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Abstract 

The 2006 multi-state Escherichia coli O157:H7 (EHEC) outbreak linked to bagged spinach 

raised concerns about the safety of fresh produce. One novel approach to control foodborne 

pathogens is lytic bacteriophages, which does not affect the produce microflora. The objectives 

of this study were; 1) to test and verify the efficacy of a phage cocktail against EHEC in a 

laboratory medium, 2) to determine the effectiveness of the phage cocktail on fresh-cut leafy 

greens, and 3) to test and compare the effectiveness of the phage cocktail against EHEC on 

fresh-cut green leafy vegetables stored under air and modified air (low O2/high CO2) conditions.  

The efficacy of the phage cocktail was determined against a nalidixic acid resistant (NalR) EHEC 

strain in Tryptic Soy Broth (TSB). Next, pieces (~2x2 cm2) of leafy greens inoculated with 4.50 

log EHEC NalR/cm2 and air-dried were sprayed with 6.50 log phage cocktail/cm2. Samples were 

stored at 4 or 10°C for 15 days under atmospheric or modified (5% O2/35% CO2/60% N2) air. 

The recovered EHECs were enumerated on MacConkey agar supplemented with 25 µg/ml Nal.  

Phage treatment resulted in 6 log reduction (P<0.05) of EHEC NalR in TSB. At 4°C under air, 

the phage cocktail significantly (P<0.05) lowered the EHEC NalR counts in one day by 1.19, 

3.21, and 3.25 log units on spinach, green leaf, and romaine lettuce, respectively. When stored 

under modified atmosphere, the reductions in EHEC NalR concentrations were 2.18, 3.50, and 

3.13 logs. At 10°C, EHEC reductions under air were 1.99, 3.90, and 3.99 logs, and under 

modified air were 3.08, 3.89, and 4.34 logs on spinach, green leaf, and romaine lettuce, 

respectively. 

The results of this study suggest that bacteriophages may be used successfully for 

controlling/reducing pathogenic bacterial presence and/or growth on fresh produce stored under 

modified atmosphere packaging.  
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CHAPTER 1  

Introduction 

Foodborne related outbreaks are a great burden on the economy. The cost of a foodborne 

illness per patient ranges from $26 (no medical treatment) to $6.2 million (death due to HUS) 

(Frenzen, Drake, & Angulo, 2005). The cost of EHEC infections to the produce industry and 

healthcare system is approximately $405 million (Frenzen et al., 2005). Two recent studies 

conducted in Australia and The Netherlands calculated that the yearly cost of EHEC infections 

are $2.8 and $12.7 million, respectively (McPherson, Kirk, Raupach, Combs, & Butler, 2011; 

Tariq, Haagsma, & Havelaar, 2011). Development of produce tracking systems from farm to 

fork will allow smaller produce callbacks in size without paralyzing the entire produce industry. 

Also the development of novel sanitizing methods to control pathogen contamination on meat, 

poultry, fruits, and vegetables will benefit the entire food industry by reducing their costs on 

recalls, healthcare expenses, and possible lawsuits faced after an outbreak.  

The Healthy People (HP) Initiative of the US Department of Health and Human Services 

aims to reduce the infection incidences of four major foodborne pathogens including Escherichia 

coli O157:H7. Outbreaks linked to the consumption of tainted green leafy vegetables are 

considered a major health risk and one of the aims of HP 2020 is to reduce the outbreaks 

resulting from the consumption of the leafy greens (Healthy People 2020).  

The chlorine solutions are the most widely used agents by the fresh produce industry to 

keep the indigenous bacteria and potential pathogen counts lower, (Takeuchi & Frank, 2001b). 

However, these hypochlorite solutions are only able to keep the wash water clean to prevent 

cross contamination of pathogenic bacteria between batches of produce (Behrsing, Winkler, 

Franz, & Premier, 2000). Also the oxidative effect of the free chlorine in hypochlorite solutions 
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is inactivated by the organic substances released from the damaged or cut surfaces of the produce 

(Marriott, 1999). As a result, their effectiveness against pathogens is tremendously reduced. 

Therefore, novel and more effective sanitation agents and methods are urgently needed to help 

keep fresh produce pathogen free.  

One alternative method is the use of bacteriophages (phages) as natural antibacterial 

agents in food to eliminate pathogens. In the last decade, scientists in the West have been 

rediscovering and rebuilding their hopes up in phages to control the antibiotic resistant strains of 

bacteria. Phages are viruses that specifically interact with and infect their respective host 

bacterial cells. They are extremely diverse and abundant; thus, present the most promising 

natural weapon against the bacteria. In nature, phages are responsible for killing almost half of 

the bacterial population generated daily (Suttle, 2005). Considering the short generation time of 

the bacteria, phages represent the most effective natural tool to keep their presence under control. 

Currently there are 3 phage products in the market that received FDA regulatory approvals for 

use in food items.  

Today fresh produce travel long distances, and maintaining the produce quality becomes 

a challenging issue. To satisfy the need to keep the fresh produce fresher longer, modified 

atmosphere packaging (MAP) offers indispensable advantage. During the transportation of 

produce the storage temperature and environmental gas concentration are controlled to reduce 

the physiological deterioration and prolong shelf life.  

How effectively phages can perform their natural responsibilities under low oxygen/high 

carbon dioxide conditions is unknown in the literature. The objectives of this study are; 1) to test 

and verify the efficacy of a phage cocktail against E. coli O157:H7 in a laboratory medium, 2) to 

determine the effectiveness of the phage cocktail on fresh-cut leafy greens under normal 
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atmospheric air condition, and 3) to test and compare the effectiveness of the phage cocktail 

against E. coli O157:H7 on fresh-cut green leafy vegetables packaged under atmospheric air and 

modified atmosphere (low O2/high CO2) conditions. 
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CHAPTER 2  

Literature Review 

2.1. Escherichia coli as a Foodborne Pathogen 

Escherichia coli is a rod-shaped (1.1x1.5 and 2.0x6.0 µm), Gram-negative, facultative 

anaerobic bacterium. E. coli was first isolated in the feces of newborn infants by German 

microbiologist Theodor Escherich in 1885, and described as commensal of the large intestine. He 

identified this bacterium as Bacterium coli commune (Kaper, 2005). Later, it was reclassified as 

Escherichia coli, being named after him. In 1935, E. coli was identified as a causative agent of 

diarrhea among infants (Stoppelman & Plaats, 1953). It is the most renowned member of 

Enterobacteriaceae family. Enteric bacteria are composed of facultative anaerobic Gram-negative 

rods including species of Salmonella, Shigella, and Yersinia. Escherichia, Enterobacter, and 

Klebsiella are also other known species belonged to the same family. E. coli flourishes in the 

large intestines of warm-blooded animals and comprises about 1% of the microbial flora in 

human large intestine. E. coli is used as a marker organism to detect fecal contamination on food 

and water sources. Although anaerobic Bacteroides spp. outnumbers the E. coli population in the 

bowel by 20:1, E. coli is widely used as a marker species for the determination of fecal 

contamination due to the culturing difficulties of anaerobic bacteria.  

Before the identification of virulence factors, diarrheagenic E. coli strains were 

differentiated by serotyping. Over 700 antigenic serotypes of E. coli are recognized based on 

their somatic O, flagellar H, and capsular K antigens (Paton & Paton, 1998b). Serotype O157:H7 

(O refers to somatic antigen; H refers to flagellar antigen) is uniquely responsible for causing 

hemolytic uremic syndrome (HUS) in many outbreaks.  
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2.1.1. Pathogenic E. coli O157:H7. E. coli O157:H7 is traditionally found in the 

gastrointestinal tracts of warm-blooded ruminant farm animals such as cattle, sheep, and goats 

(Erickson & Doyle, 2007). E. coli O157:H7 is usually introduced into the environment from 

these host animals. About 1-25% of the cattle is estimated to carry E. coli O157:H7 (Elder, Keen, 

Siragusa, Barkocy-Gallagher, Koohmaraie, & Laegreid, 2000). Cattle can produce 20-50 kg of 

feces a day. Carrier cattle may shed between 101 and 107 CFU of E. coli O157:H7 per gram of 

feces (Besser, Richards, Rice, & Hancock, 2001). Cattle shedding more than 104 CFU/g of E. 

coli O157:H7 are called “super-shedders,” and they must be detected and removed from the herd 

for the wellbeing of the other animals and the environment (Matthews, Low, Gally, Pearce, 

Mellor, Heesterbeek et al., 2006). 

Most E. coli O157:H7 strains cannot ferment sorbitol within 24 hours in culture and do 

not contain β-glucuronidase enzyme (Holt, Krieg, Sneath, Staley, & Williams, 1994; Strockbine, 

Wells, Bopp, & Barrett, 1998). Although there are some cases of the presence of sorbitol-

fermenting, β-glucuronidase-producing E. coli O157:H7, these are mainly in Europe (Gunzer, 

Bohm, Russmann, Bitzan, Aleksic, & Karch, 1992). The optimal growth temperature of E. coli 

O157:H7 is 37°C, however it can survive between 7-46°C. Optimum pH for E. coli O157:H7 is 

6.0-7.0, but it can tolerate acidic pH as low as 3.7-4.4 (Weagant, Bryant, & Bark, 1994). Most E. 

coli O157:H7 strains ferment glucose and some ferment lactose, producing acid and gas, and are 

typically oxidase-negative, indole-positive, and urease negative, and produce peritrichous 

flagella when motile (Holt et al., 1994). The unique characteristics of E. coli O157:H7, such as 

acid and cold tolerance, make monitoring this foodborne pathogen critical within the food 

industry. 
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2.1.2. Types of pathogenic E. coli. Diarrheagenic strains of pathogenic E. coli are 

classified based on their unique virulence factors and can only be identified by these traits. 

Hence, analysis for pathogenic E. coli usually requires that the isolates first be identified as E. 

coli before testing for virulence markers. Diarrhea-causing pathogenic E. coli categories are 

enterotoxigenic (ETEC), enteropathogenic (EPEC), enterohemorrhagic (EHEC), 

enteroaggregative (EAEC), enteroinvasive (EIEC), and diffusely adherent (DAEC).  

Enterotoxigenic E. coli (ETEC). Members of this category can synthesize at least one of 

two enterotoxin groups: heat-stable toxins (ST) and heat-labile toxins (LT). ETECs cause 

diarrhea in humans through the actions of these two groups of toxins (Nataro & Kaper, 1998).  

Enteropathogenic E. coli (EPEC). These bacteria are recognized to cause attaching-

and-effacing (A/E) histopathology. EPECs recognize, attach, and disrupt the microvilli structures 

via the activities of eae and intimin genes to attach tightly to the epithelial cells in the intestine 

(Nataro & Kaper, 1998).  

Enteroaggregative E. coli (EAEC). Bacteria in this category bind to epithelial cells as 

densely packed aggregates. These bacteria carry a plasmid to synthesize fimbria, which causes 

them to aggregate. Aggregation enhances toxicity and their ability to cause inflammation (Nataro 

& Kaper, 1998).  

Enteroinvasive E. coli (EIEC). Most of the members in this category are generally non-

motile. These bacteria carry an invasion plasmid that contains type III secretion system (TTSS), 

which secretes their own antigen to attach intestinal cell surface (Nataro & Kaper, 1998).  

Diffusely Adherent E. coli (DAEC). Members of this category are known for having a 

surface fimbria that helps them diffuse into the intestinal cells without being completely 
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internalized. This way they can physically protect themselves from external agents (Nataro & 

Kaper, 1998).  

Enterohemorrhagic E. coli (EHEC). Members of this category are known to cause 

hemorrhagic colitis (HC), which is bloody diarrhea with no fever, and hemolytic uremic 

syndrome (HUS). EHECs are a subset of Shiga toxin-producing E. coli (STEC), and they are 

characterized by expressing Shiga toxin (Stx), forming A/E lesions on epithelial cells, and 

possessing an approximately 60-MDa plasmid (Nataro & Kaper, 1998).  

Some of the HC symptoms start as severe abdominal cramps with watery diarrhea, which 

typically becomes bloody within 24 h (O'Brien, Lively, Chen, Rothman, & Formal, 1983; Riley, 

1987; Riley, Remis, Helgerson, McGee, Wells, Davis et al., 1983). The diarrhea usually lasts 1 

to 8 days. Approximately 8% of patients with E. coli O157:H7 and 5% of patients with HC 

develop a severe complication known as HUS (Slutsker, Ries, Maloney, Wells, Greene, & 

Griffin, 1998). Symptoms of HUS include anemia (characterized by fatigue, weakness, and light-

headedness) caused by the destruction of red blood cells (hemolytic anemia), a low platelet count 

(thrombocytopenia), and sudden kidney failure. Some people with HUS may also develop 

complications of nerve or brain damage, leading to seizures or strokes. These complications 

typically develop in the second week of illness and may be preceded by increasing fever. HUS is 

more likely to occur in children under the age of 5 and in the elderly. Even without HUS and its 

complications, HC may cause death in older people (Blackall & Marques, 2004). HUS is 

associated with Shiga toxin producing enteric bacteria, such as E. coli O157:H7. The production 

of the Shiga toxin is the key for many of the pathological features of EHEC infection (Lathem, 

Bergsbaken, & Welch, 2004; Paton & Paton, 1998b).  
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Pathogenic bacteria are estimated to cause over 4 million foodborne illnesses and 

approximately 36,000 hospitalizations in the US yearly (Mead, Slutsker, Dietz, McCaig, Bresee, 

Shapiro et al., 1999). E. coli O157:H7 has emerged in the past two decades as a significant 

foodborne pathogen. It is particularly important in the food industry because of its low infectious 

dose. Most E. coli O157:H7 infections occur through consumption of contaminated food and 

water. Ground beef, milk, apple juice, produce, and foods that have been stored, cooked, or 

handled improperly are potential transmission sources of E. coli O157:H7. The incidence of this 

pathogen in many food sources and its low infectious dose are causes of major concern among 

food processors and regulatory agencies.  

Acid resistance of EHEC is another important factor that allows it to survive digestive 

stresses through the stomach and colonize the intestinal tract (Diez-Gonzalez & 

Karaibrahimoglu, 2004). After surviving the harsh environment of the stomach, the pathogen 

must adhere to the intestinal epithelial cells. Colon and perhaps the distal small intestine are the 

principle sites for EHEC colonization in humans.  

Nothing is known about the colonizing antigens of EHEC but fimbria are presumed to be 

involved. The bacteria do not invade mucosal cells as readily as Shigella, but EHEC strains 

produce a toxin that is virtually identical to the Shiga toxin. The toxin plays a role in the intense 

inflammatory response produced by EHEC strains and may explain the ability of EHEC strains 

to cause HUS. Shiga toxin producing E. coli (STEC) strains are one of the most important 

enteropathogens. There are more than 100 serogroups of E. coli that are known to produce Shiga 

toxins (Nataro & Kaper, 1998). E. coli O157:H7 is the most infamous serotype with Shiga toxin 

producing ability. Shiga toxin is also called as verocytotoxin (VT) and Shiga-like toxin (SLT) 

(Kaper, 1998). Shiga toxin producing E. coli O157 are derived from one clone and carry highly 
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similar genotypes (Law, 2000). A large amount of E. coli O157 isolates produce Shiga toxin 2 

(Stx2) only. Shiga toxin 1 (Stx1) and Stx2 producers are occasionally found but exclusively Stx1 

producing E. coli O157:H7 are rare (Griffin & Tauxe, 1991).  

EHEC are considered to be moderately invasive. Unlike other diarrheagenic E. coli 

isolates, EHEC and EPEC isolates share the ability to induce formation of an attaching and 

effacing (A/E) lesion on target epithelial cells. A/E lesions are characterized by localized 

destruction of microvilli and the formation of polymerized actin, which helps bacteria to adhere 

to microvilli. 

Beneath the adherent bacteria, is accumulation of cytoskeletal components, resulting in 

the formation of pedestals (Abe, Tatsuno, Tobe, Okutani, & Sasakawa, 2002). EHEC strains that 

display the A/E phenotype have a pathogenicity island homologue called Locus for Enterocyte 

Effacement (LEE) similar to that of EPEC (Elliott, Wainwright, McDaniel, Jarvis, Deng, Lai et 

al., 1998). The LEE homolog contains a copy of eaeA, Tir (Translocated intimin receptor) 

homolog (Frankel & Phillips, 2008), as well as the Type III secretion system (DeVinney, Puente, 

Gauthier, Goosney, & Finlay, 2001).  

The first gene found to be associated with A/E activity was eae gene and encodes the 

intimate bacterial adhesion known as intimin. Intimin binds its specific receptor, Tir, on 

intestinal epithelial cells. Tir is actually synthesized by both EHEC and EPEC, and translocated 

into the host intestinal epithelial cell membrane. EPEC Tir is Tyrosine phosphorylated once in 

the host membrane and forms a pedestal and acts as intimin receptor to bind EPEC. EHEC Tir 

also forms a pedestal structure and binds intimin without being Tyrosine phosphorylated, 

suggesting phosphorylation is not an absolutely necessary step for EHEC binding to host cells 

(DeVinney, Stein, Reinscheid, Abe, Ruschkowski, & Finlay, 1999). In addition, eaeA-negative 
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mutants lost the capacity to adhere intimately to the colonic epithelium of piglets (Abe et al., 

2002).  

2.2. Foodborne Outbreaks and Pathogens 

One of the aims of Healthy People (HP) Initiative of the US Department of Health and 

Human Services is to reduce the infection incidences of four major foodborne pathogens 

(Campylobacter species, E. coli O157:H7, L. monocytogenes, and Salmonella species). The HP 

2010 aimed at reducing the incidences of these 4 pathogens about 50% by year 2010 compared 

to their baseline levels in 1997. The objectives of HP have been updated for 2020 and now 

include reducing the outbreaks resulting from leafy vegetables. On average, 205 cases were 

reported yearly due to leafy vegetable outbreaks caused by 4 major foodborne pathogens 

between 2005 and 2007. The HP 2020 aims to reduce this baseline of 205 cases by about 10% by 

the year 2020 (Healthy People 2020).  

