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ABSTRACT

 

Hughes, Khaliah K. INTEGRATION OF COGNITIVE AND PHYSICAL FACTORS 

TO MODEL HUMAN PERFORMANCE IN FLUID POWER SYSTEMS. (Major 

Advisor: Steven X. Jiang), North Carolina Agricultural and Technical State University. 

 

Fluid power technology is constantly evolving as a result of the interaction 

between the human and the system.  Systems such as the hydraulic excavator utilize this 

technology in order to deliver safe, efficient, and effective performance.  However, 

traditional research has placed much emphasis on technical performance rather than on 

human components.  Imbalances of this nature demonstrate inadequate understanding, 

lack of knowledge, and limited research on the factors affecting performance.  This 

research aims to address these shortcomings by using an integrated approach to better 

model human performance in fluid power systems.   

Through the development of an integrative framework considering cognitive and 

physical components, procedures were developed to facilitate the integration of various 

performance factors and simulation tools.  An empirical study was performed using a 

case study in fluid power to demonstrate the viability of an integrated human 

performance model.  From those studies, control was found to have a significant effect on 

workload and the environment on completion time.   In addition, a significant difference 

in workload was found between non-integrated and integrated models.  Future work 

should concentrate on further utilization of the framework with newly enhanced 

simulation tools that offer a range of capabilities to fully model its defined parameters. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

Fluid power technology has been used primarily in larger machinery, providing 

power in the form of hydraulics (i.e. liquids) and pneumatics (i.e. gasses) since the 1940’s 

(Maskrey & Thayer, 1978).  Being one of the three major types of control-transfer, this 

technology is most often used in systems where the fluid properties are pressurized and 

exploited to generate, transmit, and control power.  With this technology, power is 

transferred from a prime mover or source to an actuator to complete required work tasks, 

allowing systems to operate with increased power, flexibility, and performance capability 

(Hutter, 2009).  Thus, fluid power systems have become fundamental in many domains 

based on their versatility in a wide range of consumer and industrial applications.  

One such system is the hydraulic excavator (Figure 1.1).  Its primary components 

consist of a pivoting cab, rotary tracks, extendable arm, and a retractable bucket.  High 

pressure forces fluid through hoses and tubes to control the machine’s motor and 

hydraulic components such as the boom, cylinders, swing, and track-drive.  Each of these 

hydraulic components is managed through operator controls which regulate system statics 

and dynamics.  Furthermore, hydraulic excavators are available in various sizes, ranging 

from compact to large scale.  They have also been used in a variety of industries such as 

transportation and manufacturing where they are favored for their cost, precision, and 

safety (Rowe, 1999).  These systems are most recognized in the construction industry 
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where they are often referred to as diggers or backhoes, denoting their most common 

work application (e.g. excavation or digging processes).  However, they can also be 

specialized with tooling attachments for applications such as material handling, 

demolition, and heavy lifting (Boyanovsky, 2005).   

 

 

Figure 1.1.   Modern Hydraulic Excavator System (Yanagida, 2007). 

 

Over the years, fluid power systems have progressively advanced in order to meet 

the constant demand for new technology that accomplishes work tasks more easily, 

efficiently, and economically (Barrow-Williams, 2006).  Therefore, with regard to these 

demands and the increased appeal of this technology, emergent hydraulic excavators are 

becoming more advanced and complex than ever before.  In modern designs, 

manufacturers have begun producing excavator systems that retain many of the basic 

functions of their predecessors, yet incorporate new innovative features that provide 

increased safety, efficiency, and comfort to the human operator (Boyanovsky, 2005; 
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Carter, 2008).  Some important improvements to excavator design include: engine 

performance for faster hydraulics, better operator interfaces, as well as an ergonomically 

redesigned cab (Singh, 1997).    

Excavators, more importantly, have evolved in technical design, transitioning 

from hydraulic to electronic control (Figure 1.2).  These systems are generally controlled 

by a human operator who executes sequential and organized operations to reach desired 

performance goals (Torres-Rodriguez et. al, 2004).   In most systems, hydraulic control, 

which is also referred to as manual or iso-control, remains the standard operating 

mechanism.  With this design, controls consist of manual joysticks and floor-mounted 

levers.  Each joystick controller offers six degrees of freedom in a quadrant design known 

as the H-pattern.  This pattern allows operators to control the system through horizontal 

(i.e. left and right), vertical (i.e. forward and backward), or diagonal movements.  Levers 

in the front of the cab allow operators to move and position the excavator at various 

locations.  Hydraulic control patterns not only offer simplicity, but also provide a high 

level of feedback to the operator.   

With newly implemented electronic control, which is also referred to as servo or 

selectable joystick control, operators are given the option of using dual control patterns 

(Johnson, 2006).  The primary difference between these and the traditional hydraulic 

controllers is that operators can switch from the traditional H-pattern control to a sub-

control pattern of functional joystick buttons.  Like hydraulic systems, when the 

traditional control pattern is selected, the system is controlled by horizontal, vertical, and 

diagonal joystick movements.  In contrast, when the electronic control pattern is selected, 
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joystick buttons control the system’s mechanical movements as well as engine dynamics 

such as horsepower and speed.  Electronic control mechanisms are thought to be more 

comfortable and less fatiguing to the human operator over long periods of time 

(Berndtson, 2007).   

 

 

Figure 1.2.  Excavator System Designs and Control Patterns (Hitachi, 2004). 

 

In addition to control, various electro-hydraulic tooling attachments have also 

been added to excavators to offer versatility in work applications and for adaptability in 

multiple tasks.  These improvements have led to hydraulic excavators becoming one of 

the most useful tools in the construction industry, yielding in higher productivity and 

decreased costs (Singh, 1997).  The introduction of such improvements now allow 

excavator operators to alternate between control patterns to best suit their particular 

operation style and job type (Boyanovsky, 2005; Zubko, 2007). 
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1.2 Problem Statement 

Despite advantages, many of these advancements have perpetuated existing 

problems and have also led to new difficulties concerning performance and design.  Fluid 

power issues such as high pressure, friction, containment, and constant movement 

continue to present issues with control, leaks, and losses of efficiency within these 

systems.  In addition, these systems are still manually operated by a human operator, 

requiring excessive amounts of energy, intense task concentration, and high skill level.  

Complex interactions between the operator and the system due to these requirements can 

lead to errors and misunderstandings (Rowe, 1999).  Therefore, operators of fluid power 

systems must not only be aware of the system and how it operates, but also of its 

performance limitations.  Aforementioned, excavators have evolved in technical design, 

transitioning from hydraulic to electronic control.  These mechanisms are perceived to be 

more comfortable, less fatiguing, and allow operators to select control patterns based on 

personal preference, operation style, and job type (Boyanovsky, 2005; Zubko, 2007).  

Such changes, however, have brought about criticism from operators who prefer the 

original operating mechanism (e.g. hydraulic control) due to a lack of feedback in the 

electronic controllers.  This lack of feedback gives operators a remote sense of the actual 

work environment, making decision processes more complex.   

These and other matters have begun to compel researchers to investigate design 

changes and their impact on performance.   With a wide variety of modeling tools 

available, efforts have yielded insights not only on human performance, but also on task 

efficiency, workload, and job re-design as well.  Many of these models, however, are 
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limited in applicability due to the complexities of human performance.  Not only have 

many existing performance models and research efforts placed inappropriate 

concentration on technical performance, but they have also failed to recognize the various 

factors contributing to human performance.  Specifically, the majority of models rely on 

either cognitive or physical performance alone; when in fact, both areas interact to 

produce human behavior.  Shortcomings and oversights in this aspect have led to research 

gaps and inaccurate performance models which cause designs not to perform as expected 

in the real world.  As a result, research credibility and model accuracy is lost.  In spite of 

this issue, there is a lack of effort among researchers to integrate both cognitive and 

physical performance.  Until issues of this nature are addressed in current and future 

research, shortcomings of human performance models will continue to perpetuate.  

Therefore, immense concentration and efforts are needed in this area in order to truly 

enhance the quality of predictive human performance models.   

 

1.3 Motivation 

Since system performance depends on the machine and the operator, the 

effectiveness of design advancements need to be investigated in order to better 

understand human-machine interaction.  Human performance modeling provides a means 

to simulate these design changes and to evaluate their impact on the human operator 

without developing costly prototypes.  Specifically, human performance is defined by its 

ability to perceive, plan, and carry out tasks or sub-tasks in response to the demands of 

the environment (Chapparo & Ranka, 1996).  Models of human performance act as 
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representations that simulate aspects of performance in real world systems.  Modeling 

approaches can be either data-driven to predict human behavior, or cognitive 

architectures to simulate mental processes (Campbell & Bowers, 2000).   Human 

performance models have been used in disciplines such as psychology and medicine, as 

well as engineering.  These models have also attempted to integrate the human as well as 

the system in the design process, optimize or show deviation from normal models, and 

predict future outcomes (Feyen, 2007).  Although these studies recognize the importance 

of human performance, most have placed an inappropriate amount of concentration on 

technical performance rather than on human components (Laughery, 1998).  This 

imbalance is attributed to by the difficultly of modeling the complexity and variability of 

human behavior.   

Imbalances of this nature have resulted in less understanding of the factors which 

shape performance, a lack of significant knowledge, and limited research on interaction.  

More importantly, few studies concentrate on evaluating the human performance in fluid 

power systems such as the hydraulic excavator.  Within these studies, there is a notable 

absence of research pertaining to the significance of design changes on system operation 

and the human operator.  Such limitations in human performance models have led to gaps 

between real and anticipated performance, designs not performing as expected, and 

overestimation of efficiency (Baines et al., 2005).  This is particularly true in the area of 

fluid power systems which are constantly evolving in design, placing new demands on 

human operators. 
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By studying human performance with fluid power systems such as the hydraulic 

excavator, there is the potential to gain insight on interaction, investigate the limitations 

of human performance, and better support the needs of operators (Laughery, 1998).    

Therefore, in order to better understand how tasks are accomplished with fluid power 

systems, modeling tools can be used to simulate performance under various conditions.  

Simulating human performance provides a way to overcome the limitations of past 

studies, fill the void of research on interaction with hydraulic excavators, and evaluate the 

impact of system design changes.  In many research studies, simulation technology has 

been used to focus on the fundamental principles of modeling, to accurately represent 

systems, and to evaluate designs in complex settings.  Although, this technology was 

initially used to improve the performance of various processes, a recent rise in 

competitiveness and costs has led to an increased awareness of its value in evaluating 

system complexities such as process definition, redesign, workload, and safety (Bloechle 

& Schunk, 2003).  Through continual use and development, it can also be used to address 

new varieties of problems concerning complex human behavior, yielding in better 

decisions, decreased costs, and increased efficiency.   

Over the years, the scope of problems addressed through human performance 

modeling has increased.  Now, it can not only be used to simulate the inconsistencies of 

system performance, but also to address issues and provide solutions on complex human 

decision making (Bloechle & Schunk, 2003).  Human performance modeling can help to 

ensure that problems associated with human performance are clearly identified and 

resolved during the design process before implementation.  With fluid power systems 
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such as the hydraulic excavator, modeling will enable the ability to determine operator 

performance in emergent system designs, eliminating the need for expensive mockups.   

More importantly, it provides an opportunity for the development of better models 

which more accurately depict human performance.  For instance, when simulation tools 

are used to independently assess components of performance; gaps are left in models, 

creating significant deviations from true performance with human-machine systems in 

real world settings.  However, the flexibility offered in most simulation software allows 

for new approaches wherein predictive models can be developed based on the 

environment, system, and the human’s cognitive and physical functioning. 

 

1.4 Research Objectives 

The aim of this research is to develop an integrated human performance model for 

a hydraulic excavator to better understand the interactions that occur in typical work 

processes.  Simulation models are used to incorporate additional aspects of human 

performance by taking into consideration both cognitive and physical factors. Objectives 

concentrate on three primary areas: the creation of a theoretical framework, an empirical 

study on human performance, and an integrated human performance model.   

The theoretical framework in this research acts as a set of procedures for better 

models of human performance to be developed.  Specific goals with regard to this 

objective are to: 

 Develop a set of procedures to accurately model human performance  

 Describe the internal and external mechanisms that create performance  
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 Identify key performance metrics to consider when modeling performance  

 Extract and correlate performance variables through various modeling tools  

 Create a schema to facilitate an integrated model representation  

The empirical study assesses both current and future issues with human 

performance in existing and emergent fluid power systems.  Associated goals of this 

research objective are to: 

 Provide descriptions of critical tasks during routine excavation processes 

 Investigate the effects of various factors on human performance 

 Assess the degree of workload experienced by the human operator  

 Identify usability and ergonomic issues with excavator system designs 

 Propose recommendations for improvements in emergent systems  

Lastly, the integrated human performance model attempts to expand beyond the 

realm of past approaches and overcome modeling deficiencies to bridge the gaps in 

traditional research.  The goals of this objective are to:  

 Create an integrated performance model with multiple modeling tools  

 Acknowledge the variety of interactions that produce human behaviors 

 Represent various components contributing to human performance 

 Identify the relationship between cognitive and physical performance  

 Examine the benefits of integrated versus traditional performance models 
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1.5 Dissertation Organization 

The following chapters describe the development and implementation of 

integrated models to assess human performance with fluid power systems.  This 

dissertation is divided into nine chapters.   

Chapter 1 provides a brief overview of the background, problem, motivation, and 

objectives to be addressed in this dissertation.  Subsections of the chapter serve to 

describe the current challenges, contributions, and potential outcomes of the research.  

Chapter 2 provides a literature review, giving insight on human performance 

modeling with fluid power systems and the techniques that have been utilized by 

researchers in past studies.  It discusses the fundamentals of modeling and modeling 

approaches. Such techniques are described and compared in terms of their strengths and 

limitations when modeling human performance.  Examples of simulation software, along 

with a description of modeling capabilities are also provided.  

Chapters 3 and 4 describe the research methodology for the development of an 

integrated human performance model.  Chapter 3 presents methods for the theoretical 

modeling framework, integrating both cognitive and physical aspects of human 

performance.  Procedures presented in the framework and their potential uses are 

identified to enhance human performance models with complex human-machine systems.  

Chapter 4 concentrates on procedures for an empirical study to facilitate the integration 

of human performance models as described in the prior chapter.   

Chapter 5 presents the integrated human performance modeling framework.  The 

integrated framework describes the modeling approach and required parameters for the 
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creation of integrated human performance models.  Its structure and the purpose of its 

components are described along with examples for implementation.  Chapter 6 expands 

upon that framework and presents a case study in the fluid power domain to demonstrate 

a viable application for the integrative framework. 

Chapter 7 presents results derived from the creation of an integrated human 

performance model with respect to cognitive and physical factors.  Model results detail 

data (i.e. numerical and graphical) from cognitive, physical, and integrated performance 

models based on simulated output from various human-system configurations.  Empirical 

results convey the significance of multiple independent variables on human performance.    

Chapter 8 discusses implications of those results.  It describes in detail, the value 

of the integrated framework and the correlation between cognitive and physical 

performance.  Results from cognitive and physical performance models are examined 

both independently and collectively.  Areas of divergence and concurrency between both 

models are used to discuss implications on human performance, the distribution of 

workload, and equipment design in existing and emergent fluid power systems. 

 Lastly, Chapter 9 provides a conclusive summary of the research presented in this 

dissertation, as well as potential areas for future work to extend the addressed topic.  It 

demonstrates the contribution of using such an approach to investigate human 

performance by identifying the benefits of the developed framework and showing the 

limitations of existing performance modeling approaches.  Examples of its potential use, 

further validate the framework which provides a foundation for the development of better 

human performance models. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Hydraulic Excavators in Fluid Power Industry 

In a variety of industries, fluid power is recognized for its extensive flexibility in 

a diverse range of work applications.  In both of its forms, hydraulics and pneumatics, the 

technology is particularly favored for its effectiveness in decreasing costs as well as 

improving precision and safety (Rowe, 1999).   A prime example of this technology is the 

excavator, one of the many forms of hydraulic machinery.  Such systems utilize fluid 

power technology to control the system’s motor and cylinders (Ding, Qian, & Pan, 2000).  

The principal functions of these systems are digging (i.e. material removal), ground 

leveling, and material transportation operations; however, with custom tooling, they can 

also be used in a variety of other applications, making work processes more manageable 

for the human operator (Torres-Rodriguez, Parra-Vega, & Ruiz-Sanchez, 2004; 

Boyanovsky, 2005).   

 

2.1.1 Evolution of Fluid Power Systems 

Despite use in a variety of applications, the basic structure of excavator systems 

are highly similar.  The machines normally include a transmission system, crane, and an 

attachment with functional hydraulics (Kappi, 2000).  Its exterior consists of mechanical 

components such as a pivoting cab, rotary tracks, extendable arm, and a retractable 

bucket.  Its main hydraulics are the boom, cylinders, swing, and track-drive (Ding et al., 
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2000).  Excavators are primarily operated via series of manual controls consisting of 

buttons, joysticks, pedals, and levers located on the interior of the cab.  Push button 

controls allow the operator to activate power, monitor the system, and adjust additional 

settings; whereas, levers and pedals allow the operator to move the excavator to the 

desired location and to control action of the hydraulic tooling attachment.  Most 

important of the system’s controls are the joysticks which are located on each side of the 

operator’s chair.  These controls direct work performance through horizontal rotation and 

vertical motion of the system’s hydraulic components. 

 

2.1.2 Emergent Systems and Design Changes   

With fluid power systems, there have been relatively few industry changes that 

have caused the need for significant design or process modifications (Kappi, 2000).  

Hydraulic hardware, however, has advanced tremendously in recent years, evolving from 

hydro-mechanic to electro-hydraulic mechanisms (Elton, Enes, & Book, 2009).  The 

development of these new technologies have caused radical changes in the role of the 

human operator; a role which has shifted from monitoring and control in traditional 

systems to supervision in newer more automated systems.  Although such systems were 

manufactured as early as the 1940s, their current design was not produced until the 

1960s.  Modern system designs maintain many of the primary functions of their 

predecessors, yet incorporate additional features that improve both human and system 

performance (Boyanovsky, 2005; Carter 1996).  Such improvements have focused on 

faster performance, intuitive interfaces, and better aesthetics (Singh, 1997).  Most 
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significant of these changes are those with regard to the excavator’s technical design, 

transforming traditional control mechanisms.  Majority of past systems use hydraulic 

control as its primary operating mechanism.  With this design, the system is controlled 

via manual joysticks and levers.  The joystick controllers offer six degrees of freedom 

used for the translation of the machine and dynamics of its mechanical components.  

Since motion control is often complex and non-intuitive, this control pattern is 

particularly favored by many excavator operators because of its simplicity and quality of 

feedback (Torres-Rodriguez et al., 2004).   

In contrast, newer electronic control systems offer dual control patterns that can 

be utilized based on the operator’s preference, operation style, or job type (Boyanovsky, 

2005; Zubko, 2007).  Like hydraulic systems, the newer systems can be controlled by 

linear joystick movements; however, these systems can also be controlled by functional 

buttons embedded in the joystick controls which are believed to make work processes 

more comfortable and less fatiguing to the operator over long periods of time.  Electronic 

controllers provide the opportunity to improve performance and enhance traditional 

hydraulic systems with new mechanisms that improve energy efficiency, enhance 

operator control, and increase productivity (Elton et al., 2009).   Such advancements, 

however, often result in a tradeoff with system complexity, particularly in the area of 

system controls and interface design which impacts the human operator. 
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2.1.3 Hydraulic Excavator Operator Performance 

Human performance has a significant impact on overall system performance. 

With regard to fluid power, the human operator is the most critical and complex 

component when determining the operational effectiveness of the system.  Human 

operators manage and provide much of the information processing capability (i.e. 

cognitive performance); whereas, the excavator system itself contributes to physical 

performance.  For instance, tasks of a hydraulic excavator operator usually involve 

receiving information, decision making, and control actions.  In this process, operators 

receive information by sensing the environment, followed by making decisions based on 

the obtained information or prior knowledge. These decisions are then translated into 

cognitive or physical actions. Such processes vary among different operators; therefore, it 

is essential to understand the human factors that contribute to and affect performance in 

complex systems.  

Despite many advantages, improvements in hydraulic excavator systems have 

perpetuated existing problems and have led to difficulties in terms of human 

performance.  The productivity of the human operator is often determined by the qualities 

such as the level of system automation or design (Al-Masalha, 2004).  In addition to past 

issues such as high pressure, friction, and control, operators are now faced with new 

systems that require excessive amounts of energy, intense task concentration, and high 

skill level.  These requirements cause complex interactions between the operator and the 

system, imposing new cognitive demands (Nikolova, Valentin, & ColMircho, 1993).  
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Studies have shown evidence that operators need additional information to support tasks 

(Corker, 1999).   

This need has occurred due to intellectual demands such as observation, attention, 

and memory, versus the physical abilities of the human operator (Miroljub et al., 2004).  

Such abilities vary among operators due to a host of individual factors ranging from age 

and gender to training and expertise.  Operator skills can diverge immensely on simple 

tasks as well as complex procedures (Fisher, 2008).  For instance, with an unskilled 

operator, it can be a difficult and time consuming to learn process and to master the skills 

necessary for efficient excavator system operations.  Operator training is required in 

order to gain the necessary experience and the ability to understand the correlation 

between movement of the excavator and control of its joysticks. Therefore, newer less 

skilled operators encounter more difficulties with performance than proficient excavator 

operators having more experience (Kim et al., 2009). 

These circumstances have caused many research, design, engineering, and user 

communities to recognize the importance and need to consider the human as a component 

during design (Laughery, 1999).  Human performance modeling provides a timely and 

economically feasible method of assessment.  Providing realistic models of operator 

performance in fluid power systems, however, presents numerous technical challenges.  

Both work processes and the environment change considerably according to the 

operator’s training or skills as well as environmental conditions such as the temperature 

or terrain (Kappi, 2000).  Furthermore, new control mechanisms and hydraulic 

components are highly nonlinear and difficult to model (Elton et al., 2009).  In order to 
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address such demands, sophisticated human performance modeling techniques must be 

applied to accurately and efficiently model human performance with fluid power systems 

(Fisher, 2008). 

 

2.2 Human Performance Modeling (HPM) 

Models are representations of complex phenomena that depict how components of 

a system function are coordinated to achieve desired outcomes to reduce, complexity, 

enhance understanding, and minimize assumptions (Chaffin, Anderson, & Martin, 2006).  

Models are defined as representations of systems embodied by words, pictures, or 

numbers.  Generally, models are used to communicate how aspects of the human-

machine system deviate from normal models or to predict future outcomes (Chapparo & 

Ranka, 1996).  In contrast, human performance refers to “the effectiveness or skill to 

accomplish goals through operations associated with human behavior” (Hockey, 1997, 

p.77).    

 

2.2.1 Definition of HPMs   

Models of human performance in complex systems serve to predict performance 

by identifying deficiencies in the human-machine system under various scenarios and to 

make assumptions about the underlying process of human behavior (Corker, 1999).  The 

key differentiator between a model and a human performance model is a representation 

of a system that simulates some aspect of human performance within a limited domain.  

Representations of human performance models can range from a simple written equation 
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or mathematical statement to a complex computer simulation.  Such models are 

beneficial when used as a precursor to design which aids in a better understanding of the 

concept, design, use, strengths or weaknesses, performance effectiveness, and costs of 

proposed systems (Allender, 2000). 

Over the years, human performance models have rapidly advanced in order to 

better predict and model human behavior (Campbell & Bowers 2000).  These 

improvements have been made possible due to simulation models that more accurately 

approximate performance data within acceptable limits, allowing researchers to consider 

human performance-related risks on system performance.  Output from human 

performance models come in many forms such as workload predictions  and task 

timelines which can be found throughout a diverse range of disciplines such as 

psychology, cognitive science, engineering, artificial intelligence, computer science, 

biomechanics, physiology, and medicine (Gore & Smith, 2006; Feyen 2007). 

 

2.2.2 Types of HPMs 

Human performance models have been thought by researchers to involve two 

categories: reductionist models and first principle models.  Reductionist models are 

characterized by their ability to reduce high level aspects of human-system behavior into 

smaller elements so that realistic predictions of human performance can be made.  In 

contrast, first principle models describe the manner in which the system and environment 

interact with human processes; however, the primary difference between both 

performance models lies within their organization.  Reductionist models use the human-
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system task sequence as its organizing structure to describe human behavior; whereas, 

first principle models are organized by a framework representing the underlying 

performance goals such as behavior, perception, or cognition (Laughery, 1998).   

Other studies also classify human performance models in two categories, 

predictive models and process models.  Predictive models attempt to assess performance 

before implementation in real world scenarios.  Similarly, process models also predict 

performance; however, these models concentrate on representing specific human 

processes used to accomplish the task.  Predictive models are beneficial because they 

accurately model performance without requiring extensive validation data as compared to 

process models which are applicable to a wider range of tasks and conditions (Feyen, 

2007).   

 

2.2.3 HPM Approaches 

In order to evaluate human performance, it must be done systematically.  

Therefore, researchers have used a variety of modeling approaches to fully capture its 

dynamics and predict performance at the appropriate level of detail.   

2.2.3.1 Qualitative and quantitative approach.  Such approaches are both 

qualitative and quantitative, having a distinct purpose for modeling a unique aspect of 

performance (Bender, 2006).  For instance, “data-driven approaches predict human 

behavior through recognition, decision making, and temporal planning; whereas, the task 

network modeling approach describes steps associated with human performance via flow 

diagrams” (Campbell & Bowers, 2000, p.1).  The computational approach, describes 
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representations of users which allow designers to simulate responses to various scenarios 

and design options based on task analyses which arrange data on human perception and 

cognition into sets of behavioral guides.  These guides reduce the amount of 

psychological and methodological knowledge required to build models, allowing 

researchers to focus on the task rather than psychological theory and modeling 

methodology (Vera, Remington, Matessa, & Freed, 2001).  The task network modeling 

approach has also been described as a subset of the computational approach because it 

defines sub-models of the human-machine system, making tasks more efficient and 

eliminating factors that reduce desired performance (Nickols, 2006).   

2.2.3.2 Physical approach.  Although a variety of approaches to human 

performance modeling exist, there are two general categories which as classified as either 

cognitive or physical based on the chosen modeling parameters.  The physical approach 

to human performance modeling focuses on developing methods that enable researchers 

to specify, design, control, and build models of systems or objects.  Unlike other 

modeling approaches, the physical approach is based on physical properties and their 

motion which is governed by the laws of physics (e.g. Newton’s second law of motion).   

In general, physically-based modeling involves distinct steps such as mathematical 

modeling, rendering, and animation (Barzel, 1992).  This approach enables models to 

produce realistic motion through dynamic simulation which incorporates physical 

characteristics to model create lifelike human behavior (Funge & Tu, 1999).    

Physical models use calculations to model entities based on their representations, 

providing results in real-time 3D graphical form.  These models are facilitated through 
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mathematical representations of the simulated system as well as its environment wherein 

behaviors are defined according to the physical laws of statics and dynamics.  For 

example, a physically-based model can describe the parts and components of the 

simulated system and determine system behavior based on mathematical algorithms. It 

can also include representations of physical objects that impact performance or interact 

with the system being modeled (Al-Masalha, 2004). 

In recent years, the physical human performance modeling approach has become 

more realistic by describing motion that is subject to objects, forces, and constraints; 

hence, making the models perform as they would in real world environments (Skolnick, 

1990; Beliveau, Dixit, & Dale, 1993; Park, 2002).  These advantages can be summarized 

by the following:  

 Facilitates the creation of realistic human motion models  

 Adds additional levels of representation to modeled objects  

 Uses geometry, forces, and other physical quantities to control models 

 Models entity responses to one another and the simulated environment 

Such models have renowned capabilities when predicting human performance 

from physiological aspects; however, the approach neglects the biological context of 

behavior that is necessary to adequately account for the variability of human performance 

under various conditions (Hockey, 1997). 

2.2.3.3 Cognitive approach.  Unlike physical approaches, which are reactive, 

cognitive approaches to human performance modeling are deliberative (Cacciabue, 

Decortis, Drozdowicz, Masson, & Nordvik, 1992).  Cognitive approaches (Figure 2.1) 
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model human performance according to the nature of behavioral processes by focusing 

on internal or mental representations and operations rather than on environmental 

elements (Kokinov, 1999).  Such approaches attempt to extend beyond the realm of 

physical performance by modeling cognitive functions (e.g. working memory and human 

knowledge) as well as other inferential processes such as decision making (Funge & Tu, 

1999; Parasuraman, Sheridan, & Wickens, 2000).  The approach typically regards human 

performance as a set of condition-action rules that gather perceptual knowledge, perform 

cognitive functions, and issue motor commands.  Its most important advantage is that it 

incorporates the capabilities and limitations of human cognition and performance, 

making models more psychologically plausible (Salvucci & Lee, 2003). 

 

 

Figure 2.1.  Cognitive Methods for Human Performance Modeling (MITRE, 2010).  

 



24 

 

With regard to cognitive approaches, a number of sub-models have also been 

developed such as the Goals, Operators, Methods, and Selection Rules (GOMS) and its 

variants: Keystroke Level Modeling (KLM), Cognitive Perceptual Model (CPM), Card, 

Moran, and Newell (CMN), as well as Natural GOMS Language (NGOMSL).  Each 

model has a specific purpose in terms of human performance; however, each approach 

focuses on quantitative predictions of human behavior and cognitive processes associated 

with system design and evaluation (Gore & Smith, 2006; Wu & Liu, 2007).  The GOMS 

modeling approach and its variants are popular for representing cognitive behavior, 

enabling researchers to successfully predict user behavior through efficient testing and 

evaluation.  For instance, KLM-GOMS provides a simple method for describing expert 

behavior as linear sequence of steps.  Such simplicity has proven benefits in the 

evaluation of interface designs and tasks.  Such use demonstrates both the theoretical and 

practical benefits of cognitive modeling for human-machine interaction.  Although the 

GOMS modeling approaches facilitate rapid model development, they are limited by their 

inability to model detailed user behavior (i.e. expert behavior) and yield little value with 

lower-level user behavior (Salvucci & Lee, 2003).  

Since many new technological systems are highly autonomous, cognitive 

modeling approaches play a critical role in assessing human performance.  In order to 

ensure that human performance models appropriately predict human reactions to 

environmental stimuli, cognitive approaches must incorporate a variety of other 

constructs to bring together contemporary approaches along with traditional approaches 

to modeling performance (Hockey, 1997; Funge & Tu, 1999).  Over the years, there have 
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been many theoretical advances in cognitive approaches, causing it to emerge as a useful 

tool in the development of real world systems and in understanding human interaction 

and behavior (Salvucci & Lee, 2003).  A prime example is its ability to identify and 

model cognitive functions (i.e. information seeking, pattern recognition, monitoring, 

planning, and action) that are performed by an operator in complex work environments 

(Cacciabue et al., 1992).  However, as cognitive models become increasingly complex, 

there is a growing need to develop new approaches to truly depict the nature of human 

performance. 

 

2.3 Human Performance Assessment 

Human performance modeling approaches are accomplished through simulation, 

one of the most effective means for assessing performance (Hale, 2004).  Simulation 

technology has been one of the most effective means for implementing the prior 

approaches and assessing human performance.  Since the 1960’s, it has been used by 

industrial engineers to focus on the underlying principles of modeling, accurately 

represent systems, and evaluate designs in complex settings.  Over this period, simulation 

has also been a cost effective way to demonstrate cost efficient alternatives.  However, 

rising costs and competitiveness have led to increased awareness of the value of 

simulation in evaluating such alternatives (Drury & Laughery, 1994).   
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2.3.1 Simulation 

The appeal of simulating human performance in complex systems has also 

increased because it extends representations of the human-machine system, allowing for 

the prediction of system dynamics (Laughery, 1999).  Advantages of simulating human 

performance include: the ability to evaluate designs before prototype development, to test 

multiple designs with a reduction in time and experimentation, and to predict system 

performance under extreme conditions that are undesirable for human subjects (Campbell 

& Bowers 2000; Wu & Liu, 2007).  This is typically achieved since simulation models 

embed both human characteristics in the form of statistical distributions derived from 

collected real world data, which allow for predictions regarding performance to be made 

based on emergent behavior (Gore, 2002).  Each of these aspects allows simulation 

models to imitate human performance by analyzing interactions among the human, the 

system, and the environment (Feyen, 2007). 

 

2.3.2 Tools 

A variety of simulation tools can be used to accurately model performance. Such 

tools have proven much value in accurately modeling human performance.  Early 

modeling tools were developed for the purpose of predicting human operator 

performance efficiently (Laughery, 1998).  Over the years, however, tools for modeling 

human performance have tremendously evolved and can now be effectively integrated 

into the systems engineering process to support early analysis and design (Laughery, 

1999).  With these tools, simulation can be applied to a wide variety of problems to 
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decrease costs and increase efficiency, yielding in better decision making, savings, and 

productivity.   

2.3.2.1 Micro saint.  A modeling tool introduced in 1985, Micro Saint allows 

many types of complex systems to be modeled via the task network approach.  In this 

software, task network models are represented by nodes and arrows which depict a 

sequence of activities.  Models created in the software have the potential to vary from 

simple to complex (Drury & Laughery, 1994).  Its key principle, however, is the task 

network model which extends task analyses into predictive models of human activity.  

Micro Saint can be used to illustrate, predict, evaluate, and describe humans, equipment, 

and environment interactions of the system.  In the software, a library of micro models 

calculate various times for general classes of cognitive, perceptual, and psychomotor 

activities.  These models have been derived from sources such as human factors 

literature, established data sources, and other models.  Furthermore, the software has been 

used to address issues such as manning, performance prediction, and the probability of 

system failures (Laughery, 1998).   

 When developing models in Micro Saint, two steps are involved, defining the 

structure of the task network and defining the objects within that network according to 

human and system activities.  To create a model, a network diagram must be constructed.  

These networks are composed of tasks which have connotations of human activity 

performed by humans, processes, or machines.  In the network, tasks represent the lowest 

level and hold modeling elements such as timing information, conditions for execution, 

and task properties.  To reflect complex task behavior and interrelationships, information 
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to describe the behavior of the task must also be provided (Laughery, 1999).  Task times 

are represented by statistical distributions and the task time taken for execution.  Task 

sequencing is controlled through multiple paths and decision types.  Probabilistic 

decision types execute tasks based on the likelihood of the task, multiple decision types 

execute non-zero task values, and tactical decision types execute according to the highest 

task value.  Variables are based upon the information that the user desires to obtain from 

the model.  More importantly, variables hold the potential to dynamically change various 

aspects of the simulation.  Completed simulation models can be viewed via the network 

diagram or the animator when executed.  In the network diagram view, the model shows 

as a flow chart; whereas, in animator view, the model shows a visual representation of the 

process.   

With new software improvements, the scope of the problems applied to Micro 

Saint has increased and is now being used in industries such as manufacturing, 

healthcare, retail, government, and human factors.  In these sectors it is used to evaluate 

and improve efficiency in terms of task definition, quality control, process redesign, 

workload, safety, and productivity.  This efficient and cost effective tool for simulating 

the complexities of systems has proven itself to be effective in addressing problems and 

providing solutions on queuing, resource utilization, and complex human decision 

making (Bloechle & Schunk, 2003).   

2.3.2.2 Jack.  Jack software is a physical human performance modeling tool 

which builds models that improve ergonomic design and work tasks.  Using this software 

allows designers to evaluate the physical aspects of behavior and to improve human 
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performance while overcoming constraints such as time, capital, and safety (Kaufthal, 

1996).  Within the software, specific capabilities of Jack allow users to build and place a 

biomechanically accurate digital human in a virtual environment where tasks are 

assigned.  In the environment, the digital human can mimic physical motions and 

operations with real world accuracy, and users can evaluate simulated human 

performance (Demirel & Duffy, 2007).  Application of this software has the potential to 

yield in increased efficiency and profitability through better design, improved safety, and 

ergonomics (Burnette, 1998). 

2.3.2.3 iGEN, MIDAS, and CSEES.  In addition to Micro Saint and Jack, several 

other modeling tools have been developed: iGEN, Man-Machine Integrated Design and 

Analysis System (MIDAS), and Cognitive Systems Engineering Educational Software 

(CSEES).  Each tool has specific features which can be used to address human 

performance.  A modeling tool based on cognitive task analysis, iGEN concentrates on 

analyzing operational effectiveness.  It is also useful in evaluating the effectiveness of 

interfaces in decision making.  A prime example of its application is in military or battle 

space domains where human operators make critical decisions based on the use of system 

interfaces.  MIDAS, another tool, offers an architecture of physical component agents 

and human operator agents.  This software focuses on modeling and predicting human 

error.  It is particularly effective in the aviation domain.  CSEES is an integrated 

modeling tool that models and evaluates programs related to human judgment and 

decision making.  It has been proven to be useful in modeling judgment tasks, decision 

making, signal detection, and rule-based navigation (Wu & Liu, 2007).   
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2.4 Shortcomings of HPMs 

Human performance models that predict interaction in complex systems have 

shortcomings in their development and application (Corker, 1999).  “Many models have 

been found to lack flexibility, realism, and struggle to model human behavior” 

(Wellbrink, Zyda, & Hiles, 2004, p.29).  In particular, there have been problems with 

modeling performance with construction machinery such as the hydraulic excavator.  

Simulating these systems present a challenge for researchers due to the dynamic behavior 

of their hydraulic, electronic, and mechanical subsystems.  Review of literature indicated 

three shortcomings of past research models: limited research with regard to human 

performance in fluid power systems such as hydraulic excavator, emphasis on system 

performance rather than on human performance, and a lack of knowledge on the 

interaction between cognitive and physical factors contributing to human performance.   

For instance in 2004, Park and Lim noted that “knowledge of coupled dynamics is 

crucial in the design of hydraulic systems and that simulation of excavators can allow the 

researcher to gain insight on the effects of design on operator comfort (p.1).”  In this 

study, a simulation model was created for the combined mechanical and hydraulic 

dynamics of an excavator.  Two tools, Advanced Dynamic Analysis of Mechanical 

Systems (ADAMS) and Matlab-Simulink software, were chosen to model the mechanical 

and hydraulic dynamics respectively.  Experiments were performed under two 

conditions: moving the boom slowly and moving the boom quickly with a sudden stop.   

Results indicated that the simulation environment had reasonable accuracy and was a 
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highly applicable technique to solve dynamics-related real world problems such as 

hydraulic system design, structural design, and ride quality. 

In 2002, Zhang and Prasetiawan investigated the application of control techniques 

to a earthmoving vehicle’s powertrain.  The main objective of the study was to design a 

speed tracking controller for the system with a robust power source to loading condition 

disturbances.  A dynamic model was developed for the earthmover’s powertrain, built 

from a subsystem of component models which were assigned nominal operating 

conditions.  Models were validated by quantitative and qualitative comparisons made 

between the model and the excavator vehicle’s powertrain system, which was designed to 

have a structure similar to the real world system.  Results of the study indicated that the 

speed tracking controller had better nominal performance and robust performance than 

the original controller in terms of quicker response, wider tracking range, and better 

disturbance rejection. 

