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ABSTRACT 

 
Abdus-Salaam, Husniyah B.  EXAMINING THE INFLUENCE OF DEPENDENT 
DEMAND ARRIVALS ON PATIENT SCHEDULING. (Advisor: Lauren Davis), 
North Carolina Agricultural and Technical State University. 

 

 This research examines the influence of batch appointments on patient scheduling 

systems.  Batch appointments are characterized by multiple patients within a family 

desiring appointments within the same time frame. These patients are considered to be 

dependent amongst each other within the batch request for both arrival and no-shows. 

Three models are proposed to further understand the impact of these dependent demand 

arrivals.  First, a multivariate statistical model is developed to understand the behavior of 

patients at public and private dental clinics. Results indicate that approximately 42% of 

all appointments are associated with a batch request. Also, there is a dependency among 

patients that are scheduled within the batch. Next, a stationary infinite-horizon Markov 

decision process is presented to determine the acceptance of batch appointment requests 

given that a finite number of open appointment slots have been reserved for same-day 

requests. Results indicate that the clinic should reject the request for a batch appointment 

when the expected number of patients in the system exceeds the number of available 

dentist and the probability of no-show is less than or equal to 0.10.  In the final model, a 

finite-horizon stochastic dynamic programming model is constructed to understand the 

impact of the appointment demand types (i.e. individual versus batch) and overbooking 

on the total expected profit and the total number of patients that are overbooked. As a 

result, the scheduling coordinator should consider accepting batch appointments as 

overbooked rather than prescheduled patients.   
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CHAPTER 1 

Introduction 

 

1.1 Background 

 In the United States, two of the most critical problems that have been 

encountered by outpatient clinics are the inefficiency of healthcare delivery and the 

inability to access timely care for patients seeking service. These problems entail high 

healthcare cost (approximately $2.5 trillion in 2009 or 17.6% of the nation’s Gross 

Domestic Product) and poor healthcare quality in which the industry is forced to reduce 

the healthcare cost with the aid of government programs like Medicaid and Medicare.  

Healthcare insurance is not mandatory in the United States [1].  Based on the data from 

2003, 43% of adults with chronic disease or poor health are either uninsured or 

underinsured in the United States [2].  

Although, Medicaid and Medicare programs help with insuring individuals, 

approximately 15 percent of the United States population are still uninsured (roughly 43 

million individuals) [3].  As a result, the uninsured patients present additional concerns 

for healthcare providers based on the following reasons: they often receive a lower 

quality of service due to the delay in obtaining necessary care and their inability to pay 

for better treatment options; they tend to misuse the emergency department due to a lack 

of a primary care physician; and they fail to obtain follow-up care due to a lack of 

support and resources (i.e. physicians, treatment plans/materials, etc) [3]. As stated by the 

Centers for Medicare and Medicaid Services, “the Medicaid Program provides medical 
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benefits to groups of low-income people, some who may have no medical insurance or 

inadequate medical insurance.”   

Understanding the Medicaid program is essential, since this research is motivated 

by a government operated dental agency. With the assistance of the federal government, 

states must determine the eligibility of persons based on being categorically needy, 

medically needy or within other special groups.  For example, categorically needy is 

represented by persons who are at or below the federal poverty level, which includes 

children between the ages of 6 to 19, pregnant women, caregivers and Supplemental 

Security Income (SSI) recipients. These individuals can also be considered medically 

needy; if they are above the federal poverty level, but are unable to afford medical 

coverage. Furthermore, the State Children’s Health Insurance Program (SCHIP) provides 

medical care, under the Medicaid program, to children whose parents are unable to afford 

private insurance, but income is above the federal poverty level. In addition, these 

programs are developed to combat the challenges that stem from infant mortality, 

increases in hospitalization rates, and frequency of physician visits for persons living in 

poverty [4]. 

In their effort to redesign the healthcare system, the National Institute of Health 

(NIH) has identified six key performance goals.  These goals consist of the following: 

safety, effectiveness, focus on patient-centered care, timely and efficient care, and health 

services that are equitable from patient to patient. [5]  With these objectives, the 

healthcare system can sufficiently eliminate or reduce patient’s behaviors in relation to 

calling for earlier appointments, going to the emergency department, requesting specialty 
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consultations and prescriptions by telephone, cancelling of existing appointments, and 

walk-ins.  

Inadequate access to healthcare providers is one of the most dissatisfying truths 

about the healthcare industry. Often, patients must wait an average of at least three weeks 

to see their physician [6]. Patient dissatisfaction is directly linked to the inadequate access 

to primary care physicians. Ross and Patrick [7] conducted a focus group to identify 

patient’s attitudes towards the healthcare system.  From this study, the following 

experiences were identified: difficulty in scheduling timely appointments, long waits 

during and prior to an appointment, the inability to see their primary physician, and the 

inability to address multiple concerns in a single visit.  The main cause of these problems 

is the traditional scheduling system, and its inability to optimize appointment scheduling 

by segmenting appointment slots into prescheduled and same-day. The traditional 

approach requires patients to make appointments several weeks to months in advance 

after their visit. The push and pull between non-urgent verses urgent appointments, 

results in loss of timely care, and undermines healthcare quality. In addition, the long 

waiting time for appointments results in missed appointments and reduced efficiency of 

the overall daily operations. This scheduling system is also designed based on physicians’ 

preferences, which often creates a barrier in physician-patient interactions.  

Open-access, also referred to as advanced access or same-day appointment 

scheduling, transforms traditional scheduling systems into prescheduled and same-day 

appointments.  This system shifts to a patient-centered model that aims to provide timely 

access to care and improve continuity of care, while allowing patients to see their primary 
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physician within the same-day of the request for an appointment [6, 8]. With the newly 

implemented open-access scheduling system, healthcare providers have seen a significant 

increase in revenues as they are faced with the dilemma of how to manage capacity while 

meeting customers demand [9].  Due to the perishable nature of appointment time slots, 

revenue management will allow healthcare providers to take advantage of advanced and 

same-day scheduling of appointments in the most profitable manner.  

O’Hare and Corlett [9] have identified several benefits associated with the 

implementation of open-access scheduling.  The benefits experienced by the patients 

consisted of their ability to see their own physician and more efficient and effective 

visits.  As a result, patient satisfaction improved significantly.  The clinics noticed an 

increase in the physician’s compensation, which leads to a higher net gain for the clinics.  

In addition, the clinics operated more efficiently and experienced a decreased use of 

urgent-care services.  However, implementers of open-access scheduling have also 

experienced challenges that may entail one of the following: idle time of physicians when 

demand is low; lack of alliance between patient and physician, where the patient is more 

responsible for initiating and maintaining their healthcare; lack of willingness of 

physicians to shift control to patients for managing care; patients who are resistant to 

change; and/or the overuse of open-access system for patients, who tend to abuse the 

ability to see a physician at their own time [10]. Thus, understanding the fundamentals of 

revenue management is vital to examining how it is possible for open-access scheduling 

system implementers to generate an increase in revenues as they transition from 

traditional scheduling systems.  
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Revenue management (RM), also known as yield management, is a process that 

anticipates and reacts to consumer spending behavior in order to maximize revenue or 

profits. Pak and Piersma [11] defined RM “as the art of maximizing profit generated from 

a limited capacity of a product over a finite horizon by selling each product to the right 

customer at the right time for the right price.”  Weatherford et al. [12] suggest redefining 

the terms revenue and yield management to perishable asset revenue management 

(PARM).  They argue that PARM will help identify the optimal tradeoff between average 

price paid and capacity utilization in other industries besides the traditional use in the 

airlines industry.  In general, yield management is a comprehensive system that 

incorporates many of the strategies that entail reservation systems, overbooking, and 

segmenting demand. These strategies are applicable to service firms that have relatively 

fixed capacity, ability to segment markets, perishable inventory, products sold in 

advance, fluctuating demand, low marginal sales cost and high marginal capacity change 

costs [13]. RM not only increases profitability, but also allows efficiency in scheduling, 

which can apply to clinics in determining appointment schedules. When time slots are not 

filled, it costs clinics both time and money.  

There are two typical tactics associated with revenue management: variation of 

price dynamically over time to maximize expected revenue; and overbooking sales of the 

asset to account for cancellations. Due to the nature of the healthcare industry, only one 

of the tactics is applicable in which the practice of overbooking appointments is 

considered a norm.  Traditionally, dynamic pricing is used to vary price over time for a 

perishable asset. The asset owner must be able to estimate the value of the asset over time 
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and forecast the impact of price on customer demand effectively.  However, it is 

unethical for healthcare providers to dynamically change the price of service in order to 

maximize revenues.  

Revenue management has encountered a certain myopia inside the field, where 

practitioners and researchers view RM solely in airline-specific terms. This has restricted 

both research and implementation efforts in other industries.  Also, RM is viewed 

negatively due to airline pricing with consumers, where fares are complex; therefore, 

managers are reluctant to try RM practices. “Applying RM does not involve radically 

changing the structure of pricing and sales practices; rather, it is a matter of making more 

intelligent decisions [14]. ”   

Over the past decade, there has been an increase in revenue management 

techniques in the service industry.  This movement can be attributed to new approaches 

in how decisions are made. These methods should be technologically sophisticated, 

detailed, and intensely operational.  Due to the advances in economics, statistics, and 

operations research, it is possible to model demand and economic conditions.  

Researchers are also able to quantify the uncertainties faced by decision makers by 

estimating and forecasting market response.  This allows researchers to compute optimal 

solutions to complex decision problems. Information technology has provided the 

capability to: automate transactions, capture and store vast amounts of data, quickly 

execute complex algorithms, and implement and manage highly detailed demand-

management decisions. These advances have also lead to problems involving the 

possibility of managing demand on a scale and complexity that would be unthinkable 
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through manual means and the possibility of improving the quality of demand-

management decisions [14].  

 

1.2 Research Scope 

This research aims to provide effective, patient-centered care, in a timely and 

efficient manner through a well-developed open-access scheduling system.  Influenced 

by the benefits of open-access implementation, this research also aims to model how this 

scheduling system allows clinics to increase their revenues. Current research in applying 

revenue management to primary-care clinics has modeled the effect of patient choices in 

deciding on whether to accept or reject a same-day appointment [15]. The research 

presented in this paper examines the impact of dependent arrivals on an open-access 

scheduling system while maximizing revenue. To the author’s knowledge, quantitative 

models, developed to understand open-access scheduling systems, only explore single 

independent patient arrivals within predominately single provider scheduling models. 

However, there are a few journal papers that study the impact of open-access scheduling 

on multiple provider models.   

The objective of this paper is to introduce dependent demand arrivals in relation 

to multiple providers modeling.  Theoretically, the patients are considered dependent due 

to the fact that knowledge that a patient within a group (batch) will not meet their 

scheduled appointment or cancels, affects the probability that the other patients within the 

same group (batch) will also not meet their scheduled appointment or cancel. Thus, the 

arrival of patients is dependent among each other within the batch. A batch accounts for 
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two or more individuals who are interested in scheduling appointments with a set of 

providers, given that each person within the batch will be served. This research also aims 

to understand the challenges faced with both public and private pediatric dental clinics in 

scheduling batch appointment requests.   

When faced with limited resources, it is essential for policy makers to use 

effective methods in planning, prioritization, and decision making [16]. Therefore, three 

models are presented in this paper to assist scheduling coordinators in examining the 

effects of batch appointments on their scheduling paradigm. First, this work identifies the 

prevalence of batch appointment requests at public and private pediatric dental clinics. In 

the case study, data analysis and multivariate statistical analysis are used to answer the 

following questions:  

1. How does the prevalence of batch appointments differ based on clinic type?  

2. Are patients scheduled within a group dependent amongst each other in terms of 

their arrival and no-show rate? 

3. Is there a relationship among appointment demand type (individual versus 

batched patients), patient behavior (break or meet scheduled appointment), and 

reason for the appointment? 

4. Which variables predict the behavior of the patient?  

Next, a stationary, discrete time, infinite-horizon Markov decision process (MDP) model 

is developed to equip the scheduling coordinator with better information to be used in 

identifying the optimal policy in the acceptance and rejection of batch appointment 

requests.  With this model, the following questions are addressed:  
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1. How is the open-access scheduling paradigm, in terms of the percentage of the 

appointment slots that are allocated to same-day request, affected by the batch 

appointment requests? 

2. How is the optimal scheduling policy affected by varying degrees of the 

percentage of prescheduled patients, patient behavior, and appointment request 

size?  

3. How does overbooking affect the performance of the clinic?  

The behavior of the system is quantified under several performance measures including: 

the total expected number of patients that are served, the utilization of physicians, and the 

expected number of patients assigned to the backlog (i.e. overbooked). The backlog 

represents the queue of patients that are waiting in the system to be seen by the first 

available physician.  Based on the results of these questions, a complete analysis of the 

scheduling system is generated. Thus, allowing us to compare the predetermined 

performance measures for various no-show rates and prescheduled appointments ratios. 

 In the final model, a finite-horizon stochastic dynamic programming model is 

constructed to study the impact of appointment demand types (individual versus batched 

patients) on the clinic’s profitability and the physicians’ productivity. More importantly, 

this research determines if batch appointments negatively impact the clinic’s 

performance, in terms of the number of patients accepted and the utilization of 

physicians.  Also, the optimal scheduling policy is identified, which is based on the 

acceptance of individual patients only, batch appointments only, or a hybrid of both 

demand types.  With each of these models presented hereafter, healthcare providers gain 
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insight into not only the prevalence of batch appointments, but also the influence of these 

appointment requests on patient scheduling systems. 

  

1.3 Dissertation Overview 

The paper is composed of five remaining chapters.  Chapter 2 provides an in-

depth literature review of revenue management and appointment scheduling systems. 

Chapter 3 presents a case study on the prevalence of batch appointments for public and 

private pediatric dental clinics.  Chapter 4 examines the acceptance of batch 

appointments in a discrete-time, discrete-space, stationary infinite-horizon Markov 

decision process model. Chapter 5 explores the effects of scheduling independent versus 

dependent patients under a finite-horizon stochastic dynamic programming model.  

Chapter 6 summarizes and concludes the research presented here.  In addition, possible 

extensions of this work are presented. 
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CHAPTER 2 

Literature Review 

 

2.1 Introduction 

In 2009, the cost of healthcare was approximately $2.5 trillion or 17.6% of the 

nation’s Gross Domestic Product [1].  However, the growth of spending declined by 4.0 

percent from the previous year. Figure 1 illustrates the total spending trend from 1960 to 

2009 in the US, as well as the spending trends for both the private and public sectors and 

out-of pocket. The significant rise in healthcare costs can be attributed to such factors as 

increased technological costs, an aging population with health problems, defensive 

medicine, excess capacity, and an increased number of well-trained specialists 

demanding higher wages [17]. With surging healthcare cost, the United States is currently 

identifying methods to reform the existing healthcare system.   

 
 
 

 

Figure 1. National healthcare expenditures in millions of dollars 
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With respect to personal healthcare, the Centers for Medicare and Medicaid 

(CMMS) have categorized the type of medical service and product into the following: 

hospital, professional services, nursing home and home health, and retail outlet sales of 

medical products.  Professional services entail physician and clinical service, other 

professional services (i.e. therapists and chiropractors), dental services, other personal 

healthcare in nontraditional settings (i.e. school and community centers); whereas 

medical products are composed of prescription drugs, durable and non-durable medical 

equipment.  Figure 2 breakdowns the healthcare expenditures by the type of service or 

product for 2009.  Hospitals and physicians and clinical services account for the majority 

of the healthcare cost at approximately 65%.  We focus our attention to the dental 

spending, which only makes up about 5% but has a lower percent change from the 

previous year than physicians and clinical services.  This is evident in Figure 3 which 

represents the percent change for the overall expenditures, physician and clinical 

services, and dental services from 1970 to 2009.  

 
 
                                 

 

Figure 2. Expenditures for personal healthcare 
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Figure 3. Expenditures change from previous year for professional services 

 
 
 
Healthcare administrators must determine ways to combat this rising healthcare 
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can balance supply and demand for service. Therefore, this research examines the use of 

revenue management and open-access scheduling techniques. 

The objectives of this chapter is to (i) review  literature on revenue management, 

(ii) review literature on patient scheduling and open-access scheduling, (iii) identify how 

open-access scheduling is associated with revenue management problems/techniques, and 

(iv) determine how healthcare is unique to traditional RM industries.   
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and research opportunities.  In addition, this research explores the use of revenue 

management within the healthcare industry and its uniqueness.  Then, this work examines 

the general concept of appointment scheduling and more specifically overbooking models 

and open-access scheduling systems in Section 4.  Finally, the gaps in research are 

identified, along with potential research directions and challenges.  

 

2.2 Study Boundaries 

A comprehensive discussion on the history of revenue management is given by 

McGill and Van Ryzin [18], in which the authors propose several possible directions 

where RM can be utilized. Chiang et al. [19] published an overview of the literature 

related to revenue management.  In this journal paper, the authors address the issues and 

potential research directions of RM.  They present insight of the progress of RM since 

1999, with the understanding of customers’ value functions and behavior essential in 

designing service packages for different market segments such as walk-ins, no-shows, 

cancellations, appointment scheduling patterns.     Thus, the goal is to identify how RM 

has been used in nontraditional industries and understand how RM techniques can be 

applied to an open-access scheduling system.  In order to accomplish this goal, a 

literature search is conducted on both revenue management and open-access scheduling. 

Throughout the literature search process, several questions will be raised: What is 

revenue management? What are the characteristics found in traditional verses 

nontraditional industries? How is the healthcare industry different from traditional 

industries? What is open-access scheduling?  How does open-access scheduling differ 
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from other scheduling models? How can RM be applied to open-access scheduling? The 

proposed questions are answered in the following sections.   

2.2.1 Definitions of key concepts 

The broad term “revenue management” refers to the wide range of techniques, 

decisions, methods, process, and technologies involved in demand. The demand-

management decisions consist of three basic categories: structural decisions, price 

decisions, and quantity decisions [20]. As defined by Chopra and Meindl [21], revenue 

management is the use of pricing to increase the profit generated from a limited supply of 

assets in the form of capacity and inventory.   

Moreover, open-access scheduling is a patient-centered system that aims to 

provide timely access to care and improve continuity of care, while allowing patients to 

see their primary physician within the same-day of the request for an appointment [6, 8]. 

2.2.2 Search process 

An extensive literature review is conducted on revenue management and open-

access scheduling. Several databases are used in the search process including Google 

Scholar, Web of Science, Compendex, and Knovel. For the revenue management literary 

search, several keywords are used which consist of the following: “revenue 

management”, “yield management”, “revenue management and healthcare”, “revenue 

management and scheduling”, “revenue management and patient scheduling”, and 

“revenue management and nontraditional industries.” With the open-access scheduling 
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search, “advanced-access scheduling” and “same-day appointments” are also used as 

keywords. 

2.2.3 Characteristics of articles 

For an overview of the trends and characteristics of the revenue management 

literature, McGill and Van Ryzin [18] and Chiang et al. [19] are suggested.  From the 

open-access scheduling literature search, the papers are divided into four categories.  

Table 1 summarizes these categories in terms of the conceptual or framework papers, 

case studies on the implementation of open-access scheduling in a variety of clinics, 

outcomes of open-access scheduling, and quantitative models.   

 

 
 

Table 1. Open-access scheduling literature listed by categories 

Conceptual 

       Implementation: Murray and Tantau [22], Schneck [23], Murray [24] 
       Potential benefits and challenges: Herriott [25], Pinto [10], Gupta and Denton [26] 
       Panel size: Savin [27], Green et al. [28], Murray et al. [29] 

       Other:  Kilo and Endsley [30], Murray and Berwick [31],  Randolph [32], Gupta et al. [8], Miller [33]  

Implementation 

       Primary care: Murray et al. [34], Bundy et al. [35],  Knight et al. [36] 

       Military: Meyers [37], Armstrong et al. [38]  

       Academics: Kennedy and Hsu [39], Steinbauer  et al. [40] 

       Other: Gill[41], Belardi et al. [42], Newman et al. [43] 

Outcomes 

       Benefits: O’hare and Corlett [9],  

       Challenges/barriers: Solberg et al. [44], Terry [45], Mehrotra et al. [46], Ahluwalia and Offredy [47] 

       Statistical: Pickin et al.  [48], Parente et al.  [49], Bennett and Baxley [50] 
       Other: Lewandowski et al.  [51], O’Connor et al.  [52], Fine and Busselen [53], Sperl-Hillen et al. [54],   
                  Randolph et al. [55]  

Quantitative 

       Simulation: DeLaurentis et al.[56], Giachetti et al. [57], 
       Mathematical: Kopach et al.[58] , Qu et al. [6], Gupta and Wang [15], Muthuraman and Lawley [59],  
                               Qu and Shi [60] 
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For the conceptual papers, the respective authors introduce the framework and 

objectives of open-access scheduling; whereas, other papers are developed to discuss the 

process of implementing the scheduling system in healthcare clinics.  The outcomes 

papers describe what happens as a result of implementing the scheduling system in a 

variety of healthcare clinics. Some papers provide statistical analysis to examine the 

benefits of open-access scheduling. Finally, the quantitative papers represent a variety of 

mathematical models that attempt to provide logical reasoning to support the concept of 

open-access scheduling. It is worth noting that several papers touch on one or more of the 

four categories; however, the paper is placed in the category that the author(s) focuses 

most of their attention. Figure 4 illustrates the distribution of these articles across the four 

categories.  

 
 
 

 

Figure 4. Literature decomposition for each category 
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2.3 Revenue Management  

The concept of revenue management evolved due to the deregulation of United 

States airlines industry in the 1970s. “It was developed as an outgrowth of the need to 

manage capacity sold at discounted fares, which were targeted to leisure travelers, while 

simultaneously minimizing the dilution of revenue from business travelers willing and 

able to pay full fares [61].”  This differential pricing strategy can be accomplished in 

terms of customer segment, time of use, and product or capacity availability [21].  The 

business environment in which RM is primarily used can be characterized as follows:  1-

the existence of price variations for each market segment; 2- highly perishable inventory 

or capacity that can lead to wastage; 3- the presence of seasonal demand peaks (or any 

other form); and 4- the possibility of inventory or capacity to be sold in bulk and/or 

instantaneously for cash [21].   Based on these four characteristics, healthcare is 

applicable for revenue management since there is a high level of perishability with 

resources (i.e. appointment slots) and the presence of seasonal demand.  Seasonal 

demand occurs when the number of patients seeking treatment fluctuates in the time of 

day, the day of the week, and the time of year. It is worth noting that perishable inventory 

and capacity cannot be utilized after a certain period of time. These characterizations 

provide the foundation for a successful revenue management model in which the right 

resource is sold to the right customer at the right price and time.  

Under RM, demand-management decisions must be made. These decisions 

consist of three basic categories: structural decisions, price decisions, and quantity 

decisions. Structural decisions determine which selling format to use, segmentation or 
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differentiation mechanisms, bundle of products, etc, whereas price decisions examine 

how to set posted prices, individual-offer prices, and reserve prices; and how to 

markdown over product’s lifetime.  As for quantity decisions, the decisions are based on 

whether to accept or reject an offer to buy; how to allocate output or capacity to different 

segments (i.e. walk-ins, prescheduled, open-access appointments); when to withhold  a 

product from the market and sale at later points, etc.  In order to determine which 

decision is more relevant depends on the context of the industry and the time in which the 

decision must be made [14]. Although RM addresses all three categories; structural 

decisions are considered to be strategic decisions that are taken infrequently.  Thus, a 

greater emphasis is placed on the operational decisions using quantity-based RM 

(capacity-allocation decisions) and/or price-based RM (prices used to manage demand). 

In the research presented in this paper, we focus our attention to the quantity-based 

revenue management decisions as it relates to patient scheduling.  

Additionally, revenue management can consist of pricing, auctions, capacity and 

inventory control, overbooking, and forecasting models. With pricing models, one must 

determine the price for various customer groups and how to vary prices over time to 

maximize revenues or profits; whereas auctions are used to address methods for 

dynamically adjusting prices.  Capacity and inventory control determines how to allocate 

capacity of a resource or a bundle of different resources to different classes of demand, so 

that the expected revenue or profit is maximized.  The overbooking model is used to 

increase the total volume of sales by selling reservations above capacity to compensate 

for cancellations and no-shows. Finally, forecasting is essential in the quality of RM 
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decisions based on pricing, capacity control, and/or overbooking.  Forecasting can be 

done using full- and semi-aggregated and fully disaggregated models [19].  In regards to 

the healthcare industry, a mixture of these models can be used from capacity/ inventory 

control, overbooking and forecasting.  It is questionable if pricing and auctions can be 

applied due to the complexity of the healthcare’s billing and reimbursement practices.  

Figure 5 illustrates open-access scheduling in relation to the revenue management 

models. The highlighted portions of the diagram represent those models that are 

applicable in the healthcare industry. 

 
 
 

 

Figure 5. Revenue management problems with respect to scheduling 
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2.3.1 Applications of revenue management in the service industry  

Not only has the airline industry utilized the RM concept, but the hotel [62-63], 

rental car [64], air cargo [65], professional service firms [66], nonprofit businesses [67], 

project management [68], restaurants [69-70], retail and manufacturing [71-74] industries 

as well.  These industries all have similarities in that they face high fixed costs/low 

variable cost, spoilage and temporary demand imbalances [13]. Chiang et al. [19] suggest 

that advancements in information technology (IT) have led to more sophisticated RM 

capabilities. Some of the nontraditional industries identified include the following:  

• Hospitality- restaurants, hospitals and healthcare, attractions, cruise lines, casinos, 

saunas, resort, golf, sports events, conferences, etc 

• Transportation- boat, railways, cargo and freight 

• Subscription services- IT services and internet services, cellular networks, 

television services 

• Other industries- retailing, manufacturing, broadcasting and media, natural gas, 

project management, apartment renting, sales management, inclusive holiday, 

nonprofit sector. [19] 

Chiang et al. [19] pose several questions in regards to future research: how to 

apply RM in nontraditional industries; how to use new methodologies such as auctions, e-

commerce and internet marketing to improve the performance of RM; how to make RM 

decisions more effectively under competitive and collaborative environment; and how to 

make forecasts more accurately.    The authors also provide insight into how customers’ 

value functions and behavior are essential in designing service packages for different 
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market segments such as walk-ins, no-shows, cancellations, appointment scheduling 

patterns.  So what can the healthcare industry learn from other industries? Table 2 

provides the lessons learned from traditional industries that have applied the revenue 

management concept based on the information provided by Chiang et al. [19].    

 

 

 

Table 2. Best practices from traditional industries 

Industry Lessons  Learned 

Airlines Utilize both overbooking and segmentation 
Hotel Use overbooking policy to compensate for cancellations and 

no-shows 
Resorts Segment customers based on scheduling types 
Rental Cars Decide whether to accept or reject booking requests based on 

length-of-rent controls 
Cargo & Freight,  IT & internet services Utilize capacity planning techniques 

 
 
 

2.3.2 Healthcare uniqueness 

Bell stated in 1998, his general belief that “RM concepts will soon be applied to 

almost everything that is sold.”  Each new industry introduces a new set of challenges 

and a new perspective to RM. By shifting the focus from relying on capacity/inventory 

controls, Karaesmen and Nakshin [2]  suggest hospitals consider pricing optimization to 

attain financial goals. Government and private insurance covers the expense of most 

hospital services. Roughly 33% of hospital’s revenue comes from Medicare, about 33% 

from commercial insurance and 17% from Medicaid; the remainder comes from out-of-

pocket and charitable care.  

Hospital pricing and billing practices are highly complex. As a result, the 

healthcare system is considered a customized service with the use of charge master 
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pricing and contract prices to aid in billing.  For example, a patient is presented a charge 

master at the time of their billing which provides the net price for each item of service 

and/or products that have been used during their healthcare service. This price does not 

account for the actual amount that will be covered by the patient’s insurance coverage 

and/or the amount the patient will be responsible for (if any) [2].  

In order for revenue management to be effective in the healthcare industry, 

several underlying problem characteristics must be considered that are unique to this 

industry.  In traditional industries, it is common to assume the capacity is fixed. However, 

a medical clinic can easily increase capacity through the use of overtime. Within the 

healthcare industry, segmentation is not practiced in a manner that allows for revenues to 

be maximized. Also, healthcare providers are often faced with managing a backlog of 

appointments. Finally, the healthcare industry has very different cost structures than those 

found in hotel and airline industry [75].  

