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ABSTRACT 

 
Ghantae, Srikanth Sundaresh. ANALYSIS AND MITIGATION OF EDGE 
STRESSES IN MULTI-DIRECTIONAL FIBER REINFORCED COMPOSITE 
LAMINATES (Major Professor: Dr. Kunigal Shivakumar), North Carolina 
Agricultural and Technical State University. 

 

Edge delamination in composite laminates with adjacent layers oriented at 

different fiber angles is a major failure mode because of the existence of high 

interlaminar stresses and poor interlaminar properties. Mitigation of edge stresses poses a 

challenge even to date. This research provides a detailed analysis and a potential 

approach to solve this problem in a carbon/epoxy composite laminate. Two extreme 

laminates of stacking sequence (0n/90n)s and (+45n/-45n)s subjected to separately applied 

tensile and thermal loading were considered. These problems have been treated in the 

literature as a mathematical or bare interface model, wherein the material properties 

jumped between the adjacent layers of different fiber orientations. A microscopic analysis 

of laminate cross section showed that the interface was not really bare but there was a 

thin resin layer of thickness of about 5.0% of the ply thickness. This realization 

completely changed the modeling and potential modification of the interphase. The 

region between the plies was represented by a resin layer interphase. A three-dimensional 

composite finite element (FE) analysis was performed using ANSYS version 12 code.  

The FE modeling and analysis were verified with the literature for both (0/90)s and (+45/-

45)s laminates for axial tensile loading as well as  temperature change. The resin 

interphase layer with thicknesses of 2.5%, 5.0% and 7.5% of the ply thickness were 



 

 

modeled using three different material properties representing: elastic (brittle epoxy), 

elastic-plastic (toughened epoxy) and non-linear (interleaved polymer nanofiber 

composite). As the layer thickness became zero, the bare interface results were recovered. 

Then, for non-linear resin layer the edge stresses reduced indicating that the interleaving 

of interphase region had a potential to mitigate edge stresses and thus the edge 

delamination failure.  
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different directions and curing them together, the resulting group of plies is referred to as 

a laminate. The composite laminate used in this research is made of continuous fiber as 

shown in Figure 1.1. The laminate properties and the constitutive equations can be 

developed based on the “Classical Laminate Theory (CLT)” by knowing how the plies 

are laid up to build the laminate that is called the stacking sequence (Jones, 1975), and 

(Daniel and Isahi, 1994) and the unidirectional lamina constitutive relationships. A 

general purpose public domain downloadable software mmTexLam is available at 

http://www.ncat.edu/~ccmradm/ccmr/mmtexlam4.html (Chella and Shivakumar, 2001). 

The mmTexlam software calculates the lamina and laminate properties of unidirectional, 

woven as well as braided fibers. The program uses fiber architecture based on different 

weavings as well as braidings. The computation is based on CLT equations and provides 

relation between in-plane stresses and strains in the laminate away from the edges. Near 

the edges, the 3-Dimensional stresses build up to maintain the continuity of the 

deformation between the plies and the equilibrium condition of the laminate. The 

interlaminar transverse normal and shear stresses dominate the free edge regions. These 

stresses can potentially cause delamination and premature failure of structures. 

Understanding the stress field and finding solutions to mitigate these interlaminar stresses 

have been subject of interest for the past three decades. The interlaminar stresses exist 

due to mechanical loading as well as temperature and moisture changes. Types of stresses 

and their magnitudes at the free edges are explained for two different extreme laminates 

(0/90)s and (+45/-45)s below. 
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 Figure 1.3  shows a free body diagram of a (0/90)s laminate under uniform 

extension or  axial strain εx0, if 0° and 90° layers left themselves to undergo contraction, 

the lateral deformation in 0° is much larger than 90°. When these layers are glued 

together by lamination, the 0° layer tends to pull 90° layer, while 90° layer pushes 

(compress) the 0° layer. The pull and push sets up transverse shear stresses (τyz) on each 

of the plane layers acting in opposite directions. This must be equilibrated by σy acting on 

each layer. The stresses σy and τyz cause a moment about z direction and in order to 

satisfy the moment equilibrium condition interlaminar transverse stress σz will develop as 

shown in Figure 1.4. These two stresses above satisfy the equilibrium and continuity 

conditions of the elasticity at the interface as shown in Figure 1.4. Figure 1.5 shows 

typical distribution of σz and τyz near the free edge between 0° and 90° layers in the 

laminate. The stresses that develop at free edge in (0/90)s is attributed to Poisson’s ratio 

mismatch of layers and  are called the edge stresses. The stresses are zero in the interior 

width of the laminate and peak towards the edges. The interlaminar shear stress τyz falls 

to zero at the free edge, since the shear stress cannot exist at the free surface. The normal 

stress (σz) is zero in the middle and increases towards the free edge and is singular at the 

free edge due to mismatch in material properties. The distance from the edge where the 

out of plane normal and shear stresses exist is called the edge stress distance (d), and this 

can exists both in the normal stresses and the shear stresses in the laminate, schematic of 

the edge distance is shown in Figure 1.5. 
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composite laminate. They used a finite difference technique and two dimensional theory 

of elasticity to study the mechanism and calculate the edge stresses in (+45/-45)s laminate 

under tensile loading. In this study, the out of plane shear stress at free edge was forced to 

zero. They showed that the interlaminar out of plane shear stresses exist only at the 

region close to the edges and this region is approximately equal to the laminate thickness. 

Rybichi (Rybichi, 1971) used 3-D Finite Element Analysis (FEA) to obtain approximate 

stress solution based on complementary energy formulation on symmetric laminate with 

in plane loading. Edge effects were studied in (+45/-45)s, (-45/+45)s and (90/0)s laminates 

under tensile loading and showed that the out of plane shear stress τyz is significant at the 

edges and out of plane shear τxy can occur at the center section. 

Tang and Levy (Tang and Levy, 1975) developed boundary layer theory for 

laminated composites and analyzed (+45/-45)s laminate for interlaminar stressed under 

tensile loading. The results from this theory compared well with the work of Pipes and 

Pagano (Pipes and Pagano, 1970). Wang and Crossman (Wang and Crossman, 1977) 

used 2D-FEA to calculate the interlaminar stresses for (90/0)s, (0/90)s, (+45/-45)s and 

(±45/0/90)s laminates for uniform tensile loading. They concluded that the physical effect 

of singularity stresses at the edges were not found and these stresses if found would 

dissipate in the laminate resulting in stress redistribution. The material property would 

degrade at locations where the stress redistribution occurred. Wang and Crossman (Wang 

and Crossman, 1977) extend the analysis for (90/0)s, (0/90)s, (+45/-45)s and (±45/0/90)s 

laminates for uniform thermal loading and calculated the interlaminar stresses at the 

laminate. They concluded that the singularity stresses exist at the boundary region for 
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laminates under thermal loading. Pagano (Pagano, 1978) proposed theoretical solution 

using Reissner’s variational principle (Reissner, 1950) and layer equilibrium. The stress 

distribution was calculated for (+45/-45)s laminate and compared with Wang and 

Crossman (Wang and Crossman, 1977). Conclusion from this model showed no 

singularities at the free edges and singularities were mathematical in nature and not 

realistic. 

Raju and Crews (Raju and Crews, 1981) used quasi 3-D FEA to calculate 

interlaminar stresses for (0/90)s, (15/-75)s, (30/-60)s, (+45/-45)s, (60/-30)s, (+75/-75)s and 

(90/0)s laminates under uniform tensile loading. They showed the existence of 

singularities for σz, τxz stresses at the free edge of the laminate interface. Wang and Choi 

(Wang and Choi, 1982) studied boundary layer stress singularities using Lekhnitskii’s 

stress potential and theory of anisotropic elasticity. They compared their results with 

Pipes and Pagano and Wang and Crossman (Pipes and Pagano, 1970) and (Wang and 

Crossman, 1977) for (+45/-45)s laminate. They concluded that the boundary layer stress 

developed from their theory predicted a boundary layer that was more exact compared to 

the elasticity and other approximate solutions. Also, concluded that the boundary layer 

for (+45/-45)s laminate had the highest boundary layer width of 4.5% for lamina 

thickness. Wang and Choi (Wang and Choi, 1982) also computed interlaminar stresses at 

the boundary layer for (+θ/-θ)s laminate. They concluded that the ply orientation and ply 

thickness had significant effects on the development of in-plane and interlaminar stresses. 

