain would yield the bulk modulus of the composite. 

 

2.2 Analysis 

The Pbs are filled with inert gas such as Nitrogen during the manufacturing 

process. The wall material of the microballoon is highly flexible and non-breakable under 

repeated loading and unloading. Figure 2.1 shows the morphology of Pb (Fig. 2.1a) and 

the deformation states under hydrostatic stress (Fig. 2.1b). At the normal atmospheric 

pressure (1 bar), the microballoon is spherical and at 6 bar or 0.62 MPa hydrostatic 

pressure, the balloon completely collapses. Upon releasing the pressure, the microballoon 

bounces back to the original spherical shape.  

This expansion and contraction upon de-pressurizing and pressurizing follows the 

ideal gas laws. At constant temperature, it follows the Boyle’s law. The composite is a 

mixture of elastomer and Pb, therefore, the amount of compressibility depends on the 

volume fraction of Pb. The rate of change of compressibility will directly influence the 
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bulk modulus of the material. For an elastic material of modulus (E) and Poisson’s ratio 

of (),  the bulk modulus is given by 
 213 


E

K . 

 

 

    

 

(a) As-received microballoon (b) Under hydrostatic stress
 

Figure 2.1  Morphology and deformation of Pb under hydrostatic pressure  

 

 

As noted in the above equation, the bulk modulus is infinite for   = 0.5 for  

elastomer type material. For   not equal to 0.5, the bulk modulus is finite. It is possible 

to vary K by adding Pb, which are enclosed air pockets. Figure 2.2 shows the schematic 

and the SEM of Pb filled LP2 polysulfide elastomer. This is assuming that Pb is 

spherical and well dispersed. This composite is tested in a steel test cylinder under axial 

stress as shown in Figure 2.3. Because the cylinder is rigid compared to the composite, 

the lateral strains are zero and the axial strain is hydrostatic strain. The analysis is 

conducted for two cases as shown in Figures 2.2 and 2.3 with a schematic, morphology 

and test cylinder:  
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1.Elastomer and microballoon walls are perfectly plastic and do not deform under  

    hydrostatic stress and;  

2. Elastomer and Pb wall are elastic and deform under hydrostatic stress state. 

 

 

(a) Schematic (b) SEM
 

Figure 2.2  Schematic and SEM of LP2 polysulfide elastomer filled with Pµb 

 
  

 

 

 

Figure 2.3  Confined Compression Test 
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2.3 Assumptions 

The analysis is based on the following assumptions: 

1. Composite consists of elastomer, Pµb, and no voids 

2. Volume fraction of elastomer is Ve 

3. Volume fraction of microballoon is V0 

4. V0 consists of volume fraction of microballoon walls (Vw) + volume fraction 

of fluid (Vf) in the microballoons. Therefore V0=Vw+Vf 

5. Vf1 and Vf2 are the volume fraction of fluid (filler) at pressures P1 and P2, re-

spectively. 

6. Volume fraction of the composite is Vc=1. and Vc=Ve+V0 

7. Initial pressure in the Pµb is P1, which is the atmospheric pressure 

8. Applied pressure or the axial stress is P2, which is over and above the atmos-

pheric pressure. 

9. Elastic modulus and Poisson’s ratio of elastomer are Ee and e, respectively 

10. Elastic modulus and Poisson’s ratio of microballoon wall is Ew and w, respec-

tively 

11. The test cylinder is made of steel jacket and is considered rigid. Material lea-

kage in the test system is zero 
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2.3.1 Case 1: Elastomer and microballoon walls perfectly plastic 

Here all the expansion and contraction of composite are due to the fluid inside the 

microballoon and the pressure-volume relation is governed by Boyle’s law. 

2211 ff VPVP        (2.1) 

In a confined compression test shown in Figure 2.3, the axial strain a can be calculated 

as follow: 

Volume fraction of the fluid (Vf2) at pressure P2 is:  

2

11

2
P

VP
V

f

f                                             (2.2) 

Change in volume fraction is: 

2

11

1
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VP
V

V

V f

f

c
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


1

2

11 fV
P
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







  

Because volume fraction of the composite, Vc, is 1, we get the volumetric strain f , 

which is same as the axial strain, a, is: 

1

2

11 fa V
P

P








                     (2.3) 

The applied axial stress in a uniaxial compression test is given by:  

a = (P2-P1)          (2.4) 

Substituting equation 2.4 in 2.3 and simplifying will lead to: 

1

1)/1(

1
1 f

a

a V
P 















                                        (2.5) 

Here P1 = 1 bar (0.1 MPa). 
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Figure 2.4 shows axial stress versus strain response from Equation 2.5 for 

different values of filler volume fraction (Vf1). The amount of shift to the right depends 

on volume fraction of the filler, Vf1. Notice the almost zero slope in the initial stress-strain 

response because of low modulus of Pb. Once the Pbs are compressed, the stress-strain 

curve is very steep or vertical because of infinite bulk modulus (e = 0.5). 

 

Figure 2.4  Axial stress versus volumetric contraction of Pb alone (Equation 2.5) 
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2.3.2 Case 2: Analysis including compressibility of elastomer and Pb wall 

Here, in addition to the compressibility of the fluid in the microballoon, the 

compressibility of elastomer and the Pb wall materials will be included in establishing 

axial stress-strain equation. Although the elastomer’s Poisson’s ratio is nearly 0.5, it is 

assumed to be e for the purpose of analysis and the microballoon wall’s Poisson’s ratio 

is w. Both these materials deform as per the three-dimensional elasticity theory.  

Deformation due to compressibility of the composite using the rule of mixtures 

elastic modulus (Ec) and Poisson’s ratio (c) of the composite is calculated as follows 

[27]. The volume fraction of the composite excluding the filler content is (1-Vf1), the 

resulting elastic modulus when applying the rule-of-mixture and the volume fraction 

correction, is: 

11 f

wwee
c

V

VEVE
E




                                                            (2.6) 

and 

11 f

wwee
c

V

VV







                                                             (2.7) 

For a confined compression test, the lateral strains are zero and the corresponding  

lateral stresses can be derived from the elasticity equations [28]. Combining these two 

stresses and the axial stress a, the reduced axial strain due to elastic deformation of the 

composite becomes: 



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The total axial strain, t, is the sum of the compressibility of the fluid in the Pb 

(Eq. 2.3) and the elastic deformation of the composite (Eq. 2.8), that is:  
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Invoking Eq. 2.4 in Eq. 2.9, it simplifies to: 
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    (2.10) 

As noted in the above equation, the limiting strain is Vf1 (volume fraction of the 

filler). The reference pressure P1 is assumed as 1 atm or 0.1 MPa. The material properties 

used in the calculation are: 

Elastomer: 

Em = 1.42 MPa ( 206 psi) 

 e = 0.48 to 0.5; Vf1 = 0, 0.34, 0.51 and 0.63 corresponding to 0,10, 20, and 30 % 

weight fraction of Pb. 

Phenolic microballoons (Pb): 

Wall: Ef = 3 GPa (400 ksi) 

w = 0.3 

The stress (a) and strain (a) curves are shown in Figure 2.5 for the filler volume 

fraction of 0, 0.34, 0.51 and 0.63 corresponding to filler weight fraction of 0%, 10%, 20% 

and 30%. If the e is different from 0.5, then for a small variation of e that is for 

e=0.4995 and 0.499 the results are shown in Figure 2.5, 2.6a and 2.6b, respectively. 
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Figure 2.7 comparison of results from Eq. 2.10 (including wall material deformation and 

Eq. 2.5 not including) is shown in Figure 2.7 (e of 0.5). The effect of Pb wall 

deformation is small compared to the total deformation and it can be neglected. 

 

 

 

Figure 2.5  Axial Stress versus Strain for e = 0.5 (Eq. 2.10) 

Stress, 

MPa 

Strain, m/m 

e = 0.50  

0 

5 

1

0 

1

5 

2

0 

2

5 

3

0 

3

5 

4

0 

0 0.

1 
0.

2 
0.

3 
0.

4 
0.

5 
0.

6 
0.

7 
0.

8 

10% 
30% 

20% 

0% 



22 

 

 

(a) 

 

Stress, 

MPa

Strain, m/m

e = 0.4990

0

5

10

15

20

25

30

35

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

10% 30%20%
0%

Stress, 

MPa

Strain, m/m

e = 0.4990

0

5

10

15

20

25

30

35

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Stress, 

MPa

Strain, m/m

e = 0.4990

Stress, 

MPa

Strain, m/m

e = 0.4990

0

5

10

15

20

25

30

35

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

25

30

35

40

0

5

10

15

20

25

30

35

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

10% 30%20%
0%

 
(b) 

 
Figure 2.6. Axial stress vs. strain for (a) e = 0.4995 and (b) e = 0.4990 
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Figure 2.7  Comparison of axial stress vs. strain based on Eqs. 2.5 & 2.10 for (e = 0.5)  
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the limiting strain are dependent on the percent weight or volume of the Pb. 
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CHAPTER 3 
 

MATERIALS SELECTION, PROCESSING AND PHYSICAL 

CHARACTERIZATION 

 

 

 
3.1 Introduction 

This chapter describes the materials, their selection, processing, and physical and 

morphological characterization of the variable bulk modulus composite. The specific 

objectives of this chapter are: 

1. To select elastomeric elastomer matrix, curing agent and microballoon filler. 

 

2. To compound the elastomer matrix with curing agent, and various percent weight 

Pb filler. 

3. To determine physical properties including density and volume fraction of test 

specimens. 

4. To determine the morphology of the syntactic foam. 

 

3.2 Material Selection 

3.2.1 Polysulfides (Matrix Material) 

Polysulfides are a class of elastomers comprising alternating chains of sulfur 

atoms and hydrocarbons.  The general formula is –[(CH2)m-Sx]n–, where “x” indicates the 

number of sulfur atoms, “m” and “n” the number of repeating units [29]. 

 

Thiokol Corporation introduced liquid polysulfide polymers in 1943 [30]. They 
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are available in molecular weights ranging from 1,000 to 8,000 and with different weight 

percent of cross linking agent (0 and 2%). The higher cross linking amount increases the 

modulus and hardness of the cured elastomeric foam.  

Polysulfides are widely used in various applications because of their rapid curing 

at room temperature, good adhesion to most surfaces, toughness, and chemical resistance 

to most dilute acids, alkalis, and solvents. They can be easily compounded into sealants, 

adhesives, coatings, potting compounds, and flexible molding compositions. Polysulfide 

compounds are used in residential and commercial building construction, insulating glass, 

aerospace, electronic, aviation, and marine applications. Because of these wide 

applications, polysulfide has been selected as the right matrix material to develop a 

variable bulk modulus flexible elastomeric foam.  

Five polysulfide materials were evaluated to select the best matrix material: 

Polysulfide elastomer LP2, Polysulfide elastomer LP980, Polysulfide epoxy TP48, 

Polysulfide elastomer CS3100 and Polysulfide elastomer PRC1422A.  The following 

Table 3.1 summarizes the important properties, such as physical form, viscosity, 

molecular weight, moisture content, mercapatan content and cross linking agent 

percentages, density, compatible base fillers and curing agent of these five different 

polysulfides. The material properties and technical data are taken from references [31] 

through [33]. They have been carefully evaluated for process ability to develop the 

variable bulk modulus elastomeric foam specimens. 
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Table 3.1 Polysulfide elastomers characteristics  

Physical form  liquid  liquid  liquid  liquid  liquid

Viscosity, pa.s 41-48 10- 12.5 12-16' 55 25

Average molecular wt. 4000 2500 NA NA NA

Mositure content, % 0.15 – 0.25 0.15 – 0.25 NA NA NA

Mercaptan content,% 1.5 – 2.0 2.5 – 3.5 NA NA NA

Crosslinking agent, % 2 0.5 NA NA NA

Density, g/cc 1.29 1.25 1.25 1.25 1.45

Base fillers None None Unknown Unknown CaCO3

Curing agent Grain MnO2 Grain MnO2 Liquid Liquid Liquid

Polysulfide 

Rubber 

CS3100

Polysulfide 

Rubber 

PRC1422A

Properties
Polysulfide 

Rubber LP2

Polysulfide 

Rubber 

LP980

Polysulfide 

Epoxy TP48

 

 

 

The polysulfide polymers considered were assessed to choose a suitable 

elastomeric system that would vary the elongation and modulus of the compound. Toray 

Fine Chemicals Co., Ltd. supplied the liquid polysulfide LP2 & LP980.   They were 

made of bis(ethelenoxy)methane containing disulfide linkages. The ether linkages in the 

polymer provided mobility and flexibility whereas disulfide and high sulfur content along 

with its chemical saturation provided the polymer an excellent fuel resistance. The user 

could vary the elongation and modulus of the specimen by varying the amount of tri-

functional organic halide, which was co-reacting to obtain varying amounts of crosslink 

sites. Although they became the high-performance sealants used in building construction, 

these elastomeric sealants have found applications in large-scale projects, such as fuel 

tanks, aircraft, insulating glass, canal and marine sealants around the world.  A major 
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advantage is that the base chemical has no fillers and the disadvantage is that there is the 

need for complex equipments for processing, such as sigma blade mixers, kneader-

extruders, high-speed disperators, transferring and packing of compound requires heavy-

duty processing pumps. 