Unlike other industries, healthcare is faced with managing reimbursements and 

revenue cycles to be financially viable.  Revenue cycle management involves the 

payment for a product or service that is not made in advance or immediately at the time 

of sales/service. Healthcare uniqueness from other industries entails customers who 

cannot opt out for not using a medical service, in many cases; neither can hospitals reject 

selling their service to the patient.  RM practitioners must consider expected 

reimbursements from the payers and patients’ ability to pay instead of their willingness to 

pay. Also, costs differ per customer and there is uncertainty present in identifying how 

much money will be reimbursed by each patient’s insurance provider.  The ultimate goal 
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of pricing and revenue optimization in healthcare is to attain service goals while 

effectively managing finances.  

Current pricing and revenue optimization (PRO) models assume variables are 

known or fixed.  The authors suggest segmentation based on a need to determine good 

estimates of reimbursements and costs for capacity management and pricing optimization 

rather than based on patients financial situation. PRO characteristics visible in healthcare 

include the following: capacity related problems, high fixed cost, wealth of historical data 

(potential to obtain data), high transaction volume, and the ability to do price 

segmentation  [2].  For example, Qi and Yan [76] examine the use of RM for capacity 

control in a community hospital to determine the optimal reserve capacity for advanced 

and common wards.  

Within the healthcare system, the industry’s infrastructure is not designed to 

increase the price for healthcare in order to deter customers to not use the service. Thus, 

the healthcare industry is often forced to cut supply of service due to the lack of 

resources.  Several approaches are identified to handle the many varieties of demand in 

the healthcare industry.  For example, some pressures may be best met, not by curtailing 

demand, but by coping with it and meeting it in a radically different way. In some 

instances, healthcare demand has forced some physicians’ practices to incorporate a 

helpline to be accessed by patients to deter from unnecessary in office visits. This 

practice of deterring demand has reduced the increase in demand for health facilities by 

40% [20].  
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Capacity management attempts to determine how to allocate scarce resources 

among different patient groups by matching demand with supply [77]. Additional 

service-related goals consist of increasing the number of appointments that can be 

scheduled, or decreasing the waiting times and delays in the healthcare system, which 

may neglect the hospital’s financial goals [2]. Smith-Daniels et al. [17] discuss previous 

research and future research in the area of capacity management in healthcare services. 

Previous research has disclosed that trends toward growth and integration in healthcare 

organizations have been invalid as earlier research was performed during a time when 

health care essentially was characterized as a cottage industry. Within the cottage 

industry, patients often use a single physician or a small group of physicians throughout 

their entire lifetime, from birth to death, to serve their primary care needs.  Given these 

changes in the healthcare environment, it seems appropriate to assess previous research 

on healthcare capacity planning and management and to determine its relevance to this 

changing industry.  

In order for capacity management to be successful, one must determine the most 

effective and efficient approach in work force management and scheduling.  Work-force 

capacity is a function of the number of personnel hours available per unit of time and the 

composition of the work force in terms of the mix of employee skills. Most health care 

organizations determine the number of full- and part-time employees of various skill 

levels through the annual budgeting process. As shown in most work force models, work-

force acquisition decisions must consider such factors as (1) the stochastic nature of 

demand, (2) the difficulties in measuring the productivity of health care providers, (3) the 
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flexibility facilitated by the substitution of different employee types, (4) the use of part-

time employees for lowering operating costs and improving schedule flexibility, and (5) 

the use of overtime and temporary employees to provide additional work-force capacity 

[17]. 

Gupta and Wang [15] suggest that a clinic must manage patients’ access to 

physicians’ slots in order to balance the needs of those who book in advance and those 

who require a same-day appointment.  The authors also insist that one must decide which 

appointment requests to accept in order to maximize revenue. Their research identifies 

the disadvantages in scheduling too few appointments with an increase in patients’ wait 

time, the patient and primary care provider (PCP) mismatch, and the possibility of 

unutilized clinic appointment slots.   

Based on the literature review, revenue management is composed of both capacity 

planning and demand management strategies. The primary objective is to identify the 

strategy that best balances the demand with the available supply in a manner that 

maximizes revenue. Thus, this research examines how patient scheduling systems are 

utilized to handle this problem. 

 

2.4 Healthcare Appointment Scheduling  

Appointment scheduling has been highly and extensively studied since the early 

1950s, beginning with the research presented by Bailey [78]. In general, appointment 

systems are designed to minimize waiting times for patients while maximizing the 

utilization of physicians and other resources [79-81].  These systems can be divided into 
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two categories: static, where decisions are made prior to the beginning of a clinic session, 

and dynamic, where decisions are continuously updated based on the current state of the 

schedule [82]. Cayirli and Veral [82] provide an extensive literature review that describe 

the fundamental factors associated with appointment systems that entails the following: 

number of services available, number of physicians, number of appointments per clinic 

session, the arrival process of patients in relation to punctuality, no-shows, walk-ins and 

presence of companions, service times, lateness and interruption level of doctors, and 

queue discipline.  The authors also present the measures of performance in regards to 

cost-based, time-based, congestion, fairness, and other appropriate measures. England 

and Roberts [83] also suggest that performance measures should be based on less 

quantifiable parameters like improving community health.  

With the designing of appointment systems, decisions must be made on the 

appointment rules (i.e. block-size, begin-block, and appointment interval), patient 

classification (used to determine booking sequence of patients and/or adjustment of 

appointment intervals to meet specific patient characteristics type), and adjustments of 

no-shows, walk-ins, urgent patients, emergencies, and second consultations into the 

system.  Furthermore, appointment systems research is directed to analytical models 

using queueing theory and mathematical programming methods, simulation-based 

models, and case-studies.  The authors also suggest that there is a significant gap between 

the theory of appointment systems and application of these systems in the actual-world 

[82].  
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Gupta and Denton [26] state the importance of appointment scheduling with 

respect to efficiency and timely access to health services.  As with primary care, 

appointment systems must be designed to “find a suitable match among the available 

time slots of providers in the clinic, provider prescribed restrictions on how available 

slots may be filled and patients’ preferences for day/time of week as well as for a 

particular service provider.”  In addition, Kaandorp and Koole [84] further emphasize 

that the scheduling objective must consider the trade-off between both the physician and 

the patient preferences, where the physician prefers to be more productive (less idle time) 

and patients tend to want shorter waiting time.  By using patient classification in the 

design of appointment systems, Cayirli et al. [82] aim to improve patients’ waiting time, 

physicians’ idle time and overtime in the absence of making trade-offs between the 

patient and provider. In the remaining sections, we examine the use of overbooking as 

appointment scheduling models has transitioned from traditional to open-access 

scheduling systems.   

2.4.1 Overbooking 

As noted by McGill and Van Ryzin [18], overbooking is the oldest and most 

studied revenue management strategy within the airline industry as a response to 

controlling  the probability of denied boardings.  Overbooking is also the most utilized 

approach of revenue management for patient scheduling in traditional appointment 

models.  Giachetti [85] describe overbooking as a population-based policy in which 

patients are overbooked for any given day to help reduce the rate of no-show and 

appointment delay. Overbooking is more suitable for situations where customers are able 
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to cancel orders and the value of the asset drops significantly after a deadline.  The basic 

trade-off is to consider the wasted capacity (inventory) due to excessive cancellations or 

having a shortage of capacity as a result of too few cancellations in which case an 

expensive alternative needs to be arranged.  Cost of wasted capacity is the margin that 

would have been generated if the capacity had been used for production or service, 

whereas the cost of capacity shortage is the loss per unit that results from having to go to 

a backup source.   

Thus, the goal is to maximize profits by minimizing the cost of wasted capacity 

and the cost of capacity shortage.  This may potentially result in the optimal level of 

overbooking increasing as the margin per unit increases and the level of overbooking 

decreasing as the cost of replacement capacity increases [21].  In other words, the 

objective is to determine the optimal booking limit for each time period that maximizes 

expected revenues, as one considers the probability of cancellations and penalties for 

exceeding capacity [18].   

Kim and Giachetti [75] investigate how overbooking can help healthcare 

providers over time and to enable more efficient use of limited resources while 

maximizing profits.  Overbooking also allows healthcare providers to balance the costs of 

too few patients showing up with the costs of too many patients showing up.   The 

benefits of overbooking to patients include reduced waiting times and increased 

continuity of care. The authors develop a stochastic mathematical overbooking model 

(SMOM) to determine the optimal number of patient appointments to accept to maximize 

expected total profits for diverse healthcare environments.  SMOM considers the 
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probability distribution of no-shows and walk-ins to obtain an optimal solution for the 

number of patient appointments to be scheduled.  

LaGanga and Lawrence [86] discuss how to utilize overbooking models to 

schedule patients for clinics efficiently, while also managing no shows. The problem is 

that patient no-shows are significant in many health care settings, where no-show rates 

can vary from as little as 3% to as much as 80%. No-shows reduce provider productivity, 

increase health care costs, and limit the ability of a clinic to serve its client population by 

reducing its effective capacity. The paper provides a source for managers to understand 

appointment overbooking strategies. First, the paper shows how scheduling complexity 

increases when appointment overbooking is used to compensate for no-shows. By 

demonstrating the dynamics of patient arrival uncertainty in both the timing and the 

number of no-shows, the authors differentiate clinic overbooking from overbooking for 

revenue management in transportation services.  

Second, it shows a new analytic utility model that evaluates appointment 

overbooking in terms of trade-offs between the benefits of serving additional patients and 

the costs of increased patient wait time and provider overtime. This utility model enables 

an administrator to tailor the results to the specific characteristics of a clinic. Third, the 

authors use simulation experiments, regression analysis, and sensitivity experiments to 

show that appointment overbooking in health care clinics can have a significantly 

positive net impact on clinic performance by increasing patient access and improving 

clinic productivity. This, in turn, translates into reduced clinic costs and improved patient 

satisfaction and outcomes. Fourth, the paper provides managerial insights into the 
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practical use of appointment overbooking in actual clinics and demonstrates its 

application in a large publicly funded mental health clinic. It also identifies situations in 

which overbooking is most likely to be beneficial and, conversely, in which it is likely to 

be counterproductive.  

Appointment scheduling and no-shows management have been used in other 

industries such as medical practice, healthcare administration, operations management, 

marketing, and transportation planning. LaGanga and Lawrence [86] state that little work 

has been contributed on the use of overbooking to mitigate the negative impact of no-

shows in appointment-oriented services such as clinical healthcare. In contrast, 

transportation revenue management has been extensively examined, where overbooking 

has been studied in terms of capacity utilization and profitability using perishable asset 

revenue management. However, appointment overbooking is very different from 

transportation services overbooking, since appointment no-shows are spread over time, 

while transportation no-shows all occur at a single point in time. The difference in 

problem structure requires quite different solution approaches to the problem of no-

shows. Many academics and healthcare managers have attempted to understand the 

behavior of patients that fail to meet their scheduled appointment. The goal is to find a 

relationship between age, gender, number of previous appointments, and the lead times 

given for appointments to patients.  This relationship can be used to help construct a 

probabilistic model to find the root causes of no-shows, such that they are eliminated or 

reduced [86]. 
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2.4.2 Open-access scheduling 

Patient scheduling has encountered several major transitions from traditional 

models, to carve-out models, and now open-access scheduling models.   The traditional 

model is more relevant to the days of prescheduling and “take-a-number-and-wait” 

systems, where patients have experienced long waiting times to see their physician and 

long waiting times to schedule an appointment. The traditional model divides 

appointments into two categories: urgent (same-day) and non-urgent care.  The traditional 

system entails a pattern of double-booking appointments, high no-show rates, and 

patients requiring multiple appointments.  From the traditional model derived the concept 

of the carve-out model.  The carve-out model reserves urgent care time in advance, which 

often prevents patients from seeing their own physician.  This presents a major problem 

due to the inability to set precedence to the continuity of care and possibly the need for a 

second appointment with the patient’s primary physician.  The carve-out system tends to 

push non-urgent care to a future appointment date that enables dysfunctional habits in 

matching supply and demand [22].  

Introduced by Kaiser Permanente in northern California, the open-access 

scheduling model aims to rebuild their system by creating an access system focused on 

the key healthcare product: doctor-patient relationship with respect to both the continuity 

of care and capacity.  Kaiser Permanente experienced an average wait of 55 days for an 

appointment in which only 47% of the patients were able to see their own physician.  

This inefficient and costly system was a result of a high rate of missed appointments, and 

the lost income and lost opportunity of patient visits.  Furthermore, the longer the delay 
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of care; the greater the threat to quality of care [22].  Figure 6 indentifies the percentage 

of appointments that are prescheduled as scheduling systems transition from a traditional 

to carve-out to advanced-access models; whereas, Figure 7 characterizes and exposes the 

associated risks of each model as scheduling models has transitioned from traditional to 

open-access. 

 
 
 

 

Figure 6. Scheduling models from Murray and Tantau [22]  

 
 
 
 

 

Figure 7. Evolution of scheduling models 
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Open-access scheduling systems allow patients to be seen at their leisure, in turn, 

improving healthcare delivery quality while reducing healthcare cost.  How to manage 

capacity and meeting daily patient demand is the fundamental characteristic of this novel 

scheduling model.  Therefore, advanced access scheduling limits the amount of 

prescheduled appointments for a specific timeframe.  The associated risk encompasses 

managing no-shows with prescheduled appointment slots and undermining the capability 

of open-access appointments with too few appointments available.  Several studies have 

examined the transition from traditional scheduling to open-access systems that aim to 

improve efficiency of primary care clinics, reduce no-show rates, manage walk-ins, 

reduce waiting times for scheduling appointments, and restructure types of appointments 

and length of appointments (refer to Table 1).  Johnson et al. [87] suggest that open-

access scheduling, along with patient education, patient reminders and patient sanctions, 

can reduce the rate at which patients fail to meet their scheduled appointments.  

Several principles have been identified to assist management with the tools vital 

to implementing changes in their scheduling systems.  The ten principles of open-access 

consist of:  

1. Balance appointment supply with patient demand; 

2. Work down the backlog; 

3. Reduce appointment types; 

4. Plan for contingencies; 

5. Reduce future patient demand; 

6. Manage the bottlenecks; 
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7. Synchronize patient, provider and information; 

8. Predict and anticipate patient needs at the time of appointment; 

9. Optimize rooms and equipment; and 

10. Use continuous-flow strategies. [35]  

Even with these tools, there is no guarantee that the transition from traditional to open-

access scheduling systems will be challenge free.  Most healthcare clinics report that 

managerial time is needed on a permanent basis to sustain advanced access scheduling. 

Several clinics also encounter trouble working down the backlog.  With large 

organizations, problems occurred when the open-access concepts are introduced and 

initiated by management rather than physicians.  The benefits are more visible by 

management (with decrease in appointments delay) than for physicians (less stressful 

days) which make it difficult to motivate physicians to adopt the system.  The transition 

to open-access scheduling is easier when implemented in smaller private clinics.  In 

addition, the lack of a contingency plan presents another challenge, if the system is 

unable to adapt or respond when confronted with abrupt and unexpected changes in 

supply and demand.  Furthermore, one should focus same-day scheduling on the process 

and principles rather than on a specific product or solution; in order, to achieve a 

successful appointment system [35].   

In practice, the concept of open-access scheduling has been used to develop a 

prediction grid that would predict actual patient arrivals based on a previous model 

prediction grid formulated by Kaiser Permanente. The use of open-access principles can 

be seen in the theory that the demand for same day appointments can be predicted and 
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this demand prediction can help determine an actual demand of patient appointments by 

day of the week and by month of the year. The objective is to use open-access 

appointment scheduling to help improve patient’s access to healthcare providers in a 

suitable time frame. The use of open-access techniques requires the help of management 

to aggressively predict patient arrivals and staffing schedules. Forjuoh et al. [88] discuss 

the challenge in creating a prediction grid and explain how most researchers use the 

Kaiser model as a backdrop because it is the only model available. Using historical data, 

appointment schedules for the year were generated and compared to those using the 

Kaiser method. The results of the experiment show that appointments scheduled by the 

day of the week and Kaiser method are similar, but the two approaches differed on the 

summer and winter month’s schedules. The authors concluded that the results from the 

Kaiser model may be tempered, and each industry should develop their own prediction 

grid to capture the uniqueness of that industry.  

Qu et al. [6] determine how to choose the optimal percentage of open-access 

appointment slots, taking into account provider capacity, no-show/arrival rates and 

distribution of demand. The success of an open access scheduling system relies on the 

appropriate percentage of prescheduled and open-access appointment slots. The wrong 

percentage of open access appointments could result in a mismatch of capacity and 

patient demand, leading to the failure of the system. The authors aim to find the optimal 

number of appointments that can be prescheduled, prior to scheduling any appointments 

for the provider while maximizing the expected number of serviced patients. The 

formulation and derivation of the quantitative model takes into account expected number 
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of patients that are seen by their physician, patient arrival, provider capacity, appointment 

demand, and no-show rates. The results demonstrate how the optimal percentage of open 

access appointments relies on the ratio of provider capacity to average demand for open 

access appointments. The ratio of patient arrivals for prescheduled and open access 

appointments is also determined.   

Gupta and Wang [15] develop a discrete-time, finite-horizon Markov Decision 

Process to model patients’ choice. The objective is to maximize expected revenue 

obtainable from periods t onwards, given that the clinic’s reservation state at time t is s. 

The clinic’s reward is based on same-day demand. For a single physician, the model 

determines a booking limit policy based on the optimal policy, which identifies the 

number of patient’s request that can be accepted.  The authors only partially characterize 

multi-doctor clinics of optimal policy using two heuristics.  They also consider the effect 

of clinic’s optimal profit on patient’s loyalty to PCP, total clinic load, and load imbalance 

among physicians. One of the major shortcomings of their research is that they assume a 

patient can be denied same-day request to protect certain slots for later arriving same-day 

patients or for patients belonging to the requested physicians’ panel.  

 

2.5 Research Gaps 

Although most research in overbooking in healthcare consider patients to have 

homogeneous no-show rates, Zeng et al. [89] develop a clinical scheduling model in 

which the patients have heterogeneous no-show probabilities. LaGanga and Lawerence 

[90] developed a simulation model to mitigate the loss of productivity of physicians due 
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to patient no-shows by testing the performance of scheduling rules for overbooked 

appointments.  Muthuraman and Lawley [59] also develop a stochastic overbooking 

model under an open-access scheduling system for a single service period to compensate 

for the probability of no-show for outpatient clinics. Liu et al. [91] consider the 

probability of no-show under a traditional scheduling system, where a Markov decision 

process is used to determine which day to schedule a patient’s request to be seen by their 

physician.  Zeng et al. [92] use a game theoretical approach to model the behavior 

between the clinic and patients and demonstrate that based on the patient’s characteristics 

overbooking may or may not improve clinic’s profit. Moreover, it has been noted that 

overbooking tends to penalize patients that arrive for their scheduled appointments by 

increasing the amount of time they spend waiting to see their physician [92-93].  

Realizing this dilemma, schedulers must identify other approaches that will not 

negatively impact patient satisfaction. 

Table 3 demonstrates the contributions that have been made towards quantifying 

the theory and objectives of advanced access scheduling and whether or not revenue 

management concepts are utilized.  The primary goal of this literature review is to 

understand the models based on the presence of no-show and/or cancelled appointments, 

the number of providers, the number of patients seeking to schedule a same-day 

appointment and dependency of the patients amongst themselves. The key to optimizing 

appointments is to take a quantitative approach to develop the schedule rather than 

relying on an experts experience. [6]  Based on the literature survey, the research seeks to 

develop a quantitative model to examine the impact of batch (i.e. dependent demand) 
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arrivals under an open-access scheduling system.  To date, quantitative papers in this area 

consider single and multiple provider models under the assumption that demand arrivals 

are independent among patients.  In regards to revenue management, McGill and Van 

Ryzin [18] stated that it must consider the inclusion of batch bookings as critical area for 

research. 

 
 
 

Table 3. Quantitative model comparison 

Author Model 
Single 

Provider 

Multiple 

Provider 

Dependent 

Demand? 

No-

Shows? 
Appointments Distribution Overbooking?

Qu [6]  Mathematical X   No Yes, 
known 

Total number is known 
and fixed. 

Known for 
prescheduled and 

OAS 

No 

Gupta and 
Wang [15]  

Finite MDP and 
Heuristics 

X X No   Considers Patient 
Choice 

  Yes 

Liu et al. [91] Infinite MDP and 
Simulation  

X   No Yes Proposes Improved 
OAS for traditional 

system. 

  No 

Kopach [58] Simulation   X No Yes Allows double-booking Poisson  No 

Giachetti et al. 
[57] 

Simulation X   No Yes     Yes 

Muthuraman 
and Lawley 
[59] 

Multiobjective 
optimization 

X   No Yes Allows overbooking.  
Appointment slot 
allocation. Patient 

choice.  

Exponential Yes 

DeLaurentis et 
al. [56] 

Simulation and 
Queueing Model 

  X No Yes     Yes 
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CHAPTER 3 

Comparison of Patient Dependency at Public and Private  

Pediatric Dental Clinics: A Case Study  

 

3.1 Introduction  

 According to the United States 2009 Census data, households with one, two or 

three children represent approximately 21%, 38%, and 25% of the living arrangements of 

children under the age of 18, respectively [94]. In addition, the percentage of households 

with multiple children under the age of 18 with both parents, a single mother, or a single 

father present in the households are 84%, 75%, and 64%, respectively.  These statistics 

combined illustrate the potential strain that can be placed on a caregiver to ensure the 

health needs of the family are attended to (i.e. requiring hours away from work).  From 

the service provider’s standpoint, a challenge may arise in keeping flexible schedules to 

accommodate appointment requests that minimize “time out of work” for the parent.  

This paper explores the relationship between multi-family appointment requests and 

patient scheduling. 

 Since its introduction by Bailey [78], research in the field of appointment 

scheduling has been extensively studied. In general, appointment systems are designed to 

minimize waiting times for patients while maximizing the utilization of physicians and 

other resources [79-81]. There is also a general assumption that patients are independent 

amongst each other in arrivals and no-show rates within scheduling models [82]. This 

assumption makes analytical models more tractable, in the sense that knowledge of one 

patient does not affect the probability that the other patient will arrive. However, this 
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assumption is often invalid in environments where requests for multiple appointments are 

made within the same family or group. Here, one patient is highly dependent on the 

interactions of one or more patients within their family or group. Abdus-Salaam et al. 

[95] introduce the concept of dependent demand arrivals in patient scheduling in which 

the arrival of patients is dependent among each other within the group; hereafter referred 

to as a batch. A batch request is defined as at least two individuals who are interested in 

scheduling appointments with a set of providers if and only if each person within the 

batch will be served.  These patients are scheduled simultaneously or consecutively 

depending on the number of idle physicians and the number of patients within the batch. 

We examine this scenario in our study consisting of a public and a private pediatric 

dental clinic in which parents request an appointment for each of their children within the 

same time frame.  

 On average, the clinics studied for this research experience batch appointment 

requests at nearly 42%.  Although the private and public clinics experience similarities, 

they differ significantly in their no-show and/or cancellation rates. At the private dental 

clinic, less than two percent of their patients fail to meet their scheduled appointment; 

whereas nearly twenty percent of the public clinic exhibits the same behavior. The 

difference in no-show rates is not a surprise. Gupta and Denton [26]  present the 

challenges faced with private and public clinics, in which clinics that predominately serve 

patients with private insurance or Medicare experience low no-show rates and late 

cancellations. The authors also recognize that public clinics that serve under/uninsured 
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populations, Medicaid recipients, or patients with mental health issues experience a 

significant number of no-shows.   

 The scheduling coordinator at the public clinic acknowledges that patients tend to 

break their appointments due to a lack of transportation, inclement weather, and 

scheduling conflicts.  Furthermore, no-shows reduce provider productivity and clinic 

efficiency, increase health care costs, and limit the ability of a clinic to serve its client 

population by reducing its effective capacity [86].   Patients that fail to meet their 

scheduled appointment can negatively impact the patient’s care due to their inability to 

receive information on how to better manage their health needs [96]. The reason for the 

appointment, patient’s attendance history, appointment session (morning or afternoon), 

weather, insurance and age group are identified as the key factors in predicting whether a 

patient will meet their prescheduled appointment [58, 97].  Whether or not a patient is 

new, is also a contributing factor in determining if a patient will fail to meet their 

scheduled appointment [98]. It is believed that the single most predictor is based on 

whether or not a patient attended their previous appointment [99].   

 This research aims to understand no-show patterns in terms of the number of 

patients that are scheduled within the same family in both the public and private dental 

sectors. Although, the scheduling coordinators at the respective dental clinics observe the 

behavior of parents requesting batch appointments, they have not conducted a detailed 

analysis on the impact of these appointments on their scheduling paradigm.  The 

clinicians also have not considered if there is a relationship between no-show rates and 
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batch appointments. In addition, the impact of no-shows on the clinics if a family breaks 

their appointment is much higher as resources are idle during the appointment period.  

 Using multivariate statistics techniques, the impact of dependent demand arrivals 

on the dental scheduling system is explored. In addition, these statistical models are 

developed to understand the prevalence of batch appointment requests and how their 

prevalence differs based on clinic type.  An empirical study is presented to understand the 

difference between clinic types as it relates to both patient no-show rates and batch 

appointments. The paper aims to address whether or not there is a relationship among the 

appointment demand type (batched versus individual), patient behavior (break or meet 

scheduled appointment), and reason for the appointment.   

 The remainder of this paper is organized as follows.  Section 3.2 provides a brief 

overview of the clinics background. Section 3.3 distinguishes the difference between 

clinic types and a discussion of data.  Section 3.4 describes the multiway frequency 

analysis and logistic regression models.  Section 3.5 presents the results and analysis of 

the models. Section 3.6 summarizes and concludes the objectives of this research. 

 

3.2 Clinic Structure and Scheduling Paradigm 

 The public dental clinic aims to provide exams, treatment, cleanings and 

emergency care for children.  In addition, the clinic provides dental services to pregnant 

women who have a pink Medicaid card and to uninsured children through the “Prompt-

Pay” program. The Prompt-Pay system allows parents to pay at a discounted rate for 

several services at the time of the appointment.  The clinic has nine chairs of which four 
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are hygiene chairs, two are adult chairs, and three are operative chairs.  The staff includes 

two full-time dentists, two dental assistants, and a receptionist.  During the summer, a 

part-time hygienist is available Monday, Wednesday, and Friday. The clinic operates 

Monday through Friday from 8:00 AM to 4:10 PM.  The clinic’s daily capacity when 

there are two dentists and a hygienist available is twenty-six, but without a hygienist only 

twenty patients can be served.   

 The two primary appointment types can be categorized as recalls and operative.  

Recalls consist of general check-up and cleanings, whereas the operative appointments 

entail cavity fillings and tooth removal.  Each type varies in the length of appointment 

duration.  For an operative appointment, the appointment can range from forty to ninety 

minutes, while recall appointments range from ten to thirty minutes.  

 The clinic has a first available appointment scheduling policy of which two 

appointment slots per day are reserved for potential emergency requests. The clinic has 

experienced challenges with patient scheduling.  Typically, patients are doubled-booked 

to mitigate potential no-show and cancellation of patients and to increase the dentist 

productivity.  Whenever possible, the clinic sends out reminder calls to prevent potential 

no-shows and cancellations. The clinic does not provide special accommodations for 

families, but they do allow multiple children to be scheduled within the same time frame. 

The scheduling coordinator aims to schedule families simultaneously and/or 

consecutively whenever possible. However, the clinic has implemented a stricter policy 

for Prompt-Pay families in which families that have a history of breaking their 

appointment are not allowed to schedule multiple children. In addition, the clinic must 
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prevent potential language barriers for patients by providing an interpreter for non-

English speaking patients. On Wednesdays, the clinic has a Spanish interpreter available 

all day; whereas other patients that require an interpreter are scheduled on an as needed 

basis.   

 The private dental clinic provides preventative care and services, restorative 

dentistry, infant oral care, habit development and management, interceptive orthodontics, 

trauma treatment and management and emergency treatment for children throughout their 

community.  Similar to the public clinic, the private clinic is able to classify these 

services as recall and operative appointments.  Therefore, recall appointments consist of 

the preventative care, the infant oral care, and the habit development and management 

services; whereas, the restorative dentistry, interceptive orthodontics, and trauma 

treatment and management represent the operative procedures.  Unlike the public clinic, 

each appointment has duration of thirty minutes. However, the clinic does allow longer 

appointment durations as needed for special needs patients and operative appointments 

that require extended time.   

