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ABSTRACT 

Argaw, Yacob Mesfin. ENHANCEMENT OF JET IMPINGEMENT HEAT 

TRANSFER USING SHAPE MODIFICATION AND PHASE CHANGE.  (Advisor:  

John P. Kizito), North Carolina Agricultural and Technical State University. 

The overall goal of the present study is to enhance heat transfer rate performance 

on high heat flux surfaces while maintaining a uniform and low temperature of the 

substrate.  The specific objectives are to determine shapes which maximize heat transport 

from heater surfaces when using jet impingement cooling method and to model a two 

phase jet impingement process which incorporates phase change at the impingement 

substrate.  A very high heat flux of up to 10MW/m
2
 is applied at the bottom of a heated 

chamber and a jet of air and water are applied separately to a confined control volume.  

Free stream flow past a heated wedge can be modeled and solved by Falkner-Skan 

equations when the wedge angle is within a limit.  However, when the impingement 

surface is constrained by walls to create a cavity, the method is no longer valid. 

A commercially available Computational Fluid Dynamics (CFD) code Fluent® is 

modified with user defined code to analyze the physical problem numerically.  The 

results show that a newly generated impingement profile, which incorporates a wedge 

and a concave profile, gives the best performance.  Specifically, the heat transfer 

enhancement level is around 20% higher when compared to a flat surface.  The presence 

of phase change also increases the overall heat removal due to the additional latent heat 

of vaporization transfer through mass transport.  The models developed in the study can 

be extended to optimize spray cooling schemes. 
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CHAPTER 1  

INTRODUCTION 

 

 

Industries such as material processing, manufacturing plants, power stations, laser 

technologies, combustion chambers, and de-icing of aircraft systems, all demand 

effective cooling systems to operate properly.  Engineers working on design and 

management of thermal parts face a big challenge as they work on creating better tools 

while keeping the size as compact as possible.  For high heat flux components, the 

smaller the surface area, the more difficult it becomes to cool.  Therefore, cooling those 

components found in very high temperature environments and high heat flux transmitting 

parts has been an interest of many researchers.  

The applications of high capacity cooling techniques improve considerably by 

combining two or more technological merits together to get a better thermal control and 

heat management.  The literature review in chapter 2 presents the importance of high rate 

heat transfer techniques that are of interest for various industries.  The maximum heat 

flux reported in previous research and those factors affecting heat transfer are also 

presented.  

Bergles reported that, “about ten percent of heat transfer literature now concerns 

enhancement and a recent year of Journal of Heat Transfer has over 20 percent of the 

papers directed to various areas of enhancement” [1].  The statement shows how 

important enhancements in high rate heat transfer techniques have become.  However, 
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after an extensive literature review presented in chapter 2, the present study concluded 

that there are no papers focused on improving heat transfer by macro level shape 

modification in jet impingement surfaces.  The review shows much has been said about 

the effects of impingement surface roughness, finned plates and other surface parameters.  

Yet there are few studies performed on the effect of impingement profile in a confined 

heater as will be presented in the study. 

 

1.1. Specific Objectives 

The motivation of the present study is based on the need derived from the Air 

Force Research Laboratory (AFRL) funded research to manage high heat flux producing 

components.  An experimental setup for a cooling thermal loop that can remove a heat 

flux of 10 MW/m
2
 has been constructed by the Fluid and Thermal Management Research 

group.  The thermal loop uses a two phase cooling scheme utilizing vapor as atomizing 

fluid.  The heat generated by a copper heater having a crown area of 10
-4

 m
2
 is cooled by 

impinging jet methods.  Specifically, as the saturated jet comes in contact with the high 

temperature heater surface phase change will take place. 

Simulation software was used as a tool to complement experimental studies.  

Analysis in the present study is used to visualize flow, study the effect of parameters, 

analyze cause and effect and improve experimental studies.   In earlier days, use of 

computers for solving higher order differential equations was minimal because of their 

computational costs.  However improvements in computational capacity and processor 
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speed of computers make their use an essential part of the solution searching process.  

The specific objectives of the present study are to: 

 Determine shapes which maximize heat transport from heater surfaces when using 

jet impingement cooling method. 

 Model a two phase jet impingement process which incorporates phase change at 

the impingement substrate. 

 

1.2. Practical Significance 

The rationale of studying the aforementioned specific objectives is to enhance 

heat transfer performances of high flux surfaces.  The new impingement surfaces 

constructed through the analysis performed in the subsequent chapters help to improve jet 

impingement heat effectiveness.  Industries can benefit from having higher heat transfer 

performance in their already existing jet impingement cooling systems by making a 

simple modification to the heated surface.  The presence of phase change along with jet 

impingement in a system also assists the heat transfer process by taking a huge amount of 

latent heat.  A better heat transfer almost always results in a lower surface temperature 

which means extended part life. 

The thesis organization is as follows: the second chapter presents the work done 

by others as it relates to high rate heat transfer.  Advantages of specific cooling 

mechanisms and factors that influence heat transfer are also discussed to give a rationale 

for the present specific objectives.  In the third chapter, the problem formulation, 

methodologies used, and CFD model development are discussed.  Results and discussion 
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on the phase change jet impingement cooling scheme are discussed in chapter four.  

Finally, in chapter five conclusions are given and further study suggestions are proposed.  
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CHAPTER 2  

LITERATURE REVIEW 

 

 

2.1. Cooling Requirements 

Technology advancement is being observed through improved electronic 

components performance and high temperature resisting machines.  Parts that convert or 

transmit power through small volume devices have become a topic of study for a while 

because of their effectiveness in robotics and space technology [2].  However, maximum 

working temperature of parts is still the main limiting factor that hinders further 

improvement in the overall working efficiency of many technologies [3, 4- 6, 7]. 

Energy dissipation due to inefficient transmission in active components is 

reflected by a temperature buildup. For example, heat transmission capability of 

electronic devices become less effective as the working temperature increases above a 

certain threshold value [8].  The dissipated energy in the form of heat increases 

component temperature, lowers its efficiency, and eventually causes the part to fail.  An 

urge for improving the efficiency of components and imposed environmental and 

economical constraints increase the need for superior heat dissipation techniques [9, 10]. 

For the past few years cooling of high-density thermal components has become 

one of the significant research areas.  Numerous researchers have proposed ways of 

removing the excess heat.  On the average more than a dozen research papers are being 

published annually to address this issue [11].  To date, it is generally understood that low 
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capacity cooling techniques are no longer reliable for heavy duty applications like: 

nuclear technology, aerospace components, laser technology, and cooling turbine blades 

[12].  Therefore the need for developing high rate heat transfer techniques makes the 

study worthwhile. 

 

2.2. High Rate Heat Transfer Techniques 

For high performance components conduction, natural convection and radiation 

heat transfer mechanisms alone are unable to take away the generated/transmitted heat at 

an equal pace to avoid temperature build up.  Therefore a special technique has to be 

considered if the generated heat needs to be damped at an equal rate. 

One means of achieving high rate heat transfer is through the use of impinging 

jets.  The fact that impinging fluid has a relatively higher convective heat transfer 

coefficient as opposed to conduction improves the heat transfer enormously.  As power 

dissipation level increases in electronic systems and machineries liquids become more 

effective than air due to liquids’ higher specific heat capacity.  Possible liquid cooling 

technologies include; single-phase liquid cooling, spray cooling, jet impingement, heat 

pipes, and immersion flow boiling [10]. 

Phase change process is the other well studied high rate heat transfer technique.  

Earlier researchers exhaustively studied phase change process analytically and 

experimentally and showed phase change is indeed a more efficient heat transfer process 

because of the extra latent heat it dissipates [13 - 15].  Based on interactions of fluid to 

heated surface, phase change phenomena is illustrated in the boiling curve as shown in 
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Figure 1 [16].  The plot of surface heat flux, , against wall superheat  (wall 

temperature minus saturation temperature of the liquid) is considered to be the most 

descriptive representation of the boiling process. 

 

 

 
Figure 1.  Boiling curve for saturated liquid  [15] 

 

 

Bergles et al. [1] and Monde et al. [17] have reported a blanketing effect of the 

generated vapor as heat flux increases the critical heat flux value.  Therefore, the heated 

surface suffers an enormous temperature rise since the bulk fluid is hindered from 
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coming in contact with the surface.  This is an indication that unless the process is 

controlled properly “thermal burnout” and material failure might result. 

 

2.3. Effective Range of Cooling Techniques 

The most desirable working region of cooling components is in nucleate boiling 

region.  Ranges of achievable surface heat flux values for different modes of heat transfer 

and fluid types are provided by Mal et al. shown in Figure 2 [11].  For instance, if a 

typical process has the maximum available temperature difference of 40K, as can be seen 

on the graph, natural convection air cooling is effective for 0.5kW/m
2
 heat flux removal 

and forced convection with air is effective for removing heat flux up to 2.5kW/m
2
.  

However, liquid cooling modes can transport hundreds of kilowatts per square meter.  

This is an eye opener for understanding the effectiveness of high heat capacity coolants 

and phase change process.  

The equation that describes the slope of mode of cooling mechanism in Figure 2 

can be expressed as the ratio of the two coordinates Tq /" .  The rule of thumb is that, 

the steeper the slope the more effective, the mode of heat transfer is.  For example, heat 

transfer coefficients for systems employing single-phase convection or impinging liquid 

jets is typically around 10kW/m
2
-
o
C but are much larger in the presence of phase change.  