Filla, Ericsson, and Palmberg (2005) focused on the development of an operator 

model and a description of the working task, to draw conclusions about a machine's total 

performance, efficiency, and operability.  This research was accomplished through a 

simulation model of a human operator which describes the machine’s working cycle.  

The working task described how the simulated machine operated in its environment; 

whereas; the operator model described machine control to accomplish the working task.  

Although this research seemingly incorporates the human operator, its underlying 

purpose was to evaluate the potential fuel efficiency of virtual prototypes with regard to 

bucket filling.  Results for the simulation indicated that operator inputs for engine 
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throttle, lift, and tilt functions as well as the power distribution to hydraulics, drive train, 

and the engine load affected both performance and fuel efficiency.  In closing, the author 

noted that it could be beneficial to utilize the results of existing research into mental 

workload of the operator’s control efforts. 

Simulation has also been used to make projections based on adaptive control to 

approximate the nonlinear gain coefficient of the valve.  Objectives aimed to address 

system dynamics, parameters, uncertainties, and external disturbance.  Boom motion 

control experiments were also performed to demonstrate feasibility.  System controllers 

were modeled to analyze controller designs and to experimentally validate new control 

schemes.  The research resulted in new control design methodologies applicable to 

hydraulic systems requiring high control performance (He et al., 2006). 

In another study, Bundy, Chlosta, and Gutkowski (2002) concentrated on 

optimum excavator bucket positioning.  This study was motivated by processing times, 

operator effort, and automation.  The objective related to the minimum time needed for 

the bucket to travel from an initial position.  Studies consisted of modeling arm torque, 

bucket trajectories, and travel time.  Results, showed a relationship between torque and 

time as well as significant differences between torque time relations for various 

trajectories.  

Such models often overlook human representations of the system despite the fact 

that system performance is determined by the performance of the human operator.  By 

many researchers, this is believed to be caused by the difficulty in creating models with 

the same level of fidelity and predictability as in the real world (Laughery, 1999).  



33 

 

Although the literature pertains to hydraulic excavator systems, they clearly emphasize 

technical performance such as mechanics, drive train, hydraulics, and control of the 

system, rather than human performance.  As a result, researchers often produce 

superficial assessments of performance that only reflect the surface of the entire system.  

Such assessments strongly limit human performance models because system performance 

can not accurately be gauged without proper consideration of the human operator.   

Beyond the overwhelming number of models which concentrate on technical 

performance, there has been some research performed on fluid power systems such as the 

hydraulic excavator that do concentrate on operator performance.  For example in 1999, 

Laughery described the use of task network modeling in simulation to reflect complex 

task behavior and interrelationships of task information in human behavior.  Two case 

studies were used to address various applications on human performance.  The first study 

concentrated on operator responses.   Modeled tasks were dependent on comparative 

readings which determined subsequent tasks performed by the operator.  In the second 

study, the authors concentrated on determining the number of operators for systems to 

effectively operate.  However, this model evaluated the number of necessary operators by 

the summation the attentional demands across simultaneous tasks.   

Another study investigated autonomous control fluid power systems based on 

operator skill.  The primary objective was to analyze the difference of the operational 

skills between skillful operators and non-skillful operators by comparing their bucket 

trajectories in the same working environment.  In the experiment, both skillful and non-

skillful operators operated a backhoe in the same working environment to illustrate the 
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difference in operation.  Results indicated that the form of both operators improved 

simultaneously.  Differences were found between operator skill in the time, length, depth, 

and width, showing that skillful operators work more efficiently (Sakaida, Chugo, 

Kawabata, Kaetsu, & Asama, 2006). 

Interestingly, though these studies concentrate on the human operator, they fail to 

recognize the factors contributing to human performance.  For example, past models 

typically focus on physiological aspects of the human operator rather than on higher level 

mental processes.  Performance can be impacted by internal factors (e.g. intelligence, 

expertise, personality, emotion, or attitudes) and by external factors (e.g. fatigue, time, 

and stress).  Neglecting either of these factors can have a significant impact on 

performance predictions, given physical actions are triggered by cognitive processes 

(Gore & Jarvis, 2005).  Therefore, it is important that human performance models 

accurately account for the impact of relevant human conditions on human-system 

performance.  Consequences of accepting the data from human performance models that 

do not account for such factors increase the risk of selecting inappropriate technologies or 

developing unrealistic procedures.  Thus, in order to accurately predict human 

performance, both system characteristics and human cognitive functioning must be 

modeled (Corker, 1999).   

Hence, another shortcoming of past human performance models is that they fail to 

recognize the interaction of these factors to produce performance.  In 2001, Park and 

Chaffin aimed to address the lack of standards in models evaluating human motion. The 

study aimed to investigate performance in two areas and to detail a standard for their role 
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in human performance.  With regard to representations of human motion, the authors 

believed that in order to properly describe motion patterns, multiple attributes are 

necessary to represent its various features.  The authors furthermore believed that with 

quantitative representations of motion patterns, similarity measures, and statistical 

techniques can be used to compare simulated motions with actual samples to simulate 

motion.  Therefore, a study was designed to investigate methods of representing human 

motion patterns.   To determine attributes describing these motion patterns, human lifting 

and reach motion data were collected experimentally and recorded.  Reach and lifting 

tasks were modeled and compared to sets of recorded human motions, distorted motions, 

and randomly generated motions by using different similarity measures and statistical 

tests.  Results demonstrated the strengths and limitations of the similarity measures and 

statistical tests.  

In 2003, the Department of Defense also acknowledged that human factors issues 

are necessary for consideration when developing a system or assessing performance.  In 

terms of the environment, research indicated that it is characterized by three subsystems: 

physical, functional, and social.  However, more importantly, it was found that human 

issues were interwoven within almost every aspect of operations.  Significant factors 

were defined as stress, fatigue, psychological operations, the physical environment, and 

equipment. 

From this literature it is demonstrated that there is an array of human behaviors 

that have yet to be incorporated into existing performance models (Ritter, Shadbolt, 

Elliman, Young, Gobet, & Baxter, 2001).  This issue is significant because tasks which 
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were traditionally manual and physical in nature are now being replaced with tasks that 

are more cognitive in nature.  This is exemplified in many industries where automation is 

being adopted to increase efficiency and safety (Gore, 2002).  Since performance has 

multiple dimensions, models should not only consider the task or the system, but also the 

influence of various factors relating to the human (Nickols, 2006).   With the limited 

amount of research in this area, most research models concentrate on either physical or 

cognitive behavior, dividing human performance into neck up and neck down.  

Consequently, both of these areas interact to produce behaviors.  Therefore, such 

techniques neglect the relationship between cognitive and physical functioning on human 

performance. “Current human models have less cognitive ability than an infant and still 

have difficulty perceiving much of the environment as well as responses to the 

environment” (Feyen, 2007, p. 382).  Thus, to improve human performance models, 

better understanding is needed on how various factors influence the human decision 

making, strategies, and responses.  Another example as noted by Gore et al. (2008) is that 

models are often subjective and overly rely on physical factors; when in fact, many 

physical behaviors require cognitive triggering.  Specifically, cognitive factors such as 

memory, memory loads, and communication are often overlooked.  Incorrectly modeling 

or omitting any of these performance factors can lead to incorrect predictions.  Therefore, 

by considering cognitive and physical aspects, future performance models can be useful 

for identifying system vulnerabilities, proposing system redesigns, and alternate methods 

for reaching the desired performance.   
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2.5 Overcoming Limitations of HPMs  

To improve human performance models it is necessary to: obtain detailed data 

about human behavior, have a clear understanding of human performance, improved 

architectures for building models, validation of model characteristics, and the inclusion of 

individual differences to ensure that models simulate a range of human responses 

(Wellbrink et al., 2004).  However, to evaluate system performance, efficiency, and 

operability, the simulation must not be limited to the machine itself.  It must also include 

the operator, environment, and working task (Filla et al., 2005).  Increasing interest and 

momentum in this area has driven researchers to expand and build better models of 

human performance.   Therefore, researchers have begun to combine approaches to 

modeling performance that simulate human responses and predict how humans interact 

with advanced technologies (Gore, Hooey, Foyle, & Scott-Nash, 2008; Gore & Smith, 

2006). 

 

2.5.1 General Frameworks 

Over the years researchers have used various approaches to improve human 

performance models. Such approaches have been realized through improved software, 

more accurate data, and better knowledge of human capabilities.  The framework 

approach, specifically, has given researchers the ability to build better performance 

models by establishing the foundation upon which they are developed.  “A framework is 

described as a general structure which contains the elements and parameters common to 

the scenario being modeled” (Feyen, 2007, p. 384).  With the framework approach, the 
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task, environment, and human information to be modeled in the system are identified.  In 

particular, frameworks yield in better logic in simulation models that parallel human 

reasoning and facilitate interactions with the user (Campbell & Bowers, 2000).   

A variety of frameworks have been developed to provide a standard for the 

assessment of human performance.  In particular, one of the most widely recognized 

frameworks was by Lewin (1935) who defined human behavior in terms of the 

interaction between individual and environmental factors.  The significance of this work 

provided knowledge of human behavior through a schema of factors and types which 

should be described.  In later years, researchers narrowed the scope frameworks by 

concentrating on factors which shape human performance.  For example, Miller and 

Swain (1987) identified relevant environmental, organizational, and individual factors 

contributing to human error in performance.  Another example is Furnham (1992) whose 

model identified five categories of individual factors affecting occupational behavior.  

The identified factors consisted of personality, intelligence, demographics, motivation, 

and ability.  Similarly, in 1996, Stone and Eddy developed a framework to model factors 

impacting performance in terms of the individual and the organization.    

 In more recent years, frameworks have been developed which concentrate 

specifically on human performance for the improvement of work design and the 

development of systems.  One such framework was based on human performance in 

computer simulation.  This framework aimed to represent human performance in 

complex environments with discrete event simulation models using real world data and 

research literature.  This approach has been often used in military and industrial 
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applications to model the contribution of humans to system performance (Dahn & 

Laughery, 1997; Bunting & Belyavin, 1999).  Another approach was used by Schmidt 

(2000) who created a modeling framework of physical, emotional, cognitive, and social 

effects of performance by representing human processes and performance in social 

systems.  In 2001, Parker et al. integrated more specific psychosocial and physical factors 

into these frameworks by relating the human and the organization into the design of 

work.  This was later improved upon by Toriizuka (2001) who designed a framework to 

improve work style, efficiency, and comfort for better workload and human reliability. 

The most recent studies in this area combine many of these multi-disciplinary 

frameworks into a comprehensive framework to include the physical and psychosocial 

factors of human performance.  For example, Carliner (2003) attempted to form 

relationships between various factors relating to human performance to enable human 

performance modeling as an aid in manufacturing system design.  In 2005, Baines et al. 

also developed a theoretical framework from an array of past framework which 

summarized the principal factors and relationships to incorporate when modeling a 

system. This approach was intended to improve upon the awareness of the impact that 

human factors have on design, enable assessments of significant human behavioral 

factors, and to induce further consideration of these factors during the design process.  

Influencing factors were related directly with worker performance by measuring 

variations of human performance, identifying the human factors which are most likely to 

have an impact on those metrics, and compiling performance measures were brought 

together to form the framework. 
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2.5.1.1 Limitations of general frameworks.  Like performance models, 

frameworks are not without limitation.  Many of the earlier frameworks examined are 

broad in nature and fail to define specific factors associated with human performance; 

whereas, other frameworks are very context specific and based on technicalities of a 

specific application or work domain.  On the other hand, more recent models lack 

consideration of the broad range of factors that affect performance.  Of those models 

which identify relevant factors, many are indefinable or intangible which would lead to 

difficultly in quantification and modeling.  More importantly, all prior cases ignore the 

interaction of many other variables and neglect to fully consider aspects contributing to 

human performance.  As noted by Gore (2003), both cognitive and physical elements of a 

job interact to create performance.  Although a variety of theoretical frameworks 

currently exist which attempt to address issues in human performance, their limitations 

illustrate a fundamental lack of knowledge about human interaction and performance.   

This lack of knowledge is implied by Glenn, Neville, Stokes, and Ryder (2004) 

who found few research studies applying multiple modeling frameworks to complex 

systems as well as Baines, Asch, Hadfield, Mason, Fletcher, and Kay (2005) who noted 

that the factors which affect performance are less understood.  Limited appreciation of 

the wide range of factors that influence performance has led to designs not performing as 

expected due to overestimation of both human and system efficiency.  These frameworks 

emphasize the current research problem and the need for an integrative framework which 

accounts for the multitude of human factors that should be considered when modeling 

human performance (Baines et al., 2005).  This notion is later reaffirmed by Feyen (2007) 
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who established that “published research on the interactions between various models is 

scarce, if not nonexistent (p.386).”   

 

2.5.2 Integrative Frameworks 

Despite the limited knowledge of these factors and the limited amount of research 

available, researchers have begun to produce frameworks that pay attention to the many 

factors contributing to human performance.  Integrative frameworks have become the 

tool in which researchers have laid the foundation.  They attempt to help identify various 

aspects contributing to the system to be modeled.  These frameworks are set apart from 

the general frameworks in that they model multiple dimensions of system elements and 

parameters.  Using integrative frameworks in human performance modeling allows 

researchers to: describe cognitive or physical constraints, identify relationships between 

independent and dependent variables, better understand operator responses, strategic 

decisions that guide behavior, and avoid underlying theoretical assumptions.  The 

application of integrative frameworks in simulation models allow users to combine 

various components, environments, operator profiles, task sequences, and external 

simulations into a single system model (Dahn & Laughery, 1997).   

Baines et al. (2005) believes that creating better human performance models 

begins with the development of a framework that relates performance with the key 

factors that influence the performance.   Key factors are human factors that are most 

likely to have an impact on performance in the real world.  Hence, these frameworks will 

help to build models that offer a more realistic representation of the variations in human 
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performance and the human factors which influence such variations.  Using simulation as 

a vehicle to better consider human factors during the process of system design and 

development will enable the creation of more valid models which allow for better 

decisions to be made with greater confidence.  

In 1997, Dahn and Laughery revealed that integrative frameworks can provide 

more realistic representations of humans in complex environments through the 

interoperability of model components.  For instance, an integrated modeling framework 

can be used with human performance simulation tools to integrate models and help 

human factors practitioners analyze human-system performance.  Such models include: a 

model of the environment, the operator, a task network, the workspace, and performance 

shaping functions.  These components can be combined in various combinations to 

realign simulations of different environments, operator profiles, task sequences, and 

external simulations into a single system model.  

 In the study, researchers used performance environments to create an integrated 

model, representing extreme climatic conditions.  The model incorporated relationships 

for temperature dependent on environment model stressors such as time-of-day, 

illumination, and weather conditions.  Performance shaping functions and equations were 

also added within the models in order to dynamically impact operator performance in 

terms of the task time and failure rate.  From the study, the authors found that the ability 

to distinguish differences between operators and environments improves realism of the 

simulation models and helps the practitioners to address problems when many stressors 

are involved.   
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Later in 2001, Hancock et al. proposed descriptive framework for the evaluation 

of stress on operator performance.  The approach of the paper concentrated on assessing 

stress on psychological and physiological functioning, while paying attention to the 

influence of both physical and cognitive forms of stressors on response efficiency.  

Therefore, it allows for specific insights regarding the effects of specific types of 

influences of both forms of stress.  In the study, participants performed sustained 

attention tasks in a dynamic environment and were asked to make critical decisions.  

Compensatory action was then measured from the experimental findings of cognitive 

performance under physical demand. 

In 2006, Ward, Line, and James created a computational framework for 

integrative modeling by layering information and discrete-event simulation due to the 

need of modeling environments to integrate, compute, and visualize components.  The 

authors detailed the development of computational environments for improving the 

integration of the various components for digital human computational environments.  

Specifically described were potential concepts to facilitate full integration of data 

acquisition, model computation, display of results, and predictions.  The primary 

objective to be addressed was integrating modeling approaches based on discrete 

information and continuous or time dependent simulation.  Hence, two concepts were 

suggested as potential ways to bridge various modeling approaches.   

One concept was layering information. Layering of information was 

recommended to enable knowledge discovery in support of modeling and simulations and 

to extract relevant anatomic, metabolic, or physiological information affecting 
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simulations.  The second approach, discrete-event simulation, was recommended to 

incorporate discrete reaction kinetics.  Furthermore, discrete event simulation acted as a 

bridge between approaches to support data and user interface layers for characteristics in 

the virtual human-machine system.  This framework approach was later applied to 

humans wounded in military operations.  During this phase of the study, two 

computational modeling approaches were used: High-Level Integrative Physiological 

(HIP) models and three-dimensional Finite Element (FE) models for electrophysiology 

and mechanical motion.  HIP models were optimized and results were transferred to FE 

models.  A visualization environment was also developed to display information that 

captured three-dimensional anatomy and physiology of the human body.  Authors 

conclusively state that future studies using the framework approach should be done to 

better integrate environments for multi-scale human modeling and simulation.  

One of the most important studies was described by Feyen (2007) who provided a 

foundation for integrative frameworks by identifying internal and external factors as well 

as their interaction that is necessary to accurately predict human performance.  In the 

external environment these factors consist of the activity, equipment, and the 

environment.  Activities pertain to the task attempted by the human, equipment refers to 

the mechanisms available for the human to carry out the activities, and the environment 

refers to the location in which these entities exist.  These factors are important in the 

development of performance models because past models often fail to capture the broad 

range of activities undertaken by the human.  Such activities have the potential to 

produce distractions or interruptions, and the ability to hinder or facilitate activities.  
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Beyond these factors, the author also discusses the interaction physical and cognitive 

factors in performance models.  Two factors impacting physical performance is the need 

of the cognitive system to acquire information to support activities and the impact of 

errors.  Another area of interaction was found to be the effect of physiological influences 

which produce variations in body positions and activity sequences that impact overall 

task performance.  Specifically, emotion can significantly impact performance causing 

the human to perform too quickly, select the incorrect strategy, quit the task before 

completion, or even perform actions unrelated to the task. Overall, each of these aspects 

must be used to properly model human performance and the context of the interactions 

involved (Feyen, 2007). 

 

2.5.3 Workload 

An effective way to assess cognitive and physical human performance is through 

workload assessment.  Workload refers to the demand placed upon a human when 

performing some task.  High workload occurs when excessive demands are placed on the 

human performing work (Keller, 2002).  Workload can also intensify when tasks are 

performed simultaneously, resulting in excess workload.  Both high workload and excess 

workload have been found to result in various problems or compensating behaviors (i.e. 

errors, slowing execution, poor scheduling, decomposition, or switching).  Workload also 

plays an important role, in the design of emergent systems.  For instance, many systems 

are designed to enhance human productivity and reduce the workload of the operators.  In 

some cases, the tasks required to operate these systems increase the associated workload, 
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resulting in reduced performance and productivity.  Such results can result in costly 

design changes that must be implemented following system development.  Therefore, 

models that predict workload can be extremely useful and effective when applied during 

the design stage of system development.  

Workload has also been proven to be effective in overcoming obstacles in human 

performance.  Workload has been applied in many work domains to assess human 

performance.  For example, in 1997, Hockey described workload as the “effort which 

coordinates processes by adjusting inputs and outputs from response outcomes to provide 

the basis of computational control for central decision processes” (p.74).   From studies 

of past research the author found that many performance models do not adequately 

account for the variability of human performance under stress, fatigue, emotion, and 

other conditions that affect the human.  Therefore, computational models should 

incorporate such factors that trigger adaptive responses.  In the study, a set of fatigue 

experiments were conducted and conclusions were drawn on the impact of workload on 

human behavior.  Tasks were considered as externally imposed goals which direct 

behavior towards a goal over a period of time.    

Findings revealed that in circumstances where processes were carried out less 

effectively, tasks yielded in a reduced level of performance.  Furthermore, cognitive tasks 

can be taken at the expense of behavior since mentally demanding tasks can conflict with 

other goals.  Management of effort, however, can allow for improved task behavior in 

relation to competing or concurrent goals, changing demands, and available resources.  

For example, effort can be managed by adopting a passive coping mode such as reducing 
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accuracy, speed, or control strategies that adjusts performance.  More importantly, it was 

determined that a compensatory tradeoff existed between cognitive goals and effort under 

stress and high workload.  This tradeoff was demonstrated by subjects in the fatigue 

experiments when the level of effort was increased for brief periods in order to respond to 

test challenges.  Prolonged work tasks indicated that subjects compensated for the effects 

of fatigue by choosing methods requiring low effort despite a higher risk of error. 

Keller (2002) used the application of multiple resource theory to assess human 

performance.  The aim of the study was to describe the process of assessing human 

performance through discrete event simulation as a quantitative predictor of workload 

during system development. Tasks were broken down into four components: visual, 

auditory, cognitive, and psychomotor.  For each component, scales were also developed 

to provide a rating of the degree to which each component was used.  Higher scale values 

denoted the greater usage and effort required for the resource component.   

In 2005, Fowles-Winkler used a modeling framework, a single task network, and 

workload assessment in order to analyze human performance and stressors.  The goal of 

this study was to simplify the task network model and reduce workload calculations. 

Significant findings consisted of determining that the factors which impact cognitive 

workload can be reduced in their effect on the amount of information processed (i.e. an 

operator’s cognitive limits), and the amount of time available before the task must be 

completed (i.e. an operator’s time pressure).  It was also found that human operators 

change their processing strategy to reduce the amount of information to be processed or 

increase the time available.  For instance, structural interference between tasks appear 
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when: an operator is required to operate isolated controls with a single limb, visual focus 

is required for images great distances, or an operator is required to simultaneously 

verbalize information.  Hence, it can be assumed that workload is invaluable in the 

assessment of human performance. 

 

2.6 Future of HPM with Fluid Power Systems 

Models of human performance in complex systems serve to predict system 

performance by identifying performance deficiencies in the human-machine system 

under various scenarios, aiding systems to augment human performance, and establishing 

functional assumptions about the underlying process of human behavior (Corker, 1999).  

As long as humans remain a critical component of many systems, they must be 

considered during the system design and engineering process.  Furthermore, researchers 

should provide well supported inputs regarding the human and system, their interaction, 

and resulting performance (Laughery, 1999).  

Review of past research literature reflects the significance of human performance 

models in the development, design, and implementation of these complex systems.  This 

is even more so evident in fluid power industry where there have been significant 

overhauls to hydraulic excavator systems.  Beyond the many capabilities and tools that 

allow researchers to address performance, there have been significant oversights in 

human performance models.  These limitations have led to difficulties in predicting the 

variability of human behavior.  Such limitations are beginning to become more apparent 

to researchers and are beginning to be addressed.  However, with fluid power systems 
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such as the hydraulic excavator, little has been done.  As these systems become 

increasingly complex, there is a growing need to develop integrated approaches to human 

performance modeling which produce comprehensive performance models that fully 

represent the human as well as the system.  To facilitate such integration, the models 

require a common descriptive language to interact and communicate.  One such method 

is to develop human performance models using an integrative human performance 

modeling framework (Salvucci & Lee, 2003).   

Integrative frameworks and modeling human performance provide a timely and 

cost effective means to fill this research void.  Utilizing these approaches will yield in 

human performance models that concentrate on the human operator and recognize the 

various factors contributing to human performance in emergent fluid power systems.  

Using the framework will provide a foundation on which simulation tools and models can 

be integrated.  Completion of research endeavors in this area will yield in a better 

understanding of the factors to be considered when modeling human performance, 

identification of the human factors which influence performance, and examination of the 

factors that cause or amplify variance in human performance models.  Ultimately, this 

research will examine each of these areas to conclusively provide the basis for more 

realistic representations of human performance in simulation models.  
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CHAPTER 3 

METHODOLOGY (INTEGRATIVE FRAMEWORK) 

 

3.1 Framework Requirements 

A variety of methods and applications are available to create models of human 

performance; however, in order to fill the voids in past research, a theoretical framework 

was developed to facilitate the integration of human performance models. In the 

development of a performance modeling framework, procedures were followed to 

support the integration of both cognitive and physical factors as well as various 

simulation tools to create better models of human performance.  Requirements for the 

framework  consisted of establishing the levels at which performance should be assessed, 

defining states of human performance, differentiating cognitive and physical functions, 

extracting performance measures, selecting modeling tools, linking performance 

measures, and integrating representations which will act as a blueprint in model 

development.  The following sections describe those requirements in further detail. 

 

3.1.1 Levels of Performance Assessment  

Human performance is multi-dimensional, being subject to the effects of many 

factors that are often considered separately in traditional research models.  Since this 

quality holds the potential to positively or negatively affect performance, it was 

appropriate to consider at various levels.   The appropriate levels at which to assess 

human performance were determined in order to set the proper boundaries which 
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constrain human performance, to convey human-machine interaction regarding abilities 

and limitations, as well as the combination of individual differences that add complexity 

to human behavior and cause performance to vary extremely.  Hence, they were 

especially necessary when modeling human performance in complex systems. 

 

3.1.2 Definition of Performance States  

Performance states (Figure 3.1) were defined during conception of the framework 

to form an environmental representation in which human performance can occur.  Initial 

performance consisted of the internal state which represents intangible processes existing 

or situated within the limits of organized structures such as the mind or body.  In contrast, 

the subsequent external performance state represents tangible processes existing 

independently from the human mind but with respect to the body.  Both of these finite 

primary states have a linear relationship which is interrupted by the transformation state 

which served to bridge the internal and external processes, to facilitate action, and to 

create a full representation of the performance environment.   

Within each performance state, the task, human, system, and environmental 

information was specified through a methodical approach indicating the required 

elements and parameters to be altered when modeling.  Furthermore, each of the 

described performance states served to set boundaries or limits on allowable human 

performance during the execution of integrated simulation models.  
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Figure 3.1.  Definition and Relationship of Performance States. 

 

3.1.3 Classification of Cognitive and Physical Functions 

Another requirement for creating the framework was to establish the key system 

factors and human factors of performance.  With regard to complex human-machine 

systems, performance functions consist of both cognitive and physical elements.  These 

functions were necessary to consider when developing the framework because they 

influence and constrain the human operator.   

3.1.3.1 Cognitive factors.  Cognitive factors were also a critical component of the 

framework due to their complexity and the interactions that influence human behavior.  

Such factors have the ability to constrain the system and human performance.  These 

factors convey human mental processes as well as determine task difficulty.   

3.1.3.2 Physical factors.  From an alternative perspective, cognitive factors also 

dictate system and human responses to performance limitations, equipment capabilities, 

and environmental constraints.  Therefore, physical factors were used as the second 

component of human performance to convey the interaction between physical structures 
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and the motor responses of the body during task performance.  The definition and 

inclusion of each factor as functional components was fundamental in understanding 

human performance since many operational processes require physical responses that are 

triggered by cognition.  

 

3.1.4 Selection of Modeling Tools  

Simulation provided an efficient method to model and to analyze human 

performance with regard to the interaction between the human, system, and environment.  

The technology allowed for computer-based models to be constructed that emulate the 

behavior of the proposed system.  To avoid loss of accuracy, assumptions regarding 

behavior, and validate models, multiple simulation tools were selected in order to support 

the framework’s structure.  Both tools expanded beyond the capabilities of past 

simulation models and acted as a tool to better consider both the cognitive and physical 

components of human performance.  Each tool was later integrated in the framework to 

create more valid simulation models as described in Section 3.2.   

 

3.1.5 Categorization of Metrics  

Upon differentiating cognitive and physical functions and selecting the 

appropriate software to model those functions, research literature was used to aid in the 

identification of possible metrics with regard to the functions of performance.  

Categorization principles were based on field theory which regards individual behavior as 

the outcome of a dynamic system where factors relating to the individual interact with 
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elements of the environment (Lewin, 1935).  Based on this theory, metrics were screened 

according to their relevance in the domain of fluid power, measurability, and the extent to 

which they are likely to affect human performance.  The most relevant metrics were used 

as categories from which individual performance variables can be later extracted and 

modeled.  Following, the metrics and performance variables were brought together to 

form the integrative framework.   

 

3.1.6 Linking Performance Variables 

 Based on the categorized metrics, performance variables were linked to form 

explicit relationships linking both cognitive and physical performance factors.  This 

relationship was formed through linking such variables in cognitive and physical human 

performance models (Figure 3.2).  By linking performance variables, models of 

performance were integrated by compensating for portions of performance model 

representations lost due to lack of dimension from the other variables (i.e. cognitive 

variables compensate for what is lacking in physical performance variables, and physical 

variables compensate for what is lacking in cognitive performance variables).  This 

compensatory relationship was also used as a predictor of subsequent performance to 

encompass the entire realm of human performance within the real world, resulting in a 

comprehensive performance model representation. 
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Figure 3.2.  Linking of Performance Variables and Layered Metrics. 

 

3.2 Framework Integration  

Integration of models was facilitated through the prior methods to enable an 

accurate representation of human performance as it occurs in the real world.  By using the 

acquired knowledge from performance assessment, techniques were used to create 

models that account for both cognitive and physical facets of human performance in a 

comprehensive performance model.      

 

3.2.1 Integration Schema  

Based on the requirements found in Section 3.1, two performance modeling tools 

were selected to simulate the cognitive and physical aspects of performance.  In order to 

integrate these tools and to form a comprehensive human performance model, a 

comparison of requirements was developed.  Inputs required for the cognitive tool were 

identified and compared with the required inputs of the physical modeling tool.  
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Differences among features of these modeling tools were then bridged by identifying 

common characteristics between modeling capabilities and parameters. 

3.2.1.1 Integrating tools.  Tools were combined to model the system in a virtual 

environment, along with both the physical and cognitive tasks of the human to return 

output regarding expected performance and limitations.  Integration of these modeling 

tools mimicked performance in various tasks scenarios with better accuracy and 

understanding than previous models.  By modeling with the framework, all mental and 

physical tasks of the operator were taken into account. This yielded in a better 

understanding of human interaction, alternate methods to accomplish task goals, and 

knowledge of the limitations of human performance. 

3.2.1.2 Integrating variables.  In human performance, a bi-directional relationship 

exists between physical and cognitive components to create interaction.  This relationship 

was recognized and included to better model human interaction and behavior.  Therefore, 

each factor was integrated to produce human performance models that simulate human 

responses and predict how humans interact with complex systems. 

In the environment where interaction occurs, cognitive and physical components 

profoundly affect the human and the system by contributing to behavior and modifying 

performance.  Cognitive components in the framework represented conscious and 

unconscious internal processes that form the human ability to understand and reason; 

whereas, the physical components represented measures of external human movement. 

Performance is generally initiated by cognitive tasks such as attention, memory, and 

perception of stimuli.  Transformation of internal and external processes enabled the 
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linking of performance variables to create action and trigger physical tasks.  Such 

processes iterate until performance goals have been met. 

 

3.3 Framework Implementation 

Implementation of the framework’s modeling approach was necessary to 

demonstrate the benefits of accounting for various factors that impact performance.  With 

the framework’s defined structure, a comprehensive representation of human 

performance was achieved.  

 

3.3.1 Performance Model Representation 

Upon completing each of the components involved in the development of the 

integrative framework, a comprehensive performance model representation was obtained.  

The integrated representation served to gain valuable insight on the correlation between 

cognitive and physical factors of human performance, to acknowledge the interactions 

that produce operator behaviors during excavation processes, and to better replicate and 

predict human performance to aid in the design of fluid power systems. 

 

3.3.2 Model Structure   

Structures of the integrated model representation (Figure 3.3) were used to depict 

human performance and to facilitate interaction from the flow of logic that parallels 

human reasoning and physical action.  The integrated performance representation 

consisted of four primary areas: human centered factors which serve as the basis for 
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human performance assessment, a functional relationship which connects cognitive and 

physical performance, discrete-event simulation tools to facilitate the integration process, 

and model output to provide a comprehensive representation of performance.  The 

representation initiated with the key human centered factors from which performance 

metrics were used as a subset to classify performance variables.  From each performance 

metric, variables were linked through a functional relationship integrating cognitive and 

physical performance.  Both the cognitive and physical aspects of performance were 

assessed in human performance modeling tools.  Simulation with both tools resulted in 

output capable of creating an integrated performance representation.  With the use of both 

tools, the human, system, and environment were represented.    

 

 

Figure 3.3.  Integrated Human Performance Model Representation. 
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3.3.3 Application of Integrated Model   

The framework’s primary advantage was that it allowed for the simultaneous 

examination of the influences and effects of physical and cognitive factors both 

individually and combined on human performance.  Benefits of integrating internal 

models of cognitive function and external models of physical function resulted in insight 

being gained on human performance in terms of operator responses and the cognitive 

constraints that guide behavior.  More importantly, an understanding of the interaction 

between physical and cognitive components as well as the influences of tasks, strategies, 

and responses in human behavior were gained.  With proper application, the framework 

led to more accurate simulation models.  Integrative models that are both predictive and 

computational to simulate cognitive and physical functioning yielded in more realistic 

representations and accurate predictions of human performance.  Moreover, the 

framework was used to overcome the past challenges of modeling human behavior, 

identify system vulnerabilities, aid in the proposal of system redesigns, and foster 

alternate methods for reaching desired performance.   
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CHAPTER 4  

METHODOLOGY (EMPIRICAL STUDY) 

 

For the development of the integrated framework, procedures were followed to 

ensure that human performance models derived from the framework offer the same 

degree of validity as real world fluid power applications involving a hydraulic excavator.  

Procedures consisted of data collection, tool selection, and variable identification to act as 

components in model development.  The following sections describe each of these 

procedures in greater detail. 

 

4.1 Data Collection 

Real world data for the models was collected on the work tasks, control 

operations, and system functions of a hydraulic excavator in its natural work 

environment.  Information was obtained through three primary resources: interviews of 

expert operators to provide a thorough understanding of the operations such as work 

experiences, operator difficulties, and skill requirements; system manufacturers to 

provide details on newly implemented design changes, model specifications, and tooling 

for work applications; and video recordings to gain insight on time variations in dynamic 

work settings as well as to investigate the interaction between the system and the 

operator.  Research literature and case studies were also used to supplement general data. 
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4.1.1 Task Analysis  

Collected data was used to construct task analyses from 40 video recordings based 

on excavator control type (e.g. hydraulic and electronic) and environmental terrain (e.g. 

soil and gravel).  Each analysis outlined and described the sequence of steps involved in 

the excavation process, as well as assessed task requirements in terms of the operator’s 

actions and cognitive and physical processes to achieve goals.  Based on the observations 

from the analysis, key tasks were identified.  Acquired knowledge from the tasks acted as 

a reference for which human functioning and system features were tested.   

 

4.1.2 Time Studies 

To complement the task analysis, time studies were performed to determine 

operator efficiency in reaching work goals, identify inefficient work methods, and 

quantify changes in performance. Timing data was captured from each of the categorized 

video recordings of excavator operators in real world work environments.  Mission 

critical tasks were timed, recorded, and organized by the sequence of tasks determined 

during the task analysis.  From this data simple statistics such as mean and standard 

deviation were calculated, and distributions were fit to tasks for accurate modeling of 

work processes. 

 

4.2 Modeling Tools and Software 

For this study, two simulation tools, cognitive and physical, were chosen based on 

the requirements of the framework to create valid simulation models of operator 
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performance with hydraulic excavator systems.  This technology was used to model and 

analyze human performance through the interaction between the human, system, and 

environment, allowing for quick and economical evaluation of design options and safe 

testing of system performance under extreme conditions (Baines et al., 2005).  As 

described in Chapter 3, cognitive and physical modeling tools were selected to support 

the framework.  In this study, Micro Saint was used to model cognitive human 

performance and Jack was used to model physical human performance.  Each tool 

provided the opportunity to expand beyond the capabilities of past modeling approaches 

to evaluate and conclusively predict human performance.   A description and purpose of 

each tool used for the study is provided below. 

 

4.2.1 Micro Saint Software  

Micro Saint modeling software was used to model cognitive components of 

performance such as human cognition and decision making.  The tool allowed for various 

processes and complex systems to be modeled by means of a task network model.  In the 

software, models were denoted by nodes and arrows; depicting sequences of human 

activities.  This tool was used with regard to fluid power systems to evaluate and improve 

performance efficiency in areas such as process definition and design, operator workload, 

safety, and productivity.   
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4.2.2 Jack Software  

For the physical performance representation, Jack software was used to model 

physical human capabilities and limitations with regard to the system and the 

environment.  The tool offered visualization models of a digital human, known as Jack, 

who carries out scheduled tasks and procedures within a virtual environment.  

Applications with human performance modeling included the analysis of anthropometric 

dimensions or biomechanical constraints and verification of programmed task behaviors 

in terms of sequence, execution, and time. 

 

4.3 Model Development 

As stated in the previous chapter, the theoretical framework was used as the 

blueprint for model development.  Based on the states of human performance and 

cognitive and physical functioning, two human performance modeling tools (e.g. Micro 

Saint and Jack) were chosen.  Software was used to build complementary models of 

human performance to simulate cognitive and physical human performance. 

 

4.3.1 Cognitive Human Performance Model 

In Micro Saint simulation software, findings from the task analysis were used to 

create task network models, extending each task analysis into predictive models of 

cognitive and physical functioning.  With the task network models, it was intended to 

determine the range of performance expected with regard to the length of time required to 

perform a task as well as human error rates (Laughery, 1998; Verra, 2001).  Each task 
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network model was organized by the task sequences executed by hydraulic excavator 

operators to accomplish the desired goal.  Task network model hierarchies included the 

movement task (i.e. operator’s physical action), operator task (i.e. operator’s cognitive 

task), and the system task (i.e. system’s response to the operator action), which served as 

the basis for the task network model and sub-model of the human-machine system.    

Micro Saint simulation models were built based on excavator control type and 

environmental terrain:  Hydraulic Control-Soil Terrain (HS), Hydraulic Control-Gravel 

Terrain (HG), Electronic Control-Soil Terrain (ES), and Electronic Control-Gravel 

Terrain (EG).  Development of the models involved defining the structure of the task 

network models and objects within those models based on the findings from the task 

analyses.  Network structures were composed of tasks performed by humans, processes, 

or machines, and were organized by the task sequences that the operator executes to 

accomplish work goals.  Activities within the task network models were represented by a 

diagram of nodes and arrows, representing the sequence of tasks performed.   

The task hierarchies included the movement task, operator task, and the system 

task. Tasks represented the lowest level of the network and held modeling elements such 

as timing information, conditions for execution, and beginning or ending effects.  Real 

world data recorded from the time studies and the appropriate statistical distribution were 

also embedded within the task networks to accurately model operator tasks and 

excavation process.  Timing information for each task, in terms of mean time, standard 

deviation, and the appropriate distribution, allowed the model to simulate process 

variance and to provide a high level of validity for workload estimates or modeling 
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results (Drury & Laughery, 1994).  Each model was also coded and debugged to create 

simulation models that replicate typical excavation processes. 

