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ABSTRACT 
 
 
Vang, Meng. MODELING AND OPTIMAL MITIGATION OF IMPULSIVE LOW-
FREQUENCY OUTDOOR NOISE. (Major Advisor: Marwan Bikdash), North 
Carolina Agricultural and Technical State University. 
 
  

           Low-frequency outdoor noise is very common in urban environments and can 

propagate over long distances. Residents living in the vicinity of a military base and other 

noisy areas often are annoyed by this noise. Most of the theoretical and experimental 

work that have been done to study and reduce this type of noise involved the use of 

barriers and sound proofing the residential houses. The attenuation of acoustic waves 

propagating above hard surfaces over long distances depends on the shape of the surface. 

Therefore, the landscape is a factor in combating outdoor noise. In this dissertation, an 

anti-propagation approach involving the use of corrugated surfaces or sinusoidally shaped 

berms to suppress outdoor noise was proposed.  

           Finite element analysis and the equivalent source method (ESM) were employed 

to investigate the effects of corrugated surfaces on the acoustic transmission loss. The 

equivalent source method (ESM) was used to model different surface geometries and 

employed in conjunction with a nonlinear optimization algorithm to compute the surface 

shape that will result in the most acoustic loss. The corrugation method was shown to be 

effective against certain frequencies and can be used to combat low-frequency outdoor 

noise. 
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CHAPTER 1

INTRODUCTION

As the number of airplanes, trains, and highways continues to increase, the noise

level of our cities and environment continues to rise. In addition to noise produced by civil-

ians, there are those that are produced by the military. These noises are generated by gun-

fire, explosions, artillery fires, and military vehicles such as airplanes, tanks, and personnel

carrier vehicles. Noises generated by the military can be heard up to several kilometers

away, particularly those produced by explosions which have a strong low-frequency con-

tent and can travel over long distances. As a result, military bases are a source of annoyance

to civilian residents including those residing several kilometers away. The pervasive nature

of low-frequency noise also presents many acoustic problems to the architects, designers,

planners and engineers.

This research focuses on low-frequency outdoor noise and addresses some of the

problems associated with it. The following are proposed: 1) a method to suppress outdoor

low-frequency noise, 2) a method to model the effects undulating surfaces on the acoustic

energy loss, 3) using perturbation theory to reducing acoustic energies and 4) an algorithm

to optimize the acoustic loss.

1.1 Impulsive Noise

One can think of an impulsive noise as an unwanted instantaneous sharp sound.

Examples of impulsive noise include that produced by explosions and gunfire. Most of
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the energy associated with impulsive noise is located at the low-frequency (20-50 Hz) end

of the energy spectrum. Moreover, low-frequency noise propagates efficiently. Hence,

residential houses many kilometers away are affected. Other structures, particularly those

with a low resonant frequency, such as windows, tables, plates etc. vibrate or rattle as a

result of their interaction with low-frequency noise.

To gain a better understanding of this phenomenon, one has to look at the charac-

teristic waveform of the explosion or the source of the noise, its propagation characteristics

and attenuation in the atmosphere, and the interaction between the low-frequency noise and

structures.

Baker [1] discussed the phenomenology of explosion in air and air blast theory. In

his book, he also discussed methods of computation and blast experimentation as well as

providing curves and tables of compiled blast parameters. Some experimental data and

graphs were also provided by Baker making his book an invaluable resource for this re-

search. Bangash [2] has similar details in his book. Bangash also presents a comprehensive

study of the structural dynamics of impact and explosion by providing a survey of types of

aircraft, missiles, bombs and detonators. Additionally, he included empirical models devel-

oped for different materials, water surfaces, soil and rock medium. His book is very useful

when studying the interaction between blast waves and structures.

In 1993, Ford et al. [3] measured the pressure waveform from small unconfined

charges of plastic explosive. In their experiment, the pressure waveforms were measured

in free air from unconfined 125-g and 1-kg charges of plastic explosive at distances of 1000

m. They concluded that propagation over concrete and water has similar waveforms while
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propagation over grass has much of the high frequency content removed resulting in a

different waveform. There are also numerous studies conducted on underwater explosions.

There also had been numerous studies on the propagation of acoustic waves in air.

Reed [4], in 1977, looked at atmospheric attenuation rate of an explosion wave. Reed

discussed various attenuation factors and relationships to frequency to the total wave pres-

sure signature of an explosion wave, both positive and negative phases. He concluded

that sound attenuation have shown an attenuation factor approximately dependent on the

five-fourths power of frequency, rather than the square. This new factor gives faster atten-

uation that is probably caused by a combination of molecular relaxation with small-scale

inhomogeneities and turbulence usually present in the real atmosphere. Reed also provided

explosion-wave signatures for different attenuation scenarios. These signatures have been

used in some of the simulations in our research.

Downing et al. [5] did a study on the measurement and prediction of nonlinearity of

outdoor propagation of periodic signals. They argued that there are limited numbers of ex-

periments dedicated to the measurement of finite-amplitude effects in outdoor continuous-

wave sound propagation. Two particular papers were mentioned. One by Theobald called

“Experimental study of outdoor propagation of spherically spreading periodic acoustic

waves of finite amplitude” and the other by Webster and Blackstock called “Experimen-

tal investigation of outdoor propagation of finite-amplitude noise.” These two particular

papers were mentioned because both studies “showed clear evidence of nonlinear propa-

gation in that the measured high frequency sound pressure levels were significantly greater

than those predicted with linear theory.” Authors’ purpose was to discuss their experimen-

3



tal results that show evidence of nonlinear effects. In their experiment, the U.S. Army

Research Laboratory’s Mobile Acoustic Source or MOAS was used to generate the high-

amplitude periodic signals. Several microphones (Bruel and Kjaer Type 4190) were placed

at various distances and heights to measure the signals. The authors used a nonlinear nu-

merical model based on the generalized Burgers equation (GBE) to compare against their

field experiment. The result of the comparison showed that the mean absolute error was

significantly less for the nonlinear model than the linear model for most cases.

In 1988, Walkden and West [6] used a ray tube approach to predict atmospheric

acoustic propagation. The ray tubes, each consisting of a group of four rays surrounding

a central ray, are launched from an initial surface close to the source. The ray tube meth-

ods have two components. One is the ray path calculation and the other is the prediction of

pressure levels along elementary ray tubes formed from a set of neighboring rays. Compar-

isons show that reasonable agreement between predictions and measurements is obtained

in enhancement regions. However, prediction of sound levels will not be useful in regions

where rays cross or which are close to a shadow boundary. Additionally, predictions are

limited to frequencies high enough for the geometric ray acoustic approximations to apply.

While it is meaningful to understand the source of the noise and how noise propa-

gates, it is also important to understand what happens at the interface where the sound wave

meets a structure such as a wall. Sound and structure interaction is an interesting phenom-

enon. There are numerous studies in this area as well. In 1963, Lyon [7] studied noise

reduction of rectangular enclosures with one flexible wall. Lyon computed the noise reduc-

tion for very low frequencies where both wall and enclosed volume are stiffness-controlled,
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for frequencies where the wall is resonant and the volume is stiff, and for frequencies where

both the wall and the acoustic space have resonant behavior. In 1966, Morse [8] looked at

the transmission of sound through a circular membrane in a plane wall. The actual setup in-

volved a plane, rigid wall having a circular window, across which is stretched a membrane

under tension, in contact with an acoustic medium on both sides. One side of the wall was

excited by a plane wave. Morse derived formulas for the total power transmitted through

the membrane and for the distribution in angle of the transmitted wave.

To gain a better understanding of the structural-acoustic coupling mechanism, Kim

and Kim studied structural-acoustic coupling using a partially opened plate-cavity [9].

Their goal was to understand the coupling mechanism of a generally coupled system that

has direct interaction between a finite interior fluid and a semi-infinite exterior one. The

coupled system was excited by a source at a wall of the cavity. The behavior of the cavity is

affected by the plate and the exterior acoustic field which is constructed by the energy going

out through the plate and the hole. Kim and Kim [9] found out that the frequency charac-

teristics are totally dependent on the properties of the plate, especially at the low frequency

region where the cavity mode does not occur. They used near field acoustic holography

to estimate sound field variables such as pressure and intensities and found out that there

are two types of coupling mechanisms depending on the frequency and wavelength. One

mechanism is when the plate and the cavity are strongly coupled. When this happens,

the plate acts as a source. The second mechanism is where the coupling interaction be-

havior decreases the radiation efficiency. Kim and Kim [9] indicated that the frequencies
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that determine whether the plate is good or bad radiator are found to be around the natural

frequencies of the plate.

In 1988, Schomer and Averbuch did a study on indoor human response to blast

sounds that generate rattle [10]. The authors had two objectives: to systematically test sub-

jective response to the presence or absence of rattles in otherwise similar blast sound en-

vironments and to test if there were structural changes that could reduce annoyance within

the indoor blast environment. Their tests were done using a specifically constructed test

house and highly repeatable shake table to simulate the blast sounds. When the shake table

was used as a giant loudspeaker, it generates a blast type waveform and achieves a peak,

flat-weighted sound pressure level at the face of the building of up to 123 dB. To reduce

the annoyance, the main wall of the house was stiffened. However, Schomer and Aver-

buch found that the stiffening of the main wall does not reduce the resulting blast noise

annoyance.

In 1990, Schomer et al. [11] used the methods of paired-comparison testing with

panels of subjects to determined the acoustical benefits of improved, blast noise reducing

retrofit windows. Two houses were used in their study. House one received new, retrofit

windows while house two remained with older windows. C-4 plastic explosives were set

off approximately 1.2 km away from the houses. Loud speakers were placed in each house

to produce white noise. They concluded that the retrofit windows are highly effective in

providing enhanced sound isolation for blast noise. The data clearly show that the windows

provide about a 14 dB improvement in terms of annoyance.
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It is also important to understand how blast waves propagate around corners of

houses. Most houses have 90 degree angle corners. In 2006, Liu and Albert [12] inves-

tigated sound propagation around a right-angle wall. In their experiment, they used small

explosions (C4 explosives) as the source of their acoustic waves. A concrete wall 3.5 m

high and 9.4 m long was constructed and pressure sensors were placed near and on the

wall. Their experiment concluded that “diffraction acts as a low-pass filter on acoustic

waveforms in agreement with simple diffraction theory, reducing the peak pressure and

broadening the waveform shape received by a sensor in the shadow zone.” The authors

[12] also developed a fast two-dimensional finite difference time domain (FDTD) model to

provide more insight into the propagation around the wall.

1.2 Abatement Methods

Residents living near military bases or highways are constantly exposed to noise.

