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ABSTRACT 

 

 

 

German, John, Henderson.  POSITION RESOLUTION AND EFFICIENCY OF THE 

LUCITE HODOSCOPE FOR THE SANE EXPERIMENT AT JEFFERSON LAB. 

(Major Advisor: Abdellah Ahmidouch), North Carolina Agricultural and Technical 

State University.   

 

North Carolina A&T State University Nuclear Physics group built a Lucite 

Hodoscope, which was included in the Big Electron Telescope Array (BETA), to be used 

in the Spin Asymmetries of the Nucleon Experiment (SANE) at Jefferson Lab.  SANE is 

a pioneering spin physics program that uses large non-magnetic detectors.  SANE is a 

measurement of the proton spin observables A1
P
(x,Q

2
), A2

 P
(x,Q

2
) and the spin structure 

functions (SSFs) g1
P
(x,Q

2
), g2

P
(x,Q

2
) over a Bjorken scaling variable x ranging from 0.3 

to 0.8, covering the four-momentum transfer from 2.5 to 6.5 GeV
2
.  The experiment took 

place in Hall-C at Jefferson Lab.  It will produce information about protons SSFs from an 

inclusive double polarization measurement.  The role of the Lucite Hodoscope is to 

provide position information and enhance background reduction.  This work studies the 

on beam performance of the Lucite detector through the recovery of its position 

resolution and efficiency.  
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CHAPTER 1 
 

Introduction 

 

The Lucite Hodoscope is a vital part of the Spin Asymmetries of the Nucleon 

Experiment (SANE) appartatus. North Carolina Agricultural and Technical State 

University (NCA&TSU) contributed the hodoscope to the experiment.  The experiment 

took place at Jefferson Lab (JLab) and used the Continuous Electron Beam Accelerator 

Facility (CEBAF).  The Lucite Hodoscope was constructed, tested, and installed by the 

NCA&TSU Nuclear physics group.  It is a part of the Big Electron Telescope Array 

(BETA), which also included a Forward Tracking Hodoscope (Tracker), a N2 Gas 

Cherenkov (Cherenkov), and a Lead Glass Calorimeter (BigCal).  BETA is the detector 

package for the experiment.   

The SANE experiment main goal is to explore more into the proton’s Spin 

Structure Functions (SSFs) from an inclusive double polarization measurement.  The 

experiment ran from October 2008 to March 2009.  The SANE experiment measured spin 

structure function g1
 P

(x,Q
2
) and g2

 P
(x,Q

2
) and proton spin asymmetry A1(x,Q

2
) and 

A2(x,Q
2
) at 2.5 < Q

2
 < 6.5 GeV

2
 and 0.3 < x < 0.8.  From the SSF moments of g1 and g2 

we hope to analyze the Twist-3 effects.  From the measured g2, we hope to study quark-

gluon correlations and interactions.   

The experiment was set up with the use of CEBAF’s electron beam longitudinally 

polarized.  The beam was scattered into a polarized proton target in both parallel and near 

perpendicular (80 ) configurations.  With the measured double spin asymmetries A|| and 



 2 

A , we can evaluate proton spin asymmetries, A1 and A2, which will lead to structure 

functions, g1 and g2.  Results can be compared with Lattice Quantum Chromo-Dynamics 

(Lattice QCD), QCD sum rules, bag model, and results of chiral symmetry.  SANE 

measurements will fill the void of experimental data for the proton double spin 

asymmetry particularly in the kinematic range of Bjorken scaling variable x > 0.3 and Q
2
 

< 6 GeV
2
 region.   

The SANE experiment starts with electrons being sent into a proton target.  

CEBAF’s beam line allows controlled polarized electrons to collide with a solid 

dynamically polarized NH3 target.  The scattered electrons are detected through BETA.  

Also recoiled protons can be detected by the High Momentum Spectrometer (HMS).  

Data collected from all detectors in the experiment will be analyzed.   

This thesis will focus on the Lucite Hodoscope with emphasis on the analysis of 

its position resolution and efficiency.  The Lucite is placed between the Cherenkov and 

BigCal.  Its main purpose was to detect charged particles above a threshold (primarily 

electrons) with high efficiencies.  Along with the detection of charged particles, it 

measured the coordinates and angles of scattered particles.  The Lucite Hodoscope helps 

to trace the detected particles to the target.  It provides useful information at reasonable 

cost.   

Construction and initial testing of the Lucite bars took place at North Carolina 

Agricultural and Technical State University's Nuclear Lab.  A team of students and 

professors conducted cosmic ray testing to check the performance of each Lucite bar.   