Even though boiling can provide removal of a large amount of heat flux over small 

temperature range, there are limits to the applicability and effectiveness of it which must 

be considered right at the design stage [18]. 
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Figure 2.  Variation of achievable surface heat flux for various heat 

transfer modes against temperature difference  [11] 

 

 

2.4. Phase Change  

A comprehensive literature survey, prepared in two parts by Pioro et al. 

concerning effects of boiling surface and prediction methods to calculate the heat transfer 

coefficient for nucleate boiling gives a good understanding on phase change heat transfer 

and the parameters that affect it [4].  After reviewing around seventy papers written from 

1936 through 1999, they concluded that among the major parameters affecting the heat 

transfer coefficient heat flux, saturation pressure, and thermo-physical properties of the 

working fluid (thermal conductivity and thermal absorption) have been the most 

investigated and well established factors. 
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As the heat flux on heated surface increases and more nucleation sites are 

generated, bubbles start detaching vigorously and lift off due to buoyancy effect.  The 

cyclic movement due to nucleation, growth, and departure/collapse of vapor bubbles 

agitate the fluid near the surface.  The perturbation, some literatures call it the quenching 

effect, is a result of liquid rushing to fill up the space left by rising bubbles.  In effect the 

induced perturbation enhances the convective heat transfer coefficient [6, 19, and 15].  

Thus according to Omar et al. [13] and Mitrovic [20] heat flux parameter in boiling 

comprises three components as expressed in equations 2.1 through 2.4 by Anglart et al. 

[17].  The total heat flux is the summation of these three components listed below, 

 heat used in direct evaporation to generate bubbles, qeva 

 heat transfer through direct contact of liquid that replaces the bubble, qqnch 

 heat transfer through convection due to the generated wakes, qfconv 

 fconvqnchevatot qqqq   (2.1)  

 fggbweva hdfNaq 










 3

6  
(2.2)  

  lwbubqqnch TTAhq 
 (2.3)  

  lwfconvfconvfconv TTAhq 
 (2.4)  

where: mmdb 5.1
 
and  

   805.1
185 lw TTNa  ;  

  2/1

3

4










 


lbw

gl

d

g
f




; 

 
f

Cq
h

plll

q
/8.0

6.1
2/1






 

lpllfconv VCSth   
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2.5. Bubble Formation  

Mitrovic discussed mechanisms of bubble growth, detachment and the importance 

of three-phase-line (TPL) which is a point in a bubble where liquid, solid and vapor 

phases co-exist and interact with each other [19, 20].  Figure 3 shows that the TPL at the 

corner has a contact angle β which is a function of heat flux and wall superheat.  As 

portion of liquid at the interface is evaporated, the TPL moves along the heated surface 

and this leads to an increase in the contact angle. 

According to Mitrovic, evaporation along the TPL induces a number of 

mechanisms that act against further change of interface angle. 

 Hydrodynamic effects or Marangoni flow tend to suppress formation of a convex 

curvature at the interface. 

 Adhesion forces have a tendency to re-wet the solid surface 

 Laplace pressure or surface tension force has a smoothing effect by diminishing 

the convex curvature. 

Due to a higher heat transfer at the boundary more vapor is formed along the TPL 

and as a result the bubble grows rapidly.  At the contact with the heated surface the vapor 

bubble has concave-convex curvature.  As the inside radius of curvature of the interface, 

on the convex side, increases by bubble growth the Laplace-pressure decreases and the 

hydrodynamic force increases in the vapor phases.  When the surplus energy reaches 

certain value bubble detachment process commences. 
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Figure 3.  Effect of evaporation at point A, in (a) and (b) leads to change 

in curvature shown in (c) and (d) at the TPL [19] 

 

 

2.6. Bubble Collapse Creating Additional Turbulence 

Timm et al. discussed a mechanism for heat and momentum exchange between an 

extremely superheated wall and an impinging sub cooled water jet [21].  Bubbles of 

average radius 10
-4

 m and life time around 0.0001 second growing and collapsing at a 

very close proximity of a superheated wall acts as a source of turbulence mixing.  

Momentum and heat exchange of the displaced fluid with the main flow results in 

temperature drop around the bubble which results in collapse of the bubble before 

detachment.  Colder fluid will then fill the gap left by the burst bubble and the process 

will repeat itself but rather vigorously.   
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2.7. Impinging Jets 

Surface impingement technique in general encompasses air/liquid jet cooling, 

spray cooling, and droplet impingement.  Jets designed either for single nozzle or 

multiple nozzles, depending on their practical usefulness, have many parts and distinct 

working principle.  Fluid gushing out of a nozzle with a relatively higher velocity than 

other techniques impinges on a plate placed some distance away.  When the cold fluid, 

moving at high velocity, comes in contact with the heated surface at least two modes of 

heat transfer play a significant role in removing the excess heat.  As a result of residence 

time of the liquid jet on the surface there is solid–liquid conduction that takes place and 

the fact that fluid moves over the surface gives convection heat transfer.  If the surface 

temperature is extremely high phase change will occur.  The additional interaction and 

agitation of fluid near the surface also enhances the convective heat transfer coefficient 

considerably.  As shown in Figure 4 fluid jet impinging on a substrate is categorized into 

three regions based on the section in the control volume [22, 23].  

The first region is the free-jet zone just out of the nozzle where the fluid moves 

axially.  The flow gets its energy from the higher pressure that exists at the inlet.  Nozzles 

basically work as throttling devices since they drop the pressure across them and the 

pressure difference gives momentum to the fluid.  The second region is the impingement 

zone where the jet starts changing its flow direction from axial to radial due to the 

presence of an obstruction i.e. the heated surface.  For axisymmetry jets the stagnation 

point exists at the central axis of the nozzle.  This is the point where the jet comes to a 

complete stop before it is displaced by the incoming fluid.  Almost always, the maximum 
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pressure in the system will be noticed here due to the dynamic contribution of the 

impinging fluid.  In many literatures heat transfer coefficient and Nusselt number values 

at the stagnation point are considered as a good indicator of cooling process effectiveness 

[24].  

The third region is a wall-jet zone where the dominant velocity component is 

radial and the boundary layer thickness increases monotonically as the fluid moves 

radially outward (see Figure 4).  Some literatures further classify this zone as acceleration 

region and parallel-flow region.  Whatever the case, the stream wise velocity increases in 

acceleration region to the value of incoming jet velocity with increasing distance. 

 

 

 
Figure 4.  Regions on the target surface due to an impinging circular jet [22] 
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Thomson et al. described five main jet configurations in their literature reviews 

[25].  Figure 5 shows free-surface jets, plunging jets, submerged jets, confined jets, and 

wall jets.  For plunging and submerged configurations with low jet velocity, large nozzle-

to-surface spacing and/or large pool height the incoming fluid sometimes fail to penetrate 

and come in contact with the heated surface.  As the jet exits the nozzle momentum 

exchange between the two miscible fluids makes it difficult for the jet to penetrate 

through the internal flow field.  

 

 

 
Figure 5.  Schematics of (a) Free sureface (b) Plunging (c) Submerged 

(d) Confined and (e) Wall impingement configurations [26] 
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2.8. Advantages and Disadvantages of Jet and Spray Cooling 

Selecting a cooling technique for a specific process involves a compromise on 

technical, cost and complexity of accompanying components and effectiveness of the 

method chosen.  For example, sprays are more difficult to characterize than phase change 

mechanisms. The reason is other mechanisms, even jet impingement, can be easily 

developed using a characteristic length and velocity. However as the spray leaves the 

nozzle, liquid starts to breakup and form droplets with dissimilar diameters and velocities 

and trajectory directions become random. These and many more characteristics make 

choosing a scaling parameter for spray a lot more complex [27].  Nonetheless, based on 

previous studies several specific advantages and disadvantages on using spray cooling 

and jet impingement are noticed.  So the designer has to be convinced to what extent 

he/she is willing to sacrifice in selecting either of the methods.  Advantage and 

disadvantages of the two cooling methods are explicitly described by Bernardin et al. [9] 

and Collin et al. [28]. 

 

2.9. Droplet Dynamics 

For spray cooling, despite smaller residence time of liquid droplet on hot surface, 

the rate at which heat flux removed is much higher than nucleate boiling.  Moreira et al. 

[29] and Jia et al. [30] show that each individual droplet splash, rebound, spread or sticks 

depending on the effects of surface tension, viscous force and inertia.  Splashed and 

rebounded droplets reside on the surface for a snap of time but spread and stick droplets 
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form liquid film on the surface.  Therefore the denser the spray the more complex the 

interaction of the droplets is going to be.   

Apparently a rebounded and splashed droplet is in contact with the heated surface 

for quite a small time as a result it will not have ample time to exchange heat with the 

surface.  However the study showed a single droplet analysis does not represent a spray 

cooling since spray cooling involves continuous undefined interaction of droplets with 

each other and with the surface.  As shown in Figure 6, Bernardin showed that phase 

change starts after the droplet sticks and spreads.   

 

 

 
Figure 6.  Phase change in light sprays [27] 

 

 

For low velocity droplets and surface temperature of 150 – 360 
o
C Makino et al. 

also studied residence time of a droplet using a high-speed photography and reported that 

the droplet spreads outward into a thin film before phase change.  A low droplet velocity 
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ensures little or no breakage of the droplet upon impingement.  The reader is advised to 

refer to papers [31 - 37] for further understanding on droplet dynamics. 

 

2.10. Droplet Sound 

Despite the fact that residence time of liquid on heated surface is lower for 

spray/jet cooling than pool boiling, impingement cooling is proven to be more effective 

in removing higher heat flux [38, 39].  Lloyd et al. studied quench cooling by impinging 

a 2 mm diameter water jet on to heated copper and brass test pieces of 94 mm diameter 

and 59 mm height located 45 mm below the test surface [37].  The heated test piece 

temperature ranged from 104 to 378 
o
C.  They analyzed the vigorousness of jet 

breakdown to droplets and the associated sound generated as the jet hits the heated 

surface and nucleate boiling takes place using high-speed video camera and microphone.  

Finally they generated boiling sound to surface temperature relation which has a noisy-

quiet-noisy-quiet pattern that helps to decide at what stage the cooling process occurs.   