The noise impact can vary greatly from a nuisance to adverse effects on a person’s health

[13]. It is generally important to find an effective method to suppress outdoor noise. Over

the past several decades, many have investigated different methods to combat outdoor noise

including the use of barriers, screens and replacing residential house windows with noise

resistant windows [14-18]. Alternate suppression method such as using the contour of the

landscape as an anti-propagation tool has also been studied [19].

Some work had been done on the effects of corrugated surfaces on propagating

acoustic waves. Most work involved wave propagating in waveguides, and only a few had

considered undulating landscapes as a method to suppress outdoor noise. It is possible that
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a corrugated surface can stop certain frequencies as shown by Kundu and et al. [20] who

have investigated wave propagation in a corrugated waveguide and observed stop bands

and pass bands. To target specific frequencies for elimination, one would have to consider

the wavelength and amplitude of the corrugation. It can be difficult to find the exact shape

of a surface that would reduce a specific range of frequencies. To help solve this problem,

we need to be able to model the effects of outdoor surfaces.

Although the effects of corrugated surfaces can be modeled using finite element

analysis, the computational cost can be tremendous especially when a detailed model is

combined with a semi-infinite domain. In this study, we propose an alternative way to

model the effects of outdoor hard surfaces on acoustic waves using equivalent sources.

This method is implemented and simulated using Matlab. While the equivalent source

method has been investigated by various researchers [21, 22], our investigation focused on

the acoustic loss over various surface shapes.

1.3 Synopsis

The acoustic theories and boundary conditions are discussed in Chapter 2. In Chap-

ter 3, the method of suppressing low-frequency outdoor noise using sinusoidally shaped

surfaces is described and simulation results are presented. The simulations in Chapter 3

were conducted using Comsol Multiphysics, a finite element analysis and simulation soft-

ware. Chapter 4 introduces the equivalent source method (ESM) and describes the utiliza-

tion of ESM to model acoustically rigid surfaces. In this dissertation, simulations involving

ESM were completed using Matlab. In Chapter 5, a method to change the geometry of a

8



surface using ESM and perturbation is presented. Chapter 6 employs the least squares

method to estimate the amplitude of the equivalent sources. In Chapter 7, a method to

optimize the acoustic loss is presented.
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CHAPTER 2

THEORETICAL BACKGROUND

This chapter reviews the theories that are employed in this dissertation. Acoustic

wave propagation can be described by the hyperbolic partial differential equation known

as the wave equation. This equation is discussed in section 2.1. The wave equation is a

function of two quantities, time and space and can be separated using the separation of

variable method. Using this method, the wave equation can be simplified into Helmholtz

equation. This is covered in section 2.2. The blast wave characteristic waveform is shown

in section 2.3. Various boundary conditions are used in finite element analysis. These

conditions are discussed in section 2.4.

2.1 The Wave Equation

The propagation of waves can be described by the wave equation. The wave equa-

tion is a partial differential equation that is derived using the equation of state, the continuity

equation and the equation of motion. The wave equation is stated as

∇2p(r) = 1

c2
∂2p(r)

∂t2
(2.1)

where p is the pressure, t is time and r is the three dimensional Cartesian position vector.

The solution for a given freqency, ω, and wavenumber, k, to Equation (2.1) has the form

p(r) = Aej(ωt−kr) (2.2)
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where A is the amplitude, ω is the angular frequency, k is the wavenumber, c is the speed

of sound and r is the distance from the source. The angular frequency and wavenumber are

defined by the equations

ω = 2πf (2.3)

k =
ω

c
. (2.4)

2.2 Helmholtz Equation

The separation of variable method can be applied to Equation (2.1) to separate the

spatial term from the temporal term. Thus, the wave equation can be simplified as a time-

independent equation by assuming time-harmonic dependence. This leads to the Helmholtz

equation, and it is used extensively by COMSOL to describe its simulation. The Helmholtz

equation is given in the form of

∇2φ+ k2φ = 0

where c is the speed of sound, and φ is a spatial function defined on three-dimensional

Euclidean space.

2.3 Impulsive Noise Waveform

When an explosion occurs, the pressure rises almost instantaneously above the am-

bient pressure then drops to a partial vacuum. The pressure will eventually return to the

ambient pressure. This phenomenon is discussed by Ford et al. [3] and can be described
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by the equation

p(t) = p0 + ps

µ
1− t

τ

¶
e−

t
τ . (2.5)

where t is time, τ is the positive phase duration, p0 is the ambient pressure and ps is the

peak value of the pressure at the arrival time.

2.4 Boundary Conditions

Outdoor acoustic waves propagating over a hard surface can be modeled with just

one domain and two boundary conditions. There are three types of boundary conditions

that are used extensively in acoustic modeling. These boundary conditions are sound-hard

(acoustically rigid), continuity and radiation boundary conditions. The sound-hard bound-

ary condition is discussed in section 2.4.1. Sections 2.4.2 and 2.4.3 discuss the continuity

and radiation boundary conditions respectively. Other boundary conditions include sound-

soft, which is appropriate approximation for liquid-gas interface and impedance boundary

conditions which is a generalization of the sound-hard and sound-soft boundary conditions

are not used since the models do not have any interface of this type.

2.4.1 Sound-Hard Boundary Condition

When sound waves are being transmit from one medium to another, the amount

of energy transmitted and reflected back are largely determined by the impedances of the

two materials. If the impedance of the second medium is much larger than that of the

first medium, then most of the energy is reflected. Likewise, if both media have roughly

the same impedance then most of the energy is transmitted into the second medium. The

two media that appear frequently in this dissertation are air and a solid such a concrete or
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brick. The latter medium has a very large impedance and is rigid. A sound-hard boundary

condition is used to model rigid surfaces. It is a condition in which the normal component

of the particle velocity vanishes. The sound-hard boundary condition is given as

µ
1

ρ
(∇p− q)

¶
·−→n = 0 (2.6)

where q is the source, p is the pressure, ρ is the density and −→n is the vector normal to the

surface. If the medium has a constant density, and there is no source on the surface then

Equation (2.6) is reduced to

∇p ·−→n = 0. (2.7)

2.4.2 Continuity Boundary Condition

When modeling acoustic wave propagation using finite element analysis software

such as Comsol Multiphysics, there are often multiple domains that waves propagate through.

These domains may consist of the same material in which waves will transmit from one

domain to another without any reflections or different materials which could result in re-

flections. Whatever the case may be, when acoustic waves propagating from one domain

to another, there is a continuity of the normal acceleration at the interface. The boundary

where the two domains are touching is considered an interior boundary. The continuity of

the normal acceleration can be modeled by using the continuity condition which can be

written as, ∙
− 1
ρ0
(∇p− q)1

¸
·−→n =

∙
− 1
ρ0
(∇p− q)2

¸
·−→n (2.8)

where the subscript 1 and 2 represent domain 1 and 2.
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2.4.3 Radiation Boundary Condition

Most of the explosion sound energy is radiated high into the atmosphere. This

phenomenon complicates the simulation since it corresponds to a semi-infinite domain.

Even though we are mostly interested in the propagation of acoustic waves near the surface

of the ground and their impact on an area of interest, inaccurate implementation of the

radiation term will invalidate the results.

To model an infinite or semi-infinite domain, it is appropriate to use the radiation

boundary condition because it allows an outgoing wave to leave the modeling domain with

very little or no reflection. The radiation boundary condition is one of the two absorbing

boundary conditions available in COMSOL Multiphysics The other absorbing condition is

the implementation of a perfectly matched layer (PML).

The radiation boundary condition is very important in this research because not

only that it allows an outgoing wave to leave a domain with no reflection, but it also gives

the option of including an incoming wave. Therefore, this condition can also be used to

implement a pressure source.

The radiation boundary condition has three wave types available: plane, cylindrical

and spherical waves. For a plane wave, this condition is described as

−→n ·
µ
1

ρ0
(∇p− q)

¶
+

ikp

ρ0
+

i

2k
∆Tp =

i

2k
∆Tp0e

−i(k·r) + (ik − i(k ·−→n ))p0e
−i(k·r)

ρ0

k = knk

where p0 is the pressure source, is ρ0 is the density, nk is the wave direction and ∆T is the

Laplace operator in the tangent plane. For a cylindrical wave, the radiation condition is
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described by the following equation.

−→n ·
µ
1

ρ0
(∇p− q)

¶
= ψ+

r

2ρ0(1 + ikr)
∆T (p−p0e−i(k·r))−

µ
i(k ·−→n )p0e−i(k·r)

ρ0

¶
(2.9)

where

ψ =

µ
ik +

1

2r
− 1

8r(1 + ikr)

¶µ
p0e

−i(k·r) − p

ρ0

¶
. (2.10)

Lastly, for a spherical wave, the radiation boundary condition is expressed by the following

equation.

−→n ·
µ
1

ρ0
(∇p− q)

¶
+

µ
ik +

1

r

¶
p

ρ0
− r∆Tp

2ρ0(ikr + 1)
= β (2.11)

where

β =

µ
−r∆Tρ0

2ρ0(ikr + 1)
+

µ
ik +

1

r
− iK ·−→n

¶
p0
ρ0

¶
e−ikr. (2.12)

2.4.4 Perfectly Matched Layer

The other absorbing condition is the perfectly matched layer or PML. This condi-

tion is often mistaken for a boundary condition when it is actually an extra domain, the

digital equivalent of a frequency tuned anechoic chamber, that absorbs the incident waves.

Thus, there are no reflections from the exterior boundary when using the PML. However,

the PML is only available in the time-harmonic and eigenfrequency analysis in COMSOL

Multiphysics. For transient analysis, the radiation boundary is used instead.
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CHAPTER 3

OUTDOOR NOISE REDUCTION USING SINUSOIDAL

LANDSCAPING

Urban environments are often polluted with low-frequency noise. This type of noise

is typically generated by artificial sources including highway traffic, aircraft and industrial

machinery. Explosions due to large weapons such as artillery also contribute to the noise

pollution. Explosions are particularly hard to deal with since their low-frequency con-

tent does not attenuate as quickly as high-frequency noise. Thus, low-frequency noise has

the tendency to travel long distances, up to 20 miles in some cases. Additionally, when

low-frequency noise interacts with structures such as residential houses, it can cause the

structures to rattle or vibrate causing annoyance to the residents.