The boundary layer width due to moisture loading was one-half of laminate thickness, for 

lamina thickness of 30-70% of the total laminate thickness. 
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Kassapoglou and Lagace (Kassapoglou and Lagace, 1987) analyzed interlaminar 

stresses in (+45/-45)s and (0/90)s laminates using closed form solution with force balance 

method and principle of minimum complementary energy. They compared their solutions 

with Pipes and Pagano and Wang and Crossman (Pipes and Pagano, 1970) and (Wang 

and Crossman, 1977). Flanagan (Flanagan, 1994) calculated the free edge stresses for 

(0/90)s and (+45/-45)s laminates for tensile loading using the principle of minimum 

complementary energy. The solution compared well with (Pipes and Pagano, 1970). 

Lessard et al.,  (Lessard, Schmidt, and Shokrieh, 1996) used 3-D FEA to calculate stress 

distribution at the free edge for (0/90)s laminates, using ‘slice method’ technique with a 

20 noded brick element. Their solution has been shown to agree well with the work of 

Pipes and Pagano (Pipes and Pagano, 1970) and Kassapoglou and Lagace (Kassapoglou 

and Lagace, 1987). Icardi et al., (Icardi and Bertetto, 1995) conducted 3D FEA for 

calculating the interlaminar stresses for (0/90)s laminate using special elements called 

“wedge element” to get more accurate singularity stress results at the free edges. Their 

study concluded that there was no effect on the power of singularity due to the change in 

lay up, material properties or the geometry of the laminate. 

Tahani and Nosier (Tahani and Nosier, 2003) used Reddy’s layer wise theory 

(LWT) (Reddy, 1987) and calculated stress at the free edges for (0/90)s laminates for 

mechanical and thermal loading. They compared results with Wang and Crossman (Wang 

and Crossman, 1977) and found to agree well. Becker et al., (Becker, Peng Jin, and 

Neuser, 1999) derived closed form solutions to analyze the stresses at free corners in 

(0/90)s laminates under thermal loading, they have compared the results with FEA 
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1.10 has been a typical failure mode in laminates. The free edges are very common where 

there are joints between two parts or at the ends that have been trimmed off. A number of 

attempts were made to reduce these stresses through various methods during for the past 

25 years. Kim (Kim, 1983) conducted experiments to understand effect of addition of 

glass fabric between two differently oriented lamina. They found that for a laminate with 

glass fabric interleaved specimen loaded in tensile, no delamination occurred at the 

interface and they also found that the strength of the laminate increased due to this 

interleaving. However, the experiments did not give reliable results to show that there 

was a reduction in stresses compared to the baseline. Mignery et al., (Mignery, Tam, and 

Sun, 1985) tried stitching the edges as shown in Figure 1.11 of the laminates to suppress 

the interlaminar out of plane normal stresses in composite laminates. Edge delamination 

was arrested at and around the stitches in all the stacking sequence studied. The tensile 

strength of (+30/-30/90)s increased, tensile strength on (+30/-30/0)s decreased, and had no 

effect on (+45/-45/02/902)s laminate. However, the stitching did not eliminate the edge 

delaminations unless they were very close to the edges. 

 

 
Figure 1.10 Edge delamination mode of failure in a laminate (Tanimoto, 2002) 
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Howard et al., (Howard, Gossard, and Jones, 1986) used capping of the edges to 

mitigate the normal edge stresses and delay the onset of delamination, schematic of edge 

capping technique is shown in Figure 1.13. This capping reduced the interlaminar stresses 

for (+30/-30/0/-30/+30)s and (+30/-30/90/-30/+30)s laminates but there was no change in 

the total strain energy release rate. Chan et al (Chan, Rogers, and Aker, 1986) showed 

that addition of adhesive layer of 0.0105” (2 Ply thickness)  thick at the interphase and 

compared the results  between interleaving  at the region closer to the edges or the enter 

width of the specimen as shown in Figure 1.14. They showed that the edge delamination 

was eliminated until the final failure and also showed that there was an increase in 

ultimate strength for the interleaved laminate. However, the drawback of this study was 

that the adhesive film is too thick and was not optimized. This could lead to significant 

loss of in-plane properties. They also used 3D FEA to show the edge stress regions. 

However, the study was performed only on the specific laminate stacking sequence and 

the mesh refinement was not fine enough to obtain good stress distribution. Lagace et al. 

(Lagace, Mong, and Khulmann, 1993) also studied the effect of adding  adhesive layers 

of 0.008” (0.203mm) on (+45/-45/0/90)4s and (((+452/-452)/0)s/905)2s composite laminate 

for tensile properties. The results showed that the addition of adhesive layer suppressed 

or at least significantly delayed the onset of delamination. The load carrying capacity 

increased by 50% for the interlayer. However, the thickness of the adhesive layer was 

higher and led to loss of in-plane strength. Tanimoto (Tanimoto, 2002) and Hojo et al. 

(Hojo, Matsuda, Tanaka, Ochiai, and Murakami, 2006) proposed interleaving technique 

such as dispersed particulate interlayers for tensile and impact loading. Figure 1.15 shows 
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elastic, the elastic-plastic or non-linear elastic depending on the state of stress. The 

mathematical representation with a bare interface model and a sudden change of the 

material properties is a modeling simplicity, which could be the root cause of singularity 

stresses. All the analytical models used to analyze the interfacial stresses so far were 

based on the mathematical interface. The Figure 1.16 shows a cross section of (0/90)s 

laminate with an enlarged view at 0 and 90 interphase region. Notice a finite resin layer, 

in this case about 2.3x10-4” (250 μm) or 5% of ply thickness (this representation of 

laminate is referred in this study as resin interphase model). Crews et al., Raju et al and 

Smith et al have tried using thin resin layer interphase for cracked specimens, however 

analysis for models with the resin layer for edge stresses study of realistic geometry 

under tensile and thermal loading has not been attempted to date (Crews, Shivakumar, 

and Raju, 1986), (Crews, Shivakumar, and Raju, 1988), (Raju, Crews, and Amanpour, 

1988) and (Smith and Shivakumar, 2001). Whether this modeling will significantly 

impact the interlaminar stresses or not, has not been explored. Extension of the resin layer 

to behave as an elastic-plastic or non-linear, in case the layer is replaced by an interleaved 

material such as polymer nano-fiber composite needs to be understood and their impact 

on interlaminar edge stresses needs to be explored. Because of large variation of 

geometric parameters and non-linearity of the interphase material the modeling analysis 

and the interpretation of results are challenging. However, the understanding of stress 

distribution at and around the region of free edges is very critical to prove the validity of 

the concepts such as polymer nano-fiber interleaving to relieve or mitigate interlaminar 
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This chapter also presents mesh convergence study and comparison with existing 

literature for a laminate under tensile loading. Chapter 3 presents the results for 

interlaminar edge stresses within a realistic resin interphase layer between the 0 and 90 

and 45 and -45 plies in symmetric laminates. It also presents the effect of ply grouping on 

the edge stresses and distance. Chapter 4 examines the effect of temperature change on 

interlaminar stresses in bare and resin layer interphase models. Chapter 5 presents the 

concluding remarks and future research. 
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structural solids (SOLID45) and has 3 degrees of freedom at each node, this element is 

designed to model layered thick shells or solids. The element allows up to 100 different 

material layers. If more than 100 layers are required, a user-input constitutive matrix 

option is available. The element may also be stacked as an alternative approach. The 

element has three degrees of freedom at each node translations in the nodal x, y, and z 

directions. Number of layers, thickness of the layers, fiber orientation and material 

properties have to been defined in order to use the element. Figure 2.4 shows a sketch of 

SOLID46 element with identification labels for the nodes (I-P) and faces (1-6). 