For surface temperature of 300
o
C and above, a kind of explosive pattern was 

noticed on the surface.  This shows at lower temperature only heterogeneous nucleation 

boiling occurred and at higher temperatures a combination of homogeneous and 

heterogeneous nucleation may have occurred.  In conclusion they argued for solid 

temperatures in the range from 250 to 300 
o
C the surface was subjected to repeating 

cycles of wet and dry and stable film boiling could not be confirmed which implied 

transition phase change may not always proceed in chaotic manner.   
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2.11. Factors Influencing Heat Transfer 

Design of a heat transfer component, enhancing cooling performance and using a 

technique for wide range of applications are highly dependent on addressing the 

parameters that influence the rate at which heat is removed.  These attributes of heat 

removal designs are usually addressed in the majority of research without considering the 

effect of other factors.  Many of the flow characteristics have compound affects on heat 

removal process and this makes the process more perplexing [4].  For example, erosion is 

a practical concern for a system with high-velocity jets (>5 m/s).  High velocity 

impinging jets have a tendency to erode the heated surface on which they fall.  This 

erosion in effect alters the surface finish of the target plate which also affects the heat 

transfer coefficient due to roughness. [For further explanation please see an interesting 

discussion by 40]. 

2.11.1.   Confinement 

For a circular or rectangular nozzle of certain hydraulic diameter in confined 

water jet impingement, the flow is treated laminar if the Reynolds number is less than 

2300 otherwise it is turbulent.  Behnia et al. studied the effects of confinement and 

nozzle-exit attributes for axisymmetric jet impingement using a numerical turbulence 

model v
2
-f [15].  After validating the numerical model they produced with experimental 

data they have studied the effect of different parameters on heat transfer coefficient.  

Fluid impinging in confined and unconfined settings for a wide range of Reynolds 

number values, Behnia et al. has shown how confinement leads to a reduction in average 

heat transfer rate while the local stagnation heat transfer coefficient is unchanged.  They 
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also illustrated that confinement has little effect on heat transfer coefficient except at a 

very low nozzle to plate distance (H/D<0.25); however the nozzle characteristics strongly 

affect the heat transfer process especially around the stagnation region.  

 Colucci et al. in their experimental analysis concluded that local heat transfer 

coefficients or the dimensionless local Nusselt numbers for confined jets are more 

sensitive to Reynolds number and nozzle-to-plate spacing than unconfined jets [2].  

Another experimental study on confined and submerged turbulent jet impingement is also 

done by Fitzgerald et al. [41] and San et al. [12] using laser-Doppler velocimetry.  

Fitzgerald et al. found out that for 2<H/d<4 the magnitude of the radial turbulence levels 

are not affected by a change in Reynolds number. San et al. concluded for H/d=2 that 

unconfined and confined impingements are proportional to 0.6375 power of Reynolds 

number alike.  They also showed that jet diameter is a strong factor that affects the 

Nusselt number for diameter values less than 6 mm [12, 33 and 42]. 

2.11.2.   Nozzles and Jet-to-Target Spacing 

Three fourths of literatures written about the parameters that affect heat transfer 

process consider the effect of jet–to–target spacing; therefore any literature on 

enhancement can be referred.  Katti et al. after series of experiments and analytical 

calculations, come to a conclusion that an increase in Reynolds number increases the heat 

transfer at all radial locations for a given H/D [22].  For a given Reynolds number, due to 

an increase in near wall turbulence intensities the stagnation point Nusselt number 

increases as H/D changes from 1 to 6.  For decreasing H/D below 1 for lower jet-to-plate 

spacing Nusselt number increases because of flow acceleration. 
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2.11.3.   Fluid Types 

Lin et al. carried out a spray cooling experiment in a closed loop using four 

different fluids as working medium [43].  They evacuated all gases from the system to a 

pressure below 5 x 10
-6

 Torr before filling up 38% of the internal volume [44].  Eight 

miniature nozzles placed 8.8mm away from the surface are used to generate a conical 

spray array ( average cone angle ranging from 35-50
o
 with pressure drop from 0.69-3.10 

bar) targeting a 1x2 cm
2
 heated surface.  The closed loop spray cooling can reach the 

critical heat flux levels up to 90 W/cm
2
 with pure FC-87, 490 W/cm

2
 with pure methanol 

and greater than 500 W/cm
2
 with pure water. They concluded that critical heat flux 

increases with an increase of the volumetric flux or pressure drop and non-condensable 

gases are found to affect the overall heat transfer adversely.  However, the effect is highly 

significant only at lower heat flux than CHF due to non-condensable gases’ higher 

thermal resistance to condensation. [10, 31, 15] 

2.11.4.   Nozzle Geometry, Angle, and Inclination 

Garimella conducted an experiment to determine the local heat transfer coefficient 

for axisymmetric normal FC-77 liquid jet impingement [18].  The result shows the heat 

transfer coefficients are the highest for very small nozzle aspect ratio of l/d<1 due to flow 

separation and reattachment in the nozzle.  As the aspect ratio increases the coefficient 

sharply reduces, but it slowly increases as the aspect ratio increases further [18].  

Following quite a number of experiments and looking at the results R.H. Chen said, “in 

order to achieve the highest feasible critical heat flux while using a minimum amount of 

water, it is important to select nozzles that produce a small droplet diameter with high 
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velocity” [38].  They concluded that, “dense sprays are not helpful for enhancing liquid 

usage efficiency while dilute spray increases the efficiency of liquid use.”  In other 

words, a dilute jet spray with large velocity yields a higher efficiency. 

Design of nozzles that would give the known stagnation Nusselt number trends is 

discussed extensively by Rahimi et al. [34].  The study focuses on heat transfer with 

under expanded jet impinges onto a heated surface where the surface interferes with the 

expansion process.  The effects of normal and oblique shock waves at nozzle exit to bring 

back the flow to ambient pressure, supported by experimental data, suggested that the 

flow Nusselt number is a function not only of Reynolds number but also nozzle Mach 

number, and pressure ratios as well. 

Peper et al. conducted an experiment that compares radial and inline jets with 

regard to heat transfer, wall pressure distribution and pressure loss [4].  To one’s surprise 

the result underline that radial jet nozzles with optimal flow exit angles of 45
o
 – 60

o
 allow 

a high potential of heat/mass transfer increase for many purposes.  Up to 60% and 50%, 

respectively, higher local and average heat transfer coefficients are possible compared 

with a standard circular inline jet of the same volumetric flow rate and the same average 

flow exit velocity.  The lower impact force on the heated surface in using radial jets also 

favors its applicability for cooling stress-sensitive products [12].  Gulati et al. investigate 

the effects of nozzle shape specifically circular, square, and rectangular nozzles on local 

and average Nusselt number.  Experiment assisted with infrared thermal imaging 

technique is performed for Reynolds number of 5,000–15,000 and H/d from 0.5–12.  The 

result shows that average Nusselt numbers are insensitive to nozzle shapes [33].  



23 

A. Y. Tong examined the effects of Jet Reynolds number, jet impingement angle 

and jet inlet velocity profile in one paper.  He observed that for inclined impingement the 

maximum Nusselt number location and the maximum pressure location shift upstream 

from the geometrical impingement spot which in effect influences the overall heat 

transfer rate.  He also shows the heat transfer rate is highly affected by fluid inlet velocity 

magnitude and nature and Nusselt number also is directly proportional to the square root 

of Reynolds number [45]. 

2.11.5.   Nozzle Configurations and Outlet Design 

Lee et al. have studied the effect of nozzle outlet design on turbulent heat transfer 

improvement by using three different nozzle configurations.  They found out that around 

the stagnation point a sharp-edge orifice jet yields a higher heat transfer rate than the 

others [46].  Whereas Baydar created jets between two parallel horizontal plates by 

piercing one of the plates and studied the effect of nozzle shape, Reynolds number and 

nozzle-to-plate spacing [42]. Chizhov et al. also have devised a predictor-corrector finite- 

difference scheme to study the impact of a very small scale compressible nitrogen liquid 

droplet (of the order less than 1 mm) at high velocity (100 m/s) on hot surface [25] and 

Pasandideh-Fard developed a numerical water droplet model impacting on a hot stainless 

steel surface [47]. 

Oliveira worked on residual stresses determination and distribution of the 

substrate as a result of the impingement pressure from the jet [48].  The result showed 

spray with controlled air pressure can give much wider fluid flow rate with a readily 

controlled range of operating pressure.  However, the heat transfer rate lies between that 
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of air jet cooling and the liquid bath.  O’ Donovan and Murray examined the effect of 

impingement angle from 30
o
 to 90

o
 for a jet Reynolds number of 10,000 from 2 to 8 

nozzle-to-plate spacing.  The heat transfer distribution they obtain reveals the highest 

heat transfer takes place at the stagnation point [49]. 

Bhattacharya et al. estimated heat transfer in spray evaporative cooling as a multi-

droplet array of liquid at low spray flux density by using analytical model and CFD 

simulation [50].  They have used a 4 mm thick steel strip as a heated surface and a critical 

droplet size of 70 μm for analysis.  It is observed that smaller droplets may be capable of 

providing the increased cooling load of ultra fast cooling for thicker steel strips and 

critical droplet size decreases as steel strip thickness increases.  In general, the smaller the 

droplet size the higher the cooling load to achieve for thicker strips.  However, as drop 

size increases energy input for atomization is also increased significantly. 

The attributes that fine droplets take more heat have made spray cooling the 

method of choice in many heat treating operations, especially those involving aluminum 

alloys.  During solution heat treating, metallic alloy parts are first preheated to a 

temperature slightly below the melting point in order to dissolve the alloy solutes into the 

primary metal matrix (aluminum).  The part is then rapidly quenched in order to freeze 

the solid microstructure attained during the preheating process.  Finally, the part is 

reheated to some intermediate temperature to allow the hardening solutes to coalesce into 

sites which are finely and uniformly dispersed within the grains of the primary metal. 

