
North Carolina Agricultural and Technical State University North Carolina Agricultural and Technical State University

Aggie Digital Collections and Scholarship Aggie Digital Collections and Scholarship

Theses Electronic Theses and Dissertations

2011

Customizing And Building The Linux Kernel To Control Appliance Customizing And Building The Linux Kernel To Control Appliance

Actuators And Sensors In Domotics Actuators And Sensors In Domotics

Steven M. Hannah
North Carolina Agricultural and Technical State University

Follow this and additional works at: https://digital.library.ncat.edu/theses

Recommended Citation Recommended Citation
Hannah, Steven M., "Customizing And Building The Linux Kernel To Control Appliance Actuators And
Sensors In Domotics" (2011). Theses. 23.
https://digital.library.ncat.edu/theses/23

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Aggie Digital
Collections and Scholarship. It has been accepted for inclusion in Theses by an authorized administrator of Aggie
Digital Collections and Scholarship. For more information, please contact iyanna@ncat.edu.

https://digital.library.ncat.edu/
https://digital.library.ncat.edu/theses
https://digital.library.ncat.edu/etds
https://digital.library.ncat.edu/theses?utm_source=digital.library.ncat.edu%2Ftheses%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digital.library.ncat.edu/theses/23?utm_source=digital.library.ncat.edu%2Ftheses%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:iyanna@ncat.edu

CUSTOMIZING AND BUILDING THE LINUX KERNEL
TO CONTROL APPLIANCE ACTUATORS AND

SENSORS IN DOMOTICS

by

Steven M. Hannah

A thesis submitted to the graduate faculty
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Department: Electrical and Computer Engineering
Major: Electrical Engineering

Major Professor: Dr. Christopher Doss

North Carolina A&T State University
Greensboro, North Carolina

2011

 ii

School of Graduate Studies
North Carolina Agricultural and Technical State University

This is to certify that the Master’s Thesis of

Steven M. Hannah

has met the thesis requirements of
North Carolina Agricultural and Technical State University

Greensboro, North Carolina
2011

Approved by:

 ___________________________ ___________
 Dr. Christopher Doss Dr. Corey Graves
 Major Professor Committee Member

 _______________________ _____________
 Dr. Alvernon Walker Dr. John Kelly
 Committee Member Department Chairperson

Dr. Sanjiv Sarin

Interim Dean of Graduate Studies

 iii

BIOGRAPHICAL SKETCH

Steven M. Hannah was born on June 27th, 1986 in Richmond Virginia. He

received his Bachelor of Science in Electrical Engineering from North Carolina

Agricultural and Technical State University in May of 2009. He is a currently a candidate

for the Master of Science in Electrical Engineering. He has presented research and had

publications in the conferences including the 2007 and 2008 Opt-Ed Alliance day in

Greensboro, North Carolina, NCUR conference 22 in Salisbury, Maryland, and the 2009

FCCM IEEE Symposium in San Francisco, California.

 iv

ACKNOWLEDGEMENTS

I would like to sincerely thank my advisor Dr. Christopher Doss and my

committee members Dr. Corey Graves and Dr. Alvernon Walker for keeping me focused

and motivating me when I thought all was lost. I would also like to thank my family for

their everlasting and undying love and support.

 v

TABLE OF CONTENTS

LIST OF FIGURES ...viii

LIST OF ABBREVIATIONS ...x

ABSTRACT ...xii

CHAPTER 1. INTRODUTCION ...1

CHAPTER 2. THE HUMAN POPULATION ...4

 2.1 The U.S. Population ..5

 2.2 The World Population ...6

 2.3 Average Life Expectancies ...6

 2.4 Reasons for Improved Human Life ...8

 2.5 The Senior Population ...9

 2.6 People With Disabilities ...10

 2.7 Current Options for the Disabled ..11

 2.8 A Possible Alternative in the Future ...12

CHAPTER 3. SMART HOUSE TECHNOLOGY ...13

CHAPTER 4. THE SAAD PROJECT ..16

 4.1 Overview ...16

 vi

 4.2 WireAct ...20

CHAPTER 5. HISTORY AND OVERVIEW OF LINUX ..22

 5.1 History ...22

 5.2 Overview ...23

CHAPTER 6. FIELD PROGRAMMABLE GATE ARRAYS (FPGAs)27

 6.1 History ...27

 6.2 Overview ...28

 6.3 The FPGA of Choice ..32

CHAPTER 7. EXPERIMENTAL SETUP ...33

 7.1 The Virtual Computer ...33

 7.2 The Default Linux Kernel ...40

CHAPTER 8. EXPERIMENTAL RESULTS ..45

 8.1 Creating a New Project to Run the Linux Kernel ...45

 8.2 Customizing the Linux Kernel ..51

CHAPTER 9. CONCLUSION ...63

BIBLIOGRAPHY ...65

APPENDIX A ...69

APPENDIX B ...70

 vii

APPENDIX C ...73

APPENDIX D ...76

APPENDIX E ...77

APPENDIX F ...78

 viii

LIST OF FIGURES

Figure 1. World Population Growth Throughout History ...5

Figure 2. U.S. Average Life Expectancy (1900 – 1997) ...7

Figure 3. Top Ten Countries With the Oldest Populations ...10

Figure 4. Physical Layout of SAAD System ..18

Figure 5. Basic Linux Directory Structure ..24

Figure 6. Basic FPGA structure ..29

Figure 7. FPGA Configurable Logic Block (CLB) ..30

Figure 8. Input/Output Block (IOB) structure ..30

Figure 9. VirtualBox Startup Window ..34

Figure 10. “Create New Virtual Machine” Wizard: Welcome Page35

Figure 11. “Create New Virtual Machine” Wizard: Memory Page36

Figure 12. “Create New Virtual Disk” Wizard: Welcome Page38

Figure 13. “Create New Virtual Disk” Wizard: Virtual Disk Location and Size Page38

Figure 14. VM Storage Settings Page ...39

Figure 15. Contents of /media/cdrom Directory in Linux Terminal42

Figure 16. Contents of Linux Tree in Linux Terminal ...44

 ix

Figure 17. Linux Kernel Running in HyperTerminal ...46

Figure 18. XPS Project System Assembly View ..47

Figure 19. XPS Software Platform Settings Page ...49

Figure 20. XPS Software Platform Settings “OS and Lib Configuration Page with
Complete Settings ...50

Figure 21. “hellothere” C file in VM Text Editor ...54

Figure 22. Linux Kernel Executing “hellothere” Binary File ..55

Figure 23. Linux Kernel Configuration Menu ..57

Figure 24. Complete Modified Linux Kernel Executing “Television” Program62

 x

LIST OF ABBREVIATIONS

1. American With Disabilities Act – ADA

2. Socially Assistive Agent and Domotics – SAAD

3. Field Programmable Gate Array - FPGA

4. Xilinx Platform Studio - XPS

5. Intellectual Property - IP

6. (Very High Speed Integrated Circuit) Hardware Description Language - VHDL

7. Virtual Machine - VM

8. GNU Compiler Collection - GCC

9. Configurable Logic Block - CLB

10. Programmable Logic Device - PLD

11. Programmable Logic Array - PLA

12. Programmable AND-array Logic - PLA

13. Simple Programmable Logic Device - SPLD

14. Complex Programmable Logic Device - CPLD

15. Very-Large-Scale Integration - VLSI

16. Application Specific Integrated Circuit - ASIC

17. Input/Output Block - IOB

18. International Organization for Standardization - ISO

19. Embedded Linux Development Kit - ELDK

20. Open Source Linux - OSL

 xi

21. Board Support Package - BSP

22. Least Significant Bit - LSB

23. Light Emitting Diode - LED

24. Random Access Memory - RAM

25. General Purpose Input/Output -GPIO

 xii

ABSTRACT

Hannah, Steven M. CUSTOMIZING AND BUILDING THE LINUX KERNEL TO
CONTROL APPLIANCE ACTUATORS AND SENSORS IN DOMOTICS. (Advisor:

Christopher Doss), North Carolina Agricultural and Technical State University.

 The human population has been increasing ever since the end of the Bubonic

Plague in the 1300’s. The global human population is getting older as well as increasing.

This is because on average people are living longer. Among the reasons for the

drastically improved quality of human life are advances in technology and medicine. The

possibility of developing a disability increases along with a person’s age. There are

numerous available options for the disabled elderly, including nursing homes, in-home

care and living with other disabled people. A person may decide not to exploit any of

these options and “age in place”. This thesis will explain the use of currently existing

technology in a “smart house” subproject that may provide a possible alternative to the

current options that the elderly disabled have, and how the Linux kernel is modified, built

and downloaded onto the Ml405 Evaluation Platform to control appliance actuators and

sensors.

 1

CHAPTER 1

 INTRODUCTION

 As the human population continues to grow and age, the question arises of how

the disabled elderly will be cared for. Among the current options available for this

growing age group are nursing homes and in-home care. These options may not be

affordable to an elderly disabled person or his or her family. A possible low-cost

alternative to the currently available options may be home automation.

 Smart house technology involves the concept of automating a home. This idea

has been explored for many years. There are some requirements for a home to be labeled

“smart”. A smart home can range from having those basic requirements to having much

more sophisticated abilities.

 The Socially Assistive Agent and Domotics (SAAD) project is a prototype smart

home proposed by the Electrical and Computer Engineering, Computer Science, Nursing,

and Psychology departments at North Carolina A&T State University. The proposed

project involves meeting a subject’s physical needs as well as engaging the subject

emotionally. SAAD is composed of many subprojects, including wireless

communication to control actuators and sensors. This subproject was named WireAct.

The primary goal of WireAct was to successfully customize, build, and download the

Linux 2.6 kernel to an FPGA board to interface with its hardware peripherals.

 2

 Linux is a versatile, open source operating system. Originally created to be a

terminal emulator, Linux has expanded to being used for all types of applications

including games and web servers. The Linux directory structure is fairly organized,

containing a root directory and numerous subdirectories under root.

 FPGAs are considered programmable logic. They are capable of being

configured to perform virtually any task. There are several vendors as well as several

families of FPGAs, including the Virtex 4 ML405 which was used for the purpose of

performing the experiments involved in WireAct.