 

 
Figure 2.4 Sketch of SOLID-46 element (ANSYS® Theory Reference, 2009) 

 

2.3.3 Finite Element Mesh and Mesh Refinement 

In order to obtain a good stress field response from the finite element model 

developed a number of different models were analyzed based on the model meshing, A 
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Table 2.3 Mesh Refinement along z-Direction 

Model x-Div y-Div z-Div Grading
No. of 

Elements 
No. of 
nodes 

1 5 10 16 10 800 6,400

2 5 20 16 20 1,600 12,800

3 5 40 16 40 3,200 25,600

4 5 80 16 80 6,400 51,200

5 5 120 16 120 9,600 76,800
 

2.3.4 Analysis Procedure 

Using the method described above the mathematical model and the material 

attributes. The model was idealized using the 3-D SOLID46 as explained in the mesh 

refinement section. The material properties and the fiber orientation was defined. The 

boundary conditions were imposed as explained in section 2.3.4. The linear elastic 

analysis of the model was conducted using the ANSYS Sparse solver. The results were 

obtained from the solved model at the critical regions using the post processing module to 

output all stress and strains. The ANSYS total nodal stress at each of the nodes in x, y, z , 

xy, yz, xz direction in the critical regions were used in this analysis. Average axial 

normal stress σx0 was computed by extracting the reaction at x=0 plane on the specimen 

and dividing by the area of cross section. The reaction load for the models used for mesh 

refinement analysis were found to be 55,511 lbs, the average σx was found to be 55,390 

ksi. To verify this value the average stress was also calculated using the Young’s 

modulus equation σ=Exε0. The laminate Ex was found to be 5.539 x106 psi from the 
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The mesh for the model in y-direction has been determined, in this part the results 

from the z-direction refinement has been discussed. Figures 2.10 to 2.13 show the stress 

distribution for the thickness refinement study. 

Figure 2.10a shows the distribution of interlaminar shear stress normalized by σx0 

for different values of z-direction refinements from 4 graded divisions to 64 graded 

divisions for half-width of the specimen. The stresses are close to 0 in the middle and 

increases towards the free edges. At the free edge the stress is singular due to the 

difference in the material properties between the lamina. The overall stresses distribution 

matches the figures from Daniel and Isahi (Daniel and Isahi, 1994). But as the number of 

divisions increases the σz increase at free edge, which is an indication of singularity of σz 

at free edge. Figure 2.10b shows and enlarged view of the normalized interlaminar stress 

σz closed to the free edge of the specimen. Here it can be seen that models with 4 

divisions are more shows very good and same stress distribution. However, the model 

with 16 graded divisions show a better and smooth distribution in agreement with the 

figures in Daniel and Isahi (Daniel and Isahi, 1994) of the stress compared to the other 

models. 

Figure 2.11 shows the normalized stress distribution for τyz with respect to y/b for 

different divisions in z. From Figure 2.10 and Figure 2.11, it can be seen that the models 

with 16 divisions will clearly describe stresses at the free edge. This mesh refinement is 

used throughout the study. 
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Wang and Crossman conducted numerical analysis using finite element method to study 

the stress fields of cross-ply laminates. The stress distribution close to the free edges were 

studied for the singular behavior of the stresses. Pagano proposed an approximate and 

simple solutions theory for predicting the stress distribution across the interphase of the 

laminate using the layer equilibrium principle. Nguyen and Caron derived a new layer 

wise model using the M4-5n was proposed. All the results shown seem to agree with each 

other very well as shown in the work of Nguyen and Caron for a cross ply laminate. 

Figure 2.14 shows the distribution of normalized stress normalized σz across the 

half-width of the specimen. The model used in the present work is plotted to compare 

with existing literature. The results have been plotted at the 0 and 90 interphase. As it can 

be seen that the results obtained in the present research matches well with the results in 

literature Wang and Crossman (Wang and Crossman, 1977) and Nguyen and Caron 

(Nguyen and Caron, 2009). The present results show a smoother curve probably due to a 

more refined meshing. 

Similarly, Figure 2.15 shows the normalized distribution of τyz across the width of 

the specimen. The results from present research have been compared with the results in 

the literature and has been found to agree very well. Figure 2.16 shows the normalized 

value of σz through the thickness of the specimen. Comparing to the previous work, the 

stress values at the free edge seems to be defined well in the present work however the 

overall results agree well in this case also. This is because of the higher mesh refinement 

compared to the existing literature. 
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2.5.3 Verification of Modeling 

Similar to the (0n/90n)s case the current model (+45n/-45n)s was also verified 

against the current literature for its accuracy. Raju and Crews (Raju and Crews, 1981) 

studied the stress distribution at the free edges of the cross ply laminate using finite 

element method, the results from this work has been used to compare the results of the 

present model developed in this research. Figure 2.24 shows the comparison between the 

results for existing literature and the current results for distribution of normal stress σz  

normalized across the half-width. As it can be observed, the current results agree very 

well with the literature. Figure 2.25 shows the comparison between the results for 

existing literature and the current results for distribution of shear stress τxz across the 

half-width of the laminate. The results agree very well with the results from the present 

model. 

 Figure 2.26 shows the distribution of normal stress through the thickness of the 

specimen at the free edge. The figure shows that the current results agree very well with 

the existing literature. Based on the comparison of the it can be concluded that the current 

model (+45n/-45n)s  agrees well with the literature and is accurate enough for further 

analysis work. 
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(+45n/-45n)s laminate. The refined FE model developed here and is used in the analysis of 

problems in Chapter 3 and 4.  
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intermediate and fine polishing respectively. The thickness of the interphase is 

determined using the cross section. The resin interphase layer thickness has been 

measured using the Nikon Optical microscope, a sample of the image obtained and is 

shown in  Figure 3.3. 

 

 

Figure 3.1 Specimen polishing machine 

 

Figure 3.2 Casted laminate in a resin 
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These results expected to answer the questions if the modeling of resin interphase 

region is necessary and if the non-linearity of the interphase material will help to mitigate 

the edge stresses in cross-ply and angle-ply laminates. 

3.5.1 Elastic Interphase Material 

In this section the results for the analysis of resin interphase model compared with 

different thickness of resin interphase has been presented. 

3.5.1.1 (02/902)s laminate with a resin interphase  

Figure 3.13 to Figure 3.15 show the variation of interlaminar normal stress along 

the laminate width. The figures indicate results for three different resin layer and 

thicknesses namely 2.5%, 5% and 7.5% of the laminate ply thickness (h). Because there 

could be three possible plots in the interphase region these three plots are shown. Figure 

3.13a is for the region (A) at the 0° ply and the resin interphase, Figure 3.14a is at the 

mid thickness of the resin layer (B) and Figure 3.15a is at the resin interphase and the 90° 

ply. In all these cases σz appears to show a singularity response. The σz stress distribution 

very close to the free edge is shown in Figure 3.13b, Figure 3.14b and Figure 3.15b for 

regions A, B and C respectively. Because the case A and C represent the mathematical 

interphase, the σz response shows singularity. However, for the case B (thin ply layer 

only), σz is less severe compared to the bare interface. As the resin layer thickness 

increases (2.5%, 5% and 7.5%) the magnitude of σz at the free edge reduces see Figure 

3.14b), indicating that the stresses in the resin layer is non-singular. The stress 

distribution of σz shows it is trending towards 0, this could be due to the mechanical 
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Interlaminar edge stress studies have been performed for (+4510/-4510)s and the 

results are found to be similar to the 2-ply laminate and these results are shown in 

Appendix C. 