The finely dispersed solutes act as dislocation barriers, resisting deformations 

resulting from externally applied forces and resulting in a material with high strength and 
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hardness.  Slow (poor) quenching may have disastrous consequences in heat treating, as it 

may result in a material with very poor strength and hardness.  Therefore, the 

implementation of spray cooling in any heat treating operation demands a systematic 

methodology for predicting both the temporal and spatial variations of heat flux across 

the spray impact area. [16] 

Spray cooling, sometimes known as mist/steam cooling, also has a vital 

application in keeping the workability and integrity of gas turbine blades.  A typical 

medium scale gas turbine performs at about 30 bar.  Therefore, a coolant at higher flow 

rate, about 20-30 times the normal Reynolds number value is required.  Li et al. used 

water droplets less than 10µm added to 1.3 bar steam and injected on a heated turbine 

blade. For a Reynolds number ranging from 7,500 to 22,500 and heat flux value of 3.3 to 

13.4 kW/m2 mist cooling is observed to enhance the heat transfer by 50-700% at the 

stagnation line [51, 52]. 

2.11.6.   Dimensionless Parameters 

Whatever results found on an experimental analysis cannot be inferred to another 

application with different working medium unless an applicable scaling analysis is 

performed.  Surface tension, inertial and viscous factors can be expressed using 

dimensionless parameters Weber and Reynolds numbers. Laplace and Capillary numbers 

to describe drop impact mechanisms.  

Sensible heat required to heat the liquid up to its saturation temperature to the 

amount of heat needed to vaporize the liquid is scaled using Jacob number.  As a 

definition, the Jacob number expresses the relative importance between the maximum 
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sensible heat absorbed by the liquid to the latent heat absorbed in accomplishing phase 

change.  Sensible heat is associated with single-phase heat transfer, and the latent heat 

absorbed is associated with phase change, which makes Jacob number a two-phase heat 

transfer parameter.  Influences of these parameters on heat transfer through spray 

impingement are discussed extensively by Panão et al. [53, 54] and Rittidech et al. [55] as 

they study effects of heck valves and aspect ratio on the overall heat transfer. 

2.11.7.   System Parameters 

In studying the effect of system parameters on phase change heat transfer for free-

surface, circular jet has been investigated more extensively than all the other types of 

arrangements.  Wolf et al. has studied effects of different parameters on heat flux.  Some 

of the parameters are discussed below in Table 1 [26].  Single phase jet impingement has 

been studied through theoretical, experimental and numerical analyses for long. The 

studies make use of air or any liquid (especially refrigerants) as a working media.  After 

carrying out many experiments and simulations non- dimensional empirical correlations 

have been proposed and the effects of many flow parameters were investigated.  

Elements that influence heat transfer process in general are listed as follows:  

 Jet-to-plate spacing (this parameter affects the local heat transfer coefficient 

distribution) [41, 42, 2] 

 Geometry of impingement substrate [56, 5, 7] 

 Curvature of target plate [2] 

 Roughness of the target plate [57, 49, 1, 20, 5, 7, 8] 

 Reynolds number, dependent on jet velocity and diameter [41, 42, 2, 31] 
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Table 1.  Effect of system parameters on phase change heat transfer  

JET TYPE PARAMETER 

EFFECT ON 

HEAT 

TRANSFER 

COMMENT 

Free- Surface; 

Circular Jet 

and Planar Jets 

Jet Velocity No Effect 
Heat Transfer depends only 

on wall superheat 

Subcooling 

No detectable 

effect for a range 

of Tsub(4-78 
o
C) 

However, it shows some 

effect near bubble incipience 

Fluid Property 

Strongly depends 

on the type of fluid 

employed 

Surface tension has an inverse 

relationship with Heat flux 

Nozzle/ Heater 

dimension 

For fully 

developed 

Nucleate boiling, 

jet diameter & 

heater diameter 

has no Effect 

For a range of heater-to-jet 
diameter ratio (14<D/d<54) it 

has an effect 

Surface 

Orientation/ 

Impingement 

Angel 

(0 – 45
o
) No 

noticeable effect 
- 

Nozzle-to-

Surface Spacing 

No effect for 

spacing <0.5d 

However, it is affected for 

larger spacing 

Submerged, 

Confined and 

Plunging Jets 

Jet Velocity 

No Effect; Heat 

Transfer depends 

only on wall 

superheat 

The fully developed boiling 

region for forced convection 

did not coincide with the 

extrapolated results for pool 

boiling 

Subcooling 

No detectable 

effect for a range 

of Tsub(4-78 
o
C) 

However, it shows some 

effect near bubble incipience 

Nozzle/ Heater 

dimension 

For fully 

developed 

Nucleate boiling, 

jet diameter & 

heater diameter 

has no Effect 

For a range of heater-to-jet 

diameter ratio (14<D/d<54) it 

has an effect 

Nozzle-to-

Surface Spacing 

No effect for 

spacing <0.5d 

However, it is affected for 

larger spacing 
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In addition, other elements that influence heat transfer process are listed below: 

 Mach number and, Prandtl number [31, 47] 

 Jet confinement [42, 12, 15] 

 Impingement orientation from the vertical and target plate inclination [58, 4, 45] 

 Radial distance from stagnation point [39, 45] 

 Nozzle inlet/exit geometry [2, 23, 34, 33, 37, 18, 46] 

 Turbulence and turbulence intensity at nozzle exit [38] 

 Spray characteristics  [28, 29, 2] 

 Fluid thermo-physical properties and  dissolved gases [27, 44]  

 

2.12. Literature Review Conclusion 

Bergles et al. commented on one of their reviews that “about 10% of the heat 

transfer literatures written these days focuses on cooling enhancement, and in average the 

Journal of Heat Transfer publication has over 20% of the papers dedicated to various 

areas of enhancement” [1]. However there is hardly any research done on enhancing the 

heat transfer rate by changing the profile of the impingement surface itself in 

macroscopic level.  The overall goal of the present study was to show the dependency of 

heat transfer rate on the shape of an impingement surface and also determine the 

optimum shape of the heated surface that gives the best heat transfer rate. 
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CHAPTER 3  

PROBLEM FORMULATION AND METHODOLOGY  

 

 

3.1.   Jet Impingement without Phase Change 

In response to specific objective one described in the first chapter, to determine 

shapes which maximize heat transport from heater surfaces using jet impingement 

cooling method, a problem description of optimizing the impingement shape is presented.  

Figure 7 shows a jet impinging on a heated flat surface model.  Heat was input as a 

constant flux at the lower surface and a cooling fluid jet entered through a nozzle located 

at the top center.  After impinging on the heated surface the fluid carrying the excess heat 

was allowed to exit the chamber through two exit ports.  However unlike other confined 

jet impingement chambers the model used in the present study has side walls and the 

outlet was located at the top.  Therefore the fluid could exit only at the periphery of the 

top surface, as shown schematically in Figure 7. 

The flow in the control volume can be described by Navier-Stokes equations with 

appropriate boundary conditions as shown in equations 3.1 through equation 3.3.  The 

problem description and equations have been solved using a CFD code commercially 

available from Fluent®, software which can solve the listed mass, momentum, and 

energy equations simultaneously.  The solution to the momentum equations is a velocity 

flow field which gives a complete description of a particle position in time. 
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Figure 7.  Simplified Heating Chamber Model 
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Boundary conditions: 

Inlet: ,0y  ,0u for the nozzle but ),(xuu   in the flow field and Uv   

Stagnation point ,hy   ,0u and 0v  

For cells other than the stagnation region: ,hy  )(xuu   and )(xvv   

At the base: q  heat flux input 
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Since no species transfer is expected in the analysis the species mass fraction 

convection term is set to zero.  When the impingement shape is different from a flat 

surface the presence of wedge affects the flow and the N-S equation reduces to the well 

known Falkner-Skan equation for Newtonian flow [59].  The continuity equation stays 

the same but the momentum equation changes to equation 3.4  

 
2

2

y

u
v

dx

dU
U

x

v
v

x

u
u




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






 
  (3.4)  

where the free stream velocity in space is given by 

   mxUxU    (3.5)  

Figure 8 shows the boundary layer created as fluid flows over a wedge of angle 

πβ.  Majority of analysis done on Falkner-Skan flow of fluid over a wedge uses a half 

wedge angle measurement rather than the total angle.  The current study also uses half 

angle measurement and whenever a wedge angle α is mentioned it should be noted that it 

represents half of the overall wedge angle measurement, πβ.  When the wedge angle 

measurement changes from 0
0
 to 90

0
 the problem ranges from flow over a flat plate to 

impingement on a flat surface.  Angular measurements larger than 90
0
, where the wedge 

shape changes to a concave grooved surface, are also studied. 

Attaching the coordinate axis along the incline boundary conditions for a half 

wedge angle is given as: 

,0y  ,0u  and ,0v  

, )(xUu   
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Figure 8.  Boundary layer on flow over a wedge 

 

 

Figure 9 shows preliminary data on numerical flow visualization in 3D chamber.  

The dynamics of particles with the impingement surface and away from the stagnation 

region is a complex process.  However the fluid in the chamber has an axisymmetric flow 

field about the central axis.  The axisymmetry nature of the flow across the center gives a 

basis for modeling a 2D simulation rather than the computationally expensive 3D model.  

Comparison on preliminary results shows 2D modeling is sufficient for the specific 

objectives required. 

To simplify the complexity of the model each additional feature to the solver is 

introduced one at a time.  First, a simple 2D rectangular model with a small inlet at the 

top and heat input at the bottom is considered as shown in Figure 7 earlier.  The input 

parameters that describe the model are shown in Table 2.  The foregoing 2D model was 

found to be computational less expensive in optimal shape search.  
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Figure 9.  3D simulation of particle pathlines upon impingment 

 

 

Table 2.  Description of modeling parameters for jet impingement simulation 

Property Values 

Fluid Type Air 

Model Type 2D 

Model size 0.1m diameter x 0.09m hight 

Nozzle diamter 0.01m 

Heat Flux input 1 MW/m2 

Impingement Velocity (Reynolds number) 5 m/s (Re=5000) 

Exit condition 50% incoming fluid exit on either sides  

Base plate material and thickness Aluminum, 12.2 mm 

Webber number 425.35 

Nozzle-to-impingemnet surface distance, H/D 1.8 – 3.6 
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Figure 10, which were preliminary data, shows a velocity vector field and the 

corresponding temperature contour when jet inlet is far from the impingement wall.  