The polysulfide epoxy TP48 supplied by Transpo Industries [31] was made of a 

two-component (2 resin:1 hardener) epoxy based blended sealer and an aggregate system. 

This specially made system could penetrate deep into cracks and provide bonding to the 

inner walls of the crack. This seal prevents the ingress of moisture and salts into the 

substrate while providing skid resistant surface. This seal adds one third to one half 

pound of dead load per square foot of deck area. A major disadvantage is that the base 

chemical has unknown fillers, the chemical formulae and physical properties are not 

available, and the material adds additional dead weight. 

The Polysulfide elastomer CS3100 was supplied by Chem Seal Products [32] and 

consisted  a two-component (100 base:10 curing agent) elastomer  which was applied 

within 1-3 hours time to seal or pott the electrical connectors and components for 

protection from moisture, fuels, dirt and other contaminants. Major advantages are that 

the material is widely used for potting and sealing electrical components and adheres to 

most commonly used surfaces. Major disadvantages are that the base chemical has 

unknown fillers and the chemical formulae and physical properties are not available.  

The Polysulfide elastomer PRC-1422 class A was supplied by PRC-DeSoto 

International [33] and consist of two-part (part A 10:part B100), dichromate cured 

polysulfide compound for fuel tank sealant. It has an excellent adhesion capability to 
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common aircraft substrates having tensile strength of 350 psi, elongation of 250 percent 

and flexible - no cracks after bending 180 degrees over 0.125 inch. Major disadvantages 

are that the base chemical has known fillers (calcium carbonate) which are brittle 

compared to hollow microballoons and the physical properties are not available.   

After evaluating these five polysulfide material system, study concluded that 

polysulfide epoxy TP48,  polysulfide elastomer CS3100  have unknown fillers in the base 

chemical which is a disadvantage for the development of the variable bulk modulus 

composite foam. Therefore, the polysulfide elastomer LP2 was selected as the matrix 

material for the expanded study. 

3.2.2 Curing Agent 

Manganese Dioxide (MnO2) is a very widely used curing agent for liquid 

polysulfide elastomer in industrial applications because of no toxicity, better pot life 

stability and being able to be pre-mixed with fillers. Therefore, MnO2 was chosen as the 

curing agent for the LP2 polysulfide elastomers. Figure 3.1 shows a shear modulus versus 

cure time for a typical polysulfide for catalyzed and uncatalyzed with MnO2 in adhesives 

and sealants.  

The reaction of liquid polysulfide elastomer with manganese dioxide converts 

mercapatan (-SH) groups to disulfide (-S-S) bonds [34] as shown below. This results in a 

high molecular weight polymer with elastomeric properties. 

Curing agent: Manganese Dioxide (MnO2)

• Blackish Brown Solid

• Manganese dioxide (MnO2)

• Molar Mass – 87g/mol

• Density – 5.02 g/cc

• Melting at 535 0C

• Solubility in Water-Insolube

• Catalyst, Oxidant and solidifies faster

Reaction

2RSH + MnO2 RSSR + MnO + H2O 

2RSH + MnO RSMnRS + H2O 

RSMnSR + MnO2 RSSR + 2MnO 
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Figure 3.1  Shear modulus against time for cure of polysulfide with MnO2 

  

 

Properties of MnO2 are: 

 Chemical formula  MnO2 

 Physical Form  Blackish brown solid 

 Molar mass   87 g/mol 

 Density   5.02 g/cc 

 Melting point  535 
o  

C  
  
 

 Solubility in water  Insoluble 

The reaction of liquid polysulfide elastomer with manganese dioxide converts  

mercapatan (-SH) groups to disulfide (-S-S) bonds [34] as shown below. This results in a 

high molecular weight polymer with elastomeric properties.  The curing reaction is 

shown here: 

 

 

 

Curing agent: Manganese Dioxide (MnO2)

• Blackish Brown Solid

• Manganese dioxide (MnO2)

• Molar Mass – 87g/mol

• Density – 5.02 g/cc

• Melting at 535 0C

• Solubility in Water-Insolube

• Catalyst, Oxidant and solidifies faster

Reaction

2RSH + MnO2 RSSR + MnO + H2O 

2RSH + MnO RSMnRS + H2O 

RSMnSR + MnO2 RSSR + 2MnO 

Uncatalize

d 
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3.2.3 Phenolic Microballoon 

Phenolic microballoon BJO-093 supplied by Asia specific company [35] was 

selected as the filler material and designated as “Pb” in this dissertation. Figure 3.2 

shows the chemical structure and networkings of a microballoon made out of phenol-

formaldehyde that has a 3-D network from tri-functional polymers [36].  This 

microstructure property enables interfacial adhesion between Pµb and the polysulfide 

base leading to a material that is chemically stable and stiffer. 

Figure 3.3 shows the size and morphology of the BJO-093 Pµb as-received from 

the supplier.  These microballoons can withstand several cycles of loading/unloading 

without breaking (up to 4.2 MPa). The deformation of the microballoon under hydrostatic 

compression loading is shown in Figure 3.4 [37].  The microballoons completely collapse 

at 6.9 MPa pressure and expand back upon release of pressure.  Figure 3.5a illustrates the 

compression test on a single microballoon. The microballoon is compressed to a certain 

displacement and the load is released. Figure 3.5b shows the load vs. displacement 

response of different types of Pbs: as received and cured Pb, glass and carbon (brittle) 

Pbs during the test. Careful examination of load vs. displacement indicates that as-

received Pb does not break but deform to 45 m under load 60 mN (milli Newton) 

where as cured Pb breaks at about 20 m deformation under 8 mN load.  Glass 

microballoon and carbon microballoon are brittle and break under 30 mN and 15 mN, 

respectively. This data suggests that as-received Pb is better choice for making the 

variable bulk modulus composite. 

Table 3.2 compares the physical properties of different types of Pb supplied by 
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various companies as well as two types of glass microballoons. Based on the combination  

of low density and high hydrostatic strength, BJO-093 Pµb fillers are chosen for the 

present research.    

 

 

  
Figure 3.2.  Chemical structure of Pµb  

 

 

 

 

Figure 3.3  Morphology of as-received Pµb 

 

 

 
 

 
 

Figure 3.4  Deformation of microballoon under hydrostatic stress  
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Figure 3.5  (a) Compression test on a single microballoon and  (b) typical compressive load vs. 

displacement response 

 

 

Table 3.2 includes the BJO-093 Pµb as-received type, which will not break till  

4.2 MPa loading compare to flexible thermoplastic expancel and the other two brittle 

glass microballoons considered for evaluation in this research. 
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Table 3.2 Physical properties of different microballoons  

Type of Microballoon

True 

Density 

(g/cc)

Hydrostatic 

Compressive 

Strength 

(MPa)

Mean 

Diameter 

(µm)

Ave. Wall 

Thickness 

(µm)

Thickness-

to-radius 

ratio

Supplier

DE40d42 Expancel 0.02-0.05 0.6 36 to 49 0.1 to 0.2 0.02 to 0.04 Expancel, Inc.

K15 3M Glass 0.15 2.07 70 0.7 0.02 3M

K46 3M Glass 0.46 41.37 43.6 1.37 0.063 3M

1.84 0.052 Asia specific*BJO-093 Phenolic 0.25 3.44 71.5

* www.phenoset.com 

 

 

In conclusion, liquid polysulfide elastomer LP-2, hollow Pµb (BJO-093) having 

covalent and secondary bonding and a manganese dioxide curing agent are chosen to 

prepare the variable bulk modulus elastomeric foam composite for the study. The next 

section focuses on material processing, and molding of specimen. 

 

3.3 Material Processing and Specimen Preparation 

3.3.1 Compounding Process 

The compounding process and specimen preparation for this study involved the 

dispersion of microballoon fillers and curing agent, manganese dioxide in liquid 

polysulfide elastomer resin. The required amount of liquid polysulfide elastomer base 

chemical 100 parts by weight, manganese dioxide curing agent 7.5 parts by weight and 

Pµbs of 0%, 10%, 20% and 30% by weight was measured. Although typical equipment 

includes sigma blade mixers, kneader-extruders, high-speed disperators, transferring and 

packing of compound requires heavy-duty processing pumps this study used manual 

http://www.phenoset.com/
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mixing method in a beaker or on flat steel plate with the help of hand tools (flat or round) 

and squeegees (plastic/steel blades).  Figure 3.6a shows the accurately measured amount 

of microballoons, curing agent and base resin. Figure 3.6b shows mixing of the three 

compositions in steel pan using plastic tool and flexible steel tools, Figure 3.6c shows 

homogeneous mixture spreader on a steel plate. The stiffness of the composites increases 

with 30% weight by Pb–matrix interactions either due to particle clustering or a network 

of filler interactions. This is where the continual and constant mixing, spreading, 

squeezing to disperse the microballoon evenly and achieve near zero voids. 

 

 

       

(a)         (b)    

 

 

 

(c)   

Figure 3.6  Compounds (a) measured, (b) mixed, and (c) homogeneous elastomer 
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3.3.2 Molding Process  

After making the homogeneous mixture, the mixture was transferred to a mold 

and cured in to form the test specimen of different configurations. Two types of specimen 

were made; cylindrical specimen for confined compression and high strain rate tests and 

flat rectangular specimen for tension test. The test specimen configurations are shown in 

Figure 3.7. 

 

                                                        

                               (a)                                                   (b)  

Figure 3.7  (a) Tension and (b) Compression test specimen configuration 

 

 

 

3.3.2.1 Molding Cylindrical Specimen 

        First, top surface of the bottom flat plate, inside surface of the cylindrical mold, 

and bottom surface of the top flat plate were coated with mold release wax (TREWAX). 

Secondly, a pile of freshly prepared homogeneous composite mixture on top surface of 

the bottom flat plate was made. Thirdly, the cylindrical mold was forced over the 

mixture on to the flat plate so that the composite completely filled the mold from the 

bottom-up with nearly no air entrapments.  

30 mm 

25.4 mm 

6 mm 

2 mm 

60 mm 
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Additional squeezing and forcing the mixture into the mold was essential to fill 

the cavity completely. This manual filling and forcing methodology using simple hand 

tools was crucial to make the homogeneous identical syntactic foam composite 

specimens. Finally, place a steel flat plate (90-130 N weight) was placed over the overly 

filled compression-mold assembly as shown in Figure 3.8.  

 

 

(a)   
 

 
 

(b)   

 

      
(c)  

Figure 3.8  (a) Round mold, (b) Closed mold assembly, and (c) Specimen configuration 

 

 

Then, the top steel plate was tapped for about 3 minutes using a 12-20 N weight plastic 

30 
mm 

25.4 mm 

Top plate 

Bottom plate 

Cylindrical cup 

with top and 

bottom open 
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hammer to fill the cavity and to drive-out voids.  The whole assembly was left to cure for 

24 hours at room temperature.  The viscoelastic behavior of the syntactic foam, where 

the material slowly moved around and filled the cavity completely, reduced the void 

content. After curing for 24 hours, the cylindrical specimens were demolded, measured, 

weighed, and identified by a number. The specimen is about 30 mm in diameter and 

about 25.4 mm in height. 

 

3.3.2.2 Molding Rectangular Flat Specimen 

Similar molding process described in the previous section was followed here to 

make the rectangular specimen by using the mold plate shown in Figure 3.9a. A pile of 

freshly prepared homogeneous composite mixture was spread on top surface of the 

bottom flat plate. Then the flat rectangular steel mold was forced over the mixture on to 

the flat plate so that the composite completely filled the mold from the bottom-up with 

nearly no air entrapments. Additional squeezing and forcing the mixture into the mold 

was essential to fill the cavity completely. Then a flat plate (about 90-130 N) was placed 

on the mold and the top plate was tapped with 12-20N plastic hammer for about 3 

minutes. Then the whole assembly was left for 24 hours for curing and readjustment of 

mold filling. The specimen was removed from the mold. The specimen is 60 mm x 6 mm 

x 2 mm and is shown in Figure 3.9c. 
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(a)   
 

   
 

(b)  

            
 

(c)  

Figure 3.9  (a) Flat mold, (b) Molding assembly, and (c) Specimen configuration 

 

 

3.4 Physical Properties of the Material 

3.4.1 Volume Fraction of Pµbs  

The analysis is performed based on the weights of constituents added to the 

composite and their true densities provided by the supplier to calculate density, volume 

fraction, and void content. Furthermore, the compound was processed well so that it was 

almost free from voids. The composite was made of matrix polysulfide, catalyst MnO2 

6 mm 
2 mm 

60 mm 

Rectangular 

mold 

Top plate 

Bottom 

plate 



40 

 

and Pµbs. Their respective weights were Wm, WMn and Wb. The values of densities were 

m=1.29 g/cc, Mn=5.02 g/cc and b=0.25 g/cc. The volumes of the constituents were 

determined by the ratio of weight to their respective densities. Note that the specific 

gravity and density terms were used interchangeably by ignoring the gravitational effect. 

Therefore, the volume of  Matrix = 
m

mW


, Catalyst = 

Mm

MnW


, and the Pb=

b

bW






. The 

volume fraction of Pb (Vb) is the ratio of volume of Pb and the total volume. 