 

4.3.2 Physical Human Performance Model 

In Jack simulation software, manufacturer specifications and human 

anthropometric data was used to model the excavator system and physical functioning of 

the human operator.  Like Micro Saint simulation models, Jack models were built based 

on excavator control type and environmental terrain.  Development of the models 

involved building a representation of the system and defining procedures to be performed 

by the human operator based on manufacturer specifications and the tasks analysis.  A 

digital human was used to simulate excavation procedures in a virtual environment 

generated in the software.  Tasks followed by the digital human were governed by the 

sequence of activities outlined in the task analyses and Micro Saint network models.  

Real world timing and frequency data recorded from the time studies was used to 

accurately simulate operator tasks and excavation process as well as to validate model 

results.  Such models replicated the human operator’s physical actions, capabilities, and 

limitations in response to various system interface designs, creating predictive models of 

the human-machine system.    

Within each software, simulation models were programmed and coded according 

to the requirements and components defined in the theoretical framework.  Variables 

were extracted and modeled, conveying the functional relationship between cognitive and 
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physical performance and linking cognitive models to physical models.  Output obtained 

from these models was used in an empirical study. 

 

4.4 Empirical Study 

 An empirical study on human performance was conducted using the integrative 

framework to assess the impact of cognitive and physical factors on human performance.  

The following sections describe the empirical study in further detail. 

 

4.4.1 Stimulus Material 

The empirical study on the human performance models was conducted using the 

cognitive and physical simulation models as described in Section 4.3.  

 

4.4.2 Simulation Tasks 

Key tasks involved in excavation processes were selected for modeling in 

simulation software to provide insight on the interaction between the human operator and 

the excavator system.  Tasks were based on their relevance in the integrative framework, 

significance in excavation processes, and value in assessing human performance.  

Simulation tasks that were used in the study consist of the following.  

4.4.2.1 Initialization.  Initialization tasks were used to simulate operations 

involving activation of the system (i.e. monitoring and positioning).  Such tasks are 

relevant to consider when assessing performance given that they are dependent on human 

cognition that is known to impose high mental demands on the human operator.   
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4.4.2.2 Active work.  Active work tasks (Figure 4.1) were used to convey the 

operator’s actual work procedures involved in the excavation of materials (i.e. digging, 

scooping, and releasing).  Such tasks are critical to performance because they hold the 

potential to vary extensively based on the environmental conditions, system design, or 

human abilities. 

   

 

Figure 4.1.  Tasks Simulated in Human Performance Models (Sakaida et al., 2006). 

 

4.4.2.3 Finalization.  Finalization tasks were used to simulate the tasks and 

operations following the completion of work goals during hydraulic excavation 

processes.  The inclusion of these work tasks aided in determining the effects of various 

processes on human operator performance.  

 

4.4.3 Equipment 

Simulation models were run in Micro Saint and Jack simulation software.  The 

software was installed on a laboratory PC with a Microsoft XP operating system.  
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4.4.4 Experimental Design 

Two experiments were conducted to examine the relationships between 

independent and dependent variables with regard to their effect on human performance.  

The following experimental designs were chosen to ensure validity, make inferences, and 

draw conclusions from performance model data. 

4.4.4.1 2x2 factorial design.  A 2x2 factorial design was used in this study to 

analyze human performance in the non-integrated models. The two independent variables 

consisted of excavator control type at two levels (hydraulic and electronic) and 

environmental terrain at two levels (soil and gravel).  The dependent variables were task 

completion time and workload.   

4.4.4.2 2x2x2 factorial design.  Similarly, a 2x2x2 factorial design was used to 

analyze human performance in the integrated models.  Three independent variables 

consisted of excavator control type at two levels (hydraulic and electronic), 

environmental terrain at two levels (soil and gravel), and integration at two levels (non-

integrated and integrated).  The dependent variables were task completion time and 

workload.   

 

4.4.5 Procedure  

Micro Saint and Jack performance models were completed in compliance with the 

integrated framework as described in Section 4.3.  Initial models were created using 

Micro Saint, defining the cognitive functioning of the human operator as well as the 

sequence of tasks involved in hydraulic excavation processes.  Jack software was then 
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used to expand beyond the predictive capabilities of the cognitive models through 

physical models, which were linked to convey a functional relationship between internal 

and external human functioning.  Models created in Micro Saint and Jack software were 

not treated as separate entities.  Each simulated the same scenario and key tasks identified 

in Section 4.4.2.  Models were randomly executed one hundred trials and simulation 

output was simultaneously documented and recorded based on framework requirements. 

 

4.4.6 Data Collection 

As the simulation models were executed, performance was monitored, 

documented, and recorded.  Output for the models was displayed visually in the form of 

numerical and graphical data.  For both cognitive and physical models, descriptive 

statistics and empirical results were obtained from simulation output.  Model output 

comprised the dependent variables in both cognitive models (e.g. completion time and 

workload) and physical models (e.g. energy expenditure, fatigue, and recovery time). 
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CHAPTER 5 

INTEGRATIVE HPM FRAMEWORK 

 

Human performance is comprised of an array of elements forming the human-

machine system.  When representing such performance, great detail is necessary to fully 

capture the complexity and variability of human behavior.  As described in the previous 

chapters, many human performance models fail to fully capture the essence of human 

performance due to a neglect of contributing factors as well as a variety of other critical 

aspects, leading to errors and overestimations of efficiency.  The following portions of 

this chapter describe an integrated human performance modeling framework which 

combines cognitive and physical performance in an integrated model to create more 

accurate models of human performance.  Its purpose is to provide common structure for 

the development of human performance models with complex human-machine systems.   

Furthermore, the framework can be used as a blueprint to identify the necessary 

parameters and elements to be considered when modeling human performance in 

complex systems and to improve predictions with existing and emergent systems.  

Although it is not possible to develop a framework that is applicable to all systems; it is 

possible to develop a new method of modeling which considers the contribution of 

cognitive and physical behaviors in producing human performance.  Development of the 

framework involves applying several types of knowledge such as human factors, domain 

information, simulation, and human performance modeling.  Increased understanding of 

these types of knowledge along with the integrated framework allows for the 
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improvement of human performance models.  The framework was constructed by: 

examining the levels at which human performance can be assessed, the factors which 

affect human performance, quantification of those factors, methods for representing such 

factors in an integrated model, and a case study to demonstrate the framework’s 

application.  The following sections of this chapter describe those elements and 

parameters to be modeled with regard to the developed framework. 

 

5.1 Human Performance Assessment 

A variety of factors exist when modeling human performance.  The term human 

performance refers to “the effectiveness or skill to accomplish goals through operations 

associated with human behavior” (Hockey, 1997, p.77).  Being a multi-dimensional 

construct, human performance is subject to the effects of many factors that are often 

considered separately in traditional research models.  This quality holds the potential to 

positively or negatively impact performance.  Therefore, human performance must be 

studied comprehensively at multiple levels of abstraction to develop a deeper 

understanding for integrated models of human performance.   

 

5.1.1 Levels of Performance  

When modeling performance with complex systems, performance should be 

represented at four hierarchical levels (Figure 5.1) with regard to the environment, 

system, human, and the task.  Within each level, various elements exist, significantly 

altering human performance.  Such abstraction conveys the relationship that performance 
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at higher levels has an effect on performance at lower levels (e.g. solid line) and that 

performance is directly affected by performance at the level immediately superior (e.g. 

dashed line).  Modeling human performance in such a manner allows researchers to more 

accurately capture and predict complex human-system interaction and behavior through 

integrated human performance models.  

 

 

Figure 5.1.  Levels of Assessment for Integrated Human Performance Models. 

 

5.1.1.1 Task.  The first and lowest level at which human performance should be 

assessed is at the task level (Table 5.1).  With regard to human performance, tasks are 

low-level detailed descriptors or action rules that describe how work is performed.  Tasks 

provide the foundation for human performance models because they are the means 

through which performance is achieved.  Other qualities such as the ability to represent 

performance at various states or levels, the ability to describe the system and the human, 

as well as the ability to change the context of work, makes the task a highly important 

aspect to consider when assessing human performance (Diaper & Stanton, 2004).  For 
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instance, tasks contribute to work methods (e.g. series or parallel execution), the amount 

of workload experienced (e.g. physical or cognitive), job difficulty (e.g. simple or 

complex), as well as the length of time (e.g. short or long duration).  Furthermore, tasks 

are highly relevant when modeling complex systems due to their ability to convey the 

composition of work.  Therefore, to fully model the range of tasks that a human performs, 

models should begin with high level goals (i.e. processing tasks) then breakdown into 

actions (i.e. operational tasks) associated with the goal.  Models should also 

accommodate dynamic uncertain characteristics which dictate the manner in which 

performance is modified in response to abnormalities (Wickens & Hollands, 2000). 

 

Table 5.1.  Human Performance Model Elements at the Task Level. 

 Element  Description Performance Effect 
 

Processes 
 

Preparation 

Activation 
Finalization 
 

 

Varies the amount of time taken and the 

job’s degree of complexity. 
 

Operations  Series 

Parallel 
 

Impacts work methods, workload, and the 

amount of time taken to complete goals. 

Anomalies Malfunctions 

Failures 

Affects vigilance, error, and recovery 

rates for performance efficiency. 
 

 

 

When undertaking work with complex systems, humans perform a variety of tasks 

to complete work goals.  Both process and operation tasks are coupled together to create 

performance.  During initialization processes which engage the system, operational tasks 

occur; whereas, during active work processes which convey the human’s actual work 
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procedures, tasks occur to facilitate work.  The inclusion of these tasks helps determine 

the effects of work processes on human performance. 

5.1.1.2 Human.  More importantly, the human being who undertakes these tasks 

must be considered.  Humans are the most important contributors when assessing 

performance due to behavioral complexity.  At the human or second level of performance 

assessment, there are countless numbers and combinations of individual differences 

which can cause performance to vary tremendously (Table 5.2).  Such factors can consist 

of age which affects the speed of performance; training or experience which affects 

knowledge; and gender which affects performance capabilities or limitations.   

 

Table 5.2.   Human Performance Model Elements at the Human Level. 

Element  Description Performance Effect 
 

Individual  
Features 

 

Age 
Experience 

Gender 
 

 

Influences the speed of performance, 
capabilities, or human limitations. 

Cognitive  

Factors 

Memory 

Attention 

Recognition 
 

Impacts workload and the mental 

processing of task information. 

Physical  

Factors 

Biomechanics 

Anthropometry 

Changes the human’s physical speed, 

accuracy, and degree of control. 
 

 

 

Furthermore, human behavior is a result of cognitive processing and physical 

functioning.   When performing any task, a human typically does three things:  receives 

information, makes decisions, and takes action.  Information from perceived stimuli and 

prior knowledge form the basis from which decisions are made. These decisions are then 
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translated into actions. Such actions are not only physical, but also involve cognitive 

processing (Al-Masalha, 2004). 

The human mind acts as a central processing unit to manage data for performance.  

In complex systems, humans control and supply much if not all of the information 

processing capability necessary for performance.  For instance, humans execute tasks by 

utilizing the system’s interface (e.g. controls, affordances, etc.).  With this task, the 

human operator controls all informational components such as monitoring the system, 

identifying critical tasks, and determining when to begin or end work processes.  Such 

factors contribute to workload impacting performance which can lead to human error or 

misunderstandings. 

In addition to cognitive or informational processing, the human also contributes to 

physical performance.  In terms of physical performance, the capacity of humans varies 

from one to another due to the aforementioned differences (e.g. age, sex, health, and 

physical fitness).  For example, younger individuals may react more quickly to changes, 

exert greater force, or possess more endurance than older individuals when performing 

repetitive tasks.  Physical processes involved with complex systems are likely to involve 

various physical activities such as manipulating controls.  Such activity over extended 

periods, however, has the ability to affect performance in terms of high workload or 

stress, resulting in fatigue and slowing work processes. 

5.1.1.3 System.  Human-machine interaction occurs when humans utilize systems 

to undertake a set of defined tasks.  Interaction with the system plays a critical role in 

human performance not only based on its design, but also its mechanics which affects 
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human capabilities and limitations.  Systems are designed with the intent to augment 

rather than to hinder human capabilities.  Thus, systems are often responsible for 

providing a vast majority of the physical work capability, while humans provide much of 

the information processing capability (Al-Masalha, 2004).  The system level also consists 

of a number of well-defined elements (Table 5.3).  In terms of interface design of the 

system, performance can be affected by a number of factors.  It is important to consider 

the intuitiveness of the system given that improperly designed interfaces can lead to 

errors and misunderstandings which hinder work processes if the human fails to 

recognize critical information.   

 

Table 5.3.  Human Performance Model Elements at the System Level. 

Element  Description Performance Effect 
 

Interface Design 

& Layout 

 

Monitors 

Controls 
Displays 
 

 

Leads to errors and misunderstandings from 

unintuitive system designs. 

Affordances Buttons 

Levers 

Switches 
 

Provides the mechanisms to facilitate 

performance functions and task execution. 

Automation Manual 

Semi-automated  

Automated 
 

Impacts the speed at which work is performed 

and the amount of workload experienced.  

 

 

With complex systems where a human must utilize controls, it is important to 

model elements of the system’s design or layout.  For instance, depending upon the size 

of the human and the system’s specifications, performance can be affected in terms of 

infeasible reach constraints or bodily discomfort (e.g. stress, strain, or fatigue).  System 
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interfaces enable the integration of controls to structure performance.  Moreover, the 

system’s level of automation determines the effort needed to accomplish work.  

Affordances, in particular, guide how easily work can be accomplished and facilitate 

work that a human being can or cannot perform.   

5.1.1.4 Environment.  The last and highest level at which human performance 

should be considered is with regard to the environment.  Performance at the 

environmental level is dynamic due to the interaction of entities such as humans, systems, 

objects, or resources which shape human performance (Table 5.4).  Therefore, this level 

establishes the point at which boundaries are set, constraining feasible performance.   

 

Table 5.4.  Human Performance Model Elements at the Environment Level. 

Element  Description Performance Effect 
 

Space 
 

Area 

Obstacles 
 

 

Constrains performance boundaries and sets 

the allocated work area. 

Weather Light 

Temperature 
 

Increases pressure and stress on various 

interacting entities. 

Time Hours 

Minutes 
 

Alters normal decision making strategies. 

Resources Personnel 

Tools 

Equipment 
 

Modifies task methods and processes. 

 

 

 

 

The environmental level also consists of a number of well-defined elements.  

Environments where work is performed have the potential to vary extensively, affecting 

overall performance at all levels.  Environmental elements such as space and resources 

bound the range of work and the methods by which to complete such work affecting task 
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performance.  More importantly, this performance is subject to dynamic elements such as 

obstacles, weather, and time.  These and many other elements increase complexity, 

affecting human performance. 

 

5.1.2 Relationships among Performance Levels 

As previously described, performance should be assessed at four levels: the task 

level to define the composition of work, the human level to depict the complexity of 

behavior, the system level to convey human-machine interaction, and the environmental 

level to constrain and modify performance.  Since each level holds various elements 

which significantly affect human performance, they also share direct (i.e. effect on) and 

indirect (i.e. affect by) relationships conveying their impact on human performance with 

respect to one another.  Considering this structure, elements at a superior level have an 

effect on performance at a subordinate level (i.e. high level performance affects low level 

performance and low level performance is affected by high level performance).   

For example, at the lowest level of assessment, the task has no direct effect on 

performance given that it is inferior to all other levels.  Yet, in contrast, task performance 

is affected by the human, system, and the environment.  The environment exemplifies 

this relationship because it has the potential to increase the difficulty of the task; whereas, 

the system in terms of its interface design modifies methods by which tasks are 

performed.  This performance is also affected by elements at the human level of 

assessment, directly impacting the task itself based on cognitive processing which 

triggers physical actions.  Other individual factors (e.g. skills, training, or experience) are 
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also likely to determine task efficiency at that level.  However, the human level is 

affected by the environment as well as the system.  Like the task, the human can be 

affected by the environment by imposing additional demands (e.g. terrain or weather).  

Furthermore, the system level has an impact on performance at both the human and the 

task level in terms of how quickly (e.g. engine dynamics), efficiently (e.g. task 

execution), and effectively (e.g. intuitive design) work can be performed.  In contrast, the 

only level of performance that affects the system is the environment.   

At the highest level of human performance, the environment has a direct effect on 

human performance at the subordinate system, human, and task levels.  From this 

perspective, the environment has the ability to affect system capabilities, alter work 

methods employed by humans, as well as build upon the complexity of the task itself.  

Such relationships help establish links between performance at multiple levels which 

define complexity and the level of detail necessary for the development of integrated 

human performance models with complex systems.  These relationships support an 

integrated strategy by reflecting complex human-machine operations at the macro- and 

the micro-level.  Together by representing performance at each level, models can 

accurately simulate the environment and the system in conjunction with the human 

performing the assigned task. 

 

5.2 States of Human Performance 

Human performance is not only multi-dimensional in the sense that it occurs at 

various levels, but it is also dynamic in nature.  Therefore, performance can be defined in 
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terms of states to describe the conditions under which it occurs as well as the human’s 

ability to execute a defined set of tasks, interact with the system, and cope with a variety 

of other factors.  The following performance states serve to validate models by 

constraining and setting boundaries on allowable performance as well as by describing 

natural human functioning to convey performance (Figure 5.2). 

 

5.2.1 Internal State  

Performance initiates internally through conscious or unconscious processes 

situated within the limits of organized structures in the human mind or body.  Because the 

internal state of performance is intangible and not directly observable, it is often 

overlooked or ignored by researchers due to its difficultly in modeling.  However, it is 

critical to consider given that it has the ability to vary extensively based on complexity, 

uncertainty, and duration throughout work processes (Wickens & Hollands, 2000; 

Wickens, 1984).  Such performance is achieved through cognitive functioning which 

enables the human to perceive and interpret the world, form goals or intentions, as well as 

to evaluate outcomes of actions which describe mental processes.   Cognitive functioning 

provides the foundation to internal performance due to the fact that it forms the human’s 

ability to interpret sensory inputs and initiate action.  Such processes begin with 

perception which gives the human awareness or understanding of stimuli from the 

environment.  Attention is then used to selectively concentrate on a particular aspect of 

the environment by allocating cognitive resources such as memory for storage, retention, 

and recall to manipulate the perceived information.  The most complex of all cognitive 
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functioning is problem solving which follows the prior processes to move human 

intentions from a given state to a desired goal state.  Decision mechanisms are 

subsequently activated resulting in the selection of courses of action or responses among 

several alternatives associated with the presented stimulus.  Cognition then continues 

with the interpretation of feedback to assess the outcome of those decision processes. 

 

 

Figure 5.2.  Relationships among States of Human Performance. 

 

5.2.2 Transformation State  

From the point at which decision responses are selected, internal performance is 

interrupted by a state of transformation which serves to bridge internal and external 

processes, facilitate action, and fulfill performance goals.  This transition emerges from 

internal processes to move human intentions from a given state to a desired goal state by 

signaling responses that trigger action.   
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5.2.3 External State  

Extending from the point at which internal performance transforms, external 

performance occurs through tangible processes that are independent from the human 

mind.  Such performance emerges as a byproduct of internal cognitive functions which 

triggers action.  External physical performance is essential since it measures autonomous 

activity and reflects the variability of performance through human functioning. 

Unlike cognitive functioning which dictates human responses to performance 

limitations, equipment capabilities, and environmental constraints, physical functioning 

conveys the interaction between physical structures and the motor responses of the body 

during task performance.  Such responses consist of dexterity, flexibility, range of 

motion, as well as endurance over extended work periods.  More importantly, this 

functioning conveys the operational processes requiring physical responses that are 

triggered by cognition from which human performance can be assessed and evaluated. 

 

5.2.4 Contribution of Human Performance States 

The states of human performance are reflected in numerous applications, in 

particular those involving human interaction with complex systems.  With complex 

human-machine systems, activities used to achieve performance require varying degrees 

cognitive and physical functioning on behalf of the human operator.   

5.2.4.1 Structure of human functioning.      For instance, with complex systems, 

internal performance is initiated from cognitive demands imposed by the environment, 

the system, as well as the task.  Humans are also subject to constant interaction of these 
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entities and constraints.  When humans receive information from the environment, they 

must use cognitive functioning to perceive and interpret what is occurring, to form goals, 

and to signal the correct responses or actions for work to be completed.  During the 

internal state of performance, cognitive tasks of humans involve perception of the work 

environment, memory to recall training skills, and recognition while paying attention to 

dynamic conditions in the environment such as other workers, machines, and the 

communication of information.   

Furthermore, humans must also monitor gauges to assess the system’s status and 

use decision making to determine the proper work procedures to follow.  While in a state 

of transition, humans use stimulus received (e.g. system feedback, environment changes, 

or work commands) from the environment to develop strategies or intentions for goals 

preceding action.  Humans use these transforming cognitive processes to execute physical 

action in response to external stimuli (e.g. execution of responses resulting in 

performance).   

Upon response selection, action is executed primarily through the operator’s 

physical use of affordances (e.g. buttons, levels, pedals, and joysticks) which carry out 

work functions with the system.  For example, human operators of complex systems 

maneuver systems through the environment by using physical tasks which often require 

use of the upper and lower extremities (e.g. turning, reaching, pushing, or pulling) to 

engage controls.  Since every physical action executed by the human has a corresponding 

machine reaction from the system, physical functioning correlates not only to the human 

but to the system and the environment as well.  Such qualities make physical 
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performance subject to the effect of factors such as vigilance, fatigue, and workload 

which can tremendously impact outcomes. 

5.2.4.2 Distribution of human functioning.  Furthermore, since humans interact 

with complex machinery, both internal and external performance occurs.  Internal 

performance involves cognitive functions to capture, manipulate, and execute the 

information to perform work processes; whereas, external performance involves physical 

functioning to perform such operations.  Each component, cognitive and physical, 

contributes at varying degrees to that interaction when performing tasks (Figure 5.3).   

 

 

Figure 5.3.  Contribution of Cognitive and Physical Functioning. 

 

Human beings supply most of the information processing capabilities when 

interacting with complex systems.  For instance, when evaluating a job, cognition is the 

single most important function utilized by the human through internal processes such as 

attention, perception, and decision making.  Since the human is the only source of input 

for such tasks, cognitive functioning accounts for 95% of the steps required to perform a 

task (Al-Masalha, 2004). 

In contrast, with selection, the contribution of performance begins to shift from a 

total state of cognitive functioning to that of physical functioning (i.e. execution) which 
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the human performs to carry out tasks physically through external movements.  Physical 

functioning occurs in conjunction with cognitive function during execution because it 

involves the selection of methods and tools to perform the task.   Therefore, when tasks 

are abstract and goals are implicit, there is a higher level of contribution from cognitive 

functioning; whereas, when tasks are concrete and goals are explicit, there is a higher 

level of contribution from physical functioning.  

Both internal and external states describe the conditions under which performance 

occurs as well as the cognitive and physical mechanisms from which performance is 

composed.  Within each state, the interaction between the human and the system with 

regard to the environment and the task is specified.  These states also describe how 

humans shift from intentions to actions and reflect the level of effort required for 

performance with regard to mental and physical demands (Wickens et al., 2004).  

Benefits of integrating internal models of cognitive function and external models of 

physical function applied to complex systems can result in insight being gained on human 

performance in terms of human responses and the cognitive constraints that guide 

behavior.  Hence, models depict human performance with a flow of logic that parallels 

human reasoning and physical action, leading to increased accuracy and viability. 

 

5.3 Integration of Human Performance Models 

The integration of human performance models requires the identification of the 

relationships between experimentation, performance criteria, integration strategies, and 

methods to implement those strategies (Rasmussen et al., 1994).   A variety of domain 



86 

 

applications involve human-machine systems in complex and dynamic environments. 

These qualities make such processes in the real world difficult to evaluate due to 

increased expenses, prolonged time, as well as a limited degree of visualization.  A viable 

tool to model work operations is through simulation (Al-Masalha, 2004).  Simulation 

provides an efficient method to model and analyze human performance with regard to the 

interaction between the human, system, and environment.  Such technology allows for 

computer-based models to be constructed that emulate the behavior of the proposed 

system and to evaluate work processes performed by the human.  The dynamic and 

complex nature of work processes, however, is very difficult to describe and model using 

the traditional modeling techniques. 

Existing modeling techniques represent human performance but fail to consider 

the role of a variety of performance shaping factors such as those earlier described (e.g. 

environment, system, or task) as well as the contribution of cognitive and physical 

functioning.  Internal and external human functioning are important factors that influence 

the modeling of work processes.  For instance, humans make decisions regarding 

complex work processes including the appropriate methods, the selection of tooling, as 

well as the planning and execution of operations.  Such operations involve both cognitive 

and physical performance.  Thus, to overcome the prior mentioned limitations and 

improve human performance, integrated models are necessary in order to capture, model, 

evaluate, and improve human performance.   
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5.3.1 Modeling Tools  

As described in Chapter 4, multiple simulation tools should be selected in order to 

avoid loss of accuracy, assumptions regarding behavior, and validate human performance 

models.   The modeling tools should also expand beyond the limitations of past 

simulation models by modeling cognitive and physical performance; thus, creating the 

foundation for the integration of human performance models.   

5.3.1.1 Cognitive tool.  When using the integrative framework, a cognitive 

performance modeling tool should be used to represent the internal functioning of the 

human (e.g. perception, decision making, etc.).   Such a tool allows for the assessment of 

mental processes (e.g. how the human perceives stimuli from the environment, forms 

goals, and evaluates action alternatives) in relation to the affects of those processes on 

performance outcomes.   

A variety of these tools are available with capabilities of modeling these 

processes.  Benefits include evaluation in terms of work processes, quality control, 

process redesign, workload, safety, and productivity.  However, since each tool has its 

own capabilities in modeling a specific aspect of cognitive performance, caution must be 

taken prior to tool selection based on the available data as well as the goals of the 

researcher in order for proper assessment to occur.  Table 5.5 identifies examples of 

possible modeling tools appropriate but not limited to representing cognitive performance 

using the integrative framework. 
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Table 5.5.  Cognitive Performance Modeling Tools. 

Tool Description 
 

Apex 

 

Models human performance in complex and dynamic 

environments by using the GOMS approach to describe 

perceptual actions (Cooper et al., 1998).   
 

Cognitive Objects 

within a Graphical 

Environment 

(COGENT) 

Describes cognitive processes by depicting high-level 

processes using memory buffers, rules, etc.  Applications 

include reasoning and decisions (Freed et al., 2000). 
 

Cognition as a 

Network of Tasks 

(COGNET) 

Builds models of human performance in real time using 

Cognitive Task Analysis (CTA).  Applications include 

tactical decision making tasks (Zachary et al., 2000). 
 

Cognitive Systems 

Engineering 

Educational Software 

(CSEES) 

Models programs related to judgment and decision making. 

Useful in applications for judgment, signal detection, and 

navigation (Wu & Liu, 2007; Bolton & Bass, 2005).  
 

Executive-Process 

Interactive Control  

(EPIC) 

Emphasizes perceptual processes by accounting for timing of 

cognition.   Suited for analysis in design, training, and 

selection (Kieras, et al., 1997; Kieras & Meyer, 2000). 
 

iGen Models performance based on cognitive task analysis. 

Applications include domains of human decision making 

based on the use of system interfaces (Wu & Liu, 2007). 
 

Operator Model 

Architecture 

(OMAR) 

Models human operators in complex systems by assuming 

behavior is goal-directed. Applications include evaluation of 

operator procedures for system design (Deutsch et al., 1999).  
 

 

 

5.3.1.2 Physical tool.  In addition to the cognitive tool, a physical tool must also 

be used to represent the external functioning of the human.  Physical software allows for 

the assessment of motor responses (e.g. physical actions or bodily movements) and their 

resultant effect on performance outcomes.  Such tools typically involve modeling with a 
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digital human in a virtual environment where tasks are assigned.   With regard to physical 

modeling, a variety of tools are also available to model various aspects of physical 

performance.  Using such software can be advantageous in the improvement of human 

performance while overcoming constraints such as time, capital, and safety.  Like the 

prior tool, care must be exercised when selecting a tool that is suitable for research goals.  

Table 5.6 names a few examples of physical modeling tools. 

 

Table 5.6.  Physical Performance Modeling Tools. 

Tool Description 

 

Computerized 

Biomechanical 

Man-Model 

(COMBIMAN) 
 

 

Represents physical properties of an operator for operability 

analyses and to correct designs.  Evaluates both existing and 

conceptual stations (Mattila, 1996). 
 

Human CAD 

 

Creates digital 3D humans using ergonomics and kinematics. 

Provides data on injury, comfort, reach, or fit (UsErgo, 2010). 
 

Jack 

 

Models performance with a biomechanical human. Such abilties 

make it suitable for many applications (Blanchonette, 2010).  
 

Man Machine 

Integrated Design 
and Analysis 

System (MIDAS) 
 

Consists of an agent-based operator model, with modules for 

perceptual, cognitive, and motor processing.  Applications 

include the modeling and prediction of error (NASA, 2010).  
 

Santos Human 

Engine 

Uses an avatar in a virtual environment based on biomechanics 

and kinematics to simulate motion and posture.  Applications 

include equipment and task design (SantosHuman, 2010). 
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5.3.2 Comparison of Model Requirements  

As described in the prior section, a variety of modeling tools are capable of 

simulating performance in complex systems.  Together, these as well as other tools have 

the capability to model the system in a virtual environment, along with both the physical 

and cognitive tasks of the human operator to return output regarding expected 

performance.  Hence, all mental and physical tasks of the human should be taken into 

account yielding in a better understanding of human interaction, alternate methods to 

accomplish task goals, and an understanding of the limitations of human performance.  

To integrate models, however, a comparison of requirements must be developed to 

identify key similarities and differences between features of the selected tools so that 

models can be bridged together, creating a comprehensive human performance model. 

5.3.2.1 Theoretical fidelity.  Foremost, performance software should be 

considered with regard to its theoretical fidelity (i.e. the degree to which the selected tool 

complies with major components of the integrative framework).  It defines the purpose of 

the chosen tool to be used exclusively for cognitive or physical performance modeling.  

By initiating the comparison of the selected modeling tools in this respect, it will ensure 

that the tools are appropriately chosen for use with the integrated framework.  

Furthermore, it also reflects the degree to which the tools comply and adhere to the 

details identified in the theoretical structure of the framework, yielding in better 

knowledge and acceptance of the theories on which it is based. 

5.3.2.2 Input parameters.  Having identified which aspect of human performance 

that the chosen tools are suitable for modeling with the integrative framework, it is 
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necessary to also determine the inputs required.  Input parameters convey the key pieces 

of information specific to the system to be modeled (e.g. task analysis, time studies, 

statistical distributions, etc.) enabling the quantification of human performance.  

Collecting such information affects the difficulty or complexity of model development 

which can alter the feasibility of the chosen modeling tools, making it highly important in 

determining how closely those parameters match the theoretical concepts identified in the 

framework. 

5.3.2.3 Modeling capability.  Another important aspect which should be compared 

is the modeling capabilities of the selected tools.  Such capabilities relate to the levels at 

which human performance can be affected in the integrative framework.  Since the 

selected tools are capable of modeling cognitive and physical performance, it should also 

be determined whether the chosen tool is capable of accounting for the factors that 

significantly alter performance.  Considering modeling capabilities are vital for the 

validation of integrated performance models.  Thus, by ensuring that both of the chosen 

tools account for performance at each level as specified in the framework, the current 

modeling techniques can be enhanced to a degree which reflects human performance as it 

occurs in real world settings.   

 

5.3.3 Categorization of Performance Metrics  

Performance metrics serve as a precursor for the measurement of human activities 

and performance in the integrative human performance modeling framework.  

Specifically, they are quantifiable measures based on expected outputs in relationship to 
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the human-machine system being analyzed.  Such measures provide a baseline for 

improvement and characterize the type of performance to be assessed.   

The purpose of choosing performance metrics in the integrative framework is to 

identify a category from which variables can be extracted to quantify human 

performance.  Therefore, when integrating models, it is necessary to select and categorize 

measures to determine a method by which to assess such performance.  Since field 

studies regard human behavior as the outcome of a dynamic system where factors 

relating to the individual interact with elements of the environment, measures of human 

performance can be categorized with respect to both the states and levels of human 

performance.  Considering performance in such a manner allows for assessment in terms 

of efficiency, cost, resources, quality, and action.  Furthermore, it establishes a target for 

the comparison of results.  However, care must be taken when choosing performance 

metrics since their value will be determined using mathematical methods. Thus, if 

inappropriate metrics are chosen, they will yield output or findings of little value upon 

model integration.  

Foremost, when developing performance metrics, it is pertinent to gather 

knowledge regarding the human-machine system being assessed (e.g. from literature, 

manufacturers, subject matter experts, etc.).  Once obtained, it is then necessary to 

identify key work processes, performance requirements, and desired outcomes followed 

by developing measures for critical work processes (e.g. time studies, manning, etc.) or 

viable results (e.g. completion).  Good performance metrics should hold true to three 

attributes: specificity, measurability, and feasibility.  Metrics should be specific to ensure 
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clarity and focus within a given research area so that results obtained from integrated 

performance models can be easily interpreted.  Secondly, metrics should be measurable 

so that variables can be extracted to quantify performance for the comparison of data and 

meaningful statistical analysis.  They should also be feasible to determine likelihood at 

which it can be achieved; meaning that the metric must be reasonable, credible, and not 

subject to software modeling constraints.  Selection of metrics by such terms ensures that 

the chosen metrics encourage improvement, effectiveness, and the appropriate levels of 

control for a better of understanding human performance. 

Since human performance within the integrated framework must be modeled 

using two tools, cognitive and physical, the chosen metrics should also relate to those 

measures in order to represent the internal and external functioning of the human.  These 

measures which are represented in the integrated model are subject to the effects of the 

task, system, human, and the environment which compose the four levels of human 

performance.  Figure 5.4 illustrates this concept by depicting the relationships between 

the performance measures with respect to the levels of human performance that have an 

effect on those measures once performance is assessed.   

The human silhouette represents the bodily entity by which performance is 

accomplished.  Dashed lines extending from each metric illustrate how both metrics work 

together to create performance.  These lines also illustrate how cognitive and physical 

metrics are subject to the effects of a variety of independent factors such as the dynamics 

of the environment, design of the system, individual characteristics of the human, or the 

task being performed. 
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Figure 5.4.  Relationship of Framework Metrics (Marchal, 2008). 

 

5.3.4 Extraction of Performance Variables  

More importantly, metrics serve as categories from which performance variables 

can be extracted and modeled.  The extraction of performance variables is essential for 

the integration of performance models given that they must match the capabilities of the 

selected modeling tools to implement the framework’s modeling approach.  Since the 

framework’s structure requires that one of the selected tools be capable of modeling 

human cognition, a corresponding set of cognitive performance variables should be used 

in order to model the internal functioning of the human.    
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Cognitive variables are those which are internal to the human performing the task 

and cannot be observed.  Such variables enable models to quantify performance in terms 

of the output obtained from simulation as well as to facilitate model integration by 

providing a basis from which independent models can be linked.  The variables selected 

for modeling, however, can vary tremendously depending upon the capabilities of the 

chosen tool as earlier described.  Table 5.7 provides a sample of potential variables that 

may be used to quantify performance using a cognitive modeling tool. 

 

Table 5.7.  Cognitive Performance Modeling Variables. 

Sample HPM Variables 
 

Alertness Error Rate Perception Role 

Attention Evaluation Personality Selection 

Boredom Experience Priority Situation Awareness 

Communication Failure Probability Problem Solving Spatial Cognition 

Complexity Fatigue Procedures Stress 

Cooperation Info Availability Reasoning Supervision 

Cycle Time Intelligence Recall Time 

Decision Making Judgment Recognition Training 

Demand Memory Reliability Vigilance 

Difficulty Morale Response Time Workload 
 
 

 

 

Performance variables must also be selected with respect to the physical tool to 

model external motor functioning.  Such variables are quantifiable, observable, and act 

on the human externally.  Yet, like cognitive variables, physical variables also vary based 

on the capability of the researcher’s selected human performance tool.  Examples of these 

variables are provided in Table 5.8.   
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Table 5.8.  Physical Performance Modeling Variables. 

Sample HPM Variables 
 

Agility Energy  Location Response Time 

Anthropometry Fatigue Manipulation Speed 

Clothing Fit Manual Response Strength 

Complexity Force Mobility Target 

Cycle Time Gender Motion Temperature 

Demand Humidity Motor Control Terrain 

Dexterity Idle Time Noise Time of Day 

Difficulty Illumination Power Visibility 

Duration Interference Recovery  Weather 

Efficiency Kinesthetics Reach Workload 
 
 

 

 

Both sets of variables are highly critical for the integration performance models 

due to their bi-directional relationship impacting one another.  For instance, a cognitive 

variable such as vigilance may have an effect on a physical variable such as manual 

response in the event that attention is not sustained over a prolonged period; thus, 

slowing performance.  Likewise, manual response can in turn impact vigilance if tasks 

are too demanding, interrupting cognitive processes. 

Though the tables present a number of options when selecting performance 

variables, they must not be considered as an exhaustive list limited to the bounds of the 

framework.  Such variables represent only a subset of the possibilities for modeling 

performance within a particular tool and may change based upon the capabilities or 

limitations of the researcher’s chosen tool as discussed in the previous section.  Hence 

with proper consideration, it must be known that there are infinite numbers of 

possibilities for variable selection. 
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5.3.5 Linking Factors of Cognitive and Physical Performance  

Since a bi-directional relationship exists between physical and cognitive variables, 

both must be integrated to model human interaction and behavior that can simulate 

human responses and predict how humans interact with complex systems.  Such variables 

can be brought together through linking factors which define the relationship between 

cognitive and physical performance to integrate simulation models.   Linking factors in 

the model are affected at various levels (e.g. task, human, system, and environment) 

either enhancing or constraining human performance.  By linking performance variables, 

simulation models can compensate for portions of performance lost due to lack of 

dimension in independent models.  Cognitive variables account for internal performance 

that is absent in the physical performance model, and physical variables can account for 

external performance that is absent in the cognitive model.  This relationship more 

accurately predicts human performance by accounting for the factors that create and 

contribute to naturalistic interaction in the real world, resulting in a comprehensive 

representation of human performance. 

Figure 5.5 describes the bi-directional relationship between the cognitive and 

physical factors that produce human performance.  For instance, cognitive psychometric 

factors (e.g. knowledge, abilities, attitudes, and personality traits) can have an effect on 

physical anthropometric (e.g. functional reach), biomechanical (e.g. exerted force), and  

kinesthetic (e.g. movement) factors.  In addition, the latter physical factors can also have 

an effect in turn on psychometric factors.    

  



98 

 

 

Figure 5.5.   Linking Factors of Cognitive and Physical Performance. 

 

5.3.5.1 Intra-variable relationships.  Further defining this concept are intra-

variable relationships which convey the relationship within variables of the same 

performance model.  For instance, a cognitive variable such as decision making can be 

impacted by other internal variables such as stress, training, or experience when 

performing a given job or task.  Such variables are likely to have a significant effect on 

the human’s ability to properly assess the task, select the correct alternative, and execute 

work processes.  With respect to the physical model, a variable such as strength may be 

impacted by relative variables such as gender, age, or dexterity which affect performance 

in a similar manner. 

