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ABSTRACT 
 

Akangah, Paul Kwaku. IMPACT DAMAGE RESISTANCE AND TOLERANCE OF 
POLYMER NANO-FIBER INTERLEAVED COMPOSITE LAMINATES. (Major 
Professor, Dr. Kunigal Shivakumar). North Carolina Agricultural and Technical State 
University. 
 

The primary limitation of fiber reinforced composite laminates is their poor 

interlaminar strength and fracture toughness that result in poor impact damage resistance 

and tolerance. A number of methods have been tried to address this limitation. These 

methods are limited by factors such as increase in cost, weight, or loss of in-plane 

properties. A promising approach which does not degrade the in-plane properties is 

interleaving. Thermoplastic particle interleaving has been applied to reinforce laminates 

but the primary concern of in-plane properties degradation has not been addressed. 

Polymer nano-fiber interleaving was investigated in this dissertation as an alternative 

approach to particle interleaving. The concept showed promise because of the very high 

surface area to volume ratio and high strain to fracture of the interleaving Nylon-66 nano-

fibers. 

The objectives of the work were to determine the relationship between the electric 

field and the polymer flow-rate, to improve the electrospinning process, to assess low-

velocity impact damage resistance and tolerance, and to compare the performance of the 

base laminate to the interleaved laminate. An electrospinning set-up with a collector 

current management technique was developed to match the electric field to the flow-rate. 

Twenty-four ply quasi-isotropic base and interleaved AS4/3501-6 composite laminates 

were produced. Interleaving was achieved with 0.7 g/m2 nano-fabric. The impacted 



 

specimens were retested in compression. The results showed that interleaving increased 

the threshold impact height and force by 26% and 13%, respectively. At 4.0 J threshold 

impact energy, residual compression strength was 40% for the base and 45% for the 

interleaved laminates. 
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CHAPTER 1 
 

INTRODUCTION 
 
 
1.1 Background 
 

Advanced composite materials have desirable properties such as high-stiffness, 

high-strength and low-density when compared to conventional monolithic materials and 

are, therefore, used in applications where both high stiffness-to-weight and strength-to-

weight ratios are desirable. The primary limitation of composite laminates is their poor 

interlaminar strength and fracture toughness that reduces impact damage resistance and 

tolerance because of delaminations (O’Brien, 1990; Sela & Ishai, 1989). Interlaminar 

stresses develop in composite laminates due to mismatch of ply orientation and 

anisotropic, mechanical and thermal properties. As a result of stress concentration, high 

interlaminar stresses occur at the free edges, at structural load-path discontinuities such as 

bonded joints, bolted joints, notches, ply drop-offs (O'Brien, 1984) as shown in Figure 

1.1. 

 
 
 

 
Figure 1.1.   High interlaminar stresses due to load-path discontinuities 
                     (O'Brien, 1984) 
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High interlaminar stresses also occur in the vicinity of damage due to low-

velocity impacts on composite structures (Chan, 1991; Pagano, 1989; Salpekar, O’Brien, 

& Shivakumar, 1996). Such high stresses combined with weak interlaminar properties 

cause delamination in composite laminates and degradation of the compressive strength 

of the laminate. Interlaminar stresses are out-of-plane stresses and can be classified as 

interlaminar normal stress, z , and interlaminar shear stresses, xz  and yz . During low-

velocity impact, two types of matrix cracks are commonly formed. These are shear and 

tensile cracks and are illustrated in Figure 1.2 (Abrate, 1998).  

 
 
 

 
(a) 

 
(b) 

Figure 1.2.   Types of matrix cracks in impacted laminate. (a) Shear and 
                      (b) Tensile cracks (Abrate, 1998) 
 
 
 
 

Out-of-plane shear stress due to bending of the laminate during the impact event 

creates shear cracks. Tensile cracks occur when in-plane normal stresses exceed the 

transverse tensile strength of the ply. These cracks propagate into the interface between 

the adjacent layers and high interlaminar stresses are created due to stress concentrations. 

When these stresses exceed the laminate’s interlaminar strength, delaminations are 

created (Salpekar et al, 1996). The three basic delamination modes are shown in Figure 

1.3 (Daniel & Ishai, 2005). 
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(a) 

 
(b) 

 
(c) 

Figure 1.3.   Basic delamination modes in composite laminates. (a) Mode-I (tension), 
                     (b) Mode-II (shearing) and (c) Mode-III (tearing) (Daniel 
                     & Ishai, 2005) 
 
 
 
 

Mode-I delamination is caused by normal tensile interlaminar stress, z , and this 

stress tends to separate one ply from the other while mode-II delamination is caused by 

interlaminar shear stresses which cause one ply to slide over the other. Mode-III is a 

tearing mode caused by out-of-plane shear stress. Chan (1991) suggested that whereas the 

initiation of delamination was characterized by mode-I delamination (GI), its growth rate 

was characterized by the total strain-energy release rate, GT. However, Davies, Zhang, 

Zhou & Watson (1994) suggested that delamination initiation was due to mode-II shear-

propagation. The magnitude of Poisson ratio and shear coupling coefficient mismatch 

between plies depend on the ply orientation (fiber angle) between any consecutive plies. 

Therefore, the laminate’s stacking sequence determines the type of interlaminar stresses 

created in the laminate (Daniel & Ishai, 2005; Jones, 1999). The stacking sequence 

describes the distribution of ply orientation through the laminate thickness. Figure 1.4 

(Daniel & Ishai, 2005) shows the variation of in-plane Poisson ratio, xyv , and shear 

coupling coefficient, xs , as a function of ply orientation. 
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Figure 1.4.   Effect of ply orientation on in-plane Poisson ratio and shear 
                      coupling coefficient (Daniel & Ishai, 2005) 
 
 
 
 
1.1.1 Angle-ply Laminates 

Consider an angle-ply laminate with the stacking sequence (+ )s and loaded in 

tension by an average axial stress, x , as shown in Figure 1.5. When each ply in the 

laminate is subjected to the same axial stress xx   , the deformation of the (+ ) 

individual angle-plies in the laminate will be different and as a result of shear coupling, 

each ply will undergo shear deformation as shown in Figure 1.6 (Daniel & Ishai, 2005). 

However, when perfectly bonded together, their shear deformation would cancel out due 

to shear transfer mechanism the between layers. This shear transfer mechanism between 

layers is illustrated in Figure 1.7. The interlaminar shear stress, xz , acts on each ply in 

equal magnitude but in opposite directions and they cancel out when the plies are bonded 

together. The interlaminar shear stress, xz , starts from zero to a maximum value at the 

free-edge. 
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






x

x

 
                      Figure 1.5.   Angle-ply laminate under tensile axial stress 
 
 
 
 

 
Figure 1.6.   Shear deformation of individual plies in an angle-ply laminate 
                      (Daniel & Ishai, 2005) 
 
 
 
 

If shear coupling is zero, then under zero shear deformation the moment due to 

interlaminar shear stress, xz , must balance the moment due to in-plane shear stress, xy , 

as given in Equation (1.1). 

xdydzydxdy xyxz 22    (1.1)
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Figure 1.7.   Interlaminar and in-plane shear stresses in an angle-ply laminate 
                      (Daniel & Ishai, 2005)  
 
 
 
 

The in-plane shear stress, xy , is constant for most part of the width of the 

laminate and drops to zero at the free edges. As a result, the interlaminar shear stress, xz , 

exists at the interface of each ply as shown Figure 1.8 (Daniel & Ishai, 2005) and acts in 

opposite direction on each ply. The existence of this shear stress tends to cause mode-II 

interlaminar delamination. The magnitude and direction of the interlaminar shear stress 

manifesting at the interface depend on the ply orientation in the (+ ) laminate as shown 

in Figure 1.9 (Daniel & Ishai, 2005). As the ply fiber angle varies from 0º to 90º, the 

interlaminar stress also varies, with maximum tensile stress occurring at about 30º and 

minimum compressive stress occurring at about 70º. Therefore, depending on the ply 

orientation, interlaminar delamination may be enhanced or delayed. 
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xy

xz

 
Figure 1.8.   State of interlaminar and in-plane shear stresses in an angle-ply 
                      laminate (Daniel & Ishai, 2005) 
 
 
 
 

 maxxz

xz




 (degrees) (degrees)
 

Figure 1.9.   Variation of normalized interlaminar shear stress as function of ply 
                      angle in angle ply laminate (Daniel & Ishai, 2005) 
 
 
 
 
1.1.2 Cross-ply Laminates 

Consider the deformation of a cross-ply laminate with (0/90)S stacking sequence 

and subjected to average axial tensile stress, x , as shown in Figure 1.10. When the 

individual plies deform independently, they experience different axial stresses such that 

their axial deformation are the same but transverse deformations are different due to 
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Poisson ratio mismatch as shown in Figure 1.11 (Daniel & Ishai, 2005). When the plies 

are bonded together, their transverse deformations and strains become equal and therefore 

the interlaminar shear stress, yz , must be zero at the free edges. As a result, the 0º ply 

must be in tension and the 90º ply must be in compression as shown in Figure 1.12 

(Daniel & Ishai, 2005). 

 
 
 

x

x

 
                    Figure 1.10.   Cross-ply laminate under axial tensile stress 
 
 
 
 

 
Figure 1.11.   Transverse deformation of individual plies in cross-ply laminate 
                        (Daniel & Ishai, 2005) 
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Figure 1.12.   State of interlaminar shear stress in cross-ply laminate (Daniel & 
                       Ishai, 2005) 
 
 
 
 

Consider the free body diagram of an element of the 0º ply near the free edge of a 

cross-ply laminate shown in Figure 1.13(a) (Daniel & Ishai, 2005). The distribution of the 

interlaminar stresses is shown in Figures 1.13(b) and (c) (Daniel & Ishai, 2005). The 

interlaminar shear stress, yz , varies along the width of the laminate and to maintain 

equilibrium, interlaminar normal stress must exist between the plies. Pagano & Pipes 

(1999) postulated the distribution of this interlaminar normal stress and this is shown in 

Figure 1.13(b). Under these conditions, there exists a very large interlaminar normal 

stress that has the tendency to cause edge delamination (Daniel & Ishai, 2005). This 

stress is also affected by the stacking sequence as shown in Figure 1.14 (Daniel & Ishai, 

2005). The mid-plane of (15/45/-45/-15)S does not experience edge delamination but 

interlaminar delamination. 
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(b) 

 
(a) 

 
(c) 

Figure 1.13.   (a) Free-body diagram of a cross-ply laminate, (b) Interlaminar 
                        normal and (c) Shear stress shear in cross-ply laminate (Daniel & 
                        Ishai, 2005) 
 
 
 
 

h

z

h

z

 
Figure 1.14.   Through thickness distributions of edge interlaminar normal stress as 
                        a function of stacking sequence (Daniel & Ishai, 2005) 
 
 
 
 
1.2 Methods to Prevent Edge Delaminations 
 

Material property mismatch between adjacent plies is responsible for 

delamination initiation and the presence of uninterrupted load path aids in its growth 

(Chan, 1991; Sun & Chu, 1991). Delamination failure at a laminate’s free edge is 
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dominated by two major modes: opening mode delamination (Howard, Gossard & Jones, 

1989; Sun & Chu, 1991) and shear-dominated failure (Sun & Chu, 1991). Over the years, 

researchers have developed many useful techniques to reinforce Carbon-fiber reinforced 

polymer (CFRP) laminate edge and thus prevent edge delamination. Some of these 

techniques are edge cap reinforcement, notched edges, interleaving and critical ply 

termination (Browning & Schwartz, 1986; Chan & Ochoa, 1989; Chan, 1991; Odagiri, 

Muraki, & Tobukuro, 1988; Pagano & Pipes, 1971). Howard et al (1989) investigated the 

use of U-shaped caps in preventing edge delaminations. These were made from a single 

layer of Kevlar-49 impregnated with epoxy resin. Kim (1983) also investigated the use of 

edge-cap in preventing edge delaminations. The edge-cap was made of fiberglass and 

adhesive, wrapped over the edge of the laminate as shown in Figure 1.15. Both 

researchers concluded that static and fatigue laminate strengths are improved by capping 

the laminate’s free-edge. 

 
 
 

 
Figure 1.15.   Schematic of edge cap to prevent edge delamination (Kim, 1983)  
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Since delamination growth is promoted by the presence of uninterrupted load 

paths, Sun & Chu (1991) suggested the use of notches along the edges of the laminates to 

prevent edge delamination and increase laminate strength. The notches interrupt the load 

paths to the laminate’s free-edges and therefore improve the laminate’s interlaminar 

strength. To minimize the local stress concentration created by the notches, the 

researchers carefully sized the notch diameter and pitch. X-ray radiographs taken just 

before failure of the laminates showed that delamination failure was initiated at 470 and 

620 kN/m in the unnotched and notched laminates, respectively. 

Critical ply termination is another method that uses the idea of load path 

interruption to improve the laminate strength. In this method, by terminating certain 

critical plies before they reach the free-edge, interlaminar stresses are reduced and edge 

delamination is therefore prevented resulting in improved laminate strength and fatigue 

life (Chan, 1991; Sun & Chu, 1991). The principle of critical ply termination is shown in 

Figure 1.16 (Chan, 1991). 

 
 
 

 
                    Figure 1.16.   Principle of critical ply termination (Chan, 1991) 
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1.3 Literature Review on Low Velocity Impact Characterization 
 
1.3.1 Basic Impact Mechanics 

The Hertz contact law defines a relation between indentation and deformation 

(Timenshenko, 1913). This has been extended to low velocity impact problems by many 

researchers by neglecting vibrations produced by the collision (Greszczuk, 1982; Karas, 

1339; Lee, 1941; Preston & Cook, 1975; Shivakumar, Elber, & Illg, 1985a). The Hertz 

law is given by: 

2/3ckP   (1.2)

where P is the indentation (contact) force,  the indentation deformation and kc is the 

contact stiffness whose value depends on the material and geometric properties of the 

target and the indentor. When permanent indentation occurs at low loading levels, the 

contact law for the unloading phase is given in Equation (1.3) (Abrate, 1998; Tan & Sun, 

1985). 

q

m
mPP 




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
0

0


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 (1.3)

where Pm is the contact force where unloading begins, m  is the static indentation 

corresponding to the force Pm, 0 is the permanent static indentation during the unloading 

cycle, and q is an exponent that is determined experimentally. Lee (1941) modified the 

Hertz contact law to predict the contact deformation, contact force and the flexural 

deformation of the target structure. Preston & Cook (1975), and Greszczuk (1982) used 

the modified Hertz law to calculate the contact force during impact. 
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1.3.2 Important Accomplishments in Impact Mechanics 

Shivakumar et al (1985a) suggested that the impact force predicted by the Hertz 

method tends to be overly conservative while the modified Hertz method underestimates 

the force because both methods neglect the large deformation and transverse shear 

deformation of the target. To address these deficiencies, they developed the energy-

balance and the two-degree of freedom (TDOF) spring-mass models. The energy model 

predicts the impact force while the TDOF spring-mass model predicts the complete force-

time response during impact on a circular composite laminate. Using the principle 

conservation of total potential energy and expressing contact energy in terms of the Hertz 

law, the energy-balance model is given by Equation (1.4) (Shivakumar et al, 1985a). 
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wkMV mbsm

bs  (1.4)

where M is the mass of the impactor, V0 is the impact velocity, w is the plate deflection, 

kbs is the effective stiffness due to bending and shear, km is the membrane stiffness. 

Closed form solutions for bending and membrane stiffness for centrally loaded circular 

composite plate of various boundary conditions were given by Shivakumar et al (1985a). 

The spring-mass model was characterized by four springs representing bending (kb), 

shear (ks), membrane (km) and contact (kc) rigidities as shown in Figure 1.17 (Shivakumar 

et al, 1985a). When the impactor mass was greater than 3.5 times the effective mass of 

the plate ( pMM 5.3 ), the TDOF spring-mass system reduced to single degree-of-

freedom (SDOF) spring-mass system (Shivakumar et al, 1985a).  
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      Figure 1.17.   Improved TDOF spring-mass model (Shivakumar et al, 1985a)  
 
 
 
 

Olsson (2000) and Davies & Olsson (2004) reviewed different types of elastic 

impact response in which the type of structural response is controlled by the impactor-to-

plate-mass ratio and not by impact velocity. These studies suggested that structural 

response type can be classified into response dominated by dilational waves, response 

dominated by flexural waves, and finally, quasi-static response. These responses are 

shown in Figure 1.18 (Olsson, 2000). 

 
 
 

 
                         Figure 1.18.   Types of impact response (Olsson, 2000) 
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Since the target structure responds differently depending on the impactor-to-plate-

mass ratio, Olsson (2000) suggested that the impactor mass must be greater than two 

times the laminate mass, i.e. 2
pM

M . Feraboli (2006a) on the other hand, suggested 

that for large-mass impact event, 10
pM

M  and recommended 20to10
pM

M . 

Davies & Olsson (2004) studied the impact response of various types of laminated plates 

with varying degrees of impact damage. For the undamaged laminate, force and 

deflection time response for large-mass impact results in a bell shaped response. When 

membrane effect is present, large deflection results and as a result, pointed force-time 

response is manifested. In the case of fiber breakage, the force-time response has a 

capped appearance. Large mass impact response of laminated composite is governed by 

the interaction of local and global deflections and the induced stresses resulting from 

flexure and contact loads cause impact damage such as matrix cracks, delaminations and 

fiber breakage and typical failure types in impacted laminate plate are shown in Figure 

1.19 (Davies & Olsson, 2004). Tensile failure occurs when the in-plane normal stresses 

exceed the transverse tensile strength of the ply (Abrate, 1998). This failure causes matrix 

cracks and delamination occurs where the cracks meet an interface (Davies, Hitchings & 

Zhang, 1999). Compressive failure is usually a point damage in nature and does not 

degrade the laminate’s properties while shear-driven delaminations occur in the interior 

where strains are at a maximum. The major risk in internal delaminations in composites 

is a significant decrease in compression strength (Davies and Olsson, 2004). 
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Figure 1.19.   Typical failure types in laminated composite plate (Davies 
                        & Olsson, 2004) 
 
 
 
 

Davies et al (1994) suggested that delamination initiation was always 

accompanied by sudden stiffness loss as a result of unstable crack growth governed by 

Mode-II shear propagation. They obtained the critical force required to initiate 

delamination and this critical force, Pc, is given in Equation (1.5). 
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where Ep is the equivalent in-plane modulus of the laminate, h is the laminate thickness, υ 

is the equivalent Poisson ratio and GIIC is the mode-II critical strain energy release rate. 