The staff includes one full-time dentist, three dental assistants, a part-time 

hygienist, an office manager and an administrative assistant.  The clinic’s single dentist 

typically utilizes two chairs to better serve their patients.  The clinic has a daily capacity 

of fifty patients.  As noted by the clinic coordinator, patients’ demographics consist of 

45% Caucasian, 40% African-American, 5% Asian, 5% Hispanic and 5% other 

ethnicities. In addition, patients have diverse income levels in which payment methods 
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are made by health maintenance organizations (HMO), Medicaid and out-of-pocket (no 

insurance) nearly 85%, 10% and 5% of the time, respectively.   

Currently, the clinic operates under a first available scheduling paradigm, where 

emergency appointments are worked into the schedule as needed.  The clinic allows 

request of two children per family to be scheduled within the same time frame.  In 

addition, the clinic aims to schedule younger children early in the day; whereas, older 

children are seen outside regular school hours whenever possible.  In regards to no-shows 

and cancellations, the clinic has a 24 hour notice for cancellation policy or else the patient 

must adhere to a $25 broken appointment fee. The clinic does not allow the use of 

overtime to accommodate the service of additional patients. The clinic hours of operation 

are as follows: Monday, Wednesday and Thursday from 7:45 AM to 3:30 PM, Tuesday 

from 8:00 AM to 4:30 PM and Friday from 8:00 AM to 12 Noon for administrative hours 

only. 

 

3.3 Analysis Method 

 First, this research compares and contrasts the differences in the public and 

private pediatric dental clinic. In addition, this work seeks to investigate the following: 

What is the throughput of each clinic type in terms of appointment demand type?  What 

is the primary reason that patients request an appointment for each demand type?  Does 

the day of the week contribute to whether or not an individual and/or batch meet their 

scheduled appointment? What is the probability of no-show for each clinic in terms of the 

number of appointments requested? Are patients that are scheduled within the batch truly 
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dependent amongst each other?  What is the financial impact of scheduling families for 

the respective clinics? Parents/caretakers?   

 Upon the approval from the Institutional Review Board (IRB), scheduled and 

broken appointments data are obtained from the dental clinics from April 1, 2009 to 

September 30, 2009.  Table 4 displays the number of entries and key fields for both clinic 

types.  With the broken appointments data, the patients are classified based on whether or 

not they failed to meet their scheduled appointment without notice or calls to cancel.  

Each clinic provided information regarding appointment date, the reason, and the 

telephone number of the parent(s) or caretaker.  The public dental clinic also provided 

data on the provider (since there are multiple dentists) and duration of the appointment. 

For the private clinic, at most only 2052 out of the 2090 entries are used for our data and 

statistical analysis.  This is a result of either scheduling inconsistencies or a single patient 

being scheduled for multiple appointments on the same day.  In the latter instances, an 

entry is deleted and noted in the reason for the appointment for the remaining entry (if 

there are multiple appointment slots being allocated to a single patient). It is worth noting 

that the appointment schedule does not indicate the time the actual appointment request is 

made; nor does the broken data identify when a patient calls to cancel.  

 In order to determine which patients belonged to a family group, there is a general 

assumption that on a given day that each patient with the same last name and/or 

telephone number belonged within the same appointment group. To validate this 

assumption, the appointment time is used to verify if patients are scheduled within a 

batch appointment request.  In addition, the scheduling coordinator for the respective is 
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contacted to confirm whether or not patients were indeed a family. For example, if two 

patients have the same last name but different telephone numbers and the appointments 

are not scheduled within a two hour time window, then we assumed the patients may not 

be a part of a batch appointment request.  These assumptions are essential in identifying 

how many individuals are scheduled within the same family, since batched patients 

cannot be determined solely by relying on just the patient’s last name. Especially, in the 

event that a family has several children each having different last names.   

 
 

 

Table 4. Scheduling data set 

 Scheduled Broken  

Clinic Type Entries Key Fields Entries Key Fields   

Public 1246 Appointment Date 280 Appointment Date   

  Patient's Name  Patient's Name   

  Provider  Provider   

  Reason  Reason   

  Duration  Duration   

  Phone Number  Phone Number   

    Status    

       

Private 2048 Appointment Date 42 Broken Date   

  Appointment Time  Patient's Name   

  Provider/Room  Provider   

  Reason  Reason   

  Patient's Name  Duration   

  Phone Number  Phone Number 
Status  
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 Figure 8 provides a sample schedule in which there are three families scheduled 

consecutively throughout the day.  Here, four children from the same family (i.e the 

Jeffersons) are scheduled consecutively within a two hour period.  In the event that these 

patients failed to meet their scheduled appointment, the clinic will suffer an immediate 

decrease in productivity.  The figure also suggests that the clinic aims to schedule 

families that are scheduled consecutively within the same room whenever possible.  

However, the Fox children are scheduled in separate rooms, but within an hour and a half 

time frame. Note *: to protect the patient’s identity fictitious names are used.   

 
 
 

 

Figure 8. Sample schedule of consecutive batch appointment scheduling at the 

                     private clinic* 

 
 
 

Friday, August 21, 2009

Op-1 Op-2 Op-3 Op-4 Op-5

:15 N. Taylor Recall
:30

:00 K. Ovens Recall Z. Marsh Recall S. Fox Recall A. Washington Oper
:30 K. Walker  Recall
:45 M. Cambell Oper
:00 M. Brown Recall A. Favors Recall
:30 C. Fox Recall C. James Oper C. Baker Emerg
:45 B. Favors Recall F. Jefferson Recall
:00 K. Couch Oper
:15 I. Jefferson Recall E. Griggs Emerg
:30 S. Mack Recall S. White Recall
:45 J. Jefferson Recall M. Robinson Oper
:00 J. King Recall I. Thomas Oper
:15 G. Jefferson Recall
:30 K. Camden Recall D. Johnson Recall G. Drake Oper
:45 J. Conner Emerg
:00 L. Jackson Recall A. Moore Recall A. Humphrey Oper

:15 B. Arthur Oper

Batch Size=2 Batch Size=4

11am

Time

7am

8am

9am

10am

12p m

Legend:
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 Figure 9 illustrates the scenario where several families are scheduled both 

consecutively and simultaneously.  The figure also demonstrates the importance of 

validating whether or not patients are truly scheduled within a batch. In addition, we 

observe cases in which a patient is scheduled twice within the same period (i.e. M. 

Bradley) and when a patient is scheduled for multiple appointments (i.e. H. Bishop).  

Although not illustrated within the figures, the public clinic exhibits similar scheduling 

complexities.   

   
 
 

 

Figure 9. Sample schedule of simultaneous and consecutive batch appointment  

                     scheduling at the private clinic* 

 

Tuesday, April 14, 2009

Op-1 Op-2 Op-3 Op-4 Op-5

:15

:30

:15 O. Graham Recall M. Glover Recall J. Thompson-Foy Oper
:30 K. Foy Oper
:45 N. Graham Recall

:00

:30 J. Mills Recall**
:45

:00 H. Bishop Recall M. Bradley Recall M. Bradley Recall
:15

:30 M. Jeferrson Recall S. Bishop Recall M. Spencer Oper
:45

:00 K. Dinkins Recall** J. Haynes Recall H. Bishop Oper
:15

:30 A. Primus Recall D. Payne Recall
:45

:00 C. Primus Recall
:15

:00 LUNCH

:30

:00 G. Jessamy Recall O. Jessamy Recall C. Mills Oper**
:30 M. Jessamy Recall A. Jessamy Recall 
:00 M. Ealey Recall E. Austin Recall
:30 T. Ealey Recall S. Francis DA 
:00 T. Simpson Recall H. Dinkins Recall** M. Shealy Recall S. Moffitt DA

:30

Multiple Appointments Batch Size=2 Batch Size=4 **Verify if family

11am

Time

7am

8am

9am

10am

12p m

1p m

2p m

3p m

4p m

Legend:
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 Table 5 displays the actual parameters that are used for the statistical model along 

with their respective levels and values.  Note: the asterisks indicate that the provider and 

duration data are available only for the public clinic.  The latter is based on the fact that 

the private clinic typically only allocates thirty minutes to appointment requests. In terms 

of the provider parameter, the focus of our analysis is directed towards the dentist value.   

 
 
 

Table 5. Variables 

Parameter Levels Values 

Day 
Patient Behavior (Status) 
Provider* 
Reason 
Duration (in minutes)* 
Demand Type (Batch) 

5 
2 
3 
3 
6 
2 

Monday, Tuesday, Wednesday, Thursday, Friday 
Scheduled or Broken  
Dentist, Hygienist, Ortho 
Recall, Operative, Emergency 
≤20, 30, 40, 50, 60, >60 
Yes or No (Batch or Individual) 

 
 
 

3.3.1 Data analysis 

3.3.1.1 Aggregated analysis 

 During the six months period, the total number of appointments for the private 

and public clinics is 2053 and 1526, respectively. Figures 10 and 11 display the actual 

number of appointments for each day over the observed period.  For Figure 10, the 

maximum, minimum, and average number of patients seen at the public clinic is 30, 1, 

and 12, respectively.  The clinic served batched patients at a maximum, minimum, and 

average of 15, 2, and 5.7, respectively.  The maximum number of batch requests occurred 

on the day in which the Spanish interpreter was available.  This suggests that public clinic 

aims to serve as many families as possible when additional resources are needed. Recall, 
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that the scheduling coordinator originally stated that the public clinic has a daily capacity 

of 26.  In order to achieve the higher observed maximum capacity value, the dentist 

available for that day served two patients per appointment block.  As evident in Figure 

11, the private clinic encountered a maximum of 40, a minimum of 2, and an average of 

20 appointments per day in regards to the total number of patients that are served.  This 

suggests that the private clinic never reaches its full capacity throughout our period of 

interest. In addition, the maximum, minimum, and average number of batched patients 

scheduled is 24, 2, and 9.9, respectively.  On average, the private clinic schedules 58% 

more families than those scheduled by the public clinic.  

 
 
 

 

Figure 10. Individual and batch appointments for public clinic 
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Figure 11. Individual and batch appointments

 
  
 
 
 Figure 12 illustrates the relative frequency of each variable, which is calculated as 

a function of the clinic type. 

to the public clinic donating its facility to the orthodontics program and the private cl
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Individual and batch appointments for private 
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Figure 12. Clinical comparison for day (a), patient behavior (b), reason (c), and  

                       demand type (d) 

 
 
 
 
 Figure 12(c) shows that both clinics primarily schedule patients for recall 

appointments.  However, the number of operative and emergency appointments is 

significantly higher at the public clinic.  This implies that the private clinic’s patients 

often require preventative care; whereas the public clinic’s patients require restorative 

treatment and care.  In addition, the scheduling coordinator suggests that the large 

number of emergency appointments is due to the dentist not fully meeting all of the 

patient’s needs at the time of their original appointment.  

 Furthermore, both clinics encountered batched appointments at 46% for private 

and 38% for public as seen in Figure 12(d). However, the largest batch size is four for 
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private and six for public.  The most frequently requested batch size for both clinics is 

two at approximately 24% for the public and 38% for the private.  This coincides with the 

fact that families with two children are the highest occurring family size in the United 

States. This suggests that the scheduling coordinators for each of the respective clinics 

consider the allocation of appointments for at least two patients when determining 

appointment times. 

 
 
 

 

Figure 13. Public clinic additional relative frequencies for provider (a) and  

                           duration (b) 

 
 
 
 
 Figure 13 displays the additional parameters obtained from the public clinic. In 

Figure 13(a), the dentist provides care to the patients about 96% of the time.  As 

illustrated in Figure 13(b), nearly 80% of the appointments are between forty to sixty 

minutes. Some important facts about the public clinic can explain the variations in the 

relative frequency across the respective parameters.  The clinic is faced with the 
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the service on a given day, since there is not a full-time hygienist.   Also, the clinic has 

been reduced from two dentists to a single dentist in the last four months of the data 

period.  During this period, we observe that average number of patients scheduled has 

been reduced slightly from 12.7 with two dentists to 12.2 with only a single dentist.  

However within this same period, the average number of patients scheduled within a 

family has slightly increased from 5.6 with two dentists to 5.7 with only a single dentist.  

Thus, the clinic remained productive in spite of the reduction in personnel.    

3.3.1.2 Detailed analysis 

 To further understand the prevalence of batch appointments at each clinic, we 

illustrate the relative frequency of batch and individual appointments for both the day of 

the week and patient’s behavior in Figure 14.  For the public clinic, Figure 14(a) show 

that patients scheduled with a batch or as an individual meet their prescheduled 

appointment the most on Tuesdays and Wednesdays, respectively. As with Figure 14(b), 

nearly 70% of the appointments are broken from Monday through Wednesday.  Of these 

broken appointments, batched appointments are the highest on Wednesdays at 25%.  In 

addition, the highest percentage of batch requests in which patients meet their scheduled 

appointments is on Tuesdays at 26%.  As with the private clinic, Figure 14(c) show that 

patients meet their scheduled appointment scheduled the most on Tuesdays for batched 

patients and on Mondays for individual.  In Figure 14(d), no appointments are broken on 

Fridays. In fact, the highest observed broken appointments are on Mondays for batch 

requests and Thursdays for individual requests.   
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 Although not illustrated by the figure, the impact of the batch size on the clinics’ 

appointments is also examined.  At the public clinic, only the families requiring three or 

less appointments are booked on Fridays.  In addition, families with five or more children 

are scheduled on Tuesdays through Thursdays.  Therefore, it is likely that these families 

required the use of an interpreter.  For the private clinic, family sizes of two and three are 

the highest on Tuesdays.  Mondays experienced the highest number of individual 

appointments.  Other than Fridays, Wednesdays observed the least amount of batch and 

individual appointments. Based on these results, there are no general assumptions that 

can be made in terms of the scheduling of individuals versus batched patients at either 

clinics.  This also suggests that parents/caregivers request batch appointments on an as 

needed basis. 

 
 
 

 

Figure 14. Relative frequency of scheduled and broken appointments for each  

                       clinic type 
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3.3.2 Batch size and probability of no-show 

3.3.2.1 Probability of no-show 

 Table 6 provides the probability of no-show for the respective appointment 

request size values for the public and private clinic.  Once the number of patients per 

family are determined, the probability of no-show values are calculated based on the data 

provided from each clinic.  The no-show rate is derived from the frequency and the total 

number of patients that fail to meet their scheduled appointment for the respective request 

size values. These values represent the probability of the entire batch not meeting their 

scheduled appointment.  As a reminder, each family size is identified by their last names 

and/or telephone number on a given day.  

 From the table, the probability of no-show is higher for both clinics when two 

children are scheduled within a batch.  Also, at the higher observed batch size values for 

the respective clinics, there is a guarantee that every patient within the batch will meet 

their scheduled appointment. It is worth noting that the private clinic does not typically 

allow batch sizes greater than two. However, there are special situations in which a larger 

batch size will be accepted, i.e. family history.   Based on data from both clinics, there are 

only three occurrences out of the 693 batch appointment requests that do not result in 

patients being dependent in arrival. Therefore, each patient within the batch request will 

be dependent upon the others.  Thus, if one patient fails to meet their scheduled 

appointment, then the entire batch will fail to meet their scheduled appointment.   
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Table 6. Frequency and probability of no-show for given batch size values 

  Public   Private  

Batch Size Frequency P(no-show) P(show) Frequency P(no-show) P(show) 

1 941 0.1870 0.8130 1100 0.0082 0.9918 
2 185 0.2081 0.7919 388 0.0387 0.9613 
3 43 0.1163 0.8837 52 0.0192 0.9808 
4 16 0.1875 0.8125 5 0.0000 1.0000 
5 2 0.0000 1.0000 0 - - 

6 2 0.0000 1.0000 0 - - 

 
 
 
 
3.3.2.2 Financial impact of demand type 

 The final analysis is to determine the impact of the appointment demand type on 

the clinic’s total profit and the cost of inconvenience for parents being out of work.  

Similar to Moore at el. [98], the loss of revenue due to patients failing to meet their 

scheduled appointment is estimated. Table 7 summarizes the total profit for each clinic 

type and appointment demand type. The revenue (R) generated for serving a patient is the 

same for each clinic type at $135 per patient.  Equation 3.1 calculates the total profit over 

the data period (T) as a function of both the loss of revenue due to broken appointments 

(N) and the revenue generated from serving patients for the respective demand types (S).  

The total profit for the batch appointments are observed from the smallest to the largest 

possible request size (B) for each of the respective clinics.  For the individual demand 

type, the equation is further simplified to accommodate only the request size of one.   

∑ ∑
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 From the table, for the private clinic, the loss of revenue due to batch 

appointments (79%) is significantly higher than those of individual appointment requests 

(21%).  As with the public clinic, individuals account for roughly 63% of the total loss of 

revenue yielded as a result of broken appointments. In addition, the private clinic 

generated approximately 45% of their total profit from batch appointment requests; 

whereas, the public clinic experienced nearly 39%.  The patients that require a single 

appointment (for public) and the patients that are booked as a group (for private) yielded 

the highest ratio of loss of revenue over generated revenue.  These results coincide with 

those expressed in Figure 14 in regards to the number of patients that fail to meet their 

scheduled appointment based on both clinic type and demand type. 

 
 
 

Table 7. Impact of demand type on profit 

Clinic Type Demand Type Lost Revenue Revenue Total Profit 

Public Batch  $14,040 $64,935 $50,895 

 Individual $23,760 $103,275 $79,515 

 Overall $37,800 $168,210 $130,410 

Private Batch  $4,455 $124,065 $119,610 

 Individual $1,215 $147,285 $146,070 

 Overall $5,670 $271,350 $265,680 

 

 

 

 
 In order to quantify the cost of inconvenience to parents in scheduling multiple 

children, both the loss of income due to absence from work and the amount of time 

needed to serve their appointment request are considered.  Table 8 displays the effects of 

parents having to schedule multiple children given that the patients are served 
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simultaneously, both simultaneously and consecutively, consecutively with a gap 

(waiting time), and consecutively without a gap.  The actual cost of inconvenience is 

based on the hourly income of the households in the United States, which is derived from 

the Census 2008 data on the median income for families. Note; the scheduling pattern is 

based on the sample schedules previously shown in Figures 8 and 9.   There is a 

significant difference for patients that are scheduled consecutively with a gap.  For 

example, the parents with the longer waiting time between their children being served 

experiences a 40% increase in the cost of inconvenience given each request size is two.  

The longer the waiting time, the more likely the parent will leave and return for the latter 

appointment.  However, it is essential to understand not only the time out of work factor, 

but also the leaving-and-returning factor.  Thus, the clinics should aim to balance both the 

impact of demand type on their profit and the inconvenience of parents having to be out 

of work. 

 
 
 

Table 8. Cost of inconvenience to parents 

Schedule Pattern Batch Size Duration Cost of Inconvenience 

Simultaneously 2 0:30                  $12.54 
Simultaneously & Consecutively 4 1:00                  $25.08 
Consecutively with gap 2 2:00                  $50.17 
  2 5:00                $125.42 
Consecutively without gap 2 1:00                  $25.08 
  4 2:00                  $50.17 
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3.4 Statistical Method 

 To determine if there is relationship among the parameters listed in Table 9, two 

multivariate statistical models are generated.  Given the characteristics of each parameter, 

we determined that multiway frequency analysis and logistic regression will best fit our 

data.  These models are utilized when there are multiple discrete independent variables 

and a single dependent (if any) variable.  The multiway frequency analysis is used to 

identify the degree of relationship among variables [100].   

 
 
 

Table 9. Frequency for the public and private pediatric dental clinics 

    Public Clinic Private Clinic 

  Reason   Reason   

Demand Type Patient Behavior Recall Operative 

Total 
Frequency Recall Operative 

Total 
Frequency 

Batch  Scheduled 391 86 477 822 66 888 

  Broken 83 17 100 33 0 33 

Batch Total 474 103 577 855 66 921 

Individual Scheduled 311 306 617 633 275 908 

  Broken 98 54 152 5 2 7 

Individual Total 409 360 769 638 277 915 

Total Frequency 883 463 1346 1493 343 1836 

 
 
 
 
 The goal of this work is to determine if there is a relationship among appointment 

demand type, patient behavior, and reason for the appointment. The appointment demand 

type is used to identify whether or not a patient is within a batch; whereas patient 

behavior is based on whether or not a patient met their scheduled appointment. The null 

hypothesis for the full effect model states there is no relationship among appointment 
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demand type, patient behavior and reason for appointment. The respective frequency 

values for each possible case for the appointment demand type, patient behavior, and 

reason variables are provided in Table 9. The model is used to examine the association of 

each variable from the one-way, two-way and higher order frequency table. The model is 

tested using the Chi-squared (χ2) test of significance.  

 In order to predict group membership, logistic regression enables one to create a 

linear combination of the log of the odds of being in one group. This model is constructed 

to determine which variables contribute to the probability of patients meeting their 

scheduled appointment. Thus, this research addresses the following: Can the patient 

behavior be determined based on the day, provider*, reason, duration* and appointment 

demand type?  A statistical stepwise regression approach is used, since this research is 

data-driven. The model is tested using the Chi-squared (χ2) test of significance with an 

alpha of 0.05. [100]    

 

 

3.5 Results 

3.5.1 Multiway frequency analysis 

 For the public pediatric dental clinic, the associations of characteristics are 

identified for a sample size of 1346 and a response level of eight.  Tables 10 and 11 

display the results of the analysis of maximum likelihood estimates for the public clinic 

for the full, second, and first order effects.  Using the maximum likelihood analysis of 

variance for the full effect, there is no significant association among appointment demand 

type (batch or individual), patient behavior (scheduled or broken) and reason for 
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appointment.  This implies that given the fact that a patient is scheduled within a batch 

and the reason for the appointment is known, the scheduling coordinator will be unable to 

determine whether or not the patient fails to meet their scheduled appointment.  

Therefore, we fail to reject our null hypothesis.  However, the second order effect 

provides the dominant interaction.  With the second order, there is a relationship between 

appointment demand type and the reason for the appointment.  Requests for operative 

appointments are made by individuals nearly 78%, whereas 54% of recall appointments 

are made by batched patients. Based on the first order effect, appointment demand type, 

patient behavior and reason for appointment are proven to be statistically significant. 

With respect to the reason for appointment, operative appointments account for 34%.  

Broken appointments due to cancellation or not showing up are slightly high at 19%.  In 

relation to appointment demand type, those patients that are booked as individuals 

represent 57% of requested appointments.   

 
 
 

Table 10. Higher order effects analysis of maximum likelihood estimates for 

                 public clinic 

Parameter Levels Estimate Standard 

Error 

Chi- 

Square 

Pr > ChiSq 

type*behavior*reason individual*broken*operative -0.0636 0.0433 2.15 0.1426 

type*behavior individual*broken 0.0352 0.0433 0.66 0.4168 

type*reason individual*operative 0.3110 0.0433 51.46 <.0001 

behavior*reason broken*operative -0.0814 0.0433 3.52 0.0605 
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Table 11. First order effects analysis of maximum likelihood estimates for  

                 public clinic 

Parameter Levels Estimate Standard 

Error 

Chi- 

Square 

Pr > ChiSq 

type individual 0.2953 0.0433 46.40 <.0001 

behavior broken -0.7576 0.0433 305.40 <.0001 

reason operative -0.4640 0.0433 114.58 <.0001 

  
 
 
 
 Table 12 displays the results of the higher order effects analysis of maximum 

likelihood estimates for the private clinic. Similarly, the associations of characteristics are 

identified for a sample size of 1836 and a response level of seven for the private pediatric 

dental clinic.  Again, there is no significant association among appointment demand type, 

patient behavior and reason for appointment based on the maximum likelihood analysis 

of variance for the full effect order.  Therefore, we fail to reject our null hypothesis for 

the full effect model.  The second order effect provides the dominant interaction, in 

which there is a relationship between appointment demand type and the reason for the 

appointment. In fact, operative appointments for individuals account for 81%; whereas, 

53% of recall appointments are for patients that are booked as a batch.  In addition, there 

is a relationship between appointment demand type and patient behavior. As a result, we 

determined that individual patients rarely (0.8%) break their scheduled appointments.  In 

fact, patients that are scheduled within a batch account for nearly 83% of all broken 

appointments.  

Table 13 displays the results of the analysis of maximum likelihood estimates for 

the first order effects. With the first order effect, patient behavior and reason for 
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appointment are significant, since the test statistic is less than the significance value.  

Operative and recall appointments account for 19% and 81%, respectively.  Unlike with 

the public clinic, broken appointments due to cancellation or not showing up are fairly 

low at 2%.   

 
 

 

Table 12. Higher order effects analysis of maximum likelihood estimates for  

                 private clinic 

Parameter Levels Estimate Standard 

Error 

Chi- 

Square 

Pr > ChiSq 

type*behavior*reason individual*broken*operative . . . . 

type*behavior individual*broken -0.4064 0.1207 11.34 0.0008 

type*reason individual*operative 0.4221 0.0367 132.07 <.0001 

behavior*reason broken*operative -0.0206 0.2096 0.01 0.9215 

 
 
 
 

Table 13. First order effects analysis of maximum likelihood estimates for 

                 private clinic 

Parameter Levels Estimate Standard 

Error 

Chi- 

Square 

Pr > ChiSq 

type individual -0.1150 0.1248 0.85 0.3567 

behavior broken -2.0347 0.1825 124.30 <.0001 

reason operative -0.8596 0.2113 16.55 <.0001 

 

 

3.5.2 Logistic regression 

 For the public pediatric dental clinic, patient behavior is assigned as the 

dependent variable; whereas day, reason, provider, duration, appointment demand type, 

and batch size are set as the independent variables. The number of observations read and 
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used is 1526 for the clinic. The number of appointments that are broken due to 

cancellation and not showing up are 49 and 231, respectively. The other 1246 

observations represent those patients that met their scheduled appointment. The model is 

constructed to determine the probability of having a broken appointment.  Using the 

stepwise selection, the logistic regression equation is simplified to the important 

parameters that contribute to the model.  From table 14, the day, provider, reason, 

duration and batch size variables contribute to the probability of a patient not meeting 

their scheduled appointment.  This excludes only the appointment demand type variable 

as a contributing factor, since the percentage of patients requiring a batch appointment is 

approximately 40%.     

 Using the estimates from the table, the following logistic regression equation is 

generated.   
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(3.2) 

 

By solving equation 3.2 with respect to p, the probability of no-show can be computed.  

For example, if a parent requests three recall appointments for their children with a 

dentist that lasts fifty minutes on a Monday, the probability of no-show is 0.17.  In 

addition, if the same appointment request is made for a single patient or any other batch 

size value, then the probability of no-show is 0.28. The probability of no-show is slightly 

lower at 0.17, when there is a request for three recall appointments with the dentists that 

lasts sixty minutes on a Monday. Thus, the longer duration, the less likely the patient will 

fail to meet their scheduled appointment. The model also suggests that if the appointment 
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is for any other reason for a family of three, then the probability of no-show is reduced to 

0.13.  Moreover, the probability of no-show for a single patient or any other batch size 

can be decreased significantly to 0.13, if the patient(s) is scheduled for a recall 

appointment that is less than fifty minutes on any day other than Mondays.  Under similar 

conditions, the probability of no-show will be further reduced if the request is for an 

operative or emergency appointment at 0.09. 

 
 
 

Table 14. Analysis of maximum likelihood estimates for public clinic 

Parameter Levels  DF Estimate Standard 

Error 

Wald 

Chi-Square 

Pr > ChiSq 

 Intercept 3 1 0.1081 0.4831 0.0500 0.8230 

 Intercept 2 1 2.2516 0.5004 20.2479 <.0001 

Day Monday (m)  1 0.3229 0.1611 4.0158 0.0451 

Provider Dentist (d)  1 -4.4670 0.5130 75.8323 <.0001 

 Hygienist (h)  1 -3.1178 0.5968 27.2961 <.0001 

Reason Recall (r)  1 0.3342 0.1461 5.2309 0.0222 

Duration Equal50 (eq50)  1 0.6257 0.1577 15.7401 <.0001 

 Equal60 (eq60)  1 0.6215 0.1895 10.7542 0.0010 

Batch Size Size3 (s3)  1 -0.6329 0.2902 4.7574 0.0292 

 
 
 
 
 For the private pediatric dental clinic, the number of observations read and used is 

2052 when patient behavior is assigned as the dependent variable. Here, the independent 

variables are the day, reason, appointment demand type, and batch size parameters. The 

number of appointments that are broken due to cancellation and/or not showing up is 42. 