Looking at the preliminary simulation results, the injected fluid is unable to penetrate 

through the flow field of the control volume, as a result the flow swirl inside the chamber 

as a big vortex.  This is not an effective way of cooling a high heat flux surface because 

there is a significant amount of flow separation at the corners and velocity drop 

throughout the chamber. 

 

 

 
(a)                                                              (b) 

Figure 10.  Plot of (a) Velocity Vector and (b) Temperature contour 

of initial simulation model 

 

 

The preliminary data led to the final problem description as presented in Figure 

11.  Here the inlet to the chamber is extended further down up to about mid way of the 

control volume.  Nozzle tip to surface distance is chosen based on the experimental setup 
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built.  For simulations on the current study, depending on the profile of the impingement 

surface distance to nozzle diameter ratio, H/D, ranges from 1.8 to 3.6.  Figure 11 explains 

important zones and boundaries generated using Gambit software. 

 

 

 
Figure 11.  Schematic of representative model used in simulation 

 

 

Table 3 shows the text matrix used in the study.  A half wedge angle, α is used as 

a way of comparison of the different models.  For the sake of naming in this thesis, 

pointed wedges with half angle measurement less than 90
o
 are called pointed or “A-type” 

wedges and those wedges with half angle measurements between 90
o
 and 180

o
 are called 

grooved or “V-type”.  Four “A-type”, four “V- type” and a flat model are considered to 

study the effect of surface wedge angle on heat flux.  The wedge angle cannot be lowered 
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or increased indefinitely due to flow separation noticed in the simulation while doing 

that.  The flat impingement surface is taken as the benchmark for comparing the 

performance of the modified substrates.   

 

 

Table 3.  Model half wedge angles 

Model Type Model Name Half Wedge Angle, α 

A-type 

 

A0 70.2o 

A1 74.4o 

A2 78.7o 

A3 84.3o 

Flat 

 

Flat 90.0o 

V-type 

 

V4 98.0o 

V3 103.5o 

V2 109.0o 

V1 113.8o 

 

 

3.1.1.   Single Phase Modeling Process 

Grid Generation: models are generated using CAD modeling software, Gambit.  

Each vertex is assigned with proper boundary conditions, and for information transfer 

between zones the fluid regime and the solid part are split one from the other.  Due to the 

slant shape of the impingement surfaces a Quad-Pave type of meshing scheme is used.  

The number of nodes in the model depends on the overall surface area of the model.  
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Thus changing the shape of the surface changes the surface area of the model.  However, 

this number is made as close as possible with identical grid spacing for all wedge types. 

Setting up the solver and Input Parameters: for the search of an optimum 

impingement surface profile a Volume of Fraction (VOF) model is selected.  VOF model 

is developed to solve problems like sloshing and jet breakup in steady or transient case.  

Once the problem is initialized the single phase jet impingement process is basically a 

liquid-on-liquid flow.  

Solution from a steady-state solver makes sense only if the process is independent 

of the initial conditions and there are distinct inflow boundaries for the phases.  For this 

part of the study, to determine heat flux rate and surface temperature a time dependent 

unsteady solver is used.  However, for a given Reynolds number and constant heat flux 

value the system eventually reaches equilibrium.  Thus a steady state solver is also used 

to compare the final results. 

For air jet with 5 m/s exit velocity from a 0.01m diameter nozzle the Reynolds 

number is 5000Re  .  This Reynolds number value implies the jet impingement 

simulation is a fully turbulent flow problem.  Hence the two-equation RNG 

(renormalization group) K-epsilon viscous model was selected and all the model 

constants are kept at their default values. 

3.1.2.   Gravity Effect on Jet Impingement  

In all types of impingement configurations gravity plays a very important role in 

changing the nozzle exit velocity  to an impingement velocity .  If the 

impingement surface is facing upward the fluid exiting the nozzle accelerates to a higher 
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impingement velocity.  Whereas for downward facing impingement surfaces the jet 

moves against gravity hence the fluid decelerates.  The two velocities can be represented 

with equation 3.6. 

 
 

(3.6)  

It is obvious to see from the relationship that for large  or small impingement 

spacing , the two velocities become approximately the same.  The centerline jet 

velocity has similar value as that of nozzle exit velocity for a good range of 5 to 8 nozzle 

diameter (Wolf [26]).  Therefore impingement surface placed beyond this range has an 

impingement velocity lower than nozzle exit velocity.  Many literatures surveyed in 

chapter 2 have made no distinction between the two velocity values so in the present 

study the impingement velocity is assumed to be exactly equal to nozzle exit velocity. 

 

3.2.   Phase Change 

In response to specific objective two described in the first chapter, to model a two 

phase jet impingement process that incorporates phase change at the impingement 

substrate, multiphase model with extra source term was developed in the present study.  

For a problem involving more than one phase, solving the momentum equation and heat 

balance of a single phase is no longer sufficient.  The model uses the N-S continuity 

equation where the sum of volume fraction of the two phases in a cell is always unity.  

The fluid properties are determined by a Mixture model as expressed in equations 3.7, 

where index m is for Mixture. 
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Continuity, momentum and energy equations for the mixture model are given 

respectively in equation 3.7 through equation 3.9. 
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Effective conductivity 
effk is the combination of fluid conductivity and turbulent 

thermal conductivity.  Energy content of each phase is expressed with kE .  The variable 

  is volume fraction of each phase and number of phases in this study is two.  The last 

terms in the energy, momentum and continuity equations are the source terms which need 

to be written using user defined function (UDF) code.  

Mass, momentum and energy source contributions in a cell for phase “p” and “q” 

are given in equations 3.10 through equation 3.12, respectively.  Where ph is enthalpy of 

phase p with reference to formation enthalpy and f

ph  and f

qh  are formation enthalpies. 

 pqp mm    and  pqq mm   (3.10)  

 ppqpp umum


   and  qpqqq umum


  (3.11)  

  ppqp hmH    and   f

q

f

pppqq hhhmH   (3.12)  
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CFD solver Fluent® does not have the capacity to simulate phase change process 

with its inbuilt commands.  However, it gives access to its internal equations to introduce 

modification or add a source term.  In order to model the phase change process a C based 

UDF code was written.  Mass and momentum sources in Fluent® are defined per unit 

volume therefore in the UDF subroutines mass transfer was multiplied by the volume 

fraction of each phase present in the cell.  The sign convention for a source terms is 

positive and a sink term is negative.  Table 4 shows the main input parameters that 

describe the phase change model.  

 

 

Table 4.  Description of modeling parameters for phase change simulation. 

Property Values 

Fluid Type Water 

Model description Same dimension and specification as the first model 

Heat Flux input 10 MW/m2 

Impingement Velocity  
V= 0        for pool boiling study 
V= 2m/s   for phase change jet impingement 

Exit condition A pressure outlet and outflow. 

Base plate material and thickness Aluminum, 12.2 mm 

Stockes number 0.0046 

 

 

3.2.1.   Multiphase Modeling Process 

Grid Generation: a model similar to the one constructed in section 3.1 was used 

for the current study as well.   In contrast, uneven grid size was defined in both horizontal 
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and vertical directions in such a way that the smallest cells were near the impingement 

surface.  The process helps to effectively track the location where high parameter changes 

such as phase change occur.  The grid spacing and number of nodes used in the model are 

presented in the grid independence study in section 3.3.   

Preprocessing: Fluent® has a number of predefined simulation schemes in the 

package.  The Mixture model was chosen because of the following reasons based on 

physics of the problem.  Preliminary tests were carried out to determine the efficacy of 

the model chosen so as to get a converging and meaningful solution at the end.  The 

second specific objective of the study was defined as a phase change process where water 

was taken as the primary working fluid. 

Preliminary tests were performed using parametric studies that assist the decision 

process in choosing the best solver for the current problem.  The benefit was that the right 

solver insures a stable and converging solution.  The first factor checked was the loading 

parameter.  Particulate (vapor) loading, expressed in equation 3.13, was used to 

determine dispersion of the second phase in the flow field [60].  To determine dispersion 

of the second phase the average distance between particles was calculated using the 

following equation as: 
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Material density ratio for the phase change flow field is  5.54x10
-4

 which is 

way below the demarcating range for gas–liquid flow region (0.001).  At the start of the 

simulation the value of  is zero because initially there is no vapor inside the control 

volume. For a small value of  , applying limit, the right hand side reduces to 0.806, 

which is an intermediate loading factor.  In addition, the Stokes number has to be 

determined to select the most appropriate model which ensures stability and rapid 

convergence rate.  The Stokes number was calculated as shown in equation 3.14. 

 
  timeresponse System

  timeresponse Particle


s

d

t
St


 (3.14)  

where,  
c

dd
d

d






18

2

   and  
 system  theof velocity sticCharacteri

 system  theoflength  sticCharacteri


s

s
s

V

L
t  

Taking vapor as dispersed fluid the particle response time of d 9.191x10
-5

 sec. 

and for jet impinging on the surface, system response time of st 0.02 sec gave a Stokes 

number of, St = 0.0046 which is a value less than one, 0.1St .  The condition 

0.1St implies the particles closely follow the flow field hence the choice of the model 

is dictated by a smaller computational time, accuracy and model simplicity. 

Treating the two phases as interpenetrating continua the Volume of Fraction 

(VOF) model was initially used.  However the VOF scheme required longer 

computational time and would sometimes become unstable with an abrupt increase in 

flow Courant number.  The preliminary tests resulted in the choice of the Mixture model 

because it was stable and gave fast convergence rate.  Mixture model was designed to 

solve for flows with dispersed phase volume greater than 10% [60].  Fortunately the 



43 

Mixture model has less computational cost and is even much simpler than VOF model.  

Table 5 shows the material properties applied in the two phase flow modeling. 

Phase change is a time dependent process hence simulation stability and early 

convergence demands the use of unsteady solver with a smaller time step.  The time step 

was chosen to be as small as possible to allow information to diffuse from cell to cell 

effectively.  The appropriate time step size and number of iteration in per time step is 

determined. 