 The chosen method for conducting WireAct’s experiment involved obtaining the

Linux 2.6 kernel from http://xilinx.wikidot.com. The kernel was then built, downloaded,

and run on the ML405 board. The simplest and most straightforward way to build the

Linux kernel was to create a Linux environment, so a virtual computer was created to run

a Linux operating system. The Linux kernel could then be built inside the virtual

computer and downloaded to the FPGA board by the host computer.

 The default Linux kernel wasn’t sufficient to perform the task of controlling any

external hardware. Creating custom executable programs and adding them to the kernel’s

ramdisk was a feasible way to customize the Linux kernel. Additions to the Linux kernel

include programs to print messages on a console application, activate LEDs on the

ML405 board, and enable or disable external motors connected indirectly to the board.

 Chapter two discusses the human U.S. and world populations. Chapter three

covers the basics and different levels of smart house technology. The SAAD project is

discussed in chapter four. Chapters five and six cover the history and an overview of

 3

Linux and FPGAs. Chapters seven and eight cover the procedures of the experimental

setup and results. Chapter 9 covers the conclusion.

 4

CHAPTER 2

THE HUMAN POPULATION

 The global human population is steadily increasing. According to anthropologist

studies, the human species dates back at least 3 million years. Humans lived as hunters

and gatherers for most of our history. Due to this dubious way of life, the total

population remained relatively small, probably numbering no more than 10 million. An

increase in human population occurred when agriculture was introduced, which enabled

communities to evolve and sustain more people. Due to the steady rate of growth, the

world population increased to about 300 million by 1 A.D. As recently as the last 50

years, the world population has multiplied more hastily than ever before, and growth is

only expected to expedite in the future. A graph showing the world population’s growth

can be seen in Figure 1 [1]. As shown in Figure 1, the human population has risen

exponentially ever since the Bubonic Plague which killed roughly 25 million people (1/3

of Europe’s population) in the 1300’s. Contributions to the substantial increase in

population growth following the Bubonic Plague include the Industrial Revolution in the

18th century, and even World War II, when less advanced countries’ populations began to

increase dramatically [2, 3].

 5

2.1 The U.S. Population

 In 1790, which was the year of the first census of the U.S. population, there were

roughly over 3.9 million people in the United States. By 1900, the U.S. population had

jumped to almost 76 million people. Just 100 years later, the 2000 census counted 281.4

million people in the United States.

Figure 1. World Population Growth Throughout History

As of January 16, 2010, the U.S. population is projected to be roughly 311.9 million, with

a net gain of one person every 15 seconds. Of the world population, the U.S. is ranked

third in population, only behind China and India [4, 5, 6].

 6

2.2 The World Population

 The global population has skyrocketed as well. For a long time the population

didn’t grow significantly, as a result of times of growth followed by times of decline. By

1750, the world population is estimated to be 791 million, with 64% in Asia, 21% in

Europe, and 13% in Africa. By the beginning of the 20th century, the global population

had more than doubled to 1.7 billion. An increase of 53% was seen as the world

population increased to 2.5 billion in just 50 years. Over the next half a century the

global population increased even quicker. By 2000, an estimated 6.1 billion people

populated the world. As of January 16, 2011, the world population is approximated at

about 6.9 billion [5]. Based on these facts, the world population is approximately 9 times

larger than it was 250 years ago [5, 7].

2.3 Average Life Expectancies

 An increase of average life expectancies can be recognized as a direct

contribution to the exploding population in the United States as well as the rest of the

world. At the beginning of the 20th century, the average life expectancy for a U.S. male

citizen was 47.9 years and 50.7 years for women. Figure 2 shows the average life

expectancies from 1900 to 1997 for newborns as well as at ages 65 and 85. Figure 2

illustrates that both genders in every age group have seen an increase in life expectancy.

For example, a man who was 65 in 1997 could expect to live approximately another 16

years, instead of another 11.5 at the turn of the 20th century. The life expectancy of some

age groups had increased by nearly 60 percent during the 20th century. Females have a

 7

higher average life expectancy than males for several reasons. Males have a higher

mortality rate than females in every age group. Men generally consume more tobacco,

alcohol and drugs than females which make them more susceptible to diseases such as

lung cancer, tuberculosis, and cirrhosis.

Figure 2. U.S. Average Life Expectancy (1900 – 1997)

Males also tend to participate in riskier behavior since they are more aggressive and

competitive in nature. Men also have a disadvantage from the very beginning. Male

fetuses have a higher mortality rate. Babies are conceived at a ratio of about 124 males to

100 females. However, the ratio of those surviving birth is only 105 males to 100

females. At this point, the higher mortality rate of males as opposed to females is

somewhat of a balance measure, so that the population of males is about the same as

females around the mating age. As of 2010, the average life expectancy is projected to be

 8

78.3 years. Females are still outliving their male counterparts though. The average life

expectancy for a man in 2010 is 75.7 years while it is 80.8 for women [8, 9, 10].

2.4 Reasons for Improved Human Life

 One reason why human life has improved so dramatically is the advancement of

medicine. Medicine has improved more in the past 200 years than in all of its prior

history. A major advancement in medicine is the discovery of penicillin in 1928.

Penicillin is a group of antibiotics derived from the Penicillium fungi. Penicillin was

significant because they were the first drugs that were effective against many diseases

that were serious prior to their discovery. Such diseases include syphilis and

Staphylococcus infections. Such diseases used to kill thousands of people each year until

these antibiotics were found. Other milestones in medicine include the polio vaccine of

the 1950’s, the accomplishments of organ transplants and heart surgery, and the

eradication of smallpox [11, 12].

 Technology can also be credited as a contribution to the improvement of human

life and average life expectancy. Technology helps people in so many ways that are

completely subconscious to them. Cooling systems such as freezers and refrigerators

allow people to preserve food for longer periods of time. Water can be filtered and is

easily accessible virtually anywhere in the U.S. as well as many places around the world.

People are able to maintain a comfortable climate in their homes during the cold months

of the year thanks to gas or electric heat. Technology in the medical field such as

wheelchairs, prosthetic limbs, stethoscopes, CAT scanners and other devices used to

 9

diagnose or remedy a condition. Today people may take these types of instruments for

granted, but they have greatly improved the overall quality of human life [13].

2.5 The Senior Population

 There are many different definitions for “the elderly”. Some definitions include

people as young as 50, as does the American Association of Retired Persons. Others may

extend as far as the age of 70 (past mandatory retirement age for professors in the United

States). Most definitions would consider age 60 or 65 as becoming an “elderly person”.

No matter which definition is used, the senior population is increasing not only in the

United States but in many other countries around the world. In 2000, approximately 605

million people of the world’s population were 60 years or older. By 2050, that number is

expected to be close to 2 billion. If this expectation is met, seniors will outnumber

children 14 and under for the first time in history. Figure 3 shows the top ten countries

with the oldest populations. The United States has a senior population percentage of

about 12 percent as of 2011. The U.S. Census Bureau reported that the dependency ratio

(the number of people 65 and older to every 100 people of traditional working ages) is

expected to rise from 22 in 2010 to 25 in 2030. That’s a rise from 13 percent of the U.S.

population to 19 percent. After 2030 the dependency ratio will rise more slowly to 37 by

2050 [14, 15, 16, 17].

 10

2.6 People With Disabilities

 Just like there are several definitions for the “elderly”, there are several

definitions of the word disability according to different organizations. The most

commonly cited definition is that of the World Health Organization (1976), which

actually distinguishes between impairment, disability and handicap. The World Health

Organization defines a disability as “any restriction or lack (resulting from an

impairment) of ability to perform an activity in the manner or within the range considered

Figure 3. Top Ten Countries With the Oldest Populations

 11

normal for a human being”. There are other definitions, such as the one used by the

American with Disabilities Act (ADA), which defines a disability as “a physical or

mental impairment that substantially limits one or more major life activities of such

individual”. Over 54 million people (19 percent of the U.S. population) reported at least

some level of disability in 2005. These disabilities included difficulties with mental

functioning, emotional functioning and cognitive functioning as well as physical

disabilities [18, 19, 20].

 As a person’s age increases, the probability that he or she will develop at least one

disability increases as well. Over 18 million U.S. adults over the age of 64 were disabled

in 2005. 13 million of those were labeled as severely disabled. Seventy-one percent of

people over 80 were disabled, and 56 percent of those were severely disabled [20].

2.7 Current Options for the Disabled

 A nursing home is one of the first options that a person may think of. A nursing

home used to be the only cost effective method of assisting the elderly. However, not

everyone can afford so send someone to a nursing home. As of 2008, the national

average cost of a private room in a nursing home was $212 per day ($77,380 a year).

Even a semi-private room was too costly for most people, averaging $191 per day

($69,715 a year). This could be a burden on a working family or even on national

healthcare costs. Other choices for the elderly include in-home care or living with

friends, relatives or even other disabled people. Households with more than one person

can share daily tasks of living by handling the tasks that meet their abilities [21, 22].

 12

2.8 A Possible Alternative in the Future

 An elderly person may decide that he or she doesn’t want to exploit any of these

options but to “age in place”. Aging in place is defined as the ability to live in one’s own

home –wherever that might be – for as long as confidently and comfortably possible [23].

The number of older people who live alone is also on the rise [22]. In 2000, roughly 1/3

of all non-institutionalized elders lived alone [22]. If an elderly person who lives alone

happens to be disabled in one or more ways, that person would possibly not have regular

assistance in tasks that are difficult or impossible to perform. For those seniors who

would like to age in place in spite of his or her possible limitations on daily living, a

possible solution may be found in the concept of domotics, or home automation.

 Domotics has been explored for decades. For example, the “House of Tomorrow”

was featured in the 1933-1934 Chicago World’s Fair which was designed with 12 sides, 3

stories, and a wedding-cake shape. The technology depicted in this exhibit included a

built-in dishwasher, electric lights with dimmer switches, central air conditioning, an

electric garage door opener, and passive solar heating. The House of Tomorrow was

unique in design and technology for its time. Most of the technology displayed in this

exhibit would be considered ordinary everyday appliances taken for granted in today’s

world. If this kind of technology was conceived nearly 80 years ago, it should also be

conceivable to develop technology that will allow the elderly -especially the elderly

disabled- to continue to live in their homes [24].