Low-frequency noise is particularly hard to deal with because of its ability to prop-

agate efficiently and for long distances. A common method of reducing outdoor noise is

to put a barrier, typically a wall that contains some type of sound absorbing material, be-

tween the source the residential houses. However, this method is only acceptable in places

where there is no need for people to cross and is not aesthetically pleasing in general. In

places where noise barriers are not welcome, soundproofing the windows and insulating

the residential walls are the only options. In 2001, Bradley and Birta [23] made a series of

measurements of the sound transmission loss of exterior wood stud walls and determined

that the performance of sound insulations of these walls at low frequencies is poor. Since
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typical houses contain exterior wood stud walls, the loudest noise the residents inside the

houses will experience are low-frequencies noise. Thus, in order to achieve better overall

sound reduction, it is very important to focus on suppressing the low-frequency noise.

Most theoretical and experimental work on outdoor noise reduction involved bar-

riers and insulations [18-23]. When these methods are ineffective against low-frequency

noise, then different anti-propagation methods must be taken into consideration.

We consider using undulating landscaping, e.g., a sinusoidally shaped boundary

condition as a method to suppress low-frequency outdoor noise. While such a method can

be expensive, it is aesthetically appealing and does not preclude other uses of the land. Un-

dulating boundary conditions have been proposed and used in microwave communications

where waveguides have corrugated surfaces. Our work is largely motivated by this work,

and we will use the terms "undulating landscaping", "undulating boundary conditions" and

"corrugation" interchangeably. The problem involving acoustic waves interfacing with a

corrugated surface has been extensively studied over the past century.

The theoretical analysis of this problem was first conducted by Lord Raleigh [24].

Feshbach and Clogston examined and generalized the perturbation method of solving bound-

ary value problems with irregular boundary conditions [25]. Various investigators have

conductor studies involving corrugated surfaces [26-31]. Asfar analytically and numeri-

cally investigated the TE10 mode in a rectangular corrugated waveguide that had a phase

shift halfway into the corrugation [32]. Asfar’s investigation showed that there is a nar-

row passband among a wider stopband. Therefore, it is possible for corrugated waveguide

can act as a stopband filter. This is important because we want to stop the low-frequency
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acoustic waves from propagating. Boulanger et al. measured the relative sound pressure

level over hard surfaces containing random or periodically spaced roughness [33]. They

found that additional diffraction grating effects and greater relative SPL minima can be

achieved by having periodic roughness on a hard surface. Other investigations involving

rough surfaces were conducted by Potel et al. [34] and Fawcett [35].

3.1 Theoretical Background

The propagation of waves can be described by the wave equation.

∇2p = 1

c2
∂2p

∂t2
(3.1)

Using separation of variables, Equation (3.1) can be simplified into time-independent equa-

tion

∇2P + k2P = 0 (3.2)

where

k =
ω

c
. (3.3)

In Equation (3.2), k is the wavenumber, ω is angular frequency, c is the speed of sound, and

P is a spatial function defined on three-dimensional Euclidean space.

The geometry of the corrugated surface is shown in Figure 3.1 and described by

f(x) = A sin(
2πx

d
+ θ) (3.4)

where A is the amplitude, d is the wavelength and θ is the phase. In Figure 3.1, ’PT1’ is the

point source, ’a’ is the length of the corrugation, ’b’ is the period and ’c’ is the amplitude.
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Equation (3.4) can be modified for the case in which the wavelength of the undulating

boundary condition is continuously decreasing. This is shown in Equation (3.5).

f(x) = A sin [(k0 + ax)x] (3.5)

where

a =
(kf − k0)

D
,

k0 is the initial wavenumber, kf is the final wavenumber, D is the total corrugation length

or distance and x is the distance along the propagation direction.

Figure 3.1. Corrugated surface

The speed of sound traveling through the ground is given by

cg =

s
E

ρ
(3.6)

where E is Young’s modulus and ρ is the density of the ground.

A sound wave propagating outdoor over a flat surface will always lose energy as

it propagates. We, therefore, are interested in how much additionally loss can occur if the

surface is corrugated. This additional loss is calculated using

L = SPLf − SPLc (3.7)

19



where L is the loss (dB), SPLf is the sound pressure level obtained from the model with a

flat granite surface and SPLc is the sound pressure level obtained from the models with a

corrugated granite surface.

3.2 Finite element Model Setup

The finite element model is 110 meters long and 50 meters in height including the

perfectly matched layers (PML) each having a width of 5 meters. The model geometry is

shown in Figure 3.2. Regions R1 through R8 are the perfectly matched layers. The region,

C02, is consisted of air with a density of 1.25 kg/m3. The ground (region C01) is made of

granite having a density of 2600 kg/m3. The reason for choosing granite is that it provide

a hard surface for the acoustic wave to interface with. In practice, the ground is soft and

absorbs acoustic energy more efficiently. The acoustic point source with a power of 100

Watts is located at point PTL which is 5 meters above the ground.

Figure 3.2. The geometry of the finite element model
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Other properties are listed in the Table 3.1. The point of measurement is 90 meters

away from the source and 5 meters above the ground. The amplitude, length and phase of

the corrugation are changed from one model to another to see what affect these parameters

have on the loss. These changes are discussed in greater details in the following sections.

Table 3.1. Parameters used in the finite element simulation

Parameter Value Description
cs 343[m/s] Speed of sound in air
cg 4803.84[m/s] Speed of sound in granite
ρa 1.25[kg/m3] Density of air
ρg 2600[kg/m3] Density of granite
po 100[W ] Source power

Time-harmonic simulations are run from 5Hz to 150Hz. The maximum element

size is chosen to be small enough so that reasonable solutions can be obtained, but at the

same time does not cause the computer to run out of memory. The result from a simulation

of a model with perfectly flat ground surface is used as a baseline and to calculate the loss

due to having a corrugated surface using Equation (3.7).

3.3 Corrugation with Different Lengths

In order to study the effect of different corrugation lengths on the loss, the corruga-

tion length is varied from 10.28 meters to 51.45 m at 10.28 m intervals. The wavelength

and amplitude of the corrugation are kept constant at 3.43 m and 2 m respectively. We

choose to increment the corrugation length by 10.28 m or three wavelengths at time rather

than 3.43 m or one wavelength. The reason for this is that a single wavelength of the cor-

rugation acts similar to small barrier.
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3.4 Corrugation with Different Amplitudes

The amplitude of the corrugation is varied from 0.2 m to 2 m at 0.2 m intervals. This

is increment interval is small enough for the effect of the amplitude on the transmission

loss to be observed, yet large enough to affect the propagation of the acoustic wave. The

corrugation wavelength is held constant at 3.43 m. The length of the corrugation remains

85.75 m while the amplitude is varied. Again, the point source location is located at 5 m

above the granite and 3 m before the starting point of the corrugation.

3.5 Corrugation with Continuously Decreasing Wavelength

To study the effect of a decreasing corrugation wavelength on the transmission loss,

we created a finite element model containing a surface corrugation described by Equation

(3.5). The geometry is shown in Figure 3.3. The initial wavelength is set 15 m. Thus,

k0 is 0.4189 m−1. The final wavelength is 2 m and kf is π. The corrugation length, D,

is chosen to be 74 m which is long enough to observe the effect of this corrugation on

the transmission loss. The amplitude is chosen to be constant at 2 m. The source and

measurement locations are same as previously mentioned.

Figure 3.3. The geometry of the surface with a continuously decreasing wavelength

22



3.6 Corrugation with Phase Shifts

Asfar examined the stopband filter characteristics of boundary periodic corrugation

in a waveguide [32]. He used a rectangular waveguide containing a phase shift half way

into the corrugation and showed that a narrow passband filter can be formed. We consider

applying phase shift to our corrugation to see what effects it will have in an outdoor envi-

ronment. Two simulations are performed to study the transmission loss if there is a phase

change in the corrugation. The first model contains a surface with a corrugation length of

61.74 meters and a constant phase of zero degrees. The second model has a phase shift of

180 degrees half way into the corrugation. The corrugation length of the second model is

the same as the first model. Figure 3.4 shows the geometry of the corrugation containing

phase shifts. The amplitude of the corrugation of both models are two meters. The results

are these two simulations are compared with the result obtained from a simulation whose

model contains no phase shift.

Figure 3.4. Corrugation containing 180 degrees phase shifts
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3.7 Results

Contour plots of the sound pressure level of the model containing a smooth surface

are shown in Figures 3.5 and 3.6 for two sound frequencies, 50 and 100Hz. Figures 3.7 and

3.8 are the contour plots of the sound pressure level of the model containing a corrugated

surface with a corrugation amplitude of 1 m, corrugation wavelength of 3.43 m and corru-

gation length of 85.75 m. The effect of the corrugation length on the transmission loss is

shown in Figure 3.9.

Figure 3.5. Contour plot of the SPL (dB) for a smooth surface at 50 Hz

The results show that increasing the length of the corrugation shifts the loss spec-

trum upward resulting in higher loss. For a corrugation length of 10.29 m, the maximum

loss is 11.03 dB which occurs at 25 Hz, and the minimum loss is -1.1 dB which occurs at
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Figure 3.6. Contour plot of the SPL (dB) for a smooth surface at 100 Hz
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Figure 3.7. Contour plot of the SPL (dB) for a corrugated surface at 50 Hz
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Figure 3.8. Contour plot of the SPL (dB) for a corrugated surface at 100 Hz
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Figure 3.9. Loss due to different corrugation lengths
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80 Hz. When the corrugation length is incremented by 10.29 m, the maximum loss remains

at 25 Hz, but it is increased to 14.21 dB from 11.03 dB. Our results indicate that there is

a shift in the highest peak by an average of 3.2 dB for each increment of 10.29 m. Table

3.2 shows length of the corrugation, the maximum loss, and the minimum loss where Lx is

the maximum loss and fx (Hz) indicates the frequency in which the maximum loss occurs,

and Ln is the minimum loss and fn (Hz) indicates the frequency at which the minimum loss

occurs.

Table 3.2. Maximum and minimum loss

Length(m) Lx(dB) fx(Hz) Ln(dB) fn(Hz)
10.29 11.03 25 -1.1 80
20.58 14.21 25 -2.14 15
30.87 16.85 25 -3.12 15
41.16 19.2 25 -3.98 15
51.45 21.7 25 -4.8 15
61.74 24.5 25 -5.68 15
72.03 28.28 25 -6.59 15
82.32 33.42 25 -7.24 15

When the length of the corrugation is held constant at 85.75 m and the amplitude

is varied, the first peak (maximum loss) in Figure 3.10 shifts to the left as the amplitude of

the corrugation is increased. The simulation results, therefore, indicate that increasing the

amplitude of the corrugation will shift the first resonance frequency to a lower frequency.

For a corrugation amplitude of 0.2 m, the first peak in Figure 3.10 with a value of 6.81

dB appears at 50 Hz. When the amplitude is increased to 0.4 m, not only that the peak

increases drastically to 33.7 dB, it also shifted by 2 Hz. On average, the first resonance

frequency shifts to the left by 3.2 Hz for a 0.2 m increase in the corrugation amplitude.