The other 2010 observations represent those patients that met their scheduled 
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appointment. Based on the results presented in Table 15, only the batch size variable 

contributes to the probability of a patient not meeting their scheduled appointment.  

Again, this excludes the day, reason for the appointment, and appointment demand type 

variables.  

 
 
 

Table 15. Analysis of maximum likelihood estimates for private clinic 

Parameter Level DF Estimate Standard 

Error 

Wald 

Chi-Square 

Pr > ChiSq 

 Intercept 1 -4.6571 0.2900 257.8187 <.0001 

Batch Size Size2 (s2) 1 1.4436 0.3447 17.5422 <.0001 

 
 
 

The following logistic regression equation is generated based on the estimates 

provided in the table.   

24436.16571.4
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Given that a parent requests two appointments for their children at the private clinic, the 

probability that the family will not meet their scheduled appointment is 0.04.  However, 

if a parent only request an appointment for one child, the probability that the patient will 

fail to meet their scheduled appointment is 0.01.  Therefore, as expected the probability 

of no-show is higher for those appointments that are made within a batch request size of 

two. 

 For both clinic types, the logistic regression model that the batch request size 

contributes to the probability of no-show; whereas, the actual appointment demand type 
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does not.  However, the multiway frequency analysis suggests that there is a relationship 

between appointment demand type and patient behavior (i.e. no-show) for the private 

clinic.  This implies that on a disaggregated level knowing the patient’s demand type is 

not as sufficient as knowing the number of people scheduled within an appointment 

request.   Although only the batch request size proves to be significant for the private 

clinic, we recognize that more information is available from the public clinic.  With this 

additional information, the regression model becomes more complex; which in turn, leads 

to a better predictor in whether or not a patient will not meet their scheduled appointment.   

In addition, the probability of no-show is significantly smaller for the private 

versus the public clinic which yields a smaller model for the private clinic. The smaller 

probability of no-show for the private clinic also generated a weaker model for the 

multiway frequency analysis model.  In fact, one of the limitations of the multiway 

frequency analysis model is that the expected cell frequencies for all of the two-way 

associations should be greater than one and more than 20% are less than five [100].   To 

combat this issue, the emergency request level is eliminated as a reason for the 

appointment; in turn, a slightly better model for both clinic types is generated.   

 

3.6 Conclusion 

 The intent of this chapter was to analyze the prevalence of batch appointments 

and no-shows at both a public and private pediatric dental clinic using multivariate 

statistics.  First, the clinics studied for this research experience batch appointment 

requests at nearly 42%. In fact, the data from both clinics supported the initial claim that 
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each patient within the batch request will be dependent upon the others.  Also, the overall 

patients at the private clinic had a significantly lower no-show rate at 2%; whereas the 

public experienced a no-show rate of 18%. Thus, this research demonstrated, through the 

empirical analysis, the sentiment of Gupta and Denton [26] in that there is a significant 

difference in no-show rates for those clinics that predominately serve Medicaid patients 

and those who serve patients with private insurance. Next, this work identified (for both 

clinics) if there is a relationship among the appointment demand type, patient behavior, 

and reason for the appointment.  

 As a result of the full effect model developed using multiway frequency analysis, 

there is no significant relationship among the appointment demand type, patient behavior, 

and reason for the appointment variables.  Based on the second order effect, each clinic 

experienced that operative requests are significantly higher for individual rather than 

batch appointments. In addition, similar to the literature; private clinics have significantly 

lower probability of no-show rates.  This is believed to be a result of the economic status 

of patients, i.e. Medicaid versus private insurers.  

 Based on the logistic regression model, equations were generated to determine 

which variables contribute to the probability of patients meeting their scheduled 

appointment. For the public clinic, the day, provider, reason, duration and batch size 

variables contribute to the probability of a patient meeting their scheduled appointment.  

In addition, only the batch size variable contributes to the probability of no-show for the 

private clinic. Therefore, it is not necessarily if the patient is scheduled within in the 

batch, but how many patients that are scheduled within the family or group.  
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 Finally, the results of both models will assist the scheduling coordinators at each 

clinic in determining which batch appointment requests to accept given the reason for the 

appointment and probability of no-show.  Based on the clinical data, the probability of 

no-show is higher for those patients requesting batch appointments versus individual 

requests.  As a result, this research suggests that clinics understand the history of each 

family not meeting their scheduled appointment prior to accepting their request for 

multiple appointments.  This will help the clinics manage the risk of scheduling batch 

appointments.  Furthermore, the public clinic should consider only allowing no more than 

three children per family to be scheduled within the same time frame to mitigate any risk 

associated with unutilized appointment slots.   In the future, the impact of the patient’s 

demographics on no-show rates and batch appointment requests should be explored.   The 

demographics can consist of the patient’s ethnicity, income level, insurance provider, 

family size, single parent or both parents, etc.   By adding these demographic indicators, 

a further investigation of the difference between clinic types can be determined.   
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CHAPTER 4 

Influence of Batch Appointments in Clinic Scheduling:  

The Infinite-Horizon Case 

 

4.1 Introduction 

With surging healthcare cost (approximately $2.5 trillion in 2009 or 17.6% of the 

nation’s Gross Domestic Product) [1], the United States is currently identifying methods 

to reform the existing healthcare system.  In order to combat rising cost, healthcare 

administrators must determine ways to manage the daily supply of resources with 

growing demand. One of the most common approaches to handling this problem is to use 

patient scheduling to balance supply and demand.  In general, appointment systems are 

designed to minimize waiting times for patients while maximizing the utilization of 

physicians and other resources [79-81].   

Typically, research in patient scheduling considers single provider models and 

assumes patient appointment requests and arrivals are independent amongst each other.  

However, it is possible for appointment requests to be dependent in the sense that the 

interactions of one patient are dependent on at least one other patient, especially when 

requests are for members in the same family.  This is particularly true of clinics whose 

primary patient demographic consists of children.  This behavior is observed at a local 

Medicaid pediatric dental clinic, where parents often request multiple appointments for 

their children (i.e. batch appointment request). These requests are typically for 

appointment slots that accommodate simultaneous or consecutive scheduling patterns.  

While many of the requests were for two children, there were instances of scheduling 
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three or more children either consecutively or sequentially [101]. Since there is some 

evidence that appointment requests and scheduling can be dependent, it also suggests that 

no-show rates between patients may also be dependent.  In the case of pediatric clinic 

scheduling, the entire family could break their appointment.   In a clinic offering public 

health services for children, such factors as lack of transportation, inclement weather, and 

scheduling conflicts could account for this behavior.  The reader is referred to Abdus-

Salaam and Davis [101] for a detailed case study summarizing the influences of 

dependent demand arrivals.   

Given the risk associated with the acceptance and scheduling of families, 

healthcare providers must find ways to balance the needs of the patients in a manner that 

does not reduce the physicians’ utilization and the clinic’s profitability.  Therefore, we 

explore the use of open-access scheduling systems. Open-access, also referred to as 

advanced access or same-day appointment scheduling, transforms traditional scheduling 

systems into prescheduled and same-day appointments.  This system shifts to a patient-

centered model which aims to provide timely access to care and improve continuity of 

care, while allowing patients to see their primary physician within the same-day of the 

request for an appointment [6, 8]. As a result, patients are able to be seen at their leisure, 

in turn, improving healthcare delivery quality while reducing healthcare cost.  However, 

there is a fundamental challenge in identifying methods to manage capacity, while 

meeting daily patient demand [9].  Therefore, advanced access scheduling limits the 

amount of prescheduled appointments for a specific time frame.  There is also an 

associated risk in managing no-shows with prescheduled appointment slots and 
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undermining the capability of open-access appointments with too few open appointments 

available [6]. Much of the open-access literature seeks to understand the framework and 

objectives of open-access scheduling [10, 22-23, 25, 27-28, 30, 32], while others discuss 

the process of implementing the scheduling system in healthcare clinics [34-43, 102].  

Additional literature focuses on the outcomes of implementing the scheduling system in a 

variety of healthcare clinics with financial, provider satisfaction or statistical analysis [9, 

44-55]. Although little work has been done on the quantitative aspect, several papers 

attempt to provide logical reasoning to support the concept of open-access scheduling 

with a variety of mathematical models [6, 15, 57-60, 103]. The objective of this research 

is to present a quantitative method that identifies scheduling rules that are ideal for the 

acceptance of batch appointments under an open-access scheduling system. 

Motivated by the work of [101], a theoretical model is presented to study the 

impact of dependent demand arrivals on an open-access scheduling system.  This study is 

framed around the following research questions: How is the open-access scheduling 

paradigm, in terms of the percentage of the appointment slots that are allocated to same-

day request, affected by the batch appointment requests? How is the optimal scheduling 

policy affected by varying degrees of the percentage of prescheduled patients, patient 

behavior, and appointment request size? How does overbooking affect the performance 

of the clinic? Given the influx of demand at a single point in time (i.e. batch request), this 

work also examines if the use of overbooking increases the acceptance of batch 

appointments. To address these questions, a stationary, discrete time, infinite horizon 

Markov decision process is presented to model the dynamics of the clinic in the long-run.  
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The infinite horizon model allows us to identify which scheduling rules should be 

implemented for each possible state, regardless of the timing of appointment request.  

Therefore, the underlying assumption is that the decision is stationary for a specific 

number of patients that are prescheduled and the number of patients that are overbooked. 

The behavior of the system is quantified under several performance measures including 

the total expected number of patients that are served, the utilization of physicians, and the 

expected number of patients assigned to the backlog (i.e. overbooked). The backlog 

represents the queue of patients that are waiting in the system to be seen by the first 

available physician.  The results indicate that the model tends to always accept a request 

for batch appointments when the probability of no-show is greater than or equal to 0.5.  

Also, with the acceptance of batch requests, the total expected number of patients that are 

served decreases as the probability of no-show increases.  In addition, the expected 

number of patients that are waiting in the backlog decreases as the probability of no-show 

increases.  

The remainder of this chapter is composed of five sections.  Section 4.2 examines 

the literature of appointment scheduling in regards to overbooking and open-access 

scheduling. Section 4.3 presents the assumptions used to construct the discrete-time, 

discrete-state, stationary infinite-horizon Markov decision process.  Section 4.4 explores 

the experimental design used to examine the proposed model.  Section 4.5 presents the 

results and analysis of the model. Section 4.6 summarizes and concludes the objectives of 

this research. 
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4.2 Literature Review  

Appointment systems are designed to minimize waiting times for patients while 

maximizing the utilization of physicians and other resources.  Cayirli and Veral [82] 

provide an extensive literature review that describes the fundamental factors associated 

with appointment systems which entails the following: number of services available, 

number of physicians, number of appointments per clinic session, the arrival process of 

patients in relation to punctuality, no-shows, walk-ins, service times, lateness and 

interruption level of doctors, and queue discipline.  The authors also present the measures 

of performance in regards to cost-based, time-based, congestion, fairness, and other 

appropriate measures. More recently, Gupta and Denton [26] present the challenges and 

opportunities faced with appointment scheduling.  With respect to efficiency and timely 

access to health services, the authors suggest that appointment systems be designed to 

balance both the needs of the service provider and the patients.  Providers may require 

specific time slots to be available in the clinic and restrictions on how available slots may 

be filled. In contrast, patients may have preference in both physician and day/time of 

week.  In addition, Kaandorp and Koole [84] further emphasize the needs of  these 

stakeholders in which physicians prefer to be more productive (less idle time) and 

patients tend to want shorter waiting time.  By using patient classification in the design of 

appointment systems, Cayirli et al. [82] aim to improve patients’ waiting time, 

physicians’ idle time and overtime in the absence of making trade-offs between the 

patient and provider.   
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 Based on these characteristics, the open-access scheduling system is designed to 

better match patients with their providers as patients request same-day appointments. 

Several studies have examined the transition from traditional scheduling to open-access 

systems that aim to improve efficiency of primary care clinics, reduce no-show rates, 

manage walk-ins, reduce waiting times for scheduling appointments, and restructure 

types of appointments and length of appointments [9, 44-55]. Under this paradigm, same-

day patients are served within the normal clinical hours.  However, healthcare providers 

are often required to work overtime in the event that all patients are not served within 

their specified appointment slot. Thus, it is critical that clinics allocate the appropriate 

percentage of prescheduled and available appointment slots. However, there is still an 

associated risk in managing no-shows with prescheduled appointment slots and ensuring 

that too few appointments are available for same-day request.  It is worth noting that 

under the open-access scheduling paradigm the actual percentage of prescheduled and 

open appointments will vary from clinic to clinic.   

 Here, this research introduces an approach that is not necessarily based on the 

patient-physician matchup, but patient-multi-slot preference.  This work also examines 

how overbooking may be used to help mitigate some of the risk that is involved with the 

acceptance of dependent demand arrivals.  As noted by McGill and Van Ryzin [18], 

overbooking is the oldest and most studied revenue management strategy within the 

airline industry as a response to controlling  the probability of denied boardings.  

Overbooking is also the most utilized approach of revenue management for patient 

scheduling in traditional appointment models.  Within both industries, there is a general 
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assumption that demand exceeds available supply.  With respect to healthcare, this 

translates to how patient demand exceeds the number of physicians available at a single 

moment.  With overbooking models, the objective is to determine the optimal booking 

limit for each time period that maximizes expected revenues, as one considers the 

probability of cancellations and penalties for exceeding capacity [18].  Therefore, we 

explore how overbooking has been used to both improve clinic efficiency and to mitigate 

the loss of patients due to no-shows and/or cancellations.   

 Kim and Giachetti [75] develop a stochastic mathematical overbooking model 

(SMOM) to determine the optimal number of patient appointments to accept to maximize 

expected total profits for diverse healthcare environments without incurring overtime 

cost.    SMOM considers the probability distribution of no-shows and walk-ins to obtain 

an optimal solution for the number of patient appointments to be scheduled. The authors 

recognize that implementation of a naïve statistical overbooking approach (NSOA), 

which is based solely on the difference between the average number of no-shows and the 

number of walk-ins, is easier than SMOM.  However, SMOM is proven to be a better and 

more efficient model, since it requires tracking of patient no-shows, cancellation, and 

walk-in rates. Their model is limited, since it did not provide advice on how to allocate 

the extra appointments in the schedule in order to reduce patients waiting times.   

LaGanga and Lawrence [86] demonstrate how the scheduling complexity increases when 

appointment overbooking is used to compensate for no-shows. The paper presents a 

utility model that evaluates appointment overbooking in terms of trade-offs between the 

benefits of serving additional patients and the costs of increased patient wait time and 
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provider overtime. The authors use simulation and regression analysis to show that 

appointment overbooking in healthcare clinics can have a significantly positive net 

impact on clinic performance by increasing patient access and improving clinic 

productivity. This, in turn, translates into reduced clinic costs and improved patient 

satisfaction and outcomes. In addition, the paper identifies situations in which 

overbooking is most likely to be beneficial and, conversely, in which it is likely to be 

counterproductive.   

 LaGanga and Lawrence [90] extend their earlier work to develop a simulation 

model to mitigate the loss of productivity of physicians due to patient no-shows by 

testing the performance of scheduling rules for overbooked appointments. Again using 

simulation, the authors’ primary objective is to analyze the effects of the placement of the 

extra appointments in an overbooked appointment schedule via double-booking, block 

scheduling, and wave scheduling policies. They suggest that the challenge with 

overbooking is determining the appropriate allocation of the extra appointments.  The 

simplest overbooking schedule compresses all inter appointment times by the same show 

rate factor, which is proven to perform well for the various show rates.  To avoid the need 

to have “catch-up time” or large accumulations of patient wait time, the authors did not 

recommend scheduling policies with very tight appointment slots at any show rate. The 

authors determined that patient wait time can be avoided by scheduling one extra 

appointment at the end of the clinic session when the show rate is 0.9. If less overtime is 

desired, wave scheduling avoids a large accumulation of patient wait time anywhere in 
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schedule. The authors also suggest that clinics should overbook one extra patient per 

provider per clinic session. 

 Overbooking models have also experienced challenges in employee morale and 

patient satisfaction. Kros et al [104] examine the effects of employee burnout as a 

response to overbooking patients. The authors suggest that the cost of over-scheduling is 

directly impacted by the burnout cost imposed on service providers.  These healthcare 

providers are expected to both see more patients and extend their workday with the use of 

overtime.  Burnout also occurs from shorter durations when patients are worked into the 

schedule. Zeng et al. [92] use a game theoretical approach to model the interactions 

between healthcare clinics and their patients. Based on the patient’s history of no-show, 

the authors propose a selective dynamic overbooking strategy that is used to determine if 

the clinic should allow the patient to be overbooked. In addition, the authors implement 

the naïve statistical overbooking policy that is introduced by Kim and Giachetti [75].  As 

a result, the authors determined that patients should only be overbooked if the clinics are 

capable of classifying patients in a manner that can be utilized to segment the patients 

into different classes based on whether or not overbooking is implementable.  More 

importantly, the authors demonstrate that based on the patient’s characteristics 

overbooking may or may not improve clinic’s profit. With overbooking models, it has 

been noted that overbooking tends to penalize patients that arrive for their scheduled 

appointments by increasing the amount of time they spend waiting to see their physician 

[92-93].  Realizing this dilemma, schedulers must identify other approaches that will not 

negatively impact patient satisfaction. 
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  Given both the benefits and challenges of overbooking, the proposed model seeks 

to determine the optimal percentage of open slots under predetermined overbooking 

limits.  Unlike the other models, this research explores the use of overbooking within an 

open-access scheduling paradigm rather than the traditional scheduling system. In 

addition, the overbooking model is applied at the clinic level rather than the provider 

level, since double-booking has been considered a norm in traditional scheduling 

systems.  Therefore, the proposed model addresses both the needs of the patients who 

require multiple appointments and the concerns of the healthcare providers in ensuring 

that the necessary resources are readily available. 

 Muthuraman and Lawley [59] also develop an overbooking model under an open-

access scheduling system for a single service period to compensate for the probability of 

no-show for outpatient clinics.  However, the authors use multi-objective optimization to 

develop an overbooking process that minimizes patient wait time, maximizes resource 

utilization, and minimizes the number of patients waiting at the end of the day.  The 

model is limited by the options available to the scheduler when considering patients’ 

preference in provider.  In addition, their model attempts to assign patients consecutively 

by spacing them well apart to reduce overflow between slots. In fact, the average number 

of patients that are assigned to the later slots is less than the earlier ones. The authors 

observed that overtime and waiting costs for additional patients increasingly outweigh 

additional revenues. The objective function is also maximized when the number of 

patient types is increased.  This can be attributed to the increase in flexibility made 

available to the decision maker by the large number of patient types.  Finally, the model 
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can be used as a prediction tool for clinics seeking to determine their daily profit, since 

the call-in sequence on the schedule profits exhibit a normal behavior. 

 This research also aims to model how open-access scheduling systems allow 

clinics to increase their revenue. Current research in applying revenue management to 

primary-care clinics has modeled the effect of patient choices in identifying which 

regular patients to accept or reject in order to serve same-day appointment requests [15]. 

To the author’s knowledge, quantitative models, developed to understand open-access 

scheduling systems, only explore single independent patient arrivals within 

predominately single provider scheduling models [6, 15, 57, 59-60, 91, 105]. However, 

there are a few papers that study the impact of open-access scheduling on multiple 

provider models [15, 56, 58].  For each model, the authors consider the probability of no-

show and the allocation of appointment slots through the use of patient-physician 

matchup for same-day appointment request. These models also consider patient choice in 

provider and appointment slot. Gupta and Wang [15] extend their single provider model 

to identify the optimal booking limit for multiple providers. Using a Monte Carlo 

simulation method, the model examines several heuristic policies to determine the upper 

bound of the optimal booking limit, the bounds of the booking limit in the acceptance of 

physician’s appointment slot based on patient class, and the critical numbers for each 

physician.  The model determines that the optimal decision is based on the patient choice 

and reservation state of the clinic as a whole.  

 Kopach et al. [58] develop a model to simulate the booking of appointments 

within an open-access scheduling system for a teaching hospital with multiple physicians.  
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The simulation model is used to examine the impact of open-access scheduling on the 

continuity of care and the clinic’s throughput.  Their results indicate that the fraction of 

patients using open-access contribute significantly to both performance measures.  In 

addition, the number of patients assigned within the physicians’ care group provides 

significance to the continuity of care.  DeLaurentis et al. [56] develop a simulation and 

queueing model to study the impact open-access scheduling has on the patient’s clinical 

visit.  With the queueing model, the authors are interested in the utilization of the 

physicians and the expected waiting time the patient spends within the clinic. The results 

of the simulation indicates like Kopach et al. [58] that the percentage of open-access 

appointment requests is the most significant factor in regards to the continuity of care. 

Also, the model suggests the number of patients that are able to schedule an appointment 

with their primary physician declines as the fraction of patient requests increase from 

zero to 75%. The authors suggest that a primary care team be composed of a single 

primary and two secondary physicians to maintain the continuity of care under an open-

access scheduling system.   

Like Liu et al. [91], this research presents an infinite horizon Markov decision 

process. However, the authors’ objective is to determine which day to schedule an 

individual patient’s request to be seen by their physician.  Their model considers both the 

probabilities of no-show and cancellation for clinics where open-access is not 

implementable and traditional scheduling is current practice.  Using simulation, the 

authors compare their proposed improved open access heuristic to five other scheduling 

policies.  However, the authors do not consider the use of overbooking.   
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Table 16 demonstrates the contributions that have been made towards quantifying 

the theory and objectives of open-access scheduling and whether or not revenue 

management (overbooking) concepts are utilized.  More importantly, the table 

demonstrates how current research in patient scheduling has not considered dependent 

demand arrivals. Here, the models are studied based on the presence of no-show and/or 

cancelled appointments, the number of providers, the number of patients seeking to 

schedule a same-day appointment and dependency of the patients amongst themselves. 

The key to optimizing appointments is to take a quantitative approach to develop the 

schedule rather than relying on an expert’s experience [6]. 

 
 
 

Table 16. Quantitative model comparison 

Author Model 
Single 

Provider 

Multiple 

Provider 

Dependent 

Demand? 

No-

Shows? 
Appointments Distribution Overbooking?

Qu [6]  Mathematical X   No Yes, 
known 

Total number is known 
and fixed. 

Known for 
prescheduled 

and OAS 

No 

Gupta and Wang 
[15]  

Finite MDP and 
Heuristics 

X X No   Considers Patient 
Choice 

  Yes 

Liu et al. [91] Infinite MDP and 
Simulation  

X   No Yes Proposes Improved 
OAS for traditional 

system. 

  No 

Kopach [58] Simulation   X No Yes Allows double-
booking 

Poisson  No 

Giachetti et al. 
[57] 

Simulation X   No Yes     Yes 

Muthuraman and 
Lawley [59] 

Multiobjective 
optimization 

X   No Yes Allows overbooking.  
Appointment slot 
allocation. Patient 

choice.  

Exponential Yes 

DeLaurentis et al. 
[56] 

Simulation and 
Queueing Model 

  X No Yes     Yes 
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Based on the literature survey, this research seeks to develop a quantitative model 

to examine the impact of dependent demand (i.e. batch) arrivals under an open-access 

scheduling system. To date, quantitative papers in this area consider single and multiple 

provider models under the assumption that demand arrivals are independent among 

patients.  In regards to revenue management, McGill and Van Ryzin [18] stated that it 

must consider the inclusion of batch bookings as critical area for research. 

 

4.3 Problem Description  

4.3.1 Assumptions 

 
Prior to constructing the Markov decision process model, several assumptions are 

established in terms of the clinic structure, prescheduled appointments, and batch 

appointments.  In regards to the clinic structure, it is assumed that the capacity is fixed, 

which represents the number of physicians. There is a single appointment type with a 

fixed duration. While fixed appointment slots may be restrictive, it is representative of 

some clinics that perform preventative or routine health services (i.e. dental cleanings and 

physical examinations that are required for athletes).  However, overbooking is used to 

expand this fixed capacity in which the backlog is constrained to a maximum limit.  Here, 

the maximum backlog serves as an upper bound for the number of appointments that can 

be overbooked per period.  When considering an open-access paradigm, this extra 

capacity increases the number of available slots; in turn, increasing the likelihood that a 

batch request will be accepted. The total number of patients in the system is determined 

by the number of physicians busy and the number of patients waiting in the backlog.  In 
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addition, those patients waiting in the backlog mitigates the loss of productivity 

associated with patients failing to meet their scheduled appointment. It also allows those 

patients that have been accepted within a batch appointment request to wait until the first 

available physician is idle. The model does not consider patient-physician matchup. In 

addition, each physician is homogeneous in workload and service time. Open slots are 

perishable and cannot be carried forward into the next period. 

Under an open-access scheduling paradigm, the probability of the physicians 

being busy represents the ratio between prescheduled and open appointment slots per 

period. Here, clinic capacity is analogous with available physicians and thus serves as the 

maximum number of prescheduled appointment slots in a given time period. The 

prescheduled appointments have priority over same-day batch appointments. The 

probability that a prescheduled appointment for physician exists in the next period is 

defined by a binomial distribution. This assumption is also made by LaGanga and 

Lawrence [106] to determine the distribution of the number of patients arriving for an 

appointment slot.  In the current period, the probability of no-show/cancellation is known 

and conditioned on the number of prescheduled appointments. This conditional 

probability follows a binomial distribution and is based on the probability that the patient 

will fail to meet their scheduled appointment.  

With respect to the batch appointment assumptions, a fixed family size for each 

request that is a function of the number of available physicians is considered. Each 

patient within the batch is homogeneous and dependent on one another.   That is 

knowledge that a patient within a batch will not meet their scheduled appointment or 
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cancels, affects the probability that the other patients within the same batch will also not 

meet their scheduled appointment or cancels. It is worth noting that the current 

prescheduled appointments do not differentiate between a batch and an individual.  As a 

result, the no-show rates are not dependent on the individuals within the family.  A 

request for a batch appointment that is made in the beginning of the period can be 

processed in the same period if there is a no-show/cancellation. Thus, accepted patients 

are immediately available to be served by idle physicians.  After the acceptance of a 

batch request, each patient is seen as an individual and the patient(s) are willing to wait to 

be seen in the backlog.   

The assumptions for the model are largely based on the observed behavior of a 

pediatric dental clinic in [101].  Clinics that also offer preventative care and routine 

services for children such as annual flu shots and eye care may also have similar 

assumptions.  In addition, the model accounts for the variation of revenues that is 

generated through the predetermined reimbursement plan.  It is assumed that the clinic 

absorbs the difference between actual billing price and the reimbursement amount.  The 

operating cost is assumed to be absorbed by the local government. These assumptions are 

consistent with a clinic, whose primary source of income is from Medicaid. 

4.3.2 Mathematical model 

A discrete-time, discrete-state, stationary infinite-horizon Markov decision 

process (MDP) model is developed to examine the impact batch appointment requests 

have on a clinical scheduling system. Based on the current state of the clinic, the model is 

used to determine whether to accept a request for a batch appointment for the same 
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period or to reject the request. The optimal scheduling policy and expected profit per 

period are determined using the policy iterative algorithm developed by Howard [107].  

With this model, the scheduling coordinators are able to determine the actual scheduling 

policy for a given batch appointment request. The MDP is formally defined as follows, 

where Table 17 summarizes the notations used throughout our formulation.  