 13

CHAPTER 3

SMART HOUSE TECHNOLOGY

 A smart house is a house that has highly advanced automatic systems for lighting,

temperature control, multi-media, security, and many other functions. It appears

intelligent because of the computer systems that can monitor many aspects of daily

living. For example, a resident may be alerted when his or her favorite TV show is about

to start. There may be systems advanced enough to notify a resident that his or her back

door is unlocked and lock it if the resident authorizes the system to do so. There are

different levels of smart house functions which are organized based on complexity and

how long the function has been available [25].

 Level one smart house technology offers basic communications. This level

technology is necessary for a smart house, but simply having level one technology

doesn’t solely make it a smart house. Basic communications include the means to

communicate with and receive communications from others beyond the home, such as

telephones. The internet is also a communication means, and is essential if a home is to

be considered “smart” [24].

 Level two technology involves responding to simple control commands from

within or outside the home. At this level, anything in the house that is electrically

powered can be operated using voice commands. Such household items include lights,

 14

electric door locks, thermostats, small appliances, and mechanically controlled curtains

and windows [24].

 Level three involves automating household functions. It is possible to automate

certain aspects of one’s home such as when lights go off, when music or TV is turned on,

and when security systems are armed or disarmed. Today, products are available that

offer more flexibility on this level of automation. Computer-based smart home products

allow easier setup for the on-off cycle, and different scenarios can be programmed, such

as “weekends at home”, “vacation mode” or “work-week mode”. In some systems,

regular cycles can be broken or interrupted easily in the home or through a phone call

[24].

 Level four technology tracks the location in the home, behavior, and health

indicators. If a smart home knows where a person is, it can take appropriate measures in

just that room or area instead of the entire house. For example, if the smart house is

going to issue a reminder to the resident that his or her favorite television show is about

to start, it can do so in the exact room that the resident is sitting or standing. Behaviors

that can be tracked include trips to the bathroom or kitchen, sleeping habits and

exercising habits [24].

 A level five smart home can analyze data that make decisions. This means that a

smart home can learn a resident’s normal life patterns. If there is a deviation from these

patterns, it could be a sign that something may be wrong and the system can check with

the resident or a family member to be sure that the person is well. This level smart house

can also learn the resident’s preferences such as light, music and temperature in a specific

 15

area of the house. Adjustments can then be made or the smart house can then ask the

resident if he or she would like an adjustment to be made [24].

 Level six technology involves providing information, reminders, and prompts for

daily tasks. Examples of such information are when mail has been delivered, when

someone is at the front door, when the stove has been on for too long, or if a resident has

forgotten to take medications. For someone with a more severe disability and has

difficulty even with tasks such as dressing and grooming, the smart house can prompt the

person with voice and visual cues to help him or her with each step of the activity [24].

 A level seven smart home has the ability to answer questions. The internet can be

used to assist with this level of technology. For questions that a resident cannot answer

him or herself, the smart home can accept questions with a voice recognition interface.

The interface then goes on the web to seek the answers for the resident. For more

personal questions, like “Have I taken my medication this morning?”, the smart house

can search its own database for the answer [24].

 Level eight smart homes can make household arrangements. Household

arrangements can include household repairs or making food shopping lists. Smart homes

at this level can arrange such tasks because they have the sophistication to track activities

such as a resident's eating and exercising habits [24].

 16

CHAPTER 4

THE SAAD PROJECT

4.1 Overview

 Faculty members in the Department of Electrical and Computer Engineering

(along with computer science, psychology, and nursing) have proposed the “SAAD”

(Socially Assistive Agent and Domotics) project as a response to the interest in finding

more feasible alternatives to assist the elderly with aging in place. The main purpose of

SAAD is to develop a socially assistive agent to facilitate self-care for an elderly subject

in his or her own home, as well as to engage the subject socially and emotionally. Social

goals of the SAAD project include:

• Allowing the subject to deal with daily activities and routines,

• Providing companionship,

• Eliciting positive emotions on a regular basis,

• Keeping relevant parties informed of the subject’s state,

• Having the system manage itself and be easily modified by the subject if wanted,

and

• Implementing policies that relate to the agent.

The research involved in SAAD uses proven technology which in turn avoids the pitfalls

and costs of other methods (such as robotics), and provides the foundation to replicate

 17

systems with reasonable cost and effort. Among the technology used for this project is

smart-house technology. Research goals of the proposed project include:

• Providing common ground and context, retain an accessible and repairable record

of the interaction between the subject, the agent, and other parties that covers the

entire period in which the system has been in use,

• Implementing SAAD so that it is autonomic,

• Displaying information provided by the fusion of domotic and biophysical data

and deemed relevant by the agent in a readily understood form on the monitor

along with the avatar,

• Allowing the agent to interact via the avatar with the subject to assist in ADL’s

(Activities of Daily Living), and

• Providing web access that keeps significant third parties aware of the subject’s

status and allows them to interact with the subject audibly and via text-based

devices.

The SAAD system, once materialized, will be installed throughout the home of an elderly

person as shown in Figure 4. The layout of the SAAD system includes a media room that

holds the central computer. This central computer will handle most of the data

processing. The family, kitchen, and bedrooms will each have a monitor mounted on a

wall along with speakers and a local processor for audio and video processing. The local

processor will also be responsible for collecting and processing sensor data collected

from inconspicuous sensors such as wristbands or small clip-on devices. The avatar will

appear on the appropriate room monitor and speak to the subject. As the subject moves

 18

from room to room, the avatar will follow him or her by appearing on the corresponding

monitor in that room. According to proposals submitted by North Carolina A & T State

University faculty, the SAAD project is composed of several independent subprojects

intended for either one or a small group of students to work on.

These subprojects may be independent, but many of them can be integrated into

pairs or even groups of three or more once they are completed. Some of the suggested

prototype projects include:

Figure 4. Physical Layout of SAAD System

 19

1. The agent – This subproject actually has three sections. The first section

involves implementing a program that executes a script via keyboard input and

text output. This will use Jess for the scripts. The system will keep track of the

common ground as it evolves so that it interacts in a believable way. The next

step is to use speech synthesis (without prosody) for output. The last section is

largely an integration of the first two.

2. Speech recognition – The system will recognize individual words with a

microphone.

3. Speech synthesis – The system will be able to produce human speech with some

degree of prosody (expressing emotion)

4. Avatar – The avatar is what the socially assistive agent will be embodied as. It

will be displayed on one or several monitors throughout the house, particularly

the monitor closest to the subject.

5. Web access – SAAD will have a web presence that can be accessed at

predetermined times or when desired. The server can bring up a browser window

as well. Web access also makes it possible for interested parties to track and

communicate with the subject

6. Wireless, Bluetooth, or Wi-Fi communication – Some form of wireless

communication is needed. Cost and necessity (possibly among others) will be

determining factors in determining which protocol will be used. Wireless

communication will be used for the purpose of this subproject to handle sensor

data and actuator commands

 20

7. Locating the subject – This will be done by utilizing a simple motion sensor or

some other similar technology

4.2 WireAct

This thesis focuses on the subproject that deals with the handling of sensor data

and actuator commands via wireless communication, specifically on configuring a field

programmable gate array (FPGA) to control representations of actuators and sensors.

This subproject is referred to as WireAct. There were numerous hardware and software

programming methods used to address the problem at hand. The FPGA of choice was the

Xilinx ML405 Evaluation Board, which also includes a PowerPC embedded processor.

Xilinx Platform Studio (XPS) was used as the programming environment. Various

custom intellectual properties (IP’s) were created to control the different actuators and

sensors. For example, a custom IP was created to control an actuator to turn on the lights

and another IP will be created to turn on a television. VHDL was used to create and

configure the custom IP’s and C language was used to program the embedded processor

of the ML405 to interact between IP’s. Version 2.6 of the Linux kernel was also utilized

for this research. In order to use the Linux kernel, a virtual computer was created inside a

host computer to run Ubuntu, which is a Linux-based operation system. Programs were

written in C language and compiled into static files, then added to the Linux kernel on the

virtual machine. The kernel was then built and downloaded onto the ML405 board. The

custom hardware IP’s were programmed to be controlled through the serial port of the

ML405 using a HyperTerminal connection with a baud rate of 9600 bits per second. For

 21

example, if it was desired to turn a light on, a user would type “lights on” through the

HyperTerminal connection. To turn the lights off, the user would simply type “lights

off”. WireAct was broken up into several milestones which were accomplished and are

discussed in the experimental setup and experimental results chapters.

 22

CHAPTER 5

HISTORY AND OVERVIEW OF LINUX

5.1 History

Linux is an open-source version and redistributable clone of the UNIX operating

system which was released in 1991 by Finnish computer science student Linus Torvalds.

While studying at the university, Torvalds used MINIX, which is another UNIX-like

system, to write his own kernel. He started by writing device drivers and hard-drive

access and had a basic design by September of 1991 which he called Version 0.01. This

kernel was combined with the GNU system to form a free operating system which would

be known as Linux [26, 27, 28].

Linux was initially a terminal emulator, which Torvalds used to access the UNIX

servers at the University of Helsinki in Finland. However, with time Linux has grown

into a well-respected system that is widely used in educational and corporate networks.

By 2000, most computer companies supported Linux in some manner. It is used for Web

servers, file servers, and can even be used on TV receivers and recorders such as TiVo,

cell phones and game systems including the Playstation 3. Linux is also considered free

software, which means that anyone can download the source from the Internet or buy it

on an inexpensive CD-ROM [26, 27, 29].

 23

5.2 Overview

A kernel can be classified as being one of four types:

• Monolithic – This is the type traditionally used by most UNIX-based operating

systems. A monolithic kernel contains all of the system core functions and device

drivers such as disk drives and printers.

• Microkernel – A microkernel only offers minimum services such as defining

memory address spaces and process management. All other functions are

implemented independent of the kernel.

• Hybrid kernel – A hybrid kernel is similar to a microkernel. However, it

includes additional code in the kernel space so that such code can execute more

swiftly.

• Exo kernel – This type of kernel is still in the design and research stage. The

user will be able to create processes that can access kernel resources directly in an

Exo kernel.

As most UNIX-based systems are, the Linux kernel is monolithic. It is written in a GNU

compiler collection (GCC) supported version of C programming language along with

short sections of code written in assembly language. Linux is not only portable, but also

very versatile. It is one of the most commonly used system kernels, capable of running

on a number of systems including the IPAQ and Apple’s iPod and iPhone. Linux can run

on many virtual machine architectures as a host operating system or as a guest operating

system. There are a number of different versions of the Linux operating system as well.