Based on the analysis, the interlaminar normal stresses have a little effect on the 

thickness of the interphase layer and prediction of stresses for angle ply laminate (+452/-

452)s. The interlaminar shear stresses are lower at the last 1% from the free edge 

compared to bare interface. The singularity effect vanishes as the resin interphase 

thickness increases. 

The above analysis concludes that the resin interphase layer smoothens the 

interlaminar edge stresses. Furthermore, the interlaminar stress reduces as the resin layer 

thickness increases. 

3.5.2 Effect of Ply Grouping and Lamina thickness on the interlaminar stresses 

3.5.2.1 (02/902)s Laminate 

To study the effect of the ply grouping analysis was performed on different ply 

grouping on the (0n/90n)s laminates. Figure 3.37 shows a schematic of 2 and 4 layers of 

(0/90)s laminate. Each layer makes up of 1 thickness of the fiber diameter. For a 2 layer 

laminate there are totally eight times the diameter of the fiber. For the 4 layer there are 

totally 16 times of the diameter for the selected laminate. 
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Table 3.2  Variation of edge distance with ply grouping for (45n/-45n)s laminate for 
resin layer interphase 

2b n t d in [t/b] [d/t] % 

0.5 1 0.02 0.07 4 1.75 

0.5 2 0.04 0.09 8 1.13 

0.5 4 0.08 0.13 16 0.81 

0.5 6 0.12 0.17 24 0.71 

0.5 8 0.16 0.21 32 0.66 

0.5 10 0.20 0.25 40 0.63 

0.5 12 0.24 0.29 48 0.60 

 

In order to study the effect of the lamina thickness analysis was performed for 

different lamina thickness from 0.0005”-0.005” for a (+45/-45)s laminate. As the ply 

thickness decreases the edge distance decreases, this observation supports some of the 

experiments and theory conducted in the literature. These figures have been shown in 

Appendix C 

Based on the analysis for variation in ply grouping for cross-ply and angle ply 

laminate. The following can be concluded, the ply grouping has no effect on the 

modeling of resin interphase for (0n/90n)s laminate and remains at 1.25 times the laminate 

thickness like the bare interface. The ply grouping has small effect on the modeling of the 

resin interphase for (+45n/-45n)s laminate and is about 1.75 times of the laminate 

thickness for single ply and reduces to 0.6 times for 12 ply. 
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Based on the analysis there is no significant reduction in the normal stress σz for 

the change in thickness or the change in the material type at 1% closer to the edge. 

However, there is a significant reduction in τyz at the free edge of the interphase 

compared to the bare interface. 

3.5.3.4 Angle-ply  (+452/-452)s laminate with a Non-Linear interphase 

Figure 3.54 shows the variation of normal stress distribution across the width of 

the specimen for (+452/-452)s laminate, for different thickness of the interphase closer to 

the edge near the 0° lamina for a non-linear interphase. The normal stresses are 

compressive and is mathematically singular at the edges for the bare interface, However, 

for the non-linear interphase for different thickness shows the stress are very close to zero 

and do not show the presence of singularity as expected. 

Additional plots for 10 ply thickness laminate and through the thickness plots  

showed similar results as the 2-ply case and are presented in Appendix C. They all show 

results that are similar to the 2 ply thick. Hence the ply grouping did not generally change 

the trend of the stress values. 

In summary a non-linear resin layer interphase between +45 and -45 plies reduces 

both σz and τyz to finite value and very much smaller than σx. 
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the laminate thickness for (0n/90n)s laminate and varies from 1.75 to 0.6 times the 

laminate thickness for ply grouping of one to twelve for (+45n/-45n)s laminate. 
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effect vanishes for the model at the free edges for model with interphase. The stress 

values at the free edges are also lower compared to the bare interface. 

Figure 4.12 shows the distribution of interlaminar shear stresses (τyz) for (02/902)s 

across the width of the specimen closer at location 5.0% closer to the free edge. The 

stress distribution ranges from 0 psi/ °F to 4 psi/ °F. Based on the figure it can be 

concluded that using the resin interphase in the model the shear stress trends to zero 

faster for the resin interphase layer than the bare interface model. The stress values at the 

free edges are also lower compared to the bare interface. 

Figure 4.13 shows the normal stress distribution across the width for (452/-452)s 

for uniform thermal loading comparing bare interface with different interphase 

thicknesses 2.5, 5.0  and 7.5% of the ply thickness The stresses have near zero values in 

the region far away from the free edge of the laminate and increases to 5 psi/ °F. From 

the figure it can be seen that the addition of interphase layer has no significant effect on 

the stress prediction except for the free edges where the effect of the singularity vanishes 

for the model with interphase. The stress values at the free edges are also lower compared 

to the bare interface. 

Figure 4.14 shows the plot of interlaminar shear stresses (τyz) for (452/-452)s 

across the width of the specimen closer at location 5.0% closer to the free edge. The 

stress distribution of the model with interphase is same as that of the bare interface, but 

the magnitude of stresses is lower. The stress values at the free edges are also lower 

compared to the bare interface. 
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Additional analysis for laminate with 10-plies have been conducted and the 

results have been shown in Appendix D. Based on the analysis the interlaminar edge 

stress distribution has no effect on addition of the interphase layer in the laminate model. 

As the thickness increases the singularity effect reduces. As the thickness of the 

interphase layer reduces the solution goes closer to the bare interface model. 

4.4.2 Interlaminar analysis of different material interphases 

Previous section showed the effect of interlaminar edge stresses for addition of a 

linear elastic matrix material at the interphase. In this section FE studies have been 

conducted to see the effect on the interlaminar edge stresses if the interphase is changed 

from elastic to elastic-plastic and non-linear to bring out the effect of plasticity at the 

interphase has been presented. This result will show if the use of a tougher interlayer such 

as the addition Electro-spun nano nylon 66 fibers will help in reducing the interlaminar 

edge stresses for the (0n/90n)s and (+45n/-45n)s laminate for thermal loading. 

Figure 4.15 shows the distribution of interlaminar normal stresses (σz) for 

(02/902)s across the width of the specimen closer to the free edge for different material 

properties of the matrix interphase. The stress varies from zero in the region away from 

the laminate and increases closer to the free edge from 0-7 psi/ °F.  From the figure it can 

be seen that the stress response of the model with different material interphase show the 

same stress distribution on the interior of the free edge. However, at the free edge the 

effect of singularity vanishes. 

Figure 4.16 shows the distribution of interlaminar shear stresses (τyz) for (02/902)s 

across the width of the specimen closer at location 5.0% closer to the free edge for 
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modeled using three different material properties representing: elastic (brittle epoxy), 

elastic-plastic (toughened epoxy) and non-linear (interleaved polymer nanofiber 

composite). As the layer thickness became zero, the bare interface results were recovered. 

Then, for non-linear resin layer the edge stresses reduced indicating that the interleaving 

of interphase region had a potential to mitigate edge stresses and thus the edge 

delamination failure. 

The FE modeling and analysis were verified with the literature for both (0/90)s 

and (+45/-45)s laminates for axial tensile loading as well as  temperature change. The 

laminate of length ‘L’, width ‘2b’ and thickness ‘t’ subjected to uniform tensile strain of 

1% was modeled by 3D SOLID46 elements. Because of the symmetry 1/8th of the 

laminate was modeled for (0n/90n)s laminate and the same model was used for (+45n/-

45n)s laminate. A mesh refined concept of finer elements near high stress gradient region 

was followed. A converged refined model had 3,200 elements and 25,600 nodes was used 

for detailed investigation. 