According to the review of 2008 FoodNet data, significant reductions have been achieved 

for the three of four major foodborne pathogens since 1997 (CDC, 2005, 2009). However, most 

of the improvement was observed between 1997 and 2004. Little or no progress has been made 

since then (Table 1). In fact, E. coli O157:H7 outbreaks are on the rise after 2004. FoodNet data 

is collected from 10 states covering about 15% of the US population on the incidence of 

foodborne infections. Despite the continuous improvements and research in the field, it is 

understood that the current applications and techniques used were unable to fulfill the 2010 

goals. Especially Salmonella incidence level is even higher than the baseline in 1997. E. coli 

O157:H7 incidence in 2008 was higher than that of in 2004. The CDC reports published yearly 

also show that the numbers of Shiga toxin producing pathogenic E. coli (STEC) cases are on the 

rise since 2003 (Figure 1). 
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Table 1 

Incidence of 4 major foodborne pathogens per 100,000 population. 

Pathogen 
1997 

Baseline 
Incidence in 

2004 
Incidence 
2006-2008 Target 2020 

Campylobacter species 24.60 12.90 12.70   8.50 

E. coli O157:H7   2.10   0.90   1.20   0.60 

L. monocytogenes   0.50   0.27   0.30   0.20 

Salmonella species 13.70 13.00 15.20 11.40 

Source: CDC 2005, 2009 and Healthy People 2020. 
 

 
2011* is an approximation from the data released on 08/13/2011 based on the previous CDC reports. 
 
Figure 1.  Reported Shiga toxin producing E. coli (STEC) cases, 2000-2011.  

2.3. Susceptibility of Fresh and Fresh-Cut Produce to Contamination 

Fresh fruits and vegetables consumed after minimal or no processing are increasingly 

recognized as sources of foodborne disease outbreaks. In the US, produce related outbreaks have 

increased from 0.7% of all reported foodborne outbreaks in the 1970s to 6% in the 1990s 

(Sivapalasingam, Friedman, Cohen, & Tauxe, 2004). Based on the data available, 60% of the 
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produce related outbreaks are linked to a bacterial pathogen (Sivapalasingam et al., 2004). From 

1990 to 2005, the number of foodborne illnesses linked to fresh produce surpassed those linked 

to other foods, including poultry, beef, eggs, and seafood. In addition, the average number of 

illnesses per outbreak was significantly higher in fresh produce outbreaks than those caused by 

other foods (Solomon & Sharma, 2009). The increase in the number of outbreaks related to fresh 

produce might be the consequence of improving outbreak surveillance systems and/or increased 

consumption of fresh-cut prepackaged products.  

In the last decade of the 20th century, government agencies, voluntary organizations, and 

private companies joined their efforts to inform the American public about the healthy nutritional 

choices. The new MyPlate program, which replaces the Food Guide Pyramid, recommends that 

half of our diet should be composed of fruits and vegetables (MyPlate - USDA). The old Five-A-

Day program and the current Fruits & Veggies More Matters program by the Produce for Better 

Health Foundation were other examples to draw public attention to importance of increasing the 

consumption of fruits and vegetables (Fruits & Veggies More Matters). As a result of these 

efforts, the per capita consumption of fresh produce has increased significantly in recent years 

(Kaufman, Handy, McLaughlin, Park, & Green, 2000). In a USDA report, it was predicted that 

the lettuce consumption per capita will increase by 5.1% from 2000 to 2020, with a total market 

growth rate of 24% by 2020 (Lin, 2004). According to the foodborne disease outbreaks 

surveillance data, the consumption of leafy greens increased by 17.2% during 1986-1995 

compared to the previous decade and the proportion of foodborne disease outbreaks linked to the 

leafy green consumption also increased by 59.6% during the same period. In the following 

decade (1996-2005), leafy greens consumption boosted by 9.0% and the foodborne disease 

outbreaks arisen by 38.6% (Herman, Ayers, & Lynch, 2008). It seems that the increase in the 
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number of leafy green related outbreaks cannot solely be explained by the increase in leafy green 

consumption.  

Factors such as the practices at pre- and post-harvest stages can be likelihood of 

contamination. Contamination at pre-harvest may occur due to the use of improperly prepared 

fertilizers from animal feces, irrigation water contaminated with the animal feces from a nearby 

animal farm, or other agents contaminating the irrigation water or the farm area (Cooley, 

Carychao, Crawford-Miksza, Jay, Myers, Rose et al., 2007). Contamination sources at post-

harvest or during processing include water used for washing, sprays, chill tanks, and ice used 

during shipping. Additionally, post-harvest stage contamination sources can be the contaminated 

surfaces and hands of infected workers with poor hygiene. Today, fresh produce travels from all 

over the world before it reaches the consumers in the US making oversight difficult if not 

impossible. The 2006 multi-state E. coli O157:H7 outbreak linked to bagged baby spinach was 

originated from a California farm (California Food Emergency Response Team, 2007). Produce 

grown in large amounts is distributed in the entire US in a matter of days as seen by the 

incidence map of 2006 spinach outbreak (Figure 2) (CDC, 2006b). A total of 254 people became 

sick and 3 died in two different E. coli O157:H7 outbreaks in 2006 which were associated with 

bagged baby spinach and shredded lettuce (CDC, 2006a, b). Rates of hospitalization (52-75%) 

and HUS (29%) were higher in these two outbreaks than previously recorded E. coli O157:H7 

outbreaks (Mead et al., 1999; Thorpe, Ritchie, & Acheson, 2002). 

A Shiga toxin-producing E. coli (STEC) outbreak occurred in May 2011 in northern 

Germany, affecting thousands of people all over Europe and North America. The outbreak 

presented an increased incidence of HUS and bloody diarrhea, and was initially thought to be 

linked to the consumption of tainted raw tomatoes, cucumber, and leafy greens (Frank, Faber, 
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Askar, Bernard, Fruth, Gilsdorf et al., 2011) . Later on, it was highly suspected that organic 

soybean sprouts grown in a farm in Germany were the source of the outbreak. According to the 

World Health Organization (WHO), 16 countries have reported significant EHEC infection cases 

that claimed 50 lives and over 4000 hospitalizations including more than 800 cases of HUS 

(WHO, 2011).  

 

1-4 5-9 10-14 15 or 
higher 

 
Source: (CDC, 2006b). 
 
Figure 2.  The 2006 E. coli O157:H7 outbreak case counts by state linked to fresh bagged baby 

spinach.  

Recent E. coli O157:H7 outbreaks are more likely to be associated with the consumption 

of contaminated fruits and vegetables. A list of E. coli O157:H7 related outbreaks linked to fresh 

produce between years 1997-2006 is given in Table 2. E. coli O157:H7 and Listeria 

monocytogenes attach cut edges of produce leaves more easily than to intact leaves (Boyer, 
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Sumner, Williams, Pierson, Popham, & Kniel, 2007; Takeuchi, Matute, Hassan, & Frank, 2000). 

According to a recent study, it was found that E. coli O157:H7 grew faster on mechanically 

damaged lettuce leaves as nutrients were freely available (Brandl, 2008).  

Plant surfaces are used to be known as inhabitable to enteric pathogens such as E. coli 

O157:H7 to flourish. Bacteria need to overcome harsh conditions like excessive sunlight, limited 

nutrients, and day/night temperature changes to survive on plant surfaces. Surprisingly, recent 

research shows that enteric pathogens such as E. coli O157:H7 and Salmonella spp. are able to 

survive and grow on plant surfaces even under these harsh conditions (Brandl, 2006; Heaton & 

Jones, 2008).  

Table 2 

E. coli O157:H7 outbreaks by produce type between years 1997-2006.  

Year Produce type 

1997 Sprouted seeds (alfalfa) 

1997 Salad 

1998 Salad 

1998 Fruit salad 

1998 Coleslaw 

1998 Sprouted seeds (clover ⁄ alfalfa) 

1998 Unpasteurized apple juice 

1998 Parsley 

1999 Coriander (cilantro) 

1999 Unpasteurized apple juice 

2003 Cucumber 

2003 Lettuce 

2005 Lettuce 

2006 Spinach 

2006 Lettuce 

Source: Compiled from CDC (www.cdc.gov). 
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Animal feces are widely used in agriculture and proper composting is critical to kill 

possible pathogens in the manure. Live pathogens in partially composted manure can infect the 

growing plants. Contaminated ovine manure with 106 CFU/g of E. coli O157:H7 was not free of 

pathogen after 21 months when not aerated (Kudva, Blanch, & Hovde, 1998). E. coli O157:H7 

was also shown to survive more than 40 days depending on the initial concentration and 

composting temperature (Wang, Zhao, & Doyle, 1996). Another pathogen, Salmonella spp., was 

found to survive longer than E. coli O157:H7 in bovine manure under the same conditions 

(Himathongkham, Bahari, Riemann, & Cliver, 1999). Enteric pathogens can also survive in 

sterile water for long periods (Wang & Doyle, 1998). Addition of organic matter similar to 

animal manure greatly increased the survival of E. coli O157:H7 in water (Hutchison, Walters, 

Moore, & Avery, 2005). It is also found that the pathogen load in water sources close to animal 

fields increases after heavy rains (Cooley et al., 2007). Use of improperly composted animal 

manure and irrigation with contaminated water may result in introduction of live pathogens in 

agricultural fields.  

Since large scale food-borne outbreaks started to draw attention, a tendency has been 

noticed that certain pathogens are more linked to certain food items. Green leafy vegetables such 

as lettuce and spinach have been linked to 29 E. coli O157:H7 outbreaks occurred between 1990 

and 2005 (Solomon & Sharma, 2009).  

Plant surfaces are mostly covered with waxy cuticle. Aerial plant surfaces are thought to 

be inhabitable by enteric pathogens as there is limited nutrient availability, large temperature 

swing between day and night, and high UV exposure from sunlight. Often cracks and damages in 

the cuticle that expose the epidermal cells are the sites for bacterial colonization. Plant surfaces 

are also colonized by natural foliar microflora, which competes for nutrient (Lindow & Brandl, 
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2003). When introduced to plant surfaces, pathogens must be able to first attach and proliferate 

to be transmitted to the produce. E. coli was shown to strongly attach to lettuce and green pepper 

after a short time (Beuchat, 1999; Han, Sherman, Linton, Nielsen, & Nelson, 2000). Washing 

and agitation were not enough to remove the attached E. coli cells. Damaged plant tissues are 

more susceptible to pathogen colonization than intact tissues (Seo & Frank, 1999). Fresh-cut 

produce are more susceptible to bacterial attachment and colonization than whole plants.  

In the period from 1990 to 2005, the lettuce was the number one produce example 

associated with several outbreaks (Solomon & Sharma, 2009). The reasons for this problem 

might be listed as follows: 1) Lettuce is grown directly on the ground; 2) Its leaves are easily 

damaged creating easy access points for any pathogen; and 3) Lettuce is consumed raw as main 

salad ingredient. However, survey studies on lettuce samples from farm and screened grocery 

stores did not yield any pathogens to prove these hypotheses (Delaquis, Bach, & Dinu, 2007).  

E. coli contamination on cut lettuce even at low levels (102 CFU/g) was still present after 

15 days of incubation at 4°C (Beuchat, 1999). Chlorine wash (200 ppm) was not effective any 

more than washing with water alone. Similar result was collected after washing with cold and 

warm water including 100 ppm chlorine (Delaquis, Stewart, Cazaux, & Toivonen, 2002). E. coli 

O157:H7, Salmonella, and L. monocytogenes were shown to attach more to the cut surfaces of 

lettuce compared to the intact surfaces (Takeuchi & Frank, 2000). Similar to the known 

phytopathogens, E. coli attaches to the stomatas on intact lettuce plants (Seo & Frank, 1999).  

In the field, plants spray–irrigated with water contaminated with 107 CFU/ml of E. coli 

O157:H7 were tested positive up to 20 days, and chlorine treatment (200 ppm) of these plants 

did not inactivate the organism completely (Solomon, Yaron, & Matthews, 2002). Another study 

showed that lettuce plants grown in soil fertilized with contaminated manure were tested positive 
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for E. coli 77 days after seeding (Islam, Doyle, Phatak, Millner, & Jiang, 2004). According to a 

recent study, E. coli O157:H7 cells used filamentous type III secretion system to attach to green 

leafy vegetables such as spinach, lettuce, and arugula when leaves were dipped in 106 CFU/ml of 

E. coli O157:H7 solutions at 37°C for extended periods of times (Shaw, Berger, Feys, Knutton, 

Pallen, & Frankel, 2008). 

Intestinal pathogens attached on produce surfaces have been found to colonize and 

survive inside the plant tissues through a process called internalization. Internalized pathogens 

pose a greater threat as they can continue their presence through the food delivery system 

undetected. Currently no sanitation method used in the produce industry has been proven to be 

fully effective against internalized pathogens. Internalization may occur through the cuts and 

bruises on the surface, plant roots, and infiltration and cross contamination during post-harvest 

processing. Rapid cooling of the harvested produce from the farm may promote internalization. 

When a warm fruit is immersed in a cooler liquid, it creates a positive temperature difference and 

the gases in internal spaces of fruit contract to draw some amount of cooling water inside the 

fruit through the pores and openings on the surface (Buchanan, Edelson, Miller, & Sapers, 1999). 

If the cooling water is contaminated, it is possible that bacteria will be driven into the produce. 

Warm mangoes (46°C) immersed in 22°C cool water contaminated with S. Enteritidis were 

found to have internalized bacteria on the cut stem end. However the opposite blossom end was 

less likely to have bacteria (Penteado, Eblen, & Miller, 2004). Type of the produce is important 

for internalization. Oranges immersed in E. coli O157:H7 and Salmonella containing liquids had 

internalization rates of 2.5% and 3.0%, respectively (Eblen, Walderhaug, Edelson-Mammel, 

Chirtel, De Jesus, Merker et al., 2004).  
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Several studies focused on E. coli O157:H7 internalization in spinach and lettuce plants 

through root uptake as E. coli O157:H7 outbreaks are often linked to these produce. E. coli 

O157:H7 cells were recovered from internal tissues of lettuce 5 days after the plants were treated 

with contaminated irrigation water or manure slurry with 107 E. coli O157:H7 CFU/ml (Solomon 

et al., 2002). As the concentration of E. coli O157:H7 on the lettuce plants increased to 109 

CFU/ml, the number of internalized E. coli O157:H7 also increased to 102 CFU/g in tests 

conducted 5 days after the exposure (Solomon & Matthews, 2005). E. coli O157:H7 count did 

not increase in samples taken after 5 days showing that the cells are not dividing inside the 

lettuce tissue. 

In a study, the effect of the presence of other bacteria was tested on internalization and 

growth of E. coli O157:H7 inside of 6-week old spinach plants. Bacteria were vacuum infiltrated 

to the roots of spinach. The presence of Pseudomonas syringae did not result in significant 

increase in the counts of E. coli O157:H7 compared to E. coli O157:H7 alone treatment 1 week 

after the exposure, 4.9 and 4.6 log CFU/g spinach respectively (Hora, Warriner, Shelp, & 

Griffiths, 2005). The researchers also tested for the effect of nematode presence in the soil 

contaminated with E. coli O157:H7 (107 CFU/g). The roots of all 24 plants were positive for E. 

coli O157:H7, whereas the leaves were all negative for the same bacteria. In another study, E. 

coli O157:H7 counts were determined in hydroponically grown cress, lettuce, radish, and 

spinach plants 9 and 49 days after exposure to 102 CFU/ml of E. coli O157:H7 (Jablasone, 

Warriner, & Griffiths, 2005). Internalized E. coli O157:H7 was positive in lettuce, radish, and 

spinach plants after nine days of growth, but not in cress (Jablasone et al., 2005). E. coli 

O157:H7 counts in spinach dropped from 2.5 log CFU/g at nine days to undetectable levels (<1 

log CFU/g) at 49 days. Internalization of Salmonella was also investigated under the same 
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conditions. Internalized Salmonella was present (1 to 1.6 log CFU/g) in lettuce and radish plants 

after nine days (Jablasone et al., 2005). Nevertheless, all samples were negative for internalized 

Salmonella after 49 days. E. coli O157:H7 and Salmonella are not able to survive long periods 

inside the plant tissues probably due to the physiological and nutritional stress inside the plants 

or the plant defense mechanisms are effective in killing enteric human pathogens. Internalization 

of the pathogens inside the plant tissue happens at a higher rate when the plants are grown in 

contaminated soil than in hydroponic media (Franz, Visser, Van Diepeningen, Klerks, 

Termorshuizen, & van Bruggen, 2007; Jablasone et al., 2005). This may be due to the root 

damage in the plants when they are grown in soil. Eight-day old lettuce seedlings were placed in 

E. coli O157:H7 or Salmonella-inoculated hydroponic media (107 CFU/ml) or soil (7-8 log 

CFU/g) and grown for 18 days. No E. coli O157:H7 were recovered from the roots or leaves of 

surface-sterilized lettuce plants grown hydroponically (Franz et al., 2007). Under hydroponic 

conditions, Salmonella was found to be internalized in 4/10 lettuce root samples and 2/10 leaf 

samples. When the lettuce seedlings were grown in contaminated soil, internalization of E. coli 

O157:H7 and Salmonella was observed in all lettuce samples at levels of 3.95 log CFU/g and 

2.57 log CFU/g, respectively (Franz et al., 2007). These results were contradicted by Sharma et 

al. (2009a), who were not able to recover internalized E. coli O157:H7 from mature spinach 

grown in hydroponic medium and inoculated with 107 CFU/ml E. coli O157:H7 (Sharma, 

Ingram, Patel, Millner, Wang, Hull et al., 2009a). The researchers were also not able to detect 

internalization in spinach exposed to E. coli O157:H7 at 103 or 107 CFU/g in pasteurized soil. 