Among the different versions are Ubuntu, Red Hat, Fedora, Oracle, and Xandros [30, 31].

 24

Figure 5 shows the basic directory structure for the Linux architecture. The

starting point of the Linux directory structure is the root directory, denoted by “/”. Every

other directory in the system is under this directory and is considered to be a

subdirectory. The root directory usually only contains subdirectories and it’s not sensible

to store single files directly under it [32].

 The /bin directory is a common subdirectory of root and holds the essential user

executable programs that are needed to have minimal functionality for booting and

repairing the system. Some of the executables that are stored in the /bin directory

include:

Figure 5. Basic Linux Directory Structure

 25

• cd – Changes the current directory that a user is in,

• ls – Lists all of the programs and files in a directory,

• pwd – Acronym for print working directory. Displays the name of the current

working directory, and

• kill – Terminates a process.

The /bin directory also contains the shells which execute commands that are issued from

a standard input device (keyboard) or from a file [33].

 The /sbin directory is similar to the /bin directory in the fact that it holds

executables that are needed to boot the system. However, the /sbin programs are system

binaries and are usually only carried out by the root user. As a result, /sbin is not initially

included in the “PATH” environment variable for regular users. There are more than 250

programs that are typically found in the /sbin directory. Among the most commonly used

are:

• fastboot – Restarts the system without rechecking disks,

• fsck – A filesystem check and repair utility,

• halt – Stops the system,

• reboot – Restarts the system, and

• update – Updates an application [34].

The /lib directory contains the libraries needed for the executables in the /bin and /sbin

directories. Most modern machines share libraries, so very little would work without this

directory. Among the libraries that are found in /lib should be the libraries that are

needed to start the system, according to the Filesystem Hierarchy Standard (FHS) [35].

 26

The /usr directory usually holds the most data on a system. This directory is home to

three subdirectories with the same names as the three subdirectories to root: /usr/bin,

/usr/sbin and /usr/lib. These three subdirectories hold the nonessential user commands,

system commands and libraries which are not needed in single user mode [35, 36, 37].

Any other directories that a user creates typically are stored under the /home

directory. Every user on the system has his or her own directory under /home. This

directory also holds anything from music and videos, to configuration files or preferred

settings for software a user uses. A user’s home directory is by default protected by file

system permissions and only that user or an administrator can access it [37]. If a user

wants to specify who has access to the home directory (or any other directory), the

“chmod” command can be used to change the permissions of the home directory. The

may be other directories under “/” such as

• /mnt – used to mount filesystems or devices,

• /opt – holds software and add-ons, and

• /tmp – holds temporary files [38].

 27

CHAPTER 6

FIELD PROGRAMMABLE GATE ARRAYS (FPGAs)

6.1 History

 The FPGA industry emerged from programmable read-only memory (PROM)

along with programmable logic devices (PLDs). The first FPGA, the XC2064, was

developed by Xilinx in 1985. The chip consisted of only 64 configurable logic blocks

(CLBs) with two 3-input lookup tables. At that time, chips like FPGAs had realizable

limitations, so the US Naval Surface Warfare Department funded a project to develop a

computer that had the capacity to contain 600,000 reprogrammable gates. This

technology was patented in 1992. After this, FPGAs started to improve drastically, both

in sophistication and level of production. During the early 1990s, FPGAs were mostly

utilized in telecommunications and networking. Within a few years, they had expanded

to other industries such as consumer and automotive applications. Today, some of the

applications that utilize FPGAs are digital signal processing, aerospace, and defense

systems. They are also used more in high performance computing such as Fast Fourier

Transforms and Convolution. As versatile as FPGAs are, they still possess some

limitations due to their potentially complex design [39, 40].

 28

6.2 Overview

 A PLD is a chip that is manufactured at a factory and then customized by a

programmer to create different logic circuits. There are a number of different types of

PLDs that have been introduced over the years. Among them are programmable logic

arrays (PLAs), programmable AND-array logic (PAL), simple programmable logic

devices (SPLD) and complex programmable logic devices (CPLDs). Some designers

classify the FPGA as a type of PLD as well, since it is also a device that is ultimately

programmed by an end-user [41].

 The FPGA is the most complex of the PLD group. They now have the potential

of containing millions of transistors and can compete with very-large-scale integration

(VLSI) chips and application-specific integrated circuits (ASICs) in size, circuit density,

and switching speed. Predesigned cells and routing wires mainly compose FPGAs. They

are customized by creating or destroying connections within the cells or between cells

and wires [41].

 Figure 6 displays the basic structure of an FPGA. There are three basic

components to every FPGA:

• Configurable logic blocks (CLBS)

• Input/Output blocks (IOBs)

• Interconnect matrix

The large blocks on the inside of the FPGA structure are the CLBs. CLBs are the basic

logic units of an FPGA. More advanced FPGAs such as Xilinx’s Virtex 5 can contain an

array of as many as 17,000 to 18,000 CLBs. Every CLB has a configurable switch

 29

matrix with 4 or 6 inputs, a selector circuit (e.g. a multiplexer), flip flops for synchronous

storage elements, and even full adders. The design of a CLB would be similar to the one

shown in Figure 7. A CLB has the capability of implementing a simple logic function

[42, 43].

The smaller blocks on the outside of the FPGA structure are input/output blocks.

The internal structure of an IOB can be seen in Figure 8.

Figure 6. Basic FPGA structure

 30

Figure 7. FPGA Configurable Logic Block (CLB) (courtesy of Xilinx)

Figure 8. Input/Output Block (IOB) structure

 31

Sometimes called input/output pads, these are responsible for providing the interface

between the internal logic and the FPGA’s package pins. Each pad also possesses

optional pull-up and pull-down resistors and a weak-keeper circuit. Before an FPGA is

configured, all outputs that aren’t involved in the configuration are forced to high-

impedance and the weak-keeper circuits are inactive, but inputs have the option of being

pulled up. In the input path of an IOB, a buffer can route the input signal directly to

internal logic or to an input flip-flop, which eliminates pad-to-pad hold time. In the

output path, there is a 3-state output buffer that sends the output signal to the pad. Just as

with an input signal, an output signal can be sent directly to the buffer or to an output

flip-flop [44].

 CLBs are connected with other CLBs and IOBs by the interconnect matrix (also

called the routing matrix). An FPGA contains different types of connection lines:

• Long lines – used to connect CLBs that are far apart

• Short lines – used to connect neighboring CLBs

• Dedicated clock trees – used to synchronize CLBs

• Dedicated set/reset lines – used to set or reset all flip-flops in the FPGA

Using the interconnect matrix, numerous CLBs can be combined to form more advanced

circuitry. Every FPGA has a number of CLBs, IOBs, and an interconnect matrix. More

advanced FPGAs can include additional components such embedded microprocessors

and dedicated multipliers [45].

 32

6.3 The FPGA of Choice

 The FPGA chosen for the purpose of subproject WireAct is the Xilinx ML405

Evaluation Platform. This board is one of the Virtex 4 FPGAs. The ML405 consists of

its specific Virtex 4 FPGA package (XC4VFX20) along with a number of external

hardware peripherals that can be configured to interface with the FPGA chip. Among

these peripherals are pushbuttons, LED lights, an LCD screen, a RS232 serial port, and a

series of expansion headers. More can be read about each of the ML405’s peripherals in

the “Detailed Description” section of the “ML405 Evaluation Platform User Guide”

which is available on www.xilinx.com.

 The Virtex 4 on the ML405 board also has a PowerPC 405 processor block. The

PowerPC is responsible for handling any potential communication between peripherals

using data buses and is programmed using C language. Features of the PowerPC 405

include:

• Up to 450 MHz operation,

• 16 KB instruction cache,

• 16 KB data cache, and

• On-chip memory.

 Aside from all of the ML405’s capabilities, this board was chosen because

http://xilinx.wikidot.com has provided a reference design bit stream for the ML405 (as

well as the ML507) that can simply be downloaded and executed on the board. This

reference design provided a good starting point for the research pertaining to WireAct.

 33

CHAPTER 7

EXPERIMENTAL SETUP

7.1 The Virtual Computer

 One of the goals for this subproject was to customize and build the Linux kernel

and run it on the ML405. This required the creation of an environment that can run the

Linux operating system. A virtual computer was the simplest and easiest approach.

“VirtualBox” is an x86 and AMD64/Intel64 virtualization product than can be used in

commercial as well as home applications. It can be currently run on Windows, Linux,

Macintosh and OpenSolaris hosts and can run a vast range of guest operating systems.

With the help of VirtualBox, multiple operating systems (inside multiple virtual

machines) can be run at the same time. The only limitation that is associated with how

many virtual computers can be simultaneously run is how much space and memory is

available on the disk. VirtualBox is currently available in many different packages and

the host operating system determines installation. The VirtualBox software was easily

found and downloaded from the Internet. Figure 9 displays the startup window once the

software was downloaded. This window is known as the “VirtualBox Manager”. The

left features a pane that lists all of the virtual machines that the user has created. This list

was empty after installation since no virtual machines were created yet. The pane on the

right shows the currently selected virtual machine’s properties, if any. Once again, no

 34

properties were displayed due to the fact that no virtual machines were created at that

point [46,47].

Figure 9. VirtualBox Startup Window

 The virtual machine runs off an ISO (International Organization for

Standardization) file, also known as an ISO image. It is an archive file of an optical disc

which includes the contents of every written section of the disc, including the file system.

Every version of Linux operating systems has a corresponding ISO file. Ubuntu 10.10

was the chosen version of Linux. The respective ISO file was found and downloaded

from http://www.ubuntu.com/desktop/get-ubuntu/download [48].

 35

Now that a suitable version of Linux was found, the next step was to actually

create a virtual machine. From the VirtualBox manager, the “New” button at the top of

the window started a wizard to guide the setup of the new virtual machine [47]. An

alternate method of starting the wizard is under the “Machine” menu in the toolbar.

Figure 10 shows the wizard to create a new virtual machine.

Figure 10. “Create New Virtual Machine” Wizard: Welcome Page

The next page of the wizard asked for the name, operating system, and operating

system version of the new VM. There were a number of operating systems that could be

 36

chosen including Microsoft Windows, Linux, Solaris, BSD, IBM OS/2, and Mac OS X.