Therefore: 

 

b

b

Mn

Mn

m

m

b

b

B WWW

W

V

















                                                 (3.1) 

For example, the 20% weight fraction of Pb composite contains 100g of matrix, 7.5g of 

MnO2 and 20g of Pb. Substituting these values and the respective densities in Eq. 3.1 

results in the volume fraction of Pb, Vb=0.503. Similarly, volume fraction of matrix 

(Vm=0.488) and the catalyst (VMn=0.009) can be computed. The calculated volume 

fractions of Pb for 10, 20, and 30% weight fraction of Pbs were 33.6, 50.3 and 60.3%, 

respectively. The values are rounded to a whole number in the Table 3.3.  
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Table 3.3 Summary of specimen volume, weight, density and volume fraction of Pb and voids 

Pb Void

LP2-1 1.280 0.457 0.588 0.75 1.28 6

LP2-2 1.302 0.382 0.509 0.67 1.32 3

LP2-3 1.265 0.287 0.361 0.48 1.32 3

LP2-4 1.231 0.451 0.537 0.72 1.34 2

LP2_10MB-1 1.283 0.366 0.473 0.43 0.91 10

LP2_10MB-2 1.285 0.339 0.440 0.39 0.89 12

LP2_10MB-3 1.289 0.344 0.449 0.41 0.91 10

LP2_10MB-4 1.282 0.357 0.461 0.42 0.91 10

LP2_20MB-1 1.290 0.349 0.456 0.34 0.75 6

LP2_20MB-2 1.289 0.347 0.453 0.35 0.77 4

LP2_20MB-3 1.276 0.335 0.428 0.34 0.79 2

LP2_20MB-4 1.276 0.337 0.431 0.34 0.79 2

LP2_30MB-1 1.286 0.377 0.490 0.31 0.63 9

LP2_30MB-2 1.283 0.391 0.505 0.34 0.67 3

LP2_30MB-3 1.285 0.397 0.515 0.35 0.68 2

LP2_30MB-4 1.270 0.396 0.502 0.34 0.68 2

Volume Fraction (%)

Base 0.0

Height     

(cm)

Volume    

(cc)

Weight 

(g)

Density 

(g/cc)
Material Specimen No.

Diameter 

(cm)

30% Pb 60

10% Pb 34

20% Pb 50

 

 

3.4.2 Computation of Void Fraction 

The approach used here was similar to the computation of volume fraction of 

Pb. The measured density of the samples was used to reduce the volume fraction of 

voids. 

The volume fractions of three constituents were derived from the weight fractions 

in the composite. Since the voids did not contribute to weight, it was the difference 
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between composite volume and the total volume of the constituents. If Wm, WMn and Wb 

represent the weights of the three constituents in the composite then the total volume of 

the constituents is:  

b

b

Mn

Mn

m

m
WWW

V





1                                                    (3.2) 

If this volume is normalized to weight of the specimen (Wc), then the volume of the solid 

constituents (V2) is: 

 bMnm

c

b

b

Mn

Mn

m

m

WWW

WWWW
V
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
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











2

                              (3.3) 

The volume of the voids is the difference between the volume of the composite and the 

volume of the solid constituents (V2). Normalizing the volumes by the total volume of the 

composite specimen (Vc) results in the void fraction (V0): 

 bMnm

c

b

b

Mn

Mn

m

m

WWW

WWW
V



 

 












10

                         (3.4) 

Table 3.3 lists composite (), (V) of Pb and voids of each sample. The void content 

is highest for the 10% Pb composite, which is 10-20%. Except for sample #1 of 

base, 20%, and 30% Pb specimens the void content was reasonably low (2 to 3%). 

 

3.5 Morphology of Material 

The morphology of confined compression tested specimen was studied using a 

Scanning Electron Microscopy (SEM). A specimen of 5x5x5 mm was sliced from the 
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tested cylindrical specimen. The sliced specimen was broken into two-halves. One of the 

pieces was chosen for the SEM study. The broken surface was coated with gold using a 

sputter coater to increase conductivity, electrically grounded to prevent electrostatic 

charge at the surface. This non-conductive specimen tended to charge, especially in 

secondary electron imaging mode. Coated samples were analyzed in SEM. Figure 3.10 

shows the steps of specimen preparation for SEM imaging. 

 

 

      

                             (a)                                                    (b)                                                   (c)  

Figure 3.10  (a) Specimen, (b) Specimen slice, and (c) Mounted on test button 

 

 

This specimen-mounted holder was placed in the SEM apparatus as shown in Figure 3.11 

and specimen images were scanned. Figure 3.12 summarizes the SEM images of 0%, 

10%, 20% and 30% weight Pb content specimens. The images show some voids and 

dispersed Pbs. Dispersing of Pbs was good in all cases except 10%, where the void 

content was higher. 

 

Break 
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Figure 3.11  Scanning electron microscopy for morphology characterization 

 

 

                                    (a)   

 

                                  (b)   

 

                                (c)  

 

                                   (d)   

Figure 3.12  Morphology of specimen (a) Base, (b) 10% Pbs, (c) 20% Pbs, and (d) 30% Pbs 
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3.6 Summary  

Five different elastomers and four different microballoon materials were 

evaluated for their physical properties and compositions. Selected liquid polysulfide 

elastomer LP-2, uncured hollow Pµb (BJO-093), and a solid manganese dioxide curing 

agent were used to prepare the flexible syntactic foam. Weight percentages of Pb 

chosen were 0, 10, 20, and 30% that worked out to be 0, 34, 50, and 60% volume 

percentages. The composite had void that varied from 2 to 12% of the composite volume. 

Both confined compression and tension test specimens were prepared for testing. The 

morphology of the specimens was examined using Scanning Electron Microscopy and it 

was found that microballoons were distributed uniformly. 
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CHAPTER 4 
 

STATIC CHARACTERIZATION 
 

 

4.1 Introduction 

This chapter describes the tensile and confined compression tests and results of 

Pb filled LP2 polysulfide syntactic foam. The tensile modulus, bulk modulus and 

compressibility of the composite are determined from the test results. Morphology of the 

specimen before and after loading is assessed by Scanning Electron Microscopy (SEM). 

The change in moduli with filler content is examined. The test matrix used for the two 

tests is listed in Table 4.1. 

 

Table 4.1 Tension and Confined Compression Test Matrix. 

 

 

4.2 Tensile Test 

A tensile test was conducted using Instron 5542 electro-mechanical testing 

systems shown in Figure 4.1. It is a screw-driven crosshead that can apply tension or 

compression loading. The test machine had a load capacity of 5kN, cross head speed 

Tension Confined Compression 

Baseline   
 5 wt.%  Pb  -----  
 10 wt.% Pb  

 
 
 15 wt.%  Pb -----  
 20 wt.%  Pb  

 
 

 
 

25 wt.%  Pb -----  

30 wt.%  Pb -----  
 

Test case 
Type of Testing 
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ranged from 0.05 to 550 mm/minute. Cross head speed for the tensile test was set to 50 

mm per minute. Rectangular strip specimens (rubbery) were carefully gripped using 

mechanically actuated wedge grips. 

 

 
 

Figure 4.1  Instron 5542 electro-mechanical testing system 

 

 

4.2.1 Test Specimen and Testing 

A rectangular specimen of 60 mm long, 12 mm wide and 2 mm thick was chosen 

for the tension test per ASTM D412. The specimen configuration is shown in Figure 4.2. 

The geometry is more sensitive to loading and positioning of the sample than the tabbed 

specimens.  Any damage to the edges of the sample causes inaccuracies in the 

measurements.   

 The specimen was aligned in the load frame such that there was no twisting in the 

specimen. Tension tests were conducted on LP2 specimens with 0, 10, and 20 % weight 
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of Pb (see Table 4.1). Five specimens were tested for base LP2 and each for Pb filled 

samples. Table 4.2 summarizes the geometry of all specimens tested. During the test, 

load and displacements were recorded. Corresponding stresses and strains were 

calculated and plotted to determine the elastic modulus. Table 4.2 summarizes the 

modulus of each specimen including the average and the standard deviation. 

 

12 +/-1mm

2-4 mm60 +/- 2 mm

12 +/-1mm

2-4 mm60 +/- 2 mm

 
 

 Figure 4.2  Instron tension test specimen configuration 

 

 

Table 4.2 Pb filled LP2 tensile test specimen geometry and tensile modulus 

 

Material Specimen No. Length (mm) Thickness (mm) Width (mm) Modulus (MPa)

1 18.0 3.6 13.2 1.2

2 18.0 3.1 15.0 1.3

4 18.0 3.0 15.0 1.6

5 18.0 3.2 15.0 1.6

6 18.0 3.2 14.5 1.4

Average 18.0 3.2 14.5 1.4

STD 0.0 0.2 0.8 0.2

1 18.0 4.2 12.0 3.7

2 18.0 4.3 13.0 3.6

4 18.0 4.5 13.2 3.8

Average 18.0 4.3 12.7 3.7

STD 0.0 0.2 0.6 0.1

1 18.0 4.2 13.0 8.4

2 18.0 3.2 13.0 12.4

3 18.0 4.5 13.0 8.9

Average 18.0 4.0 13.0 9.9

STD 0.0 0.6 0.0 1.8

LP2/0% Pb

LP2/10% Pb

LP2/20% Pb
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4.2.2 Test Results and Discussion 

Figures 4.3 and 4.4 show the stress versus strain responses of typical 0% and 10% 

Pb weight content of LP2 specimens, respectively. The material behavior was initially 

linear and then became nonlinear elastic. The initial slope of the stress-strain curve was 

used for the tensile modulus. Moduli of all specimens are listed in Table 4.2. The 

measured tensile moduli of 0%, 10% and 20% Pb content LP2 specimens are 1.4 MPa, 

3.7 MPa and 9.9 MPa, respectively.  The average modulus increased with the percentage 

of Pb. This initial stiffening behavior of the material was attributed to loss of ductility of 

the material by the addition of microballoons. Note also that the fracture strain decreased 

(see Figures 4.3 and 4.4) with increased percent of Pb. This was again due to loss of 

ductility in the material.   

 

 
Figure 4.3  Tensile test plots for polysulfide LP2 neat resin (base) specimens 
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Figure 4.4  Tensile test plots for 10% wt. Pb filled LP2 tensile specimens 

 

 

A plot of tensile modulus versus percent weight Pb content is shown in Figure 

4.5. The data can be approximated by a linear relation between tensile modulus and 

percent weight Pb. This relationship is given by:  

E = 0.75 + 0.43wf                                                                                              (4.1) 

where E is the tensile modulus and wf is the weight percent of the Pb. The significant 

modulus increase with the weight percentage increase of Pb is observed. This is due to 

the stiffening effect by the addition of microballoon filler, which reduces the ductility of 

the elastomer. Note also that the increase in modulus is almost three times from 10% 

weight of Pb and seven times from 20% weight of Pb as shown in Figure 4.5.  
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Figure 4.5  Variation of tensile modulus with Pb content for LP2 specimens 

 

 

Halpin and Tsai [40] have derived a semi-empirical equation for elastic modulus 

for elastic modulus for elliptical fillers distributed randomly. That equation is given by: 
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where Ec is the modulus of the composite, Em is the modulus of the matrix (elastomer), 

ξ   is the shape factor (2, for spherical fillers). Vf is the volume fraction of the filler. 

Results of Halpin –Tsai equation is represented by the solid line in the Figure 4.6. 
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Figure 4.6  Comparison of Halpin-Tsai semi-empirical equation with experimental data 

 

 

4.3 Confined Compression Test 

The confined compression test was conducted in a hardened steel tube using a 

smooth fit specimen. The load was applied by a steel plunger and the axial deformation is 

measured. The axial stress and strain represented the hydrostatic stress and volumetric 

 The axial stress and strain represented the hydrostatic stress and volumetric 

strain. Slope of stress versus strain curve gave the bulk modulus. Tests were conducted 

on base and Pb filled LP2 elastomers.  

4.3.1 Test Specimen and Fixture  

The test specimen was 25.4 mm (1 inch) thick and about 30.1 mm (1.185 inch) in 

diameter and is shown in Figure 4.7a. The dimensions and the material of confined 

compression test fixture are shown in Figure 4.7b. The machined steel sleeve having an 

inner diameter of 30.2 mm, outer diameter of 50.8 mm and a length of 88.9 mm.  
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The compression load was applied using a steel plunger of outer diameter of 29.5 

and length of 114.3 mm.  The dimensional tolerance for all parts was  0.127 mm. The 

specimen was compressed between the top and bottom plungers of outer diameter of 30.2 

mm (having smooth fit with sleeve) and their thickness  of 12.5 mm.  The base plate had 

a recess of depth 6.4 mm and diameter 51 mm to hold the steel sleeve in place.  Three 

specimens each of 0%, 5%, 10%, 15%, 20%, 25% and 30% weight Pb composite 

samples were tested. Table 4.3 lists test specimen geometries and the calculated density 

of the composite. Test fixture as shown in Figure 4.7 is a simpler version of apparatus as 

referenced in [6-9].  