These results demonstrate that internalization of pathogenic bacteria is feasible through 

washing process that reduces produce core temperature and root uptake given there is a high 

concentration of the bacteria available in close proximity. Root uptake of bacteria requires the 
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bacteria to travel long distance to the leaf in order to be ingested by the consumers, which does 

not seem to be likely as understood by the current research. Spray washing of the green leafy 

vegetables with water contaminated with the pathogens or floods in the growing field after heavy 

rains that carry manure from a nearby animal raising facility are more probable ways of 

contamination. 

After the initial attachment of the pathogen on produce surface, bacteria may come 

together and form a structure called biofilm (Annous, Solomon, Cooke, & Burke, 2005). 

Biofilms are structures formed by bacteria adherent to each other and covered in an extracellular 

matrix (Costerton, Stewart, & Greenberg, 1999). Between 30-80% of the total bacteria that exist 

on a plant surface are proposed to be embedded in biofilms (Lindow & Brandl, 2003). It is 

known that natural plant flora forms biofilms (Annous et al., 2005; Danhorn & Fuqua, 2007); but 

a similar biofilm formation was simply not expected from enteric bacteria. Lately the topic of 

biofilm formation by foodborne pathogens has been a growing research area. Pathogens like E. 

coli, Salmonella, Shigella, and Campylobacter were all found to form biofilms on plant surfaces 

such as parsley, tomatoes, and melons (Annous et al., 2005).  

Bacteria form biofilms to resist harsh conditions on plant surfaces such as large 

temperature changes, unavailability of water, and high UV exposure. Biofilms on plant surfaces 

resemble biofilms on food processing surfaces. Both harbor high number of bacteria that are 

difficult to remove or inactivate as they are protected in extracellular matrix (Chmielewski & 

Frank, 2003). Biofilm embedded cells can withstand harsh conditions of processing steps such as 

disinfectants; and therefore, they could reach the consumers.  

Postharvest plant lesions also promote attachment and growth of pathogens. Cut or 

damaged lettuce heads release latex rich in organic matter including sugar. Latex was shown to 
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support the rapid growth of E. coli O157:H7 on cut lettuce surface. When the amount of surface 

damage was increased, E. coli O157:H7 growth was increased in parallel (Brandl, 2008). 

2.3.1. Use of sanitizers to disinfect fresh produce. Bacterial flora on healthy spinach 

leaves, phyllobacteria, is about 5 log CFU/cm2 (Warner, Rothwell, & Keevil, 2008). These 

bacteria associated with plant leaves do not localize uniformly on the leaf surface. They were 

shown to attach and colonize at selected areas such as stomata, the base of trichomes, epidermal 

cell wall junctions, grooves along the veins, depression regions in the cuticle, and beneath the 

cuticle. More bacteria are present on the bottom leaf surface compared to the top side, which 

might be due to the distribution of stomata and trichomes (Beattie & Lindow, 1999). Further 

attachment of phyllobacteria on cut surface of fresh produce items makes it more difficult to 

remove or inactivate these bacteria. Similar to the natural phyllobacteria, a human pathogen 

Salmonella Thompson was found to attach stomatas of spinach leaves (Warner et al., 2008).  

In the literature, various compounds, methods, and physical conditions have been tested 

for their efficacies to reduce the live microorganism count on fresh produce. Some of these are 

hot or cold water, sodium hypochlorite, chlorine dioxide, organic acids, acidified water, ozone, 

ozonated water, UV radiation, and irradiation. 

2.3.1.1. Chlorine solutions. Chlorine solutions up to 200 ppm are by far the most widely 

used method by the fresh produce industry (Takeuchi & Frank, 2001b). However, hypochlorite 

solutions are not effective in inactivating E. coli O157:H7 internalized in cut edges or stomata of 

lettuce leaves (Takeuchi et al., 2000). Studies have shown that foodborne pathogens attach well 

to cut surfaces on fresh produce, where the nutrients are readily available (Boyer et al., 2007; 

Takeuchi & Frank, 2000). Cut lettuce leaves were heavily colonized by E. coli O157:H7 and L. 

monocytogenes compared to whole leaf. However, surface intactness was not important for 
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Salmonella Typhimurium, which attached well on both cut and whole leaves (Takeuchi & Frank, 

2000). E. coli O157:H7 is able to penetrate cut surfaces of lettuce more efficiently at 4°C 

compared to 7, 25, and 37°C (Takeuchi & Frank, 2000). The more E. coli O157:H7 cells 

penetrate into the cut surfaces or stomatas, the better protected they are from the harmful effect 

of free chlorine in the produce wash solutions. In a study, it was found that 200 mg/ml chlorine 

solution did not eliminate E. coli O157:H7 cells attached to cut surfaces completely, washing 

reduced the pathogen concentration by only 1 log CFU/g (Takeuchi & Frank, 2001a, b).  

Hypochlorite solutions are mainly used to keep the wash water clean to prevent cross 

contamination of pathogenic bacteria (Behrsing et al., 2000). Nevertheless chlorine wash step is 

extensively used by the fresh produce industry. Non-pathogenic E. coli count was reduced by 2 

log CFU/g when the inoculated lettuce was washed in 100 ppm hypochlorite solution (Behrsing 

et al., 2000). Salmonella Baildon inoculated on diced tomatoes and shredded lettuce was reduced 

by less than 1 log CFU/g after washing in 200 ppm hypochlorite solution for 40 seconds 

(Weissinger, Chantarapanont, & Beuchat, 2000). L. monocytogenes populations on lettuce were 

reduced by only 0.7 log CFU/g and 1.7 log CFU/g after washing in 100 ppm chlorinated water 

and peracetic acid, respectively (Hellstrom, Kervinen, Lyly, Ahvenainen-Rantala, & Korkeala, 

2006). The oxidative effect of free chlorine in hypochlorite solutions used to wash fresh produce 

is inactivated by the organic substances released from the damaged or cut surfaces (Marriott, 

1999). Survival chance of bacteria localized on fresh produce is higher when the produce is cut 

and washed in chlorine solution as the cut surfaces will release organic matter, which quickly 

inactivates the free chlorine. The exopolysaccharide found in bacterial biofilms on produce may 

also have the same effect against the free chlorine in hypochlorite solutions (Solomon & Sharma, 

2009). Sodium hypochlorite (200 ppm) treatment of fresh-cut lettuce at 50°C for 1 min was 
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found to reduce E. coli O157:H7, S. Typhimurium, and Staphylococcus aureus by up to 1.7 log 

CFU/g without increasing browning (Kondo, Murata, & Isshiki, 2006). 

Oxidizing effect of chlorine can also be employed in gaseous sanitizers to control and kill 

foodborne pathogens. Oxidative capacity of chlorine dioxide (ClO2) is higher than liquid 

hypochlorite sanitizers, which may overcome inactivation problem by the presence of residual 

organic matter. Chlorine dioxide gas was used to successfully kill Salmonella, E. coli O157:H7, 

and L. monocytogenes on apples, tomatoes, and onions but it was ineffective against these 

foodborne pathogens on peaches, cabbage, carrots, or lettuce (Sy, Murray, Harrison, & Beuchat, 

2005). In another study, researchers used ClO2 gas (total 100 mg) against Salmonella spp. and 

could not recover any pathogen on cucumbers, obtaining up to 6 log CFU/g reduction. Authors 

concluded that ClO2 gas is more effective on smooth surfaces like cucumber as gas treatment 

was able to reduce Salmonella counts only by 2-4 log CFU/g on bell peppers and strawberries, 

respectively (Yuk, Bartz, & Schneider, 2006).  

2.3.1.2. Warm or hot water wash. Warm or hot water wash treatments have been used 

more efficiently than cold water to reduce microbial load on fruits and vegetables. Nonetheless, 

due to the delicate nature of the fresh leafy greens the use of warm and hot water is limited. 

Iceberg lettuce treated for 5 min with 50°C acidified (pH 4.9) water had lower total bacteria and 

Enterobacteriaceae counts by 2.9 and 3.7 log CFU/g, respectively, compared to control samples 

after 13 days at 4°C (Wei, Wolf, & Hammes, 2005). 

Recently, Chiquita’s Fresh Express brand, a ready-to-eat bagged salad producer, has 

announced to start using a mixture of organic acids; lactic acid plus peroxyacetic acid (LA-

PAA), (Fresh Rinse™) to enhance the efficiency of their fresh produce wash process (Fresh 

Express, 2011). The company invented the LA-PAA mixture (Ho, 2009), and claims it to be eco-
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friendly and 7 times more effective than the traditional chlorine wash used by the industry for 

reducing the total aerobic bacterial count (Ho, Luzuriaga, Rodde, Tang, & Phan, 2011). 

2.3.1.3. Vacuum cooling. Vacuum cooling is an industry standard method in the leafy 

green industry. The purpose of this method is to reduce the inner heat of the produce quickly to 

slow down the plant metabolism and any further bacterial growth on produce surface. The effect 

of vacuum cooling on bacterial attachment and infiltration was recently investigated on lettuce 

tissue. It was found that vacuum cooling disrupts the surface structure of lettuce tissue causing 

stomatas to open. E. coli O157:H7 that was experimentally inoculated on the lettuce was able to 

attach deeper and infiltrate through the stomatas and cause external damages on lettuce surface 

under vacuum conditions. More than 1 log CFU/g E. coli O157:H7 was recovered from the 

vacuum cooled lettuce leaves after surface washing in hypochlorite solution compared to the 

control leaves that were not subjected to vacuum cooling (Li, Tajkarimi, & Osburn, 2008). 

Especially, the pressure change while switching the conditions to normal atmosphere after the 

vacuum cooling process was effective to force the surface bacteria further into the lettuce tissue 

(Li et al., 2008). 

2.3.1.4. Ozone. Ozone has a rapid oxidative activity and is more powerful disinfectant 

than chlorine. It has been approved as GRAS and was used in food and bottled water industries 

for years (Marriott & Gravani, 2006). Ozone treatment (64 min) followed by pressurized (83 

kPa) ozone treatment (64 min) reduced E. coli O157:H7 and Salmonella counts by 3 and 2.6 log 

CFU/g on strawberries and 3.8 and 3.6 log CFU/g on raspberries, respectively (Bialka & 

Demirci, 2007). Pathogen count on E. coli O157:H7 or L. monocytogenes inoculated lettuce was 

reduced by 1.1 and 0.9 log CFU/g, respectively, after 5 min treatment with 5 ppm ozonated water 

(Yuk, Yoo, Yoon, Moon, Marshall, & Oh, 2006). Based on these findings, gaseous ozone may 
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be more effective than ozonated water. However, ozone treatments require expensive treatment 

chambers and; thus, it may be applied to the small-scale produce farming operations. Ozone 

treatments are not seen feasible to be adopted by the large-scale produce industry in the near 

future.  

Cold plasma treatments (3 min) of apples inoculated with E. coli O157:H7 or Salmonella 

Stanley resulted in 3.7 and 3.6 log CFU/ml reductions of the pathogen count, respectively 

(Niemira & Sites, 2008). Even though some of the sanitizing agents discussed here offer 

promising results, the consumer attitudes towards these types of marginal sanitation methods are 

not known, and should be investigated. 

2.3.1.5. Irradiation. Irradiation is a non-thermal method utilizing radiation to kill insects, 

molds, bacteria, and other foodborne microorganisms. Irradiation was developed in 1940s and 

has been used on different food products for various purposes by a number of FDA approvals 

since 1963. It was approved by FDA in 1986 to be used on fresh fruits and vegetables to 

eliminate insects and inhibit ripening and sprouting processes. Due to the continuous occurrences 

of foodborne pathogen outbreaks linked to the leafy greens, a renewed interest has grown to use 

irradiation against foodborne pathogens on fresh produce. On August 22, 2008, FDA approved 

irradiation at a dose up to 4.0 kiloGray (kGy) as a food additive in fresh iceberg lettuce and 

spinach to make them safer and last longer without spoiling (USFDA, 2008). 

There are 3 types of irradiation technology; electric beam (e-beam), X-ray, and gamma 

ray in decreasing order of energy levels. Although their energy sources, effect mechanisms, and 

penetration levels are different, they eventually cause cleavage of water molecules to create 

oxygen and hydroxyl radicals that cause DNA damage (Niemira & Fan, 2009).  
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Irradiation at a dose of 2.0 kGy was shown to control fungal and bacterial load on carrot 

slices at 5°C for 2 weeks without affecting sensory qualities of the carrot slices (Chaudry, Bibi, 

Khan, Khan, Badshah, & Jamil Qureshi, 2004). The combination of 7% calcium ascorbate and 

irradiation (0.5 or 1.0 kGy) enhanced microbial food safety while maintaining the quality of 

fresh-cut apple slices after 3 weeks at 10°C (Fan, Sokorai, Sommers, Niemira, & Mattheis, 

2005). 

A low-dose irradiation (0.51 kGy) followed by refrigerated storage (4°C) can effectively 

reduce or eliminate Listeria monocytogenes on chopped romaine lettuce (Mintier & Foley, 

2006). In 2008, 1.2 kGy e-beam irradiation with a subsequent refrigeration for up to 15 days was 

shown to reduce E. coli O157:H7 (7 log CFU/g) load on contaminated ready-to-eat spinach 

leaves to under 1 log CFU/g while not sacrificing organoleptic properties of the spinach (Gomes, 

Moreira, Castell-Perez, Kim, Da Silva, & Castillo, 2008).  

In a recent study, the researchers aimed to test the effect of irradiation on biofilm forming 

E. coli O157:H7 on green leafy vegetables, romaine lettuce, and baby spinach leaves (Niemira & 

Cooke, 2010). The leaves were dip inoculated with E. coli O157:H7 and stored at 4°C for up to 

72 h to allow biofilm formation. Stomatal aggregations and biofilm formations of E. coli 

O157:H7 were confirmed via scanning electron microscope (SEM). At 0, 24, 48, and 72 h, the 

leaves were exposed to different doses of irradiation up to 1 kGy. Irradiation was more effective 

than 300 and 600 ppm chlorine treatment, which was only moderately effective against E. coli 

O157:H7 on baby spinach and romaine lettuce with maximum 1.3 and 1.8 log CFU/g reductions, 

respectively. Also, the pathogen counts after the irradiation treatment showed that the irradiation 

was becoming less and less effective in killing E. coli O157:H7 as the cells continue on 
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improving the biofilm structures during the incubation period before the irradiation treatment 

(Niemira & Cooke, 2010). 

Although the irradiation is a promising method and approved by the FDA, the high cost 

of building the system makes it difficult for the fresh produce industry to widely use. The meat 

industry already incorporated irradiation in their routine process line. Produce processors may 

transport the produce to the meat process facilities for irradiation. However, this would cause 

time delay in marketing the fresh produce, which is vital in produce industry due to the short 

shelf life of the fresh produce. Additional contamination risks during the transportation of the 

produce should be calculated as well. Consumer stance towards the irradiated fresh produce 

should be investigated as well. When it comes to fresh produce, consumers may not be as 

accepting toward irradiation as they are with the processed meat products. 

2.4. Bacteriophages  

The numbers of foodborne related pathogen outbreaks show that the current routine 

methods employed by the industry to control the bacterial foodborne pathogens such as 

Salmonella, Listeria, Escherichia coli, and Campylobacter are not efficient (DuPont, 2007), and 

the marginal approaches used in scientific literature are expensive and not easily accepted by the 

consumers. It is safe to say that there is an urgent need for a novel and more effective sanitation 

agent and method to help keep fresh produce pathogen free. 

One alternative method is the use of bacteriophages as natural antibacterial agents in food 

to eliminate pathogens. Bacteriophages (phages) are viruses that specifically interact with and 

infect bacterial cells. Phages are responsible of killing almost half of the bacterial population 

generated daily in the nature (Suttle, 2005). Considering the short generation time of the bacteria, 

phages are the most lethal enemies of the bacteria. The use of bacteriophages is expected to be 
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accepted readily by the consumers since phages are natural enemies of bacteria and found in 

nature with no known side effects on eukaryotic organisms (Hagens & Loessner, 2007; Strauch, 

Hammerl, & Hertwig, 2007). 

2.4.1. History of bacteriophages. The discovery of phages is rather a debatable issue. 

With the beginning of the microbiological studies in Western world around the 1880s, sporadic 

findings over what seems to be phage or phage activity were reported by Hankin (1896) and 

Gamaleya (1898) (Sulakvelidze, Alavidze, & Morris, 2001). Today, it is accepted that 

bacteriophages were discovered in two independent research conducted by Twort (1915) and 

d’Herelle (1917) (Ackermann, 2011). The names bacteriophage and plaque were introduced by 

d’Herelle, who first used the phages to treat a human disease, severe dysentery in 1919 

(D'Herelle, 2007; Sulakvelidze et al., 2001). D’Herelle and his coworkers used the phage 

preparation to treat several patients with bacterial dysentery by ingesting one dose of phage 

preparation. The patients started to recover within 24 h of treatment. In another study, the 

researchers applied phages to the patients with staphylococcal skin disease (Bruynoghe & 

Maisin, 1921). Those patients, as well, recovered within 1-2 days of direct phage injection 

around the skin lesions. Later on, D’Herelle used various phage preparations to treat cholera and 

bubonic plaque in India (Summers, 1999). 

Phages had been utilized in the Western world to treat bacterial infections before the first 

antibiotic, penicillin, was used clinically in 1940s (Peláez, 2006). Due to the wide range efficacy 

of antibiotics, they were immediately adopted and used widespread during World War II. Phage 

research could not find enough attention to survive in the West and was only continued in the 

former Soviet Union and Eastern European countries, especially in 2 institutes; Eliava Institute 

of Bacteriophage, Microbiology, and Virology (Tbilisi, Georgia) founded in 1923 and Hirszfeld 
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Institute of Immunology and Experimental Therapy (Wroclaw, Poland) founded in 1952. A 

comprehensive review of the topic is available by Sulakvelidze et al. (2001). 