The new virtual machine was named “Thesis”. The preferred operating system was

Linux. Among the different versions of Linux were Linux 2.2, Linux 2.4, Linux 2.6,

Debian, Fedora, Red Hat and Ubuntu, among others. Since the Ubuntu 10.10 ISO file

was already downloaded, the version of choice was Ubuntu.

 Following the basic information page was the page to specify how much memory

the VM will allocate when it is running. Figure 11 displays the memory page.

Figure 11. “Create New Virtual Machine” Wizard: Memory Page

 37

This was a setting that needed to be chosen carefully. The memory that the VM used

while it was running was not available to the host operating system [47]. The wizard

stated that the recommended base memory size was 512 MB. The host computer had a

total of 1 GB of RAM, so 512 MB was the most memory that could be reserved for the

VM without compromising the operability of the host operating system. If a host

computer had more RAM at its disposal, more memory could have been specified for the

VM.

 After specifying how much memory was reserved for the new VM, the virtual

hard disk needed to be specified. The new VM could either use a newly created virtual

hard disk or use an existing hard disk image file. A new hard disk was created for this

new VM. Electing to create a new disk image file launched another wizard which aided

in creating a new virtual disk. The welcome page of the new wizard can be seen in

Figure 12. After the welcome page, the wizard asked which type the new hard disk

would be: dynamically expanding or fixed-sized. If the disk was dynamically expanding

storage, it would start out small in size and grow as the guest operating system stores

more data onto it. A fixed-sized hard disk would initially occupy its specified size.

Despite the fact that a fixed-sized disk initially occupies more space, it is still faster than

a dynamically expanding disk because it requires less overhead [47]. For this reason, the

new VM was given a fixed-sized disk. The disk’s location and size was determined on

the next page of the wizard which is shown in Figure 13.

 38

Figure 12. “Create New Virtual Disk” Wizard: Welcome Page

Figure 13. “Create New Virtual Disk” Wizard: Virtual Disk Location and Size Page

 39

The hard disk was also given the name “Ubuntunew” at this step and was stored in the

“HardDisks” folder under the “.VirtualBox” directory. Roughly 11 GB was reserved for

this hard disk to compensate for any additional files that the VM may need to store.

Before the hard disk was created a final summary page displayed the user-defined

specifications for the new hard disk. Clicking finish created the new hard disk [47].

 With the virtual disk created, the VM was ready to run and have Ubuntu 10.10

installed onto it. To start the VM with the running Ubuntu 10.10 operating system, the

Ubuntu ISO file was added to the IDE controller as shown in Figure 14.

Figure 14. VM Storage Settings Page

 40

With the ISO file attached to the secondary master of the IDE controller, the VM booted

as if there was an Ubuntu 10.10 CD in its imaginary CD drive. Once the VM was up and

running, the Ubuntu 10.10 operating system was installed onto the VM. Restarting the

VM finalized the installation. However before restarting the VM, the secondary master

of the IDE controller was set back to “Empty”. With Ubuntu actually installed onto the

VM, there was no need to leave the ISO file attached to the IDE controller [47].

7.2 The Default Linux Kernel

 With the VM up and running, the next task was to build and download the default

Linux kernel onto the ML405 board. Several preparations were made before

downloading the kernel from the website. The PowerPC GNU tools were acquired by

following a series of steps found under the “Tools” tab of the open source Xilinx website

http://xilinx.wikidot.com. First, an “Embedded Linux Development Kit (ELDK)” ISO

file needed to be downloaded to the VM. This was a fairly large file (roughly 1.9 GB)

and took approximate three and a half hours to download to the VM. The necessary

directories such as /media/cdrom, /opt/ELDK and /opt/ELDK/4.2 were created in the

terminal application of the VM. However, no further steps could be taken until this ISO

file completed downloading [49].

 The open source website (http://xilinx.wikidot.com) described how to mount the

ISO file, in this case to the VM. The following command mounted the ISO image to the

/media/cdrom directory

• mount –o loop –t iso9660 ppc-2008-04-01.iso /media/cdrom.

 41

All directions on xilinx.wikidot.com assume that the user has root privileges. To ensure

that the mount command is not denied due to permission issues, the word “sudo” was

used at the beginning of such commands. The word sudo allowed the user to issue a

command as a superuser or another user. Executing a sudo command required that the

user verify his or her identity by entering the password of the current user [50]. As a

result, the mount command was issued as

• sudo mount –o loop –t iso9660 ppc-2008-04-01.iso /media/cdrom.

The /media/cdrom directory now contained the contents of the ppc ISO file and could be

displayed using the “ls” command. The contents of the ISO image are shown in Figure

15. Among the contents of the ISO file was the “ppc_4xx” directory, which contained a

large number of RPM files.

The following commands installed the ppc_4xx directory to the newly created

/opt/ELDK/4.2 directory:

1. ./install -d /opt/ELDK/4.2 ppc_4xx

2. cd /opt/ELDK/4.2 – Changes the current directory to /opt/ELDK/4.2

3. source eldk_init 4xx – Initializes the CROSS_COMPILE and setup paths to uses

the ELDK tools

4. /media/cdrom/ELDK_FIXOWNER -a ppc_4xx – Changes owners of the files

of the ELDK installation to root

5. /media/cdrom/ELDK_MAKEDEV -a ppc_4xx – Creates the device nodes.

The website stated that before anything is compiled for the PowerPC, the “eldk_init”

script, located in the /opt/ELDK/4.2 directory, needed be sourced [49].

 42

Figure 15. Contents of /media/cdrom Directory in Linux Terminal

With the installation complete, the ELDK tools could now be used. The next

procedures were found on the “PowerPC Linux” page under the “Open Source Linux

(OSL)” tab. This page provided an ML405 reference system and a prebuilt ramdisk

image to download to the host computer. Before the PowerPC Linux kernel could be

obtained from the Xilinx Git server, Git needed to be downloaded to the VM. The

following command obtained Git from the Git server:

• sudo apt-get install git

After Git was installed on the VM, the command

• git clone git://git.xilinx.com/linux-2.6-xlnx.git

 43

created a “linux-2.6-xlnx” directory in the current working directory, which was a new

directory called “xilinx”. The contents of the “linux-2.6-xlnx” directory are displayed in

Figure 16. The next task was to configure the newly obtained Linux kernel. A default

configuration, provided by Xilinx, was used by issuing the following command in

Terminal:

• make ARCH=powerpc 40x/virtex4_defconfig.

Any Linux commands involving “make ARCH=” had to be issued in the Linux kernel’s

top directory. Once the kernel was configured to its default specifications, the command

• make ARCH=powerpc simpleImage.virtex405-ml405

built the kernel and created an elf file named “simpleImage.virtex405-ml405.elf” in the

arch/powerpc/boot directory of the Linux tree. This command built the kernel without a

ramdisk. The following command built the kernel with the ramdisk present:

• make ARCH=powerpc simpleImage.initrd.virtex405-ml405

This command will be referred to as simply “create.ram.kernel-<custom name>” with

custom name is this case being “ml405”. The downloaded prebuilt ramdisk had to be

saved in the arch/powerpc/boot directory of the kernel tree or the command to build the

kernel with the ramdisk failed [49]. The ramdisk is important because it is what is used

to boot the kernel once it is downloaded onto the board. It contains a "linuxrc" executable

and the necessary directories to have the basic functionality of a Linux OS.

 44

Figure 16. Contents of Linux Tree in Linux Terminal

 45

CHAPTER 8

EXPERIMENTAL RESULTS

The built Linux kernel was ready to be loaded and run on the board. At this point,

the rest of the tasks were completed using the host operating system. The newly created

elf files needed to be copied to the folder of a new XPS project or an existing XPS project

on the host computer. A new XPS project called “simpleimage” was created for the

purpose of testing the default Linux kernel. It wasn’t necessary to configure the

PowerPC or any IPs correctly at this point. This project was only needed to launch XMD

because the reference bit stream was being downloaded onto the board using IMPACT.

XMD was used to download and run the elf file on the ML405 using the following

commands [49]

1. connect ppc hw -debugdevice deviceNr 3 cpunr 1

2. dow simpleImage.initrd.virtex405-ml405.elf

3. run

The default Linux kernel was successfully run and viewed though a HyperTerminal

connection at 9600 bps. Figure 17 shows the running default kernel.

8.1 Creating a New Project to Run the Linux Kernel

 Since the Linux kernel was successfully downloaded and tested on the ML405

using the reference bitstream, it was time to test the kernel using a new bitstream from a

 46

new project. This was done by creating new project in XPS with as many IP

specifications matched to the referenced design as possible. After many attempts, the

project named “Thesis 12” was created with the following specifications:

• PLB system

• Single Processor System

Figure 17. Linux Kernel Running in HyperTerminal

• 300 MHz Processor Clock Frequency

• 100 MHz Bus Clock Frequency

 47

• No On-chip Memory

• LEDs_Positions, Ethernet_MAC, TriMode_MAC_GMII, SRAM, and FLASH

disabled

• Use Interrupts on IIC_EEPROM, LEDs_4Bit, RS232_Uart, PushButton_Position,

and SysACE_CompactFlash

• Change the RS232_Uart to xps_uart16550 and Configure as UART 16550

• Change xps_bram_if_cntlr_1 size to 64 KB

• Enable Instruction and Data Cache – DDR SDRAM should hold both instruction

and data cache

Figure 18 shows the new XPS project system assembly view.

Figure 18. XPS Project System Assembly View

 48

The system assembly view shows all of the intellectual properties that are being used and

their bus connections.

The device tree generator produces a device tree file (xilinx.dts) that contains

information about the current project’s hardware design. It has information like hardware

peripherals’ base addresses, bus compatibility, and information on peripheral interrupts.

The Linux kernel uses the generated device tree as a window to communicate with the

peripherals in the XPS design. The VM was used to obtain the device tree generator

using the following command:

• git clone git://git.xilinx.com/devict-tree.git

This command first created an empty repository in the current directory and downloads

the device tree into it. Inside the device tree directory there was a subdirectory called

“bsp”. This directory was copied to the top of the “Thesis12” project directory. The user

repositories were then rescanned so that the project could use the device tree generator.

This was done by selecting “Rescan User Repositories” under the XPS Project tab [49].

 Once the “bsp” directory was recognized by the project, the software settings

were configured by selecting “Software Platform Settings” under the Software menu.