 

 

Table 5.  Material properties of two phase flow fluids 

Property Liquid /Water Vapor 

Density [kg/m3] 1000 0.5542 

Viscosity [kg/m-s] 1.003x10
-3

 1.34x10
-5

 

Thermal conductivity [w/m-K] 0.6 0.0261 

Specific Heat, Cp [J/kg-K] 4182 2014 

Molecular Weight [kg/kgmol] 18.0152 18.01534 

Reference Temperature [K] 372 372 

 

 

As described in Table 6, the sub-time step value of 0.57 is the minimum value 

that should be used to get information pass from cell to cell and insures convergence.  A 

sub-time step value of 20, which is much larger than 0.57, was used for the iteration 

which means within each time step a fixed time stepping solver iterates 20 times to find 

convergence.  The iteration was carried out even if the simulation did not converge 
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within the specified number of sub-time step because before the total number of time step 

ends the solution eventually did converge.  

 

 

Table 6.  Minimum time step determination technique 

Step Variable Relationship Value 

1 Locate minimum grid size, Δx Around impingement surface Δx=0.0224m 

2 Maximum flow velocity, Vmax Exit of the nozzle Vmax=5.1 m/s 

3 Frequency, f 
5.1

0.0224

Vmax

x



 0.0044 

4 Sub-step size, Δts 
0.25

0.0044

no.Courant 


f  0.0176 

5 Number of Sub-time steps 
0.0176

0.01






ts

t  0.5700 

 

 

In selecting the material for the primary and secondary phases the general 

recommendation by the software developers was followed.  The carrier continuous fluid 

– water - was set as the primary phase and the dispersed fluid – vapor - was set as 

secondary phase.  In doing so, the Mixture model gives the option to specify the particle 

diameter for the secondary phase.  Based on literatures the generally accepted vapor 

bubble detachment diameter value ranges from 1.5x10
-6

 to 2x10
-4

m [61, 14].  The present 

study used a bubble diameter of 2x10
-5

m. 

The simulations were carried out assuming the impinged fluid exits to the 

atmosphere.  Thus the operating pressure was set to an atmospheric pressure of 101325 

Pascal.  The operating pressure of the system was assigned at some reference pressure 
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location inside the model.  Since Fluent recommends setting the location close to the 

lighter fluid the reference pressure location is set at close proximity to the heated surface.  

The location of this point differs from model to model therefore the right value is 

assigned after locating the grid node close to the stagnation point. 

User Defined Function UDF: jet impingement phase change requires a pre-

defined UDF subroutine in order to accommodate mass and energy transport.  The 

objective is to use a single equation to solve the energy and momentum conservation 

equations of the two-phases and the portion of mass transfer in phase change.  

Conservation of Energy equation for a domain can be written in enthalpy (total heat 

content) form as equation 3.15. 

 
 

(3.15)  

Expanding the substantial derivative gives: 

 
 

(3.16)  

Basically change in enthalpy H  is more meaningful in thermodynamic 

calculation than the total enthalpy value, H of the fluid.  The total energy transfer through 

a process is equal to the sum of the internal energy content of the system U  and work 

done by the system )(PV  as in equation 3.17.  However the system does not do any 

work to the surrounding; therefore the work done term )(PV  is zero. 

  (3.17)  

In heating a liquid, energy transport in phase change takes place in form of 

sensible and latent heat.  Sensible heat is responsible for the amount of energy absorbed 
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by a system as its bulk temperature increases up to its saturation temperature without 

phase change.  As the temperature of the fluid reaches its saturation temperature, phase 

change takes place releasing huge amount of energy as latent heat of vaporization . 

  (3.18)  

Energy equation is basically a volumetric equation; thus the above equation can 

be rewritten as equation 3.19.  The two expressions on the right hand side of equation 

3.19 are the ones responsible for sensible and latent heat transfers respectively.  Change 

in enthalpy can be expanded further taking temperature as intermediate variable using 

chain rule.  This shows the process is a function of temperature (See the derivation 

below.) 

  (3.19)  

 
 

(3.20)  

similarly, 

 
 

(3.21)  

However 
pCTH  /  for sensible heat, i.e. slope of the two inclined lines in 

Figure 12 and for the discontinuous part (sudden jump) 
fghH   which is the latent heat 

value.  In phase change process from liquid to vapor, for example, the heat content of the 

vapor phase will be increased by a magnitude of the latent heat of vaporization, as clearly 

described in Figure 12.  Therefore, the energy content of the new phase is given by 

equation 3.22.  The first terms in the bracket at the left hand side of equation 3.22 is 

usually approximated by m and reduces the equation to equation 3.23.  However, the total 
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mass of a phase in the domain is calculated from the contribution of each cell’s volume 

fraction   containing that phase.  Mathematically it is given in equation 3.24. 

 

 

 

Figure 12.  Phase change line on enthalpy–temperature graph 

 

 

  (3.22)  

  (3.23)  

 

 
(3.24)  

Finally, the mass transfer in each cell becomes: 

 

 

(3.25)  

The UDF code was written to solve for this expression in every cell where the 

temperature of the cell exceeds saturation temperature.  The corresponding energy 
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transfer through phase change is simply the product of the mass transport by latent heat 

of vaporization.  

  (3.26)  

UDF macros is used to solve for the source terms where the input parameters 

were local phase type, condition criterion of phase change, magnitude of change in the 

source equation, and cell identification number. The macros function was defined to 

operate on every cell; therefore, the developed UDF reads individual cell temperature, 

density, and volume fraction then pass the values to the solver to evaluate the mass 

transfer magnitude.  The source term for energy was also written exactly in the same 

approach except the mass transport term is finally multiplied by the latent heat value. 

Substituting these into the general enthalpy equation gives a temperature 

dependent energy equation with a subscript , for the region in consideration.  Thus to 

effectively solve this problem the relation is solved for the three different temperature 

zones jointly as shown below.   

 
(3.27)  

The three regions are: 

 Pure liquid region: : 

 

 
(3.28)  

 Interface boundary or Stefan condition [62] : 

 

 
(3.29)  
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 Pure vapor region: : 

 

 
(3.30)  

In the liquid zone:  

 

 
 

(3.31)  

In the vapor region: 

 

 
 

(3.32)  

At the boundary, : 

 

 
 (3.33)  

The outlet of phase change simulation domain was set to pressure outlet boundary 

condition.  Since flow reversal was observed during the preliminary tests at the exit of the 

control volume back flow volume fraction is set for the liquid phase alone.  In the phase 

change simulation, the detaching bubble was assumed not to return once it leaves the 

control volume therefore only liquid phase back flow volume fraction is set as unity.  

Table 7 summarizes the boundary conditions that are assigned in each phases, primary 

phase is the carrier fluid and secondary phase is the dispersed fluid. 
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Table 7.  Boundary conditions available for a multiphase model 

B.C. Type Primary phase Secondary phase Mixture 

Velocity inlet  None Volume fraction Velocity magnitude 

Pressure outlet None Volume fraction Back flow P and T 

Outflow  None None Flow rate weighting 

Wall None None Heat Flux and No slip 

Fluid Mass source Mass source Energy source  

 

 

The back flow temperature was also set as the temperature of the primary phase at 

the outlet.  Momentum and volume of fraction problems are discretized with second order 

up-wind methods for better precision.  For phase change, the discretization technique had 

a strong effect on the results.  First order upwind discretization gave a quicker but 

unrealistic bubble shapes which did not interact with each other, specifically no 

coalescence or splitting.  Whereas bubbles formed in second order upwind discretization 

were more realistic in shape and dynamics.   

For the grid generated with quad mesh pressure is discretized scheme of PRESTO 

and pressure velocity coupling techniques of SIMPLEC were used.  However, it was 

noted that the solution became more stable and robust when the under-relaxation factors 

for all variables were from their default values.  The input variables are summarized at 

the end of this chapter.   

Specific initial conditions were set for different sectors of the domain by over 

writing the starting conditions. Velocity inlet was used to initialize the velocity flow field 
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and the temperature field was initialized by custom field function.  Double precision 

solver was used for the simulations.  Many of the convergence monitors are set to 10
-6

 

and even further lowed for variables other than the energy solver because iterations do 

not converge completely due to round-off accuracy in the vicinity of the convergence 

criteria. 

3.2.2.   Gravity Effect on Phase Change 

Gravity effect for a phase change simulation is quite significant because the light 

weight fluid lift off because of buoyancy.  Therefore gravitational effects were included 

in the simulations by assigning -9.81 m/s
2
 in the Y direction.  The operating density 

parameter was also turned on and taken as the lighter phase in the simulation, which is 

vapor phase with density value of 0.5442 kg/m
3
.  For a model that is significantly 

affected by natural convection, where vapor raises due to buoyancy, Boussinesq 

approximation is used for a fast convergence.  The operating temperature for Boussinesq 

parameters is set to 372K, which is almost the saturated water temperature value.   

Table 8 gives a summary of the parameters used in the model development.  

Based on the model type used, either for the first specific objective simulation or for the 

second objective, the appropriate parameter that should be used in setting up and 

initializing the solver is tabulated.  For turbulence model, the default parameters were 

used whereas for coupling solver the relaxation parameters were tuned as the simulation 

go on so that the problem converge fast.  The main boundary conditions for the solver are 

also given at the last row of Table 8. 
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Table 8.  Input parameters for modeling 

Property Parameters 

Solver 

 Pressure based 2D Steady and Unsteady solvers 

 Implicit Formulation 

 Superficial Velocity, Absolute Velocity Formulation 

 Cell-Based Gradient 

Reference Conditions 

 101325Pa Reference Pressure Located near the heater 

 -9.81 m/s
2
 gravitational acceleration only in Y 

 Op. Temp.= 299.8 K for air jet and 372K for phase 
change 

 Vapor density was (0.5442 kg/m
3
) taken as operating 

density 

Turbulence Modeling 

 Two equation RNG K-epsilon model 

 Thermal effect enhanced near-wall treatment 

 Default modeling constants 

Solver Controler 

 For air jet impingement model Flow, Turbulence and 

Energy equations are solved together using SIMPLE 

coupling solver 

 For phase change model Flow, Volume Fraction, Slip 

Velocity, Turbulence and Energy equations are solved 

together using SIMPLEC coupling 

 Skewness Correction = 0 

Under-Relaxation Factors 

For the applicable solver: 

 Pressure = 0.2 

 Density = 0.5 

 Body Forces =0.5 

 Momentum = 0.3 

 Slip Velocity = 0.1 

 Volume Fraction = 0.4 

 Turbulent Kinetic Energy = 0.5 

 Turbulent Dissipation Rate = 0.5 

 Turbulent Viscosity = 0.5 

 Energy = 0.5 
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Table 8.  (Cont.) 