The effect of a corrugation with a continuously decreasing wavelength on the trans-

mission loss is shown in Figure 3.11. The result of a simulation of a model containing
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Figure 3.10. The effect of the corrugation amplitude on the transmission loss

a constant wavelength of 3.43 m and amplitude of 2 m is also plotted in the same graph

for comparison. Note that the corrugation with the constant wavelength is longer than the

one with a decreasing wavelength by 11 m. As previously discussed, this will cause the

corrugation with a constant wavelength to have a slightly higher loss at the first resonance

frequency.

The results of the two models, one containing a single phase shift of 180 degrees

half wave into the corrugation and the other containing two phase shifts of 180 degrees are

compared with a model containing no phase shift. Figure 3.12 shows the effect of the phase

shift in the corrugation on the transmission loss. One can see that changing the phase of

the corrugation has no major effect on the transmission loss in an outdoor environment.

We used finite element simulations to show that an undulating boundary conditions

(undulating landscaping) can be used as an effective anti-propagation method to reduce
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Figure 3.11. Transmission loss due to a decreasing wavelength
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Figure 3.12. The effect of phase shift in the corrugation on the transmission loss
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low-frequency outdoor noise. For a corrugation with a wavelength of 3.43 m, amplitude

of 2 m and a corrugation length of 82.32 m, the first resonance occurs at 25 Hz. At this

frequency, the additional loss due to the undulating boundary is 33.42dB. We also showed

that the undulating landscape create a significant shielding effect at low frequency and close

to the ground beyond the landscaping. We show that increasing the corrugation length

increases the loss. Changing the amplitude of the corrugation while keeping the length and

wavelength of the corrugation constant cause the first resonance frequency to shift. Finally,

having phase shifts in the corrugation does not significantly affect the transmission loss in

an outdoor environment.
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CHAPTER 4

SURFACE MODELING USING EQUIVALENT SOURCES

Even though there is significant progress in modeling acoustic fields using finite el-

ement and boundary element methods, there are still shortcomings that these two methods

have to overcome. These shortcomings were discussed by Koopmann et al. [36-37]. It in-

cludes the difficulty of approximating the Helmholtz integral in numerical form, uniqueness

problem and singularity of the Green function and complexity which leads to an increase in

computations. These drawbacks motivated researchers to find a more straightforward and

simpler computational method. In their research, Koopmann et al. investigated the method

of using the principle of wave superposition to compute acoustic fields. The superposition

method, an idea that stemmed from the calibration procedure used in boundary-element

studies, offers several advantages over the boundary-element method. These advantages

include decrease in computations due to the lack of uniqueness and singularities and sim-

ple generation of the matrix elements due to having nodes as the basis for the formulation,

not elements as in the boundary-element method. Additionally, the superposition method

offers improved accuracy over the boundary-element method for a similar density of nodes.

The superposition method also called equivalent source method (ESM) is based on

the concept that an acoustic field generated by a radiator can be estimated using an array

of simple acoustic sources placed inside of the radiator. The accuracy of the estimated

field depends on the locations, complex amplitudes and density of the simple sources. In
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1992, the robustness and stability of the superposition method was investigated by Jeans

and Mathews [38]. The robustness of the superposition method can be improved by using

a hybrid of monopole and dipole sources to overcome the problem of nonuniqueness at

certain frequencies. It should be mentioned that although earlier researchers referred to

this method as the superposition method, the term equivalent source method is widely used

and therefore, is used in the succeeding chapters.

Johnson et al. [39] used the equivalent source method to compute the internal pres-

sure field of a radiator. In their investigation, a rectangular with rigid wall is used as the en-

closure. The approximation of the behavior of the boundary is determined by the strength

of the equivalent sources. This means that the source strengths must be calculated be-

fore the pressure field can be approximated. A matrix formulation can be used to find the

equivalent source strengths. Detailed methods to find the source strengths are discussed

by Nelson and Yoon [40, 41]. Pinho and Arruda compared the equivalent source method

with NAH and concluded that good acoustic source reconstruction can be obtained using

the ESM [42]. Bouchet et al. used an equivalent sphere rather than a distribution of equiv-

alent sources where each point on the structure corresponds to a point on the sphere [43].

The ESM has been used by some researchers to study sound propagation through urban

street canyon [44]. In this dissertation, ESM is applied to study waves propagating over

corrugated surfaces.
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4.1 Green’s Function

A pressure field generated by a point source can be described by the inhomogeneous

Helmholtz equation,

∇2G(R) + k2G(R) = δ(x− x0) (4.1)

where R is the direct distance from the source to a field point and δ is a Dirac delta function.

The solution to Equation (4.1) is the free field Green’s function which is represented by G

and is used to compute the pressure field [39]. For three dimensional problems, the free

field Green’s function is expressed mathematically as

G(R) =
eikR

4πR
(4.2)

where R is Euclidean norm and given as

R = k[(x− x0), (y − y0)]k (4.3)

where (x0, y0) is the location of the source.

4.2 Single Source in Free Space

Consider a single acoustic source in free space, the total complex amplitude of

pressure which emanates from that point source is given as

φ(R) =
AeikR

4πR
(4.4)

where R is the distance from the source to the point of interest and k is the wavenum-

ber. Notice that Equation (4.4) is the same as Equation (4.2) with a source strength A. Its
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derivative with respect to x is

∂φ

∂x
= −Ae

ikR

4πR2
∂R

∂x
+

AeikR

4πR
ik
∂R

∂x

=
AeikR

4πR

µ
− 1
R
+ ik

¶
∂R

∂x

Usually if R is between the test point and the source point (x0, y0) then

∂R

∂x
=
(x− x0)

R

In short

∂φ

∂x
=

AeikR

4πR

µ
− 1
R
+ ik

¶
(x− x0)

R

and hence

∂φ

∂x
=

AeikR (x− x0)

4πR

µ
− 1

R2
+

ik

R

¶
(4.5)

∂φ

∂y
=

AeikR (y − y0)

4πR

µ
− 1

R2
+

ik

R

¶
(4.6)

Equations (4.5) and (4.6) express the potential velocity and are important for calculating

the conditions at the boundary.

4.3 Multiple Sources in Free Space

If there is pressure emanating from multiple sources located at (xj, yj) and the

pressure of the sources is given in Equation (4.4), then

∂φ

∂x
=
X
j

µ
ikAje

ikRj

4πR2j
− Aje

ikRj

4πR3j

¶
x+

X
j

µ
Aje

ikRj

4πR3j
− ikAje

ikRj

4πR2j

¶
xj (4.7)
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∂φ

∂y
=
X
j

µ
ikAje

ikRj

4πR2j
− Aje

ikRj

4πR3j

¶
y +

X
j

µ
Aje

ikRj

4πR3j
− ikAje

ikRj

4πR2j

¶
yj (4.8)

where Rj is the direct distance from source (xj, yj). Equations (4.7) and (4.8) are derived

as follows.

Let φj represent the complex amplitude emanating from the jth source. Then φ =P
j φj. Then

∂φj
∂x

=
X
k

∂φj
∂Rk

∂Rk

∂x
=

∂φj
∂Rj

∂Rj

∂x

because φj depends on Rj only. The pressure of a single source is given in Equation (4.4).

∂φj
∂Rj

=
ikAje

ikRj (4πRj)

(4πRj)
2 − 4πAje

ikRj

(4πRj)
2 (4.9)

Hence, collecting all terms leads to

∂φ

∂x
=

X
j

µ
ikAje

ikRj

4πRj
− Aje

ikRj

4πR2j

¶
(x− xj)

Rj
(4.10)

=
X
j

µ
ikAje

ikRj

4πR2j
− Aje

ikRj

4πR3j

¶
(x− xj) (4.11)

=
X
j

µ
ikAje

ikRj

4πR2j
− Aje

ikRj

4πR3j

¶
x+

X
j

µ
Aje

ikRj

4πR3j
− ikAje

ikRj

4πR2j

¶
xj (4.12)

We can derive ∂φ
∂y

for a multi-source system the same way. Equations (4.7) and (4.8) are

important in computing the boundary conditions where more than one source are involved.

4.4 Outdoor Propagation Over a Hard Surface

When acoustic waves propagate outdoor, there are two main boundary conditions

to consider. There is the ground or surface below which specifies the first condition. The

waves are not bounded above which is the second condition. The sound pressure propagat-
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ing above a hard ground is the solution to the following system given by Filippi et al. [45]

and based on Helmholtz equation

∇2φ (r) + k2φ (r) = f (r) (4.13)

∂φ (r)

∂−→n +
ik

ς
φ (r) = 0 (4.14)

lim
r→∞

φ = O
¡
r(1−n)/2

¢
(4.15)

lim
r→∞

(∂rφ− ikφ) = o
¡
r(1−n)/2

¢
(4.16)

where f (r) is the source function, r is the distance from the source, φ and k are the com-

plex pressure and wavenumber respectively, ς is the ratio of the ground impedance to the

impedance of the air and n is the dimension of space. The case n = 2 represents an infi-

nite line source and n = 3 represents a point source. Equations (4.15) and (4.16) define the

Sommerfield radiation conditions. Equation (4.14) is the ground surface boundary condi-

tion. If the surface of the ground is assumed to be hard with infinite impedance, then ς is

infinite as well, and Equation (4.14) becomes

∇φ ·−→n = 0 (4.17)

where �n is a unit vector that is orthogonal to the hard boundary. If the hard boundary

(ground) is completely flat and horizontal then −→n is in the y-direction, and it is constant.

The equation above can be reduced to

∂φ

∂y
= 0, for −→n =

∙
0
1

¸
. (4.18)
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For a hard flat surface, the solution to Equations (4.13)-(4.16) is of the form

φ =
AeikR1

4πR1
+

AeikR2

4πR2
(4.19)

where R1 is the distance from the Source 1 to the point of interest, R2 is the distance from

the Source 2 (the image) to the point of interest, A is the complex amplitude and k is the

wavenumber. Equation (4.19) is independent of time, but the time-harmonic term, ejωt

easily can be recovered.

4.5 Modeling Hard Surface Using Acoustic Sources

A 2−D surface may be defined on the x − y plane by placing acoustic sources on

that plane. Consider a case where the hard surface of the ground is completely flat, to

define this flat surface, we can place two sources with the same frequency and strength

on the x-y plane. The surface, then, lies midway between the two sources as shown in

Figure 4.1. The actual physical source is source 1 with source 2 being its image. In order

to model a more complex surface such as an undulating surface, we have to use more than

two sources. To do this, we let source 1 remain as the actual physical source and source

2 as its image. Smaller acoustic sources are placed at various locations along the x-axis

which will cause the flat surface to deform. The shape and degree of deformation of the

flat surface is determined by the amplitudes of the small sources as shown in Figure 4.2.