Equation (1.5) is based on the assumption that the damage and strains are axisymmetrical 

(Davies et al, 1999). Equation (1.5) can be re-formulated using the effective rigidity 

defined by;  2

3
*
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 . The Pc equation reduces to: 
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IICc GDP *

3

32  (1.6)

Suemasu & Majima (1996) re-formulated Equation (1.6) in another form by 

introducing a variable n* as the number of delaminations. This is presented in Equation 

(1.7). 
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When n* = 1, Equation (1.7) gives the same result as Equation (1.5) or Equation (1.6). 

Equations (1.5), (1.6) and (1.7) are valid for small deflections where membrane 

deflections are negligible (Davies & Olsson, 2004). Where large deflections are present, 

the critical force must be corrected for the extra force carried by the membrane as these 

forces do not contribute to the delamination growth (Davies & Olsson, 2004; Olsson, 

2001). In addition, the critical force depends on the lamina properties, stacking sequence 

and laminate thickness (Zhang, Hounslow, & Grassi, 2006). 

A major limitation of simple single-degree-of-freedom (SDOF) models is that 

they are only applicable to elastic impact events and not at the onset and propagation of 

damage. To extend the validity of the SDOF model to include the onset and propagation 

of damage in the inelastic region, Feraboli (2006b) developed three modified SDOF 

(MSDOF) models. The three models developed were Damage Stiffness (KD), Dissipated 

Energy (ED) and Spring-Mass-Dashpot (SMD) Models. The maximum forces predicted 

by these models are valid only for quasi-static impacts and when membrane effects are 

negligible. 
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While the Damage Stiffness model underestimates the maximum force during 

inelastic impact event, the Dissipated Energy Model overestimates the maximum force 

during inelastic impact event. The Spring-Mass-Dashpot (SMD) Model given by 

Equation (1.8), however, approximates very well, the maximum impact force during 

inelastic impact event. The parameters n and c are determined empirically (Feraboli, 

2006b). By choosing the appropriate values for n and c, elastic and inelastic impact 

events can be modeled. 

        
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Delfose & Poursartip (1997), Feraboli, Ireland, & Kedward (2004), and Feraboli 

& Kedward (2004) suggested the use of impact force to describe damage resistance 

(onset of damage) and impact energy to describe damage tolerance (extent of damage). 

Impact damage resistance is defined as how well composite structure resists impact 

damage due to foreign body impact (Christoforou, 2001). Damage tolerance refers to the 

ability of the structure to sustain design loads after damage (Christoforou, 2001; Herup, 

1996). By reviewing literature, Feraboli & Kedward (2004) identified critical impact 

energy as an important parameter in defining impact events. Critical energy is defined the 

impact energy corresponding to the critical impact force. For any impact event, the 

critical force and energy are independent of the impact force in the inelastic impact 

region (Feraboli & Kedward, 2004). 

Feraboli & Kedward (2006) pioneered the concept of Composite Structure Impact 

Assessment Program (CSIPAP) that uses multi-parameter approach to gain deep insight 

into the impact response of composite structures. The approach uses five fundamental 
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plots to completely describe the impact event. These plots are the maximum and critical 

force versus impact energy; the critical and dissipated energy versus impact energy; 

contact duration versus impact energy; the coefficient of restitution (COR) versus impact 

energy and, the ratio of contact duration versus impact energy. The COR plot indicates 

the effective structural stiffness while the normalized contact duration plot describes the 

residual stiffness of the structure. In CSIPAP program, testing is done in three sequential 

parts, in the first part, elastic tests are performed to record pristine parameters such as 

contact duration and COR, in the second part, a series of inelastic tests are performed to 

record critical and maximum forces, critical and dissipated energy, COR, and contact 

durations. In the third part, a second elastic test on damaged specimens is conducted to 

record the post-failure contact duration of the specimen. Repeated impact test (elastic, 

inelastic and then followed by another elastic test) was first proposed by Lifshitz, Gov, & 

Gandelsman (1995). By analyzing the impact event by these five plots, it is possible to 

compare impact test results across different test programs and the method has the 

advantage of bridging the impact response of a laminate to its damage resistance and 

tolerance (Feraboli & Kedward, 2006). 

1.3.3 Test Standards for Impact and Compression After Impact Tests 

Some of the commonly used compressions after impact (CAI) test methods are 

the National Aeronautics and Space Administration (NASA), Boeing, Pritchard Hogg and 

CRAG standards (Abrate, 1998). The Boeing standard defines impact and compression 

testing of composite laminates and details of the standard are summarized in Table 1.1 

(Abrate, 1998; Fuoss, Straznicky & Poon, 1998). 
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Table 1.1. Boeing BSS 7260 Standard 
Parameter Value 

Specimen Specifications 
Specimen Thickness                 4.0 to 5.0 mm 
Specimen Size                 101.6 mm x 152.2 mm 
Stacking Sequence                 (45/0/-45/90)NS 

Impact Test Specifications 
Tup Diameter                 16 mm, hemispherical, hardened steel 
Tup Mass                 4.6 to 6.8 kg 
Support                 76.2 mm x 127 mm 
Clamping Method                 Clamped at four points, simply-supported mode 
Loading                 Central loading 
No. of Test Specimens                  5 

Compression Test Specifications 
Loading                  End loading 
Loading Rate                  0.5 mm/min 
Clamping Method                  Simply-supported 
No. of Test Specimens                  5 
Impact Energy per unit 
thickness 

                 6.7 J/mm 

 
 
 
 

The Boeing Standard was adopted by American Society for Testing and Materials 

(ASTM) in May 2005 as the ASTM D7136 and ASTM D7137 Test Standards for 

Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a 

Drop-Weight Impact Event and Compressive Residual Strength Properties of Damaged 

Polymer Matrix Composite Plates, respectively (Instron, 2011). In these standards, 

damage resistance is quantified in terms of damage size and type of damage, and damage 

tolerance is measured by the residual compression strength of the damaged specimen. 
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1.4 Methods to Enhance Impact Damage Resistance and Tolerance 
 

Methods to improve the interlaminar strength and fracture toughness for 

composite laminates can be broadly classified as materials improvement (high-strain 

fibers and tougher matrices) and laminate construction such as through-the-thickness 

reinforcements, interleaving (Aymerich, Pani, & Priolo, 2006a; Chan, 1991), stacking 

sequence, critical ply termination, discrete critical ply (Chan, 1991). Of these methods, 

through-the-thickness reinforcements and interleaving are suggested to be the most 

effective ways of improving delamination resistance caused by low-velocity impact 

damage (Chan, 1991). Kuboki, Jar, & Forest (2003) reported good correlation between 

mode-I delamination resistance and the critical force at the onset of impact damage. In 

another study, Hwang, Kwon, Lee, & Hwang (2000) reported that the critical strain 

energy release rate measured by low-velocity impact events is between the mode-I and 

mode-II critical strain energy release rates as measured by interlaminar fracture 

toughness test. Zheng (2007) and Davie et al (1994) also reported that, the growth of 

delaminations in laminated plates is driven primarily by interlaminar shear stresses. 

1.4.1 Matrix Toughening Method 

Matrix toughening approach uses tougher thermoset or thermoplastic matrices 

(Chan, 1991). This method improves the interlaminar fracture toughness but in-plane 

mechanical properties are sacrificed (Yokozeki et al, 2009). Review of the literature 

established that some important limitations of toughened matrices are that the relative 

increase in the fracture toughness of the bulk matrix is not readily transferable to the 

composite material and degradation of the hot/wet performance of the material leading to 
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its restricted applications in aerospace primary structures (Sela & Ishai, 1989). 

1.4.2 Through-the-thickness Reinforcement Method 

Z-pin technology is a through-the-thickness reinforcement method that uses short, 

fine pins made of high stiffness, high strength materials such as titanium alloy, steel; or 

fibrous carbon composite with a diameter between 0.2-1.0 mm that are inserted through 

prepreg, dry preform or foam cores (Mouritz, 2007). Cartié, Troulis, & Partridge (2006) 

studied the interlaminar fracture toughness of z-pinned reinforced CFRP. Results showed 

that z-pinning technique did not improve resistance to delamination initiation. However, 

interlaminar fracture toughness increases with increasing areal density of z-pins. Zhang et 

al (2006) studied the effects of z-pining on low-velocity impact and compression-after-

impact response of CFRP. According to their results, z-pinning reduces damaged area by 

64% and increases residual strength by 45%. However, z-pinning causes reduction in the 

critical impact force. Mouritz (2007) found that while z-pinning increases the 

delamination toughness, in-plane mechanical properties are degraded and the extent of 

degradation is dependent on z-pin areal density. 

Aymerich, Pani, & Priolo, (2006a & 2006b) investigated the effect of stitching on 

the impact resistance of cross-ply Carbon/Epoxy laminates. The researchers concluded 

that stitching does not prevent the initiation and growth of delaminations, but it does 

however reduce the delamination area (Aymerich, 2006a). In another study, Aymerich et 

al (2006b) concluded that the performance of the stitched laminate depends on how well 

the base laminate performs under impact event. In addition, they found that stitching is 

most effective when the impact force is above critical and delamination is fully 
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developed in the laminate. Mouritz (2003) examined various impact data on stitched 

laminates involving low velocity and ballistic impacts and determined that stitching 

improved impact delamination resistance only when delamination cracks were above a 

threshold value of 15 mm. 

1.4.3 Interleaving Method 

Interleaving is a method of improving the interlaminar fracture toughness of a 

composite laminate by inserting a thin, discrete layer of particles or film of tough 

material system between the prepreg’s layers (Masters, 1989). The main idea of 

interleaving is to toughen the matrix interface and consequently, the interlaminar and 

transverse strengths of the laminate are improved (Chan, 1991). In a review by Sela & 

Ishai (1989), they suggested the use of selective interleaving where interlayer toughening 

is applied only to the critical areas prone to delamination such as holes, ply drops etc. 

Selective toughening is important because particle or film interleaving add significantly 

to the weight of the laminate and for mode-I and mode-II delamination, the effective 

adhesive thickness is about 0.1 mm. In addition to the increased weight of interlayer 

material, poor adhesion between the interlayer material and the prepreg layer could result 

in catastrophic failure (Stevanovic, 2001). 

Akangah, Lingaiah, & Shivakumar (2010) and Shivakumar et al (2009) 

researched the use of Nylon-66 nano-fabric interleaving. Shivakumar et al (2009) first 

suggested the idea as a consequence of making toughened and ultra light weight 

membrane for artificial dragonfly wings using electrospinning. In the preliminary impact 

study, nano-fibers with diameters ranging from 75–250 nm were made using 12 wt% 
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concentration Nylon-66 solutions. The areal density of the fabric ranged from 1.6 to 2.0 

g/m2. This represented between 1.0 and 1.4% of the areal density of AS4/3501-6 prepreg, 

which is 150 g/m2. Akangah et al (2010) made sixteen ply quasi-isotropic test specimens 

with dimensions 76.2 mm x 76.2 mm. The specimens were impact-tested using a 

cantilever beam with end-mass and instrumented with accelerometer to measure the 

impact force. The base and interleaved laminates had a thickness of 2.13 and 2.18 mm, 

respectively. The impactor was a spherical steel ball with a diameter of 12.7 mm attached 

to the end-mass. The test section was circular with a diameter of 50.8 mm and boundary 

condition was assumed to be clamped all around for analysis purposes. The impactor-

laminate test section mass ratio was 8. The results showed that interleaving increased the 

laminate thickness marginally, increased the critical force by 60% and reduced the 

damage growth rate by more than one half with respect to impact height and force. As a 

result of the marginal increase in the interleaved laminate’s thickness, interleaving will 

not significantly degrade the laminate’s in-plane properties. 

An example of particle interleaving is the toughened T800H/3900-2 composite 

material, which is the first advanced composite material to be certified for aeronautics 

applications (Hojo et al, 2006). This material system uses a thermosetting resin and 

contains tough and fine amorphous polyamide particles with a high glass transition 

temperature dispersed in the base thermosetting resin. A schematic and microscopic 

photographic cross-section of the material is shown in Figure 1.20 (Hojo et al, 2006). A 

major drawback of the T800H/3900-2 material system is the increased laminate thickness 

(~20%), leading to the degradation of in-plane mechanical properties and strength (~15–
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20%) (Shivakumar et al, 2009; Takeda, Kobayashi, Ogihara, & Kobayashi, 1999) and the 

reduction of the glass transition temperature from 195 to 145 ºC (Shivakumar et al, 2009). 

Despite the excellent mode-II interlaminar toughness of T800H/3900-2, the mode-I 

fracture toughness decreases with increasing crack length (Hojo et al, 2006). This 

drawback is remedied by using a novel ionomer based thermoplastic resin as the 

interlayer material. Results for both mode-I and mode-II loading show a steady increase 

in fracture toughness with increasing interlayer thickness. Figure 1.21 (Matsuda et al, 

1999) shows the schematic and microscopic photograph of the Toho Rayon 

UT500/111/ionomer prepreg. 

 
 
 

  
Figure 1.20.   Schematic and microscopic photographic cross-section 
                        of T800H/3900-2 (Hojo et al, 2006) 
 
 
 
 

It can be observed that the ionomer extends into the fiber epoxy region. The 

toughening principle is shown Figure 1.22. But, the major issue of increased laminate 

thickness remained unresolved. In a conventional interleaved CFRP, the toughened 
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region is limited to the resin-rich layer between any two adjacent layers as shown in 

Figure 1.22(a). When a crack path deviates from the toughened region, it can be arrested 

only by the fibers and as a result, the fracture toughness decreased. In the ionomer-

interleaved Carbon/Epoxy laminate, because its thickness extends into the fiber-epoxy 

region, crack path-deviation does not degrade the fracture toughness (Figure 1.22(b)). 

This is considered a unique advantage of using ionomer interleaving. 

 
 
 

 

 

Figure 1.21.   Schematic and Scanning Electron Microscope (SEM) micrograph of 
                        UT500/111/ionomer laminate (Matsuda et al, 1999)  
 
 
 
 

Crack path

 

Crack path

 

Figure 1.22.   Toughening mechanisms for (a) conventional interleaved CFRP 
                        and (b) Ionomer-interleaved Carbon/Epoxy (Matsuda et al, 1999)  
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1.5 Limitations of Current Methods 
 

Many limitations plague the existing methods of improving impact delamination 

resistance and tolerance. These drawbacks are currently limiting the applications of 

carbon/epoxy composite laminates and must be seriously addressed. A major drawback 

of matrix toughening is the adverse effect of hot/wet performance degradation of the 

composite material leading to increased water pick-up and limited applications in primary 

structures (Sela & Ishai, 1989). Although, many methods have been successfully used to 

toughened matrices, improvements in toughening the bulk matrix material are not 

transferable to the composite material (Masters, 1989; Sela & Ishai, 1989). 

A key restriction of the particle or film interleaving and through-the-thickness 

reinforcement, such as stitching and z-pinning, methods is the loss of in-plane mechanical 

properties of the laminate because of the increased laminate thickness after interleaving. 

A number of issues currently plague the manufacturing and use of z-pin technology. 

These include manufacturing, tooling and labor costs. Other issues such as testing the 

durability of z-pins under realistic aerospace environment are needed before the 

technology can be used to its full potential in aerospace applications (Mouritz, 2007). Z-

pinning techniques changes the morphology of composite laminates by introducing 

defects such as resin-rich pockets near the z-pins, high fiber weaving regions etc (Steeves 

& Fleck, 2006). These defects are capable of introducing complex failure regimes and 

must be studied in detail. Laminate stitching involves very complicated manufacturing 

process; the process is also labor intensive involving sophisticated equipment. In 

addition, stitching is effective only when delamination cracks have developed to a 
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threshold value of 15 mm or more. A technique that appears to improve impact resistance 

and tolerance without unduly increasing manufacturing and labor cost and no degradation 

of in-plane properties is polymer nano-fiber interleaving. This method is pursued in this 

research. 

 
1.6 The Polymer Nano-fiber Interleaved Concept 
 

The T800H/3900-2 prepreg and its successor, the Toho Rayon UT500/111 are 

excellent material systems but the bulky interleaved thickness results in loss of in-plane 

mechanical properties, increased weight and lower glass transition temperature. Any 

effective solution must significantly reduce the interleaved thickness so that, in-plane 

mechanical properties are not significantly affected. The concept illustrated in Figure 

1.23 is a polymer nano-fiber interleaved for a quasi-isotropic laminate, with stacking 

sequence (-45/90/45/0)3S. 

 
 
 

Top nano-fabric layer

Bottom nano-fabric layer

0º ply

90º ply

45º ply

-45º ply

Nano-fabric

Nano-fabric

Nano-fabric

Nano-fabric

Top nano-fabric layer

Bottom nano-fabric layer

0º ply

90º ply

45º ply

-45º ply

Nano-fabric

Nano-fabric

Nano-fabric

Nano-fabric  
                                 Figure 1.23.   Nano-fiber interleaved Concept 
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The figure shows the complete stacking sequence and a one-sixth block of 

stacking sequence for the interleaved laminate. Polymer nano-fibers were produced by 

electrospinning, a method which has been used in the medical field for over six decades. 

The interleaving material must have excellent adhesion with the base or parent material 

and must also exhibit high strain to fracture behavior. The proposed concept uses the 

method of polymer nano-fiber interleaving. The material for making nano-fibers is 

Nylon-66 and nano-fibers are produced by electrospinning. Nano-fibers have a high 

specific surface area and a high aspect ratio. Nylon-66 has excellent adhesion to epoxy 

matrix and high strain to fracture. In this proposed concept, a thin layer of polymer nano-

fabric is inserted between plies of composite laminate prepregs. In addition, a layer 

polymer nano-fabric is appended to the top and bottom of the laminate. 