Property Parameters 

Discretization 

For air jet impingement simulation 

 Pressure = PRESTO! 

 Momentum = Second Order Upwind 

 Volume Fraction = QUICK 

 Energy = Second Order Upwind 

For phase change simulation 

 Pressure = PRESTO! 

 Momentum = Second Order Upwind 

 Volume Fraction = QUICK 

 Energy = Second Order Upwind 

Boundary Conditions 

For air jet simulation 

 Heat in = a constant heat flux of 0.1MW/m
2
 

 Inlet Velcotiy = 2m/s 

 Exit = outflow 

For phase change simulation 

 Heat in = a constant heat flux of 1MW/m
2
 

 Liquid Inlet Velcotiy = 0 (pool boiling) 

 Liquid Inlet Velcotiy = 2m/s (phase changejet 
impingement) 

 Exit = pressure outlet (pool boiling) 

 Exit = outflow (phase changejet impingement) 

 

 

3.3.   Grid Independence Study 

Grid independence study is one important step that should be performed before 

considering any simulation output as a valid result.  The grid independence study is 

carried out to make sure the results obtained from Fluent® are not affected by grid 

spacing and the number of nodes chosen.  Sometimes truncation and round off errors 

affect a result so severely.  For this reason a varying property such as static temperature is 
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used for monitoring grid dependency.  The different impingement surface models then 

run for the same real time simulation with three different grid spacing values.   

Table 9 shows the maximum temperature of impingement surface for 5 second 

real time simulation of the different models.  The models were meshed with three types 

of grid spacing which gave a slightly different node numbers in the domain.  As tabulated 

on Table 9 altering the grid spacing from 0.0005m to 0.002m doesn’t have any effect on 

the result, therefore a grid spacing of 0.001m (1mm) somewhere at the middle of the 

aforementioned spacing was selected for all simulations.  Residual plot of a simulation is 

also another convergence indicator.  Depending on the solver type used, the residual 

monitoring tool shows the convergence history of different properties.  Figure 13 shows a 

successful convergence history of continuity, momentum, energy and turbulence 

equations of the model which took about 1,700 iterations. 

 

 

Table 9.  Grid independence study maximum temperature taken as the variable 

Model Type 
Grid spacing,  (m) and Maximum Temperature, T (K) 

0.0005 T 0.001 T 0.002 T 

A Type wedge 40810 nodes 358 10390 nodes 358 2830 nodes 358 

Flat Surface 43616 nodes 354 11108 nodes 354 3035 nodes 354 

V–Shape Substrate 47681 nodes 362 12126 nodes 362 3307 nodes 362 
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Figure 13.  Plot of residuals 
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CHAPTER 4  

RESULTS 

 

 

4.1. Results of Optimum Shape Search 

Table 10 summarizes surface heat flux distribution, maximum temperature in the 

model, and overall heat transfer enhancement obtained by modifying the impingement 

surface for 10 second real time simulation.  For the problem described in section 3.1 

applying the solving methodologies discussed in Chapter 3 these results are found using 

post processor tools in Fluent.  

 

 

Table 10.  Summary of heat flux enhancement in changing the wedge angle 

Shape Wedge Angle, [deg] Max Temp [k] Heat Flux [W/m
2
] Ehancement % 

A1b 70.2 360 1257.1 -9.986 

A1 74.4 358 1305.4 -6.528 

A2 78.7 356 1330.3 -4.745 

A3 84.3 355 1364.9 -2.267 

Flat 90.0 354 1396.6 0.000 

V4 98.0 355 1445.2 3.483 

V3 103.5 357 1501.4 7.507 

V2 109.0 359 1533.9 9.834 

V1 113.8 362 1583.0 13.350 
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Figure 14 shows the heat transfer enhancement values of the different model types 

studied and percentage enhancement is depicted in a bar chart.  The bar chart shows that 

V1-type model increases the heat transfer rate by 13.35% than flat impingement surface.  

The enhancement translates in an additional 186.4 W/m
2
 heat flux removed by modifying 

the flat impingement surface to the V1-type from a flat surface. 

 

 

 
Figure 14.  Bar chart of enhancement for different models 

 

 

Figure 15 compares the maximum surface temperature of the models and average 

heat flux values as a function of wedge angle.  From Figure 15(a) it can be concluded that 

although the flat model insures the lowest surface temperature, yet the model does not 

give a significant temperature drop when compared to other models.  The corresponding 

average surface heat flux data shown in Figure 15(b) illustrates that the average surface 

heat flux increases in a nearly linear fashion as a function wedge angle.  A flat 
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impingement surface is indicated by 90 degree wedge angle while models with angles 

less 90 degrees are indicated by A-type models which are found to have a less effective 

heat transfer rate than a flat impingement surface.  Those models called V-type are found 

to have a better heat transfer rate than a flat impingement surface. 

 

 

 
(a) 

 
(b) 

Figure 15.  Plot of surface (a) Temperature and (b) Heat Flux 

versus Wedge Angles 
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The results indicate that impingement surface shape modifications do have a 

significant effect on the overall heat transfer.  The next task was to search for an optimum 

shape that would give a better performance than V1-type surface.  The search for the 

optimum impingement shape was motivated by realizing that the flow field parameters 

have an effect on the heat transfer rate as shown in Figure 16.  The figure shows a series 

of velocity, pressure and temperature plots of some of the different models used. 

As the Figure 16 indicates there are significant flow separations at the corners of 

the A-type models.  More specifically, the lower the deviation of the wedge angle from 

90
o
 the higher the flow separation in the corners.  The difficulty of flow from reaching to 

the corner surfaces results in a lower convective heat transfer coefficient at that location 

which leads to a higher surface temperature.  The flow separation is determined by 

inspecting the velocity vector plots and stream function contours.   

In the flow separation corners, fluid particles circulate independent of the main 

flow at the corner which results in a reduction in heat transfer rate.  For the V-type 

models, apart from the stagnation region, the flow streams stay in contact with much of 

the surface.  The higher the wedge angle the smaller the flow separations noticed at the 

corners and the lower the surface temperature in those corners.  The comparison can be 

understood by plotting surface temperature distributions versus position as shown in 

Figure 17. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 16.  Velocity vector, pressure contour and static temperature plots of 

(a and b) A-type model, (c and d) V-type model, and (e) flat 

surface model at 10 sececond time elapse 
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Figure 17.  Surface temperature profile comparison of models after 10 

second real time simulation elapse 

 

 

Figure 17 shows surface temperature distribution after 10 seconds time elapse for 

the different models considered.   The data shows that both A-type and V-type models 

result in a higher temperature than the flat surface model.  In addition the temperature 

difference between all the models is not larger than 8
o
C. 

The second comparison involves surface heat flux profile at the impingement 

surface of different models used in the study shown in Figure 18.  Figure 18 presents the 

local surface heat transfer data along the heated surface.  Recall that A-type models are in 

general inefficient in their overall performance as shown in Figure 14.  A1-type model 

however exhibits the maximum heat flux around the stagnation regoin (-0.015<x<0.015).  

As the fluid start turning from axial to radial direction, V1-shape substrate becomes much 

more effective in terms of surface heat flux.  Flat impingement surface lies in between 

and gives a uniform surface heat flux for the widest range. 
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Figure 18.  Heat Flux comparison of models analyzed at 10 second time 

elapse 

 

 

The foregoing results led to the realization that combining the two profiles which 

had the highest regional performance could result in a single profile which has a better 

heat transfer performance than the individual contributor.  Figure 19 shows the model 

with local maximum surface heat flux where at the stagnation region the A-type model 

(A1) exhibits a better performance than the other models but away from the stagnation 

region the V-shape substrate (V1) has a better heat flux.  Therefore, the new impingement 

model was derived using A1-type profile at the stagnation zone and V-type shape for the 

rest. 
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Figure 19.  Surface heat flux  comparison of Modified shapes with 

flat surface 

 

 

Figure 20 shows a schematic of the new developed VA-type model.  The 

transition angle from the A-type to the V-type shape is given by β.  Four different models 

are constructed by changing the intermediate angle.  Subsequently similar simulations 

with the same initial and boundary conditions as the A-type and V-type models were 

performed on these models.  The results are compared in similar fashion on the basis of 

surface heat flux values as shown in Figure 21.  Comparison of surface heat flux is shown 

in Figure 21.  The heat flux distribution shows that the newly modified shape 

incorporates the benefit of the two shapes which yields a better performance than the 

original models.  Around the stagnation region the new model follows the performance of 

that of the A1-type and when the fluid moves to the V-type region it follows the original 
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V-type model performance.  However in the transition between the two regions there is a 

considerable performance drop.  This performance reduction is due to flow separation 

taking place at the junction point.  The new model has the highest heat removing capacity 

than the previous modifications.  

 

 

 
Figure 20.  VA-type mode 

 

 

 
Figure 21.  Heat flux comparison with the new model 
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Table 11 summarizes the data from the simulation where the maximum 

temperatures of the models are in a comparable range whereas the average heat flux is 

improved as depicted in Figure 22.  The heat flux comparison in Figure 22, shows that 

VA3 model gives a superior heat transfer performance with an enhancement up to 20% 

when compared to the flat surface which is another 5.67% additional enhancement to the 

V1-type model.  The optimum impingement shape search results in VA3-type model, 

which is composed of the regional high performing A1-type and V1-type models. 