5.3.5.2 Inter-variable relationships.  Although intra-variable relationships convey 

the relationships within variables of the same model, inter-variable relationships extend 

beyond the limits of models independently to bridge the gaps between cognitive and 

physical models.  Inter-variable relationships convey the reciprocal relationship occurring 
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between performance variables derived in the physical and cognitive model.  For 

instance, cognitive variables such as demand or complexity can be affected by physical 

variables such as anthropometry or kinesthetics of the human body.  Such relationships 

between the limits of both models constrain human performance in the same nature as 

human performance in the real world.  Moreover, both inter- and intra- relationships 

serve to convey the manner in which cognitive processes and physical processes work 

together to create human performance.   

 

5.4 Implementation of Integrated Human Performance Models  

The integrative framework offers a variety of options for creating integrated 

human performance models.  However, specific tools as well as variables corresponding 

to the capabilities of those tools must be selected to develop integrated performance 

models.  The following sections provide an example of how the framework can be 

implemented using two human performance modeling tools which comply with the prior 

defined requirements for integration. 

 

5.4.1 Simulation Software 

As earlier described, two simulation tools should be selected to capture the true 

essence of human performance as it occurs in the real world.  Hence, both cognitive and 

physical human performance software should be selected and used.  Micro Saint and Jack 

software are examples of two modeling tools that are appropriate to use with the 

integrative framework.      
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5.4.1.1 Micro saint.  Micro Saint, a cognitive simulation software, allows for the 

human functioning that initiates performance to be modeled.  Its modeling approach 

decomposes the processes used to achieve performance through task network models 

which depict sequences of human activities.  Having this capability, the tool can be used 

to simulate internal performance of the human in terms of cognitive functioning with 

regard to the work task, system design, and the work environment.  Furthermore, in 

applications with complex systems, Micro Saint can be beneficial for the evaluation of 

performance efficiency in terms of the definition and design of work processes 

implemented by the human, workload imposed by the environment, as well as safety or 

productivity of the system.   

5.4.1.2 Jack.  In contrast, physical performance describes the motion undergone 

by various body parts during normal activity with regard to the interaction between the 

human and the system.  A tool capable of modeling physical performance is Jack 

software.  Jack software models performance through a biomechanically accurate digital 

human who carries out scheduled tasks within a virtual environment by describing static 

dimensions of the body in standard postures.  This physical human performance 

modeling tool can be used to model external performance of the human in terms of 

physical functioning with regard to the work task and the design of the system.  A variety 

of applications can prove beneficial from analysis with this tool because it models 

anthropometric dimensions and biomechanical constraints such as forces, strain, and 

pressure.   
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5.4.2 Software Modeling Capabilities 

Since Micro Saint and Jack are capable of simulating cognitive and physical 

performance, both tools should be compared based on their requirements to define their 

capabilities and limitations as well as to bridge the tools together to create an integrative 

human performance model.  Table 5.9 describes the utility, parameters, and capabilities 

of the selected modeling software.   

 

Table 5.9.   Comparison of Human Performance Modeling Software. 

Model Requirements 
Modeling Software 

Micro Saint Jack 
 

Theoretical Fidelity   

Cognitive x  

Physical  x 
 

Input Parameters   

Task Analysis x x 

Time Study x x 

Statistical Distributions x  
 

Model Capabilities   

Task   x x 

Human  x x 

System x x 

Environment 
 

x 
  

 

 

For instance, Micro Saint simulation software models performance with regard to 

cognitive human functioning.  Such models are enabled by the input of task analyses (i.e. 

network models) which decompose processes into series of tasks.  Tasks are then 

quantified by timing data used in conjunction with statistical distributions to add 
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variability and validity to the model.  With these requirements, the software has the 

capability to model the task in terms of the processes undertaken to accomplish work 

goals, the human’s cognitive functioning, as well as the effects of the system design or 

the environmental conditions on human performance. 

In contrast, Jack simulation software models performance with regard to physical 

human functioning.  Like the cognitive tool, Jack requires inputs such as task analysis 

and timing data.  However, rather than using statistical distributions to account for the 

variability of human behavior, Jack uses human biomechanical and anthropometric 

representations to model physical human functioning.  With these requirements, this tool 

has the capability to model the task in terms of processes executed to complete work, the 

human’s functional capabilities with regard to the system’s design, as well as 

environmental conditions.  Therefore, together each tool represents both internal and 

external performance as well as each level of performance as defined by the framework. 

 

5.4.3 Performance Measures and Variables 

Cognitive and physical metrics should be used to provide a basis for quantifying 

human performance.  With such measures defined, performance variables can be chosen 

to enable the integration of performance models.   

5.4.3.1 Cognitive measure.  In Micro Saint, cognitive measures should be used to 

correspond with the modeling capabilities of the software.  Considering an application 

with complex systems in a real world environment, humans use cognition to initiate task 

performance.  During the initial phases of work, humans rely on cognitive functioning to 
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carry out goals.   For instance, humans must simultaneously monitor gauges and controls 

to assess the status of the system as well as to make decisions on which controls and 

strategies will safely and quickly get the job done.  Such decision processes vary 

extensively depending upon the training and experience of the human operator.  In 

addition, the human must also cope with a variety of dynamic elements such as job 

conditions, available tools, as well as other workers.   

The relationship between these demands and the human’s ability to manage the 

amount of work done with a given load is referred to as workload (Wickens, 1984).  Such 

a measure has the capability to be modeled as a performance variable in Micro Saint 

software, making it appropriate to assess performance.  By evaluating the cognitive 

workload experienced by a human operator interacting with a complex system, issues 

such as bottlenecks and overload can be identified.  Furthermore, since the human 

operator is critical to performance, workload assessment is necessary for the 

identification of design problems for safe, efficient, and effective systems.  Within the 

framework, workload represents cognitive processing of the human operator by modeling 

how tasks are performed, work interference, as well as relative difficultly (Wickens, 

1984).  Hence, workload in the cognitive model can be quantified in terms of the effort 

exerted (i.e. total energy output) by the human versus that of the system (i.e. amount of 

time taken to complete work processes) for a given task over an extended period.   

Furthermore, temporal characteristics of performance are also important to 

consider for the examination of the impact of time on human performance.  Since 

workload is a function of temporal characteristics, human effort, and the range of tasks, 
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cycle time can also be modeled as a variable in Micro Saint to denote the total duration of 

a process based on the period required to complete a recurring series of operations, 

functions, jobs, or tasks.     Consequently, cycles do not stand alone; instead, they are 

composed of tasks which decompose into smaller elements of an entire process.  Tasks 

are entities which account for the steps that decompose a cycle and denote the time taken 

to complete individual pieces of a given process.  By using Micro Saint as a modeling 

tool with the integrative framework, both task and cycle time can be used to determine 

statistics for proper modeling parameters which produce accurate estimates of human 

performance (e.g. average output per work period, operating time for the work task, and 

the length of time required to complete the work process). 

5.4.3.2 Physical measure.  With respect to physical operations, human operators 

execute series of tasks to complete work. These tasks are often repeated until work goals 

are reached.  Such processes with a complex system involve human-machine interaction 

wherein the operator directly manipulates system affordances through physical contact 

with interface controls.  Physical actions require the use of energy which has the 

capability to be modeled as a variable in Jack software.  Energy expenditure refers to the 

amount of energy used for physical action (Wise, Orr, Wisneski, & Hongu, 2008).  Such 

a variable is essential in the physical performance model due to the fact that humans 

work over extended periods of time.  Energy expenditure can simulate the amount of 

activity necessary to complete work processes by accounting for the internal stimulus that 

produces external performance.  Therefore, it can be modeled to simulate the external 

work as a measure of the human’s physical activity level.   However, to truly capture the 
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impact of the variable energy, its consequences on the human should also be assessed to 

determine the manner in which physical exertion affects performance.   

Fatigue can be used as a variable to measure the loss of strength or energy as a 

result of recurring tasks.  Fatigue, by definition, is a physiological reaction to exertion or 

stress (Hawley, 1997).  More importantly, it has both physical and mental characteristics.  

Physical fatigue is the inability to continue functioning at a level of normal ability (i.e. 

the inability to exert muscle force to the degree that would be expected given a general 

degree of fitness); whereas, mental fatigue affects the state of awareness in terms of a 

decreased level of attention or consciousness.  Physical fatigue is typically work-induced 

as a byproduct of overuse, strain, or stress from work exertion.  In either case (e.g. 

physical or cognitive), fatigue can be dangerous when performing tasks that require 

concentration.  When interacting with complex systems, fatigue is a precursor to hazards 

when performing tasks because it negatively affects the human's internal state (e.g. 

cognitive functioning), slowing performance.  Therefore, fatigue can be used as a 

performance variable in Jack software to assess human reliability in comparison to that of 

the system to gauge possible consequences of human error.   

To better understand how these physical measures affect subsequent performance, 

recovery rates can also be modeled as a variable in Jack software to determine whether a 

given period is sufficient to restore energy and continue work.  Recovery refers to the act 

or process of energy renewal that was lost from physical exertion or energy expenditure.  

In the integrated model, it accounts for the time taken for a human operator to return to 

normal performance or former physical functioning.  Each of these variables were 
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selected as examples of how to extract variables from a chosen performance software 

according to their relevance in various domains with complex systems, feasibility with 

regard to the selected software, their degree of measurability, and the extent to which 

they are likely to affect human performance.   

 

5.4.4 Connecting Performance Models 

Having selected variables to simulate performance, models have a basis from 

which they can be bridged given the bi-directional relationship that exists between 

physical and cognitive performance.  A collective comparison of Micro Saint and Jack 

software based on their respective modeling capabilities reveal shared requirements of 

using tasks analyses and time study data as model inputs.   Figure 5.6 illustrates the 

relationships among model variables, denoting that cognitive performance affects 

physical performance no less than physical performance affects cognitive performance.   

5.4.4.1 Intra-variable relationships.  In the figure, intra-variable relationships are 

denoted by the dashed lines which show the relationship of variables within the same 

performance model.  For instance, the variable workload that is experienced by a human, 

shares a relationship with the variable task time, given that it is a result of the task 

performance over a given period of time.  These tasks also compose cycles of work; thus, 

describing the time taken by the human to fully execute work processes.  With respect to 

the physical model, a human must expend energy to accomplish work.  Since fatigue is a 

byproduct of energy, which occurs when there is an insufficient amount of time to 

recover, these variables also share an intra-variable relationship. 
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Figure 5.6.  Variable Linking of HPM Tools. 

 

5.4.4.2 Inter-variable relationships.  In addition to intra-variable relationships 

which convey the relationships within variables of the same model, inter-variable 

relationships extend beyond the limits of independent assessments to bridge the gaps 

between cognitive and physical models. These relationships convey the reciprocal 

connections occurring between performance variables derived to simulate the interaction 

between internal and external human functioning.  Such relationships are denoted by the 

intersections between cognitive and physical performance model variables.  For instance, 

cognitive variables from the Micro Saint models (e.g. workload, task, and cycle time) are 

affected by physical variables in the Jack model (e.g. energy expenditure, fatigue, and 

insufficient recovery time).  Specifically, conditions under which a human uses a 
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considerable amount of energy, experiences fatigue, or has a limited period to recover 

can result in an increased amount of workload.  It can also lead to longer task times and 

cause higher energy expenditures resulting in longer cycle times.  Furthermore, these 

conditions can result in a higher amount of workload, leading to increased fatigue, high 

energy levels, and limited recovery time.  These bi-directional (i.e. cause-effect) 

relationships between the limits of both models constrain human performance in the same 

nature as human performance that occurs in the real world; thus, integrating performance 

models.   

Moreover, both inter- and intra-variable relationships convey the manner in which 

cognitive processes and physical processes work together to create human performance.  

By linking performance variables and modeling performance in this manner, Micro Saint 

and Jack models compensate for portions of performance lost due to lack of dimension 

(i.e. inability to model both cognitive and physical performance) in the models 

independently.  Hence, cognitive variables account for internal performance that is absent 

in the physical performance model, and physical variables account for external 

performance that is absent in the cognitive model.  This relationship more accurately 

predicts human performance by accounting for the factors that create and contribute to 

naturalistic interaction in the real world, resulting in a comprehensive representation of 

human performance in the simulation models. 
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5.4.5 Modeling Quantification  

In addition to the development and integration of cognitive and physical 

performance models, they must also be quantified to identify, depict, and verify human 

performance.  The following sections describe in detail how performance can be assessed 

using Micro Saint and Jack software as well as provide a mathematical quantification to 

facilitate integration of the performance models. 

5.4.5.1 Non-integrated performance models.  In the past, it has been customarily 

assumed that cognitive processes are too difficult to analyze in a practical context.  

Therefore, many researchers have bypassed their analysis by representing cognitive 

processes with dummy variables or placeholder operators.  Such practices are only 

permissible when cognitive processes are irrelevant to performance which rarely occurs 

in the real world.  Such misconceptions result in documentation of the presence of human 

cognition, but fail to yield in assessment of its effects.  More importantly, it is likely to 

produce misleading results (Diaper & Stanton, 2004).  

As described in the prior section, human performance in the cognitive Micro Saint 

model can be measured in terms of the variables time and workload.  However, in order 

to quantify performance, the tasks must first be understood.  One such method is by 

modeling mental workload of the human to convey the relationship between cognitive 

resources and task demands.  By considering internal cognition in human performance 

models, human processing can be examined at a procedural level by making explicit the 

capacity of the human mind, decision functions, goal evaluation, planning, and execution 

of planned tasks.  Task analyses define the sequence of tasks performed by the human; 
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whereas, time studies define the timing information associated with each task and 

background scenario.  Furthermore, each task must be defined to a sufficient level to 

allow for realistic physical and mental workload values to be estimated and to determine 

which resources or combinations of resources are required to assess performance.    

Workload can be obtained by quantifying the internal and external factors that 

contribute to performance.  Such measures correlate to the system and to the operator 

while concentrating on the effort exerted during physical and cognitive tasks.  In Micro 

Saint, task times are reflected for movement tasks (e.g. physical) and operational tasks 

(e.g. cognitive).  Since workload is driven by these demands, it is appropriate to measure 

the level of effort required to achieve the goal.  Consequently, tasks times from trace data 

within simulation output can be used as a direct measure of workload to indicate the 

amount of time taken for the human to reach the desired goal.  Given that tasks within the 

Micro Saint network model are represented as a hierarchy consisting of the operational 

task (e.g. cognitive), the motor task (e.g. physical), and the system task (e.g. goal), model 

formulation can be described in terms of the total cognitive and physical effort exerted by 

the human.  This effort can be considered in terms of task time versus the task time taken 

to reach the work goal as described by the following equations. 
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The prior equations depict that internal human performance (e.g. task time, cycle 

time and workload) can be described as a measure of the total cognitive and physical 

effort exerted which is given by the time taken to perform a task versus the time taken by 

the system to reach a desired outcome or goal.  Effort of the human (EH) is measured by 

the summation of the time of the physical movement task (MT) and operational task (OT) 

preceding the system task or work goal; whereas, effort of the system (ES) is measured by 

the execution time of system work functions as provided by the human.  A numerical 

value is assigned to each task of the human which is modeled against each type of 

resource of the system (e.g. time taken to execute a process).  Workload  can then be 

expressed as a ratio of effort exerted by the human versus that of the system obtained by 

the contribution of effort across work tasks; thus, resulting in the percentage of human 

operator workload (WK).   

 Similar to Micro Saint, Jack software can quantify external performance using 

physical variables of energy expenditures, fatigue, and recovery rate.  To obtain such 

output, a virtual environment along with the proposed system can be composed using 

imported CAD data and system specifications.   In this environment, a biomechanically 

accurate human model can be used to model human performance.  Since Jack software 

requires the definition of work procedures, task analyses can be used to specify or control 

the virtual human’s behavior; whereas, time studies can be used to define time constraints 

and to add parameters so that tasks can occur simultaneously over a specified interval.  

Simulation algorithms use these commands to instruct the human model.  Once a 
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particular task sequence has been defined for the human model, performance can be 

quantified in terms of the energy, fatigue, and the necessary recovery period.  

 As earlier demonstrated, the physical human performance model can be used to 

assess performance in terms of the prior stated performance variables.  Jack software 

models human performance via a digital human who performs scheduled tasks in a 

virtual environment.  In the model, the digital human is scaled and proportion by software 

algorithms and statistical measures from which behaviors are defined to condition how 

the model reacts when performing tasks.  Based on inputs from task analysis and time 

studies, the human model can simulate performance in the virtual environment, 

enhancing realism and visualization as denoted in equations 5.4 and 5.5. 
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The equations show that performance can be quantified in terms of physical 

exertion and motion of the human model in a given posture and environment (Godin, 

2009).  Such capabilities enable comparisons of physical performance necessary to 

accomplish various tasks.  Algorithms in the Jack model automatically gauge physical 

performance and produce estimates of energy (e) and recovery rate (r) for each task given 

by the difference in the time needed to recover (TN) versus the time available to recover 

(TA).  Furthermore, energy and recovery, yield in fatigue (f) derived as a byproduct of 
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both estimates for a given task.  In this way, Jack can model external physical 

performance as well as the relative impact of these performance variables on one another. 

5.4.5.2 Integrated performance models.  Although Micro Saint and Jack have 

individual strengths in modeling cognitive and physical performance, neither accounts for 

the performance modeled by its counterpart.  Therefore, cognitive and physical factors 

must be integrated to compensate for portions of performance lacking in independent 

models.  Software can be easily integrated by enabling models and performance data to 

“speak” to one another; thus, illustrating the bidirectional relationship between cognitive 

and physical human performance.  This is achieved through bi-directional linking factors 

wherein psychometric cognitive factors (e.g. knowledge, individual abilities, etc.) have 

an impact on physical factors (e.g. anthropometry, biomechanics, and kinematics) and 

vice versa.   

 Modeling human performance in Micro Saint requires the use of timing and task 

data to form the structure of the task network model.  Models in this software yield 

output in the form of trace data, conveying dynamic descriptions of work process in 

terms of the executed tasks and workload estimates.  Since this software has decision 

making (i.e. cognitive) capabilities, task and timing data from the cognitive Micro Saint 

model can be directly input into the physical Jack model to assess human performance.  

Such data can be used to develop the sequence of activities undertaken by the digital 

human in the physical model.  For instance, beginning with the trace data (i.e. simulated 

tasks and time data) derived from the Micro Saint model, output can be directly input into 

Jack software, which requires both task analysis and timing data to model the processes 
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performed by the digital human.   Portions of the task network model can then be 

reflected in the Jack software to model physical performance for key work processes 

within a given domain.  With such inputs from the cognitive model, the physical model 

will define and constrain the range of tasks in the simulated process.  These parameters 

enable the Jack model to accurately simulate the physical motor processes subject to the 

effects of human cognition in terms of energy, fatigue, and recovery; thus, compensating 

for the limitations of the cognitive model independently. 

 Unlike the Micro Saint model, Jack software has no capability to model the 

effects of cognitive performance (i.e. decision processes).  Hence, output obtained from 

the Jack model enhanced with cognitive inputs can be integrated back into the original 

Micro Saint model to obtain a comprehensive representation of human performance.   For 

key performance tasks and work processes, fatigue estimates from the Jack model can be 

used as a direct input back into the Micro Saint model as a performance variable to assess 

the impact of physical stressors on cognitive performance.    In this case, limited recovery 

can be used as an indicator for tasks and work processes where physical fatigue may 

occur.  Fatigue can be used as a variable in Micro Saint to gauge physical performance 

and its impact on workload due to the fact that both models are developed according to 

the same task analysis.  Being that fatigue is a byproduct of energy expenditure and 

recovery, its integration with workload should lead to insight being gained on the effects 

and relationship between cognitive and physical model variables.  Adding fatigue as a 

performance variable extracted from Jack and placed into the Micro Saint, will slow 

performance as if it were occurring in the real world.  However, to model these affects, 
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Micro Saint mathematical quantifications for performance estimates must be 

reformulated.  The modified quantification for workload in the integrated model can be 

described in terms of the following equations. 

 

HTT fEMOf  )(                                                 (5.6) 

ST ES 
                                                          

(5.7) 

K

S

H iW
E

fE
                                                           (5.8) 

 

As in the original Micro Saint model, performance in the integrated model is 

represented by task time, cycle time, and workload to measure cognitive and physical 

functioning of the human.  In order to account for physical performance in the cognitive 

model, performance estimates for energy expenditure (e) and recovery (r) for each task 

can be used to obtain a variable for integration into the original model formulation 

wherein the effort of the human is measured by the summation of the human’s physical 

movements (MT) and the cognitive task time (OT) preceding the system task goal.  Since 

fatigue (f) is a byproduct of energy and recovery, both physical estimates should be 

derived according to the task and be modeled as a coefficient to convey its effect on 

human effort.  An integrated workload (iWk) estimate can then be expressed as a 

comparison ratio of human effort exerted subject to the effects of cognition as well as 

physical fatigue (fEH) versus the system (ES) which is measured by the time taken by the 

system to execute work functions provided by the human.  With such inputs from the 
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physical model, the cognitive model will validate human performance models.  

Furthermore, it enables Micro Saint to more closely simulate cognitive processes subject 

to the effects of motor responses in terms of time and workload to compensate for the 

limitations of the physical model alone. 

 

5.5 Integrated Human Performance Representation 

Having the critical elements, accounted, and integrated into a comprehensive 

model, performance can be accurately assessed.  The integrated framework representation 

depicts states of performance at both a micro-level (e.g. cognitive internal functioning) 

and macro-level (e.g. external motor functioning).  Not only does its concurrent 

integrated structure describe the human, but it also comprises the potential contribution of 

entities at various levels of performance that are subject to the environment, system, as 

well as the task.   

The integrated performance structure creates a hierarchical level of interactivity 

between the functional components of human performance and the levels by which 

performance can be affected.  Considering the environment, system, human, and task 

levels of the integrated framework, it creates a common ground and foundation from 

which human performance models can mirror that which occurs in the real world.  Such 

organization also makes the integration between the software based on the framework 

feasible and enables the enhancement of models making simulations more accurate.  

From these levels within the integrated structure, functional human performance can be 

represented, distinguishing both facets, cognitive internal functioning and physical 
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external functioning.  Cognitive internal functioning includes aspects such as individual 

differences as well as the planning of strategies to accomplish goals; whereas, physical 

external functioning includes the capability and the means by which to execute such 

goals.  Representing both facets of performance serves to bridge the gap between past 

modeling approaches. 

Hierarchies within the levels of performance are depicted by the components of 

cognitive and physical functioning at the human level.  Models are linked through each of 

these component levels by the variables which were extracted to link human performance 

via the exchange of model inputs and outputs.  Hence, the established links between 

cognitive and physical performance at various levels defines the complexity and the 

degree of detail for integrated performance models with regard to complex human-

machine systems.  Furthermore, the integrative framework was derived given that an 

integrated approach to modeling human performance does not exist and has not been 

used for representing human performance with complex human-machine systems.  

However, it is essential to enhance models so that they fully represent and capture the 

essence of human performance.  With both states and all levels represented in the 

integrated framework, human performance can be assessed and compared through the 

integrated structure that depicts the measures to be considered when modeling.  The 

framework integrates multiple theories to produce a modeling schema that not only 

predicts human performance from the “neck-up” or the “neck-down,” but also provides a 

foundation for modeling performance subject to various factors.   
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It provides the required guidelines for developing human performance models that 

account for cognitive functioning and physical behaviors in relation to a variety of factors 

that shape human performance.  A major contribution of the integrative framework is that 

it closes the gap between independent performance models to enhance the knowledge of 

how human performance occurs.  It also improves modeling techniques by developing a 

new approach to modeling human processes with complex systems.  The framework 

provides a structured blueprint that can be usefully utilized to model, analyze, record, and 

potentially improve human performance.   

Also, this framework identifies major types of knowledge that is required to 

increase the understanding of human performance and model integration.  Such 

knowledge includes: an understanding of performance at various levels, knowledge of the 

states and functional components of human performance, acknowledgement of the 

interactions that produce operator behaviors, and the correlation between cognitive and 

physical factors of human performance.  Further understanding of these types of 

knowledge provide a major opportunity for using the developed framework to analyze 

human performance as well as work tasks and operations to improve, evaluate, and select 

more efficient processes and systems.  The following chapter describes a case study to be 

used for application with the integrated human performance modeling framework in a 

given work domain. 
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CHAPTER 6 

A CASE STUDY IN FLUID POWER 

 

To illustrate how the proposed integrative framework can be utilized to accurately 

model human performance in complex systems, a case study is described to demonstrate 

its viability in an applied domain with respect to its described structure and modeling 

parameters.  Thus, high fidelity models can be achieved that capture performance at a 

general level (e.g. tasks and work processes) as well as at a more detailed level (e.g. 

human functioning) to make clear the contribution of cognitive and physical aspects.   

 

6.1 Fluid Power Domain 

Fluid power is characterized as control mechanism which is used to generate, 

transmit, and control power (Figure 6.1).  In both forms (e.g. hydraulics and pneumatics), 

fluids are pressurized and exploited, enabling many of today’s technological systems to 

operate with an enhanced degree of capabilities which minimize costs and increase 

productivity.  Specifically, hydraulics enable liquids to produce movements between 

pistons and cylinders to create a force or movement and to lead to action (Ritchie, 2009).  

Such technology is commonly used in complex systems and large machinery making it a 

suitable domain to consider for the application of the integrated human performance 

modeling framework.   
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Figure 6.1.  Fluid Power Hydraulics (Hitachi, 2010). 

 

6.1.1 Hydraulic Excavator 

An example of this technology that complies with the structure of the integrated 

framework is the hydraulic excavator which utilizes fluid power technology to perform 

work processes (Figure 6.2).  In this system, a human operator manages work operations 

by controlling its mechanical and hydraulic components (e.g. boom, cylinders, swing, and 

tracks).  Hence, the contribution of both the operator and the technology conveys how 

complex human-machine systems function together to produce performance.   

 

 

Figure 6.2.  Parts of a Hydraulic Excavator (Hitachi, 2010).  
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Hydraulic excavators are used for a variety of purposes due to specialized tooling 

(Figure 6.3) which enables their use in a multiple applications such as material handling, 

demolition, and heavy lifting (Boyanovsky, 2005; Miller, 2010).  Its principle 

application, however, remains material removal; therefore, it is most appropriate to 

analyze such systems in the construction industry where it is able to be demonstrated 

their full range of performance capabilities. 

 

 

Figure 6.3.  Excavator Tooling Attachments (Hitachi, 2010). 

 

6.1.1.1 Excavation.  The most common application undertaken when using this 

type of machinery is excavation, the method by which hydraulic excavators remove 

matter such as dirt, soil, rocks, or other materials for some purpose (Ritchie, 2009).   

Performing such processes requires tremendous effort on behalf of the human operator 

making the application further suitable for consideration. 
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6.2 Human Performance in Fluid Power Applications  

The integrated framework supports modeling fluid power systems such as the 

hydraulic excavator since its structure allows for the modeling of excavation processes at 

various levels of detail with regard to the human’s cognitive and physical functioning.  In 

addition, it also allows for a variety of other performance shaping factors such as the task, 

human, system, and the environment to be considered. 

 

6.2.1 Environmental Considerations 

The highest level at which human performance can be assessed as defined by the 

integrative framework is at the environmental level.  With regard to hydraulic excavator 

systems, the environment has the potential to significantly affect performance in a 

number of ways, making the area appropriate for application.  

6.2.1.1 People, machines, and obstacles.  In the environment where hydraulic 

excavation processes are performed, operators encounter many dynamic variables.  

Excavator operators receive information by sensing the elements within the environment 

(e.g. people, machines, obstacles, etc.).  For instance, obstacles may present apparent 

(e.g. visible structures) or hidden hazards (e.g. underground lines) while working.  

Therefore, such obstacles must be perceived, assessed, and managed to ensure safety and 

efficient work.  In many work operations, it is also common for hydraulic excavators to 

work in unison with other machines or construction equipment.   An example is the 

digging process wherein excavated materials are piled onto a wheeled loader (e.g. bedded 

truck) and moved to an alternate worksite location.  Caution, however, must be exercised 
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when using information regarding the position of machines to align work processes.  

Consequently, the primary source of this information comes from other workers.  

Excavator operators communicate with other workers through hand motions to signal 

execution of desired work processes as seen in Figure 6.4.  Excavator operators perceive 

and interpret this information, leading to decision making based on the data extracted 

from the environment in connection with their prior knowledge.  Decisions are then 

translated into cognitive or physical actions.  Such characteristics are often difficult to 

model due to their uncontrollable and unpredictable nature, increasing complexity and the 

potential or severity of error.  

 

 

Figure 6.4.  Standard Hand Signals for Equipment Movement (WorkSafeBC, 2011).  

 

 6.2.1.2 Terrain conditions.  More importantly the terrain at work sites can vary 

tremendously.  Excavation jobs have the potential to involve materials such as sand, soil, 

gravel, rock, concrete, or even asphalt.  Such materials vary extensively in terms of 

condition (e.g. wet or dry) as well as composition; however, excavator operators must 

have the ability to effectively utilize the system to penetrate the surface and remove any 

unwanted materials.    
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Soils are generally classified based on their geological formation (e.g. grain size, 

shape, and arrangement of mineral particles).  For instance, grain types can either be fine 

or coarse.  Figure 6.5 illustrates major soil textures and their percentage of composition 

grouped according to their class.  These classifications have hydraulic properties, 

meaning that they can be either wet or dry.  Since these characteristics have an effect on 

their permeability, it can make excavation processes considerably more difficult and 

increase work complexity. 

 

 

Figure 6.5.  Texture Triangle of Soil Types and Compositions (Krumbein, 2010). 

 

Such classifications also have a significant influence on the physical engineering 

properties of soil.  For instance, silt and clay soils are predominantly fine grained; whereas, 

sand and gravel are predominantly coarse grained (Stead, 2006).  Predominant soil types 

also have distinct consistencies (i.e. the texture and firmness) which are often directly 
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related to its strength.  Soils such as sands and gravels can be loose, dense, or cemented; 

silts can be soft or loose, firm or dense; whereas, clays can be soft, firm, stiff, or very 

stiff.  This characteristic has a significant impact on the ease at which materials can be 

excavated, affecting overall performance.  Therefore it is important to consider this 

property as it relates to human performance in the integrated framework.  Table 6.1 

identifies terms used for the classification of soil consistency and permeability. 

 

Table 6.1. Classification of Soils by Permeability (Stead, 2006). 

Class Permeability 
 

Very Loose 
 

Easily excavated with spade. 
 

Loose Easily penetrated with 13 mm (0.5 in.) reinforcing rod pushed by 

hand.  Alternatively, shows some resistance to spade or penetration 

with a hard bar. 
 

Compact Easily penetrated with 13 mm (0.5 in.) reinforcing rod driven with a 

2.25 kg (5 lb) hammer. Alternatively, shows considerable resistance to 

spade or penetration with hard bar. 
 

Dense Penetrated 0.3 m (1 ft) with 13 mm (0.5 in.) reinforcing rod driven 

with a 2.25 kg (5 lb) hammer. Alternatively, shows no penetration 

with hard bar or requires pick for excavation. 
 

Very Dense Penetrated only a few centimeters with 13 mm (0.5 in.) reinforcing 

rod driven with 2.2 kg (5 lb) hammer. Alternatively, shows high 
resistance to pick. 
 

 

 

6.2.2 Utilizing the Excavator System 

Hydraulic excavators come in a variety of sizes ranging from small or compact to 

mid-size and large-scale to tackle a number of construction applications.   They are also 

configurable with various tooling attachments for adaptability in multiple work tasks and 
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operations.  The versatility in these systems requires the operator to have excessive 

amounts of energy, intense task concentration, and high skill level.  Such requirements 

can result in complex human-machine interactions.   

Furthermore, the greater factor with regard to these systems is that they have 

evolved in design in order to facilitate efficient work processes.   In most systems, 

hydraulic control is the standard operating mechanism; however, in newer systems, 

electronic control allows operators to switch between a traditional control and an 

alternate control pattern.   

6.2.2.1 Hydraulic control.  In traditional hydraulic control systems, the excavator 

is controlled by a human operator using series of buttons, monitors, gauges, and controls 

to carry out work tasks.  Most important of these controls, however, are the system’s two 

manual joysticks.  These controls, which are located within the interior of the cab, are 

responsible for carrying out the primary functions that the operator uses to accomplish 

work processes.    

Hydraulic joysticks offer six degrees of freedom in a quadrant design known as 

the H-pattern as shown in Figure 6.6.  This pattern allows operators to control the system 

through horizontal motion (i.e. left and right) to employ swing and tilt functions; vertical 

motion (i.e. forward and backward) to employ the arm and dipper, as well as diagonal 

motion to produce simultaneous movements.  Hydraulic control patterns not only offer 

simplicity, but also provide a high level of feedback to the operator. 
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Figure 6.6.  Hydraulic Joystick Control Mechanism. 

 

6.2.2.2 Electronic control.  Electronic control excavators systems retain many of 

the basic functions of hydraulic systems, but instead give operators the option of utilizing 

dual control patterns.  The primary difference is that operators can switch between the 

traditional H-pattern of control and a sub-control pattern of functional joystick buttons as 

denoted in Figure 6.7.  

 Like hydraulic systems, when the traditional control pattern is selected, the 

system is controlled by horizontal, vertical, and diagonal joystick movements; whereas, 

when the electronic control pattern is selected, joystick buttons control system 

movements as well as engine dynamics such as horsepower and speed.  This control 

pattern has been thought to be more comfortable and less fatiguing to the operator over 

long periods of time (Berndtson, 2007).   
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Figure 6.7.  Electronic Joystick Control Mechanism. 

 

Consequently, the degree of performance achieved by the human operator can be 

impacted by the design of the system.  Considering new control mechanisms, emergent 

hydraulic excavators are becoming more advanced and complex than ever before.  

Though both hydraulic and electronic controls offer distinct advantages when performing 

excavation processes, it is also appropriate to investigate their affects in terms of 

performance tradeoffs using the integrated human performance modeling framework.  

Hence, with the integrated framework, it will be possible to quantitatively assess the 

effects of design on performance. 
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6.2.3 Role of the Human Operator 

Beyond the scope of the system, the operator is the most critical component when 

modeling human performance.  Performance can be affected drastically by a range of 

factors with respect to the operator’s abilities.  These abilities vary among operators due 

to a host of individual differences.  Such differences (e.g. training, experience, age, etc.) 

can cause operators to be more or less suited for performing particular tasks according to 

their cognitive and physical skill; thus, making such characteristics essential to consider 

when modeling performance. 

6.2.3.1 Cognitive activity.  Human operators provide majority of the information 

processing capabilities during hydraulic excavation processes.  Cognition is critical when 

evaluating human performance in fluid power systems because it initiates performance, 

enabling the human operator to perceive stimuli, form goals, and evaluate outcomes.  

Demands such as perception, attention, and memory are necessary for operators to 

receive information, make decisions, and the control actions which can be imposed by 

factors including the environment, system, and the task.   

In hydraulic excavation processes, work begins with monitoring (i.e. assessing the 

job with regard to the system’s capability) which involves perception of the work 

environment to give the operator awareness of surrounding conditions or understanding 

of the tasks to be performed.  Having understood the environment and the task through 

cognitive processing, actions must be carried out to fulfill work goals. The next step of 

the excavation process is positioning the system at the desired worksite.  With this task, 
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operators rely on cognitive resources such as attention and memory to aid in selecting a 

course of action (e.g. the location to position the system or proper work procedures).  

Both monitoring and positioning tasks are cognitive in nature and impose 

additional demands which have the potential to affect workload.  Therefore, by 

considering cognitive activity with the hydraulic excavator, human performance models 

will have the ability to reflect the operator’s development of strategies and intentions 

which precede action to achieve work goals.   

6.2.3.2 Physical activity.  In conjunction with cognitive activities, physical tasks 

also take place to complete work processes.  Such processing is triggered upon selection 

of methods and tools and causes the contribution of performance to shift from the state of 

cognitive functioning to that of physical functioning.  Humans use these transforming 

cognitive processes to execute physical actions (e.g. external movements) in response to 

stimuli to carry out tasks.   

For example, upon response selection, hydraulic excavator operators perform 

work tasks through physical manipulation (e.g. reaching, pushing, pulling, or turning) of 

interface affordances (e.g. buttons, joysticks, pedals, or levers).  The physical tasks of the 

human operator execute corresponding functions that are carried out by the system to 

produce the intended work goal.  Such an example exists in fluid power digging 

operations, the most common task of a hydraulic excavator.  In order for this process to 

occur, the human operator must determine an appropriate location to excavate and pile 

materials, followed by manipulating the system’s manual joystick controllers whose 

range of motion executes specific functions.  These operations impose demands on the 
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human operator, holding the potential to affect a variety of performance factors (e.g. 

workload, fatigue, or time) because they can occur in series or parallel and are often 

repetitive in nature.  Hence, it is also appropriate to investigate the role of physical 

activity on human operators using complex systems. 

Both cognitive and physical activities reflect mechanics of human performance.  

With respect to each, the interaction between internal and external human functioning can 

be specified by describing the mechanisms through which operators shift from intention 

to action as well as the level of effort required with regard to various demands (Wickens 

et al., 2004).  More importantly, integrating internal cognitive functioning and external 

physical functioning enables models to consider the factors that guide human behavior 

and to parallel the human responses that are necessary for performance. 

 

6.2.4 Decomposition of Excavation Tasks 

Furthermore, with regard to hydraulic excavations, a variety of tasks occur in 

order to complete work processes.  These processes also require various levels of 

cognitive and physical activity on behalf of the human, comprising the degree to which 

performance is attained.  Therefore, to reflect these processes, the excavation task must 

first be understood.  Task analyses provide the methods to effectively assess excavation 

processes at a sufficient level of detail. 

Task analysis describes the means through which work is fulfilled with regard to 

both cognitive and physical activities of the human being to yield in a better 

understanding of human behavior.  As identified by the framework, the system as well as 

the task must be defined for the integration of human performance models.  The 
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following sections describe in detail the task of a typical hydraulic excavation process 

through which performance can be examined.    

 6.2.4.1 Hydraulic control.  Excavation processes generally occur in distinct 

phases comprised of key work tasks.  Beginning with initialization, key tasks occur to 

engage the system and prepare for anticipated work in terms of job type, work conditions, 

and location.  In this phase, tasks include starting the system, monitoring gauges, 

determining the appropriate system settings, as well as the location to position the system 

at the worksite.  For instance, hydraulic excavator operators initiate work processes by 

engaging the system which is accomplished by physical extension of the arm to reach and 

turn the engine’s starter switch.  Cognitive processes ensue when the operator checks the 

system’s monitor panel to obtain critical information from various gauges and indicators.  

The key task of monitoring involves perception and recognition of information which 

enables the operator to select the appropriate configuration for the system according to 

the type of job (e.g. material or tooling required), size of the job (e.g. small, medium, or 

large), as well as environmental conditions (e.g. terrain, workers, or obstacles).   