2.4.2. Types of bacteriophages. Phages are extremely diverse and abundant in nature; 

thus, present the most promising natural weapon against bacteria. Based on the interaction of the 

phages with their host bacterial cells, phages are divided into 2 groups; obligate and temperate 

phages, however, a third group (chronic phages) has been mentioned in the literature lately 

(Housby & Mann, 2009). 

2.4.2.1. Obligate phages. Obligate phages are the best candidates for phage therapy 

studies. They are also called “lytic phages” as they have a lytic life cycle within their host cells. 

There are 2 different ways lytic phages kill their target bacteria; lysis-from-within (LWI) and 

lysis-from-without (LWO) (Delbruck, 1940). Which method to be employed is based on the 

multiplicity of infection (MOI), which is the ratio of the available virulent lytic phages over the 

available target bacterial cells. Lysis-from-within is employed when one or few lytic phages 

infect the susceptible bacterial cells. Upon infection, the phage genome is replicated inside the 

bacterial host cell by the cell’s own DNA replication enzymes and proteins. When newly 

generated phages have been assembled, the membrane of the infected host cell is lysed to release 

the progeny phages. Lysis-from-without occurs when the MOI is equal to or more than the 

amount that bacterial host cells can accommodate (Delbruck, 1940). The multiple rush 

adsorption of the phages into the cell causes rapid swelling and shape deformation followed by 

the sudden destruction of the cell membrane. Neither the host bacterial cell nor the phage 

particles adsorbed survive after LWO (Delbruck, 1940). 

2.4.2.2. Temperate phages. Temperate phages also known as “lysogenic phages” are 

capable of replicating themselves inside the host cell, and lysing the host to release the progeny 
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just like the lytic phages. The difference is that a lysogenic phage may incorporate its genome 

into the bacterial DNA; thus, forming a long term relationship with the host. A phage whose 

genome has been incorporated into the host DNA is called a prophage (Lwoff, 1953). The 

prophage genome is replicated with the host genome during mitosis and then distributed into the 

daughter cells. This is how a prophage is able to continue its presence in the host bacteria for 

generations. A prophage may quit lysogenic life cycle and convert back to a lytic life cycle by a 

process called prophage induction, which results in removal of prophage from the host genome 

upon stimulants such as radiation, pH, temperature, and heavy metals (Choi, Kotay, & Goel, 

2010). During the removal of prophage from the host DNA, the prophage may take part of the 

flanking regions of the host DNA and these host DNA regions contribute to the genetic diversity 

among the bacteriophages and their hosts through transduction (Lennox, 1955). 

2.4.2.3. Chronic phages. Chronic phages are filamentous phages that do not necessarily 

kill their bacterial hosts. They are able to release their progeny without needing to kill the host 

cell (Russel & Model, 2006). The fact that filamentous phages do not kill the host cells makes 

them unsuitable for using as an agent to control the pathogenic bacteria. 

2.5. Bacteriophages as Biocontrol Agents 

The utilization of phage based products in biologically controlling pathogens such as S. 

Enteritidis, E. coli O157:H7, and L. monocytogenes, during animal and plant derived food 

productions and processes have been investigated by many researchers using in vivo and in vitro 

studies. Phages are also shown to be effectively used for the sanitization of food preparation 

surfaces. 

2.5.1. Bacteriophage use in food production and processing. Equipment and surface 

hygiene in food processing plants is highly crucial in maintaining pathogen-free facilities. 
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2.5.1.1. L. monocytogenes. L. monocytogenes is known for being a persistent pathogen in 

forming biofilms in food processing facilities. In a recent study, Phage P100 significantly 

reduced L. monocytogenes cells under two different biofilm matrices, namely 96-well plates and 

stainless steel coupons. The researchers tested 21 L. monocytogenes strains representing 13 

different serotypes. The abilities of the strains differ in forming biofilms. The phage P100 

significantly reduced the number of L. monocytogenes cells inside biofilm matrices by up to 5.4 

log/cm2 (Soni & Nannapaneni, 2010). 

2.5.1.2. E. coli O157:H7. Abuladze et al. (2008) examined EcoShield™ (formerly 

known as ECP-100) for its efficacy to lyse E. coli O157:H7 strains on glass coverslips and 

gypsum boards. The 5-min phage cocktail (1010 PFU/ml) treatment significantly reduced the E. 

coli O157:H7 numbers recovered from the glass coverslips and gypsum boards by up to 99.99% 

and 100%, respectively (Abuladze, Li, Menetrez, Dean, Senecal, & Sulakvelidze, 2008). 

In another study, a phage cocktail against E. coli O157:H7, referred to as BEC8, was 

successfully used in sanitizing common food preparation surfaces made of stainless steel, 

ceramic tile, and high density polyethylene chips (Viazis, Akhtar, Feirtag, & Diez-Gonzalez, 

2011a). Three different E. coli O157:H7 strains were combined and spot inoculated on surfaces 

at approximately 4, 5, and 6 log CFU/chip, then the samples were air-dried and sprayed with 

sterile PBS or BEC8 (6 log PFU/chip) cocktail. E. coli O157:H7 counts were found to be below 

the detection limit of 10 CFU/chip within 1 hour at or above room temperature on all three 

surfaces tested (Viazis et al., 2011a). These two studies show that phages can successfully be 

used for sanitization of non-porous food preparation surfaces. 

2.5.2. Bacteriophage use in animals. Natural microflora in the intestines of food animals 

is the main reservoir of the pathogenic bacteria in food items. These pathogenic bacteria are not 
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harmful to their host animals and do not cause sickness, however, they are dangerous and can be 

fatal to humans. E. coli O157:H7, whose main reservoir is the cattle digestive system is 

considered to be one of the most deadly pathogens for humans and is routinely tested in food 

items. E. coli O157:H7 has also been detected in fecal samples by domestic and feral pigs, deer, 

wild birds, and other domestic livestock and wildlife animals (Cooley et al., 2007; Jay, Cooley, 

Carychao, Wiscomb, Sweitzer, Crawford-Miksza et al., 2007). Many approaches have been 

tested in several trials to eliminate the presence or inhibit the growth of this pathogen in foods. 

However, the problem still persists as we witness more outbreaks related to the consumption of 

food items contaminated with E. coli O157:H7. Therefore, part of the recent research has 

focused on the use of phage in controlling E. coli O157:H7 at pre-harvest stages as a natural 

biocontrol technique. 

2.5.2.1. E. coli O157:H7. Orally administered bacteriophage T4-like CEV1 resulted in a 

2 log unit reduction in intestinal E. coli O157:H7 level within 2 days in sheep (Raya, Varey, Oot, 

Dyen, Callaway, Edrington et al., 2006). When the CEV1 was administered orally together with 

CEV2, an E. coli O157:H7-specific phage isolated from sheep, a 3 log unit reduction was 

observed in sheep’ intestinal E. coli O157:H7 levels after 2 days (Raya, Oot, Moore-Maley, 

Wieland, Callaway, Kutter et al., 2011). The study provides evidence that phage cocktails, 

composed of 2 or more types of phages, are more effective in killing target bacteria compared to 

single type phage application (Raya et al., 2011). Single oral dose of previously characterized 

phage KH1 did not reduce the E. coli O157:H7 counts in sheep feces. Additional oral doses 

given on days 8, 9, and 10 also were not effective in improving the findings. Oral administration 

of phage SH1 alone or in combination with KH1 in mice for 3 consecutive days immediately 

reduced the E. coli O157:H7 counts in mice feces. Rectal administration of phage cocktail of 
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SH1 and KH1 to 6 months old cattle in combination with continuous phage (106 PFU/ml) 

ingestion through drinking water significantly lowered E. coli O157:H7 cell counts in swab 

samples (Sheng, Knecht, Kudva, & Hovde, 2006). The ineffectiveness of the single dose of KH1 

in sheep might be due to the acquired resistance by E. coli O157:H7 cells. The use of KH1 

together with the newly isolated phage SH1 restored the efficacy against the host E. coli 

O157:H7 in cattle.  

Rectal administration of phages to the food animals is another way to reduce fecal 

shedding of pathogenic bacteria such as E. coli O157:H7. Efficiencies of oral and rectal 

administrations of an E. coli O157:H7-specific phage cocktail composed of 4 different strains 

were compared in terms of their effects on fecal shedding of E. coli O157:H7 for 83 days. Steers 

were experimentally inoculated with nalidixic acid-resistant (NalR) E. coli O157:H7 strain. 

Approximately 11 log PFU phage cocktail was administered in four groups of steers; oral, rectal, 

oral+rectal, and control. Orally administered steers shed the fewest E. coli O157:H7 positive 

samples. Mean shedding level (log CFU/g of feces) was the highest in rectal group (Rozema, 

Stephens, Bach, Okine, Johnson, Stanford et al., 2009). The bacteriophages isolated from the 

control steers indicated that they can acquire the same amount of phages as the rectal group. This 

is promising as it shows not all of the animals have to receive phage treatment. Another study 

taken place in 2 commercial feedlots in Canada proved that there is a negative relationship 

between the presence of endemic phage infecting E. coli O157:H7 and the levels of shedding of 

E. coli O157:H7 by cattle. A significant negative correlation was found between isolation of 

phage and E. coli O157:H7 in fecal samples (Niu, McAllister, Xu, Johnson, Stephens, & 

Stanford, 2009). 
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2.5.2.2. Salmonella. In another study, Salmonella contamination during swine processing 

was reduced by using a Salmonella-specific phage cocktail (Wall, Zhang, Rostagno, & Ebner, 

2010). Sixteen Salmonella enterica serovar Typhimurium-free market-weight pigs were split into 

2 groups and orally administered a phage cocktail or control treatment. Pigs were then placed 

among S. Typhimurium infected pigs in a contaminated pen. Phage cocktail treatment resulted in 

1.0-1.3 log unit reduction in intestinal S. Typhimurium in pigs compared to control pigs (Wall et 

al., 2010). The use of phages to control Salmonella spp. in poultry has also been investigated by 

several researchers. The cecal Salmonella enterica serotype Enteritidis count in young chickens 

was reduced by 0.3-1.3 log units following the use of a cocktail of S. enterica Enteritidis-specific 

bacteriophages. Bacterial count could not be further reduced when the phage concentration 

increased to more than 7 log PFU/g of cecal content (Sklar & Joerger, 2001). The low level of 

reduction in Salmonella counts may be attributable to the development of phage resistance by the 

bacteria due to the use of a single type phage. This hypothesis was supported with the better 

reduction level in cecal S. Enteritidis counts (3.5 log unit) obtained in a similar study that used a 

cocktail of three Salmonella-specific phages instead of a single type phage (Fiorentin, Vieira, & 

Barioni, 2005). The presence of Salmonella could not be eliminated in either studies but they 

provided evidence that bacteriophage cocktail may be used in the poultry production for 

combating Salmonella, a major foodborne pathogen in the US. The counts of S. Enteritidis were 

significantly reduced in a day-of-hatch chicks experimentally challenged with 4 log CFU of the 

same bacteria and orally exposed to 2 different lytic phage cocktails isolated from commercial 

broiler houses (CB4Ø) and municipal waste water treatment plant (WT45Ø) (Andreatti Filho, 

Higgins, Higgins, Gaona, Wolfenden, Tellez et al., 2007). CB4Ø and WT45Ø are composed of 4 

and 45 different phages, respectively. Phage cocktails applied separately or together resulted in 
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significant reductions in S. Enteritidis counts recovered from cecal tonsils after 24 h of phage 

treatment. 

Another study also aimed at controlling S. Enteritidis colonization in chickens with the 

use of a phage cocktail isolated from the sewage system of commercial chicken flocks. Nine-day 

old chickens were treated with 9 log PFU of a 3-strain phage cocktail by coarse spray or drinking 

water. Twenty-four hours later, chickens were challenged with 6 log CFU of S. Enteritidis and 

euthanized at day 20 for phage and S. Enteritidis isolation and count. Results showed that coarse 

spray was able to significantly reduce the pathogen count by 27.3%. Phages may be used as an 

alternative to antibiotics as aerosol spray or mixed with drinking water to reduce Salmonella 

infections in poultry (Borie, Albala, Sanchez, Sanchez, Ramirez, Navarro et al., 2008). The 

successful results obtained in these animal studies are promising for the potential use of phages 

as antibacterial agents on other foods, such as fresh produce. 

2.5.2.3. C. jejuni. Another dangerous foodborne pathogen in poultry is Campylobacter 

jejuni. Its colonization in poultry animals is common in developed countries. A research group 

led by Connerton first described the correlation of reduced presence of C. jejuni in cecal content 

of chicken with the increased number of C. jejuni-specific phages (Atterbury, Dillon, Swift, 

Connerton, Frost, Dodd et al., 2005). In a follow up study, the researchers were able to drop 

cecal C. jejuni counts in experimentally contaminated chickens by 0.5-5.0 log units using 2 

potent phages specific against C. jejuni, separately (Loc Carrillo, Atterbury, el-Shibiny, 

Connerton, Dillon, Scott et al., 2005). Like the other studies, the host bacteria could not be 

eliminated completely in chickens and the phage resistant strains were present in phage-treated 

chickens. Preventive and therapeutic effects of C. jejuni-specific phage therapy on chickens were 

examined by Wagenaar et al. (2005). A single dose of C. jejuni was administered to the chickens 
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on the 4th day of a 10 day long phage treatment to measure the preventive effect of the phage 

therapy. The cecal C. jejuni count in the 5th day was 2 log units lower than that of control, which 

did not receive phage treatment. The difference between the treatment group and control group 

dropped to 1 log unit at the end of the trial. Therapeutic effect of a C. jejuni-specific phage was 

tested by administering a single dose of C. jejuni five days before the phage therapy. With the 

start of phage therapy, C. jejuni count in cecal content dropped by 3 log units, indicating the 

potential application of phage in animal food products (Wagenaar, Van Bergen, Mueller, 

Wassenaar, & Carlton, 2005). 

2.5.3. Bacteriophage use on animal food products. 

2.5.3.1. E. coli O157:H7. Control of pathogens on animal food products is a challenging 

area. Lately more and more studies using phages for surface sanitation of animal food product 

are released. One of the promising studies employed a phage cocktail of 3 virulent phages 

against E. coli O157:H7. The E. coli O157:H7-specific phages were tested for their ability to kill 

the pathogenic E. coli independently and as a mixture in vitro and in vivo. The phage cocktail 

reduced E. coli O157:H7 count by 5 log units at 37°C in 1 h, and completely eliminated the 

pathogenic bacteria on the surface of most beef samples experimentally contaminated with E. 

coli O157:H7 at a level of 3 log CFU/g. Presence of phage resistant E. coli O157:H7 was 

detected on the remaining beef samples after phage treatment. Further tests showed that the 

resistant bacteria reverted to phage sensitive state after 50 generations (O'Flynn, Ross, 

Fitzgerald, & Coffey, 2004). When the mixture of the 3 phages was tested against E. coli 

O157:H7 on beef samples incubated at 37°C for 1 h, the pathogen was eliminated completely in 

7 out of 9 samples. It was pointed that phages may be used successfully as biocontrol agents on 

food since generally low amounts of pathogens are encountered in the environment. 
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A recent study tested the ability of UV-treated phage T4 to kill host E. coli cells on meat 

surfaces (Hudson, Bigwood, Premaratne, Billington, Horn, & McIntyre, 2010). Although UV 

irradiation produces replication deficient phages, which do not generate progeny (Shaw, 

Maurelli, Goguen, Straley, & Curtiss, 1983), UV treated T4 phages were still able to kill their 

target bacteria by LWO at 24 and 37°C in 2 h and 15 min (Hudson et al., 2010). Replication 

deficient phages may be employed in controlling pathogens in foods to avoid potential horizontal 

gene transfer via phages. 

2.5.3.2. L. monocytogenes. L. monocytogenes specific phage LH7 and antibiotic nisin 

additively reduced the cell counts of two L. monocytogenes species in Tryptic Soy Broth (TSB) 

and vacuum packed raw beef samples stored at 7 and 4°C, respectively. Reduced L. 

monocytogenes levels in TSB were recovered in time when the TSB samples were incubated at 

30°C (Dykes & Moorhead, 2002). The combined effect of phage LH7 and nisin was more potent 

in TSB than on raw beef suggesting phage effectiveness can vary on different food items and 

should be evaluated beforehand. Listeria-specific Listex™ P100 phage was also used 

successfully to control L. monocytogenes counts on fresh catfish fillets (Soni, Nannapaneni, & 

Hagens, 2010). Raw catfish fillets were surface inoculated with L. monocytogenes mix of 2 

serotypes (1/2a and 4b) at a level of 4.3 log CFU/g. Later, the fillets were treated with 7.3 log 

PFU/g P100 phage. Two-log unit reduction in L. monocytogenes counts was observed at all 

incubation temperatures, 4, 10, and 22°C. This phage was able to reduce L. monocytogenes 

counts by 1 log unit within 30 min. A 10 day shelf life study showed that the presence of phage 

maintained the overall low level of L. monocytogenes on catfish fillets. 

Broad-range phages A511 and P100 were effectively used for biocontrol of L. 

monocytogenes on different ready-to-eat (RTE) foods; chocolate milk, mozzarella cheese brine, 



41 
 

hot dog, sliced turkey meat, smoked salmon, seafood, sliced cabbage, and lettuce leaves. Food 

samples were contaminated with 3 log CFU/g L. monocytogenes followed by 6-8 log CFU/g of 

phage treatment and stored at 6°C for 6 days. Pathogen levels in liquid foods rapidly dropped 

below detection level. On solid food items, bacterial counts dropped up to 5 log units. Higher 

dose of phage application (8 log PFU/g) resulted in lower pathogenic counts (Guenther, 

Huwyler, Richard, & Loessner, 2009). In a recent follow-up study, the researchers used the 

phage A511 to control the L. monocytogenes on soft ripened white mold and red-smear cheeses 

during their production and ripening phases. The surfaces of unripened cheeses were inoculated 

with 2-3 log CFU/cm2 of different L. monocytogenes strains followed by single or repeated 

phage treatments at 8.5-9.0 log PFU/cm2. Single dose phage treatment (8.5 log PFU/cm2) 

resulted in reduction of 2.5 log units in L. monocytogenes strain Scott A (serovar 4b) counts on 

white mold cheese at the end of 21 day ripening period. Repeated application of 8.5 log PFU/cm2 

phage treatment did not improve the result while 9 log PFU/cm2 phage treatment resulted in 

more than 3 log units reduction in L. monocytogenes counts (Guenther & Loessner, 2011). 