The page shown in Figure 19 appeared after selecting this option. With the device tree

generator now being recognized, a new option called “device-tree” was available when

the “OS” window was expanded. Once the “device-tree” OS was selected, the

configuration for the OS was set under the “OS and LIB Configuration” tab. Expanding

“device-tree” invoked two configuration settings: “bootargs” and “console device”. Each

setting had a current value which was initially blank, a default value, a type, and a

 49

description. For “bootargs”, the current value was set to console=ttyS0 ip=on

root=/dev/ram. The current value for “console device” was set to RS232_Uart.

Figure 19. XPS Software Platform Settings Page

 Figure 20 displays the “OS and Lib Configuration” tab with completed settings.

Nothing else needed to be done in this window, so the software platform settings window

was closed and the settings were saved by pressing the “OK” button at the bottom of the

window. The device tree was then created by selecting “Generate Libraries and BSPs”

option in the Software menu. At this point, XPS created and saved the device tree

“xilinx.dts” in the \ppc405_0\libsrc\device-tree_v0_00_x directory of the current project.

 50

The name of the device tree was changed from “xilinx.dts” to “virtex405-thesis12”. It

was still recognized as a dts file even without the dts extension in the name.

Figure 20. XPS Software Platform Settings “OS and Lib Configuration” Page with

 Complete Settings

In order for the VM to use this device tree to create another elf file for the board, the

device tree first needed to be copied into the arch/powerpc/boot/dts directory of the Linux

tree on the VM. The new elf file was created using the following command:

• create.ram.kernel-thesis12.

 51

The resulting elf file was “simpleImage.initrd.virtex405-thesis12.elf”, which was copied

from the VM to the top of the “Thesis12” directory. A new bitstream for this project was

generated by selecting “Generate Bitstream” under the Hardware menu. Once the

bistream was complete, it was downloaded to the board by selecting “Download

Bitstream” under the “Device Configuration” menu. As before with the reference design,

the new elf file was downloaded by launching and using XMD. The only difference was

the elf file that was downloaded. Instead of downloading the original elf file with the

original device tree, the new elf file was downloaded by issuing the command:

• dow simpleImage.initrd.virtex405-thesis12.elf.

The running Linux kernel behaved exactly like the kernel running with the reference

design [49].

8.2 Customizing the Linux Kernel

 With the default kernel working on the newly created XPS project, the next step

was to customize the Linux kernel, rebuild it, and download it back onto the ML405

board. Before the Linux kernel could be customized, the ramdisk on the kernel needed to

be expanded. The default ramdisk from xilinx.wikidot.com was only 4 MB. An 8 MB

ramdisk needed to be created to ensure that there was enough space to store the “Hello

World” program. The only feasible way to expand the ramdisk was to create a new

larger ramdisk and copy the contents of the default ramdisk over to it. The “Expanding

File System” page of http://xilinx.wikidot.com listed all of the steps in order to expand

the ramdisk. A new subdirectory (“ramdisks”) was created under the “xilinx”

 52

subdirectory in the VM to hold all of the newly created ramdisks. Since larger ramdisks

were going to be needed as more programs were added to the ramdisk, several

subdirectories (based on ramdisk size) were created under the “ramdisk” subdirectory as

well. This just made it easier to keep track of the different sized ramdisks. Since

creating an 8 MB ramdisk was the topic of interest, the current directory was changed to

~/xilinx/ramdisks/8M so that the new 8 MB ramdisk would be created inside the 8M

subdirectory. The following command actually created a ramdisk called

“ramdisk.image”.

• sudo dd if=/dev/zero of=ramdisk.image bs=1M count=8

This command created a set of 8 1 MB blocks initially valued at zero. This command is a

permission restricted command, hence the sudo authorization at the beginning of the

command [49].

Next, “ramdisk.image” had to be designated a certain filesystem type. There are

several different filesystem types supported by Linux. Some of the more common

filesystem types are ext2, ext3, FAT32, and iso9660. The new ramdisk was designated

an ext2 filesystem using the command

• sudo mke2fs –F –v –m0 ramdisk.image.

Declaring the ramdisk’s filesystem type required root privileges as well. A new

directory, “/mnt/new-disk” was created to mount the new ramdisk, and “/mnt/old-disk”

was created to mount the default ramdisk. The contents of the default ramdisk were

copied to the new ramdisk using the command

• sudo cp /mnt/old-disk/* /mnt/new-disk.

 53

The asterisk indicated that all of the contents of that directory are to be copied. The

default ramdisk was no longer needed at this point and was unmounted. The new

ramdisk was left mounted because files were added into it later [49].

 The next step was to modify the Linux kernel. Writing a simple C file, compiling

it to a binary file, and adding it the /bin directory of the ramdisk were the procedures

involved in modifying the kernel. Figure 21 shows the “hellothere.c” file in the VM's

“gedit” text editor. This program simply prints the designated message to the

HyperTerminal console. The messages and keywords only appeared in color after the file

was saved as a C file. The Linux kernel couldn’t use the actual C file, so the C file was

compiled into an executable file called “hellothere” using the following command

• ppc_4xx-gcc –o hellothere –static hellothere.c

The ramdisk’s /bin directory received a copy of the executable since the ramdisk was still

mounted to the /mnt/new-disk directory. The addition of the new custom binary file

made this ramdisk complete. The ramdisk was then unmounted, compressed using the

“gzip” command, and copied to the arch/powerpc/boot directory of the Linux tree. Since

the name of the new ramdisk was the same as the old ramdisk, Terminal issued a prompt

to enter “y” to overwrite the old disk or “n” not to. The new 8 MB ramdisk took the

place of the old 4 MB ramdisk. The create.ram.kernel-thesis12 command was then

issued to create and overwrite the previously existing elf file [49]. Once the bitstream

and elf file were downloaded onto the board, the Linux kernel was able to call the

“hellothere” binary program as a Linux command.

 54

Figure 21. “hellothere” C file in VM Text Editor

The executed command through HyperTerminal is shown in Figure 22. The name of the

binary file is shown in the /bin directory in green letters as well as the printed message

when the program was called. The “hellothere.c” code is included in the Appendix

section. Adding custom binary files made the Linux kernel more robust and the kernel

could be modified to perform certain tasks. Next was a test to see if the kernel could

actually interact with the hardware on the ML405 board. An LED driver C file, found

on the internet, mapped the base address of the LED peripheral into the kernel memory

and toggled the least significant bit (LSB) light whenever a number was entered followed

by the enter key.

 55

Figure 22. Linux Kernel Executing “hellothere” Binary File

 The binary file for the LED driver is also shown in the ramdisk’s /bin directory in

Figure 22. The LED peripheral contained at least one software accessible register so

once the LED driver’s functionality was verified, the code was copied to another C file

and modified to read the data from the register, write data to the register, and display the

least significant hexadecimal digit of the first software accessible register on the four

LEDs. The new C file was named “lightcontrol.c” and is included in the Appendix

section. The binary file “lightcontrol” was created by compiling the “lightcontrol.c” file.

However, the ramdisk was too small to store any more binary files. The following steps

 56

show how to create the 16 MB ramdisk, add the new static files to the new ramdisk, and

configure the Linux kernel to handle the larger ramdisk:

1. Create the 16 MB ramdisk following the same procedures used to create the 8 MB

ramdisk.

 i. Kept in the newly created ~/xilinx/ramdisks/16M directory

2. Copy the contents of the 8 MB ramdisk, including the custom binary files, to the

16 MB ramdisk.

3. Add the “lightcontrol” binary file to the /bin directory of the new ramdisk.

4. Unmount, zip, and copy the new ramdisk to the /arch/powerpc/boot directory of

the Linux kernel tree.

5. Change the default ramdisk size for the Linux kernel

i. Launch the kernel’s configuration menu (Figure 23) by issuing the command

make ARCH=powerpc menuconfig

ii. Navigate to the “Block devices” submenu which is located under the “Device

Drivers” menu.

iii. Change the “Default RAM disk size (kbytes)” value from “8192” to “16384”.

iv. Exit the kernel configuration

Adding a 16 MB ramdisk no longer caused any problems.

 The newly added programs required a new hardware peripheral. Since the

LED peripheral was an XPS general purpose input/output (GPIO) peripheral, it couldn’t

be modified. A new peripheral called “simple_register” was created to test the

“lightcontrol” binary file. The behavior of the new peripheral was edited using Xilinx

 57

Figure 23. Linux Kernel Configuration Menu

Project Navigator to map the last hexadecimal digit of the software accessible register to

the LEDs. The peripheral was then synthesized and imported back to XPS where it was

added to the project. The new peripheral was then given an address, and its output ports

were tied to the LED pins in the ucf file. Changing the hardware meant that a new device

tree and bitstream needed to be generated. The new device tree was name virtex405-

thesis12-1.

While XPS was generating a new bitstream to accommodate the new

“simple_register” peripheral, the create.ram.kernel-thesis12-1 command was issued in

the VM to create a new elf file containing the Linux kernel with the 16 MB ramdisk. The

new bitstream was downloaded onto the board once it was generated followed by the new

 58

“simpleImage.initrd.virtex405-thesis12-1.elf” file using XMD. The hellothere, leddriver,

and lightcontrol binary files functioned as expected when the kernel was loaded and run

on the ML405 board. The hexadecimal value shown on the LED lights changed

whenever the software accessible register received a new value.

 Similar C programs, including a “television”, “lights”, “tvon”, “tvoff”, “lightson”,

“lightsoff”, “doorlock” and “doorunlock” were written in the VM text editor, compiled

into binary files, and tested in the Linux kernel. These programs were written to turn on

an LED when a certain value was written to the peripheral’s software accessible register

and turn the LED off when another value was written to the register. “Leddriver.c” was

used as a reference to write these programs in terms of mapping the hardware

peripherals’ base address to the kernel’s memory. One peripheral was created for the

programs involved with lights (lights, lightson, and lightsoff) to control. Another

peripheral was created for the programs involved with television (television, tvon, tvoff)

to control. A third peripheral was created for the “doorlock” and “doorunlock” programs

to control. Each one of these peripherals was tied to a separate LED light. Whenever the

kernel was running and the “tvon” command was issued, LED1 would turn on.

“lightson” turned on LED0. Both “television” and “lights” asked how long the lights of

television stayed on and turned off after the specified time interval. The “doorlock” and

“doorunlock” programs powered the LED light for 0.5 seconds and turned off to simulate

a door being locked or unlocked.