Once the type of excavation process has been determined, the operator will 

proceed to adjust the engine speed through physical tasks such as reaching the arm and 

manipulating the appropriate control.  Upon completion of these tasks, physical work 

continues when the operator moves the excavator to the desired work location which is 

achieved by manually reaching the arm, extending the leg or foot, and pushing or pulling 

the system’s travel levers.  Like other physical tasks, positioning is also preceded by 

cognition to determine where to position the excavator.  Positioning can be achieved by 
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one of two methods.  Based on the operator’s experience level, the system can be 

positioned by sequential or simultaneous movements.  For instance, an inexperienced or 

novice operator is likely to sequentially position the excavator by extending the leg or 

foot to push or pull the travel levers; followed by reaching the arm and tilting the hand to 

adjust the swing arm control lever.  In contrast, an experienced or expert operator is more 

likely to simultaneously position the excavator by reaching the arm, tilting the hand, and 

adjusting the swing arm control lever to the position excavator.  Since these tasks are 

performed concurrently, the latter procedure requires fewer steps to accomplish the work 

goal, making process more efficient.  As can be recognized, many tasks during the 

initialization process rely on cognition which plays an important role in the foundation of 

human performance. 

In the active work phase of excavation processes, tasks become less cognitive and 

more physical in nature.  During this phase, the operator completes excavation tasks via 

the hydraulic system using manual joystick controls used to dig, scoop, and pile 

excavated materials.  To begin the key task of digging or excavating materials, the 

operator must lower the large extendable arm of the excavator, known as the boom, by 

tilting the hand and pushing the bucket control lever.  Following, the dipperstick (i.e. the 

small extendable arm), must also be lowered to the ground by tilting the hand and 

adjusting the swing arm control lever.  Subsequently, the excavator will use its bucket 

attachment to scoop materials upon the operator titling the hand and pushing or pulling 

the bucket control lever.  To move the dirt to the desired location, the operator will repeat 

a similar process of tilting the hand and pulling the bucket control lever in the opposite 
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direction (e.g. backward) to raise the boom which has been loaded with the excavated 

materials.  The excavator will then rotate forward when the operator tilts the hand and 

moves the swing arm control lever to place the load.  Lastly, the operator will tilt the 

hand and press the bucket open control to release excavated materials.  Once the load has 

been released from the bucket, the operator will tilt the hand and move the swing arm 

control lever right to rotate the excavator back to its initial work position.  Depending on 

the experience level of the human operator, digging processes may also be performed 

more efficiently by simultaneously executing work tasks. 

At this point in the excavation process, there are three possible actions that the 

operator can undertake.  The operator has the alternatives of:  repeating the digging task 

until the work is complete, repositioning the system at an alternate location, or 

completing the initial excavation process.  In the event that the operator decides to 

continue the excavation process, the prior stated tasks iterate until work goals have been 

met.  However, if work is complete, the operator will proceed to the finalization phase.  

The finalization phase of the excavation process mirrors that of the initial phase involving 

tasks of shutting down the system at a designated location.  For this operation, the 

operator must reach the arm and turn the starter switch to end work.  This series denotes 

that all work tasks in the excavation process have been completed.  Each of these tasks in 

some aspect reflects the range of performance that occurs for work to be completed as 

well as the parameters necessary to accurately model human performance when modeling 

hydraulic excavation processes.  A summary of these tasks can be found in Figure 6.8.   



135 

 

 

Figure 6.8.  Task Analysis of Excavation Processes Using Hydraulic Control. 

 

6.2.4.2 Electronic control.  As described in Section 6.2.2, hydraulic excavators 

have undergone changes in their design, transitioning from hydraulic to electronic control 

mechanisms that are intended to be more comfortable and less fatiguing to the human 

operator.  With these controls, the operator has the option of using the traditional H-

pattern or an alternate sub-pattern of control by using functional joystick buttons that 

control rotation, travel, and movement of system attachments.  Such changes not only 

alter the physical design of the system’s primary controls, but it also modifies the manner 

in which the operator performs tasks to facilitate work processes.  

Like hydraulic control systems, the phases of typical hydraulic excavation 

processes with electronic control systems also consist of initialization, active work, and 

finalization.  Key tasks also include that of monitoring, positioning, and digging to 

excavate materials.  The sequence of steps used by the human operator to complete these 
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tasks within each work phase also remains the same with the exception of the active work 

process.  In the initialization phase, monitoring and positioning tasks occur and involve 

human cognition; whereas, in the finalization process, tasks consist of the operator 

shutting down the system.  The primary difference is that the operator uses the finger to 

press joystick buttons instead of tilting the hand or wrist to move joysticks.   

For example, with excavators using electronic control mechanisms, the operator 

begins the active work process by lowering the boom.  Instead of tilting the hand and 

pushing the bucket control lever, the operator presses the inner-left joystick control 

button by moving the finger.  Following, the dipperstick is lowered to the ground in the 

same manner, but using the outer-left button on the joystick controller.  Next, the bucket, 

which is used to excavate material, is moved by pressing the corresponding bucket 

control button.  To move the dirt to the desired location, the operator will repeat a similar 

process of pressing inner-left joystick button to raise boom which has been loaded with 

the excavated materials.  Following, the excavator will rotate forward when the operator 

presses the functional button on the outer-right side of the joystick control.  Lastly, the 

operator will press bucket open control to release excavated materials and rotate the 

excavator back to its starting position.   

In the finalization phase, the operator concludes work processes and shuts down 

the system.  Like the task analysis for the hydraulic system, tasks become less cognitive 

and more physical in nature.  A task summary can be found in Figure 6.9.    
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Figure 6.9.  Task Analysis of Excavation Processes Using Electronic Control. 

 

With regard to both task analyses, it can be noted the contribution of both 

cognitive and physical functioning in task performance.  Task analyses which are 

decomposed in a hierarchy allows for representation of steps or procedures necessary to 

accomplish a task preceding the goal.   

Furthermore, task analyses provide benefits of qualitative information regarding 

excavation processes by considering the factors that affect performance.   To model 

performance, tasks analyses can be complemented by time studies to convey element 

durations, task frequency, task allocation, and task complexity required for the human 

operator to perform a given job; thus, extending the collected real world data into 

predictive human performance models.   
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6.3 Integrating Human Performance in Excavation Applications   

Fluid power systems such as the hydraulic excavator provide a suitable domain 

for application with the integrated human performance modeling framework. 

Characteristics of excavation processes enable the framework to capture performance at 

various levels of detail as well as to account for the variety of factors that impact 

performance. 

 

6.3.1 Case Description   

The integrated human performance modeling framework is applied to the 

previously described fluid power case study involving a hydraulic excavator controlled 

by a human operator performing routine excavation processes to remove earthen 

materials within a typical construction environment.  Tasks are studied with regard to the 

system’s design and function as well as the cognitive and physical tasks employed by the 

human operator to attain work goals; thus, reflecting the degree of detail necessary to 

comply with the framework’s structure.   

 

6.3.2 Domain Relevance 

There has been substantial advancement to hydraulic excavator systems in recent 

years with the introduction of new technologies that accommodate a variety of tasks, 

make work processes more efficient, protect the environment, and make work easier for 

the human operator.  Though such changes have increased the appeal of this technology, 

it has caused these systems to become more complex; altering the role of the human 
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operator.  The role of the human has thus transitioned from monitoring and control in 

traditional systems to more supervisory in modern automated systems, resulting in 

tradeoff with system complexity and its impact on the human operator. 

Many research, design, engineering, and user initiatives recognize the importance 

and need to consider the influences on the human operator as the critical component to 

performance by using modeling approaches that simulate human-system interaction.  

However, human performance often presents challenges, making it difficult to capture its 

shaping factors (e.g. characteristics specific to the individual or unpredictable dynamics 

of the environment).  In addition to these contributing factors, many human performance 

modeling approaches rely on superficial “neck-up” or “neck-down” analysis, when both 

cognitive and physical processes interact to produce human behavior.  Such errors lead to 

research gaps and inaccurate performance models which result in unanticipated 

performance outcomes with regard to the system and the human operator.  This is 

particularly true in the development of fluid power systems such as the hydraulic 

excavator where there is an absence of research aimed at addressing and improving upon 

such matters. 

The integrated framework presents a more sophisticated human performance 

modeling technique to capture such complexities and accurately model human 

performance to enhance the quality of predictive human performance models.  Using the 

integrated framework provides realistic models of the human operator by capturing work 

processes, effects of the environment, as well as providing a means to assess system 

components that are highly unpredictable and traditionally difficult to model. 
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By concentrating on fluid power systems such as the hydraulic excavator, there is 

the potential to gain insight on interaction, investigate the limitations of human 

performance, and better support the needs of operators (Laughery, 1998).  Since the 

modeling technique can be used to simulate performance under various conditions, 

performance models can accurately account for the system as well as the operator by 

evaluating their effects in complex settings.  Insight can be gained in terms of work 

processes, system design, cognitive and physical workload, and operational safety; 

ultimately, yielding in better decisions during the design process.   

The case study described herein only presents one applicable domain to apply the 

integrated human performance modeling framework; however, there are also many 

opportunities for its application in a variety of other areas to address new varieties of 

problems concerning human performance with complex human-machine systems. 
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CHAPTER 7 

RESULTS 

 

Human performance models were developed using Micro Saint and Jack software 

to assess cognitive and physical human performance based on the fluid power case study 

involving a hydraulic excavator as described in Chapter 6.  An empirical study on human 

performance was run following the framework in Chapter 5 to examine the effects of 

hydraulic and electronic control mechanisms as well as the effects of soil and gravel 

terrain environments; common conditions under which excavation processes are 

performed.  By considering the cognitive and physical factors that impact performance as 

identified in the framework, independent simulation models were linked for the purpose 

of integration and to develop a comprehensive representation of human performance.  

The following sections describe task and statistical analyses from the results of the case 

study. 

 

7.1 Micro Saint Human Performance Models 

Four simulation models were built in Micro Saint based on excavator control type 

(e.g. hydraulic and electronic) and environmental terrain (e.g. soil and gravel).  Real 

world data for the models was collected on the excavation tasks, control operations, and 

system functions of a hydraulic excavator in traditional work environments through video 

recordings.  Recordings were categorized with regard to control and the environment, and 

task analyses were conducted for each of the four systems: Hydraulic Control-Soil 
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Terrain (HS), Hydraulic Control-Gravel Terrain (HG), Electronic Control-Soil Terrain 

(ES), and Electronic Control-Gravel Terrain (EG).  Analyses were used to create task 

network models (Appendix A).  Model development involved defining its structure based 

on a subset of the elements and parameters as identified by the integrated framework; 

thus, reflecting tasks performed by humans, processes, and the machine.  Task 

descriptions, timing information, and statistical distributions were then embedded within 

the models to simulate variance across hydraulic excavation tasks as well as to provide a 

higher level of validity for performance estimates and modeling results.  Each of the 

simulation models was coded, debugged, and randomly run for 100 iterations.  The 

following sections provide results from task analysis and the empirical study for 

cognitive, physical, and integrated human performance models.    

 

7.1.1 Task Analysis 

Tasks analysis provided a means to decompose work processes for a better 

understanding of human performance.  The following sections provide details from the 

results of those analyses. 

7.1.1.1 Hydraulic control-soil terrain.  Results of the task analysis for the 

operators using a hydraulic control excavator to excavate soil revealed the processes 

involved during typical excavation tasks.  Tasks were classified in three work phases: 

initialization, active work, and finalization.  Primary work tasks were monitoring, 

positioning, and digging.  Cognitive tasks consisted of monitoring the system and the 

work environment as well as decision making procedures to execute functions.   Physical 
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tasks consisted of manipulation of system controls to complete work.  With regard to the 

controllers, operators utilized manual joysticks with six degrees of freedom.  Joysticks 

were used to control rotation, travel, and movement of the system.  In this environment, 

operators performed work tasks fluidly.  These instances were observed with positioning 

and digging processes during the movement of the system’s mechanical components.  

Task analysis and timing data for these tasks can be seen in Table 7.1.  

 

Table 7.1.  Task Analysis and Time Study (sec) for Hydraulic-Soil Model. 

# Task Time  # Task Time 

 
 

Phase I - Initialization   23. Tilt Hand 4.20 

1. Start Excavator   3.00  24. Adjust Joystick 4.20 

2. Reach Arm   2.29  25. Scoop Material 4.48 

3. Turn Starter   2.00  26. Tilt Hand 1.08 

4. Check Monitor   5.00  27. Adjust Joystick 4.20 

5. Turn Head   1.50  28. Rotate Body Forward 3.92 

6. Decide Job Type   0.00  29. Tilt Hand 1.08 

7. Adjust Speed   2.86  30. Adjust Joystick 4.20 

8. Reach Arm   2.29  31. Release Material 3.55 

9. Pull Throttle   2.30  32. Tilt Hand 1.08 

10. Move to Location 13.64  33. Pull Joystick 4.20 

11. Reach Arm   2.29  34. Lower Boom 3.14 

12. Extend Leg   2.20  35. Tilt Hand 1.08 

13. Push Pedal   2.13  36. Pull Joystick 4.20 

14. Decide Positioning   0.00  37. Lower Dipperstick 3.35 

15. Position at Location 12.85  38. Tilt Hand 4.20 

16. Reach Arm   2.29  39. Adjust Joystick 4.20 

17. Tilt Hand   1.08  40. Rotate Body Backward 3.88 

18. Adjust Joystick   4.20  41. Tilt Hand 1.08 

 Phase II - Active Work   42. Adjust Joystick 4.20 

19. Lower Boom   3.14   Phase III – Finalization  

20. Tilt Hand   1.08  43. End Excavation 3.00 

21. Push Joystick   4.20  44. Reach Arm 2.29 

22. 
 

Lower Dipperstick 
 

  3.35 
  

45. 
 

Turn Starter 
 

2.00 
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With regard to the operator’s physical movements, tasks consisted of extending 

the leg or foot, reaching the arm, tilting the hand, and turning the head.  Figure 7.1 

presents the graphical results associated with hydraulic control excavator systems in soil 

terrain in terms of task time and the variation throughout the excavation process.  

Monitoring and positioning tasks such as turning the head and extending the leg took 

operators an average of 1.0 seconds and 2.9 seconds.  These tasks yielded in the lowest 

variation between 0% and 1%; whereas, tilting the hand resulted in the least amount of 

variation at 20% within the model, taking an average of 1.1 seconds to execute.  Overall, 

both reaching the arm and extending the leg were the longest tasks, taking an average of 

2.9 seconds each. 

   

 

Figure 7.1.  Movement Tasks for Hydraulic-Soil Model. 

 

For work operations, performance tasks consisted of turning the starter, checking 

the monitor, pushing or pulling levers, as well as adjusting or pulling the joystick 

controls.  As seen in Figure 7.2, monitoring yielded the longest task time of 5.8 seconds 

and was carried through the entire excavation process.  Both pushing and pulling levers 
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as well as turning the starter switch took operators an average of 2.2 seconds and 2.0 

seconds; whereas, the shortest tasks were adjusting and pushing or pulling the joystick 

controllers, yielding average values of 0.62 seconds and 0.70 seconds.   However, the 

latter tasks also yielded in a higher amount of variation at 16% and 37% as compared to 

longer tasks such as checking the monitor and pulling the lever at 0% each.  Pulling the 

lever yielded in variation at 19%. 

 

 

Figure 7.2.  Operation Tasks for Hydraulic-Soil Model. 

 

7.1.1.2 Hydraulic control-gravel terrain.  Operators using hydraulic control 

systems to excavate gravel revealed work tasks consistent with monitoring, positioning, 

and digging.  Cognitive and physical tasks performed by the operators likewise consisted 

of monitoring and movements to manipulate the joystick controls.  In this case, the 

primary difference observed was that operators encountered a greater degree of difficulty 

when attempting to accomplish work goals.  These conditions (e.g. gravel terrain) 

increased work requirements and difficulty for operators.  Task analysis and timing data 

for are summarized in Table 7.2. 
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Table 7.2.  Task Analysis and Time Study (sec) for Hydraulic-Gravel Model. 

# Task Time   # Task Time 

 

 

Phase I - Initialization   22. Lower Dipperstick 5.08 

1. Reach Arm   2.40  23. Tilt Hand 1.61 

2. Turn Starter   2.00  24. Adjust Joystick 8.00 

3. Begin Excavation   8.00  25. Scoop Material 4.88 

4. Turn Head   3.50  26. Tilt Hand 1.61 

5. Check Monitor 11.33  27. Adjust Joystick 8.00 

6. Reach Arm   2.40  28. Rotate Body Forward 5.63 

7. Pull Throttle   4.17  29. Tilt Hand 1.61 

8. Adjust Speed   8.00  30. Pull Joystick 8.00 

9. Reach Arm   2.40  31. Release Material 4.16 

10. Extend Leg   2.20  32. Tilt Hand 1.61 

11. Push Pedal   3.22  33. Pull Joystick 8.00 

12. Move to Location 36.00  34. Raise Boom 3.97 

13. Reach Arm   2.40  35. Tilt Hand 1.61 

14. Tilt Hand   1.61  36. Adjust Joystick 8.00 

15. Adjust Joystick   8.00  37. Raise Dipperstick 5.08 

16. Position at Location   9.60  38. Tilt Hand 1.61 

 Phase II - Active Work   39. Adjust Joystick 8.00 

17. Tilt Hand   1.61  40. Rotate Body Backward 5.40 

18. Push Joystick   8.00   Phase III – Finalization  

19. Lower Boom   3.97  41. Reach Arm 2.40 

20. Tilt Hand   1.61  42. Turn Starter 2.00 

21. 
 

Adjust Joystick 
 

  8.00 
   

43. 
 

End Excavation 
 

8.00 
 

 

 

Figure 7.3 illustrates that the shortest movement tasks for operators of hydraulic 

excavators excavating gravel terrain was tilting the hand, taking an average time of 1.4 

seconds, followed by extending the leg with an average time of 2.0 seconds.  Although 

tilting the hand is one of the fastest tasks, it also yielded in the most extreme variation 

and the least consistency during the simulation with variation at 40%.   



147 

 

The graphical output also revealed that turning the head and reaching movements 

engaged the operator longer with average task times of 2.9 seconds and 2.3 seconds.  

Graph series with the most consistent trends throughout the excavation process were 

turning the head and extending the leg with 0% variation each. 

   

 

Figure 7.3.  Movement Tasks for Hydraulic-Gravel Model. 

 

Results for the hydraulic control system in gravel terrain (Figure 7.4) revealed 

that the longest operational task was checking the system’s monitor, yielding an average 

value of 14.0 seconds.  Other operational tasks yielded in significantly lower values such 

as pushing or pulling levers, taking an average of 4.6 seconds as well as turning the 

starter switch, taking an average of 2.0 seconds to complete.  The lowest operational task 

times were associated with the manipulation of the joystick, yielding in an average time 

of 1.4 seconds for pushing or pulling and 1.1 seconds for adjusting.  Trends in the data 

revealed that longer tasks (e.g. checking the monitor panel) generally yielded in the least 

variation at 0% whereas; shorter tasks (e.g. adjusting or pushing the joystick) yielded in 

greater variation with coefficients at 35% and 12%. 
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Figure 7.4.  Operation Tasks for Hydraulic-Gravel Model. 

 

7.1.1.3 Electronic control-soil terrain.  Task analysis for electronic excavators 

excavating soil indicated that processes involved work phases of initialization, active 

work, and finalization.  Key work tasks of these operators again involved monitoring, 

positioning, and digging.  Although tasks were consistent with this analysis in 

comparison to the analyses for hydraulic control excavator systems, operators using 

electronic control systems utilized different work methods due to the design of the 

system’s controllers.  Like the hydraulic control systems, electronic control excavators 

have joystick controllers. The primary difference is that these controllers are equipped 

with functional buttons that are embedded in the joystick which control system 

movement (i.e. rotation, positioning, and tooling attachments).   Therefore, rather than 

using the joystick controller’s range of motion, operators used buttons to execute work 

tasks.  Such changes altered the methods utilized by operators to achieve work tasks 

during the excavation process.  With these changes, the physical task of the human 

operator was pressing the button rather than titling the hand.  Table 7.3 describes task 

analysis and time study data for those excavation tasks. 
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Table 7.3.  Task Analysis and Time Study (sec) for Electronic-Soil Model. 

# Task Time   # Task Time 

 
 

Phase I - Initialization   21. Move Finger 1.00 

1. Reach Arm 2.29  22. Press Joystick Button 1.55 

2. Turn Starter 2.00  23. Scoop Material 4.76 

3. Begin Excavation 3.33  24. Move Finger 1.00 

4. Turn Head 2.00  25. Press Joystick Button 1.55 

5. Check Monitor 2.67  26. Rotate Body Forward 3.47 

6. Move Finger 1.00  27. Move Finger 1.00 

7. Press Joystick Button 1.55  28. Press Joystick Button 1.55 

8. Adjust Speed 5.00  29. Release Material 3.49 

9. Move Finger 1.00  30. Move Finger 1.00 

10. Press Joystick Button 1.55  31. Press Joystick Button 1.55 

11. Move to Location 6.50  32. Raise Boom 3.32 

12. Move Finger 1.00  33. Move Finger 1.00 

13. Press Joystick Button 1.55  34. Press Joystick Button 1.55 

14. Position at Location 6.44  35. Raise Dipperstick 2.50 

 Phase II - Active Work   36. Move Finger 1.00 

15. Move Finger 1.00  37. Press Joystick Button 1.55 

16. Press Joystick Button 1.55  38. Rotate Body Backward 3.47 

17. Lower Boom 3.32   Phase III - Finalization  

18. Move Finger 1.00  39. Reach Arm 2.29 

19. Press Joystick Button 1.55  40. Turn Starter 2.00 

20. 
 

Lower Dipperstick 
 

2.50 
   

41. 
 

End Excavation 
 

3.33 
 

 

 

Movement tasks for operators of electronic control systems excavating soil are 

illustrated in Figure 7.5.  Under these conditions, tasks consisted of reaching the arm, 

turning the head, and moving the finger.  The shortest movement time for operators of 

electronic excavators in soil terrain environments was moving the finger to press the 

joystick button with an average time of 1.0 seconds.  Moving the finger was closely 

followed by the task of turning the head to check the monitor, yielding in an average task 

time of 1.6 seconds.  
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Consequently, turning the head presented no variation in the model results; 

whereas, moving the finger presented the highest variation with a coefficient of variation 

at 37%.  Reaching the arm presented a low amount of variation at 10%, taking an average 

time of 1.9 seconds to complete during the excavation process. 

 

 

Figure 7.5.  Movement Tasks for Electronic-Soil Model. 

 

Operational tasks for electronic control systems consisted of turning the starter, 

checking the monitor, and pressing buttons embedded in the joystick controllers.  Similar 

to hydraulic control systems, the longest task was associated with checking the system’s 

monitor panel, yielding in an average value of 3.8 seconds and turning the starter switch 

with 2.0 seconds.  The shortest task was revealed to be that of pressing the joystick 

buttons with an average time of approximately 1.9 seconds.  However, as can be seen in 

Figure 7.6, this task yielded in the greatest amount of variation at 95%; whereas, both of 

the longer tasks (e.g. checking the monitor and turning the starter) yielded no variation 

with values at 0% each.    
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Figure 7.6.  Operation Tasks for Electronic-Soil Model. 

 

7.1.1.4 Electronic control-gravel terrain.  Operators using an electronic control 

excavator to excavate gravel performed three key work tasks consisting of monitoring, 

positioning, and digging processes.  Similar to these systems when excavating in soil 

terrain environments, operators used the joystick buttons rather than employing the 

controller’s range of motion (e.g. degrees of freedom) to complete the excavation 

process.    

Work tasks consisted of rotation, traveling, and movement of the system’s 

hydraulic tooling attachments.  However, like operators of the hydraulic control systems, 

these operators encountered difficultly when performing work tasks in gravel terrain.  

Thus, operators performed work tasks slower, due to an increase in environmental 

complexity and job difficulty.  A summary of the task analysis and time study data for 

operator of electronic control systems in gravel terrain can be found in Table 7.4.  
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Table 7.4.  Task Analysis and Time Study (sec) for Electronic-Gravel Model. 

# Task Time   # Task Time 

 
 

Phase I - Initialization   21. Move Finger 1.07 

1. Reach Arm   2.00  22. Press Joystick Button 1.22 

2. Turn Starter   2.00  23. Scoop Material 4.50 

3. Begin Excavation   3.33  24. Move Finger 1.07 

4. Turn Head   2.00  25. Press Joystick Button 1.22 

5. Check Monitor   2.67  26. Rotate Body Forward 3.47 

6. Move Finger   1.07  27. Move Finger 1.07 

7. Press Joystick Button   1.22  28. Press Joystick Button 1.22 

8. Adjust Speed   5.00  29. Release Material 3.10 

9. Move Finger   1.07  30. Move Finger 1.07 

10. Press Joystick Button   1.22  31. Press Joystick Button 1.22 

11. Move to Location 10.33  32. Raise Boom 2.82 

12. Move Finger   1.07  33. Move Finger 1.07 

13. Press Joystick Button   1.22  34. Press Joystick Button 1.22 

14. Position at Location   4.33  35. Raise Dipperstick 3.47 

 Phase II - Active Work   36. Move Finger 1.07 

15. Move Finger   1.07  37. Press Joystick Button 1.22 

16. Press Joystick Button   1.22  38. Rotate Body Backward 3.47 

17. Lower Boom   2.82   Phase III - Finalization  

18. Move Finger   1.07  39. Reach Arm 2.00 

19. Press Joystick Button   1.22  40. Turn Starter 2.00 

20. 
 

Lower Dipperstick 
 

  3.47 
   

41. 
 

End Excavation 
 

3.33 
 

 

 

As seen in Figure 7.7, movement tasks for operators of electronic control systems 

excavating gravel revealed that the shortest movement time was moving the finger, 

taking an average time of 1.1 seconds to complete.  The longest movement tasks were 

reaching the arm and turning the head with average task times of 2.0 seconds and 1.3 

seconds.  Variation was also consistent with that found within the other models in which 

longer tasks yielded in no variation and shorter tasks (e.g. moving the finger) yielded in 

higher variation at 20%.   



153 

 

 

Figure 7.7.  Movement Tasks for Electronic-Gravel Model. 

 

The longest operational task for electronic control systems in gravel terrain was 

checking the monitor with a mean time of 4.6 seconds; whereas, the shortest task was 

pressing the joystick button yielding an average time of approximately 1.9 seconds.  Like 

the other simulation models, Figure 7.8 indicates that the most variation was evident in 

shorter tasks (e.g. pressing the joystick button at 80%) and the least variation with longer 

tasks (e.g. checking the monitor panel or turning the starter switch at 0%).   

 

 

Figure 7.8.  Operation Tasks for Electronic-Gravel Model. 
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7.1.2 Experimental Results  

Prior models yielded relevant data regarding the processes associated with various 

tasks and operations throughout the excavation process with respect to emergent design 

changes and the role of the environment.  The following sections examine the 

significance of such effects on human performance from an empirical study in terms of 

completion time and workload. 

7.1.2.1 Descriptive statistics.  Descriptive statistics for overall performance for 

completion time and workload are summarized in Table 7.5 and Table 7.6.  A complete 

table of results for each of the simulation models can be found in Appendix A. 

Operators using electronic control systems to excavate soil yielded in the lowest 

mean completion time of 159.9 seconds; whereas, operators using hydraulic control 

systems to excavate gravel yielded in the longest mean completion time of 383.8 seconds.  

Overall, completion times with electronic control excavator systems were lower in both 

environments as compared with hydraulic control excavator systems.  Operators also 

yielded shorter completion times when excavating soil terrain.  Both of the prior cases 

resulted in high variation. 

 

Table 7.5.  Performance Model Summary for Completion Time (sec). 

Descriptive Statistics  
Hydraulic Electronic 

Soil Gravel Soil Gravel 

Mean  232.3 383.8 159.9 358.5 

Standard Deviation 163.9 360.8 113.7 373.4 
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Cognitive workload was quantified in each of the four simulation models as a 

percentage of the effort exerted by the human operator versus the effort exerted by the 

excavator system for multiple excavation tasks. These tasks were represented graphically 

as a percentage during model execution in order to assess the impact of workload on 

performance during excavation processes.  Table 7.6 presents descriptive statistics for 

operator workload associated with digging tasks. 

 

Table 7.6.  Performance Model Summary for Workload (%). 

Descriptive Statistics  
Hydraulic Electronic 

Soil Gravel Soil Gravel 

Mean  41.1 41.3 62.8 68.8 

Standard Deviation   8.0 10.9 14.2 15.2 

 

 

Results from Micro Saint performance models revealed that the most cognitive 

workload occurred with electronic control systems in gravel terrain where the human 

operator exerted an average of 68.8% of the effort needed to accomplish the task; 

whereas, the least amount of workload was experienced with hydraulic control systems in 

soil terrain, yielding a value of 41.1%.  With respect to control type, hydraulic control 

systems required less cognitive workload (e.g. 41.1% for soil and 41.3% for gravel) than 

electronic control systems (e.g. 62.8% for soil and 68.8% for gravel).  

7.1.2.2 Inferential statistics.  A 2x2 factorial design was conducted to investigate 

the impact of control and the environment on excavator operator performance.  For this 

type of design, a two-way analysis of variance (ANOVA) was appropriate.  Such an 

analysis is based on the assumption of normality (i.e. data is distributed symmetrically 
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about its mean).  Therefore, caution should be used when using such analyses for 

experimental studies.  A model adequacy check was performed to check the simulated 

model data for assumptions.  Residual analyses from the adequacy check indicated a 

violation of normality in the simulated data (i.e. skewed right).  Though a log 

transformation was used to minimize the deviation, marginal impact was found. 

Given that the purpose was to demonstrate the feasibility of the framework, the 

goal of the study was to provide an approach for modeling performance rather than to 

analyze its effects. Therefore, the analysis of results only contributes a small portion to 

the value of the theory presented in the framework.  More importantly, ANOVA is 

generally robust to violations of normality (Maxwell & Delaney, 1990).   Research by 

Lindman (1974) noted that distributional skews do not typically have a substantial effect 

on the F-statistic when using the F-distribution.   Peres-Neto and Olden (2001) also found 

that “ANOVA exhibits smaller rates of Type-I error as compared with the Kruskal-Wallis 

test” (p. 85).  Since research debates the negligibility of violations, ANOVA results can 

often be relied on when distributional assumptions are violated, validating their use in 

this study.  Further explanation is provided in Chapter 8. 

A two-way analysis of variance (ANOVA) was used to determine the impact of 

the environment and control type on operator performance as measured by the 

completion time of the excavation process as well as operator workload.  With respect to 

completion time, Table 7.7 results revealed a significant main effect for the environment 

(F (1, 396) = 39.6, p < 0.0001).   
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Table 7.7.  ANOVA-2x2 Factorial Design for Completion Time. 

Source DF Type I SS Mean Square F-Value Pr > F 

Control 1 238,344.1 238,344.1 3.08 0.0800 

Environment 1 3,063,357.6 3,063,357.6 39.60 <0.0001 

Control*Environment 1 55,208.6 55,208.6 0.71 0.3987 

Error 396 30,632,144.1 77,353.9   

Total 399 33,989,054.3    

 

 

However, no significant effect was found for excavator control type (F (1, 396) = 

3.08, p = 0.0800).  Also, no significant effect was found for the interaction between 

control type and the environment (F (1, 396) = 0.71, p = 0.3987).  This can be seen in the 

plot in Figure 7.9.   

 

 

Figure 7.9.  Interaction Plot for Completion Time.  

 

In contrast, for operator workload associated with digging in the excavation 

process, results revealed a significant main effect for control type (F (1, 396) = 394.0, p < 

0.0001).  A significant main effect was also found for the environment (F (1, 396) = 6.3, 

p = 0.0123) as seen in Table 7.8.   
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Table 7.8.  ANOVA-2x2 Factorial Design for Workload. 

Source DF Type I SS Mean Square F-Value Pr > F 

Control 1 60,614.4 60,614.4 394.0 <0.0001 

Environment 1 973.4 973.4 6.3 0.0123 

Control*Environment 1 858.5 858.5 5.6 0.0186 

Error 396 60,917.1 153.8   

Total 399 123,363.5    

 

 

Workload estimates also yielded significant results for the interaction between 

control type and the environment (F (1, 396) = 5.6, p = 0.0186) as seen in Figure 7.10.  

Analysis of the interaction revealed a significant effect on workload when sliced by 

electronic control (F (1, 396) = 11.9, p = 0.0006).  No significant effect was found when 

sliced by hydraulic control (F (1, 396) = 0.01, p = 0.9138).   When sliced by 

environment, both soil terrain (F (1, 396) = 152.9, p < 0.0001) and gravel terrain (F (1, 

396) = 246.7, p < 0.0001) yielded significant effects on workload. 

 

 

Figure 7.10. Interaction Plot for Workload.  
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7.2 Jack Human Performance Models 

Four physical performance models were developed in Jack software based on 

excavator control type (e.g. hydraulic vs. electronic) and environment (e.g. soil vs. 

gravel).  Model development involved defining the digital human, scheduling work tasks, 

and representing the excavator system.  Since task and timing inputs were required to 

simulate performance, data which was used to create the network models in Micro Saint 

was also used to schedule the work tasks executed by the digital human in Jack software; 

thus, ensuring consistency between both cognitive and physical models.  Unlike Micro 

Saint, Jack models concentrated on tasks in the active work phase (i.e. digging process) 

in order to assess the portion of excavation work where physical performance occurs.   

 

7.2.1 Experimental Results 

In Jack software, multiple analyses were run to assess such performance in terms 

of energy, fatigue, and recovery.  The following sections describe the results found from 

those analyses.  Compiled data sets of model output for each measure can be found in 

Appendix B.   

7.2.1.1 Descriptive statistics.  Energy expenditure rates were computed using 

embedded algorithms in Jack software to quantify physical exertion of the human 

operator during digging operations.  Model results in Table 7.9 reflect that excavator 

operators expend energy at higher rates when using electronic control systems and while 

excavating soil terrain environments.   
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Table 7.9.  Energy Expenditure Rate (kcal/min) for Digging Operations. 

 

 

For instance, electronic control systems in soil terrain yielded in the highest mean 

energy expenditure rate of 2.39 kcal/min; whereas, the hydraulic control systems in 

gravel terrain yielded in the lowest rate of 1.47 kcal/min.  In contrast, variation was 

higher with hydraulic control systems.  The higher degree of variation was found with 

hydraulic control systems, yielding coefficients of variation at 90% for soil and 60% for 

gravel terrain environments. 

Recovery was also modeled in Jack software as a measure of the physical 

performance of the human operator given by the difference between the time available 

(Ta) versus the time needed (Tn) to recover from physical exertion as described in Table 

7.10.  In terms of this measure, greater recovery time was needed for digging tasks with 

hydraulic control systems and gravel terrain environments as compared with electronic 

control systems and soil terrain. 

 

Table 7.10.  Recovery Available and Needed (sec) for Digging Operations. 

Descriptive Statistics 

Hydraulic Electronic 

Soil Gravel Soil Gravel 

Ta Tn Ta Tn Ta Tn Ta Tn 

Mean 11.2 1.9 16.9 7.2 4.5 1.1 3.5 1.6 

Standard Deviation 10.4 1.4 17.1 7.2 2.9 1.4 2.3 1.2 

 

Descriptive Statistics  
Hydraulic Electronic 

Soil Gravel Soil Gravel 

Mean 1.71 1.47 2.39 1.90 

Standard Deviation 1.55 0.93 1.20 1.40 
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For instance, hydraulic control excavator systems in gravel terrain required the 

most needed recovery time of 7.2 seconds; whereas, electronic control excavator systems 

yielded the least needed recovery time of 1.1 seconds.  In contrast, the most time was 

available for operator recovery with hydraulic control systems and less with electronic 

control systems.  Such systems yielded available recovery times of 16.9 seconds and 11.2 

seconds for gravel and soil terrain; whereas, electronic control systems yielded 

significantly less available time for recovery.  Hydraulic control systems in gravel terrain 

yielded in the most available recovery time at 16.9 seconds, and the least available 

recovery time was with electronic control systems in gravel terrain at 3.5 seconds.  

Fatigue was described in the integrative framework as a byproduct of the energy 

expended by the human operator and the amount of time needed to recover from work 

tasks.  Hence, it was modeled to convey the consequences of physical exertion on 

subsequent performance.  Accordingly, fatigue was quantified from Jack output as a 

product of the human operator’s energy expenditure and necessary recovery for each 

task, yielding in a coefficient of fatigue for digging tasks of the excavation process.  

Output revealed (Table 7.11) that hydraulic control systems and gravel terrain result in 

more physical fatigue than electronic control systems in soil terrain. 

 

Table 7.11.  Fatigue (kcal/sec) for Digging Operations. 

Descriptive Statistics  
Hydraulic Electronic 

Soil Gravel Soil Gravel 

Mean 1.69 2.83 1.19 1.82 

Standard Deviation 4.41 7.62 2.80 1.42 
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For instance, hydraulic control systems yielded a mean fatigue coefficient of 2.83 

kcal/sec and 1.69 kcal/sec for gravel and soil terrain; whereas electronic control systems 

yielded in lower fatigue coefficients of 1.82 kcal/sec and 1.19 kcal/sec.  

 

7.3 Micro Saint-Jack Integrated Human Performance Models 

Relevant findings on cognitive and physical performance during hydraulic 

excavation processes were revealed from the results of Micro Saint and Jack simulation 

models.  Although both have strengths in predicting a particular facet of human 

performance, neither tool accounts for the performance modeled by its counterpart.  

Micro Saint modeled completion time and cognitive workload of the human operator; yet 

failed to model the operator’s physical exertion; whereas, Jack modeled physical 

measures such as energy, recovery, and fatigue, yet failed to model the cognitive decision 

making processes of the human operator.  Furthermore, data in Jack software cannot be 

replicated for empirical analysis.  Such modeling deficiencies identify a clear limitation 

when studying cognitive and physical human performance independently; when in 

reality, both interact to produce human behavior.  To compensate for these shortcomings, 

an integrated model was developed following the framework detailed in Chapter 5, using 

Micro Saint and Jack software to simulate cognitive and physical performance. 

As described in Section 7.1, four Micro Saint and four Jack models were 

developed to simulate the performance of operators using hydraulic and electronic 

control excavator systems under two environmental conditions, soil and gravel.  Each 

performance model was run and performance output was obtained.  Such models were 
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integrated by interchanging corresponding sets of inputs and outputs, enabling models to 

“speak” to one another and comprehensively model human performance.  Simulated 

Micro Saint output (Appendix A) of representative digging tasks were used as cognitive 

inputs into Jack software, yielding physical performance estimates for energy and 

recovery from which estimates of fatigue were derived as described in Section 7.2.  

Performance models were then bridged together by modeling the simulated Jack fatigue 

coefficients (Appendix B) back into the corresponding Micro Saint task network models 

as physical performance variables to convey the bi-directional relationship of cognitive 

and physical performance; thus, producing an integrated human performance model.   