 

 

Table 11.  Comparison heat flux and overall enhancement of VA type model with  

the high performance A-type and V-type models 

Shape 
Orignial 

Models 
Max. Temp. [k] Heat Flux [W/m

2
] Enhancement% 

A1 - 358 1305.359 -6.531 

V1 - 362 1583.032 13.352 

VA_FLAT A1 and Flat 355 1461.557 4.654 

VA2 A1 and V2 358 1528.247 9.430 

VA1 A1 and V3 357 1606.391 15.027 

VA3 A1 and V1 359 1671.206 19.666 

 

 

 
 

Figure 22.  Heat Flux Comparison of the newVA-type models 
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Figure 23 presents the velocity vector, static pressure, and temperature fields of 

VA-type models .  The figure shows that as the inclination of the V-type model increase 

the effectiveness of the shape increases.  However, at the junction of the two model types 

there exist a flow separation which leads to a drastic drop in effectiveness.  

 

 

 

(a) 

 
(b) 

 
(c) 

Figure 23.  Plot of velocity, pressure and temperature for (a) VA2-type (b) 

VA1-type and (c) VA-Flat models 
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4.2. Results of Phase Change Jet Impingement 

The task was to apply phase change on the last model generated (VA3 model) and 

study jet impingement heat transfer incorporating phase change process as described in 

the second specific objective.  As explaind in chapter 3, Fluent can not model a phase 

change process without a UDF code.  Therefore, a UDF code that handls phase change 

process was written and compiled as described in chapter 3.  The resulting code was run 

until bubble formation, coalesce and detachment on the heated surface is confirmed.  

Thus before applying a water jet with inlet velocity of 5 m/s (and 2 m/s for some 

analysis) the phase change CFD code is first tested using pool boiling simulation where 

the UDF code ensures phase change when the local conditions determined by temperature 

exceeds saturation temperature and condenses back when the temperature drops.   

Two phase flow convergence history of Volume Fraction of Vapor and Area 

Weighted Surface Nusselt Number plots shown in Figure 24 and Figure 25, respectively. 

These plots were used to monitor the convergence history as flow time advances and to 

identify the instance bubble is created and lifted up.  A sudden drop of vapor volume 

fraction at the surface indicates bubble detachment; for example, at 4 sec and 10.15 sec. 

Figure 26 through Figure 28 show comparison of Surface Temperature, Heat 

Flux, and Surface Nusselt number distributions at different real time simulations, 

respectively using the phase change Model.  The surface Temperature distribution in 

Figure 26 shows that the impingement surface temperature for phase change heat transfer 

increases with increasing time until it becomes steady (above T=550K).   
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Figure 24.  Convergence history of Volume-Average Volume fraction 

of vapor 
 

 

 
Figure 25.  Convergence history of Area-Weighted Average Surface 

Nusselt Number 

 

 

Conversely for jet impingement the surface temperature stays more or less the 

same throughout the process (around T=425K).  Figure 27 and Figure 28 shows jet 

impingement model with phase change has a higher heat transfer rate than pool boiling 

process, as expecetd from the physics of the problem.  
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Figure 26.  Temperature comparison for phase change models with and 

without  jet impingement 

 

 

 
 

Figure 27.  Surface Heat Flux comparison 
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Figure 28.  Surface Nusselt Number comparison 

 

 

The comparison contour plot shown in Figure 29 is of volume fraction at different 

time elapse between pool boiling and jet impigement. The no jet flow simulations are 

shown on the left and the phase change with jet flow simulation are shown in the right 

hand column.  The results show vapor plumes generated as a result of boiling phenomena 

occuring at the bottom wall in the left column.  On the other hand when the jet is applied, 

the vapor is confined to a relatively small region close to the bottom wall and side walls.  

The vapor is seen to accumulate in the corners where the flow is minimal.  The result 

indicate that phase change with jet impingement provides a significant improvement on 

the heat flux profile.  Compared to Figure 21, the heat flux spikes at +0.015 distance from 

the center are eliminated when phase change is introduced.  Further investigation is 

needed to resolve the phase change process at the interface. 
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(a) 

 
(b) 

 
(c) 

Figure 29.  Contours of volume fraction of vapor (a) t=3sec, (b) t =4sec, and 

(c) t=5sec for pool phase change model (left) and jet impingment 

model with jet velocity of 2 m/s (right)  
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CHAPTER 5  

CONCLUSION 

 

 

CFD models developed in the present study provide tools to assess single phase 

and two-phase cooling schemes which may be difficult to resolve using experimental 

methods.  The UDF developed extended the usefulness of Fluent® software in heat 

transfer by adding the phase change physics.  However writing and compiling a UDF 

code requires a higher level programming and debugging skill since the physics of the 

phase process is still under development by the research community. 

The phase change jet impingement cooling process produces the best heat transfer 

enhancement for high rate heat flux components.  However, as comparisons between a 

pool boiling and jet impingement shows, two-phase cooling effect is more pronounced 

for a natural convection mode than for jet impingement scheme.  The reason is jet 

impingement itself is more effective than phase change in stagnate pool removing heat 

from a substrate.  Modifying the impingement surface from flat to the constructed V-type 

model, results in an overall heat flux enhancement of 13.35%.  Additional modification 

of the impingement surface to the new shape (VA model) constructed by overlaying the 

two wedge angles that gave better regional performances, the overall heat flux is 

increased by 20%. 

This study also identified that phase change has a saturation point in jet 

impingement cooling scheme.  Liquid jet pushes the impingement surface boundary later 
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to a very small thickness and to the corners where flow separation exists.  However 

incorporating phase change at the corners increase the surface heat transfer rate for the 

fact that heat transfer is enhanced due to phase change process where fluid motion is 

minimal.  The effect can be explained by boundary layer reduction due to presence of jet 

flow. 

Further study can be performed using the generated model for vapor atomized 

spray cooling technique instead of a single phase liquid jet.  The exhaustive literature 

review performed in chapter 2 confirmed that spray cooling has a better performance and 

few more advantages than jet impingement.  Therefore, it is beneficiary to see the effect 

of using vapor assisted spray cooling than jet impingement on the overall heat transfer.  It 

is also ambiguous to tell the exact physics when phase change is applied to the jet 

impingement process therefore further study needs to be done on that topic as well.  
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APPENDIX A 

PHASE CHANGE HEAT TRANSFER THEORY 

 

 

Substantial derivative for two-dimensional case, is given as 
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The Laplacian for 2D flow is defined as 
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Similarly  

 

Substituting these into the general enthalpy equation gives a temperature 

dependent energy equation with a subscript , for the region in consideration 

 

Three regions have to be solved together to get a well poised expression and a 

converged solution.   

Pure liquid region:  

 

Interface boundary, Stefan condition:  
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This expression is also called Stefan condition (Rubinstein L. I. [62]) 

Pure vapor region:  

 

Phase change heat transfer is a rather complicated process.  At point in time, the 

liquid that comes in contact with the heated surface absorb the sensible heat and its 

temperature increases.  As the temperature adjacent to the heated surface increases above 

the fluid saturation temperature, phase change start to occur, [see literature review].  As a 

result, the portion of fluid that undergoes phase change takes a significant amount of heat 

from the surface.  Gradually, a vapor film start to accumulate around the heated surface 

until enough amount of vapor coalesces to be lifted up by buoyancy effect.  The 

insulating vapor film at the heated surface also acts as a heat transfer medium just like the 

liquid layer but with a much lower thermal conductivity coefficient.  Therefore, some 

part of the heated surface will be in contact with liquid and some with vapor, in addition a 

phase change takes place simultaneously.  Thus to effectively solve this problem the 

famous Stefan relation is solved for the three different temperature zones jointly.  

Consider a pool of liquid at constant temperature , occupying a semi-

infinite region . is the saturation temperature where the liquid start to boil or 

change its phase.  At , which is also known as equilibrium phase change temperature, 

liquid and vapor phases can co-exist in thermodynamic equilibrium.  But as the heated 

surface temperature exceeds at the liquid starts changing its phase.  For any 
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time t, the overall region consists of liquid and vapor phases with liquid phase occupying 

the region and vapor takes the region is the demarcating 

interface for the two phases or the free boundary.  

In liquid zone:  

 

 

In vapor region 

 

 

At the boundary  
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APPENDIX B 

DIFFERENT IMPINGEMENT SURFACES 

 

 

 
Figure B1.  Convergence criteria by monitoring equation residuals 

 

 

 
Figure B2.  Heat Flux comparison of the different models 
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(a) 

 
(b) 

 
(c) 

Figure B3.  Heat Flux comparison for (a) A-type (b) V-type and (c) VA-

type models 
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Area under the curve is calculated using trapezoidal method in Matlab using 

[trapz(x,y) command] which gives the values tabulated in Table B1, for the different 

models.  

 

 

Table B1.  Area under surface heat flux curve 

Model 

Type 

Heat Flux 

Area under 

curve [W] 

Area % 

Increase 

Heat Flux (W/m2) 

at Stagnation at 0.03m at corner 

A0 (A0) 268.48 1.948 5071.78 2300.01 988.536 

A1 266.95 1.386 4710.22 2373.8 1175.51 

A2 264.98 0.653 4372.41 2408.92 1318.66 

A3 263.45 0.076 3961.07 2470.7 1370.91 

Flat 263.25 0.0 3558.62 2546.96 1397.84 

V1 277.27 5.056 2109.99 3060.8 1045.75 

V2 271.71 3.114 2325.68 2930.9 1210.25 

V3 267.35 1.534 2639.22 2786.33 1318.92 

V4 264.43 0.446 3004.98 2673.09 1380.22 

VA3 307.36 14.351 4659.6 3221.72 913.175 

VA1 290.16 9.274 4627.57 3028.33 1043.96 

VA2 276.19 4.685 4553.46 2801.58 1275.55 

VA4 271.28 2.960 4591.28 2657.28 1385.47 
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Figure B4.  Steady state temperature comparison for A-type model 

 

 

 
Figure B5.  Surface temperature profile for pool boiling and jet 

impingement 
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