 The next task was to configure the television and light peripherals to control

something that represented an appliance or an appliance actuator or sensor. The Tamiya

 59

FA-130 motor was a suitable representation. The Tamiya FA-130 is a small DC motor

that the Tamiya company uses in some of its gearboxes. The basic specifications are

listed below:

• RPM: 6990-9100 (6990 Max. Efficiency)

• Voltage: 1.5-3V (1.5V Recommended) (4.5 V max)

• Amperage: .66A

• Stall torque: 4.6 gcm [51]

An H bridge was used to power the motors since the motors were too small to be

powered by the ML405 board directly. The H bridge used an external power supply to

power the motors and data signals from the expansion headers of the ML405 to enable

and disable the motors. One H bridge could be used to control two FA-130 motors.

Slight changes were made to the behavior of the custom hardware peripherals and

the ucf file to power the motors. Instead of each peripheral having one output tied to an

LED light, the peripherals were modified to have two outputs tied to two expansion

header pins to send data signals to the H bridge. A separate peripheral was created to

send the ground and voltage signals to the H bridge since these two signals don’t change.

Since the door peripheral would power one motor for “doorlock” and another motor for

“doorunlock”, this peripheral was edited to have four outputs tied to four expansion

header pins. Another peripheral was created to control the ground and voltage signals

going to the H bridge. To include the updated peripherals, a new bitstream and device

tree (named “virtex405-thesis12-5”) were generated.

 60

In order for the Linux kernel to have sufficient storage space to hold all of the

binary files, a 32 MB ramdisk was created under the ~/xilinx/ramdisks/32M directory.

The ramdisk was then mounted to the /mnt/new-disk directory and the contents of the 16

MB ramdisk were copied to the larger ramdisk. Any custom binary files not included in

the new ramdisk’s /bin directory were copied from the ~/xilinx/programs directory. The

kernel configuration menu was launched to change the default RAM disk size from

“16384” to “32768” to support a 32 MB ramdisk. The new ramdisk was then

unmounted, compressed and copied to the Linux kernel’s arch/powerpc/boot directory in

the VM’s Terminal application. A new elf file “simpleImage.initrd.virtex405-thesis12-5”

was created by issuing the create.ram.kernel-thesis12-5 command. The new elf file

was then copied to the XPS “Thesis12” project directory. The newly generated bitstream

along with the new elf file were then ready to be downloaded onto the ML405 board.

The final project, which included peripherals and custom programs to control

light, television, and door actuators, was successfully completed and functioned as

expected. The “lightson” and “tvon” programs activated their respective peripheral’s

Tamiya motor and printed a message to HyperTerminal that the lights or the television is

now on. The “lightsoff” and “tvoff” programs deactivated their peripheral’s motor and

printed a message to HyperTerminal that the lights or the television is now off. The

“lights” and “television” programs first asked if the lights of television wanted to be

turned on for a period of seconds, minutes or hours. Once an option was selected, the

program prompted for an interval of the selected time period. The respective motor was

then activated and deactivated after the specified time period. HyperTerminal printed a

 61

message that the appliance was now on and off after designated time period. For

example, if the television was designated to stay on for 5 seconds, HyperTerminal printed

the message “Television is now on”, and the television motor turned off after 5 seconds.

The HyperTerminal console then printed the message “Television is now off after 5

seconds. The “doorlock” program activated its motor for 0.5 seconds to simulate a door

automatically being locked. The message “The door is now locked” was printed onto the

console window while the motor was activated. The “doorunlock” program worked in a

similar way as the “doorlock” program. The only difference was that the “doorunlock”

program activated a different motor and displayed “The door is now unlocked” in the

HyperTerminal window. The executed “television” program is displayed in the

HyperTerminal console in Figure 24. A 32 MB ramdisk was more than enough space to

contain the extra binary files. If a programmer wanted to create programs to control other

appliances such as a ceiling fan and add them the Linux kernel, there is room on the

ramdisk to do it.

 62

Figure 24. Complete Modified Linux Kernel Executing “Television”

 Program

 63

CHAPTER 9

CONCLUSION

The U.S. and world populations are growing and getting older simply because

more people are living longer. This is due to breakthroughs in science, medicine and

technology that many people take for granted today. The probability of developing a

disability increases as a person gets older. Not everybody can afford the current options

that are available to assist the disabled elderly. However, a possible cost friendly solution

may be found in automated homes, which is the motivation for the SAAD project. The

SAAD project is composed of several subprojects, including the subproject that was

named WireAct.

One of the goals of WireAct was to customize the Linux kernel to interface with

custom hardware peripherals on an FPGA board. Several experiments were conducted to

achieve this goal including:

1. Building, downloading and running the default kernel

2. Customizing the kernel

3. Creating a new project to run the kernel

4. Customizing the kernel to interface with an FPGA’s hardware

5. Customizing the kernel to interface with representations of appliance actuators

in the form of DC motors

 64

This was a tremendous milestone in WireAct. The results at hand show that an

FPGA can be configured to control appliance actuators and sensors, which also

contributes to the overall progress of the SAAD project. Future research may include

developing a graphical user interface (GUI) using C# object oriented programming to

interact with the ML405 board through serial communication. As of right now, actuator

timing is handled by the Power PC microprocessor. Eventually each hardware peripheral

will have its own timer so that the microprocessor can tend to other program executions.

Wireless USB communication between the ML405 board and appliance actuators and

sensors, as well as the ML405 and a host computer, is another subject of future research.

 65

BIBLIOGRAPHY

1. Oberlin College Presentation. (2010, February 16). Retrieved January 15, 2011 from
http://www.vhemt.org/oar.htm

2. Population Reference Bureau. (n.d.). Retrieved January 20, 2011 from
http://www.prb.org/Educators/TeachersGuides/HumanPopulation/PopulationGrowth.
aspx

3. What is the bubonic plague?. (n.d.). Retrieved January 15, 2011 from
http://www.essortment.com/all/bubonicplague_rmhr.htm

4. USA Population. (n.d.). Retrieved January 15, 2011 from
http://geography.about.com/od/obtainpopulationdata/a/uspopulation.htm

5. US & World Population Clock. (n.d.). Retrieved January 15, 2011 from
http://www.census.gov/population/www/popclockus.html

6. CIA – The World Factbook. (n.d.). Retrieved January 19, 2011 from
https://www.cia.gov/library/publications/the-world-
factbook/rankorder/2119rank.html?countryName=United%20States&countryCode=u
s®ionCode=na&rank=3#us

7. sixbilpart1.pdf (n.d.). Retrieved January 15, 2011 from
http://www.un.org/esa/population/publications/sixbillion/sixbilpart1.pdf

8. Life Expectancy. (n.d.). Retrieved January 17,2011 from
http://www.efmoody.com/estate/lifeexpectancy.html

9. Life Expectancy. (n.d.). Retrieved January 17, 2011 from
http://en.wikipedia.org/wiki/Life_expectancy#Human_life_expectancy_patterns

10. 2010 Average Life Expectancy by Gender, Race and Country. (2010, October 20).
Retrieved January 17, 2011 from http://www.suite101.com/content/2010-life-
expectancy-longevity-factors-and-the-latest-news-a284558

11. Penicillin. (n.d.). Retrieved January 17, 2011 from
http://en.wikipedia.org/wiki/Penicillin

12. Milestones in Medicine. (n.d.). Retrieved January 17, 2011 from
http://www.stjohnprovidence.org/HealthInfoLib/swArticle.aspx?1,1015

 66

13. Medical Technology Instruments | eHow.com (2010, July 22). Retrieved January 19,
2011 from http://www.ehow.com/list_6764123_medical-technology-instruments.html

14. Aging Population – Seniors Are Fastest Growing Population Worldwide. (n.d.).
Retrieved January 19, 2011 from
http://seniorliving.about.com/od/lifetransitionsaging/a/seniorpop.htm

15. Senior Population in the U.S. 2010 to 2050. (2010, May 20). Retrieved January 19,
2011 from http://www.disabled-world.com/disability/statistics/senior-population.php

16. AMDA: About AMDA – US Senior Population Demographics. (n.d.). Retrieved
January 19, 2011 from http://www.amda.com/about/seniordemographics.cfm

17. Mann, W. (2005). Smart Technology for Aging, Disability, and Independence: The
State of the Science p. 2

18. What is a Disability? . (n.d.). Retrieved January 19, 2011 from
http://hcdg.org/definition.htm

19. The ADA Amendments Act of 2008. (2008, September 25). Retrieved January 19,
2011 from http://www.access-board.gov/about/laws/ada-amendments.htm

20. How Many Disabled Americans Are There?. (n.d.). Retrieved January 19, 2011 from

http://ezinearticles.com/?How-Many-Disabled-Americans-AreThere?&id=1918829

21. About Living Trust PlusTM. (n.d.). Retrieved January 19, 2011 from
http://www.livingtrustplus.com/about/

22. Mann, W. (2005).Smart Technology for Aging, Disability, and Independence – The
State of the Science p. 5

23. Aging in place. (n.d.). Retrieved January 24, 2011 from
http://en.wikipedia.org/wiki/Aging_in_place

24. Mann, W. (2005).Smart Technology for Aging, Disability, and Independence – The
State of the Science p. 33 – 38

25. Smart House – Definition of Smart House. (n.d.). Retrieved January 24, 2011 from -

http://architecture.about.com/od/buildyourhous1/g/smarthouse.htm

26. Yaghmour, K. (2008). Building Embedded Linux Systems. Sebastopol, CA. O’Reilly
Media, Inc.

 67

27. History of Linux. (n.d.). Retrieved February 15, 2011 from
http://en.wikipedia.org/wiki/History_of_Linux

28. History of Linux, Who Invented Linux, How Was Linux Invented. (n.d.). Retrieved
February 15, 2011 from http://www.livinginternet.com/i/iw_unix_gnulinux.htm

29. Siever, E. (1999). Linux in a Nutshell. Sebastopol, CA. O’Reilly & Associates, Inc.

30. Naveenraja, S. Overview of Linux Kernel Structure. (n.d.). Retrieved February 15,
2011 from http://www.scribd.com/doc/19462050/Overview-of-Linux-Kernel-
Structure

31. Linux Kernel. (n.d.). Retrieved February 24, 2011 from
http://en.wikipedia.org/wiki/Linux_kernel

32. Langstedt, N (2005, September 22). Linux’s directory structure. Retrieved February
24, 2011 from http://www.tuxfiles.org/linuxhelp/linuxdir.html

33. /bin definition by the Linux Information Project (LINFO). (2005, June 5). Retrieved
February 24, 2011 from - http://www.linfo.org/bin.html

34. /sbin definition by the Linux Information Project (LINFO). (2007, July 19). Retrieved
February 24, 2011 from - http://www.linfo.org/sbin.html

35. The Linux filesystem explained | FreeOS, free operating system. (2001, January 3).
Retrieved March 8, 2011 from - http://www.freeos.com/articles/3102

36. /usr. (n.d.). Retrieved February 24, 2011 from http://tldp.org/LDP/Linux-Filesystem-
Hierarchy/html/usr.html

37. Linux Architecture – Overview – (Powerpoint Presentation)

38. Home directory. (n.d.). Retrieved February 24, 2011 from
http://en.wikipedia.org/wiki/Home_directory

39. FPGA Design – A Brief History. (2010, July 18.). Retrieved March 3, 2011 from

http://www.enventureonline.com/engineering-blog/fgpa-design/fpga-design-
%E2%80%93-a-brief-history.html

40. Field-programmable gate array. (n.d.). Retrieved March 3, 2011 from
http://en.wikipedia.org/wiki/Field-programmable_gate_array#History

41. Lee, S. (2006). Advanced Digital Logic Design Using VHDL, State Machines, and
Synthesis for FPGAs. Toronto, Ontario. Nelson.