 
1.7 Goals and Objectives 
 

Because of the desirable qualities of thermoplastic polymer nano-fibers such as 

very high surface area to mass ratio, excellent ductility and good adhesion with epoxy, it 

is anticipated that a small amount (1-2 wt%) would offer high impact damage resistance 

and tolerance. The goals of this research are to determine the relationship between the 

polymer flow-rate and the electric field, to determine the effect of polymer nano-fiber 

interleaving on the impact damage resistance and tolerance of AS4/3501-6 composite 

laminates produced by interleaving. The specific objectives are: 

1. To design, build and demonstrate an efficient and automatically controlled 

electrospinning set-up, 

2. To assess the low-velocity impact damage resistance of interleaved quasi-
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isotropic laminates and compare it with the base (non-interleaved) laminates, and, 

3. To assess the impact damage tolerance of both the base and the interleaved 

laminates using compression after impact (CAI) test. 

 
1.8 Scope 
 

This dissertation is in six chapters. Chapter One presents the background to the 

problem and identifies some key drawbacks of the current methods. It also explains the 

concept that is expected to address the weaknesses identified and set the scope of the 

research work. Chapter Two explains the evolution of electrospinning at the Center for 

Composite Materials Research (CCMR) at the North Carolina A & T State University 

(NC A&T SU) and the development of a new and improved electrospinning apparatus. A 

collector-current management approach was used in characterizing the electrospinning 

process. Chapter Three explains the fabrication of the base and interleaved laminates and 

the preparation of the test specimens. Non-destructive techniques are used in assessing 

the external and internal defects of the laminate. Impact testing is presented in Chapter 

Four. The test specimens and the test matrix are described and the impact testing 

procedure explained and includes the precautions taken. The results, analysis and 

discussions are also presented in chapter Four. Chapter Five describes the Compression-

after-impact (CAI) test to assess the damage tolerance, the results of the CAI tests and the 

discussion of the results. Finally, the conclusions and the recommendations are given in 

Chapter Six along with the suggestions for further work. 
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CHAPTER 2 
 

ELECTROSPINNING PROCESS AND IMPROVEMENTS 
 
 
2.1 Introduction 
 

Electrospinning is a technique for spinning polymer nano-fibers in the range of 10 

nm to 10 μm using electrostatic force. The concept was conceived in the medical field 

and recently found attractive in many fields including polymer composites. This Chapter 

presents a history of electrospinning developments at the Center for Composite Materials 

Research (CCMR) at the North Carolina A & T State University (NC A&T SU). 

 
2.2 Electrospinning at CCMR 
 
2.2.1 Stationary Flat Plate Collector 

The first basic electrospinning system developed at CCMR in 2004 had a syringe 

with a needle and a stationary flat plate collector. This basic design was tested and nano-

fabrics were prepared for micro-air vehicles (MAV) as part of the Ultra Light Weight 

Materials Program funded by US Army’s ARO MURI. The schematic and photograph of 

the basic set-up is shown in Figure 2.1. In this design, the syringe pump was mounted on 

a screw controlled laboratory jack platform and the distance between the collector and 

needle, D, adjusted by turning the screw. The needle was connected to a high positive DC 

voltage source and the collector was connected to ground potential. Non-uniform areal 

density of the fabric limited the application of this basic design. 
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(a) 

Flat Plate 
Collector

Needle connected to 
High Voltage Source

Syringe Pump

 
(b) 

Figure 2.1.   Stationary collector electrospinning apparatus. (a) Schematic 
                      diagram and (b) Photograph of apparatus 
 
 
 
 
2.2.2 Rotating Drum Set-up 

In this design, the stationary plate was replaced by a rotating drum to fabricate 

continuous fabric. The drum speed was controlled by a pneumatic motor. Some of the 

major problems of this design were difficulty in maintaining constant rotational speed 

and preventing fibers from depositing on surfaces other than the drum even when the 

drum was maintained at a negative voltage and non-uniformity of areal density of the 

fabric. The schematic and photograph of the rotating drum system is shown in Figures 

2.2(a) and (b), respectively (Lingaiah, Shivakumar, Sadler, & Sharpe, 2008). 
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(a) (b) 
Figure 2.2.   Rotating drum electrospinning apparatus. (a) Schematic and 
                      (b) Photograph of apparatus (Lingaiah et al, 2008) 
 
 
 
 
2.2.3 Multi-nozzle Electrospinning Set-up 

In an attempt to solve the non-uniform areal density of the nano-fabric produced, 

a multi-nozzle apparatus was developed. It consisted of between two needles to as many 

needles as needed. The needles are separated by axial distance, DL, and angular angle 

(90º for a two needle system). By carefully manipulating the distance DL between the 

needles, a limited control of the uniform areal density was achieved. However, a greater 

number of nozzles and a special arrangement were required to achieve acceptable 

uniformity. This arrangement was complex. The schematic and photograph of the 

apparatus is shown in Figures 2.3(a) and (b), respectively (Lingaiah et al, 2008). 
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(a) 

 
(b) 

Figure 2.3.   Two-needle rotating drum electrospinning set-up. (a) Schematic and 
                      (b) Photograph of set-up (Lingaiah et al, 2008) 
 
 
 
 
2.2.4 X-Traversing Electrospinning Set-up 

The uniform areal density drawback was practically resolved by using X-traverse 

mechanism where the needle mounted on this mechanism traversed along the length of 

the drum. In this design, the pneumatic motor was replaced by a variable speed DC 

stepper motor. This greatly improved the drum speed control and facilitated the studying 

of the effect of drum speed on fiber morphology and orientation. The effects of various 

traverse speeds were also studied. The set-up is shown in Figure 2.4. The key concern of 

matching flow-rate to electric field remained a major challenge. Repeated electrospinning 

and SEM imaging were required to adjust the electric field to a predetermined flow-rate. 

To eliminate this repeated process and to match flow-rate to the electric field, recent 

studies (Munir, Iskandar, & Khairurrijal, 2008, 2009; Samatham & Kim, 2006; Shin, 

2000; Shin, Hohman, Brenner, & Rutledge, 2001; Theron, Zussman & Yarin, 2004; Yan 

& Gevelber, 2010) were applied to develop an improved electrospinning system. 
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(a) 
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Needle

X-Slider

 
(b) 

Figure 2.4.   X-traversing needle electrospinning set-up. (a) Schematic and 
                      (b) Photograph of apparatus 
 
 
 
 
2.3 Development of Improved Electrospinning 
 
2.3.1 Electro-Mechanism of Electrospinning 

The electrospinning process balances three forces; the electric field force, the 

polymer surface tension and the viscoelastic force of the polymer. The jet formed at the 

tip of the nozzle is of a millimeter-scale while the fiber deposited on the collector is of a 

nanometer-scale order. Initially, it was thought that splitting of the jet as it traveled from 

the nozzle to the collector was responsible for the size reduction. However, advanced 

photographic techniques have shown that whipping jet is responsible for the fiber size 

reduction as shown in Figure 2.5 (Reneker & Yarin, 2008). For any electric field strength, 

E*, there exist a flow-rate, Q, required to maintain a steady Taylor cone (Samatham & 

Kim, 2006; Theron, et al, 2004). Using this concept, Samatham & Kim (2006) were able 

to correlate the fiber morphology with the collector current. Figure 2.6 shows this 

correlation. 
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(a) 

 

 
(b) 

Figure 2.5.   Actual electromechanics of fiber formation. (a) Photograph and 
                      (b) Schematic of whipping instability (Reneker & Yarin, 2008)  
 
 
 
 
 

 
(a) 

 
(b) 

Figure 2.6.   Relationship between collector current and fiber morphology. 
                      (a) Collector current regimes, and (b) Corresponding fiber morphology 
                      (Samatham & Kim, 2006) 
 
 
 
 

Shin et al (2001) demonstrated that whipping instability was initiated when the 

instantaneous collector current, I, against electric field, E*, curve changed from linear to 

non-linear. Yan & Gevelber (2010) showed that the normalized variance of the collector 
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current, I, was minimized when flow-rate, Q, matched the dynamic jet flow-rate, Qjet, and 

at this stage, whipping instability was initiated as shown in Figure 2.7. 

 
 
 

(a) (b) (c) 
Figure 2.7.   Various electrospinning process regimes. (a) Flow-rate (Q) greater that 
                      dynamic jet flow-rate (Qjet); (b) Flow-rate (Q) equals to dynamic jet 
                      flow-rate (Qjet), and (c) Flow-rate (Q) less than dynamic jet 
                      flow-rate (Qjet) (Yan & Gevelber, 2010) 
 
 
 
 

Collector Current is the control variable for controlling the fiber diameter and its 

uniformity and it depends on the spinning voltage and on environmental parameters such 

as humidity, temperature and solution properties (Munir et al, 2009). Changes in these 

parameters result in different collector current profile and as a result, changes in the fiber 

diameter and morphology. Also, improper mixing of the polymer solution results in the 

variation of viscosity within the solution and consequently, the fluctuation in the collector 

current and the poor fiber morphology. 

2.3.2 Implementation of Collector Current Management System 

To match the electric field to the flow-rate for electrospinning, the collector 

current management method was used. This involved the following objectives: (a) to 

develop a model of the relationship between collector current, I, and electric field, E*, for 
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various flow-rates, Q; (b) to determine the onset of whipping instability at various flow 

rates, Q; and finally, (c) to determine the operating diagram for the electrospinning 

process for only the whipping instability part. 

2.3.2.1 Materials and Methods 
 

The electrospinning set-up was a flat plate collector that was instrumented with 

the collector current management system as shown in Figure 2.8. A schematic of the 

collector current management system is enclosed in broken lines as shown in Figure 2.8. 

A photograph of the system is shown in Figure 2.9. The electrospinning set-up used 30 

gauge needles with an inner diameter of 0.1524 mm (0.006 in), outer diameter of 0.3048 

mm (0.012 in) and a length of 12.7 mm (0.5 in). A polymer solution was prepared using 

Nylon-66 crystals supplied by DuPont Company (Zytel 101, MW = 20,000 g/mol) and a 

90% formic acid and chloroform were obtained from Aldrich Co. 

 
 
 

(a) 

Flat Plate 
Collector

Needle

Syringe Pump

(b) 
Figure 2.8.   Electrospinning with collector current management system to improve 
                      spinning. Demonstration on a stationary collector. (a) Schematic and 
                      (b) The experimental set-up 
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Unit

 
                 Figure 2.9.   Collector current management system components 
 
 
 
 

A 40 g polymer solution with 12 wt% concentration was prepared by dissolving a 

measured weight of Nylon-66 crystals in a mixture of 90% formic acid and chloroform in 

a weight ratio of 75/25, respectively. The resulting solution was transferred to a 10 cc 

syringe fitted with the a 30 gauge needle. Efficient electrospinning requires the solution 

to be adequately mixed. This was achieved by vigorously mixing the solution using a 

pneumatic mixer and evacuating the trapped air bubbles in a vacuum chamber maintained 

at -85 kPa (-25 in-Hg) for 5 minutes. The conductivity and viscosity of the resulting 

solution were measured using Russell RL060C portable conductivity meter and 

Brookfield DV-II+ Pro instrument, respectively. The needle was maintained at a high 

positive potential, which was generated using a high voltage generator of the type 

FC40R3 with a maximum voltage of 40 kV from Glassman High Voltage Inc. The 

collector was connected to ground through a 1.0 M resistor and 0.1μF capacitor across 

which a Digital Multimeter and a USB DI-148U DAQ data acquisition unit were 

connected. The function of the capacitor is to filter out the 50 Hz signal of the power 

supply network. 
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2.3.2.2 Experiment I: Determination of Operating Diagram using the Method of Shin 
et al (2001) 

 
Electrospinning occurs in an electric field between 1.0-2.0 kV/cm (Yamashitaa, 

Miyakeb, Higashiyamab, & Tanakaa, 2010). Based on an average electric field of 2.0 

kV/cm and a voltage of 36 kV, a stand-off distance of 18 cm was calculated. Tests were 

conducted with a flow-rate in the range of 0.3-0.9 ml/hr based on previous work 

(Akangah et al, 2010) using a flat plate collector and the voltage was varied from 9 to 36 

kV in steps of 1.8 kV. For each flow-rate, Q, three collector voltage measurements were 

recorded and the average was calculated. The average collector voltages acquired by the 

collector current management system were converted into collector currents using Ohm’s 

Law. 

2.3.2.3 Results and Discussion (Experiment I) 
 

This study determined the relationship between the collector current, I, and the 

electric field, E*, determined the critical electric field for each flow-rate and developed 

an operating diagram for the range of flow-rate under investigation. Preparation of the 

polymer solution resulted in a negligible solvent lost of about 0.12% and the average 

conductivity and viscosity was found to be 2.28 mS and 327 cP, respectively. Figure 2.10 

is a plot of the collector current versus the electric field for all three calculated currents 

for the flow-rate of 0.4 ml/hr. The average values are plotted in Figure 2.11. This study 

found that the curves were divided into linear and non-linear parts as observed by Shin et 

al (2001). The researchers established that whipping instability begun when the slope of 

the curve changed from linear to nonlinear. For the case of a flow-rate of 0.4 ml/hr, the 

two regions were approximated by straight lines as shown Figure 2.11. At the intersection 
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of these lines, the critical electric field was obtained by dropping a vertical line from the 

point of intersection to the electric field axis and reading the value of the electric field 

and this was found to be approximately 1.5 kV/cm for the 0.4 ml/hr flow-rate. Figure 

2.12 shows the average collector currents for the range of flow-rates investigated. Critical 

electric fields, 
cE , at the start of whipping for each flow-rate were extracted and plotted 

as a function of the flow-rate (Q) as shown in Figure 2.13. The figure describes the 

operating diagram of the electrospinning process in the whipping instability regime using 

the method of Shin et al (2001). The best fit to the data was a power curve in the form 

3.0* 2QEc  . The critical electric field describes by this equation is the minimum field for 

efficient electrospinning. To ensure that no beads are formed, it is recommended to 

operate above this minimum value. At flow-rates above 0.7 ml/hr, no discernible Taylor 

cone was formed at the maximum value of the high voltage generator. 
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Figure 2.10.   Plot of collector current, I, versus electric field, E*, for Nylon-66 (12 
                        wt% concentration) showing all three repeated tests at 0.4 ml/hr 
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Figure 2.11.   Plot of averaged current, I, versus electric field, E*, for Nylon-66 (12 
                        wt% concentration) at 0.4 ml/hr 
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Figure 2.12.   Plot of average collector current, I, versus electric field, E*, for Nylon- 
                        66 (12 wt% concentration) solution. The insert shows idealized I-E* 
                        curve 
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Figure 2.13.   Plot of critical electric field versus flow-rate Q using the method of 
                        Shin et al (2001) 
 
 
 
 
2.3.2.4 Experiment II: Determination of Operating Diagram using the Method of Yan 

& Gevelber (2010)  
 

In this experiment, 0.3-0.7 ml/hr flow-rates were selected and the fibers were 

electrospun using the same flat plate electrospinning set-up shown in Figure 2.8. At the 

start of the experiment, a flow rate of 0.3 ml/hr was chosen and the voltage was varied 

from 9 to 36 kV in steps of 1.8 kV. At each voltage, the collector voltages, Vs, were 

acquired using the data acquisition unit connected to a PC by sampling the data at the rate 

of 10 Hz. Data were collected for a period of two minutes and during this period, a total 

of 1,200 data points were collected at each spinning voltage. Data were collected for the 

range of flow-rate under investigation. The experiments were repeated for two additional 

times at each flow-rate. 

For each flow-rate, Q, the collector current standard deviation at each voltage 

from 9 to 36 kV was calculated for the 1,200 data points. The voltages corresponding to 
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the least collector current standard deviations at each flow-rate were the critical spinning 

voltages. The critical electric field was obtained by dividing the critical voltage by the 

distance, D. 

2.3.2.5 Results and Discussion (Experiment II) 
 

A total of fifteen critical spinning electric field results were obtained and recorded 

in Table 2.1. The operating diagram for the whipping instability part of the 

electrospinning process is shown in Figure 2.14 and the best fit to the experimental data 

is a power law curve with the form 25.0* 2QEc  . Comparing both methods as in Figure 

2.15, it can be seen that there are some differences between the two methods, although, 

both results are described by power law equations. 

 
 
 
Table 2.1. Experimental results to determine the onset of whipping instability 

Flow Rate, Q, 
ml/hr 

Critical Spinning Voltage, 
Vc, kV 

Critical Electric Field, 

D

V
E c

c 
 , kV/cm 

28.8 1.51 
28.6 1.50 0.3 
28.2 1.50 
32.4 1.68 
31.8 1.64 0.4 
32.4 1.68 
32.0 1.70 
31.6 1.73 0.5 
32.0 1.69 
33.2 1.82 
33.8 1.79 0.6 
32.6 1.81 
35.0 1.87 
35.0 1.87 0.7 
34.4 1.89 
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Figure 2.14.   Plot of critical electric field versus flow-rate Q using the method 
                        proposed by Yan & Gevelber (2010) 
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   Figure 2.15.   Comparison of both methods for determining operating diagram 
 
 
 
 

The reference environmental conditions under which these tests were conducted 

were within the range, 24 + 2 ºC and 50 + 5%, for temperature and relative humidity, 

respectively. These conditions were not optimized because it was outside the scope of 
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this present work. However, as environmental conditions could affect the morphology of 

the fibers and in extreme cases (high RH%), fibers may not be formed at all (De Vrieze et 

al, 2009). It is important to determine these optimum values for the electrospinning of 

Nylon-66 12 wt% solution. 

2.3.2.6 SEM Analysis to Determine Fiber Morphology 
 

SEM analysis was used to determine the effect of matching the flow-rate to the 

electric field on the fiber morphology. Two square fabrics measuring approximately 5 

mm were cut from each specimen to represent the left and right fabrics. A total of ten 

such specimens were cut. Each specimen was mounted on specimen stub and held in 

place with a carbon tape. The specimens were first coated with Au/Pd film for 200 

seconds using Desk IV Vacuum Sputter System prior to SEM analysis. SEM equipment 

type FEI XL30 was used for this analysis. Image-J software was used to analyze the SEM 

images and the typical results are showed in Figure 2.16 for 0.4 ml/hr flow-rate. 