 
 
 

Table 17. Model notation and descriptions 

Notation Description 

C Capacity of the clinic 

M Maximum overbooking limit 

i Number of physicians busy due to prescheduled appointments 

j Number of patients assigned to the backlog 

a Number of prescheduled appointments assigned to the next period 

b Batch size of appointment request 

n Number of no-show/cancellations  

x Number of appointments required 

y Number of appointments available 

pN|i(n)   Probability of no-show of prescheduled appointment given current state i 

pB(b)   Probability of arrival of request for batch appointment 

pA(a) Probability of prescheduled appointment assigned to next period 

)|'( ssp  Probability of transitioning from current state, s , to future state,
 

's   

s  Current state of clinic for two-dimensional space ),( ji  

's  Future state of clinic for two-dimensional space )','( ji  

πs Steady-state probability for state s 

r(s,k)   Expected immediate reward vector 

k Binary value to determine the acceptance of a batch appointment request 

δ Revenue generated from serving a patient 

λ1 Penalty cost associated with carrying a backlog 

λ2 Penalty cost associated with having unutilized appointment slots 

E[S] Overall expected number of patients served 

E[PS|i] Expected number of prescheduled patients served 

E[BS|j] Expected number of backlogged patients served 

E[b] Expected number of patients backlogged 

U Utilization of physicians 
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System state: Since this work is interested in the clinic level overbooking limit rather 

than individual physicians, the state of the system is defined to be the aggregated status of 

the physicians and the number of patients in the backlog. The reservation state is 

determined by a two-dimensional state vector (i, j): 

},..1,0,,..1,0|),{( MjCijiS ===  (4.1) 

Here, i denotes the number of physicians that are busy due to prescheduled appointments 

at the beginning of the period, j denotes the number of patients that are currently assigned 

to the backlog, and C denotes the capacity of the clinic. The number of patients in the 

backlog ranges from (0…M), where M is the maximum number of patients that are 

allowed to wait.  

 

Control alternatives: The set of admissible actions for a given state Ss ∈  is defined by

]}1,0[,{ ∈= kkAs  . Here, k is an admissible decision in which two alternatives are 

evaluated: 0- to reject the request for batch appointment and 1- to accept a request for a 

batch appointment.  It is common practice for scheduling coordinators to allow rejected 

patients to be assigned to the next available appointment slot. Previous models in patient 

scheduling assume that patients that have preference in both their physician and 

appointment slot are willing to be scheduled at a later date [15].  This occurs without a 

penalty being applied to the clinic. Therefore, no penalty is assigned for rejecting patients 

in the proposed model. 
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Transition function: Several events have been identified that cause a transition from the 

current state ),( ji  to future state )','( ji . These stochastic events consist of the following: 

no-show/cancellation of prescheduled appointment pN|i(n), arrival of request for batch 

appointment pB(b),  and existence of a prescheduled appointment in the next period pA(a).  

Given the current state Sjis ∈= ),( ,  transition to a future state Sjis ∈= )','('  occurs as 

follows, where ),min()( hghg =∧
 :   

kbjx *+=  
(4.2) 

)( niCy −−=
 

(4.3) 

ai ='  (4.4) 

)][(' +
−∧= yxMj

 
(4.5) 

)(*)(*)()|'( | npbpapssp iNBA=  
(4.6) 

Equation 4.2 determines the number of appointment slots required to serve patients that 

are currently present in the backlog and that have been accepted.  The acceptance of the 

appointment request is based on the batch size }2,0{∈b , where zero represents the 

rejection of patients.  Next, equation 4.3 computes the number of actual appointment slots 

that are available after accounting for the number of no-shows, where n represents the 

number of no-show/cancellations in the period. Note that y is nonnegative, since no-

shows are only permitted when the number of prescheduled patients exceeds zero. 

Therefore, the number of physicians available can be computed as a function of the 

number of prescheduled patients that fail to arrive for their scheduled appointment or 
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cancel. Equations 4.4 and 4.5 determine the future state of the system, where �� represent 

the arrival of prescheduled patients, }..0{ Ca∈ , into the next period and �� represent the 

number of patients in the backlog that are waiting to be served in the next period.  

Equation 4.6 defines the transition probability given the system is in current state s1 and 

transitions to future state s2. The transition equation is a function of the number of 

prescheduled appointments assigned to the next period, the number of appointment slots 

required to serve patients, and the number of actual appointment slots that are available. 

The availability of appointment slots considers the maximum backlogged allowed in the 

system. Figure 15 displays the timeline of the events associated with the transition from 

current state Sjis ∈= ),(   to future state Sjis ∈= )','(' . 

 
 
 

 

 

)','( ji),( ji

 

Figure 15. Events timeline 
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Reward model: The immediate reward associated with current state ( Sjis ∈= ),( ) and 

action (k) is generated as a function of the number of patients being served, the number of 

unutilized appointment slots, and whether or not there are patients assigned to backlog. 

The expected immediate reward vector r(s,k(s)) is represented by: 

+
−−∧−+−−+∧= ][))(*(*))()((*[(),( 21 xyyxkbjniyxEksr ss λλδ  

(4.7) 

where the expectation is taken with respect to the number of prescheduled patients (i) and 

the batch appointment request size (b). The revenue generated from serving a patient is 

denoted by δ.  ks is the binary decision value indicating the acceptance (1) or rejection (0) 

of a batch appointment request. Although not modeled directly, the cost of rejection 

represents both patient dissatisfaction and the inability to serve the daily demand of 

patients under an open-access scheduling paradigm. Equation 4.7 provides the expected 

immediate reward with respect to the no-show/cancellation of prescheduled appointment 

pN|i(n), arrival of request for batch appointment pB(b),  and prescheduled appointment 

assigned to next period pA(a). 

A stationary optimal control policy is generated, which maximizes the clinic’s 

expected profit per period (g) under an infinite horizon average reward criterion. The 

optimality equation is expressed in component notation as 

Sssvsvsspgksr
Ss

sAk s
∈∀









−+−= ∑
∈

∈

'

)()'()|'(),(max0  
(4.8) 

where )(⋅v  can be interpreted as the limiting relative value associated with starting the 

system in the specific state.  In addition, the model also examines the following long-run 

performance measures: the total expected number of patients that are served, the 
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utilization of physicians, and the expected number of patients in the backlog per period. 

Please note that we expand s to be (i,j) to further investigate the model in terms of the 

number of prescheduled patients and the number of patients that are waiting in the 

backlog.   

 As expressed in Equations 4.9 through 4.11, the total expected number of patients 

that are served is a function of the number of prescheduled and backlogged patients that 

are served and the optimal steady-state probability πij associated with a clinic state (i,j).   

The number of prescheduled served (Eq. 4.10) is computed by the number of patients that 

fail to show/cancel and the probability of this event occurring. Equation 4.11 represents 

the expected number of backlogged patients that are served when the batch is accepted.  

If the request is rejected, only the first term of the equation is computed where the 

probability of batch arrival is equal to one. Based on the total expected number of 

patients that are served and the number of physicians at the clinic, Equation 4.12 

determines the utilization of the physicians. Equation 4.13 identifies the expected number 

of patients in the backlog per period.  Finally, the optimal policy of the MDP model 

identifies the ideal scheduling policy for the clinic.  With this scheduling policy, the 

scheduling coordinator will be able to identify whether or not to accept a request for a 

batch appointment given the prescheduled and open-access appointment rate and the 

probabilities of no-show and batch arrival. Therefore, the scheduling policy determines 

the number of patients that are within the system, which is based on the number of 

prescheduled patients and the number of patients waiting to be seen. 
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4.4 Computational Study  

 The purpose of this study is to determine the ideal open-access scheduling 

paradigm that increases the likelihood that a batch appointment request is accepted. 

Experiments are conducted to examine how the optimal scheduling policy is affected by 

varying degrees of server idleness, patient behavior, and the appointment request size. In 

addition, this work explores the effects of overbooking on the performance measures. 

These experiments provide insight on which ratio of prescheduled and open appointment 

slots and overbooking limit that best suit the needs of a clinic.  Also, this research 

identifies the relationship between the probability of no-show and probability of batch 

arrival on the scheduling policy. 

Table 18 displays the levels of sensitivity and the associated values for each 

observed parameter. Although the probability of no-show is varied from zero to one, in 

practical settings the average no-show rate is 0.20 for families with two children [101].  
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In addition, the probability of a batch arrival (two or more patients) at the clinic is 

assumed to be 0.30.  Therefore, this sensitivity analysis is performed to examine the 

impact the change in both the probability of no-show and probability of batch arrival has 

on the scheduling policy.  

 
 
 

Table 18. Parameters for sensitivity analysis 
Parameter Level Values 

Clinic Capacity (C) 1 [3] 
Maximum Overbooking (M) 3 [0, 0.5*C, C] 
Maximum Batch Size (b) 1 [0.5*C] 
Ratio of  Prescheduled Appointments (pX(x)) 2 [0.5, 0.7] 
Probability of No-show (pN|i (n)) 11 [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] 
Probability of Batch Arrival (pB (b)) 11 [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] 
Revenue (δ) 1 [$135] 
Backlog Penalty (λ1) 1 [$54] 
Unutilized Penalty(λ2) 1 [$13.50] 

 
 
 
 
It is worth noting, when calculating both the maximum overbooking limit and the 

batch size for the appointment request as half the value of the capacity, the actual value is 

rounded to the higher integer value.  For example, the number of physicians, (C), is three, 

the batch appointment request size, (b), is two and the overbooking limit is zero, two and 

three. With respect to the overbooking limit, zero represents the case in which 

overbooking is not allowed, while double-booking is implied when the limit is equal to 

three.  The cost parameter is derived based on the actual maximum expected reimbursed 

revenue provided by the clinic at $135. It is assumed that the backlog penalty is equal to 

40% of the revenue; whereas, the penalty for unutilized slots is 10% of the revenue. The 
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model assumes the penalty for unutilized slots will always be less than the penalty for 

backlogging patients.   

 

4.5 Results 

In the following sections, the results of the computational study are presented. For 

Sections 4.5.1 and 4.5.2,  the result are presented under the assumption that the 

probability of the batch arrival is equal to 0.30, which is in the range of the actual percent 

of appointment request for batch appointments observed in [101].  The first section 

characterizes the optimal policies that are generated.  The second section summarizes the 

system’s performance measures as the maximum overbooking limit, ratio of 

prescheduled appointments and probability of no-show are varied. The next section 

examines the impact of the probabilities of no-show and batch arrival on the optimal 

scheduling policy.  Various capacity levels are explored to determine an optimal 

overbooking limit, while maintaining a fixed batch size in the final section.  

4.5.1 Characterizations of optimal policies 

In order to understand the behavior of the system, the structure of the optimal 

policy is analyzed when the ratio of prescheduled appointments is equal to 0.5 and 0.7.  

For both scenarios, the policy structure is observed under various no-show probabilities 

and maximum overbooking limits. The structure of the optimal policy as a function of the 

no-show rate and the state space is presented in Figure 16.  As evident in Figures 16(a) 

and 16(b), the scheduling policy suggests to reject requests for a batch appointment when 

the total number of patients in the clinic has exceeded the number of physicians available.  
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However, it is interesting that the actual rejections occur at different no-show rates.  

Figure 16(a) experience these rejections when the no-show rate is less than or equal to 

0.4; whereas, the same behavior is observed when the no-show rate is less than 0.4 in 

Figure 16(b).  For the actual no-show rates observed at the clinic (0.1 and 0.2), the 

appointment requests are rejected when the total available capacity (the number of idle 

physicians and the overbooking limit) is less than the requested batch size. As seen in 

Figure 16(a), these rejections occur at states (2,3), (3,2) and (3,3). This behavior also 

occurs when the probability of no-show ranges between zero and 0.1 in Figure 16(b) for 

states (2,2), (3,1), and (3,2). This implies that the clinic should only reject batch 

appointment requests when either the overbooking limit has been reached and/or at most 

one physician is idle.  If there is a guarantee that the patients will meet their scheduled 

appointment (i.e. the no-show rate is 0), then both models tend to reject requests when the 

total capacity exceeds the number of physicians.   

Figure 16(c) illustrates the behavior of the system when overbooking is not 

allowed (i.e. the maximum overbooking limit is equal to zero).  In this case, the model 

only rejects the appointment request, when the clinic has reached its total capacity and 

the no-show rate is less than or equal to 0.10. This is important here, because it suggests 

even in a full system with no predefined overbooking limit (3,0), if no-show rates are 

greater than or equal to 0.2 a clinic is able to accommodate batch appointment requests. 

Although batched patients are accepted, the maximum number of patients than can be 

served is restricted to the number of physicians.  In a practical setting, this implies that 

the physicians will have to work overtime in the event that patients are still waiting in the 
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backlog at the end of the period.  This demonstrates the importance of considering the use 

of overbooking in the initial phases of planning rather than requiring physicians to work 

overtime unexpectedly. In addition, the clinic must consider how patient satisfaction is 

impacted, when waiting times are increased due to the acceptance of additional patients.  

 
 
 

 

Figure 16. Policies when prescheduled ratio is 0.5 and maximum overbooking limit 

                    is three (a), two (b), and zero (c)  

 
 
 
 
Therefore, under an open-access scheduling paradigm that considers the ratio of 

prescheduled appointments to be 0.5, the likelihood that batch appointments are accepted 

is high. In fact, the clinic is able to accept patients if only half of the physicians are 

booked with prescheduled appointments, since the other half is available to serve 

accepted batched patients.  However, rejections do occur when the total number of 
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prescheduled and overbooked patients is greater than the number of physicians.   This 

also implies that acceptance of batch appointment request is not strictly based on the 

number of patients in the backlog, since patients are always accepted when the backlog 

has reached its maximum limit and there are no patients prescheduled.  Table 19 

summarizes the characterizations of the optimal policy in terms of the rejection condition 

for the respective maximum overbooking limits and the probability of no-show.   

 
 
 

Table 19. Rejection region when the ratio of prescheduled appointments is 0.5 
M=C M=0.5*C M=0 

pN|i (n) Condition pN|i (n) Condition pN|i (n) Condition 

0 Cji >+  [0, 0.1] 1−+≥+ MCji  [0, 0.1] MCji +=+  

[0.1, 0.2] 1−+≥+ MCji  [0.2, 0.3] MCji +=+    

[0.3, 0.4] MCji +=+      

 

 

 

 

The same analysis is conducted as presented above for the case in which ratio of 

prescheduled appointments is increased to 0.7.  This analysis is important since this is the 

ratio presented in the literature as the ideal percentage of prescheduled and open 

appointments.  The optimal policies are presented in Figure 17 for the various maximum 

overbooking limits.   As expected, the rejection region increases when the maximum 

overbooking limit is greater than zero.  With Figure 17(a), the model tends to always 

accept irrespective of the number of patients in the system when the no-show rate is 

greater than or equal to 0.5.   This behavior is observed when the ratio of prescheduled 
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appointments is equal to 0.5 for no-show rates greater than 0.4.  Again, rejections for 

batch appointments occur only when the total capacity is greater than or equal to the 

number of physicians available on a given day.  If there is a guarantee that the patients 

will meet their scheduled appointment, then each model rejects batch requests when the 

total capacity is greater than or equal to the number of physicians.  This suggests that 

with the increase in prescheduled appointments, the model is more restrictive. This is 

based on the fact that under the same condition seen in Figures 17(a) and 17(b), the 

rejections occurred when total capacity exceeded the number of physicians.  However, 

Figure 17(c) exhibits the same behavior as previously mentioned when overbooking is 

not allowed.   

 
 
 

 

Figure 17. Policies when prescheduled ratio is 0.7 and maximum overbooking limit 

                    is three (a), two (b), and zero (c)  
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Table 20 displays the various characteristics for the rejection region when the 

ratio of prescheduled appointments is 0.7. Again, the rejection region is based on both the 

no-show rate and the maximum overbooking limit.  From the table, it is evident that 

rejection region is impacted by the increase in the ratio of prescheduled appointments.  In 

particular, the number of patients that are already assigned to the backlog influences the 

rejection of batched patients when physicians are double-booked (i.e. the overbooking 

limit is equal to the number of physicians). In addition, the no-show rate increases the 

complexity of determining when to reject requests. 

 

 

 

Table 20. Rejection region when the ratio of prescheduled appointments is 0.7 
M=C M=0.5*C M=0 

pN|i (n) Condition pN|i (n) Condition pN|i (n) Condition 

0 Cji ≥+  0 Cji ≥+  [0, 0.1] MCji +=+  

0.1 





>+

−≥≥+

Cji

MjCji 1& [0.1, 0.2] 1−+≥+ MCji    

0.2 Cji >+  0.3 MCji +=+    

0.3 1−+≥+ MCji     

0.4 MjCi =−≥ &1      

 

 

4.5.2 Impact of prescheduled patients and maximum overbooking limit results 

Several figures are generated to illustrate the performance of the system. We 

classify the results based on the ratio of prescheduled and open appointments slots at 0.5 

and 0.7 as the maximum overbooking limit is equal to zero, two and three.  
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4.5.2.1 Expected number of patients served 

Figures 18 through 20 do not directly illustrate the behavior of the clinic when the 

maximum overbooking limit is equal to half of the clinic’s capacity.  This is a result of 

the overbooking value being rounded to the higher integer value.  Therefore, the system 

behaves the same when the clinic is overbooked by two and three appointment slots. 

Based on Figure 18(a), the total expected number of patients that are served decreases as 

the probability of no-show increases irrespective of the overbooking limit and 

prescheduled appointments ratio. This is intuitively obvious as the no-show rate 

decreases the actual demand for resources and thus decreases the output of the physicians 

(per period).  As expected, the clinic is able to serve more patients when the number of 

prescheduled patients is higher (as measured by the ratio). This implies that the clinic is 

able to serve patients at higher no-show probability values, since physicians are able to 

serve those patients that have been assigned to the backlog and/or accepted as a batch 

appointment request.  

Figure 18(b) illustrates the behavior of the system for the expected number of 

backlogged patients that are served.  As the probability of no-show increases, the average 

number of waiting patients that are served increases but are bounded by the number of 

physicians available. In addition, waiting patients tend to be served when the physicians 

are less busy with prescheduled appointments.  When the clinic does not allow 

overbooking, the system is still able to serve patients that have been accepted within the 

same period.  This behavior is observed for both prescheduled appointment ratios and the 

various no-show probabilities. As expected, the maximum overbooking limit does not 
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have an effect on the average number of prescheduled patients that are served so, we omit 

this figure. This occurs due to the assumption that the prescheduled patients will be 

served prior to those patients that are accepted within a batch appointment request.  As a 

result, the expected number of prescheduled patients that are served decreases as the 

probability of no-show increases for each capacity level.  

 
 
 

 

Figure 18. Expected number of patients served total (a) and backlogged (b) 

 
 
 
 

4.5.2.2 Expected number of patients assigned to backlog 

Figure 19 demonstrates the behavior of the system for the expected number of 
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reaching its overbooking limit. Recall in Figure 18(a), the total number of patients that 

are served is greater at lower probability of no-show values due to the arrival of 
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prescheduled patients and the acceptance of batch appointment request. In general, batch 

requests are rejected when the total number of patients in the system exceeds the number 

of physicians available. It is worth noting that the average size of the backlog never 

exceeds one.  The increase in prescheduled appointments leads to a greater increase in 

patients waiting to be served.   The total expected number of patients that are served 

between 0.0 and 0.1 is 2.5 which is close to the number of physicians available when the 

capacity is three.   

 
 
 

 

Figure 19. Expected number of patients in the backlog per period 

 
 
 
 

4.5.2.3 Expected profit and physicians’ utilization 
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expected profit per period decreases monotonically for the respective prescheduled 

appointments ratios. Regardless of the number of overbooked slots, the clinic continues 

to remain profitable as the no-show rate is increased, since the batch request is served 

immediately.  However, the clinic is more profitable when overbooking is allowed.  This 

is a direct result of the penalty for unutilized appointment slots being significantly lower 

than the penalty for patients being backlogged (i.e. left waiting to be served). Therefore, 

if possible, the clinic should aim to schedule patients in advance versus allowing a higher 

percentage of open appointment slots for same-day appointment requests. Similar results 

are displayed in Figure 20(b) with respect to the utilization of physicians.  Here, 

irrespective of the probability of no-show, the higher the ratio for prescheduled 

appointments; the higher the utilization of the physicians. Thus, the highest utilization 

(82%) is achieved when the prescheduled appointments ratio is 0.7 and each physician is 

double-booked within a single period.  In practice, it is common for physicians to utilize 

multiple rooms in the attempt to increase the number of patients that can be served.  

 
  
 

 

Figure 20. Expected profit per period (a) and utilization of physicians (b) 
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4.5.3 Impact of batch arrival and no-show probabilities  

4.5.3.1 Threshold regions  

 Here, this research seeks to determine the minimum acceptance and rejection 

regions as both the probability of no-show and probability of batch arrival are varied 

when the capacity is three. These regions are generated for a fixed probability value (in 

the x-direction), while the associated probability along the y-axis is varied.  The ratio of 

prescheduled and open appointment slots is assumed to be equal to 0.5. With respect to 

the always accept region, a threshold value is identified to provide the minimum value 

allowed for the respective probability.  

 Figure 21 illustrates the threshold values for the various overbooking limits for 

the always accept region for both the probability of no-show and the probability of batch 

arrival, respectively.  This threshold region increases as the maximum overbooking limit 

increases.   In addition, the always accept threshold region tends to decrease as the 

probability of no-show increases.  In fact, this figure can assist scheduling coordinators in 

determining which batch requests to accept given the probabilities of no-show and batch 

arrival appointment requests. For example, if the clinic has no prior knowledge of the 

patterns of the batch arrivals, then a request will always be accepted when the probability 

of no-show is less than or equal to 0.3.  However, given the clinic has knowledge of the 

probability of batch arrivals, then the scheduling coordinator can determine which 

patients to accept based on their no-show rate and the clinic’s overbooking limit.  
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Figure 21. Always accept threshold 

 
  
 
 
 In general, rejections occur when the number of patients in the system (both 

prescheduled and backlogged) is greater than or equal to the clinic’s physician capacity 

level for both the probability of no-show and probability of batch arrival analysis.  
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22, the minimum rejection region increases as the total capacity increases as well as the 

respective probability value.  Like the always accept threshold, the scheduling 

coordinator can determine which batch request to reject given information on both 

probabilities or only one and the total capacity of the clinic.  Although not illustrated, the 

scheduling coordinator will reject requests when the probability of a batch arrival is less 

than or equal to 0.9 and the probability of no-show is less than or equal to 0.1.  This 
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

b
ab

il
it

y
 o

f 
N

o
-S

h
o

w

Probability of Batch Arrival

M=C M=0.5*C M=0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

b
a

b
ili

ty
 o

f 
B

at
ch

 A
rr

iv
al

Probability of No-Show

M=C M=0.5*C M=0

(a) (b) 



109 
 

 

Figure 22. Minimum rejection threshold when the overbooking limit is equal to 

                       three (a) and two (b) 

  
 
 
  
4.5.3.2 Effects on performance measures  

 To further investigate the impact of the no-show and batch arrival probabilities, 

the behavior of the system is studied under the predetermined performance measures.  

For a fixed probability of no-show, there is a similarity in the system’s performance for 

the following measures: the expected profit per period, the physicians’ utilization, total 

expected number of patients that are served, and the expected number of patients that are 

served from the backlog.  As the probability of batch arrival increases, each of these 

measures tends to also increase.   In fact, the backlog tends to be affected by the variation 

of the probability of batch arrival. This is based on the assumption that the accepted 

patients are willing to wait to be served by the first available physician.  Therefore, the 

expected number of patients that are assigned to the backlog increases as the probability 

of batch arrivals increases. In addition, the expected number of prescheduled patients that 

are served remains constant, since it is only affected by the probability of no-show.  
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In contrast, each of the performance measures, except for the expected number of 

patients that are served from the backlog, decreases as the probability of no-show 

increases and the probability of batch arrival remains fixed.  This is a direct result of the 

idle physicians being able to serve the waiting patients immediately.  These results 

suggest that the variation of probability of batch arrival positively impacts the utilization 

of the clinic, when the probability of no-show is constant.  Our results also indicate that 

the variation in probability of no-show has a negative effect on the utilization of the 

physicians.  In general, the backlog tends to be the most affected by the variation of both 

the probabilities of no-show and batch arrival.  This is due to the clinic accepting requests 

for batch appointments for higher no-show rates.  In addition, the always accept region is 

slightly higher for a fixed probability of no-show versus a fixed probability of batch 

arrival. Similar results are also identified for the minimum rejection region.  

4.5.4 Exploration of optimal overbooking limit  

 The purpose of this experiment is to determine the optimal overbooking limit for 

various capacity levels at the clinic. Under a perfect scenario (i.e. each physician is busy 

with a prescheduled patient and each patient meets their scheduled appointment), the 

clinic should overbook only the batch size value. Hence, the maximum overbooking limit 

is equal to the size of the batch appointment request.  However, in the experiments 

presented thus far, the overbooking limit is assumed to be fixed.   In a practical setting, 

each physician would not be required to have patients overbooked in each appointment 

slot. For a fixed batch size of two and by varying the clinic’s capacity from two to four, 

the optimal overbooking limit is identified for each of the respective capacity values. The 
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optimal overbooking limit is determined by identifying the overbooking value that 

maximizes the expected profit per period for each capacity level.  Again, the ratio for 

prescheduled appointments is assumed to be equal to 0.5 and the probability of batch 

arrival is equal to 0.3.   

 Table 21 provides the optimal overbooking limit for the respective values.  In 

most cases, the optimal overbooking limit surpassed the desired overbooking limit as the 

no-show rate is increased.  In fact, Figure 23 displays the difference between observed 

optimal overbooking limit and the batch size value. Here, the optimal overbooking limit 

is closer to the desired value at higher no-show rates.  This implies that the number of 

physicians that have to serve additional patients declines when prescheduled patients fail 

to meet their scheduled appointment.  It is worth nothing that the difference is less than 

0.17 for each capacity value except for the case when the capacity is equal to 4 and the 

probability of no-show is 0 (at 0.58).  

 
 
 

Table 21. Optimal overbooking limit given capacity and probability of no-show 

  Probability of No-Show  

Capacity 0 0.2 0.4 0.6 0.8 

2 C-1 C C+1 C+1 C+2 

3 C-1 C C+1 C+2 C 

4 C-1 C+1 C+1 C C-2 
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Figure 23. Difference between desired and optimal overbooking limit 

  
 
 
 
 This research also examines the scheduling policy for the respective capacity, 

probability of no-show and optimal overbooking limit values. Table 22 provides the 

condition in which batched patients are accepted and rejected. Similar to the results 

presented in Section 4.5.2, appointments are rejected when the total number of patients in 

the system is greater than or equal to the clinic’s capacity. Under the capacity used for the 

base model (C=3), the condition remains the same when the probability of no-show 

ranges from 0 to 0.6.  Thereafter, the optimal scheduling policy always accepts the 

request for batch appointments. A capacity of three is the only value that exhibits a linear 

relationship as the probability of no-show increases.  With the other two values, the 

highest optimal backlog is achieved when the probability of no-show is 0.6 (C=3) and 0.4 

(C=4). 
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Table 22. Scheduling policy for optimal overbooking limit 
  C=2 C=3 C=4 

pN|i (n) M* Decision Condition M* Decision Condition M* Decision Condition 

0.0 1 Reject Cji ≥+  
2 Reject 1−+≥+ MCji  

3 Reject 1−+≥+ MCji  

0.2 2 Reject 1−+≥+ MCji  
3 Reject 1−+≥+ MCji  

5 Reject 1−+≥+ MCji  

0.4 3 Reject CjCji ≥+≥+ &1  
4 Reject 1−+≥+ MCji  

5 Reject MCji +=+  

0.6 3 Reject Mj =  
5 Reject 1−+≥+ MCji  

4 Always accept 

0.8 4 Reject Mj =  
3 Always accept 

  
2 Always accept 

 
 
 

 
4.6 Conclusion 

This chapter has presented a framework to illustrate dependent patient demand 

arrivals under a multiple provider model. A discrete-time, discrete-space, stationary 

infinite-horizon Markov decision process (MDP) model has been developed to study the 

impact that batch arrivals have on an open-access scheduling system. Current research in 

open-access scheduling considers single provider models, where demand arrivals are 

independent among patients. This research is motivated by a pediatric dental clinic who 

must determine whether to accept a request for a batch appointment for a same day slot. 

The optimal scheduling rule obtained from the MDP model suggests the batch 

appointment requests should always be accepted regardless of the number of patients 

prescheduled and the maximum overbooking limit, when the probability of no-

show/cancellation for each prescheduled appointment is greater than or equal to 0.50. 

The clinic should always reject a request for batch appointment when the 

probability of no-show is less than or equal to 0.10 and the number of patients either with 

a physician and/or waiting in the backlog is greater than the number of physicians in the 
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clinic. Additional rejections of appointment request also occur as the probability of no-

show increases when either the backlog has reached its maximum limit and/or each 

physician is busy with a patient that meets their prescheduled appointment.  However, in 

spite of the probability of the no-show, the scheduling policy suggests to accept request 

when the number of patients either with a physician and/or waiting in the backlog is less 

than the number of physicians in the clinic.  