Satisfied with results from initial testing, the construction of the hodoscope commenced.  
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All 28 bars were individually wrapped in black opaque paper (tedlar) with 

photomultiplier tubes (PMTs) along with light guides attached to each end.   

In understanding the Lucite Hodoscope, key physical concepts must be taken into 

consideration.  The physics in Cherenkov radiation and internal reflection played critical 

roles calibrating and analyzing data.  Devices such as PMTs, time to digital converters 

(TDCs), and analog to digital converters (ADCs) are attached to each detector to relay 

information for data acquisition.  The computers at the facility stored the data and by 

accessing the network, analyzing programs were run.  For data analysis and data 

visualization, the Physics Analysis Workstation (PAW++), a program from the Eurpoean 

Organization for Nuclear Research (CERN) program library, is used.  PAW++ provides 

graphical presentation and statistical analysis by working with main objects or data types 

in the forms vectors, histograms and ntuples.   

 Large amounts of data collected from the experiment, is stored on tape silos at 

Jefferson Lab.  Once the data is retrieved, it is analyzed through codes and stored in 

various forms.  Fortran codes and Kumac scripts were used to calculate and graphically 

represent the collected data.  Several codes work together for a large collection of data, 

while other codes are written just for specific goals.  The results presented in this thesis 

are from codes partially written by the author, John Henderson German.  Full analysis of 

the SANE experiment is ongoing and preliminary results of the A|| and A  asymmetries 

are reached.     
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CHAPTER 2 

Physics Motivation 

 

The Spin Asymmetry of the Nucleon Experiment (SANE) ran from October 2008 

to March 2009.  Many collaborators contributed to get information vital for further 

understanding on spin asymmetries of the proton.  Its goals were to measure spin 

asymmetries, parallel and near perpendicular (80°) to the beam line, and structure 

functions over a range that has not been fully explored.  It measured over a region of 

Bjorken scaling variable x from 0.3 to 0.8, for four-momentum, Q, transfers ranging from 

2.5 to 6.5 GeV
2
.  The experiment made use of the high quality polarized beam of 

Jefferson Lab (JLab).  It scattered longitudinally polarized electron beam from the 

Continuous Electron Beam Accelerator Facility (CEBAF) into a solid target dynamically 

polarized parallel and near perpendicular to the beam line.  From these configurations, we 

were able to measure scattering asymmetries and precede to calculate physics 

asymmetries for the proton, A1(x,Q
2
) and A2(x,Q

2
), as well as the spin structure functions 

g1
 P

(x,Q
2
) and g2

 P
(x,Q

2
) where x = Q

2
/(2Mv) with nucleon mass (M) and change in 

electron energy (v).  

Deep inelastic scattering (DIS) in this experiment is fundamental to probing 

inside hadrons.  This inelastic electron-proton scattering allowed measured asymmetry 

values used to derive spin asymmetries for the proton.  Calculating the spin structure 

functions allows access to higher twists.  The formulation of equations for g1
 P

(x,Q
2
) and 

g2
 P

(x,Q
2
)  leads to twist-3 contributions.  For the high x region, there is little data on g2.  
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These higher twist terms lead to information on quark-quark and quark-gluon coupling 

and interactions.  Parallel configurations in this experiment led to g1.  Unfortunately, g2 

cannot be calculated with this model.  The parton model limitations are apparent in 

scattering from transversely, near perpendicular, polarized targets.  The higher twist 

effects cannot be ignored.   In using the double spin asymmetries to calculate the spin 

structure functions, a model independent result can be used to improve the experimental 

dataset for A1. 

The measured double spin asymmetries A|| and A , are calculated by a 

combination of a dilution factor (f), average beam polarization (PB), average target 

polarization (PT), and the number of events recorded from the two different 

configurations (N  and N ). 

NN

NN
AA

TB

| |
PPf

1
  

The polarization of the electron at CEBAF Hall C is measured by a Moeller polarimeter.  

It consists of a polarized target, a magnetic channel with a combination of three 

quadruples and a detector made of lead glass and scintillators.  The average target 

polarization is a calculated value from corrected online values.  With these values, the 

calculation of the physics asymmetries A1 and A2 follows, with values for initial (E) and 

final (E’) energies of electron, and the scattered electron’s polar and azimuthal angles (  

and ) respectively.  