2.5.3.3. Salmonella. Efficacy of phages was tested for controlling pathogens in dairy 

production as well. Salmonella phage SJ2 was used to eliminate S. Enteritidis experimentally 

introduced into raw and pasteurized milk before cheddar cheese manufacturing during 99 days. 

Phage treatment (8 log PFU/ml) of milk reduced the S. Enteritidis counts in cheese made from 

either raw or pasteurized milk by 1 to 2 log units compared to the samples not treated with 

phage. During the storage at 8°C, S. Enteritidis was eliminated completely in cheddar cheese 

made from phage treated pasteurized milk by day 89. However, cheese made from raw milk 

containing phage SJ2 still contained 50 CFU/g of S. Enteritidis by day 99 (Modi, Hirvi, Hill, & 

Griffiths, 2001). Two lytic phages were used against S. aureus in pasteurized whole milk during 
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curd manufacturing. When the lytic phage cocktail was introduced into milk at an MOI of 102, 

the experimentally inoculated S. aureus (6.5 log CFU/ml) was completely eliminated at 37°C 

(Garcia, Madera, Martinez, & Rodriguez, 2007). These studies demonstrated the possibility of 

phage use to control pathogenic bacteria in a variety of dairy products. 

A study by Bigwood and coworkers (2008) utilized S. Typhimurium PT160 infecting 

phage P7 and C. jejuni infecting Cj6 at low and high MOI (10 and 104) against their hosts 

inoculated at densities of <100 and 104 CFU/cm2 on raw and cooked beef. Significant reductions 

of the host S. Typhimurium PT160 were recorded in the orders of 2-3 log units at 5°C and >5.9 

log units at 24°C (Bigwood, Hudson, Billington, Carey-Smith, & Heinemann, 2008). Log 

reductions for C. jejuni could not be calculated at these temperatures as the C. jejuni counts 

dropped in phage-untreated control samples. 

2.5.3.4. C. jejuni. The ability of the C. jejuni and the phages infecting C. jejuni to survive 

through the commercial poultry processing was demonstrated on experimentally contaminated 

chicken skin stored at 4°C (Atterbury, Connerton, Dodd, Rees, & Connerton, 2003). This finding 

was important for proving the likelihood of using virulent phages in pathogen biocontrol on 

poultry products. Another study showed that lytic phages were able to reduce Salmonella 

Enteritidis and C. jejuni in a dose dependent manner on chicken skin. Phages used at MOI of 105 

completely eliminated S. Enteritidis on chicken skin experimentally contaminated with 2 log 

CFU/unit of S. Entritidis (Goode, Allen, & Barrow, 2003). When used at MOI of 104, 

bacteriophage Felix O1, a member of Myoviridae with a broad host range in the genus 

Salmonella, was able to reduce Salmonella enterica serotype Typhimurium by 1.8-2.1 log units 

on chicken frankfurters contaminated with 300 CFU of the host bacteria (Whichard, 

Sriranganathan, & Pierson, 2003). 
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2.5.3.5. E. sakazakii. Although uncommon, Enterobacter sakazakii growth in 

reconstituted infant formula is a serious problem due to the high mortality rate associated with 

this pathogen. Two newly isolated phages were successfully used to control E. sakazakii growth 

in half-concentrated Brain Heart Infusion medium and reconstituted infant formula. Phages at 

concentration of 9 log PFU/ml were both able to reduce the pathogen counts to undetectable 

levels at 24°C, a 7 log unit reduction in infant formula  (Kim, Klumpp, & Loessner, 2007). 

2.5.4. Bacteriophage use on plants and produce at pre-harvest stage. Phage therapy 

studies on produce at pre-harvest stage are rare as the real world application of the phage 

products at farm level seems unrealistic. Most of the phage studies on produce cover the post-

harvest scenarios. However, there are few phage efficacy studies to control pathogenic 

Salmonella populations in smaller level sprouting experiments. 

2.5.4.1. Salmonella. A cocktail of 2 phage types resulted in higher killing rate of 

pathogenic Salmonella strains during seed sprouting compared to single phage use. The 

researchers isolated two phages; Phage A capable of lysing S. Typhimurium and S. Enteritidis, 

and Phage B, capable of lysing S. Montevideo. When used together, Phages A and B were able 

to suppress Salmonella growth more than when used separately on soaked broccoli seeds 

contaminated with all three types of Salmonella (Pao, Rolph, Westbrook, & Shen, 2004). 

A recent study looked into the efficacy of two Salmonella phages (SSP5 and SSP6) 

against S. Oranienburg on alfalfa (Medicago sativa) seeds during sprouting. SSP5 and SSP6 

caused about 5 and 2.3 log CFU/ml reductions in S. Oranienburg count in vitro, respectively. 

Although SSP5 lysed more cells, SSP6 had wider host range. S. Oranienburg count on 

contaminated alfalfa seeds showed a reduction of 1 log CFU/g only 3 h after SSP6 phage 

treatment. Later during sprouting at 25°C, phage treatment showed no inhibitory effect on 
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bacterial population even after a second phage treatment with SSP6 or SSP5. Surviving S. 

Oranienburg cells lost their temporary resistance against SSP5 and SSP6 in follow up trials 

(Kocharunchitt, Ross, & McNeil, 2009). The study showed the ineffectiveness of single phage 

usage in food safety due to the ability of the pathogenic bacteria to acquire resistance even if it is 

temporary. 

2.5.5. Bacteriophage use on plants and produce at post-harvest stage. In the last 

decade, the number and the severity of foodborne outbreaks associated with the fresh produce 

have increased, thus elevating the public sensitivity to the issue. As a result, researchers try to 

find alternatives to the commonly used produce decontamination strategies to reduce the number 

of produce outbreak incidences. 

2.5.5.1. Salmonella. Phages can play a significant role in regulating the microbial 

balance of fresh produce which gets easily contaminated with various foodborne bacteria, 

including Salmonella Enteritidis. A Salmonella Enteritidis-specific phage cocktail (SCPLX-1), 

developed by Intralytix, Inc. (Baltimore, MD) through combination of 4 different lytic phages, 

was tested on Red Delicious apple and honeydew melon slices, which were experimentally 

contaminated with S. Enteritidis. Although the phage cocktail was able to hold Salmonella 

counts around 2 log CFU lower than those of control samples on honeydew melon slices for up 

to 7 days at all 3 temperatures tested (5, 10, and 20°C), no effect was observed on apples. Follow 

up tests revealed that the phages could not resist the low pH (4.2) of the apples. The phage count 

dropped by 6 log in 3 h and almost no phage was detectable by 24 h (Leverentz, Conway, 

Alavidze, Janisiewicz, Fuchs, Camp et al., 2001). 

2.5.5.2. L. monocytogenes. In 2003, the same researchers developed another phage 

cocktail specific against Listeria monocytogenes and evaluated its efficacy on fresh-cut apple and 
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melon in a similar setting (Leverentz, Conway, Camp, Janisiewicz, Abuladze, Yang et al., 2003). 

This phage cocktail was more effective in lysing the pathogen on melon surface than on apple, 

up to 4.6 log units vs. 0.4 log units. The authors concluded that the low efficacy of phage 

cocktail against L. monocytogenes on apples might also be due to the low pH. The amount of 

bacteria lysed was increased to 5.7 log units on honeydew melon and 2.3 log units on apple 

slices when the phage cocktail was used in combination with bacteriocin, nisin. Two different 

application methods for the delivery of phage cocktail were also evaluated to test the efficacy of 

the phage cocktail on melon slices. Spraying the phages over contaminated melon slices was 

more effective in reducing L. monocytogenes counts than pipette inoculation (Leverentz et al., 

2003). 

2.5.5.3. E. coli O157:H7. A bacteriophage cocktail (ECP-100 or EcoShield™) that 

consists of three different phages in Myroviridae family was tested against E. coli O157:H7 

significantly reduced the live bacterial counts of the pathogen of interest (Abuladze et al., 2008). 

A 5 min phage treatment of hard surfaces, such as glass coverslip and gypsum board tainted with 

E. coli O157:H7, significantly reduced the bacterial counts by up to 4 log CFU. The researchers 

also tested the effect of the phage cocktail on spinach, tomatoes, broccoli, and red meat, and 

concluded that EcoShield™ phage cocktail was able to reduce the E. coli O157:H7 count 

significantly between 2-4 log CFU/g (Abuladze et al., 2008). 

In another study, EcoShield™ phage cocktail treatment was able to reduce E. coli 

O157:H7 counts on fresh-cut lettuce by 1.6 log CFU/cm2 compared to untreated samples after 1 

and 2 day treatments at 4°C (Sharma, Patel, Conway, Ferguson, & Sulakvelidze, 2009b). 

Antibacterial effect of the phage cocktail was seen as quickly as in day 0 samples, as well. 

Additionally, seven-day phage treatment of fresh-cut cantaloupe inoculated with E. coli 



46 
 

O157:H7 and stored at 4°C reduced the bacterial counts by 3.1 log CFU/ml (Sharma et al., 

2009b). This reduction was lower when the cantaloupe was held at 20°C. E. coli O157:H7 was 

able to grow at 20°C from day 0 to day 7 by 3.5 log CFU/ml in the presence of the phage 

cocktail. 

The effectiveness of a phage cocktail against the target bacteria may be elevated by the 

application of phages in combination of essential oils. Whole baby spinach and baby romaine 

lettuce leaves were inoculated with a mixture of E. coli O157:H7 at 4-6 log CFU/leaf. The leaves 

were air dried for 1 h to allow bacterial attachment and treated with one of the following three 

treatments; BEC8 bacteriophage cocktail (approx. 6 log PFU/leaf), trans-cinnamaldehyde (TC), 

or both. BEC8 is composed of 8 lytic E. coli O157:H7-specific phages. No viable E. coli was 

rescued on the surface of either plant leaves with 4 log CFU bacterial load, treated with BEC8 or 

TC alone and incubated for 24 h at room temperature or higher. The phage and TC was not 

effective at lower incubation temperatures or against higher E. coli numbers. Combination of 

BEC8 and TC treatment for 10 min resulted in complete inhibition of E. coli O157:H7 in all 

samples and all temperature levels (Viazis, Akhtar, Feirtag, & Diez-Gonzalez, 2011b). 

2.5.6. Commercialization of phage products. The number of commercially available 

phage-based therapeutics is increasing due to the promising results in the re-emerging field 

(Table 3). In 2005, OmniLytics, Inc. received the US Environmental Protection Agency (EPA) 

approval for its product “AgriPhage” effective against the plant pathogens, Xanthomonas 

campestris and Pseudomonas syringae (EPA registration # 67986-1). A European company, 

Exponential Biotherapies Inc. (EBI) Food Safety (Wageningen, The Netherlands) marketed its 

product “Listex™ P100”  to control Listeria in meat and cheese products. The US FDA 

approved Listex™ P100 as a food biopreservative and granted it as GRAS (Generally  
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Table 3 

Commercially available phage products. 

Name Susceptible Bacterium Company Notes 

AgriPhage™ 
Xanthomonas 
campestris 

Pseudomonas syringae 

Omnilytics 
www.phage.com 

EPA 
Approved 

BioTector Salmonella CheilJedang Corp. 
www.cj.co.kr  

EcoShield™ Escherichia coli 
O157:H7 

Intralytix 
www.intralytix.com 

FDA 
Approved 

FASTPlaque-
Response™ 

Mycobacterium 
tuberculosis 

Biotech Laboratories⁄Lab21 
www.biotec.com  

FASTPlaqueTB™ Mycobacterium 
tuberculosis 

Biotech Laboratories⁄Lab21 
www.biotec.com  

ListShield™ Listeria monocytogenes Intralytix 
www.intralytix.com 

FDA 
Approved 

Listex™ P100 Listeria monocytogenes EBI Food Safety 
www.ebifoodsafety.com 

FDA 
Approved 

MRSA ⁄ MSSA 
Blood culture test Staphylococcus aureus Microphage 

www.microphage.com  

MRSA Screening 
test Staphylococcus aureus Microphage 

www.microphage.com  

MicroPhage 
MRSA ⁄ MSSA test Staphylococcus aureus Microphage 

www.microphage.com  

Source: Adapted from Monk et al., 2010. 
 

Recognized As Safe) (USFDA, 2006a) based partly on an oral toxicity study on rats that resulted 

in no side effects (Carlton, Noordman, Biswas, de Meester, & Loessner, 2005) and the 

experience in Europe (Monk, Rees, Barrow, Hagens, & Harper, 2010). Bacteriophage Listex 

P100 (phage P100) was approved by the U.S. FDA and U.S. Department of Agriculture for 

controlling Listeria monocytogenes presence on both raw and ready-to-eat food products. In a 

recent study published in 2010, researchers inoculated fresh catfish fillets with approximately 4.3 
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log CFU/g L. monocytogenes before they introduced Listex P100 on the surface. Fifteen min of 

phage treatment reduced L. monocytogenes counts by less than 1 log CFU/g, while 30 min of 

treatment reduced the pathogen count by more than 1 log CFU/g regardless of the incubation 

temperature (Soni et al., 2010). After 10 days of incubation at 4 or 10°C, L. monocytogenes was 

still present on the catfish fillets treated with Listex P100.  

Intralytix, Inc. (Baltimore, MD) received the FDA approval for ListShield™ (formerly 

LMP-102) to be used as a food additive in controlling L. monocytogenes in ready-to-eat meat and 

poultry products (USFDA, 2006b). Upon these approvals from the USFDA, phage usage in food 

safety applications gained even more momentum, which can be measured by the number of 

recent publications (Abuladze et al., 2008; Bigwood et al., 2008; Borie et al., 2008; Guenther et 

al., 2009; Hudson et al., 2010; Kocharunchitt et al., 2009; Merabishvili, Pirnay, Verbeken, 

Chanishvili, Tediashvili, Lashkhi et al., 2009; Niu et al., 2009; Raya et al., 2011; Rozema et al., 

2009; Sharma et al., 2009b; Soni & Nannapaneni, 2010; Soni et al., 2010; Viazis et al., 2011b; 

Wall et al., 2010). 

Lately, Intralytix, Inc. has also received regulatory clearance from the FDA for its phage-

based food safety product EcoShield™. EcoShield™ has been given clearance as Food Contact 

Notification (FCN) specific for the use on red meat parts and trims prior to grinding. The FDA 

has designated the FCN clearance for this phage-based product as FCN No. 1018 (USFDA, 

2011). 

2.6. Modified Atmosphere Packaging (MAP) as a Food Preservation Technique 

Today fresh produce travel long distances and maintaining the produce quality becomes a 

challenging issue. Storage temperature and environmental gas concentration of the fresh produce 

are controlled to reduce the physiological deterioration and prolong shelf life. 
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There are two methods of keeping the produce fresh; controlled atmosphere (CA) storage 

where the environmental gas concentration is monitored and adjusted constantly and modified 

atmosphere packaging (MAP) (Mattheis & Fellman, 2000). CA storage requires the use of 

expensive storage facilities and costly maintenance expenses. In a closed chamber, MAP is 

achieved by taking two factors into account; respiration rate of the produce and gas transfer rates 

through the packaging material. MAP is the method by which the produce is preserved longer in 

a sealed package under the presence of lower O2 and higher CO2 concentrations compared to the 

atmospheric air (Fonseca, Oliveira, & Brecht, 2002). MAP utilizes inexpensive plastic film 

packaging in which the atmosphere is adjusted based on the respiration properties of produce and 

the permeability of the plastic film used. 

Modified atmosphere packaging (MAP) has been used to increase the shelf life of foods, 

meeting the market demand for fresh high-quality products available year-round and without the 

use of additives. In a study, green asparagus spears were stored under three different conditions 

until they were not fit for consumption: 1) refrigeration at 2°C, 2) MAP at 2°C, and 3) MAP at 

2°C for 5 days, then at 10°C. MAP, combined with refrigeration at 2°C, showed the best results 

among the treatments in terms of retaining sensory, nutritional, and microbial quality, increasing 

the safety and extending the shelf life of green asparagus (Villanueva, Tenorio, Sagardoy, 

Redondo, & Saco, 2005).  

In another study, five different packaging treatments, including two passive modified 

atmosphere packaging (MAP), two active MAP and a moderate vacuum packaging (MVP), were 

used for minimally-processed bunched onions. Various sealed-packaging treatments did not 

significantly influence microbiological populations, including mesophiles, psychrotrophs; and 

lactic acid bacteria. However, MVP with a gas-permeable plastic film retained the quality of 
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bunched onions better with reduced microbial decay and visual sensory aspects when compared 

with samples stored under different conditions (Hong & Kim, 2004). A study was conducted to 

evaluate the effect of an edible coating combined with modified atmosphere (MA, 60% O2, 30% 

CO2, and 10% N2) packaging and gamma irradiation on the microbiological stability and 

physico-chemical qualities of minimally-processed carrots (Lafortune, Caillet, & Lacroix, 2005). 

Microbiological analysis revealed that uncoated carrots irradiated at 0.5 and 1 kGy under air and 

MA had lower aerobic plate counts (APCs) by up to 3.5 and 4 log CFU/g, and by 4 and 4.5 log 

CFU/g, respectively. For coated carrots, irradiation at 0.5 and 1 kGy under air and MA reduced 

the APCs by 4 and 4.5 log CFU/g, and by 3 and 4.25 log CFU/g, respectively. The effects of 

high O2 and high CO2 throughout the storage on the microbial and sensory qualities of fresh-cut 

bell peppers from two commercial California cultivars grown under different climatic conditions 

were studied (Conesa, Verlinden, Artés-Hernández, Nicolaï, & Artés, 2007). The results showed 

that 80 or 50 kPa O2 combined with 15 kPa CO2 inhibited the growth of spoilage 

microorganisms and Enterobacteriaceae in minimally processed bell peppers after 9–10 days at 

5°C. 