Like Kros et al. [104], this work determined that overbooking can be used to 

increase patient access to care. In addition, the results indicate that the clinic should only 

consider using overbooking in their scheduling policy if the probability of no-show is low 

and the probability that the physicians are busy is high. Similar results have been noted 

by LaGanga and Lawrence [90], as they identified that clinics should overbook one extra 

appointment at the end of the clinic session per provider when the probability of no-show 

is low.  In general, if the clinic continues to reserve half of their appointment slots for 

same-day requests, then the system is capable of serving the request for batch 

appointments within the same period regardless of the number of overbooked slots. 

However, clinics, who currently schedule appointments under an open-access paradigm, 

should allocate 70% of their appointment slots for prescheduled patients.  At this 

percentage, the clinic will be more profitable as well as experience an increase in the 

utilization of physicians and the number of patients that are served.  With an increase in 

the ratio of prescheduled appointments, there is an increase in the number of batch 

appointments that will be rejected.  In addition, clinic should not consider overbooking 

patients when the probability of patients not showing up is low.  Thus, by allowing the 
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patients to wait in the backlog, there is only a slight impact in increasing the total 

expected number of patients that are served, the utilization of the physicians, and the 

expected number of patients waiting to be served.   

Finally, clinics must rely on information pertaining to the probability of no-show, 

the probability of batch arrival request, and ratio of prescheduled appointments to 

determine whether or not a request should be accepted.  In addition, the clinic must 

determine the optimal number of patients that they are willing to allow to wait to be seen 

by an idle physician in the backlog and the actual amount of the penalty associated with 

the patient waiting.  This sentiment is also addressed by LaGanga and Lawrence [86], as 

their results suggest that clinics should understand the impact of both patients no-show 

behavior and their cost structure prior to making general statements about overbooking.  

This work has an underlying limitation in that model was not validated at the pediatric 

dental clinic motivated by research due to unforeseen changes. Future research areas 

include determining the actual optimal scheduling rule based on various batch sizes and 

examining the allocation of patients to physicians within the scheduling paradigm. 

Recall, this research assumed that the batch size was half of the number of physicians in 

the clinic.  This work also considered the physicians as an aggregated unit, in which each 

physician is homogenous.  The model can also be extended to identify the impact of 

batch arrival requests in more dynamic scheduling techniques that is not limited to an 

open-access scheduling paradigm.  With the change in scheduling approaches, healthcare 

providers can gain further insight of the impact of dependent demand arrivals. 
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CHAPTER 5 

Finite-Horizon Stochastic Model to Determine the Effects of  

Scheduling Independent versus Dependent Patients  

 

5.1 Introduction 

 Traditionally, appointment systems are designed under the assumption that 

patients are independent in terms of their arrivals and no-show rates.  However, this 

assumption is often invalid when families seek to schedule multiple appointments within 

the same time frame.  The concept of multiple appointments in patient scheduling is 

discussed in [101], in the context of pediatric dental clinics.  The term batch is introduced 

to account for multiple patients requesting service from a set of providers with the 

primary expectation that all patients will be processed simultaneously and/or 

consecutively.  In addition, these patients are dependent amongst each other in terms of 

both their arrival and no-show probability.  Due to the complexity of scheduling multiple 

patients within a single period, scheduling coordinators must ensure that resources are 

available to meet the demands of the patients seeking care.  This concept is not unique 

within the healthcare industry field. Dependent demand arrivals also exist within the 

hotel and airline industries, as well as in product manufacturing. However, in the 

healthcare setting, this is a relatively unexplored topic.   

 Although, batch appointments can increase the productivity and utilization of the 

clinic, there are several challenges that may arise with the acceptance of batch 

appointments.  First, if batched patients are late for their appointment, then the clinic may 

experience longer waiting times for other patients.  In addition, given that the batch fails 
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to arrive without calling (i.e. no-show), then the number of unutilized slots will be 

significantly higher than that encountered with individual appointment requests.   

 To negate the possibility of physicians being idle due to batch patients not 

showing up, we propose the use of overbooking.   First introduced by the airline 

industry in the 1960s, overbooking models determine the optimal booking limit for each 

time period that maximizes the expected revenue, while considering both the probability 

of no-show/cancellations and penalties for exceeding capacity [18].  Overbooking models 

are designed to accept more reservations than the available capacity level [75].  LaGanga 

and Lawrence [86] suggest that overbooking be used as a means to mitigate the negative 

impact of no-shows, improve patient access, and increase provider productivity for 

healthcare clinics. In addition, overbooking is used to stabilize the revenue streams for 

clinics by seeing more patients within a period [92].  

 Although, the healthcare and airline industries have similar objectives in their use 

of overbooking, they differ significantly in their approaches to handling overbooked 

patients.  Unlike the healthcare industry, the airline industry has a fixed capacity in which 

they must consider fair alternative arrangements for overbooked patients [104].  

However, the healthcare industry is able to expand their capacity with the use of 

overtime.  In addition, patient no-shows occur throughout the day; whereas, no-shows for 

the airline customers all occur at a single point in time [86].  Moreover, the healthcare 

industry has very different cost structures than the airline industry in which the primary 

source of payment is through reimbursement from patients’ health maintenance 
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organization (HMOs), government programs like Medicaid or Medicare, or out-of-pocket 

expenses. 

 A major challenge with overbooking models is finding ways to balance the risk 

associated with too few patients showing up  and too many patients showing up [75]. 

Overbooking may also contribute to prolonged patient waiting, which in turn, may 

negatively impact patient satisfaction [92].  Muthuraman and Lawly [59] suggest that the 

longer wait time is a direct result of  more patients arriving to be seen, which causes the  

clinic to experience excessive workloads.  As a result, the clinic is faced with substantial 

changes to its systems dynamics due to an increase in the number of patients that are 

overflowed from slot to slot throughout the day.   Thus,  implementers of overbooking 

must acknowledge that this technique is more appropriate when the product or service 

being sold is perishable for a fixed capacity, which is difficult or too expensive to change 

in a short term [75]. 

 The objective of this research is to study the acceptance of individual and batch 

appointment requests during a finite-horizon using stochastic dynamic programming.  

The model is used to determine if batch appointments negatively impact the clinic’s 

performance (i.e. expected profit and number of patients that are served.  In addition, this 

work examines if overbooking is necessary to increase the likelihood of batch 

appointments being scheduled.  Lastly, this research identifies how the performance 

measures are impacted by the acceptance criteria: individual patients only, batch 

appointments only, and a hybrid of both patient demand types. 
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 The remainder of this chapter is organized as follows.  Section 5.2 examines the 

literature of appointment scheduling systems. Section 5.3 presents the assumptions used 

to construct the finite-horizon stochastic dynamic program.  Section 5.4 explores the 

experimental design used to examine the proposed model.  Section 5.5 presents the 

results and analysis of the model. Section 5.6 summarizes and concludes the objectives of 

this research. 

 

5.2 Literature Review 

 Patient scheduling has been extensively studied by Cayiril and Veral [82], who 

present the fundamental factors of outpatient scheduling based on literature from the 

1950s to early 2000s.  More recently,  Gupta and Denton [26] present some of the 

ongoing challenges and potential research areas for appointment systems.  Therefore, 

readers are directed to their work as this research focuses on overbooking models. Only 

one model to date has examined the impact of batch appointments on patient scheduling 

systems [95].  However, a greater emphasis is placed on how overbooking models are 

implemented under the assumption that patients are independent in their arrival and no-

show rates.  Research in healthcare overbooking is composed of simulation, analytical, 

and mathematical models.  These overbooking models are characterized based on their 

objective, the use of overtime, the allocation of overbooked patients, the number of 

overbooked slots, and the results or insights from the respective model. 

 Using simulation, LaGanga and Lawrence [86] examine the use of appointment 

overbooking to reduce the negative impact of no-shows. The authors also seek to develop 
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a method in which clinical decision makers can determine if they should implement the 

use of overbooking. Thus, the authors construct an analytical utility model that evaluates 

overbooking in terms of trade-offs between the benefits of serving additional patients and 

costs of increased wait time and provider overtime. The model assumes the clinical 

session can be overbooked beyond its normal capacity in which the time interval between 

sessions is reduced proportionately to the number of sessions overbooked. The authors 

acknowledge that overbooking may yield an increase in patient waiting times and an 

increase in clinic overtime even when considering patient no-shows.    However, these 

shortcomings are disproportionately greater for small rather than larger clinics. The 

authors also recognize that when using overbooking, provider productivity declines as 

no-show rates increase, but at a rate that is much lower than without overbooking.  Their 

model also proves that with large no-show rates, overbooking can provide robust 

productivity performance results.  

 LaGanga and Lawrence [90] extend their earlier work to explore various methods 

in which overbooking can be implemented via double-booking, block scheduling, and 

wave scheduling policies.   Again using simulation, the authors’ primary objective is to 

analyze the effects of the placement of the extra appointments in an overbooked 

appointment schedule. They suggest that the challenge with overbooking is determining 

the appropriate allocation of the extra appointments.  In particular, they examine the 

following strategies: adjusting time intervals between appointments, using block 

scheduling of multiple patients at one or more scheduled times, and a combination of 

those approaches to fit extra appointments into the schedule.  For a given show rate, the 
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best schedule is determined by the scheduling rule in itself and the relative performance 

of the alternative approaches. The simplest overbooking schedule compresses all inter 

appointment times by the same show rate factor. This method is proven to perform well 

for the various show rates.  To avoid the need to have “catch-up time” or large 

accumulations of patient wait time, the authors did not recommend scheduling policies 

with very tight appointment slots at any show rate. In addition, the block scheduling of 

multiple patients at the same time are not recommended unless the patients show rate is 

less than or equal to 0.5.  The model also determined that patient wait time can be 

avoided by scheduling one extra appointment at the end of the clinic session when the 

show rate is 0.9. If less overtime is desired, wave scheduling avoids a large accumulation 

of patient wait time anywhere in schedule. The authors also suggest that clinics should 

overbook one extra patient per provider per clinic session. 

 Kros et al. [104]  present an analytical study to determine the  potential costs and 

benefits of overbooking for a clinic appointment schedule.  Their model aims to 

investigate the use of overbooking along with the perceptions and acceptance of its use 

from the healthcare providers. Unlike traditional models that assume costs of 

overbooking are constant over time per overscheduled patient, the authors consider costs 

as a nonlinear function of the overbooking rate and employee burnout.  The employee 

burnout is a result of healthcare providers having to work overtime to ensure that all 

patients are served.  In addition, the authors predict the number of patients scheduled and 

the proportion of no-shows. By modifying the model of LaGanga and Lawrence [86], the 

authors develop an overbooking model that consists of  both the clinic’s scheduling 



122 
 

algorithm and the burnout model. Based on the results of the proposed model, 

overbooking recommendations are implemented in a clinic.  The authors suggest that the 

clinic double-book one morning and one afternoon appointment for each provider 

working a full schedule, as needed. The goal is to increase the overbooking rate as the 

clinic gains confidence and skill.  Overall, the clinic viewed overbooking as a means to 

increase healthcare access without having to increase staffing levels and facility space.    

 Kim and Giachetti [75] propose a stochastic mathematical overbooking model 

(SMOM) to determine the optimal number of patients to accept to maximize the expected 

total profit. Unlike the other models presented thus far, the authors’ goal is to increase the 

number of patients that can be seen without incurring overtime cost.   In addition, their 

model considers both probability distributions for no-shows and walk-ins rather than just 

the probability of no-show.  The authors recognize that implementation of a naïve 

statistical overbooking approach (NSOA), which is based solely on the difference 

between the average number of no-shows and the number of walk-ins, is easier than 

SMOM.  However, SMOM is proven to be a better and more efficient model, since it 

requires tracking of patient no-shows, cancellation, and walk-in rates. Unlike some of the 

other models, the authors did not provide advice on how to allocate the extra 

appointments in the schedule in order to reduce patients waiting times.    

 Chakraborty et al. [108] use multi-objective optimization to examine a sequential 

clinical scheduling model for patients with a general service time distribution and 

multiple no-show probabilities.  They also consider the use of overbooking to ensure that 

all patients will be seen in the event of patients not being serviced within the specified 
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appointment slot. In addition, the model aims to balance the reward and costs for patient 

waiting and staff overtime. Their proposed model obtains a higher expected profit than 

the seven appointment rules proposed by Cayirili and Veral  [82].  Similarly, 

Muthuraman and Lawley [59]  also use multi-objective optimization to develop an 

overbooking process that minimizes patient wait time, maximizes resource utilization, 

and minimizes the number of patients waiting at the end of the day.  With the use of 

overtime, the patients that are waiting at the end of the day are served. The model is 

limited by the options available to the scheduler when considering patients’ preference in 

provider.  In addition, their model attempts to assign patients consecutively by spacing 

them well apart to reduce overflow between slots. In fact, the average number of patients 

that are assigned to the later slots is less than the earlier ones. The authors observed that 

overtime and waiting costs for additional patients increasingly outweigh additional 

revenues. The objective function is also maximized when the number of patient types is 

increased.  This can be attributed to the increase in flexibility made available to the 

decision maker by the large number of patient types.  Finally, the model can be used as a 

prediction tool for clinics seeking to determine their daily profit, since the call-in 

sequence on the schedule profits exhibit a normal behavior. 

 Zeng et al. [92] use a noncooperative game theory model to understand the 

interactions between healthcare clinics and their patients. Based on the patient’s history 

of no-show, the authors propose a selective dynamic overbooking strategy that is used to 

determine if the clinic should allow the patient to be overbooked. In addition, the authors 

implement the naïve statistical overbooking policy that is introduced by Kim and 
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Giachetti [75].  As a result, the authors determined that patients should only be 

overbooked if the clinics are capable of classifying patients in a manner that can be 

utilized to segment the patients into different classes based on whether or not 

overbooking is implementable.  The authors also suggest that clinics monitor and 

evaluate patients continuously based on their no-show record (i.e. identify habitual no-

show patients versus patients that tend to always meet their scheduled appointment).  

 Based on the literature survey, overbooking has been proven to be beneficial to 

scheduling coordinators who aim to increase the productivity of their physicians when 

patient no-shows are present.  However, overbooking models must balance the benefits of 

serving additional patients and the costs associated with patient waiting and physician 

overtime. Prior models in patient scheduling consider patients to be independent in both 

their request for appointments and their no-show rate. These models are predominately 

single provider models. Therefore, a finite-horizon stochastic dynamic program is 

presented, which considers both patient no-shows and physician overtime in a multiple 

provider model.  This research aims to understand the effects of appointment demand 

type (individual versus batch) and overbooking on the proposed patient scheduling 

model. Unlike the models discussed in this section, patients are classified based on their 

appointment demand type and not their no-show probability.  However, each of the 

respective demand types has their own probability of no-show.  In addition, the use of 

overbooking is considered at every appointment slot, given the influx of demand due to 

families requiring multiple appointments.   
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5.3 Problem Description 

 A finite-horizon stochastic dynamic program (SDP) is presented to examine the 

acceptance of various patient demand types.  The model divides the scheduling system 

into stages (i.e. appointment slots/sessions) in which a decision must be chosen at each 

stage.  Based on the decision, the clinic is able to understand how the state at the current 

stage transforms into the state at the next stage [109].  That is identifying the number of 

patients that are prescheduled and have been accepted as a means of overbooking. The 

overall objective of the model is to maximize the clinic’s expected profit.  

 The model is constructed under several assumptions.  For the clinic structure, 

there is a fixed capacity, where each physician is overbooked up to one slot per physician 

per period. However, the number of patients that are served cannot exceed the number of 

physicians available at the clinic.  In addition, the number of patients that are 

prescheduled is constrained by the clinic’s capacity.  The backlog represents the 

overbooked patients that are allowed to wait until the first available physician is idle. 

Therefore, those patients waiting in the backlog mitigates the loss of productivity 

associated with patients failing to meet their scheduled appointment. It also provides the 

clinic with the extra capacity needed to accept additional patients. The model does not 

consider patient-physician matchup.  Each physician is homogenous in workload and 

service time.  The model assumes a single appointment type in which the duration of the 

appointment and the number of periods are fixed. 

 This research considers two patient demand types: individual and batch. Each 

appointment demand type has its own probability of no-show. Patients, who are 
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prescheduled as a batch, are assumed to be dependent.  Therefore, if one patient breaks 

the entire batch breaks.  Prescheduled appointments are known in advance (prior to the 

beginning of the period). Patients that fail to meet there scheduled appointment are 

realized at the beginning of the period.  The number of no-shows is based solely on the 

number of prescheduled patients for each patient class, which follows a binomial 

distribution.   

 At the beginning of each period, the clinic must determine how many patients to 

overbook.  These patients are determined based on the acceptance of either an individual 

or batch appointment request.  The model assumes that the accepted requests arrive at the 

beginning of the kth period and are scheduled to be served in next period, k+1.  At the 

terminal period, there is no decision being made.  However, patients that are not served in 

their initial appointment slot will be served at the end of the planning horizon via 

overtime at a higher cost. As a result, physicians are required to work overtime.  Figure 

24 illustrates the timeline of these events for a single period.   

 
 
 

 

 

 

Figure 24. Events timeline 
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 Using a modified version of Bertsekas [110] notation, the SDP is formally defined 

as follows. Let xk denote the number of patients in the clinic at the beginning of the kth 

period.  This is represented by the aggregated status of the physicians in terms of the 

number of prescheduled individual patients (z1I) and batch patients (z1B), and the number 

of individual (z2I) and batch (z2B) patients in the backlog.  For the SDP model developed 

in this paper, the reservation state is determined by a four-dimensional state vector

),,,( 2211 BIBI zzzz : 

},..1,0,,..1,0},,0{,..1,0|),,,{( 22112211 MzMzbzCzzzzzx BIBIBIBIk =====  (5.1) 

Where MzzCzz BIBI ≤+≤+ 2211 ,   

Here, C denotes the capacity of the clinic and M is the maximum number of patients that 

are allowed to wait. Therefore, the number of patients assigned to the backlog is also 

constrained. The maximum backlog serves as an upper bound for the number of 

appointments that can be overbooked per period.  The number of patients scheduled for a 

batch appointment is based on whether or not a batch request is accepted.   Therefore, the 

value of z1B is restricted to either zero or the batch size (b).  However, the number of 

patients that are overbooked as a batch, z2B, can vary from zero to M.  This is due to the 

possibility of the entire batch not being able to be served in the current period. Therefore, 

the clinic assumes that prescheduled patients have priority over overbooked patients.  In 

addition, patients that are overbooked are willing to wait until the first available physician 

is idle.  In the event that both individual and batched patients are waiting, the individual 

patient has priority over the batched patients.  This ensures that families remain together 

until everyone is serviced.   
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  The decision, uk,, is defined as the number of accepted patients during the kth 

period, where the decision is constrained to )( 22 BIk zzMu +−≤ .  The model evaluates 

four alternatives: (0,0) to reject any request for an appointment, (1,0) to accept a request 

for an individual appointment, (0,2) to accept a request for a batch appointment and (1,2) 

to accept both demand types.  It is worth noting that in clinical settings, the rejected 

patients are scheduled for a future date and time.  This work only assumes that the 

rejection of appointment request signify that the clinic is unable to serve the overbooked 

patients within the next period.  Although uk is represented by two-dimensions, the 

decision is expanded to )}2,1(),2,0(),0,1(),0,0(|),0,0{( == dduk . This expansion is 

necessary to ensure that
 
both the number of individual (z2I) and batched (z2B) patients that 

are waiting and/or accepted are included. The backlog is updated based on the decision.  

 Two events occur that cause the transition from the current state, xk, to the future 

state, xk+1: patient arrivals and no-show. The patient arrivals are deterministic for each 

patient class.   Therefore, the presence of no-shows is the only stochastic event that 

occurs, in which the random variable wk is defined as the number of patients that do not 

show during the kth period.  Let n1I and n1B represent the possible no-show values for 

each of the respective demand types. The model assumes that the probability of no-show 

differs for individual )|( 1Ik zwp and batch appointments )|( 1Bk zwp .  As previously 

mentioned, the probability of no-show for individual patients is based on the binomial 

distribution (Eq. 5.3). However, the probability distribution for batched patients is strictly 

based on the Bernoulli trial in which the group of patients either shows ( )|(1 1 Bk zwp− ) 

or does not show ( )|( 1Bk zwp ).  If no patients are prescheduled, then the probability of 
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no-show is equal to 1. The effects of each of these events on the respective demand types 

are expressed as follows. 

}},0{,..1,0|)0,0,,{( 111111 BBIIBIk znznnnw ===
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For batched patients:  
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Thus, the future state is function of the number of patients in the clinic, xk, the number of 

patients that do not show, wk, and the number of accepted patients, uk. The future state 

and transition probability are derived as follows.   
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Equation 5.5 determines the number of patients in the system that require care after the 

patients that fail to meet their appointment are accounted for. As noted, yk is reduced to a 
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scalar in which the L1-norm is computed as ∑
=

=

4

1n

n1k yy . If the total number of patients 

exceeds the number of physicians, then the patients that are unable to get served is 

expressed in Equation 5.6. Recall, the individual backlogged patients have priority over 

the batch backlogged patients. Therefore, the backlog for individuals is updated by the 

total number of prescheduled patients (post no-show computation) and the existing 

individual backlog. If every patient within the individual backlog are served, then the 

batch backlog is updated. As evident in Equation 5.7, the future state, xk+1, is based on 

both the prescheduled appointments for the future period and the number of patients that 

have been carried from the previous period. Those patients that have been carried are a 

function of the number of patients that are unable to be served in the current period, ok, 

and the acceptance of overbooked patients, uk. In addition, ok is equal to zero if 1ky is 

less than or equal to the number of physicians. Equation 5.8 computes the transition 

probability given that the system is in current state xk and will transition to future state 

xk+1. 

 The reward functions are formulated as follows, where d)min(c,d)(c =∧ :   
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Where k is the discrete time index and N is the planning horizon.  With dynamic 

programming models, the optimal expected profit is calculated using backward recursion 

in which the model computes the reward starting at period N-1 to the ending period at 0.  

Equation 5.9 represents the terminal reward incurred at the end of the clinical workday 

which encompasses both the revenue, r, obtained from serving the remaining backlog and 

the penalty cost for the physicians’ having to work overtime, λ2.  Equation 5.10 calculates 

the expected reward with respect to the probability distribution of wk given the clinic has 

xk patients in the system at the start of period k.  This expectation is a function of the state 

of the system (xk) and the decision (uk).  In addition, Equation 5.11 generates the profit 

that is accumulated over time, k, based on the total number of patients in the system that 

requires care. Equation 5.11 is also composed of the following cost parameters: the 

revenue generated from serving a patient (r), the cost associated with having unutilized 

appointment slots (λ1), and the cost associated with the physicians’ overtime (λ2).   For 

each period, the model also examines the following performance measures: the total 

expected profit incurred, J0(x0), and the number of patients that are accepted/overbooked. 

The latter is determined by the total number of patients that are accepted in each period 

over the entire planning horizon (Eq. 5.12).  

 

5.4 Computational Study 

 To explore the proposed model, several experiments are conducted to examine the 

acceptance of individual versus batch appointment requests. The initial state of the clinic 

is known and the clinic operates from 8:00 AM to 5:00 PM. Therefore, the planning 
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horizon is equal to eight when the appointments are scheduled for a duration of one hour. 

Since a portion of the state space is represented by the prescheduled appointment type 

(which is needed to determine the no-show rates), several sample prescheduled states are 

generated over the planning horizon. Table 23 provides the actual prescheduling 

sequence for each period and experiment, where periods 0 to 3 represent the morning 

session and periods 4 to 7 the afternoon.  

 For the first six schedules, this work considers each possible prescheduled state 

and assumes it is the same for every period.  Schedules 7 and 8 represent the cases where 

each physician is fully utilized for half of the planning horizon; whereas, 7 considers 

prescheduled individual patients and 8 considers a prescheduled individual and batch 

appointment. Schedules 9 and 10 consider only one demand type for half of the planning 

horizon as well, but the clinic is not fully utilized (to capacity). Next, schedules 11 and 12 

represent the cases in which one demand type is scheduled for half of the planning 

horizon and the other demand type is scheduled thereafter. In the final analysis, different 

combinations in which each physician is scheduled with either only individual patients or 

both demand types are represented by schedules 13 through 15.   

 For each scheduling sequence, the optimal scheduling policy is identified based 

on the acceptance of individual patients only, batch appointments only, and a hybrid of 

both patient demand types for various probabilities of no-show. With both the individual 

and batch only models, the clinic is constrained to only accepting the respective decision 

or rejecting the request entirely.  However, the model still considers each demand type 

for the prescheduled patients. These acceptance criterions are also examined for the best, 
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observed and worst case scenarios, which are based on the no-show probabilities for each 

of the patient demand types.  The best case represents the scenario in which every 

prescheduled patient meets their prescheduled appointment (i.e. the probability of no-

show is equal to zero); whereas, the worst case assumes every patient fails to meet their 

prescheduled appointment (i.e. the probability of no-show is equal to one). The observed 

case is based on the respective probabilities of no-show for batch and individual patients 

at a public dental clinic, where individual patients experienced a no-show rate of 0.187 

and patients scheduled in a batch of two at 0.208 [101].   

 
 
 

Table 23. Prescheduled appointments sequence when planning horizon is eight 

Schedule 
Period 0 Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7 

8:00 AM 9:00 AM 10:00 AM 11:00 AM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 

1 (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) 

2 (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) 

3 (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) 

4 (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) 

5 (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) 

6 (3,0) (3,0) (3,0) (3,0) (3,0) (3,0) (3,0) (3,0) 

7 (3,0) (3,0) (3,0) (3,0) (0,0) (0,0) (0,0) (0,0) 

8 (1,2) (1,2) (1,2) (1,2) (0,0) (0,0) (0,0) (0,0) 

9 (0,2) (0,2) (0,2) (0,2) (0,0) (0,0) (0,0) (0,0) 

10 (1,0) (1,0) (1,0) (1,0) (0,0) (0,0) (0,0) (0,0) 

11 (1,0) (1,0) (1,0) (1,0) (0,2) (0,2) (0,2) (0,2) 

12 (0,2) (0,2) (0,2) (0,2) (1,0) (1,0) (1,0) (1,0) 

13 (3,0) (3,0) (3,0) (3,0) (1,2) (1,2) (1,2) (1,2) 

14 (3,0) (1,2) (3,0) (1,2) (3,0) (1,2) (3,0) (1,2) 

15 (1,2) (3,0) (1,2) (3,0) (1,2) (3,0) (1,2) (3,0) 
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 In addition, this research determines the impact of the acceptance of individual 

only, batch only, and both demand types on the total expected profit incurred and the 

number of patients that are accepted.  These experiments provide insight on the 

acceptance of each of the respective patient demand types that will best suit the needs of 

a clinic. The optimal scheduling policy is also generated for each possible state. The cost 

parameters are derived based on the actual maximum expected reimbursed revenue 

provided by the clinic at $135. It is assumed that the overtime penalty is equal to 40% of 

the revenue; whereas, the penalty for unutilized slots is 10% of the revenue. The model 

assumes the penalty for unutilized slots will always be less than the penalty for 

physicians’ overtime.  Table 24 summarizes the levels of sensitivity and the associated 

values for each observed parameter. 

 
 
 

Table 24. Parameters for sensitivity analysis 

Parameter Level Values 

Clinic’s Capacity (C) 1 [3] 

Maximum Backlog (M) 1 [ C] 

Maximum Batch Size (b) 1 [2] 

Individual Probability of No-show )|( 1Ik zwp   3 [0, 0.2, 1.0] 

Batch Probability of No-show )|( 1Bk zwp  3 [0, 0.2, 1.0] 

Revenue (r) 1 [$135] 

Overtime Penalty (λ1) 1 [$54] 

Unutilized Penalty(λ2) 1 [$13.50] 
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5.5 Results 

5.5.1 Scheduling policies 

 Identifying the optimal number of overbooked patients is essential to 

understanding the behavior of the system.  Tables 25 through 27 display the structure of 

the optimal policy for each of the scheduling sequences and probabilities of no-show.  

This research examines these policies for the best, observed, and worst case scenarios.  In 

practice, the scheduling coordinator may decide to overbook the initial appointment slot 

to ensure that the physicians are not idle for multiple periods (if patients do not show up 

for the earliest appointment slot).  In this case, the total number of patients that are 

overbooked can vary from zero to three.   Therefore, this analysis is geared to the 

scenario in which every physician is double booked in initial period.   