4.5.1 Theoretical Derivation

If the ground is undulated, the normal vector −→n in Equation (4.17) is no longer

constant, but varies as the geometry of the ground varies. To form an undulating surface,
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Source 1

Source 2

Reflected Rays

Hard Surface 

Figure 4.1. A flat hard surface is modeled by placing two sources of equal strength

Source 1

Source 2 Small Sources

Hard Surface 

Figure 4.2. Different surface shapes can be formed using small acoustic sources
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the two sources depicted in

φ =
nX
i

A1e
ikRi

4πRi
, (4.20)

where n is the total number of sources. Here, Ai is the complex amplitude of source i.

A1 = A2 = O (1) , (4.21)

and

|Ai| = O

µ
�

Ri

¶
, (4.22)

where � is a small number and Ri is the distance of Source i to the main source. In general,

since φ is complex, and its derivatives are also complex

∂φ

∂x
= Re

µ
∂φ

∂x

¶
+ j Im

µ
∂φ

∂x

¶
, (4.23)

∂φ

∂y
= Re

µ
∂φ

∂y

¶
+ j Im

µ
∂φ

∂y

¶
, (4.24)

and representing �n as n = [n1, n2]T ∈ R2, Equation (4.17) becomes

0 = nT∇φ = n1
∂φ

∂x
+ n2

∂φ

∂y

= n1Re

µ
∂φ

∂x

¶
+ n2Re

µ
∂φ

∂y

¶
+

j

∙
n1 Im

µ
∂φ

∂x

¶
+ n2 Im

µ
∂φ

∂y

¶¸
. (4.25)

Both the real part and imaginary parts must vanish:

nT

"
Re
¡
∂φ
∂x

¢
Im
¡
∂φ
∂x

¢
Re
³
∂φ
∂y

´
Im
³
∂φ
∂y

´ # = 0, (4.26)
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which can only happen if the matrix is singular, or:

0 = d (x, y) = det

"
Re
¡
∂φ
∂x

¢
Im
¡
∂φ
∂x

¢
Re
³
∂φ
∂y

´
Im
³
∂φ
∂y

´ # (4.27)

= Re

µ
∂φ

∂x

¶
Im

µ
∂φ

∂y

¶
−

Im

µ
∂φ

∂x

¶
Re

µ
∂φ

∂y

¶
. (4.28)

This is a condition that is independent of �n. Once x and y are found such that the determi-

nant above is zero, then n can be found as a null vector of the shown matrix.

4.5.2 Conditions For a Hard Surface

In order for a contour to be a hard surface, Equation (4.17) must be satisfied. It is

difficult to find locations on the plane where this equation is satisfied without knowing the

normal vector, �n. Therefore, other conditions must be established if we wish to obtain

the locations of the surface at every point on the x-axis. We have already established one

condition in the previous section. We determined that on the hard surface Equation (4.28)

must equal zero. Now we look at the cross product as shown below where a is a vector

comprised of the real part of ∂φ
∂x

and ∂φ
∂y

, and b is a vector comprised of the imaginary part

of ∂φ
∂x

and ∂φ
∂y

.

a =

∙
Re

µ
∂φ

∂x

¶
,Re

µ
∂φ

∂y

¶
, 0

¸
(4.29)

b =

∙
Im

µ
∂φ

∂x

¶
, Im

µ
∂φ

∂y

¶
, 0

¸
(4.30)
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The cross product is given as

z = a× b (4.31)

where

z = [i, j, k] (4.32)

We can assume that at any point on the surface, the real and the imaginary components of

the gradient are parallel. In another words, on the surface, the components of z are zero if

the angle between a and b is 180 or 0 degree. For visualization, refer to Figure 4.3.

Figure 4.3. Conditions for a hard surface

4.5.3 Finding the Surface

When placing small acoustic sources with various amplitudes spread out at certain

interval along the x-axis, it is not obvious where the surface lies. This is shown in Figure

4.4. The total pressure, p, is the summation of the pressure emanating from all the sources,

φ(R1) to φ(Rn). The expression for φ(Rn) is given by Equation (4.4) where Rn is the
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direct distance from source n to the point of interest. The top plot is a plot of the sound

pressure level of only the main source and its image. It is clear that the hard surface lies

halfway between the two sources for all points on the x-axis. The bottom plot contains the

main source and its image in addition to three additional sources. It is difficult to know

the location of the surface near the small sources since there are distortions on the surface.

Therefore, to locate the surface at all points along the x-axis, we use an algorithm to check

for the locations where the conditions defined in section 4.5.2 are satisfied.

Figure 4.4. Multiple sources make it hard to determine the location of the surface

Consider a grid contain m × n data points; each point on the grid is a potential

point that lies on the surface. A systematic search needs to be conducted to find the point

that lies on the surface. Figure 4.5 shows how this search method is conducted. If we let
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y0− yr represent ymin, y0 + yr represent ymax,∆y be the y-step size, ∆x be the x-step

size and yr be the distance from the midpoint to ymin or ymax, we would start our search

at (x,y0− yr) and move along the y-axis at ∆y intervals until we reach y0− yr. We, then,

move on to the next point on the x-axis and start the process over again. An outline of the

algorithm is given below.

Figure 4.5. Algorithm to find a point on the surface

1- Set the y-step size

2- Set the x-step size

3- Determine the starting and ending point on the y-axis (ymin and ymax)

4- Pick a x-coordinate (x0) as a starting point

5- Starting at point (x0, ymin), solve for d(x, y) (Equation (4.28))

6- Increment ymin by y-step size

7- Repeat step 5 through 7 until the (x0, ymax) is reached
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8- Find the point in which d(x, y) change sign. This will be the point in which

d(x, y) is closest to zero; thus, it will be a point closest to the surface. In most

cases, finding where d(x, y) equals exactly zero is very difficult due to the fact that

the y-step size will have to be very small.

9- Increment x0 by x-step size

10- Repeat step 5 through 9 until the desire distance is reached.

4.5.4 Following the Surface

Finding the surface method discussed in the last section, while effective, can be

time consuming and inefficient in many cases. In some cases where a point on the surface

is located outside of ymin and ymax, that point may not be found using the algorithm. In

this section, we will discuss another method for finding the surface. In order to follow

the surface, we first have to find it. To find that initial starting surface point, we will use

steps 1 through 7 of the algorithm discussed in section 4.5.3. Once a point on the surface

is found, we can use our algorithm described in the following. We start with d(x, y).

d(x, y) = Re

µ
∂φ

∂x

¶
Im

µ
∂φ

∂y

¶
− Im

µ
∂φ

∂x

¶
Re

µ
∂φ

∂y

¶
(4.33)

We want to follow d(x, y) = 0. Finding the null space of ∇d(x, y) will give the vector

tangent to the surface. It is this vector that we want to follow.

1- Find a point (x, y) such that d(x, y) = 0

2- Compute d(x, y) at point (x, y)

3- Compute∇d(x, y)

4- Compute the null-space of∇d(x, y)
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5- Take a small step in the direction of null
£
∇d(x, y)T

¤
6- Take the new position and repeat 2− 6.

4.5.5 Simulations

Different simulations were performed. These simulations are discussed in detail

in the following sections. Simple models such as a flat surface which requires only two

sources were simulated initially followed by more complex systems containing multiple

sources.

4.5.6 Surface Modeling Using Acoustic Sources

In section 4.5, we discussed that by placing two sources, one being the actual source

and the other being its image, a flat hard surface can be modeled. Here, the main or actual

source is placed at (0, 1) and its image at (0,−1). They have the same amplitude of 1

and wavenumber of 1m−1. In section 4.5.2, we established that at every point on the hard

surface, d(x, y), Equation (4.28), must equal to zero. Thus, plotting a contour of d(x,y)=0

produces a flat hard surface located at midpoint between the main source and its image.

This is shown in Figure 4.6.

We can form a hill on the hard surface by using four sources. The main source and

it image are placed at locations (0, 1) and (0,−1) respectively with an amplitude of 1 and

wavenumber of 1m−1. A small source with an amplitude of 0.1 and wavenumber of 1m−1

is placed at (1,−0.1). Another small source with an amplitude of −0.1 and wavenumber

of 1 m−1 is placed at (2, 0.1). The combination of these four sources form a hill on the

surface as shown in Figure 4.7.
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Figure 4.6. Placing two sources at (0, 1) and (0,−1) produces a flat surface
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Figure 4.7. Using four sources, a hill can be formed on the hard surface

49



Now consider a four source system, where two smaller sources are place to the

left of the main source and its image. The main source, having an amplitude of 1 and

wavenumber of 1 m−1, is placed at (0, 1). Its image, having the same amplitude and

wavenumber, is located at (0,-1). Two small sources, one with an amplitude of -0.1 and

wavenumber of 1 m−1 is placed at (1,−0.1) and another with an amplitude of 0.1 and

wavenumber of 1 m−1 is placed at (2, 0.1), to form a valley on the hard surface. This is

shown in Figure 4.8.
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Figure 4.8. Using four small sources will create a valley on the hard surface

Using more than four sources, we can modify a flat hard surface to have both hills

and valleys as shown in Figure 4.9. In this case, the main source with an amplitude of
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1 and wavenumber of 1 m−1 is placed at (0, 1) and its image is placed at (0,−1). In

Figure 4.9, these two sources are labeled as 1 and 2 respectively. Six additional sources

with the same wavenumber as the main source and various amplitudes are placed to mold

the surface into having hills and valleys. Source 3, having an amplitude of −0.1 is placed

at location (1,−0.1), source 4 with an amplitude of 0.1 is placed at (1, 0.1), source 5 with

an amplitude of−0.1 is placed at (3,−0.1), source 6 with an amplitude of 0.03 is placed at

(4, 0.1), source 7 with an amplitude of −0.005 is placed at (5,−0.1) and source 8 with an

amplitude of 0.001 is located at (6, 0.1).
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Figure 4.9. Hills and valleys can be formed using multiple sources
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4.5.7 Surface Following Algorithm Results

If only the location of a point on the surface is known and the shape of the surface

curve is not known, then the surface following algorithm is effective at drawing an outline

of the shape of the surface. If a point near the surface is found, it can be used as starting

point for the algorithm. Figure 4.10 shows the result of this algorithm. The main source,

having an amplitude of 1 and wavenumber of 1 m−1, is located at (0, 1) and its image at

(0,−1). Two small sources with amplitudes of -0.1 and 0.1 and wavenumber of 1m−1 are

placed at locations (1,−0.1) and (2, 0.1) respectively. The starting point for the algorithm

is located approximately at (7.0, 0.0). From this point, the algorithm follows the surface

in the negative x-direction and ends approximately (0.19, 0).
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Figure 4.10. The surface following algorithm starting at P0
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A slightly more complex surface is shown in Figure 4.11. To form two valleys on

the surface, we placed the main source with an amplitude of 1 and wavenumber of 1m−1 at

(0, 1) and its image at (0,−1). The main source and its image are labeled as source 1 and 2

in Figure 4.11. Four small sources are placed at locations (1,−0.1), (2, 0.1), (3,−0.1) and

(4, 0.1) with amplitudes and wavenumbers of −0.1 and 1m−1, 0.1 and 1m−1, −0.1 and 1

m−1, and 0.03 and 1 m−1 respectively. These small sources are labeled as source 3, 4, 5

and 6 respectively in Figure 4.11. We choose a point that is close to the surface as a starting

point for our algorithm. In this case, that point is located at (7.4,−0.01). The algorithm

follows the outline of the surface in the −x direction until it reaches the predetermined

destination located at (0.5,−0.15).