One disadvantage of MAP on pathogenic E. coli is that it can support acid resistance 

(Chua, Goh, Saftner, & Bhagwat, 2008). Subatmospheric oxygen level in MAP was found to 

trigger acid resistance when produce was stored at ≥15°C. Storage temperatures under 10°C did 

not cause an acid resistance. These results show that storage temperature of fresh produce packed 

under MAP should be closely monitored. A possible temperature abuse that could happen during 

the period from packing facility to the consumer could result in elevated acid resistance of the 

bacteria on produce. Acid resistance should be viewed as an important risk as it can help the 

pathogens pass the gastric acid challenge in the stomach. 
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The survival and growth of E. coli O157:H7, Salmonella spp., and Listeria 

monocytogenes inoculated onto shredded lettuce were determined under various modified 

atmosphere packaging conditions and at various storage temperatures. After the inoculation of 

pathogens, shredded lettuce was packaged in films with different permeability and stored at 5 or 

25°C. E. coli O157:H7 and Salmonella counts decreased by 1 log unit after 10 days at 5°C, while 

L. monocytogenes population increased by 1 log unit, in all package films. The level of the 

pathogens increased by 2.44 to 4.19 log units after 3 day incubation at 25°C (Oliveira, Usall, 

Solsona, Alegre, Viñas, & Abadias, 2010). The results show that the MAP is not solely able to 

keep the pathogen counts lower. Permeability of the packaging film and the temperature need of 

the pathogens should be in constant consideration. 

Packaging atmosphere conditions in combination with various storage temperatures of 

contaminated lettuce were studied to understand the combined effect on the E. coli O157:H7 

virulence. Shredded lettuce inoculated with E. coli O157:H7 was packaged under treatment A 

(similar to commercial packaging conditions in gas-permeable film with N2), treatment B (near-

ambient air in gas-permeable film with microperforations), and treatment C (high CO2/low O2 

condition in gas-impermeable film). Results showed that at 4°C, E. coli O157:H7 populations on 

lettuce decreased under all treatments, most reduction was determined under treatment B by 10 

days. At 15°C, E. coli O157:H7 counts increased by at least 2.76 log CFU/g under all treatments. 

At 15°C, expressions of eae and iha virulence factor genes were significantly greater under 

treatment B than under treatments A and C on day 3. Treatment B at 15°C also promoted the 

expressions of stx2, eae, ehxA, and rfbE genes significantly on day 10. The results showed that 

storage under near-ambient air atmospheric conditions can promote expression of O157 
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virulence factors, and could increase the severity of E. coli O157:H7 infections associated with 

the leafy greens (Sharma, Lakshman, Ferguson, Ingram, Luo, & Patel, 2011). 

2.7. Reason for Undertaking This Study  

To the best of our knowledge, there is no information present as to how bacteriophages 

act under modified atmosphere packaging (MAP) conditions. Testing the efficacy of 

EcoShield™ bacteriophage cocktail on the survival of the pathogenic E. coli O157:H7 at 

refrigeration temperatures will provide new information to fill in this gap. 

In this study, EcoShield™ phage cocktail was tested against E. coli O157:H7 on three 

green leafy vegetables, namely spinach, green leaf lettuce, and romaine lettuce alone or in 

combination with MAP. Spinach and the lettuces were chosen because of their associations in 

recent E. coli O157:H7 outbreaks.   
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CHAPTER 3  

Materials and Methods  
3.1. Bacterial Strains 

E. coli O157:H7 strains RM1918, RM4406, RM4688, and RM5279 were obtained from 

the United States Department of Agriculture (USDA), Agricultural Research Services (ARS), 

Pacific West Area (PWA) (Albany, CA). All strains were previously associated with fresh 

produce outbreaks. They were cultured on Tryptic Soy Agar (TSA) (BD Difco™, Cat#236920, 

Franklin Lakes, NJ) and incubated at 37ºC. A single colony was inoculated into Tryptic Soy 

Broth (TSB) (BD Bacto™, Cat#211825, Franklin Lakes, NJ) and transferred daily into fresh 

TSB. Due to the difficulty in differentiating E. coli O157:H7 colonies on agar plates from other 

colonies formed by the indigenous microflora of the fresh produce surface, a nalidixic acid 

resistant (NalR) strain (E. coli O157:H7 RM4407 NalR) was later obtained from Dr. Manan 

Sharma at USDA, ARS, Environmental Microbial and Food Safety Laboratory (EMFSL) 

(Beltsville, MD). Since E. coli O157:H7 RM4407 NalR was found to be insensitive up to 50 

µg/ml nalidixic acid, it was cultured in TSB that contained 50 µg/ml nalidixic acid (Sigma-

Aldrich, Cat#N4382, St. Louis, MO).  

3.2. Verification of E. coli O157 Strains with a Latex Test Kit  

Authenticities of E. coli O157:H7 cultures were verified by drySPOT™ E. coli O157 

Latex Test Kit (Oxoid, Cat#DR0120M, Cambridge, UK) according to the manufacturer’s 

protocol. The kit includes blue color latex spots printed test cards. Two different latex spots are 

present. Test spots include latex particles coated with antibody specifically reactive with E. coli 

O157 serogroup antigen. E. coli O157:H7 strains were streak plated on TSA plates and incubated 

at 37°C overnight. A portion of a colony was picked up using a sterile inoculation loop and 
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emulsified in 50 µl of 0.9% NaCl solution on test area avoiding the latex test spots. The 

suspension was then dragged with the help of the inoculation loop and mixed with the latex test 

spots. Blue color of the latex spot was dissolved and the test card was rocked gently in a circular 

motion to observe agglutination. Another colony on the TSA plate was used to mix with the 

control latex spots the same way and observed for agglutination. The test was recorded as 

positive if agglutination was visible to the naked eye with the test latex, but not the control latex, 

within 60 seconds of mixing.  

3.3. DNA Extraction from E. coli O157:H7 Cells 

E. coli O157:H7 strains RM1918, RM4406, RM4688, and RM5279 were grown in TSB 

overnight and centrifuged at 15,700xg for 5 min at room temperature. Supernatant was discarded 

and the cell pellets were used for DNA extraction. One ml of DNAzol® reagent (Invitrogen, 

Cat#10503-027, Carlsbad, CA) was added to 5x106 cells. Cells were lysed by pipetting up and 

down for about 20 seconds. The mixture was centrifuged at 15,700xg for 5 min at room 

temperature and the supernatant was transferred into a new sterile 1.5 ml microcentrifuge tube. 

Five hundred ml of 200 proof ethanol (Sigma-Aldrich, Cat#459836, St. Louis, MO) was added 

and the tubes were mixed by inversion several times followed by a 5 min wait at room 

temperature. Tubes were then centrifuged at 15,700xg for 5 min at room temperature and the 

supernatant was discarded. One ml of 100% ethanol was added into the pellet and the tubes were 

inverted several times. After the centrifugation at 15,700xg for 5 min, the supernatant ethanol 

was removed carefully with a pipette. The ethanol wash and the consecutive centrifugation step 

were repeated one more time with 1 ml of 100% ethanol. Ethanol was removed carefully using a 

pipette and the tubes were kept open for 1 min at room temperature to allow DNA air dry. To 

solubilize the DNA pellet, 1.5 ml of 8 mM NaOH was added to the tubes. DNA samples were 
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quantified by Genesys 10 UV spectrophotometer (Thermo Scientific, Cat#335903P, Rochester, 

NY) at 260 nm. Total amount of DNA in µg was calculated with the formula below:  

DNA [µg] = (A260) ((50 µg/ml) / (A260)) (DF) (V), 

where A260 is the absorbance of the DNA sample at 260 nm, 50 µg/ml is the conversion factor 

relating absorbance to concentration, DF is dilution factor, and V is the total volume in ml.  

3.4. Verification of E. coli O157:H7 Strains with Polymerase Chain Reaction  

Once the DNA concentrations were calculated, they were used as template in polymerase 

chain reaction (PCR) to verify the E. coli O157:H7 specific genes; stx1, stx2, uidA, eaeD, ehxA, 

and rfbE. Oligonucleotide primers were purchased from Integrated DNA Technologies 

(Coralville, IA). The base sequence and product size information of the oligonucleotides used in 

the study is presented in Table 4.  

Table 4 

Oligonucleotides used to verify E. coli O157:H7 strains. 

Gene Primer Sequence (5’→→→→3’) Reference PCR Size 

 stx1 
F CAG TTA ATG TGG TGG CGA AGG (Cebula, Payne, & 

Feng, 1995) 348 bp 
R CAC CAG ACA ATG TAA CCG CTG 

 stx2 
F ATC CTA TTC CCG GGA GTT TAC G (Cebula et al., 

1995) 584 bp 
R GCG TCA TCG TAT ACA CAG GAG C 

 uidA 
F GCG AAA ACT GTG GAA TTG GG (Cebula et al., 

1995) 252 bp 
R TGA TGC TCC ATC ACT TCC TG 

 eaeA 
F ATT ACC ATC CAC ACA GAC GGT (Fratamico & 

Strobaugh, 1998) 397 bp 
R ACA GCG TGG TTG GAT CAA CCT 

 ehxA 
F GTT TAT TCT GGG GCA GGC TC (Feng & Monday, 

2000) 158 bp 
R CTT CAC GTC ACC ATA CAT AT 

 rfbE 
F CAA GTC CAC AAG GAA AGT AAA GAT G (Rashid, Tabata, 

Oatley, Besser, 
Tarr, & Moseley, 

2006) 

85 bp 
R ATT CCT CTC TTT CCT CTG CGG 
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Qiagen Multiplex PCR kit (Qiagen, Cat#206143, Valencia, CA) and Takara Ex Taq™ 

Hot Start Version (Takara, Cat#RR006A, Shiga, Japan) were used for the multiplex PCR 

reaction. The multiplex PCR protocol suggested by Qiagen was followed. Ten ng of DNA 

sample for each strain was used in multiplex PCR reaction. PCR conditions were as follows: first 

denaturation for 4 min at 94°C, then 35 cycles of denaturation for 1 min at 94°C, annealing for 1 

min at 56°C, and elongation for 1 min at 72°C followed by final elongation step for 10 min at 

72°C. Multiplex PCR reaction was performed with Eppendorf thermocycler (Eppendorf 

Mastercycler epgradient S, Hamburg, Germany). After the PCR reaction was completed, 10 µl of 

the PCR sample was mixed with 2 µl of gel loading dye (Invitrogen, Cat#15585-011, Carlsbad, 

CA), and the mixture was loaded on to 1% agarose gel (Invitrogen, Cat#16500-500, Carlsbad, 

CA) with DNA size marker (Takara, Cat#3409A, Shiga, Japan). The gel electrophoresis was 

performed at 100 volts for 40 min and the gel picture was taken by using Bio-Rad imaging 

equipment (Bio-Rad, Universal Hood II, Hercules, CA). 

3.5. Bacteriophage Cocktail 

EcoShield™ (formerly known as ECP-100), a bacteriophage cocktail (1010 PFU/ml in 

PBS, pH 7.4) specific against E. coli O157:H7, was provided by Dr. Alexander Sulakvelidze at 

Intralytix, Inc. (Baltimore, MD). The cocktail consists of three E. coli O157:H7-specific lytic 

phages (ECML-4, ECML-117, and ECML-134) in the Myoviridae family isolated from fresh and 

salt water environments. Phage cocktail was stored in dark at 4°C per the manufacturer’s 

recommendation that the phage cocktail is highly unstable under light, and diluted as necessary 

in sterile 1.5% peptone water (w/v) (BD Difco™, Cat#218071, Franklin Lakes, NJ) immediately 

before application. Phosphate buffered saline (PBS) was first used for phage dilutions but 



57 
 

discontinued later as the salt residues caused dehydration of the leaf pieces during long 

incubation periods.  

3.6. Verification of Bacteriophage Cocktail Titration 

Although EcoShield™ phage cocktail was supplied as a standard 1010 PFU/ml 

suspension, the concentration of each new vial was always verified with a plaque assay. At all 

times, the stock phage cocktail suspension was handled under low light conditions. EcoShield™ 

phage titration was measured against E. coli O157:H7 according to the method described by 

Leverentz et al. (2004) with some modifications. Shortly, EcoShield™ phage cocktail was 

diluted serially in peptone water (w/v) down to 100 PFU/ml. Overnight grown E. coli O157:H7 

was diluted serially in peptone water, and 100 µl of diluted E. coli O157:H7 (~7 log CFU/ml) 

culture was mixed with 1 ml of diluted phage cocktail in a sterile glass culture tube. Quickly, 3.5 

ml of warm (50°C) soft lysogeny broth (LB) (Fisher Scientific, Cat#BP1427, Fair Lawn, NJ) 

agar that contains 0.75% agar (w/v) (Fisher Scientific, Cat#BP1423, Fair Lawn, NJ) was added 

to the glass tube followed by a brief, gentle vortex. Content of the tube was then quickly poured 

on top of an LBA plate that was prepared earlier. The LBA plates were incubated at 37°C 

overnight once the top agar layer solidified. Circular, clear plaques formed by the phages were 

counted the next day to calculate the concentration of the phage cocktail as log PFU/ml.  

3.7. Screening the Efficacy of EcoShield™ Phage Cocktail against E. coli O157:H7 Strains 

in Liquid Laboratory Medium 

The efficacy of EcoShield™ phage cocktail (107 PFU/ml) was tested against a standard 

concentration (104 CFU/ml) of each E. coli O157:H7 strains in Tryptic Soy Broth (TSB) (BD 

Bacto™, Cat#211825, Franklin Lakes, NJ). The test (phage) and control (peptone water) samples 

were incubated at 4 and 37°C for up to 48 h. Samples were serially diluted in sterile peptone 
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water as necessary and aliquots (100 µl) of appropriate dilutions were plated on Sorbitol 

MacConkey (SMAC) agar (BD Difco™, Cat#212123, Franklin Lakes, NJ) after 0.5, 2, 24, and 

48 h of incubation. The plates were then incubated at 37°C overnight and the recovered colony 

enumerated and expressed as log CFU/ml. 

Since the natural indigenous microorganisms of the green leafy produce compete with the 

E. coli O157:H7 for nutrients and the presence of high number of indigenous bacteria limits our 

ability to identify E. coli O157:H7 on the petri surface, it was necessary to use an antibacterial 

resistant EHEC strain. This is a well-known problem with the intervention studies that aims to 

reduce pathogen load on samples naturally containing high level of background microflora 

(Niemira, 2003). Studies showed that E. coli strains resistant to nalidixic acid (Nal) have similar 

growth properties and stress tolerance as their nalidixic acid sensitive parental strains and can be 

used as marker organisms in chemical interventions and growth studies (Blackburn & Davies, 

1994; Taormina & Beuchat, 1999). Based on this information, a nalidixic acid resistant (up to 50 

µg/ml) E. coli O157:H7 RM4407 strain was used in the following steps of the study. 

The efficacy of the phage cocktail (107 PFU/ml) was tested against 105 CFU/ml of E. coli 

RM4407 NalR strain in TSB. The phage and control (peptone water) (BD Difco™, Cat#218071, 

Franklin Lakes, NJ) samples were incubated at 4, 10, and 37°C for up to 48 h. Samples were 

serially diluted in sterile peptone water, and aliquots (100 µl) were plated on SMAC agar after 

0.5, 2, 24, and 48 h of incubation. The inoculated plates were incubated at 37°C overnight and 

the viable colony counts were expressed as log CFU/ml.  

3.8. Efficiency of Bacteriophages on Young and Old E. coli O157:H7 Cultures  

During the first phase of the liquid culture experiments with E. coli O157:H7 strains, the 

efficiency of the phage cocktail on EHEC strains fluctuated from one experiment to another. It 
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was hypothesized that as E. coli O157:H7 cultures were passaged continuously they were 

becoming less susceptible to the phage cocktail, which can be measured by the inhibited level of 

E. coli O157:H7 reduction. E. coli strains were cultured from single colonies 2 days apart from 

each other. When the oldest line reached 11th passage, E. coli O157:H7 (5 log CFU/ml) and the 

phage cocktail (7 log PFU/ml) were mixed in TSB and incubated at 4°C for 3 h. Samples were 

serially diluted in sterile peptone water as necessary and aliquots (100 µl) of appropriate 

dilutions were plated on TSA. The plates were then incubated at 37°C overnight and the viable 

colony counts were expressed as log CFU/ml to compare the recovered EHEC levels.  

3.9. Leafy Green Vegetable Sample Preparation 

After determining the most sensitive strain of E. coli O157:H7 to the phage cocktail, a 

new set of experiments were conducted on leafy greens. Pre-washed, bagged, and ready-to-eat 

fresh spinach (Fresh Express®) and conventional green leaf and romaine lettuces were purchased 

from a local grocery store, brought to the laboratory immediately, and stored at 4°C for up to 1 

day until use. Partial oxygen and carbon dioxide concentrations inside the spinach bags were 

measured with handheld PBI Dansensor CheckPoint (Glen Rock, NJ) and recorded right before 

opening the bags for the experiments. All produces were handled with 70% ethanol-treated 

nitrile gloves. Outer leaves of the lettuces, damaged spinach and lettuce leaves, and the leaves 

that do not look edible and healthy were discarded. Lettuce leaves were washed gently under 

running tap water. Spinach and lettuce leaves were cut using a sterile knife and glass cutting 

board to about 2x2 cm2 pieces. The pieces of the leaves were immediately placed into a sterile 

stomacher bag to reduce wilting due to water loss during preparation steps. The leaves were then 

placed side by side on aluminum foil sheets for bacteria and phage inoculation.  
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3.10. Determining the Efficacy of the Phage Cocktail against E. coli O157:H7 RM4407 NalR 

on Leafy Greens at 4 and 10°C 

Newly started fresh culture of EHEC RM4407 NalR was grown in TSBN overnight at 

37°C. The overnight grown EHEC culture was diluted in peptone water to bring the 

concentration down to ~7 log CFU/ml. Using a sterile micropipette, 10 µl from the diluted 

EHEC culture was inoculated gently on top side of the 2x2 cm2 of leaf pieces that were placed on 

aluminum foil. Extra care was given to distribute the total volume homogenously in ~20 small 

droplets to cover the entire top surface of produce leaves without disturbing and damaging the 

intact surface of the leaf pieces. The inoculated droplets did not contact the open cut edges of the 

leaves. Contaminated leaf pieces were air-dried for 20 min to allow for bacterial attachment and 

then sprayed with 7 log PFU/ml EcoShield™ phage cocktail or peptone water (control). 