A
E

AEE
EE

A
cos

sin
cos

1
| |1  
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A
E

EE
A

E

Q
A

cossin

cos

2
| |

2

2  

There are several contributions from SANE.  There is a lack on the proton double 

spin asymmetry A  .  Few points exist in the x > 0.3 and Q2 < 6 GeV
2
 region with the 

exception of the Resonance Spin Structure (RSS) experiment at JLab [1, 2, 3].  The void 

in the data set around x=1, will significantly be improved from this model free result for 

A1.  Also, it will be compared to other predictions from SU(6), perturbative Quantum 

Chromo-Dynamics (QCD), and valence quark models[4].  Figure 1 denotes world data 

along with SANE expected data.   

 

 

Figure 1.  Expected A1 data 
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The moments g1
 P

(x,Q
2
) and g2

 P
(x,Q

2
)  allow calculation of higher twist terms.  

The experiment will compute the Nachtmann moments over the measured x range at 

several of constant Q
2
, in combination with other data at neighboring kinematics [1, 2, 5].  

The third Nachtmann moment of the combined g2 and g1, relevant to quark-gluon 

correlations, is related to the twist-3 reduced quark matrix element d2
 
(Q

2
) [6].  These 

correlations can be compared with the Handbag model [7, 8, 9], chiral soliton models [10, 

11], lattice QCD [12], and QCD sum rules [13, 14].  Other important sum rules can be 

tested against the moments g1
 P

(x, Q
2
) and g2

 P
(x, Q

2
), such as the Burkhardt-Cottingham 

[15] and Efremov-Teryaev-Leader [16].  The Efremov-Teryaev-Leader sum rule must be 

tested using the measured g1
 P

 and g2
 P

 with neutron data from Hall-A in JLab.   

These comparisons can be seen in Figures 2 and 3.  Figure 2 shows expected 

results (statistical errors) for d2 (open triangles), plotted on the expected pQCD evolution 

of d2 (solid curve), normalized to Stanford Linear Accelerator Center, SLAC, C-N result 

(open circle) at 5 GeV
2
.  The solid square represents the RSS [1, 2, 3] results.  The star 

indicates combined SANE results for Q
2
 = 5.2 GeV

2
.  The lattice QCD calculation [12] 

(open square) is also shown.  The elastic Nachtmann and C-N contributions are indicated 

by the dashed and dotted curves, respectively.  Figure 3 shows comparison with Handbag 

model [7, 8, 9], QCD sum rules [13, 14], lattice QCD [12], and chiral quark soliton [10, 

11].   
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Figure 2.  Expected d2 results with statistical errors [1, 2, 3, 12] 

 

 

Figure 3.  Expected d2 results with comparisons to other models [7, 8, 9, 10, 11, 12,  

      13, 14] 
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From g1
 P

(x, Q
2
) and g2

 P
(x, Q

2
), the data can be used to test the x-dependence 

predicted by nucleon models.   

212

1
1

1
AA

F
g  

1
2

2

1
2

1
A

AF
g  

2

2

Q

Mx
 

Their Q
2
 dependence at fixed x will be studied as well as the invariant mass of final states 

W.  These spin structure functions are obtained from A1, A2, and the unpolarized structure 

function F1(x).  These asymmetries and spin structure functions are quantities of 

interested needed to fill holes in previously measured experimental data.  All of these 

conclusions will give SANE a chance to obtain a maximum amount of information on the 

nucleon spin structure of a proton.   
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CHAPTER 3 

Experimental Set-up 

 

 The Spin Asymmetry of the Nucleon Experiment (SANE) was conducted in Hall-

C at Jefferson Lab (JLab).  Hall-C is one of the three existing experimental halls at JLab 

(currently JLab is building a fourth hall).    The experiment setup included accelerator, 

beam line, polarized target, and the Big Electron Telescope Array (BETA).  Figure 4 

shows an aerial schematic where one can see the beam line enters from the right.  The 

center of the figure shows BETA.   

 

 

Figure 4.  Aerial schematic of BETA 
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The vital part of Jefferson Lab is the Continuous Electron Beam Accelerator 

Facility (CEBAF).  Figure 5 shows an aerial picture which indicates each part of the 

facility.  This accelerator produces a beam with energy ranging from 0.8 to 6.0 GeV
2
.  It 

is a 5-pass continuous wave electron accelerator.  Once the electron wave is injected, the 

electrons gain energy by going through cavities.  Cavities are hollow shells made from 

niobium that allow electrons to gain energy by placing negative charges behind them and 

positive charges in front of them.  Jefferson Lab’s accelerator uses 338 cavities with 

microwaves directed into the cavities to push the electrons.  The beam line sits in a tunnel 

that is 7/8 mile around, with two linear accelerators each about 1/4 mile long.  Magnets 

are used to steer, focus, and defocus the electron beam.  The beam current range is a few 

pA to 180 A with position stability +/- .1 mm.   