Surface Tracing Algorithm
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Figure 4.11. Tracing a surface with two valleys
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CHAPTER 5

SURFACE GEOMETRY FORMATION USING

PERTURBATION

In this chapter, we will investigate the method of using the perturbation theory to

estimate the shape of the surface if any of the source parameters (magnitude and phase of

the equivalent sources) is changed. For example, if we move an equivalent source from

one location to another or if we increase the amplitude of one of the equivalent sources,

the shape of the surface will change. There are two problems that we will investigate. The

first problem is the forward perturbation problem in which we know the change in source

parameters, and we need to find the change in the surface shape. The second problem

involves knowing the change in the surface shape, and we need to estimate the change in

the source parameters. The second problem will be investigated at a later time.

5.1 Theory

Let D be a function of X at every (x, y) where X is a vector of all optimizing

variables.

D(X) = Re

µ
∂φ

∂x

¶
Im

µ
∂φ

∂y

¶
− Im

µ
∂φ

∂x

¶
Re

µ
∂φ

∂y

¶
(5.1)

We rewrite the equation above using a more convenient notation.

D(X) =
•
φx

ˆ

φy −
ˆ

φx
•
φy (5.2)
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Let ς = η(x) be the solution of D(X) = 0. Then, D(X0) produces ς = η0(x) which is the

contour of the surface. If we perturb X0 by dX then η0(x)may no longer be the solution of

D(X) = 0. In other words, D(X0 + dX) evaluated at the previous location of the surface,

η0(x), does not equal zero.

D(X0 + dX)|ς=η0(x) 6= 0 (5.3)

We define
∼
D as the difference between D(X0 + dX) and D(X0) both evaluated at the

location of the previous surface, η0(x)

∼
D = D(X0 + dX)|ς=η0(x) − D(X0)|ς=η0(x) . (5.4)

Since D(X0)|ς=η0(x) = 0, we have

D(X0 + dX)|η0+δη =
∼
D (5.5)

Where δη=η1 − η0.

5.1.1 Perturbation

The perturbation equation is given as

∂D

∂X

¯̄̄̄
C0

dX = − ∂D

∂y

¯̄̄̄
C0

δy (5.6)

δy = −
µ
∂D

∂y

¶−1µ
∂D

∂X
dX

¶
(5.7)

∂D

∂y
= −∂D

∂X

1

δy
(5.8)
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Consider a system with many sources, the main source and its image plus small sources.

Thus, X, the vector of all optimizing variables is

X = [xi...xn, yi...yn, Ai...An, Bi...Bn] (5.9)

where xi is the x-coordinate of the i source, yi is the y-coordinate of the i source, Ai and

Bi are the real and imaginary part of the amplitude of the i source. Substituting Equation

(5.9) into the ∂D
∂X

component, we have

∂D

∂X

¯̄̄̄
C0

=

∙
∂D

∂xi
, ...,

∂D

∂xn
,
∂D

∂yi
...
∂D

∂yn
,
∂D

∂Ai
...

∂D

∂An
,
∂D

∂Bi
...

∂D

∂Bn

¸
. (5.10)

We multiply Equation (5.10) by the change in the optimizing variables to obtain Equation

(5.11).

∂D

∂X
dX =

∙
∂D

∂xi
, ...,

∂D

∂xn
,
∂D

∂yi
...
∂D

∂yn
,
∂D

∂Ai
...

∂D

∂An
,
∂D

∂Bi
...

∂D

∂Bn

¸
×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆xi
.
.
.

∆xn
∆yi
.
.
.

∆yn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.11)

∂D

∂y
=

ε

u
(5.12)

where

ε = D(X0)|η0 − D(X0 + dX)|η1 (5.13)

u = ∆y at every x. (5.14)
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5.2 Forward Perturbation

The forward perturbation problem given by the following equation

δy = −
µ
∂D

∂y

¶−1µ
∂D

∂X
dX

¶
(5.15)

where D is the contour of d(x, y) = 0, X is the source parameters, dX is the source per-

turbation and δy is the surface perturbation. Figure 5.1 illustrates the perturbation concept.

Perturbed Surface

Initial Surface yδ

x

y

Figure 5.1. Changing the source parameters perturbs the surface geometry

Let dX represent the perturbation of the magnitude and phase of the sources. We

define this perturbation as

dΓ = {∆Mi...∆Mn,∆θi...∆θn}

where Mi is the magnitude of the amplitude of the ith source and θi is the phase of the ith

source.

Consider a system with three sources. The first two sources are the main source and

its image. The third source is used to perturb the surface. The initial conditions are given

as shown in Table 5.1.
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Table 5.1. Source parameters
Source Wavenumber Magnitude Phase (deg) Location Comment

1 1 1 0 (0,1) Main Source
2 1 1 0 (0,-1) Image of Main Source
3 1 0.0005 90 (10,-0.1) Small Source

If we perturb the phase of the amplitude of the third source by−90 degrees, then we

expect the shape of the surface to change. The location of the new surface can be computed

once δy is computed using Equation (5.16). We assign values to the quantities in Equation

(5.16) as follows.

dΓ = ∆θ3 = −90 deg

∂Γ = 90deg

∂y = 0.005m

The above conditions resulted in the waveforms shown in Figure 5.2. The new conditions

are tabulated in Table 5.2.

Table 5.2. Source parameters
Source Wavenumber Magnitude Phase (deg) Location

1 1 1 0 (0,1)
2 1 1 0 (0,-1)
3 1 0.0005 0 (10,-0.1)

5.3 Backward Perturbation

In this section we will investigate the backward perturbation problem. The back-

ward perturbation method will allow for the modification of the contour of the surface to a

58



5 6 7 8 9 10 11 12 13 14
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Distance (m)

H
ei

gh
t  

(m
)

 

 

1

2

3

η|X0
η|X0+Computed δ  y

η|X0+dX
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desired shape. The backward perturbation problem given by the following equation

dX = −
µ
∂D

∂y
δy

¶µ
∂D

∂X

¶−1
(5.16)

where D is the contour of d(x, y) = 0, X is the source parameters, dX is the source

perturbation and δy is the surface perturbation. Essentially, since δy is the difference in the

y-coordinate of the surface locations and the desired shape, the goal is to minimize δy. This

process takes many steps since each step involves perturbing the surface by only a small

amount. The results are shown in Figures 5.3, 5.4 and 5.5. We can transform a flat surface

into having similar shape as the objective shape in 30 steps.
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Figure 5.3. The initial surface is flat as shown by the blue line
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CHAPTER 6

EQUIVALENT SOURCE AMPLITUDE ESTIMATION

USING LEAST SQUARES

When constructing a pressure field formed by a radiator of a certain shape using

equivalent sources, one of the challenges is the determination of the strengths of the equiv-

alent sources. Other challenges include the placement and number of sources needed to

construct the field with minimum error. The strengths or amplitudes of the equivalent

sources may be estimated using the least squares method. The least squares method has

been used by various researchers to resconstruct extertior and interior acoustic pressure

fields [46, 47]. In this chapter, we discuss how the strengths of the equivalent sources are

estimated using the least squares method and provide a detailed derivation in the following

sections.

6.1 Derivation for Three-Dimensional Problems

For a system containing more than two sources, we rewrite Equation (4.19) as

φ =
hX
i=1

AejkRi

4πRi
(6.1)

Substituting Equation (6.1) into Equation (4.17), we have

∇
hX
i=1

Aie
jkRi

4πRi
·−→n = 0 (6.2)
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We write the above equation as

∇
µ
A1e

jkR1

4πR1
+

A2e
jkR2

4πR2
+ ...+

Ahe
jkRh

4πRh

¶
·−→n = 0 (6.3)

The first term in Equation (6.3) represents the main source also known as the physical

source. Since we know the complex amplitude, A1, of the main source, we can further

rewrite Equation (6.3) as

∇A1e
jkR1

4πR1

−→n +∇
µ
A2e

jkR2

4πR2
+

A3e
jkR3

4πR3
+ ...+

Ahe
jkRh

4πRh

¶
·−→n = 0 (6.4)

The variable A1 is known and A2 through Ah are unknowns. We can find A2 through Ah

such that Equation (6.3) would produce an acoustic field equivalent to a specified surface

geometry. If the surface geometry is specified (i.e. the objective surface is given), then −→n

is known at every point on the surface. Hence, the only variables left to determine are A2

through Ah. After a little rearrangement, Equation (6.4) becomes

∇
µ
A2e

jkR2

4πR2
+

A3e
jkR3

4πR3
+ ...+

Ahe
jkRh

4πRh

¶
·−→n = −∇A1e

jkR1

4πR1

−→n (6.5)

SinceA2 throughAh are complex constants and not functions ofR, we can rewrite Equation

(6.5) as

£
A2 A3 ... Ah

¤ h
∇ejkR2
4πR2

∇ejkR3
4πR3

... ∇ejkRh
4πRh

iT
·−→n = −∇A1e

jkR1

4πR1

−→n (6.6)

Writing n = −→n =
£
n1 n2

¤
, Equation (6.6) becomes

h
∇ejkR2
4πR2

∇ejkR3
4πR3

... ∇ejkRh
4πRh

i
· nT ·

£
A2 A3 ... Ah

¤T
= −∇A1e

jkR1

4πR1

−→n (6.7)
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Defining Ψi = ∇ejkRi
4πRi

, Equation (6.7) is rewritten as

£
Ψ2 · nT Ψ3 · nT ... Ψh · nT

¤
·
£
A2 A3 ... Ah

¤T
= −Ψ1 · nT (6.8)

For an undulating surface, −→n will be different from one point on the surface to the next

point. Thus, Equation (6.8) will have to be evaluated at the specified points on the surface.