 

 

Figure 4.7  Specimen and test apparatus for confined compression test  
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Table 4.3 Confined compression test specimen geometries 

LP2-1 2.94 2.06 14.0 18.6 1.33

LP2-2 2.96 2.58 17.8 23.3 1.31

LP2-3 3.00 2.49 17.6 25.8 1.47

Average (STD)     1.37 (0.09)

LP2_5MB-1 2.85 2.42 15.4 16.7 1.08

LP2_5MB-2 2.96 2.88 19.8 21.9 1.11

LP2_5MB-3 2.98 2.51 17.5 19.3 1.10

Average (STD)     1.10 (0.01)

LP2_10MB-1 2.95 3.02 20.6 19.4 0.94

LP2_10MB-2 2.95 2.95 20.1 18.9 0.94

LP2_10MB-3 2.95 2.98 20.4 19.0 0.93

LP2_10MB-4 2.95 2.91 19.9 18.9 0.95

Average (STD)     0.94 (0.01)

LP2_15MB-1 2.96 2.95 20.3 16.6 0.82

LP2_15MB-2 2.96 2.85 19.6 16.2 0.83

LP2_15MB-3 2.96 2.67 18.4 15.2 0.83

Average (STD)     0.82 (0.00)

LP2_20MB-1 2.97 2.80 19.4 13.7 0.70

LP2_20MB-2 2.96 2.61 18.0 13.9 0.78

LP2_20MB-3 2.98 3.02 21.0 14.1 0.67

LP2_20MB-4 3.04 3.06 22.2 14.1 0.63

Average (STD)     0.70 (0.06)

LP2_25MB-1 2.96 2.90 19.9 14.3 0.72

LP2_25MB-2 2.96 2.94 20.2 14.6 0.72

LP2_25MB-3 2.96 2.93 20.2 14.2 0.70

Average (STD)     0.71 (0.01)

LP2_30MB-1 2.71 3.01 17.3 14.8 0.85

LP2_30MB-2 2.98 2.59 18.0 13.6 0.75

LP2_30MB-3 2.98 3.01 21.0 16.0 0.76

Average (STD)     0.79 (0.05)

20% Pb/LP2

25% Pb/LP2

30% Pb/LP2

Weight     (g)
Density 

(g/cc)
Material

10% Pb/LP2

15% Pb/LP2

Specimen no.
Diameter 

(cm)

5% Pb/LP2

Base Polysulfide

(Rubber Based)

Height     

(cm)

Volume    

(cc)

 

 

 

4.3.2 Test Procedure 

The test specimen was inserted into the bore of the test apparatus.  Care was taken 

to ensure that the specimen fit smoothly into the bore of the apparatus. In the present 

case, a clearance of 0.05 mm (0.002 in) was found to be suitable. Then two case-

hardened sliding fit steel plungers 12.7 mm long and 30.2 mm in diameter were inserted 
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into the open end of the bore.  The entire assembly was next placed in a test machine and 

the specimen was loaded in compression by moving the ram over sliding fit plungers 

down.  The plunger load and displacements were recorded continuously to determine 

stress and strain. From the data, stress and strain were calculated. The normal loading rate 

was 1.27 mm (0.05 in) per minute.  Tests were conducted to a maximum stress level of 

50 MPa. All tests were conducted at room temperature (approximately 25 C). 

4.3.3 Test Results and Discussion 

4.3.3.1 Mechanism of Compression  

Typical confined compression stress and strain responses of base LP2 (a pure 

plastic material) and Pb filled LP2 are shown in Figure 4.8. If LP2 is a pure fluid/plastic 

material of Poisson’s ratio 0.5, the stress-strain curve would have been a straight line 

along the Y axis. In real experiment, short linear shape followed by very steep line is 

observed because of the initial re-adjustment of specimen and leakage of material around 

the plunger. However, in the case of filled LP2 composite, one can observe an initial 

linear line, because of compressibility of Pb, followed by a transition curve indicative of 

partial collapse of Pb (top and bottom faces start touching each other) finally leading to 

complete collapse or incompressible state of the composite. The last part of the curve is 

almost parallel to Y axis, representing the plastic response of completely the collapsed 

state of microballoons.  Inserts in Figure 4.8 show the state of Pb at various stress 

levels. The slope of the linear (first) portion of the curve gives the bulk modulus of the 

material. 
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4.3.3.2 Axial Stress-Strain Response 

Compressibility of the syntactic foam is determined by the intersection of tangent 

lines from the compression and solidification portions of the stress-strain curves. The 

construction is shown in Figure 4.8. The strain at the intersection point gives the 

compressibility of the material.  

 

                     

Figure 4.8  Typical stress-strain response of Pb and unfilled LP2 composite  

 

 

 

Figures 4.9 through 4.12 show the confined compressive stress-strain responses of 

base, 10, 20, and 30% Pb content in LP2 elastomer, respectively. Each of these figures 

contains the complete axial stress-strain response till solidification (figure a) and the 

initial linear portion of the curve (figure b) to determine the slope, which is the bulk 

modulus of the foam.  
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 (b) 

Figure 4.9  (a) Complete stress-strain, and (b) Bulk modulus response of base LP2 specimen 
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(a)  

 

 
(b)  

 

Figure 4.10  (a) Complete stress-strain, and (b) Bulk modulus response of 10% wt. Pb specimen 
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(a )  

 

 

 

  
(b)  

 

Figure 4.11 (a) Complete stress-strain, and (b) Bulk modulus response of 20% wt. Pb specimen 
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(a)  

 

 

 

 
 

(b)  

 

Figure 4.12  (a) Complete stress-strain, and (b) Bulk modulus response of 30% wt. Pb specimen 
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The average curves of each test case are shown in Figure 4.13. This includes the 

data for 5%, 15%, and 25% weight percent filler content. Here all the curves shift almost 

parallel to each other depending on the filler content. 
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Figure 4.13  Average confined compression stress vs. strain for various Pb contents  

 

 

The table includes the data for 5, 15, and 15% filler content also. The 

compressibility increases with the filler content and reaches a limit of 68% for 30% 

weight filler content. Calculated bulk moduli are listed in the Table 4.4. At least three 

samples were tested for each case to confirm the repeatability of the test results. 
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Table 4.4 Summary of bulk modulus and compressibility of the specimens 

 

 

 

The average compressibility agrees with the filler volume and void content of the 

material. The plot of bulk modulus versus weight percent of filler content is shown in the 

Specimen No. Strain Range,  m/m Initial Bulk Modulus (K), MPa Compressibility, %

LP2-0-1 0.018 -0.036 23.9 0.07

LP2-0-2 0.018 -0.036 9.8 0.07

LP2-0-3 0.018 -0.036 23.4 0.07

Average - 19.0 0.07

Std. Dev. - 8.0 0.00

LP2-5-1 0.051-0.102 13.3 0.24

LP2-5-2 0.051-0.103 19.9 0.26

LP2-5-3 0.051-0.104 22.6 0.26

Average - 18.6 0.25

Std. Dev. - 4.8 0.01

LP2-10-1 0.071-0.142 15.0 0.32

LP2-10-2 0.071-0.143 12.1 0.14

LP2-10-3 0.071-0.144 15.0 0.32

Average - 14.0 0.26

Std. Dev. - 1.7 0.11

LP2-15-1 0.084-0.168 9.0 0.33

LP2-15-2 0.084-0.169 10.2 0.38

LP2-15-3 0.084-0.170 11.4 0.37

Average - 10.2 0.36

Std. Dev. - 1.2 0.02

LP2-20-6 0.097-0.189 9.2 0.42

LP2-20-5 0.097-0.190 9.3 0.44

LP2-20-4 0.097-0.191 10.4 0.44

Average - 9.6 0.43

Std. Dev. - 0.7 0.01

LP2-25-1 0.104-0.208 8.6 0.48

LP2-25-2 0.104-0.209 8.4 0.49

LP2-25-3 0.104-0.210 10.3 0.48

Average - 9.1 0.48

Std. Dev. - 1.0 0.01

LP2-30-2 0.149-0.249 8.6 0.72

LP2-30-1 0.149-0.250 8.4 0.69

LP2-30-3 0.149-0.251 10.2 0.63

Average - 9.1 0.68

Std. Dev. - 1.0 0.05
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Figure 4.14, it represents a linear relationship. 

         
Figure 4.14  Polysulfide bulk modulus vs. percent wt. Pb specimens 

 

 

Figure 4.15 shows the variation of compressibility versus the percent weight 

fraction of Pµb. The bulk modulus drops from 19 MPa to about 9 MPa at about 15% Pµb 

loading then remains constant. This plateau in the curve may be due to counter acting 

combination of increased elastic modulus and flexibility with increase in weight fraction 

of filler [41]. 
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Figure 4.15  Polysulfide specimens compressibility vs. percent wt. Pb 

 

 

4.3.4 Comparison of Analysis with Experiment 

Axial stress-strain response computed from the gas laws (Section 2.1.2) is 

compared with the experimental data for 0, 10, 20 and 30% weight of Pb in the Figure 

4.16. The broken lines represent the experiment and the solid lines represent the analysis. 

The analysis includes the microballoon wall deformation. The analysis assumes perfect 

fit condition and no initial adjustment of the test specimen and leakage of material. 

Therefore, the two results differ, however qualitatively they are similar. Furthermore, 

some polymer could also be compressible [44 ].  

 

Alternatively, an empirical equation was fit to the base line data (0% Pb) and 
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modified to include the compressibility of the material by filler content (Vf).  That 

equation is given by an exponential equation: 

  fV
eB





 1                                                            (4.2) 

where σ and  are axial stress and strain, Vf   is the volume content of the filler, and B is a 

constant. Comparison of the Equation 4.2 and the test data is shown in Figure 4.17 and 

the results agree very well. 

 

 

 
Figure 4.16  Comparison of analysis and experiment data  
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Figure 4.17  Comparison of experiment and exponential equation 

 

 

4.4 Morphology of Microballoons at Different Stress Levels 

One of the purposes of this flexible syntactic foam is to use it to develop an 

understanding of the survivability of the Pb under multiple loading and unloading 

conditions. If the Pb survives, then there is a potential of using this foam in multiple 

impact applications. To assess this performance, a 30% Pb filled syntactic foam is 

subjected to confined compression  and unloading. Stresses are taken to levels of 2.8, 4.2, 

5.6 and 6.9 MPa and unloaded. The stress-strain responses of the material are shown in 

Figure 4.18. After the specimens are unloaded, the specimen is broken and the fractured 

surface is SEM imaged. The SEM images of specimens are shown in Figures 4.19 

through 4.22 for 2.8, 4.2, 5.6 and 6.9 MPa loading, respectively.  

Figure 4.19 is for 2.8 MPa loaded specimen and it shows nice spherical Pbs, all 

…Experiment 

--- Exponential Fit  
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are intact and there is no damage. In Figure 4.20, one of the Pbs is collapsed, an 

indication of balloon failure. Number of Pbs collapsing or breaking increases with 

increasing loading (see Figures 4.21 and 4.22). This study concludes that, although the 

BJO-93 Pb is flexible and can take multiple loading and unloading but in a confined 

environment of elastomer, it does not survive the high loadings. Alternately, the present 

Pbs are not suitable for multiple loadings.  
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               Figure 4.18  Confined compression-decompression at various stress level  
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Figure 4.19  SEM morphology at 2.8 MPa stress level 

 

 

 

 

 

 
 

Figure 4.20  SEM morphology at 4.2 MPa stress level 
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 Figure 4.21  SEM morphology at 5.6 MPa stress level 

 

 

 

 

 

 
 

Figure 4.22  SEM morphology at 6.9 MPa stress level 
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4.5 Summary 

This chapter presented a description and results of tensile modulus for base, 10, 

20, and 30 % wt. Pb. Further, it included the bulk modulus, and compressibility 

variations for base, 5, 10, 15, 20, 25, and 30 % wt. Pb filled specimens under confined-

compression subjected to various loads and a morphological study of Pb structure was 

made using Scanning Electron Microscope. The results showed that the increase in 

tensile modulus with Pb content was due to stiffening of the material due to the 

increased percent weight Pbs. The initial bulk modulus and compressibility were 

impacted by the increased percent weight of Pb. As shown, the initial bulk modulus 

decreased from 19 to 9 MPa from base to 20% filler content, while the compressibility of 

the specimens increased from 7% to 43% . Beyond 20% limit, the compressibility and 

decrease in bulk modulus was limited. 
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CHAPTER 5 

 

HIGH STRAIN RATE CHARACTERIZATION OF POLYSULFIDE 

SYNTACTIC FOAMS 
 

 

5.1  Introduction 

This chapter describes high strain rate testing of base polysulfide and Pb filled 

polysulfide specimens using the Split Hopkinson Pressure Bar (SHPB) apparatus. First, 

the base polysulfide specimen is characterized and then the test analysis is extended to 

Pb filled polysulfide compositions.  The properties such as shock pulse mitigation and 

strain rate sensitivity are of primary interest. Stress versus time, strain versus time, and 

stress versus strain data are analyzed and compared for polysulfide syntactic foams filled 

with various amounts of microballoons. 

 

5.2  Sample Preparation 

Samples with L/D ratio of 0.25 were selected based on the guidelines of Chen et 

al. [42] and Panduranga [43] in order to minimize wave attenuation. This L/D ratio 

accommodated the reduced wave speed (proportional to (E/)
1/2

) in the softer materials. 