 
 
 

(a) (b) 
Figure 2.16.   SEM micrograph of fiber morphology obtained at 0.4 ml/hr at 
                        (a) ~ 15k and (b) 40k resolutions 
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The results showed that the minimum fiber diameters occurred at 0.4 ml/hr flow-

rate with the fiber diameters ranging from 80 to 160 nm. Therefore, the best possible 

electrospinning parameters were 0.4 ml/hr flow-rate; 12 wt% concentration of Nylon-66; 

30 gauge needle (0.1524 mm inner diameter) and an average electric field of 1.67 kV/cm. 

Figure 2.16 showed the SEM micrograph at a flow-rate of 0.4 ml/hr. 

2.3.2.7 Generalization of Results 
 

The general form of the equation can be cast in the form, k
c QAE 0 , where for 

Nylon-66 (12 wt%), A0 = 2 and k = 0.25-0.30. Different polymers will have different A0 

constants and depending on the conductivity and viscosity of the solution, the index will 

be different. Accurate determination of these constants depends on the method used. 

Since the transition from the linear to the non-linear form occurs over a wide range (Shin, 

2000), accurately determining these constants using Shin’s method can be difficult. The 

method proposed by Yan & Gevelber (2010) had a better fidelity. A major disadvantage 

with this method is the need for a starting critical electric field around which to conduct 

the experiment. In the absence of such an approximate electric field, the data may 

become massive and perhaps unyielding. The approach adopted here was to use Shin’s 

method to get that approximate value and refine it using Yan & Gevelber’s method. 

 
2.4 Size Scale-up and Description of Equipment 
 

A large drum size was required to make nano-fabric for the large laminate size 

needed. Previous work on electrospinning (Lingaiah et al, 2008) using rotating drum of 

radius of 57 mm (2.25 in) and a rotating speed of 250 rpm (corresponding to a linear 
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speed of 1.5 m/s) resulted in random fibers with diameters ranging from 75 to 250 nm, 

for a single-nozzle electrospinning set-up. In this present study, the drum had a radius of 

146 mm (5.75 in). Since approximately the same linear speed was desired, the linear 

speeds were matched and the rotating speed for the scaled-up system was found to be 98 

rpm. 

Figure 2.17 shows the photograph of the scaled-up rotating drum electrospinning 

system. The enclosure measured 914 mm x 1,220 mm x 1,830 mm (36 in x 48 in x 72 in) 

and was assembled using aluminum TSLOTS. The electrospinning apparatus was 

equipped with a 250 CFM high efficiency filter system. This was connected to a variable 

AC transformer to regulate the motor speed and the air-flow velocity in the chamber. At 

the other end was an extraction tube connected to an extraction hood where the harmful 

polymer solution vapors were safely extracted from the chamber. The system was 

equipped with two KDS 100 syringe pump that were independently controlled. 

 
 
 

Syringe Pump
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               Figure 2.17.   Photograph of rotating drum electrospinning system 
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Each syringe pump was equipped with a 10 ml syringe fitted with 30 gauge 

needle that was maintained at a high positive DC voltage and independently powered 

using Glassman’s High Voltage Power supply of the type FX40R3 with maximum 

reversible voltage of 40 kV. Each needle was mounted on a Teflon pole driven by a 

Velmex Xslide XN10-0300-E2-21 equipped with a Vexta Type 23T1 single shaft stepper 

motor which was controlled by a VXM-1J step motor controller. The traverse speed of 

the Xslides was programmed to be 12 mm/s (0.47 in/s) and the Xslides were started while 

they were in opposite directions so that they were always out-of-phase. Two humidifiers 

were mounted inside the enclosure to maintain humidity, especially during the winter 

period. At full capacity, the steam mass flow-rate was measured to be about 0.3 kg/hr. 

Figure 2.18 clearly shows the Xslide and the humidifiers in the background. 
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Figure 2.18.   Electrospinning set-up during spinning operation. Velmex 
                        Xslide and humidifier clearly seen in the background 
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The chamber environmental conditions were monitored by means of an electronic 

sensor and outputted on a computer screen using USB connection. The drum was 

mounted on a TSLOT stand and connected to a motor by means of a 4:1 reduction gear 

driven by a toothed belt to avoid slippage. The drum motor was controlled by a 

BFL6200A-5 brushless speed control system to regulate the drum speed. The drum 

collector was connected to a 1.0 M resistor and 0.1 μF capacitor across which a data 

acquisition unit was connected. The data acquisition system was a USB DI-148U USB 

DAQ unit and the collector voltage was monitored using PC based software that was 

supplied with the DAQ unit. Figure 2.19 shows the schematic of the rotating drum 

electrospinning set-up, with two spinning systems, instrumented with the collector 

current management system. This setup was used to validate the characterization 

experiment and also to fabricate the nano-fabric for interleaving. 

 
 
 

 
Figure 2.19.   Schematic of two needle rotating drum electrospinning system 
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2.5 Results of Performance Evaluation 
 
2.5.1 Processing Parameter Selection 

To determine the performance of the new and improved drums electrospinning 

system, the nano-fibers were produced based on the parameters identified in section 2.3. 

The performance matrices were the number of beads, electrospinning yield, fiber 

diameter and range. These metrics were compared to that of the original drum 

electrospinning system. The parameters used in making the nano-fibers are tabulated in 

Table 2.2. In the example 2, the distance was fixed at 15 cm. An electric field step size of 

0.1 kV/cm was chosen to correspond to a spinning voltage step size of 1.5 kV. Starting 

from a voltage of 20 kV, the spinning voltage was varied until a spinning voltage of 26 

kV, the critical spinning voltage, was reached. This resulted in a critical electric field of 

1.7 kV/cm. The nano-fibers made were analyzed using the SEM and the diameters were 

measured using Image-J software. 

 
 
 
Table 2.2. Processing parameters for original and present method 

Present Method 
Processing Parameters 

Original Method 
(Lingaiah et al, 2008) Example 1 Example 2 

Voltage, kV 
Distance, cm 
Critical Electric Field, kV/cm 
Time, hours 
Flow-rate, ml/hr 
# of needles 
Traverse Length, mm 

            30.0 
            20.3 
               - 
              2.0 
              1.0 
              1 
          305.0  

      36.0 
      21.5 
        1.7 
        4.0 
        0.4 
        2 
    762.0 

      26.0 
      15.0 
        1.7 
        4.0 
        0.4 
        2 
    762.0 
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2.5.2 SEM Analysis 

Ten images were taken from each specimen at different resolutions ranging from 

500 nm to 20 μm. For each specimen, the minimum and maximum fiber diameters were 

measured, using Image-J software. SEM results in Figures 2.20 and 2.21 show that the 

range of fiber diameters for the original method was 85-180 nm and for the new and 

improved system, the range was 60-125 nm. In addition, eight beads were detected in the 

fabric made by the original system but only one bead was detected in fabric made by the 

present study. Figure 2.22 shows the SEM micrograph for example 2. Three beads were 

observed and fiber diameters ranged from 70-130 nm. 

 
 
 

(a) (b) 
Figure 2.20.   SEM micrograph of nano-fabrics showing beads (circled). 
                        (a) Original system, and (b) New and improved system (example 1) 
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(a) (b) 
Figure 2.21.   SEM micrographs of nano-fabric at 50k resolution. (a) Original 
                        system with fiber diameter range 85-180 nm and (b) New and 
                        improved system with fiber diameter range 60-125 nm (example 1) 
 
 
 
 

(a) (b) 
Figure 2.22.   SEM micrographs of nano-fabric made by the new and improved 
                        system at V = 26 kV, D = 15 cm (example 2). (a) Micrograph at 3k 
                        resolution, and (b) Micrograph at 50k resolution 
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2.5.3 Electrospinning Yield 

To calculate the yield, the areal density of the fabric was first determined. The 

schematic of peeling off the nano-fabric from the drum and strip dimensions are shown in 

Figure 2.23. The sample size for areal density determination is calculated using Equation 

(2.1) (Lipson & Sheth, 1973). 

 
 
 

cut
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(b) 

Figure 2.23.   Removal of electrospun nano-fabric from rotating drum. 
                        (a) Schematic of cutting line and (b) Schematic of cut nano-fabric 
 
 
 
 

   1
1

1  NN
c CR  (2.1)

where Rc is the reliability at confidence level C and NN is the sample size. For most 

engineering applications, C = 0.95. A plot of Rc versus NN is shown in Figure 2.24. At a 

reliability of 0.82, 16 sample size of strips was chosen. Sixteen strips of 25.4 mm (1.0 in) 

in width and 64 mm (2.5 in) in height were cut from randomly selected fabric. A pitch 
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distance of 51 mm (2 in) was maintained between the centerlines of consecutive strips. 

The areal density is calculated using Equations (2.2). 
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Figure 2.24.   Determination of number of sample, for a reliability of 82% and a 
                        confidence level (C) of 95% 
 
 
 
 

(m) x Width (m)Length 

(g) fabric ofWeight 
)(g/mdensity  Areal 2   (2.2)

The mass of the fabric in grams was determined by cutting and weighing a sample strip 

measuring width of 25 mm (1.0 in) and length of 64 mm (2.5 in) from randomly selected 

fabrics. The sample average areal density distribution along the length of the rotating 

drum is shown in Figure 2.25. 
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          Figure 2.25.   Distribution of areal density along length of rotating drum 
 
 
 
 

A curve was drawn through the sample average data points and polynomial curve 

was fitted to the sample average data points. The grand average areal density and 

standard deviation (S.D) of the nano-fabrics were calculated based on the average data 

points of the strips and found to be 0.7 g/m2 and 0.1, respectively. The experimental error 

is equal to 
1,

2

*S.D
v

t  . Where 
2

t  is the two-tail student t distribution,  1  is the 

confidence interval and  is the degree of freedom (dof). At a confidence co-efficient of 

95% and 16 dof, experimental error = 0.2. Summary of the results are tabulated in Table 

2.3. 

The electrospinning yield is given by Equation (2.3). 







hr

g

hrNeedles

AreaDensityAreal
Y

*#

*
 (2.3)
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where areal density is the grand average areal density, g/m2; area is the nano-fabric 

surface area (2πRLT), m2; #needles is the number of needles used for electrospinning; hr 

is the electrospinning duration measured in hours; LT  is the traverse length and R is the 

drum radius. 

 
 
 
Table 2.3. Summary of physical properties of electrospun nano-fibers 

Present Method 
Results 

Original Method 
(Lingaiah, et al, 2008) Example 1 Example 2 

Areal Density, g/m2 0.96 0.70 0.85 

Yield, Y, g/hr 0.05 0.06 0.07 
Diameter Range, nm 85-180 60-125 70-130 

# of Beads 8 1 3 

 
 
 
 
2.6 Summary 
 

A collector current management system that matched the flow to the electric field 

was implemented and the operating diagram for the electrospinning of Nylon-66 was 

developed. The critical electric field ranged from 1.6 to 1.7 kV/cm and the minimum 

electrospinning distance was obtained to be 21.5 cm at a flow-rate of 0.4 ml/hr. A scaled-

up rotating drum electrospinning system was designed, built and its operations were 

verified. The performance of the original system was compared to the one developed in 

this study. Fiber diameters of the fabric from the original and present system ranged from 

85 to 180 nm and from 65 to 125, respectively. The number of beads reduced from 8 to 1. 

The average areal density for the original and present study was 0.96 and 0.70 g/m2, 

respectively. Based on this areal density, the electrospinning throughput was respectively, 
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0.05 and 0.06 g/h for the original and present study. Optimization of the electrospinning 

environmental conditions was outside the scope of this work. However, the temperature 

was maintained within the stated range of: 24 + 2 ºC and the relative humidity range was: 

50 + 5%. 
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CHAPTER 3 
 

LAMINATES FABRICATION AND SPECIMENS 
PREPARATION 

 
 
3.1 Introduction 
 

This chapter describes the fabrication of the laminates and the preparation of 

specimens for impact and subsequent compression after impact (CAI) tests. The 

autoclave method and the prepreg supplier’s recommended specifications were used to 

fabricate laminate panels. A number of precautions were taken to ensure safety, proper 

ply orientation and stacking sequence of the laminate. The laminate quality was visually 

inspected, c-scanned, and the thickness was measured. The laminates were carefully cut 

into test specimens of required size. 

 
3.2 Material Systems 
 

Aerospace grade AS4/3501-6 prepreg supplied by Hexcel Composites was chosen 

for this work. The material was supplied as a roll of prepreg tape of epoxy matrix (3501-

6) reinforced with continuous unidirectional carbon fibers (AS4). The roll measured 

1,230 mm (48.5 in) in width and was stored in a freezer at a temperature of -23 ºC (-10 

ºF). It was thawed overnight at room temperature in a plastic bag before cutting them into 

355 mm x 762 mm (14 in x 30 in) sized plies with orientations of -45º, 90º, 45º, and 0º 

with respect to fiber directions.. 

The electrospinning parameters identified in Chapter 2 were used to make the 

nano-fabric sheets. The parameters used in electrospinning were, a flow-rate of 0.4 ml/hr, 
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12 wt% concentration, gauge 30 needle with inner diameter of 0.1524 mm (0.006 in), and 

an average critical electric field ranging from 1.6 to 1.7 kV/cm. The range of 

environmental parameters maintained in the chamber during electrospinning was relative 

humidity between 45 and 55% and temperature between 22 and 26 0C. The rotating drum 

collector linear speed was set at 1.5 m/s. In all, 38 pieces fabrics were made. An SEM 

micrograph of the nano-fabric used for interleaving is shown in Figure 3.1. 

 
 
 

 
               Figure 3.1.   SEM micrograph of nano-fibers used for interleaving 
 
 
 
 

The complete stacking sequence of the laminate with a one-sixth block are shown 

in Figures 3.2 and 3.3 for both the base and interleaved laminates, respectively. The 

interleaved laminates were made by placing one layer of nano-fabric in between two 

consecutive prepreg layers. In addition, a layer of nano-fabric was also placed on the top 

and bottom of the laminate. 
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 0º ply

90º ply
45º ply

-45º ply

0º ply

90º ply
45º ply

-45º ply

 
                               Figure 3.2.   Schematic of base laminate layout 
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                        Figure 3.3.   Schematic of interleaved laminate layout 
 
 
 
 
3.3 Fabrication of Base and Interleaved Laminates 
 

Fabrication of quasi-isotropic laminate consisted of the following procedures: 

prepreg cutting, stacking, debulking, and molding. Each of these steps is explained 

below. Most of the processes are similar for both the base and the interleaved laminates. 
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3.3.1 Prepreg Cutting Process 

To ensure proper control of fiber alignment, a plastic triangle template was used 

to align a previously prepared rectangular plastic template on the prepreg as shown in 

Figure 3.4. This rectangular template measuring 325 x 762 mm was used to cut the plies 

for the laminate. Figure 3.4 shows how -45º ply is cut using this procedure. In total, 128 

plies were cut consisting of 32 plies each for 0º, 45º, -45º and 90º ply orientations. 

 
 
 

AS4 Carbon/3501-6 
Epoxy Prepreg roll 
(width is 1,230 mm 
(48.5 in))

Reference 
Straight Edge

Plastic Template 
measuring 355 mm 
x 762 mm (14 in x 
30 in)

45º-45º-90º
Triangle

 
Figure 3.4.   Prepreg cutting from a roll for 0/+ 45/90 layers; example of -45º ply 
 
 
 
3.3.2 Stacking and Debulking 

Prepregs were stacked as explained in Section 3.2. The debulking procedure was 

performed as follows. Prior to debulking, a mold was prepared. A suitable-sized bottom 

Teflon sheet was secured to the previously cleaned surface of the mold. A double-sided 

tape was applied along the top and bottom length-wise of the reference straight edge. The 

reference edge was then aligned with the edge of the bottom Teflon film allowing about 

12.7 mm (0.5 in) space between the edge of the tape and the perimeter of the mold. A 
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silicon rubber dam was installed over the mold’s vacuum port with a double-sided tape. 

A double thick pad of polyester breather was secured in place with flash tape to cover the 

hole in the rubber dam and a suitable-sized Teflon sheet was attached to the breather. A 

mastic sealant tape was applied to the perimeter of the mold plate and away from the 

bottom Teflon film. The purpose of the Teflon film was to aid in the evacuation of air 

from the prepreg layers. After removing the backing paper from the mastic sealant tape, a 

suitable sized bagging film was gently tacked to the top of the exposed mastic sealant 

tape and trimmed. 

The previously stacked prepreg was placed between the two Teflon films and 

pressed against a reference straight edge. After sealing the bagging film, a vacuum was 

applied and the prepreg layers debulked until the vacuum stabilized at about 101.6 kPa 

(30 in-Hg) for two minutes. The picture in Figure 3.5 shows the debulked prepreg layers. 
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                                     Figure 3.5.   Debulking of prepreg layers 
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3.3.3 Molding 

The debulked prepreg was then prepared for molding. The process consisted of 

mold preparation, bagging, and molding. 

3.3.3.1 Mold Preparation 
 

A 6.35 mm x 432 mm x 876 mm (0.25 in x 17 in x 34.5 in) flat steel mold plate 

was used for making the laminate. The mold was cleaned using laboratory alcohol. Two 

coats of mold flash were applied taking care to allow the first coat to flash off before 

applying the second coat. A double-sided flash tape was applied around the perimeter of 

the mold allowing about 12.7 mm (0.5 in) space between the edge of the tape and the 

perimeter of the mold. A suitably-sized release film was applied and trimmed to cover the 

double-sided tape on the mold surface. This was the bottom release film. A reference 

straight edge, previously treated with mold release solution, had flash tape wrapped 

around it to prevent the resin from sticking to it. A double-sided tape was placed along 

the top and bottom length-wise of the reference straight edge. The reference edge was 

then aligned with the edge of the bottom release film. 

3.3.3.2 Bagging 
 

The debulked prepreg reference edge was placed firmly against the side of the 

reference straight edge and on top of the bottom release film as shown in Figure 3.6. 

Precautions were taken to prevent contaminating the prepreg during this process. Two 

breather yarns of 7781 E-Glass were applied across the ends of the preform after which a 

top release film was applied to cover the preform, the double-sided tape and the straight 

reference edge. Two coats of mold release were applied to a previously cleaned 20 gauge 
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steel cowl plate. The cowl plate was applied on top of the release film making sure that it 

was aligned against the side of the reference straight edge and taking care not to puncture 

the film. Pieces of the flash tape were used to secure the plate in place. The breather 

yarns were then folded over the cowl plate and held in place by pieces of the flash tape as 

shown in Figure 3.7. 
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                              Figure 3.6.   Debulked prepreg prior to bagging 
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Figure 3.7.   Cowl plate mounting for uniform thickness and breather yarns for 
                      evacuating gases 
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A silicon rubber dam was installed over the mold’s vacuum port with double-

sided tape. A double thick pad of polyester breather was secured into place with the flash 

tape to cover the hole in the rubber dam. Mastic sealant tape was applied around the 

perimeter of the mold plate and away from the bottom release film. A suitably-sized 

polyester breather was cut and applied to the top of the cowl plate and upper release film. 