Thus,⎡⎢⎢⎢⎢⎢⎢⎣
Ψ21 · nT1 Ψ31 · nT1 ... Ψh1 · nT1
Ψ22 · nT2 Ψ32 · nT2 ... Ψh2 · nT2

.

.

.

.

.

.

.

.

.

.

.

.
Ψ2q · nTq Ψ3q · nTq ... Ψhq · nTq

⎤⎥⎥⎥⎥⎥⎥⎦ ·
£
A2 A3 ... Ah

¤T
= −

⎡⎢⎢⎢⎢⎢⎢⎣
Ψ11 · nT1
Ψ12 · nT2

.

.

.
Ψ1q · nTq

⎤⎥⎥⎥⎥⎥⎥⎦
(6.9)

where n is the normal vector at point q on the surface and h is the number of sources. If

the number of sources is less than the number of data points on the surface (in other words,

h < q) then the total number of equations exceeds the total number of unknowns. Hence,

we will have an overdetermined system. However, overdetermined systems can be solved

reasonably well using the least square method. It is obvious that Equation (6.9) is in the

form of Ma = b where M represent the first matrix in Equation (6.9), a represent the

second matrix containing the unknown complex amplitudes and b represent the matrix on

the right hand side of the equation. Hence,

Ma = b (6.10)

Using the least square method, we can solve for the a matrix as follows

a =
¡
MHM

¢−1
MHb (6.11)
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6.2 Derivation for Two-Dimensional Problems

The derivation for the 2-D problem is the same as for the 3-D problem with only

one difference. The 2-D solution to Equations (4.13), (4.14), (4.15) and (4.16) is different

and given as

φ = −A j
4
H
(1)
0 (kR) (6.12)

where H(1)
0 (kR) is the order zero Hankel function of the first kind and it’s defined as

H
(1)
0 (kR) = J0 (kR) + jY0 (kR) (6.13)

where J0 (kR) is the bessel function of the first kind and Y0 (kR) is the bessel function of

the second kind. We define ϕ = − j
4
H
(1)
0 (kR) and after going through the same algebra as

in the 3−D case discussed in section 6.1, we end up with⎡⎢⎢⎢⎢⎢⎢⎣
ϕ21 · nT1 ϕ31 · nT1 ... ϕh1 · nT1
ϕ22 · nT2 ϕ32 · nT2 ... ϕh2 · nT2

.

.

.

.

.

.

.

.

.

.

.

.
ϕ2q · nTq ϕ3q · nTq ... ϕhq · nTq

⎤⎥⎥⎥⎥⎥⎥⎦ ·
£
A2 A3 ... Ah

¤T
= −

⎡⎢⎢⎢⎢⎢⎢⎣
ϕ11 · nT1
ϕ12 · nT2

.

.

.
ϕ1q · nTq

⎤⎥⎥⎥⎥⎥⎥⎦
(6.14)

Therefore, Equation (6.11) is valid for the 2−D case as well.

6.3 Implementation of the Equivalent Source Method

The equivalent source method can be implemented in various computer languages.

The flowchart of the algorithm is shown in Figure 6.1. First, the exterior geometry, η(x), of

the radiator is specified. The focus is of this research is on outdoor noise. Therefore, in this

case, the exterior geometry is the geometry of the ground surface. Once the geometry has
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been specified, the vector normal to the each point on the surface needs to be calculated.

Since we are only interested in the direction of the tangent line, the only information that

we need in order to determine the normal vector is the slope at each point on the surface.

Computing the null space of a vector parallel to the tangent line will give the normal vector.

Thus,

−→n = Null
¡£

c c∂η
∂x

¤¢
(6.15)

where ∂η
∂x

is the slope or derivative at point x and c is a positive constant. The equivalent

sources may be placed beneath the ground surface. The accuracy of the results depends

on the number and locations of the sources. The number and locations of the equivalent

sources may differ from one geometry to another. A geometry with many curves may re-

quired more sources than one with less curves. Generally, if there are enough sources

strategically placed, good results can be obtained. Once the equivalent sources have been

placed, the next step is to calculate the amplitudes of these sources. Equation (6.11) repre-

sents the least square equation that can be used to estimate the amplitudes.

6.4 Two-Dimensional Results

When the shape of the surface is given, we can find the amplitudes of the small

sources such that an equivalent acoustic field can be produced. To accomplish this, we first

have to find the vectors that are normal to the surface at the specified points on the surface.

The amplitude of the main source may be arbitrary. However, since we chose the source in

Comsol to be 10W, we must find A1 such that our equivalent main source in Matlab would

produce a power of 10W as well. It turned out that A1 = −130.99− .18221i will produce
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Equivalent Source Method 

Specify surface 
geometry, η(x). 

Place equivalent sources 
below but close to the 
surface. 

Find the normal vector 
at each point on the 
surface. 

Compute the b vector 
and M  matrix in: 

bMa =  

Use the Least Square 
Method to compute a in:

bMa =  

Calculate the pressure at the 
points of interest. 

Figure 6.1. Algorithm for calculating the pressure field using the ESM
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a source of 10W. Simulations were done in 2−D. The surface is shown in Figure 6.2. This

surface is replicated in Comsol as shown in Figure 6.4. The excitation frequency is 54.6

Hz which corresponds to the wavenumber of 1 m−1. Figure 6.3 shows the location of the

sources. Notice that all the small sources are placed below the surface. Figures 6.5 and 6.6

shows that the results produced by the equivalent source method (ESM) and comsol agree

relatively well.

0 5 10 15 20 25 30 35 40 45 50
-4

-3

-2

-1

0

1

2

3

4

Distance (m)

H
ei

gh
t (

m
)

Figure 6.2. The periodic surface defined using Matlab
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Figure 6.3. At every 0.5m, there is an equivalent source 0.5m below the surface

Figure 6.4. Finite element model defined in Comsol Multiphysics
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Figure 6.5. Pressure at points x = 0.1m to x = 50m and y = 1.5m
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Figure 6.6. Pressure magnitude at points x = 0.1m to x = 50m at y = 1.5m
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CHAPTER 7

ACOUSTIC LOSS OPTIMIZATION

In general, a surface with hills, trees and other obstacle results in more acoustic

loss than a flat surface. It is intuitive that the higher the hills or the bigger the obstacles the

more loss there is. One can design a surface with obstacles so large that most of the acoustic

energies simply reflect back toward the source or are dissipated within the obstacles. While

it is obvious that this design will result in large losses, it is also not practical. In this section,

a method to find a surface that will result in a large loss while practicality is maintained

using nonlinear optimization techniques. This is achieved by placing constraints on the size

of the hills.

7.1 Theory

Nonlinear optimization techniques can be used to optimize the shape of a surface

to produce the most loss. The most successful nonlinear optimization algorithm is the se-

quential quadratic programming (SQP) algorithm [48]. SQP finds the solution by solving a

sequential of quadratic programming subproblems. Our problem is a constrained nonlinear

problem as outline below. The objective function or the function to be minimized is f(x),

min f(x) (7.1)
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subject to the linear inequalities given by

Ax ≤ b (7.2)

Specifically, we want to minimize the absolute value of the pressure, |φ|, at certain loca-

tions. We have previously defined φ as

φ(x, y) =
AeikR1

4πR1
+

AeikR2

4πR2
+

AeikR3

4πR3
+ ...+

AeikRn

4πRn
(7.3)

where

R =
p
(x− x0)2 + (y − y0)2. (7.4)

The first two sources are the main source and its image. Thus, we keep the locations of

these two sources constant. Minimizing the pressure at a single location can be misleading.

Thus, it is more appropriate to minimize the pressure over a range of positions. We can use

line integration to achieve this. Thus, the objective function is defined as

f(x) = Φ (x, y) =

Z
Ω

|φ(x, y)| dΩ. (7.5)

With Equation (7.5) as the objective function, the total absolute value of the pressure en-

closed by the boundary, Ω, is minimized.

7.2 Optimization Procedure

This section discusses the optimization process and provides a basic guideline on

choosing basis functions, defining constraints and initial guess. The optimization algorithm

is also discussed.
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7.2.1 Basis Functions

Prior to running the optimization algorithm, it is important to have a general idea

of what the desired surface will look like. While running the algorithm randomly will

generate a surface, the shape of that surface may be undesirable or aesthetically unpleas-

ing. If a sinusoidal surface is desired, one may consider using a sinusoidal function as the

basis function and its amplitude and wavenumber as the optimizing variables. Using the

Gaussian functions as basis functions will unlikely result in a sinusoidal surface. Likewise,

if a nonperiodic surface is desired, Gaussian basis functions should be used.

7.2.2 Defining Constraints

The desired shape of the optimal surface is largely determined by the constraints.

Consider an undulating surface, the amplitude and the wavelength of the surface are bounded

by the constraints. For example, if the amplitude and wavenumber are the optimizing vari-

ables, the lower and upper bound of the amplitude can be set to 0.1 and 1.0 m respectively

and wavenumber can be set to 0.6283 m−1 and 0.1257 m−1. This guarantees that the am-

plitude of the optimal surface will not exceed 1.0 m, but will be higher than 0.1 m and the

wavelength will not be longer than 50 m, but no shorter than 10 m. Similarly, if a nonperi-

odic surface is desired, Gaussian functions may be used as basis functions. Constraints can

be placed on the amplitudes, width and locations of each Gaussian pulse on the x−axis.

When defining constraints, it is important to keep in mind that while constraints are placed

to make sure that the resulted surface is practical, constraints can also limit the loss.
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7.2.3 Initial Guess

The initial guess determines the initial geometry of the surface. Different initial

guesses may result in different solutions. If one wishes to improve the loss of an existing

surface then the existing surface may be used as the initial surface. The optimization algo-

rithm will produce a surface that induces a greater loss unless, of course, the initial surface

is already the optimal surface.

7.2.4 Algorithm

The procedure for solving the optimization problem and computing the objective

function is shown in Figures 7.1 and 7.2. The optimization procedure begins with a speci-

fied initial guess, X0. X is vector containing the optimization variables, and its representa-

tion is different depending on the basis functions used to form the geometry of the surface.

For example, if sinusoidal functions are used as the basis functions, X will be a vector con-

sisting of the amplitude, frequency and phase of each sinusoidal waveform. If Gaussian

functions are used, X will consist of the width, height and location of each Gaussian pulse.