Due to the viscoelastic nature of polysulfide elastomer and its compositions at ambient 

temperatures, a special molding method was developed. This molding method was 

capable of producing specimen of thickness 3.2 mm (0.125 in) with 0.025 mm (0.001 in) 

tolerance. The diameter of the specimen was 12.7 mm (0.5 in) with a tolerance of 0.25 

mm (0.01 in).  Figure 5.1 shows photographs of the polysulfide and Pµb filled 
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polysulfide samples used in this research. The polysulfide specimens without any 

modification were termed as base. The specimens’ numbers and sizes shown in Table 5.1 

were as follows: 

 LP2-0-x :  Liquid Polysulfide 2 (Polysulfide with 0 wt.% Pb) 

 LP2-10-x : Liquid Polysulfide 2  with 10 wt.% of  Pb 

 LP2-20-x : Liquid Polysulfide 2  with 20 wt.% of  Pb 

 LP2-30-x : Liquid Polysulfide 2  with 30 wt.% of  Pb 

Note,    -x        :           Represent the specimen number 
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Figure 5.1  (a) Specimen schematic, (b) base polysulfide, and (c) Pb filled polysulfide 
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Table 5.1 Specimen Number, Avg. Diameter, and Avg. Length   

Spn.No/%PmB

LP2-0-4 1.20 0.33

LP2-0-6 1.20 0.33

LP2-0-7 1.22 0.36

LP2-0-8 1.22 0.34

LP2-0-9 1.23 0.34

LP2-0-10 1.22 0.36

LP2-0-11 1.22 0.35

LP2-0-13 1.22 0.34

LP2-0-15 1.24 0.33

LP2-10-1 1.25 0.35

LP2-10-3 1.25 0.35

LP2-10-4 1.23 0.35

LP2-10-5 1.25 0.33

LP2-10-6 1.27 0.32

LP2-10-7 1.26 0.31

LP2-10-8 1.28 0.32

LP2-10-11 1.25 0.32

LP2-10-12 1.24 0.35

LP2-10-13 1.26 0.33

LP2-10-14 1.24 0.33

LP2-10-16 1.24 0.33

LP2-20-2 1.27 0.33

LP2-20-4 1.27 0.34

LP2-20-5 1.27 0.36

LP2-20-6 1.27 0.32

LP2-20-7 1.25 0.33

LP2-20-8 1.25 0.33

LP2-20-9 1.26 0.38

LP2-20-10 1.24 0.33

LP2-20-11 1.27 0.36

LP2-20-12 1.27 0.35

LP2-20-13 1.26 0.36

LP2-20-14 1.26 0.35

LP2-30-2 1.26 0.34

LP2-30-3 1.24 0.35

LP2-30-5 1.24 0.34

LP2-30-6 1.26 0.40

LP2-30-7 1.26 0.35

LP2-30-8 1.25 0.40

LP2-30-11 1.25 0.41

LP2-30-12 1.25 0.35

LP2-30-13 1.24 0.35

LP2-30-14 1.24 0.35

LP2-30-15 1.24 0.35

LP2-30-17 1.24 0.35

Avg. Length, cmAvg. Diameter, cm
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The length of the specimens was also measured at three locations separated by 120

 

apart circumferentially. The average values of diameter and length of all specimens are 

listed in Table 5.1. All high strain rate testing was performed in the unconfined state of 

the specimen. The assumption was that due to high rate of loading, the unconfined and 

confined tests would be the same. However, this assumption needs to be verified by an 

independent study. 

 

5.3 High Strain Rate Testing 

5.3.1 Test Apparatus and Procedure  

The SHPB apparatus was used for testing materials at high strain rate ranging 

from 100 to 10,000/s. This equipment was used to test polysulfide syntactic foams at one 

strain rate of about 3,000/s. The photograph of SHPB test apparatus and its critical 

components are shown in Figure 5.2 and 5.3, respectively. In the SHPB test, a right-

cylindrical solid specimen with suitable dimensional tolerance was placed between the 

incident/input bar (Ibar) and the transmitter/output bar (Tbar) as shown in Figure 5.3b, also 

see the schematic Figure 5.4. The impact of a striker bar (Sbar) on the impact end of the 

incident bar (see Figure 5.3c) produced a compressive stress/strain pulse of geometric 

length twice that of the striker bar length . The striker bar length was 0.76m. The shape of 

the pulse in stress-time coordinates was almost rectangular. The strain pulse, (t), in the 

incident bar was measured by the strain gauge on the bar and its amplitude was 

proportional to the impact velocity (energy) of the striker bar.  

The pulse propagated toward the incident bar-specimen (Ibar-S) interface, while a 
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part of the pulse transmits through the specimen and a part reflected back. The reflected 

pulse, R(t), was tensile (opposite to the incident pulse) and was measured by the strain 

gage on the incident bar. The transmitted pulse, T(t) was measured by the strain gage 

mounted on the transmitter bar. During the period of stress wave propagation through the 

specimen, the specimen underwent deformation until its dynamic limit was reached. The 

properties of the bars such as the density (b) elastic modulus (Eb) longitudinal wave 

speed in the bar (cb) diameter (Db) and the specimen dimensions (Ls, Ds) were determined 

prior to the data analysis from a SHPB test. The detailed test procedure and the data 

analysis of the SHPB test are given in [43]. 

 

 

Figure 5.2  Photograph of main SHPB test apparatus 
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Figure 5.3  (a) Transmitter-Specimen-Incident bars, (b) Specimen bars assembly, (c) Striker hitting 

incident bar, and (d) Display of wave forms 

  

 

 

 

 
 

 

 
Figure 5.4  Specimen deformation state and strain waves in incident and transmitter bars 
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  The polysulfide samples were tested in uniaxial compression strain waves at 

strain rates in the range of 2,861/s to 4,787/s using the Split Hopkinson Pressure Bar 

(SHPB) apparatus. Testing at strain rates below 2,861/s was not carried out due to 

insufficient momentum generated at breech pressure below 16psi. A striker bar of length 

0.76 m (2.5 ft), and incident and transmitted bars of length 3.66 m (12 ft), 1.83 m (6 ft) 

respectively were used. All bars were made from 19 mm (0.75 in) diameter 7075 T6 

aluminum alloy. The aluminum alloy was chosen to reduce the impedance mismatch with 

the elastomers and other non-metallic samples to attain a high sensitivity in the stress 

measurement from the transmission signal. In some tests a Photron FASTCAM high-

speed digital camera was used to obtain high-speed images of specimens during the 

dynamic deformation. Figure 5.5 shows a typical incident, reflected and transmitted strain 

signals from the incident and transmitted bars for polysulfide specimen LP2-0-9. 

 

Time, ms

Strain 

Gage 

output,

Volts

Incident Pulse Transmitted Pulse

Reflected Pulse

 

Figure 5.5  Typical strain pulses measured from the strain gages mounted on the incident and 

transmission bars (LP2-0-9) 
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The following steps were used in testing the samples: 

 Ensure alignment of Bars 

 Measure specimen dimensions carefully and apply lubricant on its ends 

 Place the sample between the incident and transmitter bar with a thin layer of molycoat 

grease on each of the bar faces 

 Set the pressure valves in appropriate position 

 Adjust oscilloscope and strain gauge conditioner parameters 

 Set pressure parameters in the gun 

 Fire the striker bar by quickly opening the pressure valve 

 Transfer data from oscilloscope to PC 

 Reduce raw waveform data in Microsoft Excel sheet named “SHPB master” 

 Plot strain vs. time, stress vs. time and stress vs. strain curves  

5.3.2 Data Collection and Analysis 

  The data processing procedure to generate dynamic stress-strain relations of the 

specimen are explained with a block diagram in Figure 5.6. 

 

 

 

Figure 5.6  Block diagram of typical data processing procedure 
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An example of the typical axial strain signal in the incident and transmitted bars 

for base polysulfide specimen LP2-0-9 is shown in Figure 5.5. The plateau in the 

reflected pulse shown in Figure 5.5 indicates that the polysulfide specimen was deformed 

at a nearly constant strain rate for most of the time. The strain rate for a given test varied 

as a function of time. Typically, it increased from zero to a maximum value in a short 

period of time, then fluctuated about a constant value and finally dropped to zero. This 

constant value of the strain rate was accounted for and was defined by an average strain 

rate and was used to characterize the specific experiment. 

  A high-speed data acquisition card of Digital Storage Oscilloscope (DSO) at a 

sampling rate of 2 MHz was used to acquire the waveform data. The waveform file stored 

in DSO was converted into ASCII files and read by another signal processing software 

(Xviewer) for further analysis of the data. The raw waveform signals were oscillatory in 

nature due to noise. The waveforms were smoothened in Xviewer software using built-in 

mathematical filtering functions.    

The start of each pulse had to be identified properly and the two pulses needed to be 

synchronized correctly to enable an accurate construction of the dynamic stress-strain 

curve. Therefore, the transit time through the greased joint and sample could interfere 

with the precise identification of the pulse start and end. The starting time was selected 

from the transmitted pulse at the instant when it began deviating from zero and the 

ending time was selected as the time when the transmitted pulse flattened out. The 

portion of the reflected pulse was chosen for the corresponding time range.  

The identified and trimmed pulses were converted to reflected R(t) and transmitted 
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T(t) strains in the pressure bars using the following formula to compute the strain: 
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                    (5.1) 

where, V was output voltage from signal-conditioning amplifier, Vex was bridge excitation 

voltage (10V), FG was the gage factor and  was the strain (compressive) simulated by 

shunting RG with RC, RG was the nominal resistance of the strain gage (1000 ohms), RC 

was the shunt calibration resistance (49,000 ohms), and N was the number of active gages 

(N = 2 for half-bridge configuration). 

 The specimen stress, strain, and strain rate were calculated from the pressure bar 

strain pulses. The strain rate and strain in the specimen were determined from the 

reflected pulse, and the specimen stress was determined from the transmitted pulse. A 

trapezoidal rule was used to integrate the strain rate to calculate the specimen strain. The 

equations (5.2), (5.3),  and (5.4) were used for calculating specimen strain rate, strain, and 

stress, respectively. The stress vs. time and strain vs. time plots were superimposed to get 

dynamic stress vs. strain curve. All the data analysis was performed using the MS Excel 

spreadsheet. 
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where, As and Ab is the cross-sectional area of the specimen and the bars, respectively. ls  

was the specimen length, Eb was the elastic modulus of the bars, cb was the wave speed in 

the bars, and (t), R(t), T(t), were the measured incident, reflected and transmitted strain 

pulses, respectively.  

The calculated strain rate, strain and stress versus time using equations 5.2, 5.3 and 

5.4, are shown in Figures 5.7 to 5.9, respectively for the base polysulfide specimen LP2-0-9 

tested at a breech pressure of 23 psi. Parameters used in the calculation were ls, cb, Ab, As, and 

Eb are 3.2 mm, 5,051 m/s, 285.02 mm
2
, 63.34 mm

2
, and 71.7 GPa, respectively. The R(t) 

and T(t) were responses from reflected and transmitted wave signals collected from the 

data acquisition system. The superposition of data in Figures 5.8 and 5.9 gave the 

transient stress-strain curve shown in Figure 5.10. From the Figures 5.8 and 5.9 it was 

observed that the slope of the strain-time and stress-time curve is continuously changing 

from the onset of testing till the end of the testing. Therefore, the strain rate (slope of the 

strain-time curve) and stress rise rate (slope of the stress-time curve) were computed at 

10%, 25%, and 70% (half power bandwidth of stress vs. time response, σ = 2/peak  ) of 

peak values of base polysulfide specimens. The calculation of strain rate and stress rise 

rate is illustrated in Figures 5.11 and 5.12, respectively. The half power bandwidth 

(difference between the lower and upper half power points) is a measure of broadening of 

the curve which also a measure of shock attenuation.  

For the polysulfide specimen LP2-0-9, the strain rates calculated at 10%, 25%, and 

70% of peak values were 3,461/s, 4,111/s, and 4,099/s whereas the stress rise rates 

calculated at 10%, 25%, and 70% of peak values were 488 GPa/s, 2,033 GPa/s, and 8,012 
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GPa/s. Note that strain rate at 25% and  70% of peak strains were nearly same. However, 

the corresponding stress rates were different. Stress and strain rates at 70% of peak values 

or half-power bandwidth location were considered to be the rates experienced by the 

samples and was used for assessing the shock mitigation property of the material. 
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Figure 5.7  Strain Rate vs. Time plot for base polysulfide specimen LP2-0-9 
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Figure 5.8  Strain vs. Time plot for base polysulfide specimen LP2-0-9 
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Figure 5.9  Stress vs. Time plot for base polysulfide specimen LP2-0-9 
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Figure 5.10  Stress vs. Strain plot for base polysulfide specimen LP2-0-9 
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Figure 5.11  Illustration of computing Strain Rate at 10%, 25%, and at 70% (Half Power Point) of  

  peak strain 
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Figure 5.12  Illustration of computing Stress Rise Rate at 10%, 25%, and at 70% (Half Power Point) 

  of peak stress 

 

 

 

5.3.3 Test Matrix 

  Dynamic characterization of base and Pµb filled polysulfide samples were 

performed using a Split Hopkinson Pressure Bar set up (SHPB). The effect of strain rate 

on the compressive stress-strain response of base and PB filled polysulfide samples was 

studied. Changing the breech pressure, this in turn changed the striker velocity and varied 

the strain rate. A range of strain rates (2,500/s to 5,000/s) were obtained by changing the 

breech pressure from 0.11MPa to 0.19 MPa during SHPB tests. The lowest strain rate 

achievable in SHPB was around 100/s. The lowest possible strain rate achievable at the 

CCMR SHPB facility was approximately 1,000/s.  