 University of Virginia (UVa) contributed the target, used in the SANE 

experiment.  The UVa target assembly used frozen solid Ammonia (NH3) as well as 

Carbon (C) for background estimation.  The target is polarized using Dynamic Nuclear 

Polarization (DNP).  The principle of DNP is to enhance the low temperature (1 K) high 

magnetic field (5 T) polarization of solid materials by microwave pumping.  DNP 

employs paramagnetic radicals, which provide electron-proton hyperfine splitting in a 

high magnetic field at moderate-low temperatures.   
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Figure 5.  Aerial picture of CEBAF 

 

 The assembly housed two 3 cm targets that can be remotely selected.  The target 

cells were kept in liquid Helium (He) and maintained at a temperature of 1 K.  By 

exposing the target to 140 GHz microwaves we can polarize the target up to 95%.  

Polarized targets are necessary due to the experiment looking into the measured spin 

asymmetries of polarized leptons colliding with polarized nuclei.  By being polarized, the 

spins of the protons or nuclei are all aligned in one direction.  Also, the electron beam is 

polarized as well.  So being able to control and manipulate the targets polarization we can 

achieve the sought after goal.   



 13 

 The High Momentum Spectrometer (HMS) is QQQD configuration, three 

quadrupoles (Q), magnets, and a dipole (D).  The detector package is contained in a 

concrete shield house.  The spectrometer detector was used only for background 

measurements, particle identification, and calibration purposes.  After the beam hits the 

target, some of the scattered particles are focused onto this detector.  It consists of several 

instruments that measure different elements of the particle:  two wire chambers for 

particle measurements, scintillator hodoscopes for timing, gas Cherenkov for particle 

identification and calorimeter for energy measurement.  The hodoscope contains two 

planes.  Each plane in the hodoscope contains scintillator paddles with Photo Multiplier 

Tubes (PMTs) on both ends.  This provides fast triggering.  In the Gas Cherenkov there 

are two mirrors (top and bottom) and two PMTs in the focal planes.  At the end there is a 

Lead-Glass Calorimeter that is 4 layers of 10 x 10 x 70 cm
3
 blocks stacked 13 in each 

layer.  The HMS detected deflected protons ejected from the target by the electron beam.   

 There are four major parts to the BETA detector package, the Forward Tracker 

(Tracker), N2 Gas Cherenkov (Cherenkov), Lucite Hodoscope (Lucite), and a Lead-Glass 

Calorimeter (BigCal) shown in Figure 6.  The Lucite detector is located between the 

Cherenkov and the BigCal approximately 255 cm from target.  The BETA package sits at 

about 40  to the beam line.  Due to limitations of space in the construction of SANE, a 

perpendicular angle of the target polarization could not be reached.  The experiment will 

record parallel and near perpendicular (80  off beam line) configurations of the target 

polarization.   
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Figure 6.  BETA in Hall C 

  

 Norfolk State University contributed the forward tracker.  This is the metal box at 

the far right of BETA in Figure 6.  It consisted of three planes of Bicron plastic 

Scintillator located 50 cm from target.  The first plane is considered the X plane while the 

last two are the Y1 and Y2 planes.  These planes give us early position measurement 
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close to the target field.  The schematic in Figure 7 shows the orientation of the planes in 

Tracker.   

 

 
Figure 7.  Forward Tracker schematic 

 

 Temple University provided the N2 Gas Cherenkov, easily distinguishable fully 

attached to BETA because of the Temple logo on its side.  It has 4 spherical and 4 

toroidal mirrors with 8 3” PMTs.  The detector is efficient in electron detection and pion 

rejection 1000:1.  Cherenkov provided particle ID.  The detector is shielded for 50:1 

magnetic field reduction.  Charged particles entering the detector produce Cherenkov 

radiation while moving through the N2 gas with an efficiency of 90%.  Pions are below 

threshold and are rejected with a ratio 1000:1.  Figure 8 shows Cherenkov before 

connecting to BETA. 
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Figure 8.  Gas Cherenkov 
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 North Carolina A&T State University furnished the Lucite hodoscope sandwiched 

between the Gas Cherenkov and BigCal.  Lucite is a relatively inexpensive material used 

to detect charged particles with good efficiency and provide useful position resolution at 

a reasonable cost.  The detector has 28 Lucite BC-800 [17] bars with dimensions 3.5 x 

6.0 x 96.7 cm
3
.  The bars are curved with the radius of 240 cm, to provide normal 

incidence of particles from the target.  Bars are individually wrapped in black optical 

paper to ensure total internal reflection of the produced Cherenkov light.  The edges of 

the bars are cut at 45 degrees to avoid reflections.  A light guide made of Lucite is used to 

bring the light to a 2” PMT.  Bars were oriented horizontally for Y tracking while the 

PMTs on both sides are used to determine X information.   