The next step is to use the ESM to compute the objective function which is the line

integral of the absolute value of the pressure between two specified points. This is achieved

through placing equivalent sources just below the surface and using the least square method

to estimate the amplitudes of these sources. Once this is completed, the pressure field and

objective function can be computed. This is shown in detail in Figure 7.2.

Next, the Jacobian of the constraints and Hessian matrix of the Lagrange function

are computed. The Jacobian and the Hessian matrix are used to solve the quadratic ob-

jective function. After the minimization of the quadratic objective function, a check for
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convergence is performed. The conditions for convergence are listed below. If one of these

condition is met, then the algorithm has converged.

• The first order optimality conditions are satisfied.

• The search direction ∆X is less than the specified tolerance.

 

No 

Yes 

Acoustic 
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objective function, Q. 
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Hessian matrix of the 
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Optimal X 

Define initial 
guess, X0. 

Nonlinear Optimization 
Sequential Quadratic Programming 

Algorithm (SQP). 

Figure 7.1. Algorithm for acoustic loss optimization using SQP
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Figure 7.2. Procedure for calculating the objective function
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7.3 Wavenumber Optimization Algorithm

In this section, the implementation of the theory discussed in section 7.1 is explored

in detail. As previously mentioned, the objective is the maximize the acoustic loss. This can

be achieved by finding a surface shape that is capable of suppressing the propagation of the

pressure wave for the frequencies of interest. To accomplish this, an arbitrary surface shape

that emanates certain pressure field at the area of interest is chosen as the initial surface.

This initial surface is periodic with a certain wavenumber. During the optimization, the

wavenumber of the surface will change producing a new acoustic field. The pressure within

the area of interest will get smaller and smaller as the optimization progresses. The steps

for finding the optimal surface wavenumber is listed below.

1- Determine the initial surface shape by specifying the wavenumber.

2- Determine the amplitude of the main source, A1.

3- Assign an arbitrary value to the amplitude, A2, of the image of the main source.

4- Define the location and wavenumber of the main source and its image.

5- Define the objective function, f(x).

6- Determine the linear constraints: Ax ≤ b.

7- Determine the nonlinear constraints if any.

8- Use the equivalent source method to calculate the pressure for the given surface

wavenumber.

9- Change the surface wavenumber.

10- Repeat steps 8 and 9 until the desired pressure is obtained.
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7.4 Surface Optimization Results

Simulation results are presented in this section. Section 7.4.1 discusses the opti-

mization results for sinusoidal surfaces. Optimization involving surfaces that are not pe-

riodic is discussed in Section 7.4.2. Section 7.4.3 presents a setup that results in better

improvement.

7.4.1 Sinusoidal Surface Optimization

A arbitrary periodic surface with an amplitude of 0.8m and a wavenumber of 0.2094

m−1 was chosen to be the initial surface which is shown in Figure 7.3. The absolute value of

the complex pressure is sampled over the area within the rectangle shown in the figure. We

can sum up the absolute values of the complex pressure to get the total pressure within the

rectangle and minimizing this total pressure is the objective. Mathematically, the objective

function is defined as

Φ =
X

|φ(x, y)| (7.6)

where x and y are the x and y locations where the pressure is measured and k is the

wavenumber of the surface. In this particular case, the pressure is measured from x = 45

to x = 50 at 1 m interval and y = 1 to y = 5 at 1 m interval. Equation (7.6) is subject to

the following constraints,

k ≤ 2π
λ
. (7.7)
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where λ is the wavelength of the surface. Two constraints are used in this example and are

shown below.

k ≤ 2π

10
(7.8)

−k ≤ −2π
50

(7.9)

The optimal surface is shown in Figure 7.4.
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Figure 7.3. The surface before optimization

7.4.2 Non-Sinusoidal Surface Optimization

In this section, we use a set of Gaussian functions as basis functions to construct

the surface geometry. Figure 7.5 shows a set of basis functions and the resulting surface.

In this simulation, there are 33 Gaussian pulses used. Different surface geometries can be

constructed by changing the amplitudes of each of the Gaussian functions.
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Figure 7.4. The surface after optimization has a wavenumber of 0.5937m−1
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The maximum amplitude of each Gaussian pulse is 1.0 meter; the minimum ampli-

tude of each Gaussian pulse is -1.0 meter. The excitation frequency is chosen as 20Hz. The

wavenumber and wavelength of the source are shown below.

k =
2π

λ

k =
ω

c
=
2πf

c

k =
20 (2π)

343

k = 0.3664m−1

λ =
2π

0.3664
= 17m

The full width at half maximum (FWHM) of each Gaussian function is 4.3 m. The first

pulse is centered at x = 15 m. The second pulse is centered at x = 17.15 m. Each

Gaussian pulse is placed at the interval of 2.15 m apart starting at x = 15 m. Initial the

Gaussian functions were placed with alternating negative and positive amplitudes as shown

in Figure 7.5. Constraints were placed on the amplitudes of the Gaussian functions. These

parameters are summarized in the table below.

Table 7.1. Gaussian pulse parameters
Parameter Value
Full Width at Half Maximum (FWHM) 4.3 m
Maximum Amplitude 1.0 m
Minimum Amplitude -1.0 m
Horizontal position of the first Gaussian pulse 15 m
Interval between pulses 2.15 m
Total number of pulses 33

The amplitude of the main source is set to−1.30992−i1.8221−1 which is equivalent

to approximately 10Watts, and located at (0, 1). As mentioned earlier, the frequency of the
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main source is 20 Hz. There are a total of 82 equivalent sources used. The amplitudes of

these sources are based on the surface geometry and determined using the method discussed

in section 6. The first equivalent source which is directly below the main source is placed

at (0,−1). The location of the first equivalent source will not change as long as the surface

above it remains flat. The remaining 81 sources are placed 0.3m below the surface at 1.0m

interval starting at x = 10 m. Measurements were taken over a square area of 25 m2 with

5 m in width and 5 m in height. The lower left corner of the square is located at (90, 1).

Equation (7.6) is used to compute the total pressure, Φ, inside the square. The results are

shown in Figures 7.6 and 7.7. Figure 7.6 shows a relatively flat surface with a total pressure

of 162.9 Pa within the measurement area. This flat surface is the initial surface before any

optimization is conducted. Figure 7.7 shows the optimized surface with a total pressure of

105.88 Pa within its measurement area. There is an improvement of 57 Pa.

7.4.3 Optimization Setup for Better Loss Improvement

The result of the algorithm depends on many factors including the initial conditions,

constraints, placement and number of the equivalent sources. Therefore, it is important that

the problem is setup properly to obtain good results. The contraints include the maximum

and minimum amplitude of the corrugation, phase of the corrugation and maximum and

minimum corrugation wavenumber. A larger loss can be obtained by changing these con-

straints.

Consider the initial surface shown in Figure 7.8. The surface has an amplitude

of 2 meters and undulation length of 180 meters (from x = 10 to x = 190). The initial

wavenumber is 0.1 m−1 corresponding to 5.5 Hz. A physical source with 10 watts of power
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and an excitation frequency of 20 Hz is placed at location (0, 1). The total sound pressure

level within the area shown by the 4 × 5 m rectangle was estimated using the equivalent

source method and found to be 137 dB with 20 µPa as the reference pressure. A total of 75

equivalent sources including the physical source were used in the computation. Excluding

the physical source and its image which are located at (0, 1) and (0,−1) respectively, the

equivalent sources are located 0.5 m apart horizontally and 0.5 m below the surface.

Figure 7.8. Initial surface geometry before optimization

After running the optimization algorithm while keeping the amplitude constant at

2 m, the result is shown in Figure 7.9. The algorithm has adjusted the wavenumber of the

surface from 0.1 m−1 to 0.4 m−1. The total sound pressure level in the area shown by the

rectangle is 127 dB. Although the amplitude of the initial surface and optimized surface are

the same, there is an improvement of 10 dB in the model with the optimal surface.
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Figure 7.9. Surface geometry after optimization

The surfaces in Figures 7.8 and 7.9 were constructed in Comsol Multiphysics. The

simulation result of Comsol model containing the initial surface is shown in Figure 7.10.

The Comsol model is surrounded by perfectly matched layers on the sides and top to absorb

incoming waves. All other properties remain the same as in the Matlab model. Figure

7.11 shows the Comsol simulation result for the optimal surface. A Comsol and Matlab

comparison of the absolute value of the pressure taken from x = 0 m to x = 200 m and

at y = 3 m for all x’s for the optimal surface is shown in Figure 7.12. A summary of the

comparison is shown in Table 7.2.

Table 7.2. Comparison of Comsol Multiphysics and ESM method

Method Initial Surface Wavenumber Optimal Surface Wavenumber ΦdBI ΦdBf

Comsol 0.1 m−1 0.4 m−1 135 dB 127 dB
ESM 0.1 m−1 0.4 m−1 137 dB 127 dB
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Figure 7.10. Comsol Multiphysics model containing the initial surface

Figure 7.11. Surface after optimization
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Figure 7.12. Absolute value of the pressure as function of distance (optimal surface)
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CHAPTER 8

CONCLUSION

We use finite element simulations to show that an undulating boundary conditions

(undulating landscaping) can be used as an effective anti-propagation method to reduce

low-frequency outdoor noise. For a corrugation with a wavelength of 3.43 m, amplitude

of 2 m and a corrugation length of 82.32 m, the first resonance occurs at 25 Hz. At this

frequency, the additional loss due to the undulating boundary is 33.42 dB. We also showed

that the undulating landscape create a significant shielding effect at low frequency and close

to the ground beyond the landscaping. We show that increasing the corrugation length

increases the loss. Changing the amplitude of the corrugation while keeping the length and

wavelength of the corrugation constant cause the first resonance frequency to shift. Finally,

having phase shifts in the corrugation does not significantly affect the transmission loss in

an outdoor environment.

We have discussed the use of equivalent sources to model the effect of hard surfaces

on outdoor noise. We derived a mathematical condition and method for locating the surface.

We showed that a flat hard surface can be molded into a perturbed quais-flat surface by

placing equivalent sources at various distances along the x-axis from the main source.

These equivalent sources cause valleys and hills to form on the hard surface, and therefore,

can reduce or amplify the noise. We modeled four different surfaces: a flat surface, surface

with a hill, surface with a hill and a valley and undulating surface. Our simulations showed
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that even though the undulating surface has smaller hills and valleys, it produced the most

loss of the four models.

A optimization procedure was developed to compute the surface shape that will

result in the most acoustic loss. Due to the simplicity and computational efficiency of

ESM, this procedure involves using ESM to compute the acoustic field. The optimization

part of the procedure involves using quadratic programming to minimize the loss. The

shape of the surface is constructed from a set of basis functions. Sinusoidal and Gaussian

basis functions were discussed and results were presented.
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