At breech pressure of less than 0.11MPa (corresponding to strain rates less than 

1,000/s), the striker bar did not generate enough momentum required to deform the 
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specimen. This situation may have been due to the heavy mass of the striker bar and the 

friction between the bore riders and the internal surface of the gun barrel. The achievable 

high strain rate was limited by the elastic strain limit of the incident bar material. The 

breech pressure was limited to 0.19 MPa (corresponds to a strain rate of about 5,000/s) in 

order to ensure that the aluminum alloy did not yield during testing. The experiments 

conducted at breech pressure beyond 0.19 MPa frequently caused breakage of the 

soldering junction of the strain gage bonding terminals.  

Therefore, the SHPB experiments for polysulfide were conducted at breech 

pressures from 0.11 to 0.19 MPa. The Table 5.2 lists test matrix used. All tests were 

conducted in the ambient conditions. Four specimens were tested for each case. One test 

data for base specimen is not listed because of malfunctioning of the system. All the other 

specimens test data have been listed. 

 

Table 5.2 Dynamic Test Matrix for Base & Pµb-filled Polysulfide 

Base Polysulfide 0.11 0.16 0.19

10 wt.% Pb filled Polysulfide 0.11 0.16 0.19

20 wt.% Pb filled Polysulfide 0.11 0.16 0.19

30 wt.% Pb filled Polysulfide 0.11 0.16 0.19

Breech Pressure, MPaTest Case
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5.4  Results and Discussions 

5.4.1  Effect of % wt. of Pµbs on Materials Dynamic Response 

  Table 5.3 lists the peak strain, strain rate, pak stress and stress rise rate obtained 

from a high strain rate testing for base and microballoon filled polysulfide at a breech 

pressure of 23 psi. It can be observed from that Table 5.3 that the results are consistent 

and showed the repeatability of results from the replicated tests. The tested parameters of 

all the samples were within co-efficient of variation of 10% except for the case of 30 

wt.% Pµb-filled polysulfide. The polysulfide samples with 30 wt.% microballoons 

showed co-efficient of variation up to 25%. The reason may be due to the difficulty in 

mixing at higher loading of Pµbs in polysulfide. The plot of stress vs. time and strain vs. 

time for all the base and microballoon filled polysulfide are given in appendix 1.   

  Table 5.4 summarizes the average values of peak stress, strain and their rate at 

70% of the peak value and stress pulses half-power bandwidths. The values in the 

parenthesis represent the standard deviation. As noted in the Table 5.4, the average peak 

strain for base polysulfide is about 0.87 m/m and Pb filled polysulfide ranges from 0.81 

to 0.88 m/m. The average strain rates also remained same for all cases and it ranges from 

3,977/s to 4,191/s. However, the average peak stress  and stress raise rate decreases with 

increased filler content. The peak stress for base polysulfide is 258 MPa and it reduces to 

246, 227, and 194 MPa at 10, 20, and 30 wt. % of Pb, respectively. The stress rise rate 

decreases more significantly with increasing percent of microballoon.  

The stress rate reduction is 51, 65, and 73% for 10, 20, and 30% filler content. 

The Table also contains the half-power bandwidth, which is nearly the same for both 
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filled polysulfide elastomer. The normalized peak stress and normalized stress rise rate as 

a function of weight percent of Pµbs are shown in Figures 5.13 and 5.14. The first point 

in the Figures 5.13 represents base polysulfide values. It is observed that both peak stress 

and stress rise rate decrease with increasing amount of Pbs. This indicates that the 

incorporation of Pb to polysulfide is beneficial in attenuating the peak and stress rise 

rate.  

 

Table 5.3 Summary of High Strain Rate Test Results for Base & Microballoon Filled Polysulfide 

                Tested at Breech Pressure of 0.16 MPa 

Specimen 

No.

Peak Strain, peak 

, 

m/m

Strain Rate,

 /s

Peak Stress, 

peak, 

MPa

Stress Rate @ 

HPB, 

GPa/s

LP2-0-4 0.87 4,099 264 8,021

LP2-0-7 0.86 4,030 258 7,371

LP2-0-9 0.87 4,111 250 8,012

LP2-10-1 0.76 3,918 250 4,054

LP2-10-3 0.88 4,026 234 3,872

LP2-10-4 0.79 3,990 257 4,066

LP2-10-5 0.81 4,189 246 3,404

LP2-20-2 0.87 4,186 227 2,344

LP2-20-4 0.88 4,157 227 2,369

LP2-20-5 0.82 3,938 229 3,356

LP2-20-6 0.92 4,483 227 2,951

LP2-30-2 0.81 4,139 238 2,700

LP2-30-3 0.91 4,066 210 2,063

LP2-30-5 0.88 4,032 203 1,998

LP2-30-6 0.91 3,670 125 1,666
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Table 5.4 Summary of Peak Strain, Strain Rate, Peak Stress, and Stress Raise Rate at Breech  

                 Pressure of 0.16 MPa 

Filler 

Content 

wt%

Peak Strain, 

peak,

m/m

Strain 

Rate,

 /s

Peak Stress, 

peak, MPa

Stress Rate @ 

HPB, 

GPa/s

Half Power 

Bandwidth,µs 

0 (Base) 0.87 (0.01)* 4,080 (44) 258 (7) 7,802 (373) 62 (7)

10% µb 0.81 (0.05) 4,031 (114) 246 (10) 3,849 (310) 53 (6)

20% µb 0.87 (0.04) 4,191 (224) 227 (1) 2,755 (489) 57 (12)

30% µb 0.88 (0.05) 3,977 (210) 194 (48) 2,107 (432) 63 (15)

peak peakpeak peakpeak peakpeakpeakpeak

* The values given in parenthesis are the standard deviation 

 

Amount of Microbubbles, Wt.% 

 
 

basepeak

peak





  
basepeak 258 MPa

 

Figure 5.13  Plot of normalized Peak Stress vs. Amount of Pµbs at breech pressure of 0.16 MPa 
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Figure 5.14  Plot of normalized Stress Rise Rate vs. Amount of Pµbs at breech pressure of 0.16 MPa 

 

 

5.4.2  Effect of % wt. of Pµbs on Stress-Strain Response 

  Figure 5.15 illustrates the dynamic compressive stress-strain response of base 

polysulfide specimens at strain rates near 4,100/s. The stress-strain curves are plotted in  

engineering stress and engineering strain. The stress-strain curves for all those test 

specimens show very similar response, therefore the results are repeatable. All specimens 

show linearly elastic region at low strains, followed by the middle nonlinear region, 

which may be due to the collapse of voids, then the densification zone where the stress 

rises steeply. The first region shows a linear elastic response and the third region shows 

the solid behavior of the elastomer. The second region, which joins the two, shows a 

period where the microballoons collapse and the elastomer flows plastically. 
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  Figure 5.16 presents the dynamic compressive stress-strain response of 

polysulfide with 10 wt.% of Pµbs at strain rates near 4,000/s. The strain rate ranges from 

3,918/s to 4,189/s. Dynamic compressive experiments on 10 wt.%  Pµbs filled 

polysulfide shows constitutive behaviors very similar to the stress-strain curves shown in 

Figure 5.15, except for the strain levels. All the stress–strain curves are close to each 

other regardless of strain rates except one specimen, which show more elongated stress-

strain curve. The reason may be due to the presence of more voids, unfilled spaces and 

early cracks in the matrix.  

 Figure 5.17 shows the dynamic compressive stress-strain response of polysulfide 

with 20 wt.% of Pµbs at strain rates near 4,200/s. The strain rate ranges from 3,938/s to 

4,483/s. The shape of the stress-strain curves of all the four specimens’ are similar but 

they are spread out in the densification region.  All the specimens showed a kink in the 

stress-strain curve at strain of around 0.63. This can be attributed to one or all of the 

following deviations; presence of more voids, collapse of Pb and early cracks in the 

matrix. For all specimens, the dynamic stress-strain curves overlap each other at linear 

elastic region. Furthermore, densification begins at a strain of around 67% where new 

and denser structures are being formed in the specimen.  

Figure 5.18 illustrates the dynamic compressive stress-strain response of 

polysulfide with 30 wt.% of Pbs at strain rates near 4,000/s. The strain rate ranges from 

3,670/s to 4,139/s 

Figure 5.18 again shows similar stress-strain curves as that of the 20 wt.% Pb 

filled polysulfide specimens. All the dynamic compressive stress-strain curves show 
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similar responses but they are spread out in the densification region.  

 All the specimens show a kink in the stress-strain curve at a strain of around 0.63 

except one of the specimen, which show a kink near strain of 0.72. For all specimens, the 

dynamic stress-strain curves overlap each other at linear elastic region and the 

densification phenomenon begin at a strain of around 64%.  

Figure 5.19 summarizes the dynamic compressive stress-strain curves for both 

base and Pb filled polysulfide at strain rates near 4,000/s. The stress-strain curves 

presented in Figure 5.19 are average curves of each types of specimens tested. At strain 

below 0.4, both base and Pb filled polysulfide show similar linear elastic response. The 

Pb filled polysulfide show early onset of densification than the base polysulfide.   

All the samples exhibits an initial elastic regime, a plastic phase which is followed 

by a densification region. The polysulfide samples with 20 and 30 wt.% Pbs show a 

kink in stress-strain curve at a strain of around 0.63. This can be attributed to one or all of 

the following deviations; presence of more voids, collapse of Pb and shear flow of the 

matrix (see specimens before and after the test). 
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Figure 5.15  Stress-Strain response of base LP2 at breech pressure of 0.16 MPa 
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Figure 5.16  Stress-Strain response of 10 wt.% Pµb-filled LP2 at breech pressure of 0.16 MPa 
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Figure 5.17  Stress-Strain response of 20 wt.% Pµb-filled LP2 at breech pressure of 0.16 MPa 
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Figure 5.18  Stress-Strain response of 30 wt.% Pµb-filled LP2 at breech pressure of 0.16 MPa 
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Figure 5.19  Average Stress-Strain Response of Pµb-filled LP2 at breech pressure of 0.16 MPa 

 

 

5.4.3  High Strain Test Results for 0.11MPa Breech Pressure  

  Table 5.5 lists the peak strain, strain rate, peak stress and stress rise rate obtained 

from a high strain rate testing for base and microballoon filled polysulfide at a breech 

pressure of 0.11 MPa. It can be observed from Table 5.5 that the results are consistent 

and show the repeatability. The tested parameters of all the samples are within co-

efficient of variation of 13% except for the case of base and 30 wt.% Pµb-filled 

polysulfide. The polysulfide samples with 30 wt.% microballoons show co-efficient of 

variation up to 30%. The reason may be due to difficulty in mixing higher loading of  

Pbs in polysulfide. The plots of stress vs. time and strain vs. time for all the base and 

microballoon filled polysulfide are provide in appendix. 
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Table 5.5 Summary of High Strain Rate Test Results for Base & Pµb-filled Polysulfide Tested at  

                 Breech Pressure of 0.11 MPa 

Specimen 

No.

Peak Strain, peak , 

m/m

Strain Rate,

 /s

Peak Stress, peak, 

MPa

Stress Rate @

HPB, GPa/s

LP2-0-6 0.87 2,985 68 1,399

LP2-0-10 0.86 2,996 52 688

LP2-0-11 0.87 3,070 43 414

LP2-10-6 0.86 3,386 93 905

LP2-10-7 0.89 3,464 97 *

LP2-10-8 0.87 3,317 77 837

LP2-10-11 0.88 3,338 75 764

LP2-20-7 0.84 3,213 72 903

LP2-20-8 0.85 3,224 67 726

LP2-20-9 0.74 2,856 70 685

LP2-20-10 0.85 3,232 68 756

LP2-30-7 0.82 3,041 54 547

LP2-30-8 0.78 2,734 35 520

LP2-30-11 0.75 2,610 30 342

LP2-30-12 0.82 3,059 56 567

peak peak

* Data Dropped 
 

  Table 5.6 summarizes the average values of peak strain, strain rate, peak stress, 

stress rise rate and half-power bandwidth of stress pulse for unfilled and filled polysulfide 

at a breech pressure of 0.11MPa. As noted previously, both peak strain and strain rate 

almost remain  unchanged with Pb filler content. The average strain rates range from 

2,861/s to 3,376/s. The average peak stress for base polysulfide is 54 MPa and for the 

filled polysulfide are 86, 69, and 44 MPa for 10, 20, and 30 wt. % of Pb, respectively. 

The rise in the peak stress for 10% filler content is an anomaly.  

The average stress rise rate is also reduced with the Pµb-filler content except for 10% 

filler content. The normalized peak stress and normalized stress rise rate as a function of 

amount of Pbs are given in Figures 5.19 and 5.20.  