5.1.1 Validation of bare interface models 

The bare interface models for (0n/90n)s and (+45n/-45n)s laminates subjected to 

tensile loading were analyzed. Calculated the interfacial interlaminar normal and shear 

stresses and were compared with the work of Nguyen and Caron (Nguyen and Caron, 

2009) and Wang and Crossman (Wang and Crossman, 1977) and have been found to 

agree very well. The analysis was repeated for thermal loading and the results were also 

found to agree well with work of Nguyen and Caron (Nguyen and Caron, 2009). 
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The bare interface analysis was extended to study the ply grouping (n), for n=1, 2, 

4, 6 and 10. The result concluded that edge stress distance is 1.25 times the thickness of 

the laminate for (0n/90n)s and varied between 1.75 to 0.80 as the ply thickness increases 

from 1 to 12 

5.1.2 Resin layer interphase model with tensile loading 

Three thicknesses of resin layer models were analyzed 2.5%, 5.0% and 7.5% of 

ply thickness, which represent 50%, 100% and 150% of the estimated thickness of resin 

layer in AS4/3501-6 carbon/epoxy composite. Three types of resin properties were used: 

(1) elastic (brittle), (2) elastic-plastic (toughened) and (3) non-linear, a polymer nano 

fabric reinforced resin. Interlaminar stresses (σz, τyz and τxz) were examined near the free 

edge and were compared with bare interface results. 

 The conclusions from these analyses are: 

Elastic resin 

• The interlaminar edge stresses were same as the bare interface model results for 

thin resin  

• As the thickness of the resin interphase layer increased, the edge stresses reduced. 

• Thick resin interphase layer reduces the interlaminar stresses at the edges but also 

could potentially reduce the in plane properties of the laminate.  

• The effect of ply grouping on the laminate due to the addition of resin interphase 

layer remained the same as the bare interface model. 

Elastic-plastic and non-linear resin 

• The magnitude of the edge stresses (σz and τyx)  were reduced and did not show the 
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singularity effect as in case of bare interface model. 

• The use of resin interphase modeling reduced the interlaminar edge stress compared 

to bare interface modeling.  

• The non-linearity effect can be achieved by using an interphase layer consisting of 

an Electro-spun polymer nano fiber with resin.  

5.1.3 Effect of thermal loading 

Temperature or the moisture change in composite laminate also causes edge 

stresses in a loaded laminate because of differential expansion coefficient in different 

directions. Temperature and moisture have similar effect. In this research only the 

temperature change was investigated. Both the bare interface and resin layer interphase 

models with three different interlayer thicknesses and three material properties were 

analyzed for a temperature increment of 100°F. Interlaminar stresses  at mid-length of the 

specimen were examined. These results showed the following conclusion:  

• The elastic bare interphase model can reproduce the results in the literature 

• The results from elastic resin interphase model has similar trend as the bare 

interface model 

• Nonlinear resin interphase reduced both σx and τxz stresses to be finite and much 

lower than the elastic resin interphase. 

Finally, use of a non-linear resin layer made of combining ductile polymer nano-

fibers and resin matrix can be a viable approach to mitigate the edge stress in composite 

laminate under thermal loading as well as mechanical loading. 
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*DIM,STXXYB,,div1 
*DIM,STYYYB,,div1 
*DIM,STXYYB,,div1 
*DIM,STZZYB,,div1 
*DIM,STYZYB,,div1 
*DIM,STXZYB,,div1 
 
*DIM,STXXYT,,div1 
*DIM,STYYYT,,div1 
*DIM,STXYYT,,div1 
*DIM,STZZYT,,div1 
*DIM,STYZYT,,div1 
*DIM,STXZYT,,div1 
 
*DIM,STXXZ,,div2 
*DIM,STYYZ,,div2 
*DIM,STXYZ,,div2 
*DIM,STZZZ,,div2 
*DIM,STYZZ,,div2 
*DIM,STXZZ,,div2 
!----------------------------------- 
!  List of input parameters 
!----------------------------------- 
divx=5 
div=40           ! Total No. of Divisions 
grad=40          ! Gradient 
div1=div+1 
divz=16 
gradz=16 
div2=2*divz+5 
theta = 0 
!--------------------------------- 
!Scaler Parameters in Standard SYSTEM 
!--------------------------------- 
L=2          !specimen length 
W=0.5       !specimen width 
t1=0.0475  !Specimen thickness 1 
t2=0.0025!Specimen thickness for interleave 
div1=div +1 
grad2=1/grad 
!----------------------------------- 
!Element types 
!----------------------------------- 
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ET,1,SOLID46        !Plane Stress 3-D 8-Noded Structural Solid ELEMENT 
KEYOPT,1,2,0        !with KEYOPT(2)=0 i.e. Constant thickness layer input 
!----------------------------------- 
!Element types for interleave 
!----------------------------------- 
ET,2,SOLID45       !Plane Stress 3-D 8-Noded Structural Solid ELEMENT 
!------------------------------------ 
!Real Constants 
!------------------------------------ 
!-----for angle=+ theta deg.--------------------- 
r, 1, 1,0, 1,1, ,       ! Real 1 for Mat 1,NL, LSYM, LP1, LP2, ,, 
rmore, 0, , , , ,   !  Kref=0 i.e. midplane ref. 
rmore, 1,theta,0.005  ! Mat, theta, Thick. 
 
!-----for angle=- theta deg.--------------------- 
r, 2, 1,0, 1,1, ,       ! Real 1 for Mat 1,NL, LSYM, LP1, LP2, ,, 
rmore, 0, , , , ,   !  Kref=0 i.e. midplane ref. 
rmore, 1,90, 0.005  ! Mat, theta, Thick. 
!--------------------------------- 
!Material properties1 -Standard System. 
!--------------------------------- 
MP,EX,1,20e6          !Orthotropic composite material 
MP,EY,1,2.1e6        !convert Msi into Psi units 
MP,EZ,1,2.1e6 
MP,NUXY,1,0.022 
MP,NUXZ,1,0.022 
MP,NUYZ,1,0.21 
MP,GXY,1,0.849e6 
MP,GXZ,1,0.849e6 
MP,GYZ,1,0.849e6 
!--------------------------------- 
!Material properties2 -Standard System. 
!--------------------------------- 
mptemp,1,0  
mpdata,ex,2,,.3384e6, 
mpdata,prxy,2,,0.3, 
tb,MELAS,2,17 
tbtemp,0 
tbpt,defi,0,0,,,,, 
tbpt,defi,0.0025,750,,,,, 
tbpt,defi,0.005,1500,,,,, 
tbpt,defi,0.0075,2300,,,,, 
tbpt,defi,0.01,3100,,,,, 
tbpt,defi,0.0125,3945.762,,,,, 
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tbpt,defi,0.015,4585.84,,,,, 
tbpt,defi,0.0175,5294.56,,,,, 
tbpt,defi,0.02,5717.78,,,,, 
tbpt,defi,0.0225,6031.44,,,,, 
tbpt,defi,0.025,6650.9,,,,, 
tbpt,defi,0.0275,7159.06,,,,, 
tbpt,defi,0.03,7734.76,,,,, 
tbpt,defi,0.0325,8138,,,,, 
tbpt,defi,0.035,8542.4,,,,, 
tbpt,defi,0.0375,8946.8,,,,, 
tbpt,defi,0.04,9399.6,,,,, 
tbpt,defi,0.0425,9749.8,,,,, 
!------------------------------------ 
!Key points-Global 
!------------------------------------ 
k,1,0,0,0 
k,2,0,w,0 
k,3,L,w,0 
k,4,L,0,0 
k,5,0,0,t1 
k,6,0,w,t1 
k,7,L,w,t1 
k,8,L,0,t1 
k,9,0,0,(t1+t2) 
k,10,0,w,(t1+t2) 
k,11,L,w,(t1+t2) 
k,12,L,0,(t1+t2) 
 
k,13,0,0,(2*t1+t2) 
k,14,0,w,(2*t1+t2) 
k,15,L,w,(2*t1+t2) 
k,16,L,0,(2*t1+t2) 
!--------------------------------- 
!Volume of undelaminated part of specimen 
!--------------------------------- 
v,1,2,3,4,5,6,7,8!Lam 1 
v,5,6,7,8,9,10,11,12                   !Interlayer 
v,9,10,11,12,13,14,15,16 ! Lam 2 
!------------------------------------- 
! Turn model check off because of 
! Shape warnings 
!------------------------------------- 
SHPP,OFF,ASPECT 
!----------------------------------- 
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!Lesize for Length-10 lines 
!----------------------------------- 
lesize,4,,,divx,grad2 
lesize,12,,,divx,grad2 
lesize,20,,,divx,grad2 
lesize,28,,,divx,grad2 
 