 

7.3.1 Task Analysis 

For the integrated models, tasks analyses were used to decompose work processes 

and provide a better understanding of human performance as described in Section 7.1.1.  

The following sections provide details from the results of those analyses. 

7.3.1.1 Hydraulic control-soil terrain.   Findings of the task analysis for operators 

of hydraulic control systems in soil terrain were consistent with those identified in 

Section 7.1.  Work tasks were also defined in the three phases.   Such tasks consisted of 

monitoring, positioning, and digging processes which were facilitated by cognitive and 

physical procedures.  Physical tasks involved manipulation of controls; whereas, 

cognitive tasks involved the selection of the proper decision making strategies.   

Integrated movement tasks under such conditions consisted of turning the head, 

extending the leg, reaching the arm, and tilting the hand as seen in Figure 7.11.  The 
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longest task time was observed with reaching the arm which yielded an average time of 

2.7 seconds followed by extending the leg with an average time of 1.8 seconds.  The 

shortest tasks consisted of turning the head with an average of 1.2 seconds and tilting the 

hand with approximately 1.1 seconds.   As consistent with earlier findings, tasks yielding 

longer completion times generally resulted in less variation than those with shorter times 

(e.g. tilting the hand at 23%). 

 

 

Figure 7.11.  Integrated Movement Tasks for Hydraulic-Soil Model. 

 

 Operational tasks consisted of turning the starter, checking the monitor panel, as 

well as engaging the lever and joystick controls.  Figure 7.12 illustrates that checking the 

monitor panel by far yielded the highest time yielding an average time of 6.0 seconds.  

All other tasks yielded lower values relatively close in nature.  Turning the starter switch 

yielded an average time of 2.0 seconds and pushing the lever yielded an average time of 

1.7 seconds.  The shortest tasks involved the joystick controller with an average 0.86 

seconds for adjusting and 0.84 seconds for pushing or pulling.  Again, longer tasks 

yielded in less variation.       
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Figure 7.12.  Integrated Operation Tasks for Hydraulic-Soil Model. 

 

7.3.1.2 Hydraulic control-gravel terrain.  Operators of hydraulic control systems 

in gravel terrain also engaged in cognitive and physical tasks consisting of monitoring, 

positioning, and digging (Figure 7.13).  The shortest movement tasks for these operators 

were tilting the hand with an average time of 1.6 seconds, followed by reaching the arm 

with an average time of 2.5 seconds.   As in the prior models, faster tasks generally 

yielded in the most extreme variation and the least consistency during the simulation with 

coefficients of variation ranging from 26% to 63%.  In contrast, turning the head and 

reaching tasks took operators longer, averaging 3.5 seconds and 2.6 seconds.  These tasks 

appeared to have consistent trends throughout the excavation. 

 

 

Figure 7.13.  Integrated Movement Tasks for Hydraulic-Gravel Model. 
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Operational tasks for the integrated model revealed that the longest task 

performed by the human operator involved checking the system’s monitor, taking and 

average time of 10.0 seconds.  All other tasks yielded significantly lower values such as 

pushing or pulling levers, taking an average of 3.9 seconds as well as turning the starter 

switch taking an average of 2.0 seconds to complete.  The shortest times were found to 

involve the joystick controllers, yielding in an average time of 1.4 seconds for adjusting 

and 1.3 seconds for pushing or pulling.  Figure 7.14 revealed that longer tasks tended to 

yield in less variation (i.e. checking the monitor at 0%) and shorter tasks with more 

variation (i.e. pushing or pulling the lever at 29%).    

 

 

Figure 7.14.  Integrated Operation Tasks for Hydraulic-Gravel Model. 

 

7.3.1.3 Electronic control-soil terrain.  Work processes for electronic control 

systems excavating soil involved initialization, active work, and finalization tasks with 

respect to monitoring, positioning, and digging.  However, instead of controlling the 

system through motion of the joystick controllers, these functions were controlled 

through buttons embedded in the joystick controllers.  
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Movement tasks consisted of reaching the arm, turning the head, and moving the 

finger.  In Figure 7.15, the shortest movement time for operators of electronic control 

excavators was moving the finger with an average time of approximately 0.9 seconds, 

followed by reaching the arm with an average time of 1.5 seconds.  Turning the head took 

the longest time to complete, taking an average of 2.8 seconds with no variation; 

whereas, moving the finger resulted in high variation at 42%.   

 

 

Figure 7.15.  Integrated Movement Tasks for Electronic-Soil Model. 

 

Operational tasks for such systems consisted of turning the starter, checking the 

monitor, and pressing joystick buttons.  On average, the longest task was associated with 

checking the system’s monitor panel, yielding in a value of approximately 3.5 seconds, 

followed by turning the starter switch at approximately 2.0 seconds.  The most variable 

task was revealed to be that of pressing the joystick buttons which yielded an average 

time of 2.2 seconds.  This task also yielded in the greatest amount of variation at 90% as 

shown in Figure 7.16.   

 



168 

 

 

Figure 7.16.  Integrated Operation Tasks for Electronic-Soil Model. 

 

7.3.1.4 Electronic control-gravel terrain.  Operators of electronic control systems 

in gravel terrain also executed key tasks consisting of monitoring, positioning, and 

digging by utilizing joystick controller buttons.  Movement tasks in Figure 7.17 revealed 

that the shortest movement was moving the finger with an average time of 1.2 seconds.  

The longest movement tasks were reaching the arm and turning the head with average 

task times of 2.0 seconds and 1.5 seconds.  Data trends again revealed that longer tasks 

yield less variation (e.g. reaching the arm at 0%) and shorter tasks yield in more variation 

(e.g. moving the finger at 40%).   

 

 

Figure 7.17.  Integrated Movement Tasks for Electronic-Gravel Model. 
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The longest task for electronic control systems in gravel terrain as seen in Figure 

7.18 was checking the monitor with a mean time of 10.0 seconds; whereas, the shortest 

task was turning the starter, yielding a time of approximately 2.0 seconds.  Like the other 

models, the most variation was evident in shorter tasks such as pressing the button (e.g. 

82%) with an average time of 3.5 seconds, and the least variation was evident in longer 

tasks such as checking the monitor or turning the starter at 0%.   

 

 

Figure 7.18.  Integrated Operation Tasks for Electronic-Gravel Model. 

 

7.3.2 Experimental Results 

Prior models yielded relevant data regarding the processes associated with various 

tasks and operations throughout the excavation process.  The following sections examine 

the significance of those effects through an empirical study. 

7.3.2.1 Descriptive statistics.  Descriptive statistics for overall performance of 

each of the integrated models are summarized in Table 7.12 and Table 7.13.  A compiled 

set of integrated simulation data can be found in Appendix C. 

In the integrated models, completion time (Table 7.12) was assessed subject to the 

effects of physical fatigue.  From the results, it was found that operators of electronic 



170 

 

control systems in soil terrain yielded in the lowest mean completion time of 165.7 

seconds; whereas, operators of hydraulic control systems in gravel terrain yielded in the 

longest mean completion time of 392.9 seconds.  In general, completion time with 

electronic control was lower in both environments as compared with hydraulic control.  

Soil terrain also yielded lower completion times than gravel terrain for both systems.   

 

Table 7.12.  Performance Model Summary for Integrated Completion Time (sec). 

Descriptive Statistics 
Hydraulic Electronic 

Soil Gravel Soil Gravel 

Mean  241.6 392.9 165.7 363.6 

Standard Deviation 166.6 576.6 125.1 515.9 

 

 

Workload was also quantified to gauge the affects of physical fatigue on cognitive 

performance.  Table 7.13 results revealed that the greatest workload for digging tasks 

occurred with electronic control excavator systems in gravel terrain, yielding an average 

of approximately 79%; whereas, the least workload occurred with hydraulic control 

systems in soil terrain, yielding a value of 45%.  With respect to control type, operators 

of hydraulic control systems experienced less workload (e.g. 47% for soil and 64% for 

gravel) than operators of electronic control systems (71% for soil and 79% for gravel).  

 

Table 7.13.  Performance Model Summary for Integrated Workload (%). 

Descriptive Statistics 
Hydraulic Electronic 

Soil Gravel Soil Gravel 

Mean  46.8 63.8 71.4 78.6 

Standard Deviation 14.2 16.8 19.5 15.8 
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7.3.2.2 Inferential statistics.  Assumptions for normality of the ANOVA analysis 

for integrated models were consistent with those described in Section 7.1.2.2.  A two-way 

analysis of variance (Table 7.14) revealed a significant main effect for the environment 

(F (1, 396) = 18.9, p < 0.0001) on completion time for excavation processes.   

 

Table 7.14.  ANOVA-2x2 Factorial Design for Integrated Completion Time. 

Source DF Type I SS Mean Square F-Value Pr > F 

Control 1 277,075.9 277,075.9 1.73 0.1897 

Environment 1 3,048,341.4 3,048,341.4 18.90 <0.0001 

Control*Environment 1 54,400.9 54,400.9 0.34 0.5608 

Error 396 63,563,572.3 160,514.1   

Total 399 66,943,390.5    

 

 

However, no significant effect was found regarding the system’s control type (F 

(1, 396) = 1.73, p = 0.1897).   No significant effect was found for the interaction between 

the system’s control type and the environment (F (1, 396) = 0.34, p = 0.5608).  A plot of 

these effects can be seen in Figure 7.19.   

 

 

Figure 7.19.  Interaction Plot for Integrated Completion Time.  
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Analysis of workload (Table 7.15) revealed a significant main effect for control 

(F (1, 396) = 220, p < 0.0001) and the environment (F (1, 396) = 29.5, p < 0.0001) for 

digging tasks.  A significant interaction effect was also found between control type and 

the environment (F (1, 396) = 29.5, p < 0.0001).   

 

Table 7.15.  ANOVA-2x2 Factorial Design for Integrated Workload. 

Source DF Type I SS Mean Square F-Value Pr > F 

Control 1 54,079.5 54,079.5 220.2 <0.0001 

Environment 1 7,233.5 7,233.5 29.5 <0.0001 

Control*Environment 1 7,233.5 7,233.5 29.5 <0.0001 

Error 396 97,278.1 245.7   

Total 399 165,824.6    

 

 

Further analysis (Figure 7.20) revealed a significant effect on workload when 

sliced by hydraulic control (F (1, 396) = 58.9, p < 0.0001) and no effect for electronic 

control (F (1, 396) = 0.0, p = 1.0000).   When sliced by environment, soil (F (1, 396) = 

205.3, p < 0.0001) and gravel (F (1, 396) = 44.3, p < 0.0001) yielded significant effects. 

 

 

Figure 7.20.  Interaction Plot for Integrated Workload.  
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7.4 Analysis of Non-Integrated and Integrated Models  

 Data obtained from both sets of performance models yielded in relevant findings 

in terms of their analyses individually.  As can be noted from those findings, differences 

were observed among integrated models (iHPMs) which considered cognitive and 

physical performance comprehensively, as well as the non-integrated models (HPMs) 

which considered both aspects of human performance separately.  To conclusively and 

further demonstrate the value of the integrated human performance modeling approach, it 

is appropriate to examine the differences between the results in a comparative analysis.   

 

7.4.1 Experimental Results 

The following sections examine the experimental results from both the HPMs and 

iHPMs in comparison to one another; thus, depicting the true impact of model integration 

on human performance in complex human-machine systems. 

7.4.1.1 Descriptive statistics.   In terms of completion time, iHPMs which 

simulated human performance subject to the effects of energy, recovery, and fatigue 

yielded in longer excavation processes for human operators as compared with HPMs.    

Overall with each of the models, data revealed similar trends with regard to control type 

and terrain (i.e. quicker performance with electronic control systems or soil terrain and 

slower performance with hydraulic control systems or gravel terrain).    

As can be seen in Table 7.16, integrated models which were subject to the effects 

of various physical factors resulted in longer mean completion times than models not 

considering those factors.  For example, the quickest completion times were observed 
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with electronic control systems in soil terrain in which HPMs yielded a mean time of 

159.9 seconds; whereas, with the iHPMs, modeling under the same conditions yielded a 

mean time of 165.7 seconds.   Such results convey a divergence between the output of 

integrated and non-integrated modeling approaches as follows:  electronic control-gravel 

terrain at approximately 1%, hydraulic control-gravel terrain at 2%, electronic control-

soil terrain at 3%, and hydraulic control-gravel terrain 4%. 

 

Table 7.16.  Comparison of HPMs and iHPMs for Completion Time (sec). 

Descriptive Statistics  
Hydraulic Electronic 

Soil Gravel Soil Gravel 

HPMs 232.3 383.8 159.9 358.5 

iHPMs 241.6 392.9 165.7 363.6 

 

 

When comparing the modeling results for workload, such differences were also 

evident.  In Table 7.17, the greatest workload was observed with electronic control 

systems in gravel terrain which yielded approximately 69% in the HPMs and 79% in the 

iHPMs.  All models conveyed a divergence in output as follows:  hydraulic control-soil 

terrain at approximately 12%, electronic control-soil terrain at 12%, electronic control-

gravel terrain at 13%, and hydraulic control-gravel terrain at 35%.   

 

Table 7.17.  Comparison of HPMs and iHPMs for Workload (%). 

Descriptive Statistics  
Hydraulic Electronic 

Soil Gravel Soil Gravel 

HPMs 41.1 41.3 62.8 68.8 

iHPMs 46.6 63.8 71.4 78.6 
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 7.4.1.2 Inferential statistics.  In order to compare the HPMs (i.e. non-integrated 

models) and iHPMs (i.e. integrated performance models), data obtained from both 

models was combined into a single dataset.  The combined dataset was treated as a 2x2x2 

factorial design.  Specifically, the analysis was used to determine whether divergences 

between modeling approaches yield significantly different findings when evaluating 

human performance in complex systems.  With respect to completion time, Table 7.18 

shows that significant main effects were found for: control type (F (1, 792) = 4.3, p = 

0.0378) and the environment (F (1, 792) = 51.4, p <0.0001).  No significant main effect 

was found for integration (F (1, 792) = 0.2, p = 0.7634).    

 

 

Table 7.18.  ANOVA-2x2x2 Factorial Design for Completion Time. 

Source DF Type I SS Mean Square F-Value Pr > F 

Control 1 514,680.7 514,680.7 4.3 0.0378 

Environment 1 6,111,726.0 6,111,726.0 51.4 <0.0001 

Control*Environment 1 109,603.0 109,603.0 0.9 0.3374 

Integration 1 10,784.7 10,784.7 0.2 0.7634 

Control*Integration 1 729.1 729.1 0.0 0.9376 

Environment* Integration 1 9.3 9.3 0.0 0.9930 

Control*Environment* 

Integration 

1 1.5 1.5 0.0 0.9972 

Error 792 94,195,692.6  118,934.0   

Total 799 100,943,227.4    

 

 

In Figure 7.21, no significant interaction effects were found for: control type and 

the environment (F (1, 792) = 0.9, p = 0.3374), control type and integration (F (1, 792) = 

0.0, p = 0.9376), the environment and integration (F (1, 792) = 0.0, p = 0.9930), or for 

control type, the environment, and integration (F (1,792) = 0.0, p = 0.9972). 
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Figure 7.21. Multi-Way Interaction Plot for Completion Time. 

 

Results for the analysis of cognitive workload for the 2x2x2 factorial design can 

be seen in Table 7.19.  The table shows that significant main effects in this experiment 

were found for: excavator control type (F (1,792) = 573.6, p < 0.0001), environmental 

terrain (F (1, 792) = 33.8, p <0.0001), and human performance model integration (F (1, 

792) = 181.3, p < 0.0001).   

 

Table 7.19.  ANOVA-2x2x2 Factorial Design for Workload. 

Source DF Type I SS Mean Square F-Value Pr > F 

Control 1 114,600.8 114,600.8 573.6 <0.0001 

Environment 1 6,757.0 6,757.0 33.8 <0.0001 

Control*Environment 1 1,554.0 1,554.0 7.8 0.0054 

Integration 1 36,220.9 36,220.9 181.3 <0.0001 

Control*Integration 1 93.2 93.2 0.5 0.4948 

Environment* Integration 1 1,449.9 1,449.9 7.3 0.0072 

Control*Environment* 

Integration 

1 6,537.9 6,537.9 32.7 <0.0001 

Error 792 158,195.2 199.7   

Total 799 325,408.9    
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Figure 7.22 shows that significant interaction effects were also found for: control 

type and the environment (F (1, 792) = 7.8, p = 0.0054) and for the environment and 

integration (F (1, 792) = 7.3, p = 0.0072).  No significant interaction effect was found for 

control type and integration (F (1, 792) = 0.5, p = 0.4948).  However, a significant 3-way 

interaction effect was found for control type, the environment, and integration (F (1, 792) 

= 32.7, p < 0.0001).   

 

 

Figure 7.22.  Multi-Way Interaction Plot for Workload. 

 

When sliced by control type and the environment for workload with regard to the 

interaction of control, the environment, and integration, Figure 7.22 also shows that 

significant effects were found for: electronic control in gravel terrain (F (1, 792) = 23.8, p 

< 0.0001), electronic control in soil terrain (F (1, 792) = 62.5, p < 0.0001), hydraulic 

control in gravel terrain (F (1, 792) = 127.3, p < 0.0001), and hydraulic control in soil 

terrain (F (1, 792) = 8.2, p = 0.0043). 

Significant effects on workload were also found for the interaction of control 

type, the environment, and integration, when sliced by control and integration for: 
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electronic control in the HPM (F (1, 792) = 9.2, p = 0.0026) and hydraulic control in the 

iHPM (F (1, 792) = 72.4, p < 0.0001).  No significant effects were found for electronic 

control in the iHPM (F (1, 792) = 0.0, p = 1.000) or for hydraulic control in the HPM (F 

(1, 792) = 0.01, p = 0.9243).  

Lastly, when sliced by the environment and integration for workload, significant 

effects were found for the interaction of control type, the environment, and integration 

for: gravel terrain in the HPM (F (1, 792) = 190.0, p < 0.0001), gravel terrain in the 

iHPM (F (1, 792) = 54.5, p < 0.0001), soil terrain in the HPM (F (1, 792) = 117.8, p < 

0.0001), and soil terrain in the iHPM (F (1, 792) = 252.5, p < 0.0001). 

Results of both Micro Saint and Jack HPMs revealed a variety of data and trends 

regarding cognitive and physical human performance in the case study of the hydraulic 

excavator.  More importantly, the iHPMs were developed based on the parameters of the 

human performance modeling framework as well as outputs from derived performance 

models.  Much of the data obtained from those models reference the strengths of an 

integrated approach to human performance modeling, giving insight into specific areas of 

human performance and their correlation.  Chapter 8 discusses the fluid power case study 

in detail and examines implications from these findings. 
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CHAPTER 8 

DISCUSSION 

 

Studies on human performance in fluid power make it possible to gain extensive 

knowledge on human-machine interaction, understand human mental and physical 

capabilities, and better support human needs.  More importantly, it was necessary to 

develop an approach to more accurately predict complex human behavior which has 

perplexed researchers, resulting in modeling difficulties which produced inaccurate 

assessments of performance.  Through the development of a human performance 

modeling framework that identified the necessary elements and parameters to include 

when modeling, the cognitive and physical factors which shape human behavior were 

able to be accounted for in integrated simulation models.   

A case study and an empirical study were used to demonstrate the viability of the 

integrated approach in a real world domain while considering various conditions with 

respect to the factors presented in the framework.  The framework contributes to the 

improvement of research methods by providing the required guidelines for developing 

human performance models.  Such guidelines yielded in meaningful findings, providing 

an opportunity for the evaluation, improvement, and selection of more efficient processes 

and systems.  The most salient contribution, however, is that the integrated framework 

bridged the gap between independent models to accurately depict human performance.  

The following sections describe in further detail the relevance of the integrative 

framework as well as implications from its findings. 



180 

 

8.1 Significance of the Integrated Framework 

The integrated modeling framework was developed for the purpose of fully 

capturing the complexity and variability of human performance with complex systems by 

taking into consideration cognitive and physical factors.  Targeting complex human-

machine systems, the framework’s structure served as a method by which to ensure that 

the appropriate elements and parameters were considered when predicting human 

performance.  Furthermore, components comprising the framework’s structure were 

demonstrated with a case study in fluid power and quantified through both non-integrated 

and integrated human performance models.  As described in Section 7.4, such models 

provided significant findings and implications regarding the impact of various factors on 

human performance.  More importantly, the framework itself provided further value to 

understanding the mechanisms of human performance within complex systems.   

 

8.1.1 HPMs   

The integrative framework specified the use of multiple tools to accurately model 

both facets of human performance.  Hence, Micro Saint and Jack, cognitive and physical 

simulation tools, were chosen in order to model human performance with respect to the 

framework’s structure.   

 8.1.1.1 Cognitive performance.  Cognitive functioning was modeled using Micro 

Saint software and allowed for representation of internal performance at the task, system, 

human, and environmental levels.  From this aspect, it was found that the mental 

processes of human operators occurred through information acquisition and analysis, 
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decision and action selection, as well as action implementation (Parasuraman et al., 

2000).  For instance, the framework uncovered that operators of hydraulic excavator 

systems perceived dynamic stimuli not only from the environment, but also from entities 

existing within the environment (e.g. excavator system or workers).  From this 

information, the operators then formed work goals (e.g. position, dig, or move) and 

evaluated alternatives (e.g. work methods) to best achieve desired performance outcomes.   

 Cognitive models also revealed that operators were more efficient at completing 

work with newer electronic control systems; however, a tradeoff exists wherein these 

operators experienced more cognitive workload with the newer design.  The cognitive 

component of the framework aided in determining that when interacting with complex 

systems, the potential exists for human operators to be exposed to additional work 

demands due to the many panels and instruments that must be simultaneously and 

continuously controlled (Nikolova et al., 1993; Zhang, 2000).  Such tasks over prolonged 

periods can induce higher amounts of cognitive workload.  Much of the workload can be 

attributed to by monitoring which was required throughout the excavation process, 

dividing the operator’s attention between supervision and execution tasks.  This task 

along with the digging task, contributed to high workload as denoted in Table 8.1.    

 

Table 8.1.  Levels of Cognitive Effort and Workload Experienced. 

Workload Effort Implication 
 

≤ 50% 
 

Low 
 

Operator workload less than system. No design intervention 

necessary for performance improvement. 
 

≥ 50% High Operator workload greater than system. Design intervention 

necessary for performance improvement. 
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In addition to the mechanics of the system, workload for this task was increased 

by cognitive factors such as memory of training skills and attention to dynamic variables 

in the environment such as people or other machines.  Cognitive tasks can further impact 

performance by creating a tradeoff between cognitive goals and effort (Nikolova et al., 

1993; Hockey, 1997).   Hancock et al. (1993) determined that “workload is assumed to 

increase as the distance from the goal and time constraints are increased” (p.20).  Such a 

concept was validated in the simulation models when sustained effort created 

performance variations and high workload.  For example, as workload for monitoring 

tasks progressed, more variation was exhibited in both digging and positioning tasks.  

Hence, it can be inferred that such operations resulted in higher levels of effort from the 

operator in order to compensate for inadequate functional or processing capacity; thus, 

resulting in increased workload (Hockey, 1997).  Without considering the cognitive 

aspects of performance required by the framework, it would not be possible to ascertain 

the effects of work strategies on system design on human performance. 

Despite the value given by modeling human cognition, it was not without 

challenge.  As stated in Chapter 7, the data analyzed in the study violated the assumption 

of normality.  Examination of the models indicated that such a violation is partially 

attributable to the modeling of cognitive decision processes.  In the Micro Saint models, 

decision processes were modeled based on various work alternatives (i.e. repeating the 

digging cycle, repositioning the system, or ending the excavation process).  Likelihoods 

were assigned for each alternative based on probabilities derived from the decisions made 

by excavator operators in the collected data.  Given the range of weights for each 
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alternative of the human operator, models have the potential to run for substantially 

longer periods of time for a single iteration; thus, resulting in the variation found in the 

cognitive performance models and violation of the normality assumption. 

8.1.1.2 Physical performance.  In contrast, physical functioning was modeled 

using Jack software that allowed for representation of the external state of performance at 

the task, system, and human levels.  By incorporating a physical perspective, the 

framework enabled the shift between mental processing and action to be modeled within 

various phases of the excavation process.  According to the framework, human 

performance occurs dynamically through a series of states, transitioning from internal 

cognitive functioning to external physical functioning.  For instance, from the study it 

was found that the operator’s physical motor responses have an effect on subsequent 

performance.   

The framework specified physical performance be gauged; thus, it was assessed in 

terms of energy, recovery, and fatigue.  In hydraulic excavation processes, digging tasks 

required the most physical work due to the manipulation of joystick controllers.  Energy 

expenditures were found to be higher with electronic controls systems and gravel terrain 

as compared to hydraulic control systems and soil terrain.   Such findings are partially 

attributable due to the newer design requiring rapid discrete movements of the finger as 

opposed to the older design requiring slower sequential movements of the wrist.   This 

notion was also verified by results indicating that operators completed work processes 

slower with hydraulic control systems.  Since newer controllers lack feedback, operators 

may be more likely to overly apply high amounts of pressure to joystick buttons, 
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resulting in the variability found in such tasks.  Furthermore, in terms of recovery it was 

found that more time was needed for operators of hydraulic control systems and gravel 

terrain than electronic control systems and soil terrain.  Though electronic control 

systems required more energy for the digging task, energy was expended at a greater rate 

with hydraulic control systems due to the physical design of the joystick controllers and 

conditions in the environment.   

More importantly, the degree of fatigue experienced with electronic control 

systems and in soil terrain was less than that of hydraulic control systems and in gravel 

terrain.  Table 8.2 describes levels of physical fatigue experienced and their implication 

regarding the design of the system wherein lower levels indicate no or slight physical 

fatigue and higher levels indicate moderate or extreme physical fatigue. 

 

Table 8.2.   Levels of Physical Exertion and Fatigue Experienced. 

Fatigue Exertion Performance Implication 
 

≤ 0 
 

None 
 

No fatigue experienced. No ergonomic intervention necessary. 

1 - 2 Low Slight fatigue experienced. No ergonomic intervention necessary. 

3 - 4 Medium Moderate fatigue experienced. Consider ergonomic intervention. 

≥ 5 High Extreme fatigue experienced. Ergonomic intervention necessary. 

 

 

In general, low levels of physical exertion were revealed, implying that no 

ergonomic intervention was needed under those conditions.  However, with hydraulic 

control systems in gravel terrain, it was found an elevated degree of exertion and 

moderate fatigue signaling, that ergonomic intervention may be necessary for 

performance improvement.  Intervention may be necessary under such work conditions 
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since hydraulic excavators still require direct human operation (Zubko, 2007).  For 

instance, operators often work over prolonged periods; in some cases up to ten hours a 

day, placing them at risk of cumulative trauma or injury if the system is not properly 

designed.  A task such as bending the wrist is a repetitive movement and a major 

contributor to this risk.  Consequently, without considering physical performance as 

specified by the integrative framework, it could not be understood the differences 

between the design of excavator system and the risk placed on the human operator when 

performing excavation processes. 

 

8.1.2 iHPMs 

 As demonstrated by this research, many challenges plague human performance in 

complex systems, especially in the fluid power domain.  Such complexities have caused 

the need for an integrative approach that considers performance in multiple regards.  As 

described in the prior sections, findings produced relevant implications in terms of the 

mechanisms of human behavior.  Together, integrating cognition as well as physical 

functioning in human performance models provided a higher degree of insight on the 

interaction between such factors that could not be explained when assessing performance 

independently.   

8.1.2.1 Performance interaction.  Integration of human performance models 

demonstrated that both design and dynamic conditions impacted performance.  In 

particular with the integrated model, it was determined that the environment had a 

significant impact on the completion of excavation processes wherein additional time was 
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necessary in gravel terrain.  Such conditions and attention to hazardous factors (e.g. 

overloading or unbalanced weight) consume mental resources, causing additional 

demands on the human operator.  As a consequence of these demands, more cognitive 

workload also occurs in gravel terrain which was determined to also significantly impact 

performance.  Furthermore, the arrangement of buttons embedded in the joystick 

controllers failed to match the human operator’s mental models, resulting in high 

cognitive workload.  Models showed more variation under these conditions, leading to 

the potential for increased errors.  High workload also resulted in more energy being 

required for operators of electronic control systems and in gravel terrain.  Hence, the 

framework uncovered a link between the physical amount of energy required for the job, 

the rate of work, and the human’s cognitive activity.   

From the integrated models, it was also determined that longer completion times, 

high workload, and energy rates were correlated to more fatigue and greater recovery 

time being needed; especially with hydraulic control systems and in gravel terrain.  These 

notions lead to three significant ideas that can be formed regarding the impact of such 

findings from the integrated human performance models.  Foremost, both rapid and 

prolonged work can cause operators to utilize methods reducing accuracy, increasing the 

risk of error (Hockey, 1997).  In reality, excessive cognitive or physical exertions with 

complex systems can lead to costly mistakes which endanger human workers as well as 

the surrounding environment.  Additionally, when multiple variables consume the 

operator’s attention (i.e. monitoring tasks, controls, etc.), the operator can become 

mentally overloaded, inhibiting performance and jeopardizing safety (Svensson et al., 
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1997).   Lastly, although operators may perform tasks adequately, excessive workload 

causes inadequate performance over prolonged periods (Mazaeva, Ntuen, & Lebby, 

2001).  Over time as workload increases, performance variations result.  These variations 

increase the difficulty of work tasks and cause operator fatigue, slowing the overall work 

process.   

8.1.2.2 Performance representation.  More importantly, without the framework 

and integration of performance models, it would not be possible to conclusively confirm 

or deny that the design of a particular system yields in better performance than another 

system.  Following their introduction, system manufacturers marketed the notion that 

electronic control was more efficient and less fatiguing than traditional hydraulic control, 

without having concrete empirical evidence to prove those statements.  Though different 

in various areas of assessment, model integration with the framework uncovered that 

overall performance is better with emergent electronic control mechanisms.   

For instance, electronic control systems yielded in faster completion times, less 

recovery time needed, and less fatigue experienced than hydraulic control systems which 

only fared better in terms of cognitive workload and energy expenditure (Table 8.3).  

Integration of the data conveys the bi-directional relationship between cognitive and 

physical factors to form a comprehensive representation of performance.  Without the 

integrative framework, it would only be possible to gauge one facet of performance, 

making any findings inconclusive.  Such notions are verified by the losses in accuracy 

between both HPMs and iHPMs.  Through integration, however, modeling accuracy is 

improved; thus, reducing errors and overestimations of performance efficiency.            
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  Table 8.3.   Summary of Model Performance for Excavator Systems. 

Human Performance 
Excavator System 

Hydraulic Control Electronic Control 
 

Cognitive Model   

Completion   x 

Workload x  
 

Physical Model   

Energy x  

Recovery  x 

Fatigue 
 

 x 

Integrated Model   

Completion   x 

Workload 
 

x 
 

 

 

 

Though HPMs and iHPMs yielded in similar results for completion time and 

workload, integration of performance models through the framework allowed for 

examination beyond the surface to obtain a more accurate depiction of performance.  For 

instance, integrated models produced significantly different results in terms of the 

workload experienced by the human operator for the environment and control type.  By 

accounting for physical factors (e.g. energy, fatigue, and recovery) along with cognition 

which triggers action, models captured the bi-directional relationship which impacts 

performance; thus, making a difference in performance predictions. 

Integration clearly aids in understanding of human behaviors to help designers to 

create systems that facilitate human interaction.  In the fluid power domain, the 

integrative framework proved advantageous for the assessment of human performance 

with regard to constraints such as time, capital, and safety.  For cognition, it was 

uncovered what strategies are employed by human operators; when, where, and how 
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tasks are performed; as well as why work is done in a particular manner.  In contrast, for 

physical performance, it was determined which systems and conditions cause extreme 

exertions as well as how adequate or inadequate rest impacts subsequent work.  

Implications of such findings yield benefits including the evaluation of work processes 

which revealed that as demands increase (i.e. speed, time), performance deteriorates as a 

consequence; and that cognitive workload is linked to energy and control which are 

significant to work productivity.  Hence, by modeling the effects of performance in 

complex systems, designers will have the ability to better design intelligent automated 

systems that increase efficiency, improve work methods, and operator satisfaction. 

 

8.2 Implications of the Fluid Power Case Study  

A fluid power case study was presented in Chapter 6 to demonstrate a viable 

domain for the application of the integrated human performance modeling framework. 

From this framework, a study was performed to gain insight on the effects of various 

factors on human performance.  Upon analysis of the results in Chapter 7, implications 

were drawn regarding cognitive and physical performance of excavator operators 

utilizing such systems under a set of selected conditions.  The following subsections 

discuss details regarding the impact of system control and the effects of the environment 

on human performance as measured by task completion time and workload analysis for 

various tasks of hydraulic excavation processes as well as the value of the framework for 

modeling human performance.  
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8.2.1 Hydraulic Excavation Work Processes 

 Hydraulic excavation processes involve a variety of tasks critical to human 

performance based on interaction with the system.  As established by the composition of 

the task analysis, human operators manage the complexity of such work through series of 

phases which decompose difficult work processes into simple sub-tasks.  These work 

phases consisted of:   initialization to activate and monitor the system; active work to 

execute excavation tasks; and finalization to complete work tasks and deactivate the 

system.   To carry out such phases and complete these processes, both the human and the 

system carry out work tasks.  With regard to the human, the operator is primarily 

responsible for cognitive decision making processes and manipulation of system controls; 

whereas, the system is responsible for majority of the physical processes for work. 

   Movement tasks denote the operator’s functional activities concerning a 

particular work goal.  With regard to such tasks, it was revealed that the mean time to 

perform a work operation can be influenced by the length of the work, methods employed 

by the operator, design of the system, and the difficulty of the task (Keller, 2002).  The 

primary difference among all movement tasks, however, was in their degree of variation 

throughout the excavation process.  Movement tasks within performance models yielding 

longer task times such as reaching the arm, turning the head, and extending the leg or foot 

appeared more consistent than tasks such as tilting the hand or pressing the button with 

shorter task times.   

 Times for such tasks were also shorter during the beginning of the excavation 

process and shifted during the middle the excavation process.  Shifts of this nature can be 
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explained by the point at which one work phase ends (i.e. initialization phase) and the 

other begins (i.e. active work phase), or the job requiring the human operator move or re-

position the excavator for continuation of the excavation process being performed.  In 

contrast, tilting the hand and pressing the joystick button to control rotation of the 

excavator’s cab, arm, and bucket attachment, required the least amount of time in 

comparison with other movement tasks.  As a result of the quickness of such 

performance, it yielded in the highest variation and was the most unstable task of all 

movements, showing little consistency throughout the excavation process.  Such extreme 

variations can be explained due to the multiple objectives that can be accomplished by 

excavator operators when tilting the hand or pressing the buttons.  For instance, tasks 

associated with these movements consist of scooping dirt from trenches, digging surface 

areas, and rotating the body of the excavator cab.  Each task serves a unique purpose in 

the excavation process; therefore, various times were undertaken.   

 From this data it can be seen that the majority of the tasks involved in hydraulic 

excavation processes are manual and repetitive in nature, perpetuating the risk of serious 

injury.  Since task times for reaching movements are shorter at the beginning and the end 

of the excavation and longer during the middle of the process when actual work is 

performed, it indicates that operators are likely to be experiencing fatigue.  To eliminate 

awkward postures from this type of movement and minimize the fatigue experienced by 

operators, designers of excavator systems should consider the placement of controls.  

Movement tasks were also indicated as the most unstable in both the hydraulic and 

electronic systems.  Although the variation of movement tasks can be explained by the 
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various reasons excavator operators must tilt the hand or wrist and press buttons, 

processes of this nature potentially lead to stress and an increased amount of 

concentration or workload.  To resolve these types of issues involving the hand and wrist, 

it is recommended that an aid be implemented to reduce the amount of stress, 

displacement, and force required to manipulate the joystick; thus, promoting better 

coupling with the controller and to reduce the amount of force or the degree of deviation 

at the wrist when using the joystick.  

Operational tasks help convey the operator’s intent as well as the means by which 

to accomplish a goal.  With regard to these tasks, pushing or pulling the joystick and 

pressing joystick buttons required relatively less time in comparison with other tasks.  

Such tasks began during the initialization phase of the excavation process and were 

carried out through finalization.  Much of the variation for these tasks occurred during the 

active work phase (i.e. middle) of the excavation process; whereas, the tasks showed 

more consistency during initialization (i.e. beginning) and finalization phases (i.e. end) of 

the work process.  Such variation occurred due to the range of motion associated with 

tilting the hand or the force exerted when pressing buttons to complete work tasks.  These 

changes may have also been attributed to the operator adapting to the work environment 

throughout the excavation process.  In contrast, adjusting the joystick did not begin until 

the middle (i.e. active work phase) of the excavation process.  These tasks showed an 

increasing trend, indicating that the workload may be increasing or that discomfort is 

being experienced as work progresses and the job becomes more difficult.  
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Examining both movement and operational tasks simultaneously revealed a direct 

relationship with regard to time and the resultant degree of variation.  For instance, for 

both hydraulic and electronic control systems, movement tasks such as turning the head 

was followed by the corresponding operational task of checking the monitor; thus, 

presenting a connection between the physical movement triggered by the operator’s 

intention and action to reach the desired work goal.  Another relevant relationship that 

was realized from the task analysis was that the time during the excavation process in 

which a particular task occurred, correlated to the progression of the work phase.  As 

earlier described, excavation processes occurred in three phases: initialization, active 

work, and finalization.   

In both hydraulic and electronic control systems, manipulation of the joystick 

controller or joystick buttons presented variation at similar points during the excavation 

process.  For example, during the active work stage, more variation and longer task times 

were present.  From the output, it can also be noted that changes for both movement and 

operational tasks occur following initialization (i.e. at the beginning of the active work 

phase).  Such changes are most likely due to a shift from tasks that are more cognitive 

(e.g. monitoring and decision making) during the initialization phase to tasks that are 

more physical and require action during the active work phase.  Furthermore, when 

movement and operator tasks are less often used (i.e. during initialization and 

finalization), variation in performance stabilizes.  Other generalizations from the output 

that can be made are that movement tasks show less stability throughout the excavation 

process and that operator tasks are subject to the effects of these movement tasks. 
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8.2.2 Excavator Control and Human Performance 

Analysis of hydraulic excavation processes revealed that many conditions are 

likely to pose significant effects on human performance.  From the task analysis data, it 

was found that excavator operators utilized various methods to execute work processes 

based on the design of the system’s controls.   With hydraulic control systems, movement 

of the controller itself was employed; whereas, with electronic control systems, buttons 

embedded in the joystick controller were employed to carry out similar work tasks.  More 

importantly, it has been believed that emergent designs of system controls are more 

efficient as compared with traditional hydraulic control designs.   