After removing the backing paper from the mastic sealant tape, a suitably-sized bagging 

film was gently tacked to the top of the exposed mastic sealant tape and trimmed. The 

bagged preform was vacuum tested by closing the 3-way valve between the mold and the 

vacuum pump and noting the rate of vacuum leak. The vacuum leak rate should not 

exceed 3.4 kPa/min (1.0 in-Hg/min). Figure 3.8 shows the vacuum tested bagged preform 

ready for the autoclave process. 

 
 
 

Mastic Tape

Polyester Breather

 
                            Figure 3.8.   Prepared preform ready for autoclave 
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3.3.3.3 Autoclave Process 
 

The bagged preformed sitting on the mold was inserted into the autoclave 

chamber as shown in Figure 3.9 and the autoclave’s vacuum line attached to the mold’s 

vacuum port. The autoclave’s vacuum pump was turned on and a leak check performed 

again. When the result was found to be satisfactory, the autoclave door was closed and 

bolted with the recommended torque of 240 Nm (250 ft-lb). 

 
 
 

Bagged 
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Autoclave’s 
Vacuum Line

Thermocouple

 
              Figure 3.9.   Mounting of laminate into autoclave and instrumentation 
 
 
 
 

Nitrogen gas pressure was applied to the autoclave chamber and the appropriate 

process cycle initiated. As the temperature increased, the resin viscosity decreased 

rapidly and resin chemical reaction began. At the end of the temperature hold at 177 ºC 

(350 °F), resin viscosity was at a minimum and the applied pressure squeezed out the 

excess resin. The pressure was held constant throughout the cure cycle so that the resin 

cured and turned into a glassy state. At the end of this cycle, the autoclave power was 
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turned off and the pressure and temperature were allowed to drop ambient conditions 

(atmospheric pressure and 38 ºC (100°F) temperature). Figure 3.10 illustrated the time, 

temperature, pressure and vacuum of the autoclave cycle. The picture of a resulting 

laminate is shown in Figure 3.11. 
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Figure 3.10.   Specimen time, temperature and pressure cure cycle for 
                        autoclave process 
 
 
 
 

Edge to be trimmed

Reference edge
Edge to be trimmed
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                      Figure 3.11.   Completed laminate prior to trimming 
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3.4 Structural Diagnostics Inc (SDI) C-Scan of Laminates 
 

Ultrasonic waves are high frequency sound waves that vibrate at a frequency 

above 20 kHz. During a c-scan operation, a transducer transforms a voltage pulse into an 

ultrasonic pulse. These pulses are transmitted through the test specimen thickness in 

either pulse-echo or through transmission mode. Through transmission mode was used in 

this work. In this mode, two transducers were used to represent a pulser and a receiver, 

which respectively transmits and receives visuals. Figure 3.12 shows the SDI c-scan 

equipment used for this worl. 

 
 
 

 
                                Figure 3.12.   SDI ultrasonic c-scan equipment 
 
 
 
 
3.4.1 C-Scan Test 

Prior to the c-scan, the test laminates were visually inspected for any surface 

flaws and defects. The two focused transducers with diameters of 12.7 mm (0.5 in) and 

frequency of 5 MHz are manufactured by DuPont. The following amplifier and machine 



 

71 

settings were used for laminate c-scan tests: 30% gain, 42 dB attenuation, scan speed of 

63.5 mm/s (2.5 in/s) and scan index of 0.75 mm (0.030 in). Using these settings, the 

laminates were c-scanned for delamination defects to ensure that they are satisfactory. 

Figure 3.13 shows the testing of a laminate for internal defects. The SDI WinScan 

software is a data acquisition package used for the acquiring and analyzing the scanned 

data. 

 
 
 

Test Panel

Water BathGimbal

Receiver

Pulser

 
                        Figure 3.13.   Through-thickness c-scanning of the laminate 
 
 
 
 
3.4.2 Results 

The c-scan results for both the base and the interleaved test laminates are shown 

in Figures 3.14 and 3.15, respectively. Ten color codes and their corresponding signal 

attenuation ranges are shown in both figures. The red color code corresponding to signal 

attenuation between 90–100% represents essentially no flaw in the specimen. The lower 

the signal attenuation range, the higher the damage detected in the laminate. The blue 
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color code represents the most flawed area in the laminate. The images show that both the 

base and the interleaved test laminates were damage-free. The edges of the test laminates 

showed signal transmission within the range of 0-10%. This low value was due to trapped 

air between the clamps and the laminate along the edges. After the c-scan, the laminates 

were immediately cut into test specimens using water lubricated diamond tipped saw and 

the specimens were dried and stored in desiccator to avoid moisture absorption. The 

specimens were wiped clean with a cloth before the drying process. 

 
 
 

 
(a) 

 
(b) 

 

Figure 3.14.   C-scan image of base laminates. (a) Laminate # 1 and  
                        (b) Laminate # 2 
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(a) 

 
(b) 

 

Figure 3.15.     C-scanned images of interleaved laminates. (a) Laminate # P1 and 
                          (b) Laminate # P2 
 
 
 
 
3.5 Preparation of Test Specimens 
 
3.5.1 Machining 

The seven laminates, each measuring 356 mm x 762 mm (14 in x 30 in), were 

machined into a total of seventy test specimens (forty-two base and twenty-eight 

interleaved test specimens) measuring 102 mm x 152 mm (4 in x 6 in) using the reference 

edge for locating the laminate. Figure 3.16 shows laminate layout, test specimen and 

specimen configuration. 
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(c) Specimen layout 

     Figure 3.16.   (a) Laminate layout, (b) Test specimen and (c) specimen layout 
 
 
 
 

Specimens were designated as PL# _specimen#, where PL# is 1, 2, and 3 for base 

laminates and P1 and P2 for interleaved laminates. For the base laminate, the first 

number indicated the laminate number. For the interleaved laminate, the letter P indicated 

the fact that the laminate was interleaved and the number after the letter P indicated the 

laminate number. 

3.5.2 Specimens Drying 

Specimen drying was necessary after machining to drive out water from the 

specimens before subsequent tests could be performed. The drying cycle was controlled 

to prevent thermal stress build up in the specimen. The drying temperature was ramped 

up to 60 ºC from ambient temperature over 12 hours and was maintained for another 24 

hours and then ramped down to the ambient temperature in 12 hours as shown in Figure 

3.17. Total drying duration per cycles was about 48 hours. 
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                            Figure 3.17.   Drying cycle of c-scanned test specimens 
 
 
 
 
3.5.3 Test Specimen Dimensions 

Using a confidence level of 0.95 and reliability of 0.90 (Lipson & Sheth, 1973), 

32 specimens were randomly sampled for thickness measurement. A Mitutoyo 

micrometer with a flat anvil face was used for thickness measurement. The thickness, h, 

was measured at four locations in the proposed area of impact (ASTM, 2008). Figure 

3.18 shows the thickness of a test specimen being measured. The width and length of test 

specimens were measure using IP 54 Fowler Digital Vernier Caliper. The average results 

are tabulated in Table 3.1. The base laminate thickness ranged from 4.10 to 4.18 mm 

while the interleaved laminate thickness ranged from 4.11 to 4.18 mm. The average 

thickness and S.D for the base and interleaved laminates are 4.14 mm and 0.023; and 

4.15 mm and 0.023, respectively. At confidence level of 95% and degree of freedom for 

the base and the interleaved of 18 and 14, respectively, the experimental error was 

calculated to be 0.05. From the results, there was no significant difference in the average 

thickness of base and interleaved laminates. The specimens were stored in a dessicator 

until impact testing was performed. 
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MicrometerTest
Specimen

 
                       Figure 3.18.   Thickness measurement of a test specimen 
 
 
 
 
Table 3.1. List of specimen dimensions 

Base Specimens Interleaved Specimens 

ID# 
Length, 
l, mm 

Width, 
w, mm 

Thickness, 
h, mm ID# 

Length, 
l, mm 

Width, 
w, mm 

Thickness, 
h, mm 

1_14 152.71 102.06 4.16 P2_12 152.78 102.04 4.16 
1_3 152.30 102.25 4.14 P2_5 152.49 101.48 4.17 
1_8 152.00 101.83 4.10 P2_3 152.90 102.08 4.17 
1_9 152.10 101.42 4.18 P1_5 152.27 101.29 4.18 
2_11 152.74 101.50 4.16 P1_2 152.72 101.55 4.16 
1_1 152.32 101.34 4.15 P2_6 152.84 101.27 4.13 
2_4 152.85 101.97 4.14 P1_12 152.04 101.98 4.14 
2_9 152.42 101.37 4.17 P1_6 152.34 101.32 4.18 
1_6 153.04 102.02 4.12 P2_8 152.68 102.11 4.17 
2_5 152.43 102.19 4.13 P1_14 152.76 101.28 4.18 
2_8 152.64 101.50 4.10 P2_2 152.08 101.77 4.12 
1_7 152.15 101.32 4.14 P2_10 152.10 101.65 4.11 
1_11 152.65 102.16 4.12 P1_4 152.47 101.80 4.14 
1_12 152.15 101.94 4.15 P1_10 152.62 102.12 4.17 
3_11 151.72 101.83 4.16      
3_1 153.51 101.69 4.15      
3_9 153.11 101.88 4.17      
3_12 153.21 101.45 4.11      
Ave. 152.6 101.8 4.14 (0.05)*  152.5 101.7 4.15(0.05)* 

*experimental error 
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3.6 Summary 
 

A total of 5 laminates were made, three base and two interleaved laminates. The 

laminates measured 356 mm x 762 mm (14 in x 30 in). The laminates were visually 

inspected for external damage and c-scanned to assess the internal flaws and were found 

to be satisfactory. Fourteen test specimens were machined from each laminate using a 

diamond-tipped saw. The machining process was water lubricated to ensure dimensional 

accuracy and to prevent delamination. Random sampling was used to determine the 

average thickness of the base and interleaved laminates and was found to be 4.14 and 

4.15 mm, respectively. The specimens were dried and stored in a dessicator until required 

for impact testing. 
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CHAPTER 4 
 

LOW VELOCITY IMPACT ASSESSMENT OF 
INTERLEAVED LAMINATES 

 
 
4.1 Introduction 
 

Impact damage resistance of a structure is how well the structure survives low-

velocity impact damage and this is measured in terms of impact the force or energy. This 

chapter investigates the impact damage resistance of a twenty-four ply quasi-isotropic 

base and interleaved laminates. Impact testing was performed according to ASTM 

D7136/D7136-07 Standard. Damage was inflicted to the specimens using drop weight 

tower with impactor mass of 5.41 kg having a hemispherical tup with a diameter of 25 

mm. The data acquisition system stored the entire impact event and created the impact 

force-time, impact force-deflection, and energy-time history curves. The impact height 

ranged from 54 to 254 mm and the corresponding velocities ranged from 1.03 to 2.22 

m/s. The indentation depth was measured after impact, the specimens were visually 

inspected for fiber breakage, and the damage area was assessed using c-scan. 

 
4.2 Impact Analysis of Dynatup 
 
4.2.1 Description of Test Set-up 

A series of low velocity impact tests were performed using Instron’s Dynatup 

Model 8250 Impact Testing System which was equipped with a pneumatic rebound brake 

system to prevent multiple strikes and a variable weight crosshead arrangement. The 

system was also equipped with instrumentation to measure the velocity just before impact 
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and a load transducer mounted in the impactor to measure the impact force as a function 

of time. The high-speed data acquisition system has the capability of storing the entire 

impact event and producing the impact force-time, impact force-deflection, and energy-

time history curves. A photograph of the Dynatup Impact Testing System is shown in 

Figure 4.1. 

 
 
 

Dynatup Impact 
Testing System 

Data Acquisition 
System

 
Figure 4.1.   Photograph of the Dynatup Model 8250 Impact Testing System and  
                      data acquisition system 
 
 
 
 

The drop tower can be operated in a gravity or in a forced velocity mode. In the 

forced velocity mode, a compressed spring is used to achieve higher impact velocities 

and energies. In this work, the gravity mode was used for all impact tests. To perform the 
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impact test at repeated heights, the pneumatic hoist system automatically transports the 

cross-head weight to the pre-determined height after testing. Formulation of the physical 

problem was based on the mathematical model shown in Figure 4.2. 

 
 
 

h

H

M, V0 = 0

State 1: Before release

Mp

State 2: Impact target

M, V0 , H = 0, t = 0

h
Mp

                                          Figure 4.2.   Analysis of impact test 
 
 
 
 

The impact process consisted of two distinct states. In the first state, the impactor, 

consisting of the tub and the cross-head, was raised to the preset impact height, H. The 

total mass of the impactor was M. At this state, the velocity of the impactor was zero and 

the potential energy was MgH. After releasing the impactor, it was accelerated by gravity 

and just before striking the target (laminate) at time t = 0, the velocity was V(0) = V0. 

This velocity was obtained by equating the potential energy to the kinetic energy of the 

impactor, assuming no loss of energy during the event. The second state was the contact 
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deformation of the target as energy was transferred from the impactor to the target. The 

impactor was constrained to strike the target at the center of the rectangular test section of 

mass Mp. After impact, the pneumatic rebound brake arrested the impactor preventing 

multiple strikes on the target. The impact event data were captured by the PC using the 

data acquisition system. 

The basic parameters of the impact mechanics are the mass of the impactor (M), 

the impact height (H), the target type (base versus interleaved), the target thickness (h), 

the mass of the laminate test section (Mp), the impact velocity (V0) at the instant of impact 

at t = 0, the impact duration (Td), and the instantaneous velocity (V(t)) which describes 

the velocity-time response during the impact event. The impact mechanics consists of 

two events: (a) rigid body motion mechanics of the impactor before impact, and (b) 

deformation mechanics of the target after impact. 

4.2.2 Rigid Body Mechanics of Impact 

From the principle of conservation of energy and assuming the energy lost during 

the acceleration of the impactor is negligible, we obtain; 

2

2
0MV

MgH   (4.1)

where, H is the impact height, g is the acceleration due to gravity, 9.81 m/s2, M is the 

mass of the impactor, and V0 is the velocity of the impactor at the instant of impact. By 

re-arranging the terms, impact velocity, V0, is: 

gHV 20   (4.2)
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4.2.3 Deformation Mechanics after Impact 

The motion of the impactor is described by Equation 4.3 or 4.4. The force 

transducer mounted in the impactor measures the de-acceleration of the impactor after 

making contact with the target. Re-arranging and integrating Equation (4.4), the 

instantaneous velocity, V(t), given by Equation (4.5) is obtained. 

 

   tMatP   (4.3)

   
dt

tdV
MtP   (4.4)

   
t

dttP
M

VtV
0

0

1
 (4.5)

where V0 is the impact velocity at t = 0, which is given by Equation 4.2. After making 

impact with the target, the impactor and the target move together. As the impact is at the 

center of the plate, the central deflection of the plate, W(t), can be obtained by integrating 

Equation 4.5 which results in Equation 4.6 for a plate that was stationary before impact. 

    dtdttP
M

VtW
t t

  









0 0

0

1
 (4.6)

4.2.4 Energy Analysis of the Impact 

The impactor potential energy is converted to kinetic energy as the impactor 

travels along the rail. During impact with the target, the kinetic energy of the impactor 

deforms the target and work is done on the target, which is equal to the strain energy of 

the laminate. The maximum impact energy transferred by the impactor to the laminate is 

stored as elastic energy, Eelastic, and dissipated energy, Ea. That is: 
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aelastic EEMVE  2
00 2

1
 (4.7)

The elastic energy, Eelastic, released by the target is used to accelerate the impactor 

with a rebound velocity, Vr. The dissipated energy is the sum of energy used in creating 

damage in the laminate. The energy dissipated by the target in the form of vibration and 

heat and, by the impact setup in the form of inelastic behavior of the impactor and 

support (Delfosse & Poursartip, 1997; Shivakumar, Elber, & Illg, 1985b) can be 

calculated by considering the impact and rebound velocity or by considering the area 

under the force-displacement curve. The rebound velocity is the reverse velocity of the 

impactor at P(t) = 0. 

     
dT

ra dttWtPVVME
0

22
02

1
 (4.8)

where Vr is the rebound velocity of the impactor in m/s, Td is the contact duration for the 

damaged specimen in ms. The instantaneous energy transferred from the impactor to the 

target is given by: 

   tMVMVtE 22
0 2

1

2

1
  (4.9)

4.2.5 Single Degree of Freedom (SDOF) Analysis of Plate and Impactor 

Figure 4.3 (a) shows the schematic of the specimen deformation during impact. 

The complete spring-mass model shown in Figure 4.3(b) represents the analytical model 

of the deformation mechanics. In this model, the springs kc, km, kb and ks represent the 

contact, membrane, bending and shear stiffness, respectively, as previously explained in 

reference (Shivakumar et al, 1985a & 1985b). 
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M, V0 , H = 0, t = 0h

MpW  
(a) 

W1

W2

 
(b) 

W

 
(c) 

 
Figure 4.3.   Spring-mass models for impact deformation mechanics. (a) Schematic 
                      of specimen deformation, (b) Complete and (c) SDOF models 
 
 
 
 

Geometric nonlinearities and indentation can be neglected when there is no 

damage in the specimen after the impact event and the complete model reduces to the 

single-degree-of-freedom (SDOF) model shown in Figure 4.3(c) for analysis of the 

impact event (Abrate, 1998). In the SDOF model, the target is represented by the 

combined bending-shear spring with stiffness, kbs. The equation of motion for the SDOF 

model is given by: 

0 WkWM bs
  (4.10)

The assumed general solution to the free undamped system in Equation 4.10 can 

be found in any text book on dynamics. Solving for the deflection, W, and using the 

initial conditions; V(0) = V0 and W(0) = 0, give the solution as; 

  t
V

tW 


sin0  (4.11)

where 
M

kbs is the frequency in radians. The force-time response is given by; 
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    









0

5.0
0 sin

T

t
MkVtP bs


 (4.12)

where 
bsk

M
T 




0  is the contact duration for the undamaged laminate. For the 

undamaged plate, the central deflection, W(t), and force, P(t), and impact duration,T0, 

matches the experimental data. The pristine stiffness, kbs, can be found from the initial 

slope of the force versus displacement curve or using computational tool such as ANSYS. 