 A magnetic shielding box housed the PMTs of the Lucite hodoscope to protect 

them from the magnetic field surrounding the target.  The hodoscope was affixed to 

BETA.  The curved Lucite bars were fitted with rectangular to circular dimensioned light 

guides in order to attach a PMT to each end of the bars.  Each PMT used is a Photonis 

XP2268 [18].  Figure 9 shows the schematic of an individual bar.  Figure 10 shows three 

Lucite bars unwrapped with light guides attached.  Figure 11 shows the fully constructed 

hodoscope from the view of the target without the last bar, before inserting into BETA.   
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Figure 9.  Schematic of Lucite bar 
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Figure 10.  Three Lucite bars with light guides 
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Figure 11.  Fully constructed Lucite Hodoscope 

 

 Cables were attached to each PMT.  One provided high voltage.  The second was 

used to extract the signal to be processed by electronics and the data acquisition system.  

TDC, ADC, and coincidence units are used to process the PMT signals.  TDCs are used 

to convert a signal of sporadic pulses into a digital representation of their time indices.  
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To convert signal amplitudes to discrete numbers, an ADC is used.  The coincidence unit 

is used to record the events where both bar PMTs are giving a signal.  The shielding box 

of the detector helped support the immense weight of the cables and shielded the detector 

from external magnetic field coming from the Helmholtz coil in the target.   

 The BigCal calorimeter is a collaboration project by the Institute for High Energy 

Physics (IHEP) Protvino, the College of William and Mary (W&M), and Lanzhou 

University.  BigCal is the final destination for the particles.  It records energy deposited 

by electron as well as position of the particle.  It has 1744 lead glass bars.  Each bar is 4 x 

4 x 40 cm
3
.  They are stacked and fitted with a PMT on the ends.  All together they are 56 

blocks tall x 30-32 blocks wide (218 x 210 cm
2
).  Figure 12 shows a close view of 

BigCal.  
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Figure 12.  Close up of BigCal 
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CHAPTER 4 

BETA Detector Array 

 

 The Big Electron Telescope Array (BETA), which was a non-magnetic detector 

package, was an important part of the Spin Asymmetry of the Nucleon Experiment 

(SANE).  BETA is composed of four parts; a Forward Tracker Hodoscope (Tracker), Gas 

Cherenkov (Cherenkov), Lucite Hodoscope (Lucite), and a Lead-Glass Calorimeter 

(BigCal).  Each serves a purpose varying from background reduction to energy and 

position measurements.  The Lucite Hodoscope is located between Cherenkov and 

BigCal.  The design of the hodoscope allows for determination of position information.  

The hodoscope is used for tracking particles through BETA.   

 After scattering of the target, particles are ejected through the forward tracker 

hodoscope.  They travel through three planes of 3 mm wide Bicron Scintillator to assist in 

early particle tracking.  The first is denoted as the X plane and the others are in the order 

of Y1 and Y2.  This combination indicates how the particle travels immediately after 

collision and just before entering the gas Cherenkov detector.  The Nitrogen Gas 

Cherenkov detector is used to detect electrons and reduce the pion background.  The 

produced Cherenkov light is reflected by the eight mirrors onto PMTs to provide particle 

identification.  In order to have a reduction factor of 1000:1, the threshold for pion 

momentum is set up to 5.9 GeV
2
/c. 

 Exiting the Cherenkov detector, particles pass through the Lucite Hodoscope.  

The movement through the bars produce Cherenkov radiation.  This radiation is emitted 
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when a charged particle moves through a transparent medium faster than the speed of 

light in that medium.  As the charged particles pass, photons are emitted similar to the 

sonic boom of a supersonic aircraft.  These photons travel in a photonic shock wave 

through the bars.  Due to total internal reflection, the photons are collected and measured 

by PMTs attached to the ends.   