Though not found to be significantly different, results from the analysis of the 

case study revealed that operators using electronic control systems took less time to 

complete excavation processes as compared to those of traditional hydraulic control 

systems.  Differences in process completion can be explained by quicker execution of 

individual work tasks with electronic control systems whose design allows operators to 

select a desired control pattern based on personal preference and job type; thus, reducing 

the physical requirements to carry out work.  Hence, operators can perform more 

efficiently by better managing goals, demands, and resources.  In addition, variation 

between both control types differed.  Systems with hydraulic control yielded in less 

variation than those equipped with electronic control.    Higher variation can be attributed 

to by the lack of feedback in electronic controls, indicating a tradeoff between operator 

efficiency and consistency with regard to excavator control type.  For instance, in 

hydraulic systems, tactile feedback is provided through hydraulic tubes beneath the 
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joysticks which give operators a sense of the environment; whereas, electronic system 

joystick controls have a spring center mechanism which feels the same regardless of the 

state of the machine.   

This lack of feedback causes operators to increase force or the amount of pressure 

applied to controllers to execute a system function, making work processes more 

challenging from a remote sense of the work environment.  A potential remedy to such an 

issue would be the introduction of haptic technology to restore the feedback necessary to 

effectively complete work tasks and further enhance performance with electronic control 

systems.  Haptic control can replace much of remote sensation which was lost in 

electronic controllers by aiding the operator with mechanisms that respond to force in the 

work environment.  In combination, both electronic control and haptic feedback can yield 

in ergonomic benefits such as greater comfort and reduced fatigue to improve 

performance efficiency. 

 Unlike completion time, control was found to have a significant impact on the 

degree of workload experienced by the human operator.  In particular, it was found that 

cognitive workload was lower in hydraulic control systems as compared to electronic 

control systems.  In prior research, it has been suggested that the mechanics of the system 

can affect the degree of mental workload experienced by the human operator.  It has even 

been found in some cases to increase workload (Parasuraman et al., 2000).  Considering 

this perspective, cognitive workload may be higher with electronic control systems due to 

the design of its controllers which fail to match the mental models of the human operator.  

For instance, with hydraulic control systems, the range of motion in the joystick controls 
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match the resultant movements carried out by the system (i.e. downward motion produces 

a lowing movement of the system’s arm).  However, in electronic control systems, 

joystick button mappings failed to match the human operator’s mental models; thus, 

violating expectancies.  One method of improving such matters is to reconfigure the 

layout of the joystick buttons to match system functions and the operator’s mental model 

of what should occur when a particular button is pressed. 

From a physical standpoint, diverse results were found with respect to both 

systems.  With regard to energy, it was found that operators of hydraulic control systems 

expended less energy than operators of electronic control systems.  Unexpected results 

could have possibly occurred given that operators were slower in completing work 

processes with hydraulic control systems.  This implies that these operators executed 

tasks at a slower rate, yielding in less energy; whereas, operators were faster at 

completing work processes with electronic control systems, implying that quicker 

execution yields in more energy.   

Workload for these systems was also consistent with these findings.  Despite the 

amount of energy expended, operators of electronic control systems required less time to 

recover and experienced less fatigue.  Such performance is result of electronic controllers 

requiring physical movements that are less extreme.  For instance, in hydraulic control 

systems, operators must tilt the wrist to control system functions.  If improperly or 

repetitively performed, it can result in fatigue due to awkward postures or deviations.  In 

electronic control systems, however, the operator carried out identical functions by 

moving the finger; thus, reducing the time and effort needed to perform the work task. 
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8.2.3 Environmental Conditions and Human Performance  

 As confirmed by the empirical study, the environmental conditions under which 

excavation tasks were performed had a significant impact on human performance.  For 

the two test conditions, it was found that operators completed work processes more 

quickly when excavating soil terrain as opposed to gravel terrain with both hydraulic and 

electronic control systems.  The difference in the overall process completion times and 

more efficient performance in soil terrain can be explained by the elevated degree of 

difficulty in performing excavation processes under demanding environmental 

conditions.  Though soil can vary extensively, it generally offers a sufficient degree of 

porosity and permeability to facilitate excavation.   

Likewise, gravel can also vary tremendously (i.e. ranging from fine pebbles to 

course boulders); however, it generally results in less efficiency due to its higher mass 

and weight in conjunction with the capacity of the system.  In some circumstances, this 

type of environmental terrain can be difficult to permeate or can even become 

impermeable.  Such difficulties alter the methods implemented by operators to 

accomplish work goals, resulting in the higher degree of variation seen within the 

models.  In the real world, gravel terrain environments impose additional demands that 

the operator must take into consideration when undertaking work processes (e.g. load 

weights, balance, and bucket capacity), adding to the complexity and difficulty of the 

work task.  Thus, it is clear that the environment is a substantial factor in human 

performance with hydraulic excavator systems regardless of control type.  Therefore, a 

greater emphasis should be placed on designing systems by considering the 
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environmental conditions under which they will be used to aid operators in better 

managing work processes. 

Furthermore, the environment also had a significant effect in terms of the 

workload experienced by the human operator.  From the models, it was found that 

operators experienced more cognitive workload in gravel terrain as compared with soil 

terrain.  Likewise, operators also required more time to complete work processes in 

gravel terrain due to additional considerations such as load weight, balance, and bucket 

capacity; thus, increasing the complexity and difficulty of work.   

From a physical perspective, more energy was needed in soil terrain than in gravel 

terrain.  Similar to completion time, less recovery time was needed and less fatigue was 

experienced with soil terrain as compared to gravel terrain.  This could also be 

attributable to the difference in time taken to complete work processes and the degree of 

difficulty in both environments.  For instance, work was completed more efficiently in 

soil terrain versus gravel terrain due to the complexity of the work task; therefore, 

operators needed less recovery and experienced less fatigue due to a lesser amount of 

workload which facilitated the work process.  
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CHAPTER 9 

CONCLUSION 

 

9.1 Summary of Dissertation 

This research has demonstrated the volatility of human performance in complex 

human-machine systems.   Within the fluid power domain, where demands for versatility 

are constant, complexity has also significantly increased.  Subject to such requirements, 

hydraulic excavator systems have advanced from hydraulic to electronic control 

mechanisms; however, because these changes offer varying degrees of simplicity, 

comfort, and feedback, the impact of design on human performance presents an ever 

challenging issue. 

Of the past literature which investigated such matters, much was limited in 

viability due to the complexity and variability of human behavior.  Chief issues 

determined within past studies not only consisted of research lacking the investigation of 

human performance in fluid power systems;  more importantly, there was found to be an 

overemphasis on system performance rather than on human performance, and a 

substantial lack of knowledge on the interaction between the cognitive and physical 

factors contributing to human performance.  As a result, research credibility and model 

accuracy was jeopardized. 

The premise of this dissertation has concentrated on correcting methods that 

neglect performance shaping factors and enhancing predictive capabilities through the 

conception, development, and implementation of an integrative framework, and an 
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empirical study on human performance models that take into consideration both cognitive 

and physical components.  Extensive research was explored in order to gain thorough 

knowledge of human performance at a theoretical level and to plan procedures which 

facilitated the integration of human performance models. 

The integrated framework itself described the modeling approach and the required 

parameters for the creation of integrated human performance models; thus, serving as a 

set of procedures and blueprint for model development.   Requirements for understanding 

performance consisted of: establishing the levels at which performance should be 

assessed to identify the levels of abstraction at which performance can be affected; 

defining states of human performance to convey the transition from internal to external 

functioning; and differentiating between cognition and physical action to define key 

components of human performance.  Integration requirements consisted of: extracting 

performance variables to quantify performance; selecting the appropriate modeling tools 

to simulate cognitive and physical performance; linking performance measures to convey 

the bi-directional relationship between performance factors; and integrating 

representations to create a comprehensive model of human performance. 

To illustrate how the integrative framework could be utilized to model human 

performance in complex systems, a case study in fluid power was described to 

demonstrate its viability in hydraulic excavation processes with respect to its described 

structure and modeling parameters.   Based on the parameters of the framework, 

cognitive, physical, and integrated simulation models were derived and compared 

through an empirical study to assess the effects of a subset of factors identified in the case 
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study on performance during hydraulic excavation processes.  Various system 

configurations and environmental conditions were found to have a significant impact on 

human performance as well as a clear correlation between cognition and physical action.  

More importantly, variance between non-integrated and integrated models which 

considered performance independently and collectively, confirmed an increase in model 

accuracy when using the framework’s human performance modeling approach. 

 

9.2 Contribution of Research 

Using an integrated approach to human performance modeling provided 

unprecedented value in enhancing the quality of research on human performance.   

Such an approach promoted the realization of knowledge concerning the characteristics 

and role of the human operator, the distribution of work between the human-machine 

system, as well as the interaction among the task, human, system, and the environment.  

The theoretical framework in this research acted as a set of procedures for better models 

of human performance to be developed.  Specifically, it developed a set of procedures to 

accurately model human performance by considering cognitive and physical factors 

which were overlooked in traditional research models as well as identifying, defining, 

and correlating the factors which should be considered when modeling human 

performance.  By creating an integrated performance model to study performance in 

existing and emergent fluid power systems, it was possible to determine the effects of 

various factors on human performance, assess the degree of workload experienced by the 

human operator, identify usability and ergonomic issues with excavator system designs, 
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and propose recommendations for improvements in emergent systems.  Furthermore, the 

framework expanded beyond the realm of past approaches and overcame modeling 

deficiencies to bridge the gaps in traditional research by acknowledging the interactions 

that produce human behaviors and by representing various components contributing to 

human performance within multiple modeling tools.   

More importantly, this research addressed the voids found within prior research 

models.   Foremost, it concentrated on human performance in the fluid power domain 

where there has been a lack of effort and studies which have inappropriately concentrated 

on the system rather than on human performance.  However, by utilizing this approach, 

the excavation process was able to be selected as an applicable domain for the 

development of human performance models that concentrated on the human operator 

while considering technical aspects such as system mechanics.  A breadth of knowledge 

was also gained on the interaction between the cognitive and physical factors contributing 

to human performance.  Insight was found regarding human capabilities and limitations 

with regard to system design, work processes, and the environment; thus, improving 

usability, ergonomics, and human performance while reducing operational errors, 

demands, and fatigue.  Completion of such research endeavors in this area yielded in a 

better understanding of the factors to be considered when modeling human performance, 

identification of the human factors which influence performance, and examination of the 

factors that cause or amplify variance in human performance models to conclusively 

provide the foundation for more realistic representations of human performance in 

simulation models.  
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9.3 Future Work 

Despite these contributions, there are still many relevant human performance 

issues to consider with regard to complex human-machine systems.  Therefore, in order 

to further develop the capacity of such technology, matters of cost, safety, design, and 

operator workload which affect overall efficiency of the system must be continually 

optimized.  Modelling the tasks and processes of fluid power systems such as the 

hydraulic excavator allowed for the successful examination of efficiency and the 

investigation of human performance.  For instance, Micro Saint and Jack were effectively 

integrated to accurately represent the human-system design in complex settings and to 

ensure that problems associated with human performance were clearly identified.  

Findings from the study revealed the importance of analyzing design changes in fluid 

power systems before implementation and marketing to its intended users.  It was found 

that the environment was critical to performance in terms of process completion time; 

whereas, controls were important to performance in terms of the workload experienced 

by the human operator.  Furthermore, newly implemented electronic controls were more 

effective at enhancing overall operator performance, yet improvements are still needed to 

provide more feedback and better match mental models.  Integrating all aspects of human 

performance to truly depict the complexities of human behavior in the real world remains 

a challenge; thus, maintaining the need for alternative techniques that address the 

inadequacies of past performance models (Gore et al., 2008). 
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9.3.1 Limitations  

 As prior noted, it is not possible to develop a human performance modeling 

framework that is applicable to all systems.  Therefore, research using the integrative 

framework is limited to the scope of its parameters.   Foremost, the framework developed 

herein, is limited in application to the area of complex human-machine systems; 

particularly, those involving cognitive and physical tasks.  Furthermore, although 

integrated, the chosen tools (e.g. Micro Saint and Jack), were initially limited because the 

cognitive tool had no physical modeling capability and the physical tool had no cognitive 

modeling capability or ability to be replicated for trial studies.  Consistent with prior 

research, the complexity of modeling of cognitive processes also resulted in variability 

which caused a violation of normality for the data analysis.  Lastly, the framework offers 

a broad range of elements (e.g. functions, variables, metrics, etc.) that can be chosen by 

the researcher based on the chosen tool and the research domain.  Hence, the capability of 

the chosen tools can limit the overall ability to represent certain parameters identified in 

the framework.      

 

9.3.2 Recommendations 

 Despite these limitations, this research provided great value in demonstrating the 

use and value of creating integrated human performance models.  Furthermore, a variety 

of alternatives exist to address such limitations and provide opportunities for future 

research endeavors.  For instance, the integrative framework provides opportunities for 

application with other complex human-machine systems as well as other domains where 
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humans are required to manage cognitive and physical tasks.  Suitable areas include the 

transportation (e.g. aviation), the manufacturing (e.g. automated assembly operations), as 

well as further investigation in the construction industry (e.g. cranes or lifts).   

As citied, a variety of other software is also available which has the capabilities to 

model either cognitive or physical human performance.  Beyond those identified in this 

research, emergent software is available that attempts to model human performance more 

accurately by representing both facets of human performance as well as a host of factors 

that affect human performance within the framework.  The Integrated Human 

Performance Modeling Environment (IPME), is one tool that provides an integrated 

approach to simulation and modeling tools for assessing human performance in complex 

environments.  The software not only allows for cognitive and physical performance to 

be assessed in a single tool, but it also allows for closer examination of the broad aspects 

(e.g. task, human, system, and the environment) which affect human performance on a 

deeper more characteristic level.  Like Micro Saint and Jack, the tool can model the 

human’s cognitive capabilities (e.g. mental ability, training, or fatigue) as well as 

physical characteristics (e.g. dimensions of the hands or fingers).  However, it also 

provides environment models which simulate factors such as temperature, lighting, and 

humidity; task functions such as the time given to perform or failure probabilities; as well 

as micro models of human behavior to simulate conditions such as reaching within work 

zones.  Multiple runs (i.e. iterations) can also be set up for simulation under various 

experimental conditions.  Therefore, given the additional capabilities with IPME 

software, it is possible to discover other links and correlations between the factors in the 
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framework that were unable to be modeled by the initial tools.  With these considerations, 

the scope of problems addressed through human performance modeling can be increased 

by simulating performance and providing solutions on complex human behavior to help 

identify and resolve problems associated with human performance.   

As established by this research, the integrated approach provided a strong 

foundation for the enhancement of the practices and methodologies used to model human 

performance in complex systems by coupling the interaction among the task, human, 

system, and the environment.  Its structure acted as a guide, linking commonly 

misrepresented and overlooked elements for better predictions of human performance by 

understanding human behavior and its shaping factors.  The example of its application 

through a case in fluid power further validated its theoretical contribution, demonstrating 

the feasible development of better models.  By studying human performance with fluid 

power systems such as the hydraulic excavator, insight was gained on human-system 

interaction, capabilities and limitations, as well as the relationship between cognitive and 

physical performance.  Such insight can be used to optimize the excavation process and 

operational procedures, overcoming current limitations and expanding the future 

capabilities of fluid power technology.  Through continual development, integrative 

approaches will further provide value by increasing the accuracy and validity of models 

to ultimately close the gap between existing and emergent research methods that model 

human performance in complex systems. 
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APPENDIX A  

MICRO SAINT MODELS & DATA  

 

 
Figure A.1.  Task Network Model for Hydraulic Control Excavator System. 

 

 

Figure A.2.  Task Network Model for Electronic Control Excavator System. 
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Table A.1.  Completion Time (sec) for Hydraulic-Soil Model. 

# 
Completion 

Time 
# 

Completion 

Time 
# 

Completion 

Time 
# 

Completion 

Time 

  1. 390.2 26. 912.8 51. 144.3   76. 104.6 

  2. 225.7 27. 95.4 52. 125.8   77. 315.2 

  3. 267.8 28. 106.4 53.  75.6   78. 114.7 

  4. 123.0 29. 118.3 54. 396.4   79. 315.2 

  5.  426.7 30. 405.1 55.  81.1   80. 249.4 
  6.  82.6 31.  85.0 56. 139.0   81. 566.4 

  7. 178.7 32. 128.6 57. 389.9   82. 167.1 

  8.   96.3 33. 133.9 58. 131.3   83. 128.1 

  9.  99.9 34. 124.1 59. 179.2   84. 143.5 

10. 105.3 35. 163.8 60. 141.3   85. 101.5 

11. 573.0 36. 191.6 61. 149.8   86. 338.6 

12. 407.1 37. 405.9 62. 352.7   87. 258.3 

13. 226.7 38. 248.1 63. 376.1   88. 305.1 

14. 257.9 39. 240.9 64. 220.5   89. 409.1 

15. 753.0 40. 918.5 65. 112.9   90. 145.0 
16. 309.0 41. 348.8 66. 119.2   91. 126.0 

17. 268.5 42.  92.7 67. 199.7   92. 377.1 

18. 135.5 43. 163.1 68.  84.6   93. 159.3 

19. 152.7 44.  96.0 69. 302.2   94. 119.4 

20. 158.4 45.  98.5 70. 231.1   95. 173.4 

21. 123.2 46. 209.6 71. 141.7   96. 154.1 

22. 382.1 47. 120.6 72. 270.4   97. 201.6 
23.  86.6 48. 162.4 73. 111.9   98. 448.0 

24.  82.3 49. 140.4 74. 233.5   99. 401.1 

25. 551.4 50. 109.3 75. 248.2 100. 162.7 
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Table A.2.  Completion Time (sec) for Hydraulic-Gravel Model. 

# 
Completion 

Time 
# 

Completion 

Time 
# 

Completion 

Time 
# 

Completion 

Time 

 1.   563.9 26. 148.4 51.   369.6   76.   306.7 

  2.   370.2 27. 205.3 52.   627.0   77.   196.2 

  3.   148.6 28. 159.0 53.   464.3   78.   176.5 

  4.   269.4 29. 146.2 54.   154.2   79.   318.8 

  5.   169.7 30. 665.5 55.   164.0   80.   242.1 
  6.   242.2 31. 151.8 56.   159.3   81.   148.5 

  7. 1439.8 32. 172.6 57.   313.2   82.   160.2 

  8.   236.5 33. 345.3 58.   147.6   83.   149.7 

  9.   437.7 34. 235.4 59.   148.4   84.   616.0 

10.   159.7 35. 778.5 60.   459.2   85.   183.7 

11.   164.4 36. 190.5 61.   501.1   86.   731.5 

12.   173.6 37. 477.5 62.   162.5   87.   170.0 

13. 1449.8 38. 155.3 63.   394.2   88.   673.4 

14. 1578.0 39. 451.7 64.   264.5   89. 1529.0 

15.   441.8 40. 494.6 65.   225.2   90.   356.5 
16.   216.9 41. 494.6 66.   146.7   91.   187.3 

17.   139.3 42. 240.2 67.   365.4   92.   149.7 

18.   146.1 43. 419.4 68.   138.6   93.   154.4 

19.   409.6 44. 434.0 69. 2348.6   94.   161.5 

20.   539.4 45. 366.3 70.   193.3   95.   297.5 

21.   437.1 46. 152.4 71.   802.9   96.   165.9 

22.   153.0 47. 155.4 72.   326.7   97.   133.3 
23.   145.9 48. 205.8 73.   760.4   98.   290.6 

24.   916.3 49. 789.1 74.   178.8   99.   287.0 

25.   223.4 50. 722.2 75.   215.6 100.   632.5 
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Table A.3.  Completion Time (sec) for Electronic-Soil Model. 

# 
Completion 

Time 
# 

Completion 

Time 
# 

Completion 

Time 
# 

Completion 

Time 

  1. 117.5 26. 94.1 51. 83.1   76. 91.7 

  2. 121.2 27. 93.6 52. 81.2   77. 89.9 

  3. 143.1 28. 90.2 53. 81.2   78. 85.4 

  4. 144.7 29. 85.7 54. 76.3   79. 85.0 

  5. 145.4 30. 82.4 55. 726.2   80. 82.4 
  6. 161.8 31. 78.8 56. 72.1   81. 81.1 

  7. 169.4 32. 77.9 57. 71.4   82. 80.4 

  8. 170.1 33. 76.2 58. 69.2   83. 79.8 

  9. 195.0 34. 75.9 59. 432.3   84. 78.4 

10. 196.5 35. 75.8 60. 289.6   85. 75.4 

11. 207.0 36. 71.7 61. 269.2   86. 441.5 

12. 218.7 37. 376.8 62. 230.6   87. 312.7 

13. 453.7 38. 350.8 63. 226.1   88. 248.4 

14. 672.1 39. 283.5 64. 202.0   89. 226.0 

15. 74.6 40. 195.2 65. 193.9   90. 225.5 
16. 78.1 41. 180.4 66. 180.3   91. 204.5 

17. 78.1 42. 169.7 67. 177.7   92. 167.0 

18. 78.4 43. 167.1 68. 177.6   93. 152.1 

19. 78.6 44. 165.6 69. 173.7   94. 133.0 

20. 82.1 45. 164.5 70. 171.0   95. 133.0 

21. 86.1 46. 157.1 71. 166.5   96. 127.4 

22. 88.9 47. 140.1 72. 148.7   97. 124.0 
23. 90.2 48. 136.4 73. 122.7   98. 118.1 

24. 96.1 49. 121.5 74. 115.5   99. 117.0 

25. 97.9 50. 113.5 75. 112.4 100. 114.6 

 

 

 
 

 

 

 

 

 

 

 

 

 



221 

 

Table A.4.  Completion Time (sec) for Electronic-Gravel Model. 

# 
Completion 

Time 
# 

Completion 

Time 
# 

Completion 

Time 
# 

Completion 

Time 

  1. 858.6 26. 334.9 51. 202.6   76. 156.7 

  2. 785.2 27. 334.7 52. 192.6   77. 156.3 

  3. 779.4 28. 331.2 53. 190.8   78. 156.3 

  4. 704.7 29. 322.8 54. 188.8   79. 154.5 

  5. 681.9 30. 317.0 55. 187.8   80. 154.5 
  6. 225.1 31. 310.8 56. 187.0   81. 152.7 

  7. 629.5 32. 292.0 57. 186.5   82. 152.6 

  8. 573.5 33. 291.7 58. 184.6   83. 150.7 

  9. 534.3 34. 291.1 59. 184.4   84. 150.2 

10. 524.1 35. 290.4 60. 1824.9   85. 148.6 

11. 506.9 36. 285.8 61. 182.5   86. 147.9 

12. 498.7 37. 278.6 62. 181.8   87. 147.3 

13. 461.1 38. 278.3 63. 180.2   88. 146.3 

14. 451.8 39. 266.1 64. 1776.1   89. 145.2 

15. 416.0 40. 265.0 65. 175.3   90. 144.0 
16. 414.3 41. 2426.9 66. 173.0   91. 143.2 

17. 411.4 42. 241.3 67. 172.0   92. 143.2 

18. 392.8 43. 231.3 68. 170.3   93. 142.7 

19. 380.5 44. 222.1 69. 169.5   94. 138.9 

20. 371.8 45. 220.5 70. 165.7   95. 137.7 

21. 367.9 46. 218.0 71. 165.2   96. 134.2 

22. 366.0 47. 211.2 72. 164.7   97. 1319.9 
23. 342.3 48. 210.3 73. 164.5   98. 130.2 

24. 340.3 49. 210.2 74. 160.6   99. 1256.1 

25. 335.0 50. 205.3 75. 160.6 100. 1104.2 
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Table A.5.  Workload (%) for Hydraulic-Soil Model. 

# Workload # Workload # Workload # Workload 

  1. 35.0 26. 55.0 51. 45.0   76. 45.0 

  2. 35.0 27. 55.0 52. 45.0   77. 46.0 

  3. 35.0 28. 45.0 53. 45.0   78. 50.0 

  4. 35.0 29. 45.0 54. 45.0   79. 50.0 

  5. 35.0 30. 50.0 55. 45.0   80. 50.0 

  6. 35.0 31. 50.0 56. 45.0   81. 35.0 

  7. 35.0 32. 50.0 57. 45.0   82. 30.0 

  8. 35.0 33. 40.0 58. 45.0   83. 30.0 

  9. 35.0 34. 40.0 59. 45.0   84. 30.0 

10. 35.0 35. 40.0 60. 45.0   85. 30.0 
11. 35.0 36. 40.0 61. 45.0   86. 30.0 

12. 35.0 37. 65.0 62. 45.0   87. 30.0 

13. 35.0 38. 65.0 63. 45.0   88. 30.0 

14. 35.0 39. 25.0 64. 45.0   89. 30.0 

15. 35.0 40. 25.0 65. 45.0   90. 30.0 

16. 45.0 41. 25.0 66. 45.0   91. 30.0 

17. 45.0 42. 40.0 67. 45.0   92. 30.0 
18. 45.0 43. 40.0 68. 45.0   93. 30.0 

19. 45.0 44. 40.0 69. 45.0   94. 30.0 

20. 45.0 45. 45.0 70. 45.0   95. 35.0 

21. 45.0 46. 45.0 71. 45.0   96. 35.0 

22. 50.0 47. 45.0 72. 45.0   97. 35.0 

23. 50.0 48. 45.0 73. 45.0   98. 35.0 

24. 50.0 49. 45.0 74. 45.0   99. 35.0 

25. 55.0 50. 45.0 75. 45.0 100. 35.0 
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Table A.6.  Workload (%) for Hydraulic-Gravel Model. 

# Workload # Workload # Workload # Workload 

  1. 50.0 26. 45.0 51. 48.0   76. 40.0 

  2. 45.0 27. 45.0 52. 48.0   77. 40.0 

  3. 45.0 28. 45.0 53. 48.0   78. 40.0 

  4. 45.0 29. 45.0 54. 48.0   79. 40.0 

  5. 45.0 30. 45.0 55. 48.0   80. 40.0 

  6. 45.0 31. 45.0 56. 48.0   81. 25.0 

  7. 45.0 32. 45.0 57. 48.0   82. 25.0 

  8. 45.0 33. 45.0 58. 48.0   83. 25.0 

  9. 45.0 34. 50.0 59. 48.0   84. 25.0 

10. 45.0 35. 48.0 60. 70.0   85. 25.0 
11. 45.0 36. 48.0 61. 70.0   86. 25.0 

12. 45.0 37. 48.0 62. 70.0   87. 25.0 

13. 45.0 38. 48.0 63. 40.0   88. 25.0 

14. 45.0 39. 48.0 64. 40.0   89. 25.0 

15. 45.0 40. 48.0 65. 40.0   90. 25.0 

16. 45.0 41. 48.0 66. 40.0   91. 25.0 

17. 45.0 42. 48.0 67. 40.0   92. 25.0 
18. 45.0 43. 48.0 68. 40.0   93. 10.0 

19. 45.0 44. 48.0 69. 40.0   94. 10.0 

20. 45.0 45. 48.0 70. 40.0   95. 10.0 

21. 45.0 46. 48.0 71. 40.0   96. 25.0 

22. 45.0 47. 48.0 72. 40.0   97. 25.0 

23. 45.0 48. 48.0 73. 40.0   98. 25.0 

24. 45.0 49. 48.0 74. 40.0   99. 25.0 

25. 45.0 50. 48.0 75. 40.0 100. 25.0 
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Table A.7.  Workload (%) for Electronic-Soil Model. 

# Workload # Workload # Workload # Workload 

  1. 55.0 26. 70.0 51. 400.   76. 60.0 

  2. 55.0 27. 70.0 52. 40.0   77. 60.0 

  3. 55.0 28. 70.0 53. 40.0   78. 60.0 

  4. 55.0 29. 70.0 54. 40.0   79. 60.0 

  5. 55.0 30. 70.0 55. 40.0   80. 60.0 

  6. 55.0 31. 70.0 56. 80.0   81. 60.0 

  7. 55.0 32. 70.0 57. 80.0   82. 60.0 

  8. 55.0 33. 70.0 58. 80.0   83. 60.0 

  9. 55.0 34. 70.0 59. 80.0   84. 60.0 

10. 55.0 35. 70.0 60. 80.0   85. 60.0 
11. 55.0 36. 40.0 61. 80.0   86. 60.0 

12. 55.0 37. 40.0 62. 80.0   87. 60.0 

13. 55.0 38. 40.0 63. 80.0   88. 60.0 

14. 55.0 39. 40.0 64. 80.0   89. 60.0 

15. 55.0 40. 40.0 65. 80.0   90. 75.0 

16. 55.0 41. 40.0 66. 80.0   91. 75.0 

17. 70.0 42. 40.0 67. 80.0   92. 75.0 
18. 70.0 43. 40.0 68. 80.0   93. 75.0 

19. 70.0 44. 40.0 69. 80.0   94. 75.0 

20. 70.0 45. 40.0 70. 80.0   95. 75.0 

21. 70.0 46. 40.0 71. 80.0   96. 75.0 

22. 70.0 47. 40.0 72. 80.0   97. 75.0 

23. 70.0 48. 40.0 73. 80.0   98. 75.0 

24. 70.0 49. 40.0 74. 80.0   99. 75.0 

25. 70.0 50. 40.0 75. 80.0 100. 75.0 
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Table A.8.  Workload (%) for Electronic-Gravel Model. 

# Workload # Workload # Workload # Workload 

  1. 80.0 26. 50.0 51. 60.0   76. 80.0 

  2. 80.0 27. 70.0 52. 60.0   77. 80.0 

  3. 80.0 28. 70.0 53. 60.0   78. 80.0 

  4. 50.0 29. 70.0 54. 60.0   79. 80.0 

  5. 50.0 30. 70.0 55. 60.0   80. 80.0 

  6. 50.0 31. 90.0 56. 60.0   81. 80.0 

  7. 50.0 32. 90.0 57. 60.0   82. 80.0 

  8. 50.0 33. 90.0 58. 60.0   83. 80.0 

  9. 50.0 34. 90.0 59. 60.0   84. 80.0 

10. 50.0 35. 90.0 60. 60.0   85. 80.0 
11. 50.0 36. 90.0 61. 60.0   86. 45.0 

12. 50.0 37. 90.0 62. 60.0   87. 45.0 

13. 50.0 38. 90.0 63. 60.0   88. 45.0 

14. 50.0 39. 90.0 64. 60.0   89. 75.0 

15. 50.0 40. 90.0 65. 70.0   90. 75.0 

16. 50.0 41. 90.0 66. 70.0   91. 75.0 

17. 50.0 42. 90.0 67. 70.0   92. 75.0 
18. 50.0 43. 90.0 68. 80.0   93. 75.0 

19. 50.0 44. 90.0 69. 80.0   94. 80.0 

20. 50.0 45. 90.0 70. 80.0   95. 80.0 

21. 50.0 46. 90.0 71. 80.0   96. 80.0 

22. 50.0 47. 90.0 72. 80.0   97. 80.0 

23. 50.0 48. 60.0 73. 80.0   98. 80.0 

24. 50.0 49. 60.0 74. 80.0   99. 50.0 

25. 50.0 50. 60.0 75. 80.0 100. 50.0 
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APPENDIX B  

JACK MODELS & DATA 

 

 

Figure B.1.  Digital Human Model for Hydraulic Control Excavator System. 

 

 

Figure B.2.  Digital Human Model for Electronic Control Excavator System. 
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Table B.1.  Original Energy Analysis for Hydraulic-Soil Model. 

# Excavation Task 
Task  

Energy 

(kcal) 

Standing  

Energy 

(kcal) 

Sitting  

Energy 

(kcal) 

Bent  

Energy 

(kcal) 

Energy  

Exp. Rate 

(kcal/min) 

  1. Tilt Hand 0.032 0.000 0.106 0.000 1.062 

  2. Push Boom Joystick 0.029 0.000 0.400 0.000 0.875 

  3. Excavator Lowers Boom 0.096 0.000 0.082 0.000 1.776 

  4. Tilt Hand 0.032 0.000 0.106 0.000 1.062 

  5. Adjust Arm Joystick  0.029 0.000 0.400 0.000 0.875 

  6. Lower Dipperstick 0.215 0.000 0.049 0.000 4.399 

  7. Tilt Hand 0.032 0.000 0.106 0.000 1.062 

  8. Push Boom Joystick 0.029 0.000 0.400 0.000 0.875 

  9. Scoop Material 0.425 0.000 0.057 0.000 6.887 

10. Tilt Hand 0.032 0.000 0.106 0.000 1.062 

11. Pull Boom Joystick 0.029 0.000 0.400 0.000 0.875 

12. Raise Boom 0.096 0.000 0.082 0.000 1.776 

13. Tilt Hand 0.032 0.000 0.106 0.000 1.062 

14. Adjust Swing Joystick  0.029 0.000 0.400 0.000 0.875 

15. Rotate Forward 0.107 0.000 0.106 0.000 1.639 

16. Tilt Hand 0.032 0.000 0.106 0.000 1.062 

17. Push Boom Joystick 0.029 0.000 0.400 0.000 0.875 

18. Release Material 0.203 0.000 0.049 0.000 4.199 

19. Tilt Hand 0.032 0.000 0.106 0.000 1.062 

20. Adjust Swing Joystick  0.029 0.000 0.400 0.000 0.875 

21. Rotate Backward 0.107 0.000 0.106 0.000 1.639 
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Table B.2.  Original Energy Analysis for Hydraulic-Gravel Model. 

# Excavation Task 
Task  

Energy 

(kcal) 

Standing  

Energy 

(kcal) 

Sitting  

Energy 

(kcal) 

Bent  

Energy 

(kcal) 

Energy  

Exp. Rate 

(kcal/min) 

  1. Tilt Hand 0.032 0.000 0.155 0.000 0.984 

  2. Push Boom Joystick 0.033 0.000 0.653 0.000 0.857 

  3. Excavator Lowers Boom 0.106 0.000 0.106 0.000 1.631 

  4. Tilt Hand 0.032 0.000 0.155 0.000 0.984 

  5. Adjust Arm Joystick  0.033 0.000 0.653 0.000 0.857 

  6. Lower Dipperstick 0.081 0.000 0.065 0.000 1.828 

  7. Tilt Hand 0.032 0.000 0.155 0.000 0.984 

  8. Push Boom Joystick 0.033 0.000 0.653 0.000 0.857 

  9. Scoop Material 0.197 0.000 0.065 0.000 3.278 

10. Tilt Hand 0.032 0.000 0.155 0.000 0.984 

11. Pull Boom Joystick 0.033 0.000 0.653 0.000 0.857 

12. Raise Boom 0.106 0.000 0.106 0.000 1.631 

13. Tilt Hand 0.032 0.000 0.155 0.000 0.984 

14. Adjust Swing Joystick  0.033 0.000 0.653 0.000 0.857 

15. Rotate Forward 0.192 0.000 0.073 0.000 2.949 

16. Tilt Hand 0.032 0.000 0.155 0.000 0.984 

17. Push Boom Joystick 0.033 0.000 0.653 0.000 0.857 

18. Release Material 0.202 0.000 0.057 0.000 3.701 

19. Tilt Hand 0.032 0.000 0.155 0.000 0.984 

20. Adjust Swing Joystick  0.033 0.000 0.653 0.000 0.857 

21. Rotate Backward 0.200 0.000 0.073 0.000 3.038 
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Table B.3.  Original Energy Analysis for Electronic-Soil Model. 

# Excavation Task 
Task  

Energy 

(kcal) 

Standing  

Energy 

(kcal) 

Sitting  

Energy 

(kcal) 

Bent  

Energy 

(kcal) 

Energy  

Exp. Rate 

(kcal/min) 

  1. Move Finger 0.200 0.000 0.082 0.000 2.816 

  2. Press Joystick Button 0.040 0.000 0.122 0.000 1.082 

  3. Lower Boom 0.217 0.000 0.049 0.000 4.432 

  4. Move Finger 0.200 0.000 0.082 0.000 2.816 

  5. Press Joystick Button 0.040 0.000 0.122 0.000 1.082 

  6. Lower Dipperstick 0.207 0.000 0.049 0.000 4.266 

  7. Move Finger 0.200 0.000 0.082 0.000 2.816 

  8. Press Joystick Button 0.040 0.000 0.122 0.000 1.082 

  9. Scoop Material 0.202 0.000 0.065 0.000 3.341 

10. Move Finger 0.200 0.000 0.082 0.000 2.816 

11. Press Joystick Button 0.040 0.000 0.122 0.000 1.082 

12. Rotate Forward 0.104 0.000 0.098 0.000 1.682 

13. Move Finger 0.200 0.000 0.082 0.000 2.816 

14. Press Joystick Button 0.040 0.000 0.122 0.000 1.082 

15. Release Material 0.206 0.000 0.049 0.000 4.249 

16. Move Finger 0.200 0.000 0.082 0.000 2.816 

17. Press Joystick Button 0.040 0.000 0.122 0.000 1.082 

18. Rotate Backward 0.104 0.000 0.098 0.000 1.682 
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Table B.4.  Original Energy Analysis for Electronic-Gravel Model. 

# Excavation Task 
Task  

Energy 

(kcal) 

Standing  

Energy 

(kcal) 

Sitting  

Energy 

(kcal) 

Bent  

Energy 

(kcal) 

Energy  

Exp. Rate 

(kcal/min) 

  1. Move Finger 0.037 0.000 0.090 0.000 1.152 

  2. Press Joystick Button 0.033 0.000 0.098 0.000 1.091 

  3. Lower Boom 0.213 0.000 0.041 0.000 5.076 

  4. Move Finger 0.037 0.000 0.090 0.000 1.152 

  5. Press Joystick Button 0.033 0.000 0.098 0.000 1.091 

  6. Lower Dipperstick 0.207 0.000 0.049 0.000 4.266 

  7. Move Finger 0.037 0.000 0.090 0.000 1.152 

  8. Press Joystick Button 0.033 0.000 0.098 0.000 1.091 

  9. Scoop Material 0.213 0.000 0.065 0.000 3.478 

10. Move Finger 0.037 0.000 0.090 0.000 1.152 

11. Press Joystick Button 0.033 0.000 0.098 0.000 1.091 

12. Rotate Forward 0.096 0.000 0.098 0.000 1.616 

13. Move Finger 0.037 0.000 0.090 0.000 1.152 

14. Press Joystick Button 0.033 0.000 0.098 0.000 1.091 

15. Release Material 0.194 0.000 0.041 0.000 4.696 

16. Move Finger 0.037 0.000 0.090 0.000 1.152 

17. Press Joystick Button 0.033 0.000 0.098 0.000 1.091 

18. Rotate Backward 0.096 0.000 0.098 0.000 1.616 
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Table B.5.  Original Recovery Analysis (sec) for Hydraulic-Soil Model. 