 
lesize,2,,,divx,grad 
lesize,8,,,divx,grad 
lesize,16,,,divx,grad 
lesize,24,,,divx,grad 
!----------------------------------- 
!Lesize for thickness- 24 lines 
!----------------------------------- 
lesize,5,,,divz,1/gradz 
lesize,13,,,4,1 
lesize,21,,,divz,gradz 
 
 
lesize,9,,,divz,gradz 
lesize,17,,,4,1 
lesize,25,,,divz,1/gradz 
lesize,11,,,divz,gradz 
lesize,19,,,4,1 
lesize,27,,,divz,1/gradz 
lesize,7,,,divz,gradz 
lesize,15,,,4,1 
lesize,23,,,divz,1/gradz 
!----------------------------------- 
!Lesize for Width-10 lines 
!----------------------------------- 
lesize,3,,,div,grad 
lesize,10,,,div,grad 
lesize,18,,,div,grad 
lesize,26,,,div,grad 
lesize,1,,,div,grad2 
lesize,6,,,div,grad 
lesize,14,,,div,grad 
lesize,22,,,div,grad 
!---------------------------------- 
!Meshing of laminates 
!----------------------------------- 
type,1 
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mat,1 
real, 2        !for 90 deg. angle 
vmesh,1,1,1 
allsel 
type,2 
mat,2           !for interleave 
vmesh,2,2,1 
allsel 
 
type,1 
mat,1 
real,1          ! for 0 Deg angle 
vmesh,3,3,1 
allsel 
!------------------------------------ 
! Displacement boundary conditions         
!------------------------------------ 
NSEL,S,LOC,X,L,L 
D,ALL,UX,0.02 
ALLSEL 
NSEL,S,LOC,X,0,0 
D,ALL,UX,0 
ALLSEL 
!----------------------------------------- 
! Boundary condition for Symmetry 
!------------------------------------------ 
NSEL,S,LOC,Y,0,0 
D,ALL,UY,0 
ALLSEL 
NSEL,S,LOC,Z,0,0 
D,ALL,UZ,0 
ALLSEL 
!-------------------------------------- 
! Solving the system 
!------------------------------------- 
NLGEOM,OFF 
ANTYPE,0 
OUTRES,ALL,ALL 
ALLSEL 
/SOL 
/STATUS,SOLU 
SOLVE 
FINISH 
!-------------------------------------- 
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! Collecting the results 
!-------------------------------------- 
/POST26                   ! Post Processing for Interlaminar Stresses 
NUMVAR, 75               ! Set Max number of variables 
 
! Node Numbers data in Y Axis 
*set,NODY11(1),1640,1856,1871,1886,1901,1916,1931,1946,1961,1976, 
*set,NODY11(11),1991,2006,2021,2036,2051,2066,2081,2096,2111,2126, 
*set,NODY11(21),2141,2156,2171,2186,2201,2216,2231,2246,2261,2276, 
*set,NODY11(31),2291,2306,2321,2336,2351,2366,2381,2396,2411,2426, 
*set,NODY11(41),936 
 
 
*set,NODY12(1),1641,1857,1872,1887,1902,1917,1932,1947,1962,1977 
*set,NODY12(11),1992,2007,2022,2037,2052,2067,2082,2097,2112,2127 
*set,NODY12(21),2142,2157,2172,2187,2202,2217,2232,2247,2262,2277 
*set,NODY12(31),2292,2307,2322,2337,2352,2367,2382,2397,2412,2427 
*set,NODY12(41),937 
 
*set,NODY13(1),1626,1687,1691,1695,1699,1703,1707,1711,1715,1719 
*set,NODY13(11),1723,1727,1731,1735,1739,1743,1747,1751,1755,1759 
*set,NODY13(21),1763,1767,1771,1775,1779,1783,1787,1791,1795,1799 
*set,NODY13(31),1803,1807,1811,1815,1819,1823,1827,1831,1835,1839 
*set,NODY13(41),919 
 
*set,NODY14(1),4532,4700,4703,4706,4709,4712,4715,4718,4721,4724 
*set,NODY14(11),4727,4730,4733,4736,4739,4742,4745,4748,4751,4754 
*set,NODY14(21),4757,4760,4763,4766,4769,4772,4775,4778,4781,4784 
*set,NODY14(31),4787,4790,4793,4796,4799,4802,4805,4808,4811,4814 
*set,NODY14(41),4356 
 
*set,NODY15(1),4530,4543,4547,4551,4555,4559,4563,4567,4571,4575 
*set,NODY15(11),4579,4583,4587,4591,4595,4599,4603,4607,4611,4615 
*set,NODY15(21),4619,4623,4627,4631,4635,4639,4643,4647,4651,4655 
*set,NODY15(31),4659,4663,4667,4671,4675,4679,4683,4687,4691,4695 
*set,NODY15(41),4351 
 
*set,NODY16(1),6547,6763,6778,6793,6808,6823,6838,6853,6868,6883 
*set,NODY16(11),6898,6913,6928,6943,6958,6973,6988,7003,7018,7033 
*set,NODY16(21),7048,7063,7078,7093,7108,7123,7138,7153,7168,7183 
*set,NODY16(31),7198,7213,7228,7243,7258,7273,7288,7303,7318,7333 
*set,NODY16(41),5843 
 
*set,NODY17(1),6548,6764,6779,6794,6809,6824,6839,6854,6869,6884 
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*set,NODY17(11),6899,6914,6929,6944,6959,6974,6989,7004,7019,7034 
*set,NODY17(21),7049,7064,7079,7094,7109,7124,7139,7154,7169,7184 
*set,NODY17(31),7199,7214,7229,7244,7259,7274,7289,7304,7319,7334 
*set,NODY17(41),5844 
 
! Node Numbers data in Z Axis 
 
*set,NODZ1(1),151,2068,2069,2070,2071,2072,2073,2074,2075,2076, 
*set,NODZ1(11),2077,2078,2079,2080,2081,2082,1747,4744,4745,4746, 
*set,NODZ1(21),4603,6988,6989,6990,6991,6992,6993,6994,6995,6996, 
*set,NODZ1(31),6997,6998,6999,7000,7001,7002,6667 
*set,NODZ2(1),175,2158,2159,2160,2161,2162,2163,2164,2165,2166, 
*set,NODZ2(11),2167,2168,2169,2170,2171,2172,1771,4762,4763,4764, 
*set,NODZ2(21),4627,7078,7079,7080,7081,7082,7083,7084,7085,7086, 
*set,NODZ2(31),7087,7088,7089,7090,7091,7092,6691 
, 
*set,NODZ3(1),199,2248,2249,2250,2251,2252,2253,2254,2255,2256, 
*set,NODZ3(11),2257,2258,2259,2260,2261,2262,1795,4780,4781,4782, 
*set,NODZ3(21),4651,7168,7169,7170,7171,7172,7173,7174,7175,7176, 
*set,NODZ3(31),7177,7178,7179,7180,7181,7182,6715 
 
*set,NODZ4(1),223,2338,2339,2340,2341,2342,2343,2344,2345,2346, 
*set,NODZ4(11),2347,2348,2349,2350,2351,2352,1819,4798,4799,4800, 
*set,NODZ4(21),4675,7258,7259,7260,7261,7262,7263,7264,7265,7266, 
*set,NODZ4(31),7267,7268,7269,7270,7271,7272,6739 
 
*set,NODZ5(1),243,2413,2414,2415,2416,2417,2418,2419,2420,2421, 
*set,NODZ5(11),2422,2423,2424,2425,2426,2427,1839,4813,4814,4815, 
*set,NODZ5(21),4695,7333,7334,7335,7336,7337,7338,7339,7340,7341, 
*set,NODZ5(31),7342,7343,7344,7345,7346,7347,6759 
 