 Photomultiplier Tubes are extremely sensitive detectors of light in the visible 

range of the electromagnetic spectrum.  PMTs have high bandwidth and noise free gain 

on the order of a million, with ultra-fast response.  They are ideal for the detection of 

extremely low light or short pulses light.  Some photomultipliers can be used to detect 

photons from 115nm to 1700nm.  The photons emitted from Cherenkov radiation have 

wavelength less or around 400nm.  A typical photomultiplier consists of a photo emissive 

cathode (photocathode) followed by an electron multiplier and an electron collector 

(anode).  The detectors can multiply the signal produced by incident light by as much as 

10 million times.  Photomultipliers are constructed from a glass envelope with a high 

vacuum inside.   

 The PMTs attached to the Lucite bars received a ratio of about 10 photoelectrons 

from the 40 to 50 Cherenkov photons in the visible range.   The photons reflected into the 

PMTs passed though the input window.  Then the light excites the electrons in the 

photocathode so that the photoelectrons are emitted into the vacuum through a process 

called external photoelectric effect.  These photoelectrons are accelerated and focused by 

the focusing electrode on the first dynode where they are multiplied by means of 

secondary electron emission.  This process is repeated at each of the successive dynodes.  
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The multiplied secondary electrons emitted from the last dynode are collected by the 

anode.   

 The PMTs magnified 10 photoelectrons to around 10
7
 – 10

8
 photoelectrons.  This 

signal is sent to the Time to Digital Converter.  The TDC received input from both ends 

of the Lucite bars.  The computer records the time difference in the PMTs.  The threshold 

speed of the particle inside the Lucite bars can be determined from Cherenkov radiation 

and total internal reflection angles.  With the index of refraction of Lucite: n = 1.49 and 

Cherenkov radiation angle c > 43 , the speed of the particles,  = .9176, is calculated 

from the following relationship. 

n

1
cos  

By having the speed of the particle calculated, the horizontal position can be analyzed 

with those values and the time differences in the left and right PMTs in the following 

equation, where c is the speed of light in bars, n is the index of refraction, θ is the total 

internal reflection angle, and offset is an coefficient based off each bar.   

offset
n

c
TDCTDCX TIRRightLeftposition cos)(  

With 28 Lucite stacked vertically, the vertical position can be determined by identifying 

the bar which is hit and its position.   

 Once the particles exit the bars, they are detected in BigCal and deposit its full 

energy.  BigCal was located 335 cm from the target.  It consists of 1792 elements of 

optically isolated lead glass blocks stacked in rows.  It is used for energy and position 

determination of the electrons.  The impact of an electron onto BigCal causes a shower of 
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radiation surrounding that element.  Accurate determination of position and energy is 

derived from the resultant cluster.  Figure 13 is a schematic for the path of travel through 

BETA for a particle.  The dotted line travels through the Tracker, then Cherenkov, 

Lucite, and finally ends up in BigCal.   

 

 

Figure 13.  Path through BETA 
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CHAPTER 5 

Analysis of Lucite Performance 

 

With the use of different computational software packages and programming 

languages, the analysis of the Spin Asymmetry of the Nucleon Experiment (SANE) has 

begun.  Computer simulation of the Big Electron Telescope Array (BETA) with 

GEANT3, from the European Organization for Nuclear Research program library, allows 

comparison between experimental and simulated data.  GEANT (GEometry ANd 

Tracking), a software package originally used for high energy experiments, uses Monte 

Carlo methods to produce results.  For determination of Lucite efficiency and position 

resolution, PAW++ (Physics Analysis Workstation) was used with Fortran codes and 

Kumac scripts.  This chapter focuses on the Lucite Hodoscope data analysis.  

 Due to all the data collected during SANE, many cuts were used to filter out 

unnecessary data.  For the analysis of the Lucite Hodoscope (Lucite), every part of BETA 

was taken into consideration.  On the Forward Tracker Hodoscope (Tracker), acceptable 

events were ones that hit all three planes and position could be determined.  For the Gas 

Cherenkov, the momentum threshold rejects particles of no interest especially pions. 