 
4.3 Test Matrix 
 

The impact test matrix is shown in Table 4.1. The impact height ranged from 57 

to 254 mm and two or three specimens were impact-tested at each height. The impact 

height and their corresponding specimens’ designation are shown in the table. The 

maximum impact height to produce significant delaminations and fiber rupture in the 

laminate is given in Reference (ASTM, 2008) and stated in Equation (4.14): 

Mg

hC
H E  (4.14)

where CE = 6.7 J/mm is a constant for fiber-reinforced polymer matrix composite such as 

Carbon/Epoxy material, M = 5.41 kg is the mass of the impactor, h = 4.14 mm is the plate 

thickness and g = 9.81 m/s2 is the acceleration due to gravity. Solving, the impact height 

was obtained as H = 523 mm. A value of 550 mm was chosen in order to ensure that 

significant damage was occurred in the laminate. Preliminary impact testing showed that 

the minimum height to conveniently perform an impact test was 57 mm (2.25 in) and for 

impact heights greater than 254 mm (10 in), the extent of damage interacted with the 
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boundary of the test fixture. Based on these limitations, impact height range of 57 to 254 

mm was chosen. 

 
 
 
Table 4.1. Impact test matrix 

Test Specimen ID # Impact Height, H, mm 
Base Laminate* Interleaved Laminate* 

3_3 P2_10 
3_12 P1_1                   57 

- P1_7 
3_4 P1_14 
3_10 P2_9                   64 

- P2_14 
3_8 P1_2 

 P1_6                   76 
 P2_1 

3_14 P2_12 
1_3 P1_10                   83 

- P1_11 
3_11 P1_5 
1_14 P1_13                   89 

- P2_3 
3_6 P2_4 
3_7 P2_7                 102 
2_7 P1_4 
1_10 - 
2_10 -                 127 
2_12 - 
3_13 P2_6 
3_5 P2_8                 152 
2_9 P2_5 
3_9 P1_3 
1_6 P1_8                 254 
1_7 P1_9 

*Average mass of laminate test section, Mp, = 0.0641 kg. Mass of impactor, M, = 5.41 kg 
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4.4 Impact Test 
 

Low velocity impact tests were conducted using ASTM Standard D 7136/ D 

7136M-07 (ASTM, 2008). The test fixture is shown in Figure 4.4. The drop tower impact 

test machine had a hemispherical hardened steel tup with diameter of 25.4 mm (1.0 in). 

The impact test section measured 76 mm x 127 mm (3 in x 5 in) and its mass was 

calculated to be approximately 0.0641 kg using AS4/3501-6 material properties (Daniel 

& Ishai, 2005). The mass of the impactor was 5.41 kg and the ratio of impactor to 

laminate mass was approximately 84. Therefore, the laminate mass was neglected in this 

analysis. The specimen was secured by four rubber tipped clamps and was assumed to be 

simply-supported for the analysis (Delfosse & Poursartip, 1997). A sketch of a test 

specimen secured by four clamps is shown in Figure 4.5. To perform an impact test, the 

test specimen was placed on a rigid steel frame with 76 mm x 127 mm (3 in x 5 in) 

rectangular cut-out and centered over the cut-out by means of the three guiding pins. It 

was held in place by four adjustable rubber-tipped toggle clamps. 

 
 
 

Rail

Rubber Tipped 
Clamp

Rebound
Brake

Test Fixture 
showing Cut-out

 
                     Figure 4.4.   Photograph of drop tower impact test fixture 
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   Figure 4.5.   Schematic of clamped test specimen. (a) Plan and (b) Sectioned view 
 
 
 
 

Each toggle clamp was configured to exert a minimum of 1.1 kN on the test 

specimen. The impact height was set by measuring the vertical distance between the tip 

of the impactor and the top surface of the clamped specimen. After properly centering 

and clamping the specimen, the impactor was released from a pre-set height. After 

traveling this distance and striking the specimen, the pneumatic rebound brake was 

automatically activated to prevent multiple strikes. The pneumatic hoist system re-

positioned the impactor to the previously set height. Each specimen was visually 

inspected for back-face damage and the indentation depth was measured. 

 
4.5 Test Results and Discussion 
 
4.5.1 Damage Analysis 

4.5.1.1 Visual Analysis 
 

After impact testing, test specimens were visually inspected for the extent of the 

damage. The back-face damage geometry was recorded and if fiber breakage occurred, 

then the crack length (CL) and width (CW) were recorded. Visual observation of the back 
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face damage demonstrated that first fiber cracks were observed at impact height of 89 

mm for the base laminate and 152 mm for the interleaved laminate. The detailed results 

are tabulated in Appendix B. Partial results are presented in Table 4.2. 

4.5.1.2 Indentation Depth 
 

After documenting the back-face damage, the indentation depth was measured 

and recorded using a dial indicator with 0.025 mm (0.001 in) accuracy and 3.0 mm 

(0.125 in) diameter ball. Figure 4.6 shows indentation depth measurement of a test 

specimen. Summary of the indentation depth results for both the base and the interleaved 

laminates are shown in Table 4.3. These are plotted in Figure 4.7. It can be seen that 

interleaving significantly delayed the occurrence of indentation. In addition, at any given 

impact height the indentation depth for the base laminate is consistently higher than that 

of the interleaved laminate. 

 
 
 
 

Dial GaugeSpecimen

Support  
(a) 

Dial gauge

Test specimen

 
(b) 

Figure 4.6.   Indentation depth measurement. (a) Schematic and 
                      (b) Photograph of set-up 
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Table 4.2. Damage assessment of laminate back-face 
Base Laminate Interleaved Laminate 

Back-face Back-face Impact Height, 
H, mm Photograph Schematic 

Impact Height, 
H, mm Photograph Schematic 

          83 

 

 
Elliptical 
Delamination, No 
Visible Cracks 
2A = 18.5; 2B = 14 

102 

 

 
Elliptical 
Delamination, No 
Visible Cracks 
2A = 17.5; 2B = 15 

          89 

 

 

CL
CW

 
Elliptical 
Delamination, 
Multiple Cracks, CL 
= 10; CW = 5 
2A = 23.5; 2B = 14 

152 

 

C L
C W

 
Elliptical 
Delamination, 
Multiple Cracks, CL 
= 15, CW = 5 
2A = 22; 2B = 20 

        102 

 

CL

CW

 
Elliptical 
Delamination, 
Multiple Cracks, CL 
= 2A; CW = 7 
2A = 28; 2B = 16 

254 

 

 
Elliptical 
Delamination, 
Multiple Cracks, CL 
= 2A, CW = 8 
2A = 42; 2B = 18.5 
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Table 4.3. Indentation depth results for base and interleaved laminates 
Base Laminate Interleaved Laminate Impact 

Height, H, 
mm 

Test Specimen 
ID # 

Indentation 
Depth, d, mm 

Test Specimen 
ID # 

Indentation 
Depth, d, mm 

       3_3 0.000        P2_10 0.000 
       3_12 0.025        P1_1 0.000          57 
         P1_7 0.000 
       3_4 0.102        P1_14 0.000 
       3_10 0.102        P2_9 0.000          64 
         P2_14 0.000 

       P1_2 0.000 
       P1_6 0.000          76        3_8 0.102 
       P2_1 0.000 

       3_14 0.102        P2_12 0.076 
       1_3 -        P1_10 0.000          83 
         P1_11 0.000 
       3_11 0.102        P1_5 0.102 
       1_14         P1_13 0.076          89 
         P2_3 0.076 
       3_6 0.127        P2_4 0.102 
       3_7 0.127        P2_7 0.127        102 
       2_7         P1_4 0.127 
       3_13 0.178        P2_6 0.152 
       3_5 0.152        P2_8 0.152        152 
       2_9 --        P2_5 0.152 
       3_9 0.216        P1_3 0.203 
       1_6         P1_8 0.203        254 
       1_7         P1_9 0.178 

 
 
 
 

The damage onset impact height for indentation is 65 mm for the base laminate 

and 82 mm for the interleaved laminate. Gao, Jiao, Lu, & Ning (2007) observed that 

thermoplastic particle interleaving sustained higher indentation depths than the base 

laminate but this was not observed in this study. The high indentation depths may be 

attributed to the increased thickness of the thermoplastic interleaved laminate. In this 

study, the high contact stresses could have been absorbed by the nano-fabric on the 
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surface of the laminate, resulting in the indentation depth of the interleaved laminate 

being lower than the base laminate. 
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                          Figure 4.7.   Indentation depth versus impact height 
 
 
 
 
4.5.1.3 Damage Analysis by C-Scan 
 

Structural Diagnostics Inc (SDI) ultrasonic C-Scan equipment was used for 

assessing internal damage in the test specimens. Figure 4.8 shows the SDI C-Scan 

equipment used for the c-scan test. Through-thickness method, employing two 12.7 mm 

(0.5 in) 5 MHz focused transducers manufactured by DuPont, was used for the c-scan 

test. The SDI ultrasonic c-scan operation was completely controlled by SDI MasterScan 

software. The following amplifier and machine settings for specimen c-scan tests were 

set using the MasterScan software: 30% gain, 42 dB attenuation, scan speed of 30.5 mm/s 

(1.2 in/s), scan index of 0.2 mm (0.008 in). The extent of the damage in the test specimen 
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measured by the c-scan is proportional to the extent of signal attenuation from the pulser 

to the receiver. The higher the signal attenuation, the larger the extent of the damage 

sustained in the test specimen. This damage area was measured using the SDI WinScan 

software, a data acquisition and analysis software. After the c-scan test, the specimens 

were dried in an oven using the method described in Chapter 3 and then stored in a 

desiccator until tested in compression. Typical c-scan images for the base and the 

interleaved test specimens are shown in Figure 4.9. At the impact height (H = 64 mm) the 

base laminates developed large damage areas than the interleaved laminates. The damage 

area of the base laminates were predominately in the range 0-10%, indicating significant 

damage compared to the to the damage area of the interleaved laminates. The rest of 

images are presented in Appendix C and the results of the damaged areas are tabulated in 

Appendix D along with other impact data. In the preliminary study, the damaged area 

was calculated by approximating the geometry of the area to be elliptical. 

 
 
 

 
Figure 4.8.   Structural Diagnostics Inc (SDI) c-scan equipment for the 
                      measurement of damage area 
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Figure 4.9.   C-scan images for base and interleaved specimens impacted at 
                      H = 64 mm and their corresponding damage areas 
 
 
 
 

Figures 4.10 and 4.11 show the damaged area versus impact height for both the 

base and the interleaved laminates for the present and preliminary studies. The threshold 

impact height (HT) for the base and interleaved laminates are 65 and 82 mm, respectively. 

These values are the same as the heights obtained at the onset of indentation in Figure 

4.7. The present study also show that the damaged growth rates with respect to the impact 

height for the base and the interleaved laminates are 2.10 and 2.14 mm2/mm, 

respectively. In the preliminary study (Akangah et al, 2010), the threshold impact height 

increased from 38.1 to 50.8 mm as a result of interleaving with 1.8 g/m2 nano-fabric as 

shown in Figure 4.11. 
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          Figure 4.10.   Damage area versus impact height for the present study 
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Figure 4.11.   Damage area versus impact height for the preliminary 
                        study (Akangah et al, 2010) 
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Figures 4.12 and 4.13 show the damaged area versus impact force for the present 

and preliminary studies, respectively. The present research results show that the damaged 

growth rate with respect to impact force for the base laminate is 113 mm2/kN and that for 

the interleaved laminate is 157 mm2/kN. However, the preliminary results show that the 

damaged growth rate with respect to impact force for the base laminate is 140 mm2/kN 

and for the interleaved laminate is 60 mm2/kN. 

The impact damage growth rate for the interleaved laminate was reduced by 

nearly one-half with respect to impact height and reduced by more than one-half with 

respect to impact force by interleaving with nano-fabric sheet with areal density of 1.8 

g/m2. In the present study, there were no significant differences in the damage growth 

rates for the base and interleaved laminates. Gao et al (2007) identified the interleaving 

toughening mechanism as: geometrical effect of the interlayer, crack path deflection and 

crack tip shielding. These toughening modes were not adequately brought to bear because 

of the low areal density of the nano-fabric used in this study. Comparing the preliminary 

results with the present one suggests that there is a need to understand the effect of 

varying nano-fiber areal density on the impact damage resistance and tolerance of 

carbon/epoxy laminates. The difficulty in making large nano-fabric sheets with 

appreciable areal density using needle electrospinning method also suggests the need for 

increasing the electrospun nanofiber through-put. 
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             Figure 4.12.   Damage area versus impact force for the present study 
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Figure 4.13.   Damage area versus impact force for the preliminary 
                        study (Akangah et al 2010) 
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4.5.2 Impact Response of Undamaged Laminate 

Figures 4.14 and 4.15 show a typical impact force-time response curve for base 

and interleaved laminates impacted at 3.21 and 3.35 J, respectively. The impact force-

time response of the laminates shows a nice smooth sinusoidal response, which is a 

characteristic of undamaged laminates. The loading and unloading curves for the base 

and interleaved laminates at the corresponding impact event are shown in Figure 4.16 and 

4.17, respectively. There is no hysteresis in the loading and unloading portions of the 

impact force-displacement curves indicating no energy loss and no significant laminate 

stiffness loss during the impact. The pristine stiffness of the laminate, k0, was calculated 

by taking the initial slope of the force versus displacement curve as shown in Figure 4.16. 

This was found to be 2.5 kN/mm and this result is validated using ANSYS analysis. 
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Figure 4.14.   Typical Impact force-time response of undamaged test specimen at  
                        impact height of 64 mm (E0 = 3.21 J) 
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Figure 4.15.   Impact force-displacement response of undamaged interleaved 
                        laminate at impact height of 64 mm (E0 = 3.35 J) 
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Figure 4.16.   Impact force-displacement response of undamaged test specimen at 
                        impact height of 64 mm (E0 = 3.21 J) 
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Figure 4.17.   Impact force-displacement response of undamaged interleaved 
                         laminate at impact height of 64 mm (E0 = 3.35 J) 
 
 
 
 
4.5.3 Impact Response of Damaged Laminate 

4.5.3.1 Critical Force 
 

For inelastic impact event, the impact-force response of the test laminate is not 

smooth. This is an indication of damage. There is a sudden load drop indicating sudden 

stiffness change due to damage initiation (Schoeppner & Abrate, 2000). Figures 4.18 and 

4.19 show the force-time response of the base and the interleaved laminates impacted at 

4.65 and 4.53 J, respectively. The first load drop corresponds to the critical force and is 

caused by unstable delamination propagation (Kwon & Sankar, 1993). The critical force 

for inelastic impact event can be determined by superimposing the analytical elastic 

impact-time response onto the inelastic response as shown in Figure 4.19 and the critical 

forces at the corresponding impact height are tabulated in Table 4.4. 
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Figure 4.18.   Typical impact force-time response of a damaged base laminate at 
                        impact height of 89 mm (E0 = 4.65 J) 
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Figure 4.19.   Impact force-time response of a damaged interleaved laminate at 
                        impact height of 89 mm (E0 = 4.53 J) 
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Table 4.4. Maximum and critical force for base and interleaved laminates 
Base Interleaved 

Impact Force, kN Impact Force, kN 
Impact 

Height, H, 
mm Critical, Pc Maximum, Pmax Critical, Pc Maximum, Pmax 

-- 3.980 -- 3.930 
-- 3.945 -- 3.858         57 
-- -- -- 3.980 

4.091 4.091 -- 4.138 
4.251 4.251 -- 4.047         64 

-- -- -- 4.074 
-- 4.369 
-- 4.477         76 4.344 4.344 
-- 4.315 

4.231 4.231 4.571 4.571 
4.428 4.428 4.582 4.582         83 

  -- 4.533 
4.179 4.179 4.678 4.678 
4.638 4.638 4.705 4.705         89 

  4.589 4.589 
4.508 4.508 4.717 4.717 
4.214 4.214 4.777 4.777       102 
4.498 4.498 4.555 4.555 
4.909 4.958 
4.533 4.697       127 
4.570 4.676 

-- -- 

4.416 5.189 4.631 5.204 
4.572 5.161 4.701 5.159       152 
4.934 5.048 4.672 5.188 
4.235 7.329 4.850 7.031 
4.882 7.214 4.786 7.207 
4.840 7.292 4.831 7.056 

      254 

4.580 6.788 -- -- 
 4.5 (0.4)*  4.7 (0.2)*  

*experimental error 
 
 
 
 

The analytical elastic response given by Equation (4.12) only describes the 

loading portion up to the first load drop of the impact response as shown in Figures 4.20 

and 4.21 for base and interleaved laminates, respectively. After the first load drop, as 
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expected, the analytical curve moves away from the experimental curve and the load at 

this point is the critical load, Pc, and it describes the onset of matrix cracks and 

delamination during the impact event. From Table 4.4, the average critical force and 

standard deviation for the base and the interleaved laminates were listed as 4.5 kN (0.24) 

and 4.7 kN (0.09), respectively. At confidence level of 95% and degree of freedom for 

the base and the interleaved laminates of 18 and 12, respectively, the experimental error 

was calculated to be 0.4 for the base and 0.2 for the interleaved laminates. 