 # Excavation Task 
Task  

Duration  

Cycle 

Time  

Recovery  

Available  

Recovery  

Needed  

  1. Tilt Hand 1.08 7.57 6.49 0.12 

  2. Push Boom Joystick 4.20 29.41 25.21 3.19 

  3. Excavator Lowers Boom 3.14 6.28 3.14 1.59 

  4. Tilt Hand 1.08 7.57 6.49 0.12 

  5. Adjust Arm Joystick  4.20 29.41 25.21 3.19 

  6. Lower Dipperstick 3.35 3.35 0.00 1.85 

  7. Tilt Hand 1.08 7.57 6.49 0.12 

  8. Push Boom Joystick 4.20 29.41 25.21 3.19 

  9. Scoop Material 4.48 4.48 0.00 3.72 

10. Tilt Hand 1.08 7.57 6.49 0.12 

11. Pull Boom Joystick 4.20 29.41 25.21 3.19 

12. Raise Boom 3.14 6.28 3.14 1.59 

13. Tilt Hand 1.08 7.57 6.49 0.12 

14. Adjust Swing Joystick  4.20 29.41 25.21 3.19 

15. Rotate Forward 3.92 7.84 3.92 2.70 

16. Tilt Hand 1.08 7.57 6.49 0.12 

17. Push Boom Joystick 4.20 29.41 25.21 3.19 

18. Release Material 3.55 3.55 0.00 2.13 

19. Tilt Hand 1.08 7.57 6.49 0.12 

20. Adjust Swing Joystick  4.20 29.41 25.21 3.19 

21. Rotate Backward 3.92 7.84 3.92 2.70 
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Table B.6.  Original Recovery Analysis (sec) for Hydraulic-Gravel Model. 

# Excavation Task 
Task  

Duration 

Cycle 

Time  

Recovery  

Available  

Recovery  

Needed 

  1. Tilt Hand 1.61 11.28 9.67 0.04 

  2. Push Boom Joystick 8.00 48.00 40.00 16.64 

  3. Excavator Lowers Boom 3.97 7.94 3.97 3.10 

  4. Tilt Hand 1.61 11.28 9.67 0.04 

  5. Adjust Arm Joystick  8.00 48.00 40.00 16.64 

  6. Lower Dipperstick 5.08 5.08 0.00 5.61 

  7. Tilt Hand 1.61 11.28 9.67 0.04 

  8. Push Boom Joystick 8.00 48.00 40.00 16.64 

  9. Scoop Material 4.88 4.88 0.00 5.90 

10. Tilt Hand 1.61 11.28 9.67 0.04 

11. Pull Boom Joystick 8.00 48.00 40.00 16.64 

12. Raise Boom 3.97 7.94 3.97 3.10 

13. Tilt Hand 1.61 11.28 9.67 0.04 

14. Adjust Swing Joystick  8.00 48.00 40.00 16.64 

15. Rotate Forward 5.63 5.63 0.00 7.17 

16. Tilt Hand 1.61 11.28 9.67 0.04 

17. Push Boom Joystick 8.00 48.00 40.00 16.64 

18. Release Material 4.16 4.16 0.00 3.47 

19. Tilt Hand 1.61 11.28 9.67 0.04 

20. Adjust Swing Joystick  8.00 48.00 40.00 16.64 

21. Rotate Backward 5.40 5.40 0.00 6.49 
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Table B.7.  Original Recovery Analysis (sec) for Electronic-Soil Model. 

# Excavation Task 
Task  

Duration  

Cycle 

Time  

Recovery  

Available  

Recovery  

Needed  

  1. Move Finger 1.00 60.00 5.00 0.12 

  2. Press Joystick Button 1.50 40.00 7.50 0.31 

  3. Lower Boom 3.32 18.07 0.00 2.08 

  4. Move Finger 1.00 60.00 5.00 0.12 

  5. Press Joystick Button 1.50 40.00 7.50 0.31 

  6. Lower Dipperstick 3.47 17.29 0.00 2.31 

  7. Move Finger 1.00 60.00 5.00 0.12 

  8. Press Joystick Button 1.50 40.00 7.50 0.31 

  9. Scoop Material 4.76 12.61 0.00 4.93 

10. Move Finger 1.00 60.00 5.00 0.12 

11. Press Joystick Button 1.50 40.00 7.50 0.31 

12. Rotate Forward 3.47 17.29 3.47 2.31 

13. Move Finger 1.00 60.00 5.00 0.12 

14. Press Joystick Button 1.50 40.00 7.50 0.31 

15. Release Material 3.49 17.19 0.00 2.34 

16. Move Finger 1.00 60.00 5.00 0.12 

17. Press Joystick Button 1.50 40.00 7.50 0.31 

18. Rotate Backward 3.47 17.29 3.02 2.31 
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Table B.8.  Original Recovery Analysis (sec) for Electronic-Gravel Model. 

# Excavation Task 
Task  

Duration  

Cycle 

Time  

Recovery  

Available  

Recovery  

Needed  

  1. Move Finger 1.07 56.07 3.02 2.31 

  2. Press Joystick Button 1.22 49.18 6.10 0.19 

  3. Lower Boom 2.82 21.28 0.00 1.40 

  4. Move Finger 1.07 56.07 3.02 2.31 

  5. Press Joystick Button 1.22 49.18 6.10 0.19 

  6. Lower Dipperstick 3.47 17.29 0.00 2.31 

  7. Move Finger 1.07 56.07 3.02 2.31 

  8. Press Joystick Button 1.22 49.18 6.10 0.19 

  9. Scoop Material 4.50 13.33 0.00 4.31 

10. Move Finger 1.07 56.07 3.02 2.31 

11. Press Joystick Button 1.22 49.18 6.10 0.19 

12. Rotate Forward 3.47 17.29 4.01 2.31 

13. Move Finger 1.07 56.07 3.02 2.31 

14. Press Joystick Button 1.22 49.18 6.10 0.19 

15. Release Material 3.10 19.35 0.00 1.76 

16. Move Finger 1.07 56.07 3.02 2.31 

17. Press Joystick Button 1.22 49.18 6.10 0.19 

18. Rotate Backward 3.47 17.29 4.01 2.31 
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Table B.9.  Original Fatigue Coefficients (kcal/sec) for Hydraulic Control. 

    Hydraulic Control 

# Excavation Task Soil Terrain Gravel Terrain 

  1. Tilt Hand 0.017 0.007 

  2. Push Boom Joystick 1.366 11.416 

  3. Excavator Lowers Boom 0.282 0.657 

  4. Tilt Hand 0.017 0.007 

  5. Adjust Arm Joystick  1.366 11.416 

  6. Lower Dipperstick 0.489 0.818 

  7. Tilt Hand 0.017 0.007 

  8. Push Boom Joystick 1.366 11.416 

  9. Scoop Material 1.793 1.546 

10. Tilt Hand 0.017 0.007 

11. Pull Boom Joystick 1.366 11.416 

12. Raise Boom 0.282 0.657 

13. Tilt Hand 0.017 0.007 

14. Adjust Swing Joystick  1.366 11.416 

15. Rotate Forward 0.575 1.901 

16. Tilt Hand 0.017 0.007 

17. Push Boom Joystick 1.366 11.416 

18. Release Material 0.536 0.899 

19. Tilt Hand 0.017 0.007 

20. Adjust Swing Joystick  1.366 11.416 

21. Rotate Backward 0.575 1.772 
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Table B.10.  Original Fatigue Coefficients (kcal/sec) for Electronic Control. 

    Electronic Control 

# Excavation Task Soil Terrain Gravel Terrain 

  1. Move Finger 0.033 0.293 

  2. Press Joystick Button 0.050 0.025 

  3. Lower Boom 0.552 0.356 

  4. Move Finger 0.033 0.293 

  5. Press Joystick Button 0.050 0.025 

  6. Lower Dipperstick 0.591 0.591 

  7. Move Finger 0.033 0.293 

  8. Press Joystick Button 0.050 0.025 

  9. Scoop Material 1.316 1.198 

10. Move Finger 0.033 0.293 

11. Press Joystick Button 0.050 0.025 

12. Rotate Forward 0.466 0.448 

13. Move Finger 0.033 0.293 

14. Press Joystick Button 0.050 0.025 

15. Release Material 0.597 0.414 

16. Move Finger 0.033 0.293 

17. Press Joystick Button 0.050 0.025 

18. Rotate Backward 0.466 0.448 
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Table B.11.  Simulated Energy Analysis for Hydraulic-Soil Model. 

# Excavation Task 
Task  

Energy 

(kcal) 

Standing  

Energy 

(kcal) 

Sitting  

Energy 

(kcal) 

Bent  

Energy 

(kcal) 

Energy  

Exp. Rate 

(kcal/min) 

  1. Tilt Hand 0.034 0.000 0.098 0.000 1.099 

  2. Push Boom Joystick 0.014 0.000 0.114 0.000 0.916 

  3. Excavator Lowers Boom 0.210 0.000 0.049 0.000 4.316 

  4. Tilt Hand 0.034 0.000 0.098 0.000 1.099 

  5. Adjust Arm Joystick  0.014 0.000 0.114 0.000 0.916 

  6. Lower Dipperstick 0.210 0.000 0.049 0.000 4.316 

  7. Tilt Hand 0.034 0.000 0.098 0.000 1.099 

  8. Push Boom Joystick 0.007 0.000 0.114 0.000 0.866 

  9. Scoop Material 0.204 0.000 0.098 0.000 2.516 

10. Tilt Hand 0.034 0.000 0.098 0.000 1.099 

11. Pull Boom Joystick 0.014 0.000 0.114 0.000 1.916 

12. Raise Boom 0.196 0.000 0.041 0.000 4.736 

13. Tilt Hand 0.034 0.000 0.098 0.000 1.099 

14. Adjust Swing Joystick  0.014 0.000 0.114 0.000 0.916 

15. Rotate Forward 0.202 0.000 0.171 0.000 1.778 

16. Tilt Hand 0.034 0.000 0.098 0.000 0.110 

17. Push Boom Joystick 0.014 0.000 0.114 0.000 0.916 

18. Release Material 0.218 0.000 0.049 0.000 4.449 

19. Tilt Hand 0.034 0.000 0.098 0.000 1.099 

20. Adjust Swing Joystick  0.014 0.000 0.114 0.000 0.916 

21. Rotate Backward 0.197 0.000 0.163 0.000 1.801 
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Table B.12.  Simulated Energy Analysis for Hydraulic-Gravel Model. 

# Excavation Task 
Task  

Energy 

(kcal) 

Standing  

Energy 

(kcal) 

Sitting  

Energy 

(kcal) 

Bent  

Energy 

(kcal) 

Energy  

Exp. Rate 

(kcal/min) 

  1. Tilt Hand 0.033 0.000 0.147 0.000 0.999 

  2. Push Boom Joystick 0.063 0.000 0.489 0.000 0.921 

  3. Excavator Lowers Boom 0.104 0.000 0.106 0.000 1.616 

  4. Tilt Hand 0.033 0.000 0.147 0.000 0.999 

  5. Adjust Arm Joystick  0.063 0.000 0.131 0.000 1.209 

  6. Lower Dipperstick 0.212 0.000 0.065 0.000 3.466 

  7. Tilt Hand 0.033 0.000 0.147 0.000 0.999 

  8. Push Boom Joystick 0.063 0.000 0.049 0.000 1.866 

  9. Scoop Material 0.198 0.000 0.171 0.000 1.759 

10. Tilt Hand 0.033 0.000 0.147 0.000 0.999 

11. Pull Boom Joystick 0.083 0.000 0.049 0.000 1.866 

12. Raise Boom 0.104 0.000 0.106 0.000 1.616 

13. Tilt Hand 0.033 0.000 0.174 0.000 0.999 

14. Adjust Swing Joystick  0.085 0.000 0.041 0.000 2.516 

15. Rotate Forward 0.202 0.000 0.139 0.000 2.004 

16. Tilt Hand 0.022 0.000 0.147 0.000 0.938 

17. Push Boom Joystick 0.063 0.000 0.049 0.000 1.866 

18. Release Material 0.208 0.000 0.057 0.000 3.787 

19. Tilt Hand 0.033 0.000 0.147 0.000 0.999 

20. Adjust Swing Joystick  0.085 0.000 0.041 0.000 2.516 

21. Rotate Backward 0.198 0.000 0.220 0.000 1.549 
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Table B.13.  Simulated Energy Analysis for Electronic-Soil Model. 

# Excavation Task 
Task  

Energy 

(kcal) 

Standing  

Energy 

(kcal) 

Sitting  

Energy 

(kcal) 

Bent  

Energy 

(kcal) 

Energy  

Exp. Rate 

(kcal/min) 

  1. Move Finger 0.039 0.000 0.082 0.000 1.206 

  2. Press Joystick Button 0.009 0.000 0.188 0.000 1.855 

  3. Lower Boom 0.191 0.000 0.041 0.000 4.636 

  4. Move Finger 0.039 0.000 0.082 0.000 1.206 

  5. Press Joystick Button 0.009 0.000 0.188 0.000 0.855 

  6. Lower Dipperstick 0.217 0.000 0.049 0.000 4.432 

  7. Move Finger 0.039 0.000 0.082 0.000 1.206 

  8. Press Joystick Button 0.051 0.000 0.188 0.000 1.037 

  9. Scoop Material 0.203 0.000 0.139 0.000 2.010 

10. Move Finger 0.019 0.000 0.082 0.000 1.006 

11. Press Joystick Button 0.017 0.000 0.188 0.000 0.089 

12. Rotate Forward 0.194 0.000 0.049 0.000 4.049 

13. Move Finger 0.039 0.000 0.082 0.000 1.206 

14. Press Joystick Button 0.06 0.000 0.188 0.000 1.077 

15. Release Material 0.207 0.000 4.894 0.000 0.85 

16. Move Finger 0.058 0.000 0.082 0.000 1.396 

17. Press Joystick Button 0.051 0.000 0.188 0.000 1.370 

18. Rotate Backward 0.213 0.000 0.049 0.000 4.366 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 



240 

 

Table B.14.  Simulated Energy Analysis for Electronic-Gravel Model. 

# Excavation Task 
Task  

Energy 

(kcal) 

Standing  

Energy 

(kcal) 

Sitting  

Energy 

(kcal) 

Bent  

Energy 

(kcal) 

Energy  

Exp. Rate 

(kcal/min) 

  1. Move Finger 0.033 0.000 0.098 0.000 1.091 

  2. Press Joystick Button 0.009 0.000 0.179 0.000 0.857 

  3. Lower Boom 1.790 0.000 0.033 0.000 5.291 

  4. Move Finger 0.033 0.000 0.098 0.000 1.910 

  5. Press Joystick Button 0.009 0.000 0.179 0.000 0.857 

  6. Lower Dipperstick 0.027 0.000 0.049 0.000 4.266 

  7. Move Finger 0.033 0.000 0.098 0.000 1.091 

  8. Press Joystick Button 0.055 0.000 0.179 0.000 1.066 

  9. Scoop Material 0.196 0.000 0.163 0.000 1.792 

10. Move Finger 0.033 0.000 0.098 0.000 1.091 

11. Press Joystick Button 0.009 0.000 0.179 0.000 0.857 

12. Rotate Forward 0.103 0.000 0.098 0.000 1.674 

13. Move Finger 0.033 0.000 0.098 0.000 1.019 

14. Press Joystick Button 0.064 0.000 1.780 0.000 1.107 

15. Release Material 0.203 0.000 0.041 0.000 4.876 

16. Move Finger 0.049 0.000 0.098 0.000 1.224 

17. Press Joystick Button 0.055 0.000 0.179 0.000 1.066 

18. Rotate Backward 0.103 0.000 0.098 0.000 1.674 
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Table B.15.  Simulated Recovery Analysis (sec) for Hydraulic-Soil Model. 

# Excavation Task 
Task  

Duration  

Cycle 

Time  

Recovery  

Available 

Recovery  

Needed 

  1. Tilt Hand   0.98   7.01 6.03   0.09 

  2. Push Boom Joystick   0.70   8.56 7.86   0.04 

  3. Excavator Lowers Boom   3.43   3.43 0.09   1.76 

  4. Tilt Hand   1.01   7.01 6.00   0.10 

  5. Adjust Arm Joystick    0.69   8.56 7.87   0.04 

  6. Lower Dipperstick   3.42   3.42 0.00   1.87 

  7. Tilt Hand   0.97   7.01 6.04    0.09 

  8. Push Boom Joystick   0.27   8.56 2.29  7.99 

  9. Scoop Material   7.06   7.06 0.00 10.63 

10. Tilt Hand   1.01   7.01 6.00   0.10 

11. Pull Boom Joystick   0.79   8.56 7.77   0.06 

12. Raise Boom   3.05   3.05 0.00   1.42 

13. Tilt Hand   1.08   7.01 5.93   0.12 

14. Adjust Swing Joystick    0.62   8.56 7.94   0.03 

15. Rotate Forward 12.45 12.45 0.00 41.17 

16. Tilt Hand   1.01   7.01 6.00   0.10 

17. Push Boom Joystick   0.68   8.56 7.88   0.04 

18. Release Material   3.31   3.31 0.00   1.73 

19. Tilt Hand   0.95   7.01 6.06   0.09 

20. Adjust Swing Joystick    0.66   8.56 7.90   0.04 

21. Rotate Backward 12.18 12.20 0.02 39.34 
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Table B.16.  Simulated Recovery Analysis (sec) for Hydraulic-Gravel Model. 

# Excavation Task 
Task  

Duration  

Cycle 

Time  

Recovery  

Available  

Recovery  

Needed  

  1. Tilt Hand   1.50 11.03 9.53   0.26 

  2. Push Boom Joystick   0.94   3.81 2.87   0.08 

  3. Excavator Lowers Boom   4.13   8.06 3.93   2.94 

  4. Tilt Hand   1.54 11.03 9.49   0.28 

  5. Adjust Arm Joystick    0.91   3.81 2.90   0.08 

  6. Lower Dipperstick   4.53   4.53 0.00   3.66 

  7. Tilt Hand   1.55 11.03 9.48   2.79 

  8. Push Boom Joystick   0.99   3.81 2.82   0.10 

  9. Scoop Material 12.71 12.71 0.00 41.74 

10. Tilt Hand   1.65 11.03 9.38   0.33 

11. Pull Boom Joystick   0.95   3.81 2.86   0.09 

12. Raise Boom   3.93   8.06 4.13   2.61 

13. Tilt Hand   1.96 11.03 9.07   0.49 

14. Adjust Swing Joystick    0.95   2.83 1.88   0.09 

15. Rotate Forward 10.11 10.12 0.00 24.10 

16. Tilt Hand   1.26 11.03 9.77   0.17 

17. Push Boom Joystick   0.93   3.81 2.88   0.08 

18. Release Material   4.03   4.03 0.00   2.77 

19. Tilt Hand   1.57 11.03 9.46   0.29 

20. Adjust Swing Joystick    0.97   2.83 1.86   0.09 

21. Rotate Backward 16.36   16.35 0.00 76.51 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 



243 

 

Table B.17.  Simulated Recovery Analysis (sec) for Electronic-Soil Model. 

# Excavation Task 
Task  

Duration  

Cycle 

Time  

Recovery  

Available  

Recovery  

Needed  

  1. Move Finger   1.00   6.23   5.23   0.09 

  2. Press Joystick Button   0.47 14.01 13.54   0.02 

  3. Lower Boom   3.14   3.14   0.00   1.46 

  4. Move Finger   1.00   6.23   5.23   0.09 

  5. Press Joystick Button   0.46 14.01 13.55   0.02 

  6. Lower Dipperstick   3.32   3.32   1.67   0.22 

  7. Move Finger   1.00   6.23   5.23   0.09 

  8. Press Joystick Button   3.67 14.01 10.34   2.12 

  9. Scoop Material 10.03 10.03   0.00 23.70 

10. Move Finger   0.55   6.23   5.68   0.02 

11. Press Joystick Button   1.42 14.01 12.59   2.17 

12. Rotate Forward   3.71   3.71   0.00   2.18 

13. Move Finger   1.14   6.23   5.09   0.13 

14. Press Joystick Button   4.19 14.01   9.82   2.92 

15. Release Material   3.48   3.48   0.00   1.87 

16. Move Finger   1.54   6.23   4.69   0.26 

17. Press Joystick Button   3.81 14.01 10.20   2.32 

18. Rotate Backward   3.38   3.38   0.00   1.74 
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TableB.18.  Simulated Recovery Analysis (sec) for Electronic-Gravel Model. 

# Excavation Task 
Task  

Duration  

Cycle 

Time  

Recovery  

Available  

Recovery  

Needed  

  1. Move Finger   0.98   7.37   6.39   0.09 

  2. Press Joystick Button   0.42 13.08 12.59   0.01 

  3. Lower Boom   2.69   2.69   0.00   1.01 

  4. Move Finger   1.05   7.37   6.32   0.11 

  5. Press Joystick Button   0.42 13.08 12.59   0.01 

  6. Lower Dipperstick   3.48   3.49   0.01   1.87 

  7. Move Finger   1.50   7.37   5.87   0.25 

  8. Press Joystick Button   3.78 13.08   9.30   2.28 

  9. Scoop Material 12.25 12.25   0.00 38.28 

10. Move Finger   0.98   7.37   6.39   0.09 

11. Press Joystick Button   0.52 13.08 12.56   0.02 

12. Rotate Forward   3.53   6.96   3.43   1.93 

13. Move Finger   1.31   7.37   6.06   0.18 

14. Press Joystick Button   4.10 13.08   8.98   2.77 

15. Release Material   2.96   2.96   0.00   1.27 

16. Move Finger   1.55   7.37   5.82   0.27 

17. Press Joystick Button   3.83 13.08   9.18   2.35 

18. Rotate Backward   3.43   6.96   3.53   1.80 
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Table B.19.  Simulated Fatigue Coefficients (kcal/sec) for Hydraulic Control. 

    Hydraulic Control 

# Excavation Task Soil Terrain Gravel Terrain 

  1. Tilt Hand 0.012 0.046 

  2. Push Boom Joystick 0.005 0.046 

  3. Excavator Lowers Boom 0.457 0.616 

  4. Tilt Hand 0.013 0.050 

  5. Adjust Arm Joystick  0.005 0.015 

  6. Lower Dipperstick 0.483 1.015 

  7. Tilt Hand 0.012 0.502 

  8. Push Boom Joystick 0.967 0.011 

  9. Scoop Material 3.209 15.404 

10. Tilt Hand 0.013 0.059 

11. Pull Boom Joystick 0.007 0.011 

12. Raise Boom 0.336 0.547 

13. Tilt Hand 0.015 0.102 

14. Adjust Swing Joystick  0.004 0.011 

15. Rotate Forward 15.355 8.219 

16. Tilt Hand 0.013 0.029 

17. Push Boom Joystick 0.005 0.009 

18. Release Material 0.461 0.733 

19. Tilt Hand 0.011 0.052 

20. Adjust Swing Joystick  0.005 0.011 

21. Rotate Backward 14.163 31.982 
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Table B.20.  Simulated Fatigue Coefficients (kcal/sec) for Electronic Control. 

    Electronic Control 

# Excavation Task Soil Terrain Gravel Terrain 

  1. Move Finger 0.011 0.012 

  2. Press Joystick Button 0.003 0.002 

  3. Lower Boom 0.338 1.836 

  4. Move Finger 0.011 0.014 

  5. Press Joystick Button 0.003 0.002 

  6. Lower Dipperstick 0.058 0.142 

  7. Move Finger 0.011 0.032 

  8. Press Joystick Button 0.507 0.533 

  9. Scoop Material 8.105 13.742 

10. Move Finger 0.002 0.012 

11. Press Joystick Button 0.445 0.004 

12. Rotate Forward 0.529 0.388 

13. Move Finger 0.015 0.023 

14. Press Joystick Button 0.723 5.104 

15. Release Material 9.524 0.309 

16. Move Finger 0.037 0.039 

17. Press Joystick Button 0.555 0.550 

18. Rotate Backward 0.456 0.363 
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APPENDIX C  

INTEGRATED MICRO SAINT-JACK MODELS & DATA 

 

Table C.1.  Integrated Completion Time (sec) for Hydraulic-Soil Model. 

# 
Completion 

Time 
# 

Completion 

Time 
# 

Completion 

Time 
# 

Completion 

Time 

  1. 82.7 26. 128.9 51. 422.6   76. 216.8 

  2. 974.8 27. 385.9 52. 160.8   77. 130.2 

  3. 274.7 28. 329.3 53. 537.1   78. 447.4 

  4. 179.2 29. 265.9 54. 132.2   79. 201.7 

  5. 980.4 30. 478.5 55. 263.7   80. 92.3 

  6. 182.1 31. 174.2 56. 301.2   81. 322.8 

  7. 124.9 32. 193.0 57. 288.8   82. 267.0 

  8. 106.9 33. 118.1 58. 448.4   83. 100.3 

  9. 139.0 34. 434.1 59. 231.1   84. 625.7 

10. 118.6 35. 223.7 60. 101.5   85. 209.1 

11. 117.4 36. 84.0 61. 233.1   86. 167.2 

12. 231.5 37. 98.5 62. 271.1   87. 94.7 

13. 106.3 38. 391.8 63. 399.6   88. 154.4 

14. 169.2 39. 277.7 64. 266.0   89. 337.5 

15. 173.5 40. 124.6 65. 246.6   90. 331.4 

16. 146.2 41. 179.2 66. 131.7   91. 341.0 

17. 132.5 42. 781.1 67. 134.9   92. 101.9 
18. 118.6 43. 112.9 68. 283.2   93. 163.9 

19. 422.8 44. 171.5 69. 297.8   94. 442.0 

20. 149.6 45. 115.7 70. 166.2   95. 90.7 

21. 200.2 46. 376.1 71. 143.8   96. 102.3 

22. 120.9 47. 111.8 72. 157.2   97. 97.3 

23. 244.6 48. 215.1 73. 462.9   98. 139.4 

24. 177.2 49. 179.8 74. 248.9   99. 127.2 
25. 223.5 50. 128.6 75. 245.4 100. 307.0 
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Table C.2.  Integrated Completion Time (sec) for Hydraulic-Gravel Model. 

# 
Completion 

Time 
# 

Completion 

Time 
# 

Completion 

Time 
# 

Completion 

Time 

  1. 381.6 26. 156.8 51. 264.2   76. 388.1 

  2. 242.4 27. 381.6 52. 229.7   77. 277.3 

  3. 166.7 28. 242.4 53. 254.2   78. 252.0 

  4. 176.2 29. 166.7 54. 359.7   79. 1070.9 

  5. 156.8 30. 176.2 55. 139.6   80. 239.7 
  6. 381.6 31. 284.7 56. 250.6   81. 175.4 

  7. 242.4 32. 381.6 57. 1135.6   82. 157.1 

  8. 166.7 33. 242.4 58. 220.9   83. 426.1 

  9. 176.2 34. 562.4 59. 242.9   84. 510.0 

10. 381.6 35. 176.2 60. 433.7   85. 1038.0 

11. 193.9 36. 156.8 61. 384.8   86. 200.8 

12. 181.4 37. 381.6 62. 183.4   87. 652.0 

13. 5615.2 38. 242.4 63. 245.5   88. 395.6 

14. 171.0 39. 166.7 64. 461.6   89. 176.9 

15. 461.9 40. 176.2 65. 311.8   90. 303.8 
16. 271.4 41. 245.6 66. 149.5   91. 343.6 

17. 171.3 42. 178.5 67. 369.7   92. 330.2 

18. 407.3 43. 183.9 68. 465.0   93. 235.8 

19. 199.9 44. 450.7 69. 190.3   94. 225.8 

20. 239.4 45. 1004.5 70. 410.1   95. 209.0 

21. 563.4 46. 459.7 71. 166.5   96. 695.8 

22. 403.5 47. 303.5 72. 588.8   97. 490.1 
23. 526.7 48. 249.9 73. 150.4   98. 212.1 

24. 1578.0 49. 262.1 74. 235.0   99. 393.3 

25. 436.6 50. 238.8 75. 182.7 100. 500.8 
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Table C.3.  Integrated Completion Time (sec) for Electronic-Soil Model. 

# 
Completion 

Time 
# 

Completion 

Time 
# 

Completion 

Time 
# 

Completion 

Time 

  1. 141.5 26. 88.8 51. 77.1   76. 77.3 

  2. 133.1 27. 94.7 52. 177.6   77. 109.6 

  3. 131.5 28. 83.1 53. 76.8   78. 415.0 

  4. 179.6 29. 193.9 54. 122.2   79. 184.2 

  5. 110.2 30. 116.3 55. 71.4   80. 207.5 
  6. 164.2 31. 74.5 56. 90.7   81. 169.7 

  7. 86.5 32. 111.6 57. 325.1   82. 81.3 

  8. 81.4 33. 85.0 58. 79.7   83. 65.9 

  9. 480.8 34. 125.8 59. 83.5   84. 134.2 

10. 125.1 35. 88.5 60. 180.3   85. 220.0 

11. 80.0 36. 257.6 61. 202.2   86. 138.5 

12. 177.5 37. 179.9 62. 177.2   87. 174.9 

13. 219.6 38. 138.9 63. 106.2   88. 122.7 

14. 74.4 39. 138.1 64. 213.8   89. 680.2 

15. 75.4 40. 450.1 65. 116.0   90. 78.9 
16. 140.6 41. 270.3 66. 197.1   91. 77.1 

17. 78.5 42. 79.1 67. 185.5   92. 184.1 

18. 86.5 43. 75.8 68. 75.9   93. 75.2 

19. 148.9 44. 85.1 69. 191.2   94. 74.5 

20. 230.6 45. 77.2 70. 743.9   95. 70.5 

21. 118.6 46. 139.1 71. 427.6   96. 478.6 

22. 94.2 47. 80.5 72. 122.2   97. 514.2 
23. 137.3 48. 129.5 73. 75.3   98. 244.3 

24. 145.5 49. 122.9 74. 355.6   99. 111.1 

25. 88.6 50. 218.4 75. 176.5 100. 193.2 
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Table C.4.  Integrated Completion Time (sec) for Electronic-Gravel Model. 

# 
Completion 

Time 
# 

Completion 

Time 
# 

Completion 

Time 
# 

Completion 

Time 

  1. 128.6 26. 167.8 51. 131.7   76. 116.0 

  2. 388.7 27. 360.9 52. 139.5   77. 252.8 

  3. 155.2 28. 155.3 53. 199.6   78. 190.6 

  4. 247.7 29. 401.0 54. 194.8   79. 102.4 

  5. 121.3 30. 140.7 55. 2823.6   80. 97.8 
  6. 2223.6 31. 334.1 56. 165.1   81. 261.5 

  7. 259.9 32. 236.5 57. 200.9   82. 736.3 

  8. 100.4 33. 215.9 58. 142.0   83. 144.9 

  9. 203.0 34. 139.5 59. 103.8   84. 106.1 

10. 408.0 35. 347.9 60. 565.9   85. 155.8 

11. 550.3 36. 1551.0 61. 1936.1   86. 364.2 

12. 1433.8 37. 369.4 62. 347.3   87. 155.1 

13. 238.0 38. 151.1 63. 243.8   88. 275.0 

14. 221.7 39. 244.6 64. 131.1   89. 1430.1 

15. 165.3 40. 191.5 65. 125.5   90. 129.5 
16. 269.4 41. 183.4 66. 115.7   91. 197.1 

17. 121.5 42. 110.3 67. 138.2   92. 361.5 

18. 287.3 43. 361.1 68. 219.3   93. 116.8 

19. 152.9 44. 120.1 69. 105.8   94. 118.4 

20. 795.7 45. 276.0 70. 2215.2   95. 136.0 

21. 136.6 46. 269.9 71. 186.3   96. 2294.2 

22. 153.9 47. 141.4 72. 186.3   97. 130.6 
23. 123.8 48. 270.6 73. 100.0   98. 129.1 

24. 145.0 49. 118.2 74. 462.6   99. 592.3 

25. 205.5 50. 252.9 75. 111.5 100. 126.1 
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Table C.5.  Integrated Workload (%) for Hydraulic-Soil Model. 

# Workload # Workload # Workload # Workload 

  1. 45.0 26. 25.0 51. 60.0   76. 75.0 

  2. 45.0 27. 25.0 52. 60.0   77. 75.0 

  3. 45.0 28. 25.0 53. 60.0   78. 50.0 

  4. 45.0 29. 25.0 54. 60.0   79. 50.0 

  5. 45.0 30. 45.0 55. 60.0   80. 50.0 

  6. 45.0 31. 45.0 56. 60.0   81. 65.0 

  7. 45.0 32. 45.0 57. 50.0   82. 65.0 

  8. 45.0 33. 45.0 58. 50.0   83. 65.0 

  9. 45.0 34. 45.0 59. 50.0   84. 65.0 

10. 10.0 35. 45.0 60. 50.0   85. 65.0 
11. 10.0 36. 45.0 61. 50.0   86. 65.0 

12. 10.0 37. 32.0 62. 50.0   87. 65.0 

13. 10.0 38. 32.0 63. 50.0   88. 65.0 

14. 10.0 39. 45.0 64. 50.0   89. 65.0 

15. 10.0 40. 45.0 65. 50.0   90. 65.0 

16. 45.0 41. 45.0 66. 50.0   91. 65.0 

17. 45.0 42. 45.0 67. 50.0   92. 65.0 
18. 45.0 43. 45.0 68. 50.0   93. 45.0 

19. 45.0 44. 50.0 69. 50.0   94. 45.0 

20. 45.0 45. 50.0 70. 50.0   95. 45.0 

21. 45.0 46. 50.0 71. 50.0   96. 45.0 

22. 45.0 47. 50.0 72. 45.0   97. 45.0 

23. 25.0 48. 50.0 73. 45.0   98. 45.0 

24. 25.0 49. 50.0 74. 45.0   99. 45.0 

25. 25.0 50. 60.0 75. 75.0 100. 45.0 
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Table C.6.  Integrated Workload (%) for Hydraulic-Gravel Model. 

# Workload # Workload # Workload # Workload 

  1. 65.0 26. 70.0 51. 25.0   76. 75.0 

  2. 65.0 27. 70.0 52. 25.0   77. 75.0 

  3. 65.0 28. 70.0 53. 25.0   78. 75.0 

  4. 70.0 29. 70.0 54. 25.0   79. 75.0 

  5. 70.0 30. 70.0 55. 75.0   80. 75.0 

  6. 70.0 31. 20.0 56. 75.0   81. 75.0 

  7. 70.0 32. 20.0 57. 75.0   82. 75.0 

  8. 70.0 33. 20.0 58. 75.0   83. 75.0 

  9. 70.0 34. 25.0 59. 75.0   84. 75.0 

10. 70.0 35. 25.0 60. 75.0   85. 75.0 
11. 70.0 36. 25.0 61. 75.0   86. 70.0 

12. 70.0 37. 50.0 62. 75.0   87. 70.0 

13. 70.0 38. 50.0 63. 75.0   88. 70.0 

14. 70.0 39. 50.0 64. 75.0   89. 75.0 

15. 70.0 40. 70.0 65. 75.0   90. 75.0 

16. 70.0 41. 70.0 66. 75.0   91. 75.0 

17. 70.0 42. 70.0 67. 75.0   92. 75.0 
18. 70.0 43. 45.0 68. 75.0   93. 75.0 

19. 70.0 44. 45.0 69. 75.0   94. 75.0 

20. 70.0 45. 45.0 70. 75.0   95. 75.0 

21. 70.0 46. 60.0 71. 75.0   96. 75.0 

22. 70.0 47. 60.0 72. 75.0   97. 50.0 

23. 70.0 48. 60.0 73. 75.0   98. 50.0 

24. 70.0 49. 25.0 74. 75.0   99. 50.0 

25. 70.0 50. 25.0 75. 75.0 100. 50.0 
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Table C.7.  Integrated Workload (%) for Electronic-Soil Model. 

# Workload # Workload # Workload # Workload 

  1. 98.0 26. 60.0 51. 40.0   76. 70.0 

  2. 98.0 27. 60.0 52. 40.0   77. 65.0 

  3. 98.0 28. 60.0 53. 40.0   78. 65.0 

  4. 98.0 29. 60.0 54. 40.0   79. 65.0 

  5. 98.0 30. 60.0 55. 40.0   80. 65.0 

  6. 98.0 31. 60.0 56. 40.0   81. 90.0 

  7. 98.0 32. 60.0 57. 40.0   82. 90.0 

  8. 98.0 33. 60.0 58. 40.0   83. 90.0 

  9. 98.0 34. 60.0 59. 70.0   84. 90.0 

10. 98.0 35. 60.0 60. 70.0   85. 95.0 
11. 98.0 36. 60.0 61. 70.0   86. 80.0 

12. 98.0 37. 60.0 62. 70.0   87. 80.0 

13. 98.0 38. 60.0 63. 70.0   88. 80.0 

14. 98.0 39. 60.0 64. 70.0   89. 80.0 

15. 98.0 40. 60.0 65. 70.0   90. 65.0 

16. 98.0 41. 60.0 66. 70.0   91. 65.0 

17. 98.0 42. 60.0 67. 70.0   92. 65.0 
18. 98.0 43. 40.0 68. 70.0   93. 65.0 

19. 98.0 44. 40.0 69. 70.0   94. 65.0 

20. 98.0 45. 40.0 70. 70.0   95. 70.0 

21. 95.0 46. 40.0 71. 70.0   96. 70.0 

22. 95.0 47. 40.0 72. 70.0   97. 70.0 

23. 95.0 48. 40.0 73. 70.0   98. 70.0 

24. 95.0 49. 40.0 74. 70.0   99. 70.0 

25. 95.0 50. 40.0 75. 70.0 100. 70.0 
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Table C.8.  Integrated Workload (%) for Electronic-Gravel Model. 

# Workload # Workload # Workload # Workload 

  1. 90.0 26. 90.0 51. 95.0   76. 70.0 

  2. 90.0 27. 90.0 52. 95.0   77. 70.0 

  3. 90.0 28. 90.0 53. 95.0   78. 70.0 

  4. 90.0 29. 90.0 54. 95.0   79. 70.0 

  5. 90.0 30. 90.0 55. 95.0   80. 70.0 

  6. 90.0 31. 50.0 56. 95.0   81. 70.0 

  7. 90.0 32. 50.0 57. 95.0   82. 70.0 

  8. 90.0 33. 50.0 58. 95.0   83. 65.0 

  9. 90.0 34. 50.0 59. 95.0   84. 65.0 

10. 90.0 35. 50.0 60. 95.0   85. 65.0 
11. 90.0 36. 50.0 61. 95.0   86. 65.0 

12. 90.0 37. 50.0 62. 95.0   87. 95.0 

13. 90.0 38. 50.0 63. 70.0   88. 95.0 

14. 90.0 39. 50.0 64. 70.0   89. 95.0 

15. 90.0 40. 50.0 65. 70.0   90. 95.0 

16. 90.0 41. 60.0 66. 70.0   91. 50.0 

17. 90.0 42. 60.0 67. 70.0   92. 45.0 
18. 90.0 43. 60.0 68. 70.0   93. 45.0 

19. 90.0 44. 60.0 69. 70.0   94. 80.0 

20. 90.0 45. 60.0 70. 70.0   95. 80.0 

21. 90.0 46. 95.0 71. 70.0   96. 80.0 

22. 90.0 47. 95.0 72. 70.0   97. 80.0 

23. 90.0 48. 95.0 73. 70.0   98. 80.0 

24. 90.0 49. 95.0 74. 70.0   99. 80.0 

25. 90.0 50. 95.0 75. 70.0 100. 80.0 
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