Events with energies greater than 1 GeV
2
 and less than 6 GeV

2
 were selected by the 

Lead-Glass Calorimeter (BigCal).  Some particles hit multiple Lucite bars during its 

travel through BETA.  Figure 14 shows the multiplicity comparison of events that hit one 

Lucite bar compared to two and three Lucite bars.   
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Figure 14.  Lucite hit multiplicity 

 

 The Forward Tracker Hodoscope provides initial position and the start of the 

trajectory.  With one plane oriented horizontally and two vertically, the path from the 

target through the three planes is well defined.  The final destination of the particles was 

the BigCal.  In order to improve accurate cluster position and energy deposition, a 
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technique called Artificial Neural Network (ANN) was used.  The SANE GEANT Monte 

Carlo set of data were used to train the ANN algorithm.  The algorithm uses the energy of 

the clusters and patterns in BigCal to more accurately determine horizontal and vertical 

coordinates as well as the particles energy.  Figure 15 shows Narbe Kalantarians work 

with ANN.  The figures show considerably improved coordinate and energy resolution.  

 

 

Figure 15.  Differences in generated and reconstructed coordinates and energy using 

         conventional (solid blue curve) and ANN (dashed red curve) methods 

 

 

 The horizontal (X) and vertical (Y) predicted values are calculated separately.  

With accurate initial (X1, Z1) and ending positions (X2, Z2), reconstruction of the 

predicted trajectory follows.  Two accurate points will produce a line with a given slope 

by the following formula. 

12

12

ZZ

XX
slope  



 30 

The predicted X value is determined by the following formula. 

25511 slopeZslopeXX predicted  

For predicted Y values, the same procedure was followed.   

 These predicted values are compared to measured values from data received 

during the experiment as shown in the previous chapter.  The Lucite's recorded X 

position was calculated from the difference in Time to Digital Converters (TDC) values 

for the PMTs on each side of the bar along with constants such as speed of light in 

Lucite, index of refraction in material, and angle of reflection inside the bars.  Other 

parameters were determined during calibration such as timing shifts and coefficients that 

were different for each bar.  The values for speed of light in the bars, index of refraction 

of Lucite, and cosine of the angle of reflection, total internal reflection angle, are 

2.99x10
8
 m/s, 1.49, and 0.7313 respectfully.   

 In order to analyze efficiency and position resolution, several confirmations had 

to be gained.  Graphs should coincide with known values and configurations.  Noticeable 

in Figure 16 are the scattering of events over the hodoscope as well as the distinction of 

each of the 28 bars.  One can also see and measure the curvature of the hodoscope in the 

graph of the X-Z plane.  The needed linear relationships between data collected on the 

Lucite hodoscope and BigCal can be seen in Figure 17.  This 2-D plot also shows the 

majority of hits occurring on one side.   
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Figure 16.  X vs. Y, X vs. Z, and Y vs. Z 
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Figure 17.  2-D graph of Lucite vs. BigCal 
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Once confidant with recorded values, calculation of predicted values from 

experiment can begin.  By knowing two points the particle traveled through, we 

algebraically predict where it hit the Lucite hodoscope. With these predicted values, 

global efficiency of the hodoscope can be calculated as well as efficiency per bar.  Table 

1 shows a table of the values for global efficiency.  Figure 18 shows histograms of 

collected data events and predicted events on all bars viewed on the X plane as well as 

the global efficiency derived from the ratio of the two.  Dividing the total number of 

events detected in the experiment after cuts by the predicted amount detected we get a 

global efficiency around 56%.   

Before taking the bars to JLab for SANE experiment, efficiency was found to be 

around 90%.  Collaborators in the experiment believe that because of the process of 

adding the hodoscope into BETA, which included bending and cutting the bars, the 

efficiency dropped.  Many agreed that the global efficiency would be around 56%.  Table 

2 shows the efficiency per bar in horizontal sections.  Looking at efficiency per bar, 

Figures 19-21, low efficiencies can be found at the top and bottom of the hodoscope 

while more consistent values are seen towards the middle.     

 

Table 1.  Global efficiency 

Distance across bar 

in cm 

-50 to 

-30 

-30 to 

-10 

-10 to 

10 

10 to 

30 

30 to 

50 

Percentages 59.2 61.0 53.8 58.7 51.5 
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Figure 18.  Lucite collected and predicted values with efficiency 
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Table 2.  Efficiency per bar 