5.5.1.1 Best case 

 In regards to the best case scenarios, Table 25 demonstrates how the acceptance 

of each demand type varies for each schedule and period.   As evident from the table, 

there is a time lag in which patients are overbooked.  This is due to the fact that the 

accepted patients are not served until the next period and that the decision to overbook 

patients is based primarily on the number of patients in the existing backlog.  This 

behavior is more evident with schedules 1, 2, 5, and 7 through 11.  Schedule 1 is the only 

schedule that accepts three patients (both individual and batch requests) at every other 

period.  Here, each physician is idle for each period, which in turn, guarantees that the 

overbooked patients will be served in the next period.  This scheduling sequence is idle 

for cases in which the scheduling coordinator is only accepting same-day appointment 
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requests. Schedules 7 through 10 also experience similar behavior when there are no 

prescheduled patients from periods 4 through 7.  Again, this sequence is idle for clinics 

who restrict when prescheduled patients are scheduled.  Thus, the clinic should only 

accept both demand types when there are enough physicians to serve everyone.   

 

 

 

Table 25. Optimal scheduling policies for best case  

Schedule\Period 0 1 2 3 4 5 6 7 

1                 

2     

3     

4     

5     

6     

7     

8     

9     

10     

11     

12     

13     

14     

15                 

Legend:   (0,0) (1,0) (0,2) (1,2) 

 

 
 
 
Schedules 2, 5, and 11 represent the cases in which only individual patients are 

accepted.  This can attributed to the fact that each of these scheduling sequences has two 

patients prescheduled as either individuals or as a batch from periods 4 to 7.   This 

suggests that the acceptance of overbooked patients is primarily influenced by the 

scheduling sequence of patients in the afternoon.  In addition, the number of patients that 
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are carried in the backlog from period to period is reduced as the time in day increases. 

Both schedules 3 and 12 accept batched patients in the morning; whereas, individual 

patients are booked in the afternoon.  These schedules both have only one patient 

scheduled in the afternoon.  However, schedule 12 has a batched group in the morning; 

whereas schedule 3 has only a single patient.  Under these scheduling sequences, patients 

are overbooked in consecutive periods (5 and 6).  This implies that the model is aiming to 

reduce or avoid the long-term penalty associated with carrying a large number of patients 

in the backlog at the end of the day. In regards to the other schedules, the model rejects 

all appointment requests when each physician is scheduled with either all individual 

patients or a combination of both individual and batched patients.  

5.5.1.2 Observed case 

 At a glance, we notice that the best and observed case scenarios presented very 

similar scheduling policies, which is evident from Table 26.  For both cases, schedule 1 

accepts three patients (both individual and batch requests) at every other period; while 

schedules 7 through 10 also accept three patients but in the afternoon sessions only 

(periods 4 and 6).  Schedules 3 and 12 overbook batched patients in the morning; 

whereas, individual patients are booked in the afternoon.  In addition, only individual 

patient request are accepted in periods 0, 2, and 4 for schedules 2, 5 and 11.  

 However, due to patients failing to meet their scheduled appointment, the model 

only overbooks an additional patient for schedule 5 at period 5.  Although the probability 

of no-show in a natural setting seems slightly high, the model does not take on the risk of 

overbooking patients when the total number of patients exceeds the number of 
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physicians.  The total number of patients is a function of both the number of prescheduled 

patients and the number of patients waiting in the backlog.  As a result, the number of 

patients that are left waiting at the end of the appointment slot is expected to decline as 

the probabilities of no-show for each demand type increases. 

 
 
 

Table 26. Optimal scheduling policies for observed probabilities 

Schedule\Period 0 1 2 3 4 5 6 7 

1                 

2     

3     

4     

5     

6     

7     

8     

9     

10     

11     

12     

13     

14     

15                 

Legend: (0,0) (1,0) (0,2) (1,2) 

 

 

 

 

5.5.1.3 Worst case 

 The final case represents the event in which the prescheduled patients are 

guaranteed to not show up for their scheduled appointment.  From Table 27, the model 

only accepts patients when no one is scheduled as a prescheduled appointment.  This is 
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illustrated by schedules 1 and 7 through 10.  These schedules also experienced the same 

behavior in the other two cases.  In fact, it seems counterintuitive that the model never 

overbooks patients for the remaining schedules, given the high no-show rate for 

prescheduled patients.  However, by examining the expected reward for each period, the 

model is not profitable and never recovers from the patients initially failing to meet their 

scheduled appointments at the end of day (given the model is computed from the end of 

the day until time 0).  Thus, this implies that by examining the optimal policies is only 

the initial phase of understanding the behavior of the model. 

 
 
 

Table 27. Optimal scheduling policies for worst case  

Schedule\Period 0 1 2 3 4 5 6 7 

1                 

2     

3     

4     

5     

6     

7     

8     

9     

10     

11     

12     

13     

14     

15                 

Legend:   (0,0) (1,0) (0,2) (1,2) 
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5.5.2 Financial impact 

 To investigate the impact of the no-show probabilities, the behavior of the system 

is studied in terms of the expected profit.  Figure 25 illustrates the total expected profit 

for each schedule sequence and probability of no-show. As expected, only schedule 1 

proves to generate the same expected profit regardless of the no-show rate.  Again, this is 

due to the fact that there are no patients prescheduled during this scheduling sequence.  

This scheduling sequence is ideal in clinical settings that only allow patients to make 

request on the same-day that they require services.   

 The figure also suggests that clinic is most profitable when the prescheduled 

patients are guaranteed to be present at their appointment.  However, only schedules 14 

and 15 yield the smallest expected profit under this condition. These schedules represent 

a combination of all individual patients or either both an individual and one batched 

group, where each physician is scheduled with a patient at every period. Under these 

scheduling sequences, the model is still receiving compensation from the number of 

patients that are waiting at the terminal period.   This notion generates an interesting 

perspective of the impact of the overbooking patients in advance in order to mitigate any 

loss in patients failing to meet their scheduled appointment (in this case 3).   For the 

remaining schedules, there is a decline in the expected profit as the probabilities of no-

show are increased.  This is expected given that the clinic is profitable when 

prescheduled patients meet their scheduled appointment and additional patients are 

served when overbooking is allowed.    
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Figure 25. Expected profit when the probabilities of no-shows are varied 

  
 
 
 

5.5.3 Effects of appointment demand type 

 In the previous section, the effects of the appointment demand type on the 

proposed model are examined.  In this section, the system is explored in terms of the 

acceptance criteria under the predetermined performance measures.  Figure 26 displays 

the total number of patients that are accepted during the planning horizon for each 

scheduling sequence.  Figure 26(a) suggests that the hybrid model (which considers every 

possible decision) does not necessarily generate the largest number of overbooked 

patients than the models that are restricted to accepting individual only or batch only. In 

fact, the batch only model accepted the most patients for schedules 2, 3, 10, and 11.  With 

each of these schedules, only one appointment demand type was scheduled in a single 

period. In addition, the model tends to accept the additional batched patients when the 

total number of patients in the system is less than the number of physicians or when the 
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number of waiting patients is less than the batch size.  Again, this is not surprising given 

the additional resources that are needed to serve both patients.  However, by accepting 

batch appointments as overbooked rather than prescheduled patients, helps mitigate the 

possibility of these patients failing to meet their scheduled appointments.  This, in turn, 

increases the productivity of the physicians but it decreases the total expected profit since 

the physicians may have to work overtime to ensure every patient is served.   

 
 
 

 

Figure 26. Total number of overbooked patients during planning horizon 

 
   
 
 
 From the figure, the individual only case never accepts more patients than the 

other two models. Since individual patients are independent among each other, the 

acceptance of a single appointment request is less likely if there is at most one physician 

idle.  However, the models performed the same for schedules 4 through 6 and 13 through 

14.  Schedule 5 accepted four patients regardless of the model type; whereas, the other 

schedules did not overbook anyone.    
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 As with Figure 26(b), the acceptance for the hybrid model is decomposed by 

whether or not a single demand type is accepted or both.  More individual patients are 

accepted for schedules 2, 5, and 11, where the majority of the prescheduled appointments 

are for two individuals or a batched group in the afternoon (periods 4 to 7).  Schedules 3 

and 12 accepted more batched patients where only one individual is prescheduled from 

periods 4 to 7.  This suggests that the model is highly influenced by the scheduling 

sequence of patients in the latter part of the day (i.e. afternoon).  Both demand types were 

only accepted in schedules that did not have prescheduled patients (schedules 1 and 7 

through 10).  In general, patients are not overbooked when the total number of patients in 

the clinic exceeds the number of physicians and/or when the backlog has reached its 

capacity.  This is also attributed to the increase in overflowed patients which reduces the 

objective function significantly.  Therefore, the clinic has to balance the risk associated 

with patients not showing up rather than incurring the additional cost of physician 

overtime by accepting overbooked patients.   

 Based on each of the acceptance criteria, Figure 27 compares the expected profit 

for the respective schedules.  In general, there is only a slight difference among the 

acceptance criteria for most of the schedules.  Similar to figure 3(a), the individual only 

model produced the least in terms of the expected profit performance measure.  The 

hybrid model is the highest with schedules 1, 3, and 9; whereas, the batch only model is 

the highest with schedules 2, 5, 7 and 8.  These results coincide with those found in figure 

26(a) in terms of the total number of patients that are overbooked.  Therefore, the hybrid 

model performs better than the models that restrict the acceptance criteria when 
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additional patients could have been overbooked due to multiple physicians being idle.  

This also suggests that clinic can benefit from overbooking batched patients if the risk is 

too immense to schedule this demand type in advance. However, scheduling coordinators 

must minimize the amount of time overbooked patients have to wait to be seen. 

 
 
 

 

Figure 27. Comparison of expected profit when decision is restricted 
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whereas, a single individual patient is booked in the afternoon.  This scheduling sequence 

provides a better understanding of how each demand type influences the acceptance of 

overbooked patients.  Figures 28 and 29 represent the results of varying the respective 

probability of no-show when the accompanying probability of no-show is equal to 0.2 

(the observed value).   

 
 
 

 

 Figure 28. Overbooked patients when probabilities are varied 
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In this case, the entire batch that is accepted (in period 2) is served in period 3, if the 

prescheduled batched patients fail to meet their scheduled appointment. Otherwise, one 

patient within the batch is served in period 3, while the other patient is not served until 

period 4.  This suggests that the waiting time for batch patients is minimized.    

 The figure also illustrates how more patients are accepted as the no-show rate for 

individual patients is varied from 0.4 to 0.6, while the no-show rate for batched patients 

remains fixed. This is expected given that the general assumption with batch patients is 

that if one person breaks their appointment than the entire batch will break.  In fact, the 

optimal policy suggests that patients only be accepted in the afternoon, where only one 

patient is prescheduled. As the no-show rate for individuals is increased, batch 

appointment requests are accepted in periods 4 and 6; whereas, only one patient is 

scheduled in period 5. This is implies that more patients are accepted when there is a 

chance that all of the patients will be served in their allocated time slot.  Again, this is 

achieved with the acceptance of both individual and batched patients throughout the 

planning horizon.   However, the total number of patients that are overbooked is 

consistent until the no-show rate is equal to 1 when the no-show rate for individual 

patients is fixed.  This is due to the physicians being idle at each period which negatively 

impacts both their expected profit and utilization.    

 As evident in Figure 29, the total expected profit differs significantly for batched 

versus individual patients as the respective probability of no-show is varied.  For a fixed 

no-show rate for individual patients, the figure illustrates how the expected profit 

decreases as the no-show rate for batched patients increases.  Again, this is a result of the 
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effects of batched patients failing to meet their scheduled appointment.  When this 

occurs, the physicians are less productive which in turn negatively impacts the clinics 

efficiency.  However, the clinic is able to recover some of the loss of profit with the use 

of overbooking as seen in Figure 28. This demonstrates how critical it is for clinics to 

understand their patient’s no-show behavior prior to accepting and scheduling batch 

appointments.   

 
 
 

 

Figure 29. Expected profit when probabilities are varied 
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appointment demand types when overbooking is allowed.  However, in terms of the 

clinic’s performance measures, the impact of the variability of individual patients yields 

better results than that that observed by batched patients.  This is attributed to fact that 

batched patients are dependent among each other, which in turn, increases the complexity 

of scheduling these patients.  Thus, when considering multiple appointment demand 

types, the scheduling coordinator must optimize their ability to schedule each of the 

demand types in a manner that increases both the clinic’s profitability and physicians’ 

productivity. 

 

5.6 Conclusion 

 This paper has examined the effects of scheduling independent versus dependent 

patients.  A finite-horizon stochastic dynamic programming model has been developed to 

study the impact of these appointment demand types on the clinic’s profitability and the 

physicians’ productivity. Current research in patient scheduling does not consider the 

influences of dependent demand. Therefore, this research demonstrated the use of 

overbooking to mitigate the risk associated with patients being dependent among each 

other in terms of their arrival and probability of no-show.  In general, when the 

scheduling coordinator is certain that prescheduled patients will fail to meet their 

appointment, then the acceptance of overbooked patients is strictly based on the number 

of patients that are currently waiting in the backlog.  However, if prescheduled patients 

are known to show up as planned, then the acceptance of overbooked patients is based on 

the total number of patients in the system (i.e. prescheduled and waiting).  In fact, the 
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optimal policy determined from the model suggests that rejections only occur when the 

total number of patients in the system is greater than or equal to the number of physicians 

in the clinic.   

 Due to the uncertainty of patients meeting their scheduled appointment, batched 

patients are overbooked when the total number of patients in the system is less than the 

number of physicians or when the number of waiting patients is less than the batch size.  

This is due to the influx in demand which requires additional resources to be needed in 

order to ensure that the entire group will be served.  However, by accepting batch 

appointments as overbooked rather than prescheduled patients helps, mitigate the 

possibility of these patients failing to meet their scheduled appointments.  This, in turn, 

increases the productivity of the physicians but it decreases the total expected profit since 

the physicians may have to work overtime to ensure every patient is served.  

 In addition, the clinic can remain profitable given the variation of probability of 

no-show for each of the appointment demand types when overbooking is allowed.  

However, in terms of the clinic’s performance measures, the impact of the variability of 

individual patients yields better results than that observed by batched patients. Therefore, 

when considering multiple appointment demand types, the scheduling coordinator must 

optimize their ability to schedule each of the demand types in a manner that increases 

both the clinic’s profitability and physicians’ productivity. 

 Finally, this work has demonstrated both the need to consider independent and 

dependent patients and the benefits of overbooking. Future research areas include 

determining the actual optimal scheduling rule based on various batch sizes and 
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examining the allocation of patients to physicians within the scheduling paradigm. 

Recall, we assumed that the maximum number of overbooked appointments are known.  

As a result, the model is limited to various batch sizes.  Therefore, additional research in 

this area can consider the best approach to balance the needs of batched patients and the 

healthcare providers. The model can also be extended to explore the effects of when only 

one appointment demand type can be overbooked in each period.  With the change in 

scheduling approaches, healthcare providers can gain further insight of the impact of 

dependent demand arrivals. 
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CHAPTER 6 

Conclusion 

 

 
 The intent of this research was to introduce and explore the concept of batch 

appointment scheduling.  First, this work determined the prevalence of batch 

appointments at public and private pediatric dental clinics, in which, patients that are 

scheduled within a batch are proven to be dependent among each other.  This dependency 

affects both patients’ arrival and no-show rate.  In fact, the clinics studied for this 

research experience batch appointment requests at nearly 42%. This research also 

determined that overall patients at the private clinic had a significantly lower no-show 

rate at 2%; whereas the public clinic experienced a no-show rate of 18%.  

 Using multivariate statistical analysis, this work identified (for both clinics) if 

there is a relationship among the appointment demand type, patient behavior, and reason 

for the appointment.  As a result of the full effect model developed using multiway 

frequency analysis, there is no significant relationship among the appointment demand 

type, patient behavior, and reason for the appointment variables.  Based on the second 

order effect, each clinic experienced that operative requests are significantly higher for 

individual rather than batch appointments. Based on the logistic regression model, 

equations were generated to determine which variables contribute to the probability of 

patients meeting their scheduled appointment. In fact, it is not necessarily if the patient is 

scheduled within in the batch, but how many patients that are scheduled within the family 

or group.  
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 Next, a decision-making model is developed to assist scheduling coordinators in 

determining when to accept or reject batch appointment request under an open-access 

scheduling system. Therefore, a discrete-time, discrete-space, stationary infinite-horizon 

Markov decision process (MDP) model was constructed to study the impact that batch 

arrivals have on this scheduling system. This research was motivated by a pediatric dental 

clinic who was interested in transitioning from a traditional scheduling system to an 

open-access scheduling system.  However, due to unforeseen events, the actual 

implementation of open-access scheduling was never completed.  Therefore, the MDP 

model presented here serves as a theoretical guide to how batch appointments influences 

the clinic’s profitability and physician’s utilization at various prescheduled appointment 

ratios.  The model also explores the use of overbooking in order to increase the likelihood 

that batch appointment requests are accepted.  

Although batched patients were accepted when overbooking is not allowed, the 

MDP model is only able to serve up to the number of physicians.  In a practical setting, 

this implies that the physicians will have to work overtime in the event that patients are 

still waiting in the backlog at the end of the period.  This demonstrates the importance of 

considering the use of overbooking in the initial phases of planning rather than requiring 

physicians to work overtime unexpectedly. In general, the optimal scheduling rule 

obtained from the MDP model suggests the batch appointment requests should always be 

accepted regardless of the number of patients prescheduled and the maximum 

overbooking limit, when the probability of no-show/cancellation for each prescheduled 

appointment is greater than or equal to 0.50. The clinic should always reject a request for 
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batch appointment when the probability of no-show is less than or equal to 0.10 and the 

number of patients either with a physician and/or waiting in the backlog is greater than 

the number of physicians in the clinic. However, in spite of the probability of no-show, 

batch appointment requests are accepted when the number of patients either with a 

physician and/or waiting in the backlog is less than the number of physicians in the clinic.  

Based on the information presented in the case study and MDP model, this 

research was extended to examine the influences of scheduling both independent and 

dependent demand arrivals.  In the final model, a finite-horizon stochastic dynamic 

programming model was developed to study the impact of these appointment demand 

types on the clinic’s profitability and the physicians’ productivity. Again, this work 

demonstrated the use of overbooking to mitigate the risk associated with patients being 

dependent among each other in terms of their arrival and probability of no-show. 

However, unlike the MDP model, the acceptance of appointment request is restricted to 

the number of patients that are carried over from period to period and not prescheduled 

patients.  This assumption is more aligned with the actual behavior of clinical 

environments, where patients may not be overbooked in every period.   

The results of the optimal policies indicate that when the scheduling coordinator 

is certain that prescheduled patients will fail to meet their appointment, then the 

acceptance of overbooked patients is strictly based on the number of patients that are 

currently waiting in the backlog.  However, if prescheduled patients are known to show 

up as planned, then the acceptance of overbooked patients is based on the total number of 

patients in the system (i.e. prescheduled and waiting).  In fact, the optimal policy 
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determined from the model suggests that rejections only occur when the total number of 

patients in the system is greater than or equal to the number of physicians in the clinic.  

This is similar to the results found in the MDP model.  

 Due to the uncertainty of patients meeting their scheduled appointment, batched 

patients are overbooked when the total number of patients in the system is less than the 

number of physicians or when the number of waiting patients is less than the batch size.  

This is due to the influx in demand which requires additional resources to be needed in 

order to ensure that the entire group will be served.  However, by accepting batch 

appointments as overbooked rather than prescheduled patients, helps mitigate the 

possibility of these patients failing to meet their scheduled appointments.  This, in turn, 

increases the productivity of the physicians but it decreases the total expected profit since 

the physicians may have to work overtime to ensure every patient is served.  

 In addition, clinics can remain profitable given the variation of probability of no-

show for each of the appointment demand types when overbooking is allowed.  However, 

in terms of the clinic’s performance measures, the impact of the variability of individual 

patients yields better results than that observed by batched patients. Therefore, when 

considering multiple appointment demand types, the scheduling coordinator must 

optimize their ability to schedule each of the demand types in a manner that increases 

both the clinic’s profitability and physicians’ productivity. 

 Finally, this work has demonstrated both the need to consider independent and 

dependent patients and the benefits of overbooking. However, clinics must determine the 

optimal number of patients that they are willing to allow to wait in the backlog to be seen 
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by an idle physician and the actual value of patient dissatisfaction due to waiting.   The 

results of the statistical models can assist the scheduling coordinators at each clinic in 

determining which batch appointment requests to accept given the reason for the 

appointment and probability of no-show. Based on the clinical data, we determined that 

the probability of no-show is higher for those patients requesting batch appointments 

versus individual requests.  As a result, clinics must understand the history of each family 

not meeting their scheduled appointment prior to accepting their request for multiple 

appointments.  This will help the clinics manage the risk of scheduling batch 

appointments.   

 Future research areas include determining the actual optimal scheduling rule 

based on various batch sizes and examining the allocation of patients to physicians within 

the scheduling paradigm.  However, it is also important to explore the impact of the 

patient’s demographics on no-show rates and batch appointment requests.   The 

demographics will consist of the patient’s ethnicity, income level, insurance provider, 

family size, single parent or both parents, etc.   By adding these demographic indicators, 

healthcare providers are able to further investigate the difference between clinic types and 

family sizes.  Additional research in this area can also consider the best approach to 

balance the needs of batched patients and the healthcare providers. The model can also be 

extended to explore the effects of when only one appointment demand type can be 

overbooked in each period.  With the change in scheduling approaches, we hope to gain 

further insight of the impact of dependent demand arrivals. 
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APPENDIX A 

 SAS Code 

 
Multiway Frequency Analysis 
 
data reading; 

input batch$ status$ reason$ freq; 

cards; 

 

[ACTUAL DATA] 

; 

 

ods rtf; 

proc catmod; 

weight freq; 

model batch*status*reason=_response_/noiter ; 

loglin batch|status|reason; 

run; 

 

proc freq; 

tables batch*status*reason batch*status batch*reason status*reason 

batch status reason/ all; 

weight freq; 

run; 

 

ods rtf close; 

 
Logistic Regression 
 

data broken; 

input day status provider reason duration size batch;   

 

if status=1 then sched=1; else sched=0; 

if status=2 then noshow=1; else noshow=0; 

 

if day=1 then monday=1; else monday=0; 

if day=2 then tuesday=1; else tuesday=0; 

if day=3 then wednesday=1; else wednesday=0; 

if day=4 then thursday=1; else thursday=0; 

 

if provider=1 then dentist=1; else dentist=0; 

if provider=2 then hygienist=1; else hygienist=0; 

 

if reason=1 then recall=1; else recall=0; 

if reason=2 then operative=1; else operative=0; 

 

if duration=1 then lessorequal20=1; else lessorequal20=0; 

if duration=2 then equal30=1; else equal30=0; 

if duration=3 then equal40=1; else equal40=0; 

if duration=4 then equal50=1; else equal50=0; 

if duration=5 then equal60=1; else equal60=0;  
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if size=1 then size1=1; else size1=0; 

if size=2 then size2=1; else size2=0; 

if size=3 then size3=1; else size3=0; 

if size=4 then size4=1; else size4=0; 

if size=5 then size5=1; else size5=0;  

 

cards;  

 

[ACTUAL DATA] 

; 

 

ods rtf; 

proc logistic descending; 

model   sched noshow= monday tuesday wednesday thursday dentist 

hygienist recall operative lessorequal20 equal30 equal40 equal50 

equal60 size1 size2 size3 size4 size5 batch/selection=stepwise;  

run; 

 

ods rtf close; 
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APPENDIX B 

 Matlab Code for MDP 

 
Policy iteration code 
 

function [export_matrix]=Policy_iter6() 
%%% 

  
clear; 
clc; 

  
format short; 

  
%Input parameters 
MaxB = 0; 
Cp = 3; 
BS = 2; 

  
revenue_patient = 135; 
penalty_backlog = 54; 
penalty_unutilized = 13.5; 

  
total_column = 14+2*(MaxB+1)*(Cp+1); 
export_matrix = zeros(1,total_column); 

  
    for prob_ns_iteraction=1:11  %%%  
    switch prob_ns_iteraction 
        case 1 
            prob_ns = 0; 
        case 2 
            prob_ns = 0.1; 
        case 3 
            prob_ns = 0.2; 
        case 4 
            prob_ns = 0.3;           
        case 5 
            prob_ns = 0.4; 
        case 6 
            prob_ns = 0.5; 
        case 7 
            prob_ns = 0.6; 
        case 8 
            prob_ns = 0.7; 
        case 9 
            prob_ns = 0.8; 
        case 10 
            prob_ns = 0.9; 
        case 11 
            prob_ns = 1; 
    end; 
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for prob_BA_iteraction=1:11   
    switch prob_BA_iteraction 
        case 1 
            prob_BA = 0; 
        case 2 
            prob_BA = 0.1; 
        case 3 
            prob_BA = 0.2; 
        case 4 
            prob_BA = 0.3;           
        case 5 
            prob_BA = 0.4; 
        case 6 
            prob_BA = 0.5; 
        case 7 
            prob_BA = 0.6; 
        case 8 
            prob_BA = 0.7; 
        case 9 
            prob_BA = 0.8; 
        case 10 
            prob_BA = 0.9; 
        case 11 
            prob_BA = 1; 
    end; 
     

[p_full,busy_dist,q,noshow_prob,state1]=ClinicSched3(MaxB,Cp,revenue_pa

tient,penalty_backlog,penalty_unutilized,prob_ns,prob_BA, BS); 
     %function [pi,P]=ClinicSched(MaxB,Cp) 
     %Cp = Maximum number of physicians 
     %MaxB = Maximum # of patients that can be in backlog 
     %prob_ns = noshow_prob; 

  
     [size_p_full_x,size_p_full_y,size_p_full_d] = size(p_full); 
     size_p = size(p_full,2); 

  
     %%%%%%% Policy Iteration 
     %%%%% Generate the first policy [1 1 1 ....] 
     for i=1:size_p 
         d(i,1)=1; 
     end; 

  
     %%%%%% Calculate the q_full for the test step 
     % for k=1:size_p_full_d 
     %     for i=1:size_p 
     %         sum_pr = 0; 
     %         for j=1:size_p 
     %             sum_pr = sum_pr + (p_full(i,j,k)*r_full(i,j,k)); 
     %         end; 
     %         q(i,k)=sum_pr; 
     %     end; 
     % end; 
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     gain = -9999; 
     for a=1:100 
         %%%%%%% Beginning of the algorithm 
         results = zeros(1,5); 

  
         p = zeros(size_p,size_p); 
         for k=1:size_p 
             p(k,:)=p_full(k,:,d(k)); 
             %r(k,:)=r_full(k,:,d(k)); 
         end; 

          
         %Calculate steady-state probabilities 
         I = eye(size_p); 
         A = (I - p); 
         A(:,size_p) = 1; 

  

          
        %b treatment 
        b = zeros(size_p,1); 
        b(size_p,1) = 1; 
        bT = b'; 

         
        %steady state pi vector 
        pi = bT*inv(A); 

  
         x = inv(A)*q; 
         new_gain = x(size_p,1); 

  
         v=zeros(size_p,1); 
         for i=1:size_p-1 
             v(i,1)=x(i,1); 
         end; 

  
         %%%% Test step 
         for i=1:size_p 
             for k=1:size_p_full_d 
                 sum_pv=0; 
                 for j=1:size_p 
                     sum_pv = sum_pv + (p_full(i,j,k)*v(j)); 
                 end; 
                 results = [results;i k q(i,k) sum_pv q(i,k)+sum_pv]; 
             end; 
         end; 
         %%%%% Exclude the first zeros matrix line 
         if sum(results(1,:)==0) 
             results(1,:) = []; 
         end; 

  
         temp=zeros(size_p_full_d,1); 
         for i=0:size_p-1 
             for n=1:size_p_full_d 
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                 temp(n,1)=results(2*i + n,5); 
             end; 
             [value,index] = max(temp(:,1)); 
             new_policy(i+1,1) = index; 
         end; 

  
         disp('iteration'); 
         disp(a); 

  
         disp('policy'); 
         disp(d); 

  
         disp('gain'); 
         disp(new_gain); 

  
         disp('v'); 
         disp(v); 

  
         if new_gain>gain 
             d = new_policy; 
             gain = new_gain; 
         else 
             %pause; 
             break; 
         end; 
     end; 
     disp('Interaction Parameters'); 
     disp('Revenue'); 
     disp(revenue_patient); 
     disp('BackLog'); 
     disp(penalty_backlog); 
     disp('Unutilized'); 
     disp(penalty_unutilized); 
     disp('Probability of No-show'); 
     disp(prob_ns); 