4.5.3.2 Damage Progression 
 

Figures 4.20 and 4.21 show the impact force response curves, for the base and 

interleaved laminates. The impact force response curves for the range of impact height 

tested, except for H = 57 mm, are shifted by 2 ms for the purpose of comparing the data 

and for clarity. For H = 57 and 64 mm for the base laminate, and for H = 57, 64 and 76 

mm for the interleaved laminate, the impact force-time response curves have smooth 

sinusoidal response, which is a characteristic of the undamaged specimen. However, for 

H = 76 and 83 mm and greater, the impact force-time response curves are not smooth, 

which is an indication of damage to various degrees. The threshold points are represented 

by a closed circle and at these points, the curves experienced sudden load drop, 

representing the transition from undamaged to damage in the laminate. The associated 

force at these points is the critical force. The critical force versus impact height is plotted 

in Figure 4.22 for the base and the interleaved laminates. The average critical force for 

the base laminate is 4.5 kN and that for the interleaved laminate 4.7 kN. 
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Figure 4.20.   Impact force-time response of base laminate showing 
                        failure progression 
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Figure 4.21.   Impact force-time response of interleaved laminate showing 
                        failure progression 
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                               Figure 4.22.   Critical force versus impact height 
 
 
 
 
4.5.3.3 Critical Energy 
 

A typical energy curve for inelastic impact event is shown in Figure 4.23. The 

maximum impact energy, E0, is the energy transferred by the impactor to the test 

specimen. The dissipated energy, Ea, is the energy that is not returned to the tup during 

the unloading phase and is the sum of energy used in creating damage in the target and 

dissipated through the target in the form of heat and vibrations. For elastic impact event, 

the dissipated energy is normally zero. Another important parameter is the critical energy 

(Ec), which is the energy at damage onset. Figure 4.24 explains the nomenclature of 

various terms used in the text and also shows the graphical method for the determination 

of the critical energy during inelastic impact event. The critical energy is the point on the 

energy curve that has the same instantaneous time as the critical force on the impact force 

history curve. The critical energy is a measure of the energy required for initiating 
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damage in the laminate. In elastic impact event, the critical energy does not exist, because 

no damage is created in the laminate due to impact. More detailed impact data for both 

base and interleaved specimens are tabulated in Appendix D, and plots for the base and 

the interleaved impact events are presented in Appendices E and F, respectively. 
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              Figure 4.23.   Typical energy response for inelastic impact event 
 
 
 
 

Figure 4.25 shows the critical energy for the base and interleaved laminates. The 

areal density of a ply of AS4/3501-6 was 150 g/m2 and a layer of nano-fabric used for 

interleaving was 0.7 g/m2. This represented about 0.47% of the composite ply’s areal 

density. The average critical energy of the base laminate was 4.0 J and that of the 

interleaved laminate was 4.5 J. At 95% confidence level, the experimental data were 

within the range of 3.3 and 4.7 J for the base laminate and between 4.2 and 4.8 J for the 

interleaved laminate. Using the average data, interleaving represented an increase of 

12.5% in the energy over the base laminate. 
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Figure 4.24.   Graphical method for the determination of critical impact energy, Ec 
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                             Figure 4.25.   Critical energy versus impact height 
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The threshold impact force for base and interleaved laminates was lower than 

their respective critical force of 4.5 and 4.7 kN. The critical force was obtained from the 

impact force-time response and represented the force at damage onset at which stiffness 

changes can be detected (ASTM, 2008). The threshold force on the other hand, correlated 

to the damage area measured by the c-scan analysis to the impact force. These damages 

include matrix cracks which does not adversely degrade the stiffness of a plate. This 

explains the discrepancies between the critical and threshold forces. Using the threshold 

impact force, interleaving improved the impact resistance by only 13% when a 0.7 g/m2 

nano-fabric sheet was used, as against an increase from 1.0 to 1.6 kN when interleaved 

with 1.8 g/m2 nano-fabric sheet. This represents an improvement of 60% (Akangah et al, 

2010). Furthermore, the preliminary study showed that the impact damage growth rate 

reduced from 140 to 60 mm2/kN, representing a 57% improvement. This discrepancy 

could be due to the low fabric areal density used in this present study and the differences 

between the impactor–plate mass ratio (8 in the preliminary study as against 84 in the 

present study). Feraboli (2006a) recommended a ratio in the range of 10 to 20. 

4.5.3.4 Contact Duration 
 

The total contact duration (Td) which is the time of the first mode of oscillation, 

was measured by considering the time elapse between two consecutive zero forces as 

previously shown in Figure 4.24. The contact duration for the base and interleaved 

laminates are listed in Table 4.5. For H = 57 and 64 mm for the base laminate, and for H 

= 57, 64 and 76 mm for the interleaved laminate, the average contact duration for the 

undamaged part was 4.78 ms for both laminates, indicating that contact duration was 
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unchanged during elastic impact events. However, for H = 76 and 83 mm and greater, the 

contact duration ranged from 5.3 to 5.5 ms for the base laminate and from 4.7 to 5.5 ms 

for the interleaved laminate. 

 
 
 
Table 4.5. Contact durations for base and interleaved laminates 

Duration, Td, ms Height, H, mm 
Base Interleaved 
4.79 4.75 
4.74 4.82                     57 

-- 4.72 
5.17 4.76 
5.08 4.77                     64 

-- 4.79 
5.32 4.78 

-- 4.72                     76 
-- 4.82 

5.37 5.03 
5.29 4.74                     83 

-- 4.79 
5.43 5.14 
5.36 5.09                     89 

-- 5.18 
5.43 5.28 
5.40 5.29                   102 
5.35 5.34 
5.40 
5.39                   127 
5.37 

-- 

5.45 5.31 
5.47 5.33                   152 
5.38 5.31 
5.35 5.50 
5.28 5.21 
5.26 5.47 

                  254 

5.48 -- 
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The results from Table 4.5 are plotted in Figure 4.26 showing the contact duration 

versus impact height. For elastic impact regime, the average contact duration for both the 

base and the interleaved laminate was 4.78 ms. The threshold impact height for the base 

laminate was 65 mm and for the interleaved laminate was approximately 82 mm. This 

represented an increase of 26%. In the inelastic impact regime, the average contact 

duration for both the base and the interleaved laminates increased gradually, indicating 

increasing damage as impact height increased. 
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                           Figure 4.26.   Contact duration versus impact height 
 
 
 
 
4.6 Summary 
 

Twenty-four ply quasi-isotropic composite laminates of the base and the 

interleaved AS4/3501-6 composite laminates with simply-supported arrangement were 

impact-tested to assess the improvements in impact damage resistance of these composite 
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specimens. The interleaved laminate was produced by electrospun Nylon 66 nano-fabric 

with areal density of 0.7 g/m2. The impact velocity ranged from 1.03 to 2.22 m/s and the 

height ranged from 54 to 254 mm. The impactor mass was 5.41 kg. The following 

observations were arrived at regarding the influence of interleaving on the impact damage 

resistance: 

 The critical force increased from 4.5 to 4.7 kN by interleaving, representing 

an improvement of 4.4%. 

 The critical energy increased from 4.0 to 4.5 J, which was an improvement 

of 12.6%. 

 The threshold impact height, force and energy were approximately 65 mm, 

4.0 kN and 3.0 J, respectively for the base specimen and 82 mm, 4.5 kN and 

4.0 J, respectively for the interleaved specimen. 

 Within the range of impact energies considered, the maximum impact forces 

for the interleaved specimen were greater than those of the base specimen, 

but the differences were gradually eroded at higher impact energies. 

 Visual inspection showed that first fiber breakage occurred at the impact 

height of 89 for the base laminate and at 152 mm interleaved laminate, 

representing a 71% improvement. 
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CHAPTER 5 
 

COMPRESSION AFTER IMPACT (CAI) TEST 
 
 
5.1 Introduction 
 

Damage tolerance of a structure is its ability to carry loads after sustaining 

damage. Presently, impact damage tolerance of a composite laminate is measured using 

the ASTM compression after impact (CAI) test. In this study, various degrees of damage 

were inflicted to the laminate by low-velocity impact as presented in Chapter Four. The 

residual compressive strengths of these laminates were determined using CAI test 

according to the ASTM D7137D/7137M-07 Standard. From these compression strengths, 

the damage tolerance and resistance to damage growth rates were obtained for the base 

and the polymer nano-fiber interleaved laminates. 

 
5.2 Test Specimen 
 

Impact damaged specimen tested in CAI are listed in Table 4.1. The damage 

ranged from barely visible indentation to extensive delamination to fiber breakage. The 

test specimen configuration is the same as that of the specimen used for impact testing, 

that is, 102 mm width, 152 mm length and about 4.14 mm thickness. Table 3.1 lists the 

dimensions of the test specimens. Prior to conducting the CAI test, the baseline 

compression strength of undamaged laminates was determined using ASTM 

D3410/D3410M-03 Standard. The details of the test and compression strengths are given 

in Appendix A. The average compressive strength, the standard deviation of the 

undamaged base laminate was 650 MPa (22) and that of the interleaved laminate was 620 
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MPa (31). At a confidence level of 95% and degree of freedom of 5, the experimental 

error was determined to be 60 for the undamaged base laminate and 80 for the 

undamaged interleaved laminate. The compressive strength of the undamaged laminate is 

the weighted average of the base and interleaved laminates and this was found to be 635 

MPa. 

 
5.3 Test Apparatus 
 

The CAI test was originally developed by the Boeing Company and adapted by 

the ASTM D30 Sub-Committee (Instron, 2011). The details of the test and its limitations 

are given in the standard. A schematic and photograph of the test fixture are shown in 

Figure 5.1. The details of how the specimen was supported on the sides are shown in 

Figure 5.2. 
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Figure 5.1.   Compression After Impact (a) Schematic of test fixture and 
                      (b) Photograph of test fixture 
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Figure 5.2.   Details of clamping and strain gages location. Gages #4 and 3 located 
                      behind gages #1 and #2 (dimensions in mm) 
 
 
 
 

The side plates are knife edged supports which restrain the out-of-plane bending 

due to buckling of the specimen during testing. The upper and bottom clamping blocks 

are designed to keep the specimen aligned and allowed it to undergo compressive 

deformation. The specimen is slightly taller than the fixture to accommodate compression 

deformation. The specimens were instrumented with four strain gages to measure the 
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bending and axial strains. The locations of strain gages were towards the upper end of the 

specimen on both the front and back faces and they are shown in Figure 5.2. Strain gages 

1 and 2 are on the front faces and gages 3 and 4 are on the back faces of the specimen. 

The average axial strain is given by 
4

4321 



a , and the bending strain is 

given by 
   

4
4321 




b . The percentage bending strain, 100x
a

b




, at or near 

the maximum applied load indicates out-of-plane bending. The maximum bending strains 

calculated for typical tests are listed in Table 5.1. These values are within the maximum 

bending strain of 10% allowed in the standard. 

 
 
 
Table 5.1. Percentage bending strain of base and interleaved test laminates 

Base Interleaved 

ID# εa εb 
a

b




x100% ID# εa εb 
a

b




x100% 

1_14   7,934 351 4.4 P1_2   7,103 641 9.0 
2_10   8,958 778 8.7 P1_14 11,393 741 6.5 
1_5 13,034 795 6.1 P2_10 10,587 715 6.7 

 
 
 
 
5.4 Testing 
 

CAI tests were conducted using the MTS Universal Testing Machine. The 

impacted test specimen was mounted in the test fixture and aligned to prevent bending. 

The specimen was supported using the side and base plates, and these plates were 

initially secured by hand-tightening their respective screws. The upper block was gently 
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installed taking care not to damage the specimen. The fixture was placed gently on the 

lower platen of the test machine and aligned with the vertical axis of the machine. A 

compressive preload force of 450 N was applied to the upper block to guarantee that all 

loading surfaces were in contact. This compressive preload force was later reduced to 150 

N, the fixture screws were tightened to the recommended torque of 7 Nm and the force 

and strain gage readings were re-zeroed. A displacement control method was used and 

the specimen was loaded at the rate of 0.02 mm/s. The force, cross-head displacement 

and strains were recorded at every 0.2 s until the specimen failed. From the load-

displacement data, the maximum compression force (Pmax) was extracted and used to 

calculate the residual compressive strength (FRC). 

wh

P
FRC

max  (5.1)

where w and h are the width and thickness of the test specimen in mm, respectively. 

During the testing, loud cracking sounds could be heard as a result of matrix 

cracking, fiber-matrix debonding, delamination and fiber breakage. After test, each 

specimen was visually inspected for the failure mode, area and location of failure. A 

typical stress- displacement of the cross-head is shown in Figure 5.3. The specimen failed 

immediately after the maximum load was reached. This maximum load was used to 

calculate the residual compressive strength (FRC) of the laminate. Figures 5.4 to 5.7 show 

the compressive stress versus displacement for the base and the interleaved laminates. 

From the figures, it is observed that, the residual compressive strength decreases as the 

impact height increases. 
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        Figure 5.3.   Typical compressive stress versus displacement at H = 57 mm 
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Figure 5.4.   Compressive stress versus displacement response of impact 
                      damaged base laminates for low impact heights 
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Figure 5.5.   Compressive stress versus displacement response of impact 
                      damaged base laminates for high impact heights 
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Figure 5.6.   Compressive stress versus displacement response of impact damaged 
                      interleaved laminates for low impact heights 
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Figure 5.7.   Compressive stress versus displacement response of impact damaged 
                      interleaved laminates for high impact heights 
 
 
 
 
5.5 Results and Discussion 
 
5.5.1 Visual Inspection 

Visual inspection of the test specimen showed that compression failures can be 

classified into edge-crushing referred to as edge-failure and delamination across the 

width of the specimen at the impacted site referred to as failure at impact site. These 

failures are shown in Figure 5.8 for the base laminate and in Figure 5.9 for the interleaved 

laminate. Edge-crushing is not an intended failure mode, but occurred nevertheless 

because of the concentrated contact stresses. An edge view of the compression failure of 

the base laminate is shown in Figure 5.10 and that of the interleaved laminate is shown in 

Figure 5.11. Typical kink and shearing are seen for both laminates. These are 

photographs of laminates with specimen failure. 
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Figure 5.8.   Failure modes of base laminates. (a) Edge-crushing failure and 
                      (b) failure at the impacted site 
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Figure 5.9.   Failure modes of interleaved laminates. (a) Edge-crushing failure and 
                      (b) Failure at the impacted site 
 
 
 
 

 
                          Figure 5.10.   Edge view of a CAI test specimen (base) 
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                    Figure 5.11.   Edge view of a CAI test specimen (interleaved) 
 
 
 
 
5.5.2 Residual Compressive Strength and Discussion 

The impact height, residual compressive strength and impact energy of the base 

laminate is listed in Table 5.2 and those of the interleaved laminate are listed in Table 

5.3. The average residual compression strength of the base and the interleaved laminates 

with edge-failure represented approximately one-half the compression strength of the 

undamaged laminate (635 MPa). At impact height of 76 mm, the residual strength of the 

base laminate was reduced by 57% of the undamaged laminate compressive strength. At 

impact height of 83 mm, the residual strength of the interleaved laminate had reduced by 

53% of the undamaged laminate compressive strength. At the maximum impact height, H 

= 254 mm, the residual strengths of the base and the interleaved laminates were reduced 

to 32% and 33%, respectively. The results from the tables indicated that at the maximum 

impact height, the residual compressive strength is about one-third of the compressive 

strength of the undamaged laminate. This suggests that for large impact damage in a 

quasi-isotropic laminate, the minimum compressive strength is one-third of the 

undamaged laminate. 
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Table 5.2. Residual compressive strength and failure modes for base laminates 
Residual Compression Impact 

Height, H, 
mm 

Strength, FRC, 
MPa 

Ratio, 
FRC/F1C* Failure Mode 

Impact 
Energy, E0, J 

         57 311.5 0.49        2.93 
         64 287.6 0.45 

Edge failure 
       3.41 

         76 271.3 0.43        4.10 
273.4 0.42        4.43 

         83 
288.4 0.45        4.36 

         89 267.7 0.42        4.85 
       102 242.8 0.38        5.38 
       127 248.0 0.39        6.84 
       152 214.1 0.34        8.07 
       254 200.8 0.32 

Failure at 
impact site 

     13.50 
*F1C = 635 MPa, compression strength of undamaged base and interleaved laminates 
 
 
 
 
Table 5.3. Residual compressive strength and failure modes for interleaved 

laminates 

Residual Compressive Impact 
Height, H, 

mm 
Strength, FRC, 

MPa 
Ratio, 

FRC/F1C* Failure Mode 
Impact 

Energy, E0, J 
311.8 0.49        2.94 

         57 
312.5 0.49        2.98 
322.0 0.51        3.35 

         64 
328.0 0.52        3.34 
310.4 0.49        3.93 

         76 
318.8 0.50 

Edge failure 

       3.93 
297.4 0.47        4.26 

         83 
316.1 0.50        4.15 
307.8 0.48        4.60 

         89 
293.7 0.46        4.53 
264.5 0.42        5.46 

       102 
265.8 0.42        5.39 
253.1 0.40        8.06 

       152 
238.0 0.37        7.97 
206.9 0.33      13.26 

       254 
210.2 0.33 

Failure at 
impact site 

     13.33 
* F1C = 635 MPa, compression strength of undamaged base and interleaved laminates 
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Alternatively, large impact damage in laminates can be treated as open hole in a 

wide laminate to estimate the strength, because the stress concentration factor in an open 

hole in a quasi-isotropic laminate is three, meaning that the open-hole compressive 

strength is a third of the undamaged laminate. 

5.5.3 Plots 

The compression failure strengths of the base and interleaved laminates are shown 

in Figures 5.12 and 5.13, respectively. The open symbols indicate the experimental 

compression failure strength of laminates with edge failure. The closed symbols indicate 

the experimental compression failure strength of laminates with specimen failure at the 

impact site. The average edge failure strength for the base and interleaved laminates are 

respectively, 300 and 320 MPa. The difference between the two values can be considered 

negligible and it can be concluded that the edge failure strength are the same. This value 

is the weighted average and was calculated to be 315 MPa representing one-half the 

compressive strength of the undamaged laminate (635 MPa). The impact threshold height 

is approximately 65 for the base laminate and 80 mm for the interleaved laminate. This 

confirms the impact threshold height obtained from the impact test. The normalized 

residual compressive strength is plotted against impact height and energy and shown in 

Figure 5.14. The impact height and energy have linear correspondence and either one 

could be used in interpreting the plot. At about 3.0 J impact energy level, the residual 

compressive failure strength of the base laminate degraded by about 55% while the 

residual compressive strength of the interleaved laminate did not degrade. 
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                    Figure 5.12.   Compression failure strength of base laminate 
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             Figure 5.13.   Compression failure strength of interleaved laminate 
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Figure 5.14.   Compressive residual strength ratio versus impact height and energy 
 
 
 
 

At about 4.0 J impact energy, the compression failure strength of the base and 

interleaved laminates degraded to 40% and 45%, respectively. For the range of impact 

energy investigated, the compression residual strength ratio of the interleaved laminate 

was consistently higher than that of the base laminate. Therefore, the interleaved laminate 

proved to be more impact damage tolerant than the base laminate. 