Spraying was chosen as a phage application method since the amount of the phages that actually 

end up on the samples cannot be standardized in dipping method (Personal communication with 

Dr. Alexander Sulakvelidze, 2008). A small fingertip sprayer (Bottle Crew, Cat#E25144, West 

Bloomfield, MI) that delivers ~100 µl was used to deliver the phage cocktail at a concentration 

of ~6.5 log PFU/cm2 of leaf. The phage was sprayed from 10-12” above the surface, one stroke 

per leaf plus an extra stroke for the leaves on the edges.  

The leaf pieces were incubated up to 7 days in dark at 4 and 10°C in sterile petri dishes 

humidified with sterile, wet filter papers. To determine the surviving EHEC counts, the leaf 

pieces were placed in glass tubes with 9 ml peptone water using sterile forceps, homogenized 

with a handheld blender (Kinematica AG, Polytron PT 1200 E, Lucerne, Switzerland). The 

blender was rinsed with a 3 step process; tap water, 100% denatured ethanol, and purified water 

to prevent cross-contamination between each sample. The homogenized leaves were further 
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diluted in 1.5% peptone water as necessary, and plated on MacConkey agar containing 25 µg/ml 

Nalidixic acid (MACN). After the overnight incubation at 37°C, violet color colonies were 

counted to express the surviving EHEC counts as log CFU/cm2.  

3.11. Effect of the Phage Cocktail against E. coli O157:H7 RM4407 NalR on Leafy Greens 

at 4 and 10°C under Different Modified Atmosphere Packages (MAP) 

Inoculation of the EHEC RM4407 NalR on the leaf pieces and the treatment of phage 

cocktail were performed the same way as explained under chapter 3.10. The leaf pieces were 

incubated up to 15 days in dark at 4 and 10°C inside sterile petri dishes humidified with sterile, 

wet filter papers under two different atmospheric conditions, atmospheric air (A) and modified 

gas mixture (G). Modified gas mixture contained 5% O2, 35% CO2, and 60% N2. Leaf samples 

inside the petri dishes were placed in vacuum pouches with zero oxygen transfer rate (Prime 

Source Vacuum Pouches, Cat#75001917, Kansas City, MO), and filled with the desired gas 

mixture by using a table-top vacuum packaging machine (Supervac, GK 125, Wien, Austria). 

The surviving EHEC counts were determined the same way as explained under chapter 3.10. 

To enumerate the aerobic mesophilic and anaerobic indigenous microflora of the leafy 

greens, the homogenized leaves were further diluted in 1.5% peptone water as necessary, and 

plated on TSA and Reinforced Clostridial Medium (RCM, BD Difco™, Cat#218081, Franklin 

Lakes, NJ), respectively. Both media were incubated overnight at 37°C. RCM plates were placed 

in GasPak™ anaerobic chamber (BD, Cat#260629, Franklin Lakes, NJ). The oxygen content of 

the chamber was diminished by placing a CO2 generator packet (BD, Cat#261205, Franklin 

Lakes, NJ) inside the chamber.  
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3.12. Recovered Phage Quantification from Fresh Produce 

The quantity of live phage was measured against E. coli O157:H7 during 2-week storage 

at 4°C according to the method described in chapter 3.6 with some modifications (Leverentz, 

Conway, Janisiewicz, & Camp, 2004). Shortly, spinach leaf pieces containing only EcoShield™ 

phage cocktail were homogenized and diluted in peptone water the same way as explained in the 

chapter 3.9 above. Overnight grown E. coli O157:H7 in TSB was diluted serially in peptone 

water, and 100 µl of diluted E. coli O157:H7 (~7 log CFU/ml) culture was mixed with 1 ml of 

diluted homogenized leaf mixture, which contained the active phage particles, in a sterile glass 

culture tube. Quickly, 3.5 ml of warm (50°C) soft LB agar was added to the glass tube followed 

by a brief, gentle vortex. Content of the tube was then quickly poured on top of an LBA plate 

that was prepared earlier. The LBA plates were incubated at 37°C overnight once the top agar 

layer solidified. Circular, clear plaques formed by the phages were counted the next day to 

calculate the concentration of the phage cocktail as log PFU/cm2.  

3.13. Statistical Analysis  

The experimental design used in this study consisted of 1) a 2x3x4 factorial design 

(phage treatment: phage and no phage; storage temperature: 4, 10, and 37°C; and time: 0.5, 2, 24, 

and 48 h) for liquid medium experiment, 2) a 2x2x2x6 factor factorial (produce type: spinach, 

and green leaf lettuce; phage treatment: phage and no phage; storage temperature: 4 and 10°C; 

and storage time: 0.5 h, 2 h, 1, 3, 5, and 7 days) for first phase fresh produce experiments, and 3) 

a 3x2x2x6x2 (produce type: spinach, green leaf lettuce, and romaine lettuce; phage treatment: 

phage and no phage; storage temperature: 4 and 10°C; storage time: 1, 3, 5, 7, 10, and 15 days; 

and packaging: air and modified gas) for fresh produce experiments under modified atmosphere 
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packaging. The dependent variables used as indicators of phage treatment effectiveness were 

EHEC counts in all experiments and aerobic and anaerobic counts for produce studies.  

All experiments were repeated at least two times in duplicates. Microbial counts were log 

transformed to normalize data for statistical analysis. Means and standard deviations were 

calculated for dependent variables by treatment and used in tables and graphs. For inferential 

statistics, data was analyzed by Analysis of variance (ANOVA) using SAS® software (SAS 

Institute Inc., 2008). The Fisher’s least significant difference test was used as post ANOVA test 

for pairwise comparison of treatment means. The significance of main treatment and interaction 

effects was judged at the 5% significance level. 
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CHAPTER 4  

Results and Discussion 
4.1. Verification of E. coli O157 Authenticity  

Authenticities of E. coli O157:H7 strains RM1918, RM4406, RM4688, and RM5279 

were verified by drySPOT™ E. coli O157 Latex Test Kit (Oxoid, Cambridge, UK) according to 

manufacturer’s protocol as explained in chapter 3.2. The pictures of the test areas are shown in 

Figure 3. All strains resulted in agglutination in positive tests and no agglutination was observed 

in negative tests. A non-O157 E. coli was used as a control to confirm no agglutination forming. 

The amount of the cells used in the positive test may affect the level of agglutination observed. 

Since a small colony was used for the strain RM4688 the agglutination amount is lower 

compared to the other three strains.  

 

Figure 3.  Verification of O157 antigen in E. coli O157:H7 strains by Oxoid E. coli O157 Latex 

Test Kit. 
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After the latex kit verification, a multiplex polymerase chain reaction (PCR) was 

performed to verify the presence of E. coli O157 specific genes, such as stx1, stx2, uidA, eaeA, 

ehxA, and rfbE. Figure 4 shows the image of the gel electrophoresis result after the multiplex 

PCR. Expected PCR product sizes of the genes are stx2 at 584 bp, eaeA at 397 bp, stx1 at 348 

bp, uidA at 252 bp, ehxA at 158 bp, and rfbE at 85 bp. The sizes of these observed PCR bands 

were verified by comparing them to a known DNA marker. Control lane has everything but the 

template DNA. 
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Figure 4.  Result of multiplex PCR for EHEC characteristic genes in E. coli O157:H7 strains. 

 In Figure 5, the PCR band for stx1 (348 bp) was not present in lanes RM1918 and 4688. 

The 348 bp band was verified after another PCR when only stx1 primers were used (Figure 5). 

The multiplex PCR is a quick method for detecting multiple genes in a single reaction; however, 

the main challenge in a multiple PCR assay is the occurrence of unwanted primer dimers and 

nonspecific products. So, it is necessary to use primers whose annealing temperatures are closer 

as much as possible (Vidal, Kruger, Duran, Lagos, Levine, Prado et al., 2005). 

There are several multiplex PCR assays developed to detect E. coli O157:H7. These 

assays aim to detect the specific virulence factors in E. coli O157:H7; such as stx1, stx2, eaeA, 

and ehxA (Fagan, Hornitzky, Bettelheim, & Djordjevic, 1999; Fratamico & Strobaugh, 1998). 
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In addition to these genes, some PCR assays include more genetical targets specific to E. coli 

O157:H7 (Cebula et al., 1995; Paton & Paton, 1998a). In this study, a 6-gene multiplex PCR 

was performed to verify E. coli O157:H7. Five of the genes were also used successfully by 

others (Feng & Monday, 2000). Due to the genetic variations in virulence in virulence factors, a 

6th gene (rfbE) that encodes O antigen was also included in this study (Rashid et al., 2006). All 

6 genes were successfully detected with the multiplex PCR in all strains tested, and the 

authenticities of the E. coli O157:H7 strains were verified. 
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Figure 5.  PCR gel picture for stx1 gene in E. coli O157:H7 strains RM4406 and RM5279. 

4.2. Bacteriophage Cocktail Titration  

The EcoShield™ bacteriophage cocktail contains 3 different phages that are specific 

against E. coli O157:H7. Knowing the actual concentration of the stock phage cocktail is 

important to adjust the experimental phage cocktail concentration. Phage titration was performed 

for every new bottle of stock phage cocktail. The overall stock phage cocktail concentration was 

found to be 9.5 log PFU/ml. A sample picture of the soft agar plates from the phage titration 

assay is shown in Figure 6.  
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Figure 6.  EcoShield™ phage cocktail titration on LBA soft agar. 

4.3. Efficacy of Bacteriophage Cocktail in Lysing E. coli O157:H7 Strains in Laboratory 

Medium  

Liquid culture experiments showed that EcoShield™ phage cocktail was able to show its 

effect as early as in 30 min (Figure 7). Data is shown as mean ± SD. At 4°C, the phage cocktail 

lysed up to 5 log units E. coli O157:H7 cells resulting in complete lysis during the 48 h of 

incubation in TSB. At 10°C, E. coli O157:H7 continued to grow up to 6.33 log CFU/ml in 

control sample during 48 h of incubation. A complete lysis was detected at 10°C in 3 of 4 strains 

(RM4406, RM4688, and RM5279) treated with the phage cocktail. No surviving bacteria were 

detected in phage treated samples. The highest difference (6.08 log units) at 37°C between 

control and phage treated samples was achieved after 2 h incubation. Bacterial survival in phage  

Phage number decreases 
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(a) 

 

 
(b) 

 

 
(c) 

 
Figure 7.  Efficacy of EcoShield™ against four E. coli O157:H7 strains in tryptic soy broth 

(TSB) at (a) 4°C, (b) 10°C, and (c) 37°C.  
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treated samples increased as the rapid growth rate of E. coli O157:H7 masked the lysis activity 

of the phage cocktail at 37°C. 

The incubation time and temperature were significantly affecting the efficacy of the 

phage cocktail against all E. coli strains tested in this study (P < 0.05). However, type of the 

EHEC strain was not statistically significant (P > 0.05). Phage cocktail was equally effective 

against all EHEC strains used. 

The liquid culture (TSB) results are in agreement with early efficacy studies that worked 

with EcoShield™ (Abuladze et al., 2008; Sharma et al., 2009b). Although these studies did not 

test the efficacy of the phage cocktail in a liquid laboratory medium, the levels of reduction they 

obtained are comparable to our findings.  

4.4. Bacteriophage Becomes Less Effective Against Older E. coli O157:H7 Cultures  

Figure 8 shows that there is a correlation between the age of the E. coli O157:H7 culture 

and the level of recovery after phage treatment. The log unit reduction in E. coli O157:H7 counts 

by the phage cocktail decreases as the culture ages. A linear regression analysis showed that each 

day 0.38 log CFU unit of E. coli O157:H7 bacteria are becoming phage insensitive. This finding 

is also partly supported by the findings of Hara-Kudo et al. (2000). The authors found that E. coli 

O157:H7 cells may lose their lipopolisaccharide O157 antigens on their cell surfaces if they are 

exposed to long-term sub-optimal environmental conditions (Hara-Kudo, Miyahara, & Kumagai, 

2000).  

During this study, it was determined that the susceptibility of E. coli O157:H7 strains to 

the EHEC-specific phage cocktail diminished by time as the cells are cultured daily for over a 

week (Figure 8). Therefore, a fresh bacterial culture was inoculated in TSB before starting a new 

experiment at each time. 
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Figure 8.  The efficiency of the bacteriophage cocktail diminishes as the E. coli O157:H7 

cultures in TSB were passaged daily for over a week. 

4.5. Bacteriophage Cocktail vs. E. coli O157:H7 RM4407 NalR in Laboratory Medium  

The phage treatment significantly (P < 0.05) reduced E. coli O157:H7 counts in TSB 

after 2 h by 4.50, 5.29, and 6.02 log CFU/ml at 4, 10, and 37°C, respectively (Figure 9). Data are 

shown as mean ± SD. At 24 h, the inhibitory activity of the phage cocktail reached 4.75 and 5.75 

log units at 4 and 10°C, respectively. However, the reduction level diminished to 0.89 log unit by 

24 h at 37°C due to the fast growth rate of E. coli O157:H7 at 37°C. The inhibition levels were 

reduced by 48 h of incubation to 4.34, 4.48, and 0.19 log units at 4, 10, and 37°C, respectively. 

E. coli O157:H7 growth at 37°C almost completely masked the inhibitory activity of phage 

treatment by 48 h. The incubation time and temperature significantly (P < 0.05) influenced E. 

coli O157:H7 NalR counts. The inhibitory effect of the phage treatment on E. coli O157:H7 NalR 

strain is similar to our previous liquid culture experiment results shown in Figure 7, indicating 

that the phage treatment is highly effective in lysing different E. coli O157:H7 strains at 4 and 

10°C.  
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Figure 9.  Effect of EcoShield™ on E. coli O157:H7 RM4407 NalR in TSB.  

4.6. Efficacy of the Bacteriophage Cocktail against E. coli O157:H7 RM4407 NalR on 

Spinach and Lettuce  

After verifying that EcoShield™ phage cocktail was able to lyse E. coli O157:H7 NalR 

cells and reduce their growth by up to 6 log units in liquid laboratory medium, the effectiveness 

of the phage cocktail against the same pathogen was tested on green leafy vegetables; such as 

spinach (Figure 10) and green leaf lettuce (Figure 11). 

The phage cocktail was able to reduce E. coli O157:H7 by 2.38 and 2.49 log CFU/cm2 at 

4 and 10°C as short as in 30 min, respectively. The potent activity of the phage treatment against 

EHEC did not change through the 7-day storage period. Although a slight decrease in E. coli 

O157:H7 counts was observed in samples incubated at 4°C and a slight increase at 10°C after 

day 3, the relative difference between E. coli O157:H7 counts did not change between the phage-

treated and untreated samples (Figure 10). Data is shown as mean ± SD. The preparation and the 

storage steps of this experiment took place in dark as recommended by the supplier of the phage 

cocktail. The level of reduction in EHEC count could have been lower should the storage took 
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Figure 10.  Effect of EcoShield™ on E. coli O157:H7 RM4407 NalR on spinach surface. 
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(b) 

Figure 11.  Phage cocktail vs. E. coli O157:H7 RM4407 NalR on green leaf lettuce at 4°C. (a) E. 

coli O157:H7; (b) Total aerobic mesophilic bacteria.  
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place under light. It is known that bacterial internalization is induced by light (Kroupitski, 

Golberg, Belausov, Pinto, Swartzberg, Granot et al., 2009). Under light condition, bacteria 

internalize at a greater rate through chemotaxis as the increased stomatal activity and the more 

readily available nutrients attract the bacteria. Internalized bacteria are harder to remove and 

inactivate (Kroupitski et al., 2009).  

Linear regression analysis showed that phage treatment significantly reduced (P < 0.05) 

the recovered EHEC RM4407 NalR counts from fresh-cut spinach pieces by 2.60 log units. In 

our experimental design, the shortest phage treatment was 30 min and the inhibitory effect of the 

phage treatment was seen as early as 30 min after the phage cocktail application on spinach 

surface. This is in correlation with the findings of Abuladze et al. (2008), who showed a 

significant decrease in E. coli O157:H7 numbers recovered from the glass cover slips and 

gypsum boards after 5 min of EcoShield™ phage cocktail treatment. Together, these results 

show that the EHEC-specific phage cocktail used in this study is highly effective on both types 

of E. coli O157:H7; attached and in suspension.  

In a comparable study, EcoShield™ phage cocktail treatment was able to reduce E. coli 

O157:H7 counts on fresh-cut lettuce by 1.6 log CFU/cm2 compared to control samples after 1 

and 2 day treatments at 4°C (Sharma et al., 2009b). Antibacterial effect of the phage cocktail was 

reported as quickly as in day 0 samples, as well. The researchers treated 3.76 log CFU/cm2 of 

EHEC with 5.98 log PFU/cm2 of the phage cocktail on fresh-cut iceberg lettuce surface and 

obtained a 1.6 log unit decrease in the recovered EHEC numbers. In the current study, we were 

able to achieve 2.60 log CFU/cm2 reduction in EHEC counts recovered from the spinach leaves 

on average. The multiplicity of infection (MOI) value, which is the ratio of phage particles vs. 

the viable bacterial cells per unit, was 100 fold in this study, which is equal to what Sharma et al. 
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(2009b) also used. The difference in log reduction could be due to the use of different EHEC 

strains. The strain used in this study might be more susceptible to the phage cocktail. Another 

possibility might be the dissimilarities between iceberg lettuce and spinach surfaces. Under high 

MOI, the phages might be less aggressive toward their target and host bacterial cells in order not 

to eradicate all available hosts to ensure their own survival should the life conditions worsen.  