      
%%E[PS|i] =>Expected prescheduled served given i  
%%E[BS|j] =>Expected backlogged served given j  
s=zeros(1,10); 
k=1; 
expected_presched_served=0; 
expected_backlog_served=0; 
 for i=0:Cp 
    for j=0:MaxB 
        %%%%%%%%%% 
        %define pdf for no shows 
        %%%%%%%%%%%%%%%%%%% 
        E_ps_i=0; %expected prescheduled served given i 
        E_bs_i=0; % expected backlogged served given i 
        ns_pdf=zeros(1,3); 
        for t=0:i 
            ns_pdf(t+1)=nchoosek(i,t)*(prob_ns^t)*(1-prob_ns)^(i-t); 
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        % ns_pdf(t+1)=nchoosek(i,t)*((1-prob_ns)^t)*((prob_ns)^(i-t)); 
        end 
        y=ns_pdf; 
        %%%%%%%%%%%%%%%%%%%%%%%%% 
        s(k,1)=i; 
        s(k,2)=j; 
        state9= encode_state(i, j, MaxB+1); 
        for ns=1:i+1 
            x = 1:ns;       
            %y = binopdf(x,i+1,prob_ns); 
            E_ps_i = E_ps_i + ((i- (ns-1))*y(ns)); 
            E_bs_i= E_bs_i +  min (j,Cp-(i-(ns-1)) )*y(ns)*prob_BA + 

min (j+BS, Cp-(i-(ns-1))  )*y(ns)*(1-prob_BA); 
        end; 
        s(k,3) = E_bs_i; %expected_backlog_served; 
        s(k,4) = E_ps_i; %expected_presched_served; 
        s(k,5) = s(k,3)+s(k,4); %(expected_backlog_served + 

expected_presched_served); %Expected total served 
%         s(k,6) = pi(3*i+j+1); 
        s(k,6) = pi(state9+1);  %steady state probability 
        s(k,7) = s(k,5)*s(k,6); %expected total served 
        s(k,8) = s(k,2)*s(k,6); %expected patients assigned to backlog 
        s(k,9) = s(k,3)*s(k,6);  %expected backlog served 
        s(k,10) = s(k,4)*s(k,6); %expected prescheduled served 
        expected_presched_served = expected_presched_served + s(k,10); 
        expected_backlog_served = expected_backlog_served + s(k,9); 
        k=k+1; 
    end; 
 end; 

  
%%E[S|(i,j)] =>E[PS|i]+E[BS|j]  
% expected_served=zeros(1,((MaxB+1)*(Cp+1))); 
% for i=1:k 
%     expected_served=expected_served + expected_presched_served + 

expected_backlog_served; 
% end; 
% expected_served 

  
%%E[S] => sumproduct of E[S|(i,j)] and pi(i,j)  
total_expected_served=0; 
total_expected_served= sum(s(:,7)); 
total_expected_served; 

  
%Utilization of physicians 
Utilization=0; 
Utilization= (total_expected_served/Cp)*100; 
Utilization; 

  
%Expected number in backlog 
expected_backlog=0; 
expected_backlog= sum(s(:,8)); 
expected_backlog; 
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%Expected number in backlogged patients served 
exp_backlog_served=0; 
exp_backlog_served= sum(s(:,9)); 
exp_backlog_served; 

  
%Expected number in prescheduled patients served 
exp_presch_served=0; 
exp_presch_served= sum(s(:,10)); 
exp_presch_served; 

  
    export_matrix = [export_matrix;MaxB Cp BS revenue_patient 

penalty_backlog penalty_unutilized prob_ns prob_BA new_gain 

total_expected_served Utilization expected_backlog exp_backlog_served 

exp_presch_served d' pi]; 
    save my_data.out export_matrix -ASCII 
%  
% end; 
% end; 
% end; 
end; 
end; 
%///////////////////////////////////////////////////////// 
%/*  function: decode_state */ 
%//  convert state s to values Is and Ir                            
%///////////////////////////////////////////////////////// 
function [Is,Ir]=decode_state(s, M2) 

  
    if (s == 0) 

     
        Is = 0; 
        Ir = 0; 

     
    else 

  
        Is =floor(s/M2); 
        Ir = mod(s,M2); 
    end 

  

  
%///////////////////////////////////////////////////////// 
%/*  function: encode_state */ 
%//  convert state s to values I1 and I2                            
%///////////////////////////////////////////////////////// 
function [state] = encode_state(I1, I2,  M2) 
 state = I1*(M2) + I2; 
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Q-Matrix 
function 

[P,busy_dist,q,noshow_prob,state1]=ClinicSched3(MaxB,Cp,parameter1,para

meter2,parameter3,parameter4,parameter5,parameter6) 
%Cp = Maximum number of physicians 
%MaxB = Maximum # of patients that can be in backlog 

  
%Model Assumptions 
%1. Assume request for batch appointment that is made in the beginning 

of the 
%period can be processed in the same period if there is a no-show. 
%2. Assume pre-schedule appointments have priority over same day 

appointments 
%3. Assume no show distribution is conditioned on the number of 

prescheduled 
%appointments and follows a binomial distribution with success 

probability 
%p_ns 
%4. Open slots are perishable and can't be carried forward into the 

next 
%period. 
%5. Probability that a prescheduled appointment exists in the next 

period 
%is defined by a binomial distribution with success_prob=busy_prob. 

  
p_ns=parameter4; %probability a person arrives therefore probabilty 

they dont is 1-p_ns 
busy_prob= 0.5; %probability of preschedule appointment 
busy_dist=zeros(1,Cp+1); 
Numstates=(MaxB+1)*(Cp+1);  %size of Pmatrix 
%B_arrivals = [0.3 0.7];  %probability of batch arrival of 0 or 2 
B_arrivals = [parameter5 1-parameter5];  %probability of batch arrival 

of 0 or b 
P=zeros(Numstates,Numstates,2); 
fixed_cost=0; 
BS=parameter6; %%%Batch Size Cp/2 rounded up 

  
%alternative 1 is accept alternative 2 is reject  
q=zeros(Numstates,2); 
%build busy_prob distribution 
for k=0:Cp 
    busy_dist(k+1)=nchoosek(Cp,k)*(busy_prob^k)*(1-busy_prob)^(Cp-k); 

%binomial distribution 
end 

  

  
%build P-Matrix for accept alternative 
for s1=1:Cp 
    for s2=0:MaxB     %can't accept backlog if MaxB is reached 
        state1=encode_state(s1,s2,MaxB+1); 
        for NS=0:s1   %iterate over number of noshows 
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            noshow_prob = nchoosek(s1,NS)*(p_ns^NS)*(1-p_ns)^(s1-NS); 

%binomial distribution 
%             noshow_prob = nchoosek(s1,NS)*(1-p_ns^NS)*(p_ns)^(s1-NS); 

%binomial distribution 
            for a=0:1  %iterate over number of batch arrivals 
                for b=0:Cp   %iterate over # of presched 
                    new_s1=b;   
                    Numavail = Cp-(s1-NS); %num available slots 
                    Numreqd= s2+a*BS;      %num people in backlog 
                    if (Numreqd < Numavail)  
                        new_s2=0; 
                    else 
                        new_s2=min(Numreqd-Numavail,MaxB); %can't 

exceed backlog.  
                    end 
                        %make sure a very high penalty is assessed so 

that 
                        %this case is rejected 
                     state2=encode_state(new_s1,new_s2,MaxB+1); 
                    P(state1+1,state2+1,1)=P(state1+1,state2+1,1)+ 

busy_dist(b+1)*noshow_prob*B_arrivals(a+1); 
                    %calculate reward 
                    BatchServed=min(Numreqd,Numavail); 
                    SchedServed= s1-NS; 
                    BatchRemain= s2+ BS*a-BatchServed; 
                    Numidle= max(Numavail-Numreqd,0); 
                    Revenue = parameter1*(BatchServed+SchedServed)- 

parameter2*BatchRemain - parameter3*Numidle - fixed_cost; 
                    q(state1+1,1)=q(state1+1,1)+ 

Revenue*busy_dist(b+1)*noshow_prob*B_arrivals(a+1); 
                  %calculate new s2 for reject decision 
                  if (s2 < Numavail) new_s2r=0; 
                  else 
                      new_s2r=max(s2-Numavail,0); 
                  end 
                  state2_reject=encode_state(new_s1,new_s2r,MaxB+1); 
                  

P(state1+1,state2_reject+1,2)=P(state1+1,state2_reject+1,2)+ 

busy_dist(b+1)*B_arrivals(a+1)*noshow_prob; 
                  %calculate reward for reject decision 
                    BatchServed=min(s2,Numavail); 
                    SchedServed= s1-NS; 
                    BatchRemain= s2-BatchServed; 
                    Numidle= max(Numavail-s2,0); 
                    Revenue = parameter1*(BatchServed+SchedServed)- 

parameter2*BatchRemain - parameter3*Numidle - fixed_cost; 
                    q(state1+1,2)=q(state1+1,2)+ 

Revenue*busy_dist(b+1)*noshow_prob*B_arrivals(a+1); 
                end 
            end 
        end 
    end 
end 
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%build P-matrix for accept alternative when s1=0,which implies no-

noshow 
%calculations 
 s1=0; 
 for s2=0:MaxB     %can't accept backlog if MaxB is reached 
    state1=encode_state(s1,s2,MaxB+1); 
    for a=0:1  %iterate over number of batch arrivals 
        for b=0:Cp   %iterate over # of presched 
          new_s1=b;   
          Numavail = Cp-s1; %num available slots 
          Numreqd= s2+BS*a;      %num people in backlog   
          if (Numreqd < Numavail)  
               new_s2=0; 
          else 
                new_s2=min(Numreqd-Numavail,MaxB); %can't exceed 

backlog.  
          end 
              state2=encode_state(new_s1,new_s2,MaxB+1); 
              P(state1+1,state2+1,1)=P(state1+1,state2+1,1)+ 

busy_dist(b+1)*B_arrivals(a+1); 
              %calculate reward 
               BatchServed=min(Numreqd,Numavail); 
               SchedServed= s1-NS; 
               BatchRemain= s2+BS*a-BatchServed; 
               Numidle= max(Numavail-Numreqd,0); 
               Revenue = parameter1*(BatchServed+SchedServed)- 

parameter2*BatchRemain - parameter3*Numidle - fixed_cost; 
               q(state1+1,1)=q(state1+1,1)+ 

Revenue*busy_dist(b+1)*B_arrivals(a+1);          
              %calculate new s2 for reject decision 
              new_s2r=max(s2-Numavail,0); 
              state2_reject=encode_state(new_s1,new_s2r,MaxB+1); 
              

P(state1+1,state2_reject+1,2)=P(state1+1,state2_reject+1,2)+ 

busy_dist(b+1)*B_arrivals(a+1); 
                  %calculate reward for reject decision 
                    BatchServed=min(s2,Numavail); 
                    SchedServed= s1-NS; 
                    BatchRemain= s2-BatchServed; 
                    Numidle= max(Numavail-s2,0); 
                    Revenue = parameter1*(BatchServed+SchedServed)- 

parameter2*BatchRemain - parameter3*Numidle - fixed_cost; 
                    q(state1+1,2)=q(state1+1,2)+ 

Revenue*busy_dist(b+1)*B_arrivals(a+1); 

               
     end 
    end 
end 

  

  
%///////////////////////////////////////////////////////// 
%/*  function: decode_state */ 
%//  convert state s to values Is and Ir                            
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%///////////////////////////////////////////////////////// 
function [Is,Ir]=decode_state(s, M2) 

  
    if (s == 0) 

     
        Is = 0; 
        Ir = 0; 

     
    else 

  
        Is =floor(s/M2); 
        Ir = mod(s,M2); 
    end 

  

  
%///////////////////////////////////////////////////////// 
%/*  function: encode_state */ 
%//  convert state s to values I1 and I2                            
%///////////////////////////////////////////////////////// 
function [state] = encode_state(I1, I2,  M2) 
 state = I1*(M2) + I2; 

 

Decode State (Mapping Function) 
%///////////////////////////////////////////////////////// 
%/*  function: decode_state */ 
%//  convert state s to values Is and Ir                            
%///////////////////////////////////////////////////////// 
function [Is,Ir]=decode_state(s, M2) 

  
    if (s == 0) 

     
        Is = 0; 
        Ir = 0; 

     
    else 

  
        Is =floor(s/M2); 
        Ir = mod(s,M2); 
    end 

 

Encode State (Mapping Function) 
%///////////////////////////////////////////////////////// 
%/*  function: encode_state */ 
%//  convert state s to values I1 and I2                            
%///////////////////////////////////////////////////////// 
function [state] = encode_state(I1, I2,  M2) 
 state = I1*(M2) + I2; 
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APPENDIX C 

 Matlab Code for SDP 

 
Compute State 
 

function State = ComputeState(C, MaxB, BS) 
%%%Generates the intial state for the SDP 
%%%State=(individuals, batch, backlog) 

  
State = []; 
for i=0:C %prescheduled individuals 
    for j=0:BS:BS  %prescheduled batched patients 
        for k=0:MaxB %Backlogged/waiting individual patients 
            for l=0:MaxB %Backlogged/waiting batch patients 
                if(i+j<=C && i+j+k+l<=2*C && k+l<=MaxB) 
                    State = [State;[i j k l]]; 
                end 
            end 
        end 
    end 
end 
 
 
Finite-Horizon SDP 
function export_matrix = finiteSDP_lagv2() 
%FiniteSDP = finiteSDP() 

  
clear all 
clc 
N = 8;    %number of periods 
 

MaxB=3; %%%maximum number of overbooked appointments 
BS=2;   %%%number of scheduled within batch 
C=3;    %%%number of physicians 
ukMax = 3; %%%%Also represents the highest batch size allowed 
Decision = 0:ukMax; 

  
StateTEMP = ComputeState(C, MaxB, BS); % function call for state space 

  
[NumOfStates StateDim] = size(StateTEMP); 
InitialState= StateTEMP; 

  

 
load('schedule') % Load the prescheduled for experiments 
StateAll = schedule; 
 NumOfExperiments  = size(StateAll,1); 

  
 prob_ns_indAll = 0:0.2:1;  %Varies the probability of no-show for each 

experiment 
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 prob_ns_batchAll =0:0.2:1; 
 batch= [0 BS]; 
%  StateDim = 4; 

  
 %%%Cost Parameters 
 RevenueVal = 135;    
 PenUn = 13.5; 
 PenOT = 54; 

   
 for expr = 1:NumOfExperiments 
     export_matrix = []; 
     count = 0;  %%%keeps count of the number of experiments ran 
     for prob_ns_ind_iteraction=2:2 %1:6  %%% 
%          prob_ns_ind = prob_ns_indAll(prob_ns_ind_iteraction); 
              prob_ns_ind = 0.2; 
         for prob_ns_bat_iteraction=2:2 %1:6  %%% 
%              prob_ns_batch = 

prob_ns_batchAll(prob_ns_bat_iteraction); 
                      prob_ns_batch = 0.2; 
             ns_batch = [1-prob_ns_batch prob_ns_batch];    % batch no-

show probability 

  
             count = count + 1; 
             presched_ind = []; 
             presched_bat = []; 
             ns_indProb =[]; 
             ns_batProb =[]; 
             expState = []; 
             tempExpectation = zeros(ukMax+1, 1); % initialiation 
             Expectation  = zeros(NumOfStates, 2*N); 
             opt_uk  = zeros(NumOfStates, N); 

  

              
             for stage = N-1:-1:0 %0:N-1 
                 State{stage+1} = InitialState; 
                 if stage~= N-1 %0 
                     preState = StateAll(expr,2*stage+1:2*stage+2); 

  
                     backlog_ind = ActualOverflow(:,3);  %%%%Determines 

overflow patients for other stages 
                     backlog_bat = ActualOverflow(:,4); 
                     State{stage+1} = [repmat(preState, [NumOfStates  

1]), backlog_ind , backlog_bat ]; 
                 end 

  

  
                 ns_batProb = []; 
                 ns_indProb = []; 

  
                 % Computing the necessary probability distributions 
                 for z = 1:NumOfStates 
                     temp_matrix = []; 
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                     previousExpCost = 0; 
                     ns_batProb = []; 
                     ns_indProb = []; 
                     presched_ind =[]; 
                     presched_bat = []; 
                     for i= 0:C 
                         ns_indProb = []; 
                         ns_batProb = []; 
                         ns_ind =[]; 
                         if(State{stage+1}(z,1)==i &&  

State{stage+1}(z,2)==0) 
                             Temp = 0:i; 
                             presched_ind  = Temp'; 
                             presched_bat = 

repmat(State{stage+1}(z,2),[length(Temp) 1]); 

  
                             % Computes the probabilies of "no-show" in 

those 
                             % transition based prescheduled patints 
                             for n=0:length(Temp)-1 
                                 

ns_ind(n+1,:)=nchoosek(i,n)*(prob_ns_ind^n)*(1-prob_ns_ind)^(i-n); 

%binomial distribution for individual 
                             end 
                             ns_batProb = repmat(1,[length(Temp) 1]); % 

probability for the batch 
                             ns_indProb = ns_ind; 

  
                             break; 
                         elseif( State{stage+1}(z,1)==i &&  

State{stage+1}(z,2)==BS) 
                             ns_indProb = []; 
                             ns_batProb = []; 
                             Temp2 = 0:i; 

  
                             for(m=1:length(Temp2)) 
                                 n = m-1; 
                                 presched_ind = [presched_ind; 

repmat(Temp2(m),length(batch),1)]; 
                                 presched_bat = [presched_bat; batch']; 
                                 ns_ind = 

nchoosek(i,n)*(prob_ns_ind^n)*(1-prob_ns_ind)^(i-n); %binomial 

distribution for individual 
                                 ns_indProb = [ns_indProb; 

repmat(ns_ind, [length(batch),1])]; 
                                 ns_batProb = [ns_batProb; ns_batch']; 
                             end 
                             break; 
                         end 
                     end  % computations done 
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                     %                  presched_ind = 

max(presched_ind) - presched_ind;  %%Computation of no-shows/// Update 

the true prescheduled 
                     %                  presched_bat = 

max(presched_bat) - presched_bat; 
                     % ns_indProb 
                     % ns_batProb 

  
                     NumExpStates = length(presched_ind); % number of 

possible transitioned states 
                     backlog_ind = repmat( 

State{stage+1}(z,3),[NumExpStates, 1]); 
                     backlog_bat  = repmat( State{stage+1}(z,4), 

[NumExpStates, 1]); 
                     NoShows = [presched_ind,presched_bat,backlog_ind, 

backlog_bat]; 
                     expStateTemp =  NoShows ; %%%TRANISITION STATES 

  
                     Xk = repmat(State{stage+1}(z,1:2), [NumExpStates, 

1]);    %%%original prescheduled 
                     Wk = NoShows(:,1:2); % possible no shows 
                     expState = Xk - Wk; 
                     %                  expStateTemp = repmat([0 0 1 

2], [4,1]) 

  
                     % Form the possible states the current state can 
                     % transition to based on a given decision 

  
                     %                 stageIndx = 

findStageIndx(stage); 

  
                     tempExpectation = zeros(1,ukMax+1); 
                     if(Decision(1)==0)            %%%%Reject/Don't 

Accept 

  
                         Uk{Decision(1)+1} =  [expState, backlog_ind, 

backlog_bat]; 
                         NumPatients = sum(Uk{Decision(1)+1}, 2); 

%%%total number of patients in system before any decisions are taken 

  
                         tempExpectation(1) = ComputeProfit( 

NumPatients, Uk{Decision(1)+1}, ns_indProb, ns_batProb, 

RevenueVal,PenUn, PenOT,... 
                             C,N,stage,NumOfStates,  State,  

NumExpStates, Expectation,InitialState); 

  
                         %%%Determines who have been serviced prior to 

the 
                         %%%acceptance of decision (i.e. implied yk=xk-

wk) 
                         Overflow{Decision(1)+1} = 

ComputeOverFlow(presched_ind,Uk{Decision(1)+1}, StateDim, C); 
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                         TrueOverflow = Overflow{Decision(1)+1}; 

%%%Updates the overflow from original state with the decision 
                     end 

  

  
                     if(Decision(2)==1 && (( State{stage+1}(z,3)+  

State{stage+1}(z,4)+ Decision(2))<=MaxB)) %%%%Accept INDIVIDUAL 
                         backlog_indUk1 = backlog_ind + Decision(2); 
                         Uk{Decision(2)+1} =  [expState, 

backlog_indUk1, backlog_bat]; 

  

 
                         tempExpectation(2) = 

ComputeProfit(NumPatients,Uk{Decision(2)+1}, ns_indProb, ns_batProb, 

RevenueVal,PenUn, PenOT,... 
                             C,N,stage,NumOfStates,  State,  

NumExpStates, Expectation,InitialState); 

                          
                         TrueOverflowUk1 = TrueOverflow; 
                         TrueOverflowUk1(:,3) = TrueOverflowUk1(:,3)+ 

ones(NumExpStates,1); 
                         Overflow{Decision(2)+1} = TrueOverflowUk1; 
                     else 
                         tempExpectation(2) = -inf; 

  
                     end 

  

  
                     if(Decision(3)== 2 && (( State{stage+1}(z,3)+  

State{stage+1}(z,4)+ Decision(3))<=MaxB)) %%%%Accept BATCH (when BS=2) 
                         backlog_batUk2= backlog_bat + Decision(3); 
                         Uk{Decision(3)+1} =  [expState, backlog_ind, 

backlog_batUk2]; 

  
                         tempExpectation(3) = 

ComputeProfit(NumPatients,Uk{Decision(3)+1}, ns_indProb, ns_batProb, 

RevenueVal,PenUn, PenOT,... 
                             C,N,stage,NumOfStates,  State,  

NumExpStates, Expectation,InitialState); 

  
                         TrueOverflowUk2 = TrueOverflow; 
                         TrueOverflowUk2(:,4) = TrueOverflowUk2(:,4)+ 

2.*ones(NumExpStates,1); 
                         Overflow{Decision(3)+1} = TrueOverflowUk2; 

  
                     else 
                         tempExpectation(3) = -inf; 
                     end 
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                     if(Decision(4)== 3 && (( State{stage+1}(z,3)+  

State{stage+1}(z,4)+ Decision(4))<=MaxB)) %%%%Accept BATCH (when BS=2) 
                         backlog_indUk3 = backlog_ind + Decision(2);  

%individual increments by one 
                         backlog_batUk3 = backlog_bat + Decision(3);   

%batch increments by two 
                         Uk{Decision(4)+1} =  [expState, 

backlog_indUk3, backlog_batUk3]; 

 
                         tempExpectation(4) = 

ComputeProfit(NumPatients, Uk{Decision(4)+1}, ns_indProb, ns_batProb, 

RevenueVal,PenUn, PenOT,... 
                             C,N,stage,NumOfStates,  State,  

NumExpStates, Expectation,InitialState); 

  
                         TrueOverflowUk3 = TrueOverflow; 
                         TrueOverflowUk3(:,3) = TrueOverflowUk3(:,3) + 

ones(NumExpStates,1); 
                         TrueOverflowUk3(:,4) = TrueOverflowUk3(:,4) + 

2.*ones(NumExpStates,1); 
                         Overflow{Decision(4)+1} = TrueOverflowUk3; 
                     else 
                         tempExpectation(4) = -inf; 
                     end 

  
                     %   Compute the optimal expectation 
                     [Expectation(z,2*stage+1), index]  = 

max(tempExpectation); 
                     Expectation(z, 2*stage+2) =  index-1; % optimal 

decision 

  
                     OverflowUk = Overflow{index}; 
                     [ignore WinningOverflowIndex] = 

max(sum(OverflowUk, 2)); 
                     ActualOverflow(z,:) = 

OverflowUk(WinningOverflowIndex,:); 

  
                 end 
             end 
             %%%%%%%%%%Displaying Output 
             prob_ns_ind2= repmat(prob_ns_ind,[NumOfStates, 1]);  

%%%%Used to display probabilities in output 
             prob_ns_batch2= repmat(prob_ns_batch,[NumOfStates, 1]); 

  
             export_matrix{count} = [InitialState, State{stage+1}, 

Expectation, prob_ns_ind2,prob_ns_batch2]; 
             xlswrite((strcat(strcat(num2str(expr),'TEST_Exp_ALL_'), 

date)), export_matrix{count}, count); 
     end 
     end 

      
 end 
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Compute Overflow 
function Overflow = ComputeOverFlow(presched_ind,expStateTemp, 

StateDim, C) 
for j=1:length(presched_ind) 
    ykTemp = sum(expStateTemp(j,1:StateDim-1));%%Sum up to individual  

backlog 
    ykTemp2 = sum(expStateTemp(j,:));%%Sum up to batch backlog 
    if sum(expStateTemp(j,1:StateDim-1)) >C      %%Sum up to individual  

backlog 
        expStateTemp(j,:) = [zeros(1,StateDim-2), ykTemp-C, 

expStateTemp(j,StateDim)]; 
    elseif ykTemp2 <=C 
        expStateTemp(j,:) = zeros(1,StateDim); 
    elseif ykTemp2 > C      %%Sum up to batch backlog 
        expStateTemp(j,:) = [zeros(1,StateDim-1), ykTemp2-C]; 
    end 
end 

  
Overflow = expStateTemp; 

 
Compute Expectation 
 
function tempExpectation = 

ComputeProfit(NumPatients,expState,ns_indProb, ns_batProb, 

RevenueVal,PenUn, PenOT , C, N,stage,NumOfStates,... 
                           State, NumExpStates,Expectation, 

InitialState)    

  
% PenOT=0; 
Rev  = RevenueVal.*min(NumPatients , C); %Revenue from serving patients 
Unut = PenUn.*max(C-NumPatients, 0); %Unutilized slots 
OF   = PenOT.*(max(NumPatients-C, 0)); %Overflow 
% OF   = (max(NumPatients-C, 0)+ sum(expState(:,3:4),2)); %Overflow 
Profit = Rev-Unut-OF; 
% Profit = Rev-Unut; 
previousExpCost = zeros( NumExpStates,1); %%%Assuming terminal cost is 

ZERO 

  
% RevenueVal=0; 

  
%Calculates the terminal cost for possible backlogs/overflowed patients 
if(stage==N-1) 
    for b = 1: NumExpStates 
        numBacklog= sum(expState(b,3:4)); 
        if(numBacklog ==0) 
            previousExpCost = RevenueVal*numBacklog - zeros( 

NumExpStates,1); 
        elseif(numBacklog ==1) 
            previousExpCost = RevenueVal*numBacklog -(PenOT*ones( 

NumExpStates,1)); 
        elseif(numBacklog ==2) 
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            previousExpCost = RevenueVal*numBacklog -(PenOT*2*ones( 

NumExpStates,1)); 
        else 
            previousExpCost = RevenueVal*numBacklog -(PenOT*3*ones( 

NumExpStates,1)); 
        end 
    end 
end 

  
% mapping from previous optimal expected profit(cost)for the particular 

state 
if(stage~=N-1) 
    for k = stage+1: N-1 
        for i = 1: NumExpStates 
            for j=1:NumOfStates 
                if(expState(i,1)==State{k+1}(j,1) && 

expState(i,2)==State{k+1}(j,2)&& expState(i,3)==State{k+1}(j,3)&& 

expState(i,4)==State{k+1}(j,4)) 
                    previousExpCost(i,:) = Expectation(j, 2*(k)+1); 
                    %             previousExpCost(i,:) = Expectation(j, 

2*(stage-1)+1); 
                    break; 
                end 
            end 
            break; 
        end 
        break; 
    end 
end 

  
tempExpectation= sum((Profit + 

previousExpCost).*ns_indProb.*ns_batProb); 

 

 
 
 
 
 

 


	Examining The Influence Of Dependent Demand Arrivals On Patient Scheduling
	Recommended Citation

	Microsoft Word - Dissertation_DEFENSE__Abdus-Salaam v3