*cfopen,OUTY11-2-50Pc-thk-def-0090.txt 
! Do Loop Begins Here 
*DO,i,1,div1,1 
 
! Location of the Nodes in Y 
*GET,YLOCB(i),NODE,NODY11(i),LOC,Y 
 
! Stress XX in Y axis 
*GET, STXXYB(i), NODE, NODY11(i), S, X 
 
! Stress YY in Y axis 
*GET, STYYYB(i), NODE, NODY11(i), S, Y 
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! Stress ZZ in Y axis 
*GET, STZZYB(i), NODE, NODY11(i), S, Z 
 
! Stress xy in Y axis 
*GET, STXYYB(i), NODE, NODY11(i), S, XY 
 
! Stress yz in Y axis 
*GET, STYZYB(i), NODE, NODY11(i), S, YZ 
*ENDDO 
! Stress xz in Y axis 
*GET, STXZYB(i), NODE, NODY11(i), S, XZ 
*vwrite,YLOCB(1),STXXYB(1),STYYYB(1),STZZYB(1),STXYYB(1),STYZYB(1),S
TXZYB(1) 
('   'F7.4,'    '4F12.3,'    '4F12.3,'    '4F12.3,'    '4F12.3,'    '4F12.3,'    '4F12.3) 
 
*cfclos 
 
 
*cfopen,OUTY12-50Pc-thk-def-0090.txt 
! Do Loop Begins Here 
*DO,i,1,div1,1 
 
! Location of the Nodes in Y 
*GET,YLOCB(i),NODE,NODY12(i),LOC,Y 
 
! Stress XX in Y axis 
*GET, STXXYB(i), NODE, NODY12(i), S, X 
 
! Stress YY in Y axis 
*GET, STYYYB(i), NODE, NODY12(i), S, Y 
 
! Stress ZZ in Y axis 
*GET, STZZYB(i), NODE, NODY12(i), S, Z 
 
! Stress xy in Y axis 
*GET, STXYYB(i), NODE, NODY12(i), S, XY 
 
! Stress yz in Y axis 
*GET, STYZYB(i), NODE, NODY12(i), S, YZ 
*ENDDO 
! Stress xz in Y axis 
*GET, STXZYB(i), NODE, NODY12(i), S, XZ 
*vwrite,YLOCB(1),STXXYB(1),STYYYB(1),STZZYB(1),STXYYB(1),STYZYB(1),S
TXZYB(1) 
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('   'F7.4,'    '4F12.3,'    '4F12.3,'    '4F12.3,'    '4F12.3,'    '4F12.3,'    '4F12.3) 
 
*cfclos 
 
*cfopen,OUTY13-50Pc-thk-def-0090.txt 
! Do Loop Begins Here 
*DO,i,1,div1,1 
 
! Location of the Nodes in Y 
*GET,YLOCB(i),NODE,NODY13(i),LOC,Y 
 
! Stress XX in Y axis 
*GET, STXXYB(i), NODE, NODY13(i), S, X 
 
! Stress YY in Y axis 
*GET, STYYYB(i), NODE, NODY13(i), S, Y 
 
! Stress ZZ in Y axis 
*GET, STZZYB(i), NODE, NODY13(i), S, Z 
 
! Stress xy in Y axis 
*GET, STXYYB(i), NODE, NODY13(i), S, XY 
 
! Stress yz in Y axis 
*GET, STYZYB(i), NODE, NODY13(i), S, YZ 
*ENDDO 
! Stress xz in Y axis 
*GET, STXZYB(i), NODE, NODY13(i), S, XZ 
*vwrite,YLOCB(1),STXXYB(1),STYYYB(1),STZZYB(1),STXYYB(1),STYZYB(1),S
TXZYB(1) 
('   'F7.4,'    '4F12.3,'    '4F12.3,'    '4F12.3,'    '4F12.3,'    '4F12.3,'    '4F12.3) 
*cfclos 
! Printing Results 
*vwrite,YLOCB(1),STXXYB(1),STYYYB(1),STZZYB(1),STXYYB(1),STYZYB(1),S
TXZYB(1) 
('   'F7.4,'    '4F12.3,'    '4F12.3,'    '4F12.3,'    '4F12.3,'    '4F12.3,'    '4F12.3) 
*cfclos 
*cfopen,OUTY14-50Pc-thk-def-0090.txt 
! Do Loop Begins Here 
*DO,i,1,div1,1 
! Location of the Nodes in Y 
*GET,YLOCB(i),NODE,NODY14(i),LOC,Y 
! Stress XX in Y axis 
*GET, STXXYB(i), NODE, NODY14(i), S, X 
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! Stress YY in Y axis 
*GET, STYYYB(i), NODE, NODY14(i), S, Y 
! Stress ZZ in Y axis 
*GET, STZZYB(i), NODE, NODY14(i), S, Z 
! Stress xy in Y axis 
*GET, STXYYB(i), NODE, NODY14(i), S, XY 
! Stress yz in Y axis 
*GET, STYZYB(i), NODE, NODY14(i), S, YZ 
*ENDDO 
! Stress xz in Y axis 
*GET, STXZYB(i), NODE, NODY14(i), S, XZ 
*vwrite,YLOCB(1),STXXYB(1),STYYYB(1),STZZYB(1),STXYYB(1),STYZYB(1),S
TXZYB(1) 
('   'F7.4,'    '4F12.3,'    '4F12.3,'    '4F12.3,'    '4F12.3,'    '4F12.3,'    '4F12.3) 
*cfclos 
*cfopen,OUTY15-50Pc-thk-def-0090.txt 
! Do Loop Begins Here 
*DO,i,1,div1,1 
! Location of the Nodes in Y 
*GET,YLOCB(i),NODE,NODY15(i),LOC,Y 
! Stress XX in Y axis 
*GET, STXXYB(i), NODE, NODY15(i), S, X 
! Stress YY in Y axis 
*GET, STYYYB(i), NODE, NODY15(i), S, Y 
! Stress ZZ in Y axis 
*GET, STZZYB(i), NODE, NODY15(i), S, Z 
! Stress xy in Y axis 
*GET, STXYYB(i), NODE, NODY15(i), S, XY 
! Stress yz in Y axis 
*GET, STYZYB(i), NODE, NODY15(i), S, YZ 
*ENDDO 
! Stress xz in Y axis 
*GET, STXZYB(i), NODE, NODY15(i), S, XZ 
*vwrite,YLOCB(1),STXXYB(1),STYYYB(1),STZZYB(1),STXYYB(1),STYZYB(1),S
TXZYB(1) 
('   'F7.4,'    '4F12.3,'    '4F12.3,'    '4F12.3,'    '4F12.3,'    '4F12.3,'    '4F12.3) 
*cfclos 
*cfopen,OUTY16-50Pc-thk-def-0090.txt 
! Do Loop Begins Here 
*DO,i,1,div1,1 
! Location of the Nodes in Y 
*GET,YLOCB(i),NODE,NODY16(i),LOC,Y 
! Stress XX in Y axis 
*GET, STXXYB(i), NODE, NODY16(i), S, X 
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! Stress YY in Y axis 
*GET, STYYYB(i), NODE, NODY16(i), S, Y 
! Stress ZZ in Y axis 
*GET, STZZYB(i), NODE, NODY16(i), S, Z 
! Stress xy in Y axis 
*GET, STXYYB(i), NODE, NODY16(i), S, XY 
! Stress yz in Y axis 
*GET, STYZYB(i), NODE, NODY16(i), S, YZ 
*ENDDO 
! Stress xz in Y axis 
*GET, STXZYB(i), NODE, NODY16(i), S, XZ 
*vwrite,YLOCB(1),STXXYB(1),STYYYB(1),STZZYB(1),STXYYB(1),STYZYB(1),S
TXZYB(1) 
('   'F7.4,'    '4F12.3,'    '4F12.3,'    '4F12.3,'    '4F12.3,'    '4F12.3,'    '4F12.3) 
*cfclos 
*cfopen,OUTY17-50Pc-thk-def-0090.txt 
! Do Loop Begins Here 
*DO,i,1,div1,1 
! Location of the Nodes in Y 
*GET,YLOCB(i),NODE,NODY17(i),LOC,Y 
! Stress XX in Y axis 
*GET, STXXYB(i), NODE, NODY17(i), S, X 
! Stress YY in Y axis 
*GET, STYYYB(i), NODE, NODY17(i), S, Y 
! Stress ZZ in Y axis 
*GET, STZZYB(i), NODE, NODY17(i), S, Z 
! Stress xy in Y axis 
*GET, STXYYB(i), NODE, NODY17(i), S, XY 
! Stress yz in Y axis 
*GET, STYZYB(i), NODE, NODY17(i), S, YZ 
*ENDDO 
! Stress xz in Y axis 
*GET, STXZYB(i), NODE, NODY17(i), S, XZ 
*vwrite,YLOCB(1),STXXYB(1),STYYYB(1),STZZYB(1),STXYYB(1),STYZYB(1),S
TXZYB(1) 
('   'F7.4,'    '4F12.3,'    '4F12.3,'    '4F12.3,'    '4F12.3,'    '4F12.3,'    '4F12.3) 
*cfclos 
!----------------------------------------------------------------------------------------------- 
*cfopen,OUTZ1-50Pc-thk-def-0090.txt 
! Do Loop Begins Here 
*DO,i,1,div2,1 
! Location of the Nodes in Z 
*GET,ZLOC(i),NODE,NODZ1(i),LOC,Z 
! Stress x in Z axis 
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*GET, STXXZ(i), NODE, NODZ1(i), S, X 
! Stress y in Z axis 
*GET, STYYZ(i), NODE, NODZ1(i), S, Y 
! Stress z in Z axis 
*GET, STZZZ(i), NODE, NODZ1(i), S, Z 
! Stress xy in Z axis 
*GET, STXYZ(i), NODE, NODZ1(i), S, XY 
! Stress yz in Z axis 
*GET, STYZZ(i), NODE, NODZ1(i), S, YZ 
! Stress xz in Z axis 
*GET, STXZZ(i), NODE, NODZ1(i), S, XZ 
*ENDDO 
! Printing Results 
*vwrite,ZLOC(1),STXXZ(1),STYYZ(1),STZZZ(1),STXYZ(1),STYZZ(1),STXZZ(1) 
('   'F7.4,'    '4F12.3,'    '4F12.3,'    '4F12.3,'    '4F12.3,'    '4F12.3,'    '4F12.3) 
*cfclos 
*cfopen,OUTZ2-50Pc-thk-def-0090.txt 
! Do Loop Begins Here 
*DO,i,1,div2,1 
! Location of the Nodes in Z 
*GET,ZLOC(i),NODE,NODZ2(i),LOC,Z 
! Stress x in Z axis 
*GET, STXXZ(i), NODE, NODZ2(i), S, X 
! Stress y in Z axis 
*GET, STYYZ(i), NODE, NODZ2(i), S, Y 
! Stress z in Z axis 
*GET, STZZZ(i), NODE, NODZ2(i), S, Z 
! Stress xy in Z axis 
*GET, STXYZ(i), NODE, NODZ2(i), S, XY 
! Stress yz in Z axis 
*GET, STYZZ(i), NODE, NODZ2(i), S, YZ 
! Stress xz in Z axis 
*GET, STXZZ(i), NODE, NODZ2(i), S, XZ 
*ENDDO 
 