 
5.4 Summary 
 

The impact damage tolerant of a twenty-four ply quasi-isotropic interleaved 

composite laminate previously damaged by low-velocity impact test according was 

investigated. The composite laminate was interleaved by electrospun Nylon-66 nano-

fabric with areal density of 0.7 g/m2. The impact velocity ranged from 1.03 to 2.22 m/s, 
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and the impact energy ranged from 3.0 to 13.5 J. The impactor mass was 5.41 kg. The 

impact tested specimen were compression tested to failure per ASTM Standard 

D7137D/7137M-07. The test results were within the guidelines of the ASTM standard. 

The results led to the following conclusions: 

 Edge failure occurred at 50% of the undamaged compression strength of the 

laminate. This was the same for both base and interleaved laminates. 

 Threshold impact energy was 3.0 J for the base laminate and 4.0 J for the 

interleaved laminate. 

 At 4.0 J threshold impact energy, the residual compression strength was 40% 

of the undamaged laminate for base laminate and 45% of the undamaged 

laminate for the interleaved laminate. 
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CHAPTER 6 
 

CONCLUSIONS AND RECOMMENDATIONS FOR 
FUTURE WORK 

 
 
6.1 Summary 
 

The research presented in this dissertation has contributed to three areas: 

1. Scaling of electrospinning to make large interleaved composite laminates, 

2. Automated control of polymer flow for a given electric field and adjusting the 

distance between the tip of the syringe and the collector for a given polymer flow-

rate by monitoring the collector voltage fluctuations, and 

3. Introduction of a new concept of polymer nano-fiber interleaving to improve 

impact damage resistance and tolerance of the composite laminates. The damage 

resistance and tolerance were determined using weight impact tests and 

compression after impact studies. 

6.1.1 Electrospinning 

The original electrospinning had a circular drum collector and X-traverse syringe. 

The drum diameter and length were 114 mm (4.5 in) and 305 mm (12 in), respectively. 

This drum size was not suitable for making suitably-sized nano-fabric for specimens of 

the size recommended by ASTM. Therefore, the whole system was redesigned and 

fabricated to have drum diameter of 292 mm (11.5 in) and length of 813 mm (32 in). 

While building the new system, a collector monitoring system was introduced per the 

work many researchers. The resulting system was capable of spinning with single or dual 

syringes with X-traverse mechanism in preparing the nano-fabric of size 813 by 910 mm. 
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In this study, the fabricated nano-fabric had an average areal density of 0.7 g/m2 which 

represented about 0.5% of the areal density of AS4/3501-6. This is small compared to the 

required ratio of 1 to 2%. However, the fabric was used to fabricate interleaved 

composites of twenty-four quasi-isotropic (-45/90/45/0)3S laminates. The nano-fabric was 

inserted between consecutive layers and placed on the surface of the top and bottom 

plies. The base laminate was also made to enable a comparison of the impact and damage 

tolerance performance. 

6.1.2 Impact Study 

The test specimen measured 102 x 152 mm (4 x 6 in) and the impact test section 

measured 76 x 127 mm (3 x 5 in). During the impact testing, the specimen support was 

assumed to be simply-supported. An impactor mass of 5.41 kg having hemispherical steel 

tup with a diameter of 25.4 mm (1.0 in) was used for the impact test. The impact energy 

ranged from 3.0 to 13.5 J. The results showed that the critical force for the base laminate 

was 4.5 kN and that for the interleaved laminate was 4.7 kN. The critical energy for the 

base and the interleaved laminates were 4.0 and 4.5 J, respectively. In the elastic impact 

regime, the contact durations for both test specimens were the same. The threshold 

impact height, force and energy for the base laminate were 65 mm, 4.0 kN, 3.0 J, 

respectively, and 82 mm and 4.5 kN, 4.0 J, respectively, for the interleaved laminate. The 

damaged growth rate with respect to impact force for the base laminate was 113 mm2/kN 

and 157 mm2/kN for the interleaved laminate. The damaged growth rate with respect to 

impact height was 2.10 mm2/mm for the base laminate and 2.46 mm2/mm for the 

interleaved laminate. Visual inspections showed that first fiber breakage occurred at the 
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impact heights of 89 mm and 152 mm for the base and the interleaved laminates, 

respectively. 

6.1.3 Compression After Impact Test Results 

All impacted test specimens were tested in compression to determine impact 

damage tolerance. CAI test results showed that the minimum impact energy to cause 

failure of the impact site was 3.0 J (or 65 mm impact height) for the base laminate 

whereas it was 4.0 J (or 80 mm impact height) for the interleaved laminate. 

 
6.2 Conclusions 
 

The effect of Nylon-66 nano-fiber interleaving on the impact damage resistance 

and tolerance of a twenty-four ply quasi-isotropic laminate was investigated. Interleaving 

did not significantly increase the thickness of the interleaved laminate. The impact height 

ranged from 57 to 254 mm and the impact velocity ranged from 1.03 to 2.22 m/s. All the 

impacted test specimens were tested in compression to failure. The following specific 

conclusions may be drawn from the results obtained in this work: 

 By matching the electric field to the flow-rate, fiber morphology was 

improved, minimal and consistent fiber diameters were obtained, and 

electrospinning efficiency was improved by 20%. 

 The impact damage resistance parameters improved by the following 

margins: 

o The critical force and energy increased by 5% and 13%, respectively. 

o The threshold impact height, force, and energy increased by 26%, 13% 

and 33%, respectively. 
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o The damage growth rate did not show any significant difference 

between the base and the interleaved laminates. 

 The improvements in the impact damage tolerance parameters can be 

summarized as follows: 

o The compression strength of the undamaged laminate was 635 MPa. 

o The minimum energy to cause failure at the impact site increased by 

25% improvement with respect to impact energy. 

o At high impact energies, both the base and the interleaved laminates 

degraded nearly to the same extent. 

 
6.3 Recommendations for Future Work 
 
6.3.1 Free-surface Electrospinning 

There is the need to improve the electrospinning through-put. The free-surface 

electrospinning system presents a very viable method of increasing the through-put 

because the system does not use syringe pumps and needles. As a result, problems with 

needle clogging, uneven flow-rates would be eliminated. One significant drawback of the 

free-surface system is the large fiber diameter and the wide range between the minimum 

and maximum fiber diameters. The mechanical strength of the nano-fibers depends on 

fibers having high specific surface areas and high aspect ratios. 

6.3.2 Functionalization of Nano-fibers 

By adding a precursor to the polymer solution during electrospinning and 

subjecting the electrospun polymer nano-fibers to secondary treatment, the application of 

the functionalized polymer nano-fibers can be extended. Wang, Fu, & Li (2009) reported 
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the electrospinning of polymer nano-fibers with carbon nano-tubes as precursors to 

improve the mechanical properties of the nano-fibers. Although, no specific results in this 

study suggested poor adhesion of the nano-fibers with the epoxy resin, improvement to 

crack resistance may be achieved by surface treating the nano-fibers to improve adhesion. 

6.3.3 Determination of Effective Nano-fabric Diameter and Areal Density 

Goa et al (2007) identified the interleaving toughening mechanism as: geometrical 

effect of the interlayer, crack path deflection and crack tip shielding nano-fabric 

interleaving is by fiber bridging. Increasing the nano-fabric areal density and decreasing 

fiber diameter will enhance these mechanisms and therefore improved the interlaminar 

toughness. It is assumed that the dependence of interlaminar toughness on areal density 

will peak at some optimal areal density. The objective will be to find this optimal nano-

fabric areal density. Zhang, Lin, & Wang (2010) reported that smaller fiber diameter led 

to stable crack growth and did not degrade the flexure property while, increased 

interleave thickness resulted in improved mode-I delamination toughness and degradation 

in flexure property. The smallest nano-fiber diameter that can be achieved depends very 

much on the type of electrospinning technology used and appropriate technology should 

be selected in any future work to achieve a nano-scale fiber diameter while increasing the 

nano-fiber through-put. 
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APPENDIX A 
 

CHARACTERIZATION OF COMPRESSIVE PROPERTIES 
OF TEST LAMINATES 

 
4.14 mm 
(0.163 in)

146 mm 
(5.75 in)

64 mm 
(2.5 in)

19 mm 
(0.75 in)

4.0 mm 
(0.165 in)  

(a) 

Test specimen

Upper platen

Lower platen

Upper housing 
block

Lower housing 
block

Guiding rods

 
(b) 

Figure A.1.    Compression test specimen. (a) Schematic and (b) Compression testing 
of specimen 

 
Table A.1. Summary of compressive strength of undamaged laminate 

Test ID# 
Base Compressive Strength, F1c, 

MPa 
Interleaved Compressive Strength, F1c, 

MPa 
1 646.9 581.2 
2 637.0 615.7 
3 649.0 603.9 
4 690.7 628.0 
5 642.1 665.4 
 650 (22)* 620 (31) 

*standard deviation 
 
Since the results overlapped, there was no significant difference between the undamaged 

compressive strength of the base and interleaved laminates and the weighted average was 

calculated to be 635 MPa. 
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APPENDIX B 
 

DAMAGE ASSESSMENT OF IMPACT TEST BASED ON 
VISUAL INSPECTION 

 
Visual damage of the impacted laminates was seen clearly on the backside. The 

shape of the damage was approximated as elliptical with semi major and minor axes of 

length A and B, respectively. These details are listed under the “Comment” column. A 

strip of unidirectional delaminated ply was observed and its width and length were 

represented by CL and CW, respectively. 

B.1 Base Specimens 
Visual Impact Damage Assessment (Base Specimens) 

Impact Front Surface Back Surface Damage (mm) 

Comments Height, H, 
mm Energy, E0, J 

Indentation 
Depth, d, mm (Major axis 2A; minor axis 2B) 

0-57 0-3.0 0.0 No Visible Damage 

64-83 3.0-4.4 0.1 
 

No Visible Cracks; 2A = 18.5; 2B = 14 

89 4.7-4.9 0.1 

L

W

 
Multiple Cracks, CL = 10; CW = 5 

2A = 23.5; 2B = 14 

102 5.4-5.5 0.13 
C L

C W

 
Multiple Cracks, CL = 2A; CW = 7 

2A = 28; 2B = 16 
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152 7.9-8.1 0.15-0.18 

 

 
Multiple Cracks, CL = 2A, CW = 8 

2A = 36; 2B = 18 

254 13.2-13.6 0.22 
C L

C W

 
Elliptical Delamination, Multiple Cracks, CL = 2A, 

CW = 11 
2A = 40; 2B = 23 

 
B.2 Base Laminate Representative Photographs (back face damage) 
 

Backface damage boundary and the length of fiber breakage were marked by 

white pen, and then the laminate was photographed. These images for different impact 

heights are shown below. 

 
H = 64 mm (2.5 in) 

 

 
H = 76 mm (3.0 in) 

 
H = 83 mm (3.25 in) 

 
H = 89 mm (3.5 in) 

 
H = 102 mm (4.0 in) 

 

 
H = 102 mm (4.0 in) 

 
H = 152 mm (6.0 in) 

 
H = 152 mm (10.0 in) 
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B.3 Interleaved Specimens 
Visual Impact Damage Assessment (Interleaved Specimens) 

Impact Front Surface Back Surface Damage (mm) 

Comments 
Height, 
H, mm 

Energy, E0, 
J 

Indentation 
Depth, d, mm (Major axis 2A; minor axis 2B) 

0-76 2.9-3.9 0.0 No Visible Damage 
83 4.1-4.4 0.0-0.08 No Visible Damage 

89 4.5—4.6 0.08—0.1 
 

No Visible Cracks 
2A = 20; 2B = 14 

102 5.4—5.6 0.13 

 
No Visible Cracks 
2A = 17.5; 2B = 15 

152 7.9—8.1 0.15 

C L

CW

 
Multiple Cracks, CL = 15; CW = 5 

2A = 22; 2B = 20 

254 13.2—13.3 0.22 
C L

C W

 
Multiple Cracks, CL = 2A, CW = 8 

2A = 42; 2B = 18.5 
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B.4 Interleaved Laminate Representative Photographs (back face 
damage) 

 
H = 89 mm (3.5 in) 

 

 
H = 89 mm (3.5 in) 

 
H = 102 mm (4.0 in) 

 
H = 102 mm (4.0 in) 

 
H = 152 mm (6.0 in) 

 

 
H = 152 mm (6.0 in) 

 
H = 254 mm (10.0 in) 

 
H = 254 mm (10.0 in) 
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APPENDIX C 
 

C-SCAN RESULTS 
 
C-scanned damaged images of base and interleaved laminates at different impact heights 

are shown below. 

 
 
 
 

 
 



 

144 

 
 
 
 

 
 
 



 

145 

 
 
 

 



 

146 

 
 
 

 



 

147 

 

 
 



 

148 

APPENDIX D 
 

SUMMARY OF IMPACT TEST DATA 
 
D.1 Base Specimen 
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D.2 Interleaved Specimen 
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APPENDIX E 
 
 

IMPACT RESPONSE PLOTS FOR BASE SPECIMENS 
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                          Figure E.1.   Force versus time at H = 57 mm (2.25 in) 
 
 

0

1

2

3

4

5

6

7

8

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Im
pa

ct
 F

or
ce

, P
, k

N

Displacement, W, mm
 

                  Figure E.2.   Force versus displacement at H = 57 mm (2.25 in) 



 

151 

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6

Im
pa

ct
 E

ne
rg

y,
 E

, J

Time, t, ms
 

                        Figure E.3.   Energy versus time at H = 57 mm (2.25 in) 
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                           Figure E.4.   Force versus time at H = 64 mm (2.5 in) 
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                   Figure E.5.   Force versus displacement at H = 64 mm (2.5 in) 
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                        Figure E.6.   Energy versus time at H = 64 mm (2.5 in) 
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                          Figure E.7.   Force versus time at H = 76 mm (3.0 in) 
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                   Figure E.8.   Force versus displacement at H = 76 mm (3.0 in) 
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                        Figure E.9.   Energy versus time at H = 76 mm (3.0 in) 
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                        Figure E.10.   Force versus time at H = 83 mm (3.25 in) 
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                  Figure E.11.   Force versus displacement at H = 83 mm (3.25 in) 
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                       Figure E.12.   Energy versus time at H = 83 mm (3.25 in) 
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                          Figure E.13.   Force versus time at H = 89 mm (3.5 in) 
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                   Figure E.14.   Force versus displacement at H = 89 mm (3.5 in) 
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                        Figure E.15.   Energy versus time at H = 89 mm (3.5 in) 
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                         Figure E.16.   Force versus time at H = 102 mm (4.0 in) 
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                  Figure E.17.   Force versus displacement at H = 102 mm (4.0 in) 
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                       Figure E.18.   Energy versus time at H = 102 mm (4.0 in) 
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                        Figure E.19.   Force versus time at H = 127 mm (5.0 in) 
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                 Figure E.20.   Force versus displacement at H = 127 mm (5.0 in) 
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                       Figure E.21.   Energy versus time at H = 127 mm (5.0 in) 
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                       Figure E.22.   Force versus time at H = 152 mm (6.0 in) 
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                  Figure E.23.   Force versus displacement at H = 152 mm (6.0 in) 
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                      Figure E.24.   Energy versus time at H = 152 mm (6.0 in) 
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                         Figure E.25.   Force versus time at H = 254 mm (10.0 in) 
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                Figure E.26.   Force versus displacement at H = 254 mm (10.0 in) 
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                       Figure E.27.   Energy versus time at H = 254 mm (10.0 in) 
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APPENDIX F 
 

IMPACT RESPONSE PLOTS FOR INTERLEAVED 
SPECIMENS 
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                          Figure F.1.   Force versus time at H = 57 mm (2.25 in) 
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                   Figure F.2.   Force versus displacement at H = 57 mm (2.25 in) 
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                         Figure F.3.   Energy versus time at H = 57 mm (2.25 in) 
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                           Figure F.4.   Force versus time at H = 64 mm (2.5 in) 
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                    Figure F.5.   Force versus displacement at H = 64 mm (2.5 in) 
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                         Figure F.6.   Energy versus time at H = 64 mm (2.5 in) 
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                           Figure F.7.   Force versus time at H = 76 mm (3.0 in) 
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                    Figure F.8.   Force versus displacement at H = 76 mm (3.0 in) 
 



 

168 

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6
Time, t, ms

Im
pa

ct
 E

ne
rg

y,
 E

, J

 
                          Figure F.9.   Energy versus time at H = 76 mm (3.0 in) 
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                         Figure F.10.   Force versus time at H = 83 mm (3.25 in) 
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                Figure F.11.   Force versus displacement at H = 83 mm (3.25 in) 
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                        Figure F.12.   Energy versus time at H = 83 mm (3.25 in) 
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                          Figure H 13.   Force versus time at H = 89 mm (3.5 in) 
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                    Figure F.14.   Force versus displacement at H = 89 mm (3.5 in) 
 



 

171 

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6
Time, t, ms

Im
pa

ct
 E

ne
rg

y,
 E

, J

 
                         Figure F.15.   Energy versus time at H = 89 mm (3.5 in) 
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                         Figure F.16.   Force versus time at H = 102 mm (4.0 in) 
 



 

172 

0

1

2

3

4

5

6

7

8

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Im
pa

ct
 F

or
ce

 ,P
, k

N

Displacement, W, mm
 

                  Figure F.17.   Force versus displacement at H = 102 mm (4.0 in) 
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                        Figure F.18.   Energy versus time at H = 102 mm (4.0 in) 
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                        Figure F.19.   Force versus time at H = 152 mm (6.0 in) 
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                Figure F.20.   Force versus displacement at H = 152 mm (6.0 in) 
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                        Figure F.21.   Energy versus time at H = 152 mm (6.0 in) 
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                         Figure F.22.   Force versus time at H = 254 mm (10.0 in) 
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                 Figure F.23.   Force versus displacement at H = 254 mm (10.0 in) 
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                       Figure F.24.   Energy versus time at H = 254 mm (10.0 in) 
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