 



97 

 

Table 5.6 Summary of Peak Strain, Strain Rate, Peak Stress, and Stress Raise Rate at Breech  

                Pressure of 0.11 MPa 

Sample
Peak Strain, peak,

m/m

Strain 

Rate,

 /s

Peak Stress, peak, 

MPa

Stress Rate @

HPB, GPa/s

Baseline 0.87 (0.01)* 3,017 (46) 54 (13) 834 (509)

LP2_10pmb 0.88 (0.01) 3,376 (65) 86 (11) 835 (71)

LP2_20pmb 0.82 (0.05) 3,131 (184) 69 (2) 768 (95)

LP2_30pmb 0.79 (0.03) 2,861 (224) 44 (13) 494 (103)

peak peakpeak peakpeak peak

      
* The values given in parenthesis are the standard deviation  
 

 

 

The first point in the Figures 5.20 and 5.21 represents base polysulfide values. It is 

observed that the effect of % wt. of microballoons on the peak stress and stress rise rate 

appeared puzzling because both peak stress and stress rise rate are increasing nonlinearly 

till 10 wt. % of Pµb and then it shows a decreasing trend.  

An important note that the standard deviation of strain rate between specimens is lower in 

base line category compared to significantly higher with 30% wt. of Pµb where as the 

stress rise rate is quite the opposite. This clearly shows the effect of microballoons in the 

reduction of stress rise rates. 
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Figure 5.20  Plot of normalized Peak Stress vs. Amount of Pµbs at breech pressure of 0.11 MPa 
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Figure 5.21  Plot of normalized Stress Rise Rate vs. Amount of Pµbs at breech pressure of 0.11 MPa 
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 Figure 5.22 illustrates the dynamic compressive stress-strain response of base 

polysulfide specimens at strain rates near 3,000/s. The stress-strain curves are plotted in 

measures of engineering stress and engineering strain. The inset in the plot is the 

exaggerated graph of stress vs. strain. All the dynamic compressive stress-strain curves 

show very similar response, proving the results are repeatable. All specimens show 

linearly elastic region at strains up to 0.4, followed by the nonlinear region till strains of 

0.8. The non-linear region may be due to the collapse of voids.  

  Figure 5.23 presents the dynamic compressive stress-strain response of 

polysulfide with 10 wt.% of Pµbs at strain rates near 3,376/s. The strain rate ranges from 

3,317/s to 3,464/s. Dynamic compressive experiments on 10 wt.% Pbs filled polysulfide 

show constitutive behaviors very similar to the stress-strain curves shown in Figure 5.22, 

except for the strain levels. All the stress–strain curves are close to each other regardless 

of strain rates. All the stress-strain curves showed onset of densification in addition to 

initial linear elastic region and nonlinear region. The reason may due to the higher strain 

rates at which these specimens are tested.   

 Figure 5.24 shows the dynamic compressive stress-strain response of polysulfide 

with 20 wt.% of Pµbs at strain rates near 3,131/s. The strain rate ranges from 2,856/s to 

3,232/s. The shape of the stress-strain curves of all the specimens is similar but except for  

one of the specimens.  All the specimens showed a kink in the stress-strain curve at strain 

of around 0.66 except for the one of the specimen, which showed a kink near 0.50.  

All the stress-strain curves show onset of densification in addition to initial linear 

elastic region and nonlinear region. The reason may due to the higher strain rates at 
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which these specimens are tested.  

Figure 5.25 illustrates the dynamic compressive stress-strain response of 

polysulfide with 30 wt.% of Pbs at strain rates near 2,861/s. The strain rate ranges from 

2,610/s to 3,059/s.  Figure 5.25 show similar stress-strain curves as that of base 

polysulfide specimens. All the dynamic compressive stress-strain curves show similar 

response. For all specimens, the dynamic stress-strain curves overlap each other at initial 

linear elastic region.  

Figure 5.26 summarizes the dynamic compressive stress-strain curves for both 

base and Pb filled polysulfide at strain rates near 3,000/s. The stress-strain curves 

presented in Figure 5.19 are average curves of the repeatable data. At strain below 0.44, 

both base and Pb filled polysulfide show similar linear elastic response. All the samples 

exhibited an initial elastic regime followed by a nonlinear region. The nonlinear region of 

all the Pb filled polysulfide lies above that of the base polysulfide. The polysulfide 

samples with 20 wt.% Pµbs show a kink in stress-strain curve at a strain of around 0.66. 

This can be attributed to one or all of the following deviations: presence of more voids, 

collapse of Pb and early cracks in the matrix. 
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Figure 5.22  Stress-Strain response of base LP2 at breech pressure of 0.11 MPa 
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Figure 5.23  Stress-Strain response of 10 wt.% Pµb-filled at breech pressure of 0.11 MPa 
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Figure 5.24  Stress-Strain response of 20 wt.% Pµb-filled at breech pressure of 0.11 MPa 
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Figure 5.25  Stress-Strain response of 30 wt.% Pµb-filled at breech pressure of 0.11 MPa 
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Figure 5.26  Average Stress-Strain response of Pµb-filled LP2 at breech pressure of 0.11 MPa 

 

 

5.4.4 High Strain Test Results for 0.19 MPa Breech Pressure 

  Table 5.7 lists the peak strain, strain rate, peak stress and stress rise rate obtained 

from a high strain rate testing for base and microballoon filled polysulfide at a breech 

pressure of 27 psi. It can be observed from that Table 5.7 that the results are consistent 

and showed repeatability. The tested parameters of all the samples are within co-efficient 

of variation of 10% except for the case of 10 wt.% Pµb-filled polysulfide. The plot of 

stress versus time and strain versus time for all the base and microballoon filled 

polysulfide is given in Appendix.   
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Table 5.7 High Strain Rate Test Results for Base & Microballoon Filled Polysulfide Tested at Breech 

                 Pressure of  0.19 MPa  

Specimen 

No.

Peak Strain, peak , 

m/m

Strain 

Rate,

 /s

Peak Stress, peak, 

MPa

Stress Rate @ HPB, 

GPa/s

LP2-0-8 0.91 4,516 284 7,706

LP2-0-13 0.89 4,500 281 7,154

LP2-0-15 0.91 4,691 283 8,687

LP2-10-12 0.92 4,601 269 *

LP2-10-13 0.92 4,841 279 4,951

LP2-10-14 0.92 4,845 288 4,767

LP2-10-16 0.92 4,861 288 5,125

LP2-20-11 0.92 4,460 266 3,458

LP2-20-12 0.94 4,568 266 3,246

LP2-20-13 0.92 4,452 271 3,510

LP2-20-14 0.93 4,639 278 4,022

LP2-30-13 0.91 4,421 279 4,020

LP2-30-14 0.93 4,538 279 3,735

LP2-30-15 0.93 4,530 276 3,801

LP2-30-17 0.90 4,497 280 3,931

peak peakpeakpeak

* Data dropped 

 

 

  Table 5.8 summarizes the average values of peak strain, strain rate, peak stress, 

stress rise rate for filled and unfilled polysulfide at a breech pressure of 0.19 MPa. The 

value within the parenthesis is the standard deviation. As expected, both peak strains and 

strain rates almost remain unchanged. Also noted is that the reduction in peak stress rate 

is limited to 5%. This result indicates that higher breech pressures, the peak stress 

reduction is limited or none. Also note the very high strain rates 4,487/s to 4,787/s. On 

the other hand the stress rise rate does not reduce with filler content [44]. The reduction is 

about 35, 55, and 51% for Pb contents of 10, 20, and 30% by weight, respectively. The 

normalized peak stress and normalized stress rise rate as a function of amount of Pbs are 

given in Figures 5.19 and 5.20. The first point in these figures represents base polysulfide 
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values. It is observed that the peak stress is almost same irrespective of the amount of 

Pbs. The stress rise rate is decreasing nonlinearly with increasing amount of Pbs. This 

indicates that the incorporation of Pbs to polysulfide is beneficial in attenuating the 

stress, which is important for shock mitigation of structures. 

 

Table 5.8. Summary of Peak Strain, Strain Rate, Peak Stress, and Stress Raise Rate at Breech 

                  Pressure of 0.19 MPa 

Sample
Peak Strain, peak,

m/m

Strain 

Rate,

 /s

Peak Stress, peak, 

MPa

Stress Rate @ HPB, 

GPa/s

Baseline 0.90 (0.01)* 4,569 (106) 283 (1) 7,849 (776)

LP2_10pmb 0.92 (0.01) 4,787 (124) 281 (9) 4,948 (179)

LP2_20pmb 0.93 (0.01) 4,530 (90) 270 (5) 3,559 (329)

LP2_30pmb 0.92 (0.02) 4,497 (53) 279 (2) 3,872 (128)

peak peakpeak peakpeak peakpeakpeakpeak

* The values given in parenthesis are the standard deviation 
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Figure 5.27  Plot of normalized Peak Stress vs. Amount of Pµbs at breech pressure of 0.19 MPa 
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Figure 5.28  Plot of normalized Stress Rise Rate vs. Amount of Pµbs at breech pressure of 0.19 MPa 

 

 

Figure 5.29 illustrates the dynamic compressive stress-strain response of base 

polysulfide specimens at strain rates near 4,569/s. The stress-strain curves are plotted in 

measures of engineering stress and engineering strain. The shapes of the stress-strain 

curves of all three specimens were similar but they are spread out in the densification 

region, therefore the results were repeatable. All specimens show linearly elastic region at 

low strains, followed by the middle nonlinear region, which may be due to the collapse of 

voids, then the densification zone where the stress rises steeply. The first and third 

regions show linear elasticity of elastomer. The second region that joins the two shows a 

period where the elastomer flows like a plastic, which can be attributed to increased load-

carrying capacity. The densification phenomenon begins at a strain of approximately 
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0.65.   

  Figure 5.30 presents the dynamic compressive stress-strain response of 

polysulfide with 10 wt.% of Pbs at strain rates near 4,787/s. The strain rate ranged from 

4,601/s to 4,861/s. Dynamic compressive experiments on 10wt.%  Pbs filled polysulfide 

show constitutive behaviors similar to the stress-strain curves as shown in Figure 5.29. 

All the stress–strain curves are close to each other regardless of strain rates. Three of the 

specimens showed kink in the stress-strain curve near a strain of 0.64. The reason may be 

due to the presence of more voids, unfilled spaces and early cracks in the matrix.  

Figure 5.31 shows the dynamic compressive stress-strain response of polysulfide 

with 20 wt.% of Pbs at strain rates near 4,530/s. The strain rate ranged from 4,452/s to 

4,639/s.   

The shape of the stress-strain curves of all the four specimens’ is similar but they are 

spread out in the densification region.  All the specimens show a kink in the stress-strain 

curve at strain of around 0.66. This can be attributed to one or all of the following 

deviations; presence of more voids, collapse of Pb and early cracks in the matrix. For all 

specimens, the dynamic stress-strain curves overlapped each other at linear elastic region. 

Furthermore, densification began at a strain of around 70% where new and denser 

structures are being formed in the specimen.  

Figure 5.32 illustrates the dynamic compressive stress-strain response of 

polysulfide with 30 wt.% of Pbs at strain rates near 4,500/s. The strain rate ranged from 

4,421/s to 4,538/s.  Figure 5.32 again shows similar stress-strain curves as that of the 20 

wt.% Pb filled polysulfide specimens. All the dynamic compressive stress-strain curves 
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show similar responses but they are spread out in the densification region.  

All the specimens show a kink in the stress-strain curve at a strain of around 0.69 

except one, which showed a kink near a strain of 0.65. For all specimens, the dynamic 

stress-strain curves overlap each other at the linear elastic region and the densification 

phenomenon begins at a strain of around 72%. Figure 5.33 summarizes the dynamic 

compressive stress-strain curves for both base and Pb filled polysulfide at strain rates 

near 4,600/s.  

The stress-strain curves presented in Figure 5.33 are average curves of the 

repeatable data. At strain below 0.4, both base and Pb filled polysulfide show similar 

linear elastic response. The Pb filled polysulfide show early onset of densification than 

the base polysulfide.  