! Printing Results 
*vwrite,ZLOC(1),STXXZ(1),STYYZ(1),STZZZ(1),STXYZ(1),STYZZ(1),STXZZ(1) 
('   'F7.4,'    '4F12.3,'    '4F12.3,'    '4F12.3,'    '4F12.3,'    '4F12.3,'    '4F12.3) 
*cfclos 
*cfopen,OUTZ3-50Pc-thk-def-0090.txt 
! Do Loop Begins Here 
*DO,i,1,div2,1 
! Location of the Nodes in Z 
*GET,ZLOC(i),NODE,NODZ3(i),LOC,Z 
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! Stress x in Z axis 
*GET, STXXZ(i), NODE, NODZ3(i), S, X 
! Stress y in Z axis 
*GET, STYYZ(i), NODE, NODZ3(i), S, Y 
! Stress z in Z axis 
*GET, STZZZ(i), NODE, NODZ3(i), S, Z 
! Stress xy in Z axis 
*GET, STXYZ(i), NODE, NODZ3(i), S, XY 
! Stress yz in Z axis 
*GET, STYZZ(i), NODE, NODZ3(i), S, YZ 
! Stress xz in Z axis 
*GET, STXZZ(i), NODE, NODZ3(i), S, XZ 
*ENDDO 
! Printing Results 
*vwrite,ZLOC(1),STXXZ(1),STYYZ(1),STZZZ(1),STXYZ(1),STYZZ(1),STXZZ(1) 
('   'F7.4,'    '4F12.3,'    '4F12.3,'    '4F12.3,'    '4F12.3,'    '4F12.3,'    '4F12.3) 
*cfclos 
*cfopen,OUTZ4-50Pc-thk-def-0090.txt 
! Do Loop Begins Here 
*DO,i,1,div2,1 
! Location of the Nodes in Z 
*GET,ZLOC(i),NODE,NODZ4(i),LOC,Z 
! Stress x in Z axis 
*GET, STXXZ(i), NODE, NODZ4(i), S, X 
! Stress y in Z axis 
*GET, STYYZ(i), NODE, NODZ4(i), S, Y 
! Stress z in Z axis 
*GET, STZZZ(i), NODE, NODZ4(i), S, Z 
! Stress xy in Z axis 
*GET, STXYZ(i), NODE, NODZ4(i), S, XY 
! Stress yz in Z axis 
*GET, STYZZ(i), NODE, NODZ4(i), S, YZ 
! Stress xz in Z axis 
*GET, STXZZ(i), NODE, NODZ4(i), S, XZ 
*ENDDO 
 
! Printing Results 
*vwrite,ZLOC(1),STXXZ(1),STYYZ(1),STZZZ(1),STXYZ(1),STYZZ(1),STXZZ(1) 
('   'F7.4,'    '4F12.3,'    '4F12.3,'    '4F12.3,'    '4F12.3,'    '4F12.3,'    '4F12.3) 
*cfclos 
*cfopen,OUTZ5-50Pc-thk-def-0090.txt 
! Do Loop Begins Here 
*DO,i,1,div2,1 
! Location of the Nodes in Z 
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*GET,ZLOC(i),NODE,NODZ5(i),LOC,Z 
! Stress x in Z axis 
*GET, STXXZ(i), NODE, NODZ5(i), S, X 
! Stress y in Z axis 
*GET, STYYZ(i), NODE, NODZ5(i), S, Y 
! Stress z in Z axis 
*GET, STZZZ(i), NODE, NODZ5(i), S, Z 
! Stress xy in Z axis 
*GET, STXYZ(i), NODE, NODZ5(i), S, XY 
! Stress yz in Z axis 
*GET, STYZZ(i), NODE, NODZ5(i), S, YZ 
! Stress xz in Z axis 
*GET, STXZZ(i), NODE, NODZ5(i), S, XZ 
*ENDDO 
! Printing Results 
*vwrite,ZLOC(1),STXXZ(1),STYYZ(1),STZZZ(1),STXYZ(1),STYZZ(1),STXZZ(1) 
('   'F7.4,'    '4F12.3,'    '4F12.3,'    '4F12.3,'    '4F12.3,'    '4F12.3,'    '4F12.3) 
*cfclos 
! /EXIT,NOSAV 
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