 68

42. Xilinx : About Xilinx : Getting Started. (n.d.). Retrieved March 3, 2011 from

http://www.xilinx.com/company/gettingstarted/index.htm

43. All about FPGAs. (2006, March 21). Retrieved March 3, 2011 from
http://www.eetimes.com/design/programmable-logic/4014815/All-about-FPGAs

44. week-2.pdf. (n.d.). Retrieved March 3, 2011 from http://bertram-
family.com/felix/soc_course_files/week-2.pdf

45. FPGA routing matrix | FPGA Central. (2009, February 11). Retrieved March 3, 2011
from http://www.fpgacentral.com/docs/fpga-tutorial/fpga-routing-matrix

46. VirtualBox. (n.d.). Retrieved March 7, 2011 from http://www.virtualbox.org/

47. Chapter 1. First steps (n.d.). Retrieved March 7, 2011 from
http://www.virtualbox.org/manual/ch01.html

48. ISO image (n.d.). Retrieved March 3, 2011 from
http://en.wikipedia.org/wiki/ISO_image

49. Welcome – Xilinx Open Source Wiki. (n.d.). Retrieved March 3, 2011 from

http://xilinx.wikidot.com

50. sudo - Linux Command – Unix Command. (n.d.). Retrieved March 7, 2011 from
http://linux.about.com/od/commands/l/blcmdl8_sudo.htm

51. Tamiya Motors. (n.d.). Retrieved February 28, 2011 from
http://www.superdroidrobots.com/product_info/tamiya_motors.htm

 69

APPENDIX A

//“hellothere.c” Code

#include <stdio.h>

int main()
{
 printf("Hello there!\n");
 printf("Im feeling great today!\n");
 printf("I finally made a breakthrough in this research!\n");
 printf("Now it's full steam ahead!\n");
}

 70

APPENDIX B

//”leddrivever.c” Code

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/mman.h>

// The purpose this test is to show that users can get to devices in user
// mode for simple things like GPIO. This is not to say this should replace
// a kernel driver, but does provide some short term solutions sometimes
// or a debug solution that can be helpful.

// This test maps a GPIO in the hardware into the user space such that a
// GPIO signal can be toggled fast. On the ML507 reference system, the
// signal could be toggled about every 50 ns which is pretty fast.

// This test was derived from devmem2.c.

#define GPIO_BASE_ADDRESS 0x81400000
#define GPIO_DATA_OFFSET 0
#define GPIO_DIRECTION_OFFSET 4
#define MAP_SIZE 4096UL
#define MAP_MASK (MAP_SIZE - 1)

int main()
{
 int memfd;
 int n;
 void *mapped_base, *mapped_dev_base;
 off_t dev_base = GPIO_BASE_ADDRESS;

 memfd = open("/dev/mem", O_RDWR | O_SYNC);
 if (memfd == -1) {
 printf("Can't open /dev/mem.\n");
 exit(0);
 }
 printf("/dev/mem opened.\n");

 71

 // Map one page of memory into user space such that the device is in that page, but it
may not
 // be at the start of the page

 mapped_base = mmap(0, MAP_SIZE, PROT_READ | PROT_WRITE,
MAP_SHARED, memfd, dev_base & ~MAP_MASK);
 if (mapped_base == (void *) -1) {
 printf("Can't map the memory to user space.\n");
 exit(0);
 }
 printf("Memory mapped at address %p.\n", mapped_base);

 // get the address of the device in user space which will be an offset from the base
 // that was mapped as memory is mapped at the start of a page

 mapped_dev_base = mapped_base + (dev_base & MAP_MASK);

 // write to the direction register so all the GPIOs are on output to drive LEDs

 *((unsigned long *) (mapped_dev_base + GPIO_DIRECTION_OFFSET)) = 0;

 // toggle the output as fast as possible just to see how fast it works

 printf("enter 1\n");
 scanf ("%d", &n);
 printf("n is %d1\n",n);

 while (1) {
 printf("enter 1\n");
 scanf ("%d", &n);
 printf("n is %d1\n",n);
 *((unsigned long *) (mapped_dev_base + GPIO_DATA_OFFSET)) = 0;
 printf("enter 1\n");
 scanf ("%d", &n);
 printf("n is %d1\n",n);
 *((unsigned long *) (mapped_dev_base + GPIO_DATA_OFFSET)) = 1;
 }

 // unmap the memory before exiting

 if (munmap(mapped_base, MAP_SIZE) == -1) {
 printf("Can't unmap memory from user space.\n");
 exit(0);
 }

 72

 close(memfd);
 return 0;
}

 73

APPENDIX C

//C code to operate the television IP. Simple modifications can be made to operate other
//IPs

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/mman.h>

#define GPIO_BASE_ADDRESS 0XC2400000 //change the base address according to

 //the address of your
 //IP in your XPS project
#define REG_OFFSET 0
#define GPIO_DATA_OFFSET 0
#define GPIO_DIRECTION_OFFSET 4

#define MAP_SIZE 4096UL
#define MAP_MASK (MAP_SIZE - 1)

int main ()
{
 int period;
 int period2;
 int time;
 int memfd;
 int n;
 char mode;
 void *mapped_base, *mapped_dev_base;
 off_t dev_base = GPIO_BASE_ADDRESS;

 memfd = open("/dev/mem", O_RDWR | O_SYNC);
 if (memfd == -1) {
 printf("Can't open /dev/mem.\n");
 exit(0);
 }
 printf("/dev/mem opened.\n");

 mapped_base = mmap(0, MAP_SIZE, PROT_READ | PROT_WRITE,
MAP_SHARED, memfd, dev_base & ~MAP_MASK);
 if (mapped_base == (void *) -1) {

 74

 printf("Can't map the memory to user space.\n");
 exit(0);
 }
 printf("Memory mapped at address %p.\n", mapped_base);

 mapped_dev_base = mapped_base + (dev_base & MAP_MASK);

 // write to the direction register so all the GPIOs are on output to drive LEDs

 *((unsigned long *) (mapped_dev_base + GPIO_DIRECTION_OFFSET)) = 0;

//Skip this section to simply turn the IP on or off
 printf("How long do you want the television on?\n\n");
 printf("1. Seconds\n2. Minutes\n3. Hours\n");
 scanf("%d",&time);
 if (time == 1)
 {
 printf("How many seconds?\n");
 }
 else if (time == 2)
 {
 printf("How many minutes?\n");
 }
 else if (time == 3)
 {
 printf("How many hours?\n");
 }
 scanf("%d",&period);
 if (time == 1)
 {
 period2 = period;
 }
 else if (time == 2)
 {
 period2 = period * 60;
 }
 else if (time == 3)
 {
 period2 = period * 3600;
 }

// To turn IP on

 75

 *((unsigned long *) (mapped_dev_base + GPIO_DATA_OFFSET)) =
0X0000000F; //Value can be changed
 //according to the
 //value that the IP is
 //looking for
 printf("Television is now on.\n\n");
 sleep(period2); //To keep IP on for specified time interval
//To turn IP off
 *((unsigned long *) (mapped_dev_base + GPIO_DATA_OFFSET)) =
0X0000000E; //Value can be changed
 //according to the
 //value that the IP is
 //looking for
//Prints to the console that the IP is now off after specified time period
 if (time == 1)
 {
 printf("Television is now off after %d seconds.\n\n",period);
 }
 else if (time == 2)
 {
 printf("Television is now off after %d minutes.\n\n",period);
 }
 else if (time == 3)
 {
 printf("Television is now off after %d hours.\n\n",period);
 }
}

 76

APPENDIX D

--Light Controller USER logic VHDL code

--USER logic implementation added here
 process(slv_reg0)
 begin
 if (slv_reg0 = X"0000000F") then
 lights <= "10";
 elsif (slv_reg0 = X"0000000E") then
 lights <= "11";
 end if;
 end process;

 77

APPENDIX E

-- Television Controller USER logic VHDL code

--USER logic implementation added here
 process(slv_reg0)
 begin
 if (slv_reg0 = X"0000000F") then
 television <= "10";
 elsif (slv_reg0 = X"0000000E") then
 television <= "11";
 end if;
 end process;

 78

APPENDIX F

-- Door lock Controller USER logic VHDL code

--USER logic implementation added here
 voltage <= '0';
 ground <= '0';
 process(slv_reg0)
 begin
 if (slv_reg0 = X"0000000F") then
 lock <= "10";
 unlock <= "11";
 elsif (slv_reg0 = X"0000000D") then
 lock <= "11";
 unlock <= "10";
 elsif (slv_reg0 = X"0000000E") then
 lock <= "11";
 unlock <= "11";
 end if;
 end process;

	Customizing And Building The Linux Kernel To Control Appliance Actuators And Sensors In Domotics
	Recommended Citation

	Microsoft Word - The Human Population_New_Thesis.doc