All the samples exhibited an initial elastic regime, a plastic phase which is 

followed by a densification region. The Pb filled polysulfide samples show a kink in 

stress-strain curve at a strain of approximately 0.66. This can be attributed to one or more 

of the following deviations; presence of more voids, collapse of Pb and early cracks in 

the matrix. 
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Figure 5.29  Stress-Strain response of base LP2 at Breech Pressure 0.19 MPa 
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Figure 5.30  Stress-Strain response of 10 wt.% Pµb-filled LP2 at Breech Pressure 0.19 MPa 
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Figure 5.31  Stress-Strain response of 20 wt.% Pµb-filled LP2 at Breech Pressure 0.19 MPa 
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Figure 5.32  Stress-Strain response of 30 wt.% Pµb-filled LP2 at Breech Pressure 0.19 MPa 
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Figure 5.33  Average Stress-Strain response of Pµb-filled LP2 at Breech Pressure 0.19 MPa 

 

 

5.4.5  Effect of Strain Rate on Base and Pµb Filled Polysulfide 

The dynamic compressive stress-strain response of base polysulfide samples at strain 

rates between 3,017 and 4,569/s is summarized in Figure 5.34. The Figure clearly shows that 

all the dynamic stress-strain response at strain rates near 3,000/s did not showed the 

densification phenomenon.  The uniaxial compressive stress-strain behavior is observed to be  

rate dependent and highly non-linear. Figure 5.34 reveals that there is an increase in the stress 

level with an increase in strain rate for a given strain: but the shape of the response is almost 

remains unaffected till the onset of densification. The trend is not monotonic.   
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Figure 5.34  Average Stress-Strain response of base polysulfide at strain rates ranging from 3,017/s to    

                     4,569/s 

 

 

The dynamic compressive stress-strain response of polysulfide with 10 wt.% of Pb  

over strain rates between 3,017 and 4,569/s is presented in Figure 5.35. It clearly shows that 

all the dynamic stress-strain response at strain rates near 3,376/s do not show the 

densification phenomenon.  The specimens tested at strain rates 4,000/s and  4,800/s show 

prolonged densification region. The  stress-strain behavior is observed to be rate dependent 

and highly non-linear. Figure 5.35 shows that there is an increase in the stress level with an 

increase in strain rate for a given strain.  The trend is not monotonic.  After a strain rate of 

4,000/s, the adiabatic temperature rising in the specimen during dynamic tests was believed 

to cause the softening phenomenon which in turn might have reduced the stress levels. 
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Figure 5.35  Average Stress-Strain response of 10 wt.% Pµb-filled polysulfide at strain rates ranging 

  from 3,376/s to 4,787/s 

 

 

The dynamic compressive stress-strain response of polysulfide with 20 wt.% of Pb  

over strain rates between 3,131 and 4,530/s is summarized in Figure 5.36. It clearly shows 

that all the dynamic stress-strain response at strain rates near 3,131/s do not show the 

densification phenomenon.  The uniaxial compressive stress-strain behavior is observed to be 

marginally rate dependent and highly non-linear. Figure 5.36 reveals that there is a marginal 

increase in the stress level with an increase in strain rate for a given strain: but the shape of 

the response remains unaffected. The trend is not monotonic.   
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Figure 5.36  Average Stress-Strain response of 20 wt.% Pµb-filled polysulfide at strain rates ranging 

  from 3,131/s to 4,530/s 

 

The dynamic compressive stress-strain response of polysulfide with 30 wt.% of Pb  

over strain rates between 2,861/s and 4,497/s is presented in Figure 5.37. It clearly shows that 

all the dynamic stress-strain response at strain rates near 2,861/s did not showed the 

densification phenomenon.  The specimens tested at strain rates near 4,500/s show prolonged 

densification region than the specimen tested at strain rates near 4,000/s. The uniaxial 

compressive stress-strain behavior is observed to be rate dependent and highly non-linear.   

Figure 5.37 reveals that there is an increase in the stress level with an increase in 

strain rate for a given strain: but the shape of the response  remained unaffected till the onset 

of densification. As observed in all Pb filled polysulfide foams, at strain rate of 4,000/s, or 

above the adiabatic temperature rise in the specimen during dynamic tests is believed to have 

cause the softening phenomenon, which in turn might have reduced the stress levels. 
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Figure 5.37  Average Stress-Strain response of 30 wt.% Pµb-filled polysulfide at strain rates ranging  

  from 2,861o 4,497/s 

 

 

5.5 Summary 

The compressive high strain rate behavior of the base and Pµb-filled polysulfide is 

measured using the SHPB apparatus over strain rates between 3,000/s to 4,600/s. The weight 

percent of microballoons were 0, 10, 20, and 30% of base polysulfide. The peak strain values 

remain unaffected irrespective of the amount of Pµbs. Both peak stress and stress rise rate 

decrease and half-power bandwidth of the stress pulse increased as the weight fraction of 

the Pµb increase thereby indicating that the incorporation of Pµbs in polysulfide does 

attenuate the stress pulse which is important for shock mitigation of structures.  

The peak stress reduction range from 25% to 5% for breech impact pressures of 

0.11-0.19 MPa. The higher the impact pressure, the  lower will be the reduction in peak 

stress. The stress rise rate reduces with filler content and it does not alter much with the 
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breech pressure. The reduction in stress rise rate is of the order of 50% for many cases 

tested. The half-power bandwidth of the stress pulse does not show any clear trend for 

these experimental analyses. 

The dynamic stress-strain response of both base and Pµb-filled polysulfide exhibited 

initial linear elastic region, a middle nonlinear region followed by a densification region. 

Polysulfide with 20 and 30 wt.% of microballoon show a kink in the stress-strain curve near a 

strain of about 0.63 - 0.66. The SHPB experiments revealed that both base and Pµb-filled 

polysulfide are sensitive to strain rates over the range of strain rates studied. In all Pb 

filled polysulfide, the adiabatic temperature rise in the specimen at high strain rates 

(greater or equal to 4,000/s) causes material softening. 
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CHAPTER 6 
 

CONCLUDING REMARKS AND FUTURE WORK 
 

 

6.1 Concluding Remarks 

Protection of soldiers and vehicles that carry men and material in combat or 

noncombat against an ever-increasing firepower of ammunitions and improvised 

ammunitions by the enemy is a challenging task for the US military. The lightweight and 

more agile armors are essential so that soldiers can handle attacks with no loss of their 

war fighting capability. A continuous development and improvement of materials 

(metals, ceramic and polymer composites) have been carried out for a number of years. 

Advancements of nanotechnology, computer power, and simulation models have 

provided an opportunities to develop materials by simulations.  However, in the present 

research modification of elastomer by adding flexible microballoons through a syntactic 

process is proposed. Elastomer being purely plastic (Poisson’s ratio 0.5), transmits a 

transverse impact or shock directly onto the supporting structure without any 

modifications. Furthermore, undesirable lateral stresses can cause unexpected failures. To 

control such stresses, a controlled bulk modulus material is needed. The preferred bulk 

modulus would be one-third the elastic modulus, which corresponds to zero Poisson’s 

ratio. In this research, an idea of variable bulk modulus material and its impact on shock 

mitigation is evaluated. Such materials could also be used in packing sensitive 

instruments and protect structural components against shock and impact. 

The goal of the research was to develop a variable bulk modulus elastomeric 
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material using an elastomer and flexible microballoons so that the bulk modulus of the 

composite material can be varied by the microballoon content. The specific objectives 

included development of material, fabrication of test samples, and performing static and 

dynamic tests. The static testing consisted of tension and confined compression test to 

measure the bulk modulus. Material chosen was liquid polysulfide elastomer LP-2, 

uncured BJO-093 hollow Pµb (Pb), and a solid manganese dioxide curing agent. The 

weight percentage range of Pb was varied from 0 to 30% that worked out to be 0 to 60% 

volume percentage, respectively. The material was processed using hand mixing and 

pressure curing at room temperature. The specimen (tension and compression) were 

fabricated while allowing the compound to cure in the mold. The specimen materials 

were analyzed in Scanning Electronic Microscopy and were found to have good 

distribution of Pb. Physical properties such as color, density, volume fraction of the 

constituents and void content were measured. 

The concept of variable bulk modulus by using flexible Pb was examined 

through simple gas laws. A simple relation between axial stress and axial strain was 

derived for a confined compression condition based on realistic assumptions. The 

equation is given by  
f

a

a V
P 

















)/1(

1
1

1
  where a and a are the applied axial stress 

and calculated axial strains, respectively. The base pressure P1 was assumed to be one 

atmosphere. The equation’s limiting strain is Vf, which is the volume fraction of the fluid 

in microballoons and voids.  

           The equation was extended to include the elastic deformation of the elastomer 
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and the microballoon wall materials and that showed it had a marginal effect. The slope 

of the axial stress and strain curve gave the bulk modulus. The bulk modulus and the 

limiting strain were dependent on the percent weight or volume of the Pb. 

Tension and confined compression tests were conducted on LP2- Pb composite 

for Pb content of 0 to 30% of LP2 polysulfide. The tensile modulus increased with 

increased weight percent of Pb. The increased modulus was attributed to increased 

brittleness or stiffness of the matrix. On the other hand, the bulk modulus decreased with 

increasing  Pb content. The bulk modulus decreased from 19 MPa to 9 MPa from base 

(0%) to 30% Pb content. Compressibility is a measure of energy absorption, before the 

material becomes solid or rigid-plastic. The compressibility was found to be directly 

proportional to the filler content. The compressibility increased to 43% when the Pb 

content changed from 0 to 20% by weight. The data beyond 20% Pb was not reliable 

because of processing difficulty of the composite. Tensile modulus determined by 

Halpin-Tsai’s empirical equation agreed reasonably with the experimental data. 

The compressive high strain rate behavior of the base and Pµb filled polysulfide was 

measured using the SHPB apparatus at strain rates ranged from about 3,000/s to 4,600/s. The 

peak strain and strain rate values remain unaffected irrespective of the amount of Pµb. Both 

peak stress and stress rise rate decreased with increasing  weight fraction of the Pµb. This 

indicate  a potential of mitigating a stress pulse by the use of flexible syntactic foam. The 

stress rise rate reduction was of the order of 50% for many filled test specimen.  

However, the half-power bandwidth was measured only for few samples and the 

data was non-conclusive. 
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6.2 Future Work 

The present study was the first attempt to understand the shock mitigation 

characteristics of flexible syntactic foam. The foam was made from LP2 polysulfide and 

Pbs. The study showed the potential of using this material for shock mitigation. 

However, more detailed study needs to be conducted before one considers this material 

for application. The present study identified processing difficulties as the microballoon 

content increased; at high pressures the peak stresses did not reduce; and all high strain 

rate tests were done the unconfined stress state. These issues need to be revisited. 

Example, processing the material in a mechanical mixer like extruders; and performing 

high strain rate tests in a confined stress state like the confined compression test; and 

increasing the strain rate range from the current 2,800 to 4,900/s to a wider range so that 

the performance of the material at wide range of strain rate is clearly understood. In 

addition, the flexible Pbs may be replaced by high performance balloons to increase the 

collapsed pressure wall as well as the peak stress tolerance. That apart, the whole system 

needs to be tested in a multilayer composite grouping if the material is chosen for armor 

applications.  
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APPENDIX  
 

STRESS VS. TIME AND STRAIN VS. TIME PLOTS 
 

 

The appendix contains the stress vs. time and strain vs. time plots for base and 

Pµb-filled polysulfide specimens.   
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Figure A.1 Stress-Time response of base LP2 at breech pressure 0.11 MPa 

 



126 

 

LP2-10-6

(3,386/s)

Time, ms

Stress, 

MPa

LP2-10-8

(3,317/s)

LP2-10-11

(3,338/s)

LP2-10-7

(3,464)

Breech Pressure: 16 psi

Polysulfide with 10 wt.% Pb

 
Figure A.2 Stress-Time response of 10 wt.% Pµb-filled LP2 at breech pressure 0.11 MPa 

 

 

 

Time, ms

Stress, 

MPa

LP2-20-7

(3,213/s)

LP2-20-9

(2,856/s)
LP2-20-10

(3,232/s)

LP2-20-8

(3,224/s)

Breech Pressure: 16 psi

Polysulfide with 20 wt.% Pb

 
Figure A.3 Stress-Time Response of 20 wt.% Pµb-filled LP2 at Breech Pressure 0.11 MPa 
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Figure A.4 Stress-Time response of 30 wt.% Pµb-filled LP2 at breech pressure 0.11 MPa 
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Figure A.5 Stress-Time Response of Base LP2 at Breech Pressure 0.16 MPa 
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Figure A.6 Stress-Time response of 10 wt.% Pµb-filled LP2 at breech pressure 0.16 MPa 
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Figure A.7 Stress-Time Response of 20 wt.% Pµb-filled LP2 at Breech Pressure 0.16 MPa 
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Figure A.8 Stress-Time response of 30 wt.% Pµb-filled LP2 at breech pressure 0.16 MPa 
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Figure A.9 Stress-Time response of base LP2 at breech pressure 0.19 MPa 
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Figure A.10 Stress-Time response of 10 wt.% Pµb-filled LP2 at breech pressure 0.19 MPa 
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Figure A.11 Stress-Time response of 20 wt.% Pµb-filled LP2 at breech pressure 0.19 MPa 
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Figure A.12 Stress-Time response of 30 wt.% Pµb-filled LP2 at breech pressure 0.19 MPa 
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Figure A.13 Strain-Time response of base LP2 at breech pressure 0.11 MPa 
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Figure A.14 Strain-Time response of 10 wt.% Pµb-filled LP2 at breech pressure 0.11 MPa 
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Figure A.15. Strain-Time response of 20 wt.% Pµb-filled LP2 at breech pressure 0.11 MPa 
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Figure A.16 Strain-Time response of 30 wt.% Pµb-filled LP2 at breech pressure 0.11 MPa 
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Figure A.17 Strain-Time response of base LP2 at breech pressure 0.16 MPa 
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Figure A.18 Strain-Time response of 10 wt.% Pµb-filled LP2 at breech pressure 0.16 MPa 
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Figure A.19 Strain-Time response of 20 wt.% Pµb-filled LP2 at breech pressure 0.16 MPa 
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Figure A.20 Strain-Time response of 30 wt.% Pµb-filled LP2 at breech pressure 0.16 MPa 
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Figure A.21 Strain-Time response of base LP2 at breech pressure 0.19 MPa 
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Figure A.22 Strain-Time response of 10 wt.% Pµb-filled LP2 at breech pressure 0.19 MPa 
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Figure A.23 Strain-Time response of 20 wt.% Pµb-filled LP2 at breech pressure 0.19 MPa 
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Figure A.24 Strain-Time response of 30 wt.% Pµb-filled LP2 at breech pressure 0.19 MPa 
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