Bar 

-50 to -

30cm 

-30 to -

10cm 

-10 to 

10cm 

10 to 

30cm 

30 to 

50cm 

1 31% 31% 11% 2% 0% 

2 29% 31% 28% 32% 40% 

3 **** 74% 45% 50% 70% 

4 53% 58% 52% 74% **** 

5 56% 67% 59% 49% 55% 

6 88% 81% 63% 64% 42% 

7 83% 89% 92% 97% 93% 

8 68% 47% 47% 48% 39% 

9 36% 59% 57% 50% 29% 

10 65% 63% 51% 49% 64% 

11 68% 64% 75% 72% 98% 

12 57% 49% 39% 43% 33% 

13 87% 78% 70% 66% **** 

14 **** 70% 48% 91% 79% 

15 45% 45% 41% 36% 61% 

16 **** 89% 89% 70% 71% 

17 95% 72% 30% 72% 71% 

18 67% 51% 62% 58% 52% 

19 50% 56% 35% 53% 33% 

20 83% 56% 48% 66% 63% 

21 27% 48% 35% 52% 46% 

22 63% 50% 32% 35% 57% 

23 36% 35% 39% 45% 14% 

24 53% 53% 46% 68% 54% 

25 52% 60% 43% 57% 46% 

26 65% 55% 44% 39% 49% 

27 **** **** 76% **** 54% 

28 **** **** **** **** **** 
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Figure 19.  Per bar efficiency 1-9 
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Figure 20.  Per bar efficiency 10-18 
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Figure 21.  Per bar efficiency 19-27 
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 At the same time efficiency is derived, both horizontal and vertical position 

resolution is determined.  In comparing the difference between predicted positions of hits 

to experimental data, graphs with Gaussian fits will show the accuracy of the 

calculations.  Figures 22 and 23 show the expected linear relationship between 

experimental and predicted values along the X and Y plane respectively along with their 

difference.  These differences determine the position resolutions.  Figure 24 graphs 

display the Gaussian curve and fit of the data.  According to the data, the accuracy of the 

measurements comes within 2-3 cm.  Figure 25 displays how the resolution barely 

changes across each bar from left to right.  Figures 21 and 22 show resolution for 

particular bars.  The Gaussian fit to these data sets give values within an acceptable 

range.  Table 3 is a table of the recorded Gaussian sigma values for horizontal and 

vertical resolution.   
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Figure 22.  Lucite vs. predicted and Lucite vs. difference in X 
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Figure 23.  Lucite vs. predicted and Lucite vs. difference in Y 
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Figure 24.  X and Y resolutions, fit with Gaussian distribution 
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Figure 25.  X resolution across bar 
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Table 3.  Position resolutions 

Bar X sigma Y sigma 

1 4.153856 1.962967 

2 3.133320 1.987096 

3 3.224193 1.991519 

4 2.996586 1.979017 

5 3.217523 1.997089 

6 2.905495 1.990290 

7 2.918156 1.981054 

8 3.115085 1.987691 

9 2.929246 1.996075 

10 3.167127 1.979932 

11 3.113425 1.982781 

12 3.194345 1.988271 

13 3.246239 1.994629 

14 2.999186 1.982475 

15 3.181918 1.976021 

16 2.853624 1.984797 

17 3.320098 1.974930 

18 3.759528 1.995985 

19 3.154873 1.961484 

20 3.052633 1.982178 

21 3.032471 1.970079 

22 3.435270 1.983833 

23 3.169391 2.006595 

24 3.220056 1.990546 

25 3.159657 1.992576 

26 3.290799 1.997454 

27 3.145272 1.992837 

28 3.955297 1.932010 
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CHAPTER 6 

Conclusion 

 

 The Spin Asymmetries of the Nucleon Experiment (SANE) ran successfully at 

Jefferson (JLab).  It is currently (as of March 2011) in the data analysis phase.  

Preliminary results for SANE's goals are the subject of many talks and presentations over 

the past year.  Most current results concern the asymmetries A|| and A .  Soon members 

of the analysis team plan to publish a few papers regarding the results.  The Lucite 

Hodoscope was planned to be vital in the analysis phase of the experiment, but due to 

low efficiencies, many of the analysis codes did not involve the hodoscope.  Further 

investigation is needed to include it in the final analysis of the experiment.   

 With global efficiencies around 56%, the Lucite could not serve as an adequate 

piece for getting tracking information.  Certain areas of the bars failed in recording valid 

efficiency values.  The process in finding the efficiencies was sound and confirmed 

preliminary results taken before the Lucite analysis code was written.  More work can be 

done in order to understand why the Lucite Hodoscope did not meet efficiency 

expectations.  For position resolution, the Lucite Hodoscope's data met expectations.  

With position resolution differences for X = 3.5 cm and Y = 2.0, the analysis code 

adequately determined location of each event.  Further work on the Lucite Hodoscope 

should include investigating the efficiency through events with one PMT hit and a Monte 

Carlo simulation of the hodoscopes to compare with the experimental data.   
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