In the same study, Sharma et al. (2009b) also reported that seven-day phage cocktail 

treatment at 4°C decreased the EHEC counts by 3.1 log CFU/ml on the fresh-cut cantaloupe. The 

effect of the phage cocktail was not as strong when the incubation temperature was increased to 

20°C as the EHEC grew 3.5 log CFU/ml during the 7-day incubation period in spite of the 

presence of the phage cocktail (Sharma et al., 2009b). 

A similar experiment was performed using green leaf lettuce. Phage treatment 

significantly (P < 0.05) lowered the recovered EHEC counts from green leaf lettuce surface 

(Figure 11-a). This is comparable to what was observed with spinach. Figure 11-a shows that the 

phage activity could be seen as early as in 30 min, similar to the spinach result. The experiment 

was repeated twice in duplicates. Phage cocktail was able to reduce E. coli O157:H7 RM4407 

NalR cells by 2.49 and 3.28 log units within 30 min and 2 h at 4°C, respectively. The EHEC 

counts on the phage treated lettuce surfaces stayed low throughout the entire 48 h incubation 

period (2.38 log unit reduction). 

Besides the EHEC count in this study, general aerobic mesophilic microorganism count 

was monitored, as well. Figure 11-b shows that green leaf lettuce initially had 5.50 log CFU/cm2 

indigenous aerobic microorganism load. This is about 3-4 times more than the inoculated E. coli 

O157:H7 RM4407 NalR amount used in the study. In 30 min at 4°C, phage treatment killed 
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99.7% of the EHEC. The percentage dropped to 92.6% when the recovered EHEC colonies were 

counted with the indigenous aerobic bacteria.  

4.7. Bacteriophage Cocktail vs. E. coli O157:H7 RM4407 NalR on Spinach, Romaine, 

and Green Leaf Lettuce Surfaces Stored under Modified Atmosphere Packaging (MAP) 

The main question that needed an answer in this research was how the efficiency of the 

lytic bacteriophages would be affected under different atmospheric conditions against E. coli 

O157:H7 colonized on the surface of fresh-cut green leafy vegetables stored at refrigeration 

temperatures. The leaf pieces of fresh-cut green leafy vegetables were inoculated with E. coli 

O157:H7 RM4407 NalR followed by spray inoculation of an EHEC-specific phage cocktail. The 

leaves were then packaged under 2 separate conditions; atmospheric air and modified air. 

Numbers of the surviving EHEC cells recovered from the fresh-cut green leafy vegetables stored 

under; A) atmospheric air and B) modified atmosphere (5% O2, 35% CO2, 60% N2) packaging 

conditions can be seen in Figure 12 and Figure 13, respectively. 

Phage treatment decreased the live EHEC counts as soon as day 1 and kept it low until 

day 15. Statistical data analysis showed that the phage cocktail significantly (P < 0.05) lowered 

the concentrations of E. coli O157:H7 RM4407 NalR in 1 day by 1.19 log on spinach, 3.21 log on 

green leaf lettuce, and 3.25 log units on romaine lettuce stored at 4°C under atmospheric air 

packaging (Figure 12-a). Experiment was repeated twice in duplicates for each produce. On the 

other hand, when stored under modified atmospheric gas, phage cocktail reduced the EHEC 

concentrations on spinach, green leaf lettuce, and romaine lettuce by 2.18, 3.50, and 3.13 log 

units, respectively (Figure 12-b). EHEC concentration on the phage-treated green leaf lettuce 

samples stored at 4°C was below the detection level of 0.60 log CFU/cm2 in most of the 

sampling days during the 2 week study. Since the samples were stored in dark, the stomatal  
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(a) 
 
 

 
 (b) 

 
 
Figure 12.  E. coli O157:H7 RM4407 NalR counts on green leafy produce contaminated with E. 

coli O157:H7 RM4407 NalR, treated with bacteriophage cocktail, and stored at 4°C 

under; (a) MAP with atmospheric air; (b) MAP with 5% O2, 35% CO2, 60% N2 gas. 
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Figure 13.  E. coli O157:H7 RM4407 NalR counts on green leafy produce contaminated with E. 

coli O157:H7 RM4407 NalR, treated with bacteriophage cocktail, and stored at 10°C 

under; (a) MAP with atmospheric air; (b) MAP with 5% O2, 35% CO2, 60% N2 gas.  
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activity of produce samples was lower than that of under light resulting in reduced phage 

efficacy against EHEC. The stomatas draw the bacteria when they are active, helping them 

internalize produce surface more easily (Kroupitski et al., 2009). 

EHEC load on the control leaves sprayed with peptone water decreased at 4°C during the 

15-day study by 0.94 log on spinach, 2.82 log on green leaf lettuce, and 3.04 log on romaine 

lettuce stored in sealed bags filled with atmospheric air. The log reductions after 15 days under 

modified atmosphere (high CO2/low O2) condition were 0.55, 2.30, and 1.60 log on spinach, 

green leaf and romaine lettuces, respectively. These numbers, although not exactly the same, are 

in agreement with the results of previous studies (Oliveira et al., 2010; Sharma et al., 2011). One 

study found out that E. coli O157:H7 counts on shredded lettuce decreased by 1 log after 10 day 

incubation at 5°C (Oliveira et al., 2010). In another study with shredded iceberg lettuce stored at 

4°C for 10 days, EHEC population declined by 1.70 log inside gas permeable package with 

perforations, 0.85 log inside gas permeable package with an initial N2 flush, and 1.10 log inside 

gas-impermeable package filled with high CO2/low O2  (Sharma et al., 2011). Our results are not 

in line with the findings of another study, which reported only 0.43 log decrease of the E. coli 

O157:H7 counts on romaine lettuce stored at 4°C for 9 days (Carey, Kostrzynska, & Thompson, 

2009). However, in that study the lettuce samples were not incubated under MAP conditions. 

The particular E. coli O157:H7 strain used, type of the produce, storage atmosphere and 

temperature conditions, specific constituents and the concentrations of the indigenous microflora, 

and the initial bacterial load might be responsible for the discrepancies we observe between our 

study and the previously published literature (Lopez-Velasco, Davis, Boyer, Williams, & Ponder, 

2010). 
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It was determined that phage-treated samples stored at 10°C under air had significantly (P 

< 0.05) lower EHEC counts after 1 day by 1.99 log in spinach, 3.90 log in green leaf lettuce, and 

3.99 log units in romaine lettuce (Figure 13-a). Experiment was repeated twice in duplicates. 

When samples were stored under modified atmospheric gas condition at 10°C, the EHEC 

concentrations on spinach, green leaf lettuce, and romaine lettuce fell down by 3.08, 3.89, and 

4.34 log units, respectively (Figure 13-b). A previous study reported an at least 2.76 log CFU/g 

increase in E. coli O157:H7 when stored at 15°C. (Sharma et al., 2011). The 5°C difference in 

the storage temperature seems to mask the effect of phage against the pathogen of interest.  

Multiple regression analysis of the entire data showed that the phage treatment 

significantly (P < 0.05) reduced the EHEC counts by 2.64 log units on average. The EHEC 

counts in all samples stored at 4°C started to descend steadily after day 3; however, EHEC 

counts on the phage-treated samples were always lower than the controls at each time point 

throughout the study. Incubation at 10°C significantly (P < 0.05) increased the EHEC counts 

recovered from the produce leaves by 1.84 log units on average compared to those incubated at 

4°C. The concentration of E. coli O157:H7 on control leaf samples did not drop during the 15 

day incubation period at 10°C (Figure 13-a&b). The standalone phages are not affected by the 

oxygen and carbon dioxide levels in the packages as the phages are not active without their 

hosts. The phages are able to show their capabilities the same level as their host cells stay active. 

E. coli O157:H7 is a facultative anaerobe that can survive and function normally under 

atmospheric air, and low oxygen and high carbon dioxide environments. Hence, the phages that 

infect their EHEC hosts are not suspected to be affected by different O2/CO2 concentrations. As 

expected, once inside of their hosts they will take over the host replication machinery to replicate 

their genomic material for their progeny. The indigenous microorganisms of the fresh produce 
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surface may compete against E. coli O157:H7 host bacteria for the limited nutrients that are 

available on the surface. The indigenous microorganisms on produce samples, especially those 

that form biofilm structures, might have formed physical obstacles which might have prevented 

the phage particles to lyse their host EHEC cells. 

Through visual observations, it was understood that leaf pieces stored at 10°C became 

spoiled faster than those stored at 4°C. Also, high CO2 and low O2 (modified atmosphere 

packaging) conditions resulted in slower spoilage of the leaf pieces although this modified 

atmosphere storage resulted in an average of 0.40 log unit increase (P < 0.05) in EHEC counts 

compared to air storage. High CO2 concentration might be blocking the growth of spoilage 

bacteria, which in turn minimizes the competition and resulting in slightly higher EHEC counts 

than atmospheric air packs. 

The partial oxygen and carbon dioxide concentrations were measured during the MAP 

studies (Figure 14). The oxygen level in air packages dropped by 2.2% and 5.9%; whereas, CO2 

levels increased by 1.1% and 3.7% at 4 and 10°C, respectively (Figure 14-a). The decrease in the 

oxygen concentrations and the increase in the carbon dioxide concentrations are most likely the 

result of the slow respiration rate of the produce samples and the presence of indigenous bacteria 

(such as Lactobacillus spp.) on produce. In modified air filled packages stored at 4°C, O2 level 

elevated by 1.8%, while CO2 level depleted by 18.1%. When the samples were stored at 10°C, 

O2 level decreased by 1.4% and CO2 level declined by 14.1% (Figure 14-b). The reduction in the 

CO2 levels might be the effect of the short-time light exposure during gas content measurements, 

performed by bringing the sealed packages out of the dark storage environment. 

The two different O2 and CO2 concentrations used in this study did not significantly (P > 

0.05) alter the efficiency of the phage cocktail to lyse the EHEC cells. This can also be  
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(a) 

 
(b) 

 
Figure 14.  Partial percentages of O2 and CO2 during MAP experiment. (a) MAP with 

atmospheric air; (b) MAP with 5% O2, 35% CO2, 60% N2 gas.   

 

0

5

10

15

20

25

30

35

0 1 3 5 7 10 15

P
er
ce
nt
ag

e O2 at 4°C

O2 at 10°C

CO2 at 4°C

CO2 at 10°C

0

5

10

15

20

25

30

35

0 1 3 5 7 10 15

P
er
ce
nt
ag

e

Time (day)

O2 at 4°C

O2 at 10°C

CO2 at 4°C

CO2 at 10°C

O2 at 4°C 

O2 at 10°C 

CO2 at 4°C 

CO2 at 10°C 

O2 at 4°C 

O2 at 10°C 

CO2 at 4°C 

CO2 at 10°C 



82 
 

interpreted as the different O2 and CO2 concentrations did not have an effect on the growth and 

survival of the EHEC cells. Several previous studies have also showed similar results. One study 

reported no effect on EHEC populations by the storage atmosphere that is composed of 3% O2 

and 97% N2 (Abdul-Raouf, Beuchat, & Ammar, 1993). Another study concluded that EHEC 

growth on shredded iceberg lettuce was not affected by any of the 4 different MAP conditions at 

13 and 22°C (Diaz & Hotchkiss, 1996). Lastly, a recent study noted that the various O2 and CO2 

levels developed inside the different packaging film materials during 10 day of incubation at 5 

and 25°C did not change the survival or the growth of EHEC on shredded romaine lettuce 

(Oliveira et al., 2010). 

Overall, these results are not supporting our hypothesis that the phage cocktail will be 

less effective under low oxygen, high carbon dioxide atmosphere in lysing the EHEC strain used 

in the study compared to that of under atmospheric air condition. Previous studies showed that 

the aerobic and anaerobic microflora, such as aerobic mesophilic bacteria, psychrotrophic 

bacteria, Pseudomonadaceae, Enterobacteriaceae, Micrococcaceae, lactic acid bacteria, and 

yeasts on produce surfaces would act differently under low O2 storage conditions (Babic, Roy, 

Watada, & Wergin, 1996). This would create variations in the level of indigenous bacteria, 

which would compete against the EHEC strain for the limited resources to survive, resulting in 

lower numbers of EHEC under modified air (5% O2, 35% CO2, 60% N2) packaging. The fact 

that E. coli O157:H7 is a facultative anaerobic species makes it easy for the pathogen to 

accommodate to low and high levels of oxygen concentration available in the ambient air. 

4.8. Recovered Phage Quantification from Fresh Produce 

The stability and the effectiveness of the EHEC-specific phage cocktail on the surface of 

fresh-cut spinach pieces were tested at 4°C in the absence of the host EHEC. The active phage 
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cocktail amount present on the produce surface did not change during the 17-day storage at 4°C 

(Figure 15). The initial inoculum level of 6.5 log PFU of EHEC-specific phages persisted at the 

same level throughout the entire storage period. The results are the mean of 3 replicates ± SD. 

No significant correlation was found between the phage count and the incubation time (P > 

0.05). The increasing number of the aerobic and anaerobic microflora on the produce surface and 

the deteriorating condition of the produce during 2 weeks storage did not seem to have an effect 

on the EHEC-specific phage cocktail used in the study. This suggests that the phage cocktail may 

provide protection against an EHEC contamination that may occur after the packaging and sale; 

such as consumer-originated contamination cases arisen from poor hygiene conditions. 

 
Figure 15.  Recovered bacteriophage quantification from fresh produce stored at 4°C.  

4.9. Aerobic Mesophilic Microorganism Counts on Spinach, Green Leaf, and Romaine 

Lettuce Stored under MAP  

Another variable that was measured during the MAP experiments was the total number of 
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green vegetables stored at 4°C can be seen in Figure 16, while Figure 17 shows the microbial  
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(a) 

 

(b) 

Figure 16.  Aerobic mesophilic microorganism counts on green leafy produce contaminated with 

E. coli O157:H7 RM4407 NalR, treated with bacteriophage cocktail, and stored at 

4°C under; (a) MAP with atmospheric air, (b) MAP with 5% O2, 35% CO2, 60% N2.  
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(a) 

 

(b) 

Figure 17.  Aerobic mesophilic microorganism counts on green leafy produce contaminated with 

E. coli O157:H7 RM4407 NalR, treated with bacteriophage cocktail, and stored at 

10°C under; (a) MAP with atmospheric air, (b) MAP with 5% O2, 35% CO2, 60% 

N2.  
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load in samples stored at 10°C. Further taxonomical identifications of the recovered bacteria 

were not performed as it was not among the aims of the study. 

Statistical analysis showed that there is no correlation between the phage treatment and 

the total aerobic microbial load on the leafy greens (P > 0.05). The oxygen and carbon dioxide 

concentrations of the packaging gas also did not alter the level of indigenous microflora. On the 

other hand, the storage temperature and the time significantly (P < 0.05) increased microbial 

load. 

Romaine lettuce appeared to have the least amount of aerobic indigenous microflora 

compared to green leaf lettuce and spinach. However, the difference seemed to be close toward 

the end of the 15-day storage at refrigeration temperatures (Figure 16 and Figure 17). Although 

not significant, it is quite interesting to note that the aerobic indigenous microorganism load on 

the spinach, which was the only produce thoroughly pre-washed and bagged that was used in this 

study, was relatively higher in comparison to those of lettuce samples. 

This can be interpreted as the sanitizing techniques employed by the industry are not 

effective in reducing the microbial load of the produce, and the sanitizing agents are used mainly 

to keep the wash water clean to prevent cross contamination between produce batches (Behrsing 

et al., 2000). The spinach used in this study was from Fresh Express, who announced to be using 

LA-PAA mixture, which is 7 times more effective than traditional chlorine wash (Ho et al., 

2011), as sanitizing agent to reduce the total bacterial count of their produce. The reason we 

observed more bacteria on bagged spinach than on conventional lettuces might be that the LA-

PAA mixture may not be as effective in reducing microbial load as it was claimed. Another 

reason may be the increased shelf life of the pre-washed and packaged fresh produce. The 
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remaining indigenous microorganisms may flourish during the extended shelf life of these pre-

washed produce resulting in higher counts of aerobic bacteria.  

4.10. Anaerobic Microorganism Counts on Spinach, Green Leaf, and Romaine Lettuce 

Stored under MAP 

The anaerobic indigenous microflora on the fresh-cut green leafy vegetables was also 

enumerated during the MAP study. Similar to the aerobic mesophiles, the recovered anaerobic 

microorganisms were not further identified taxonomically. Anaerobic indigenous microflora 

level on the leafy green vegetables stored at 4°C can be seen in Figure 18, while Figure 19 shows 

the microbial load in samples stored at 10°C. Experiments were repeated twice in duplicates for 

each produce.  

Statistical analysis showed that there is no correlation between the phage treatment and 

the anaerobic indigenous microorganism load on the leafy greens tested (P > 0.05). The oxygen 

and carbon dioxide concentrations of the packaging gas also did not affect the level of 

indigenous anaerobic microflora. Nonetheless, the storage temperature and time significantly (P 

< 0.05) increased the anaerobe counts.  

Similar to the aerobic counts, romaine lettuce appeared to have the least amount of 

anaerobic indigenous microflora compared to the green leaf lettuce and the spinach. However, 

the numbers increased the 15-day of storage at refrigeration temperatures (Figure 18 and Figure 

19). The anaerobic counts were relatively higher on pre-washed and packed spinach stored under 

same conditions as lettuce samples. This may also be due to the inefficiency of the sanitizing 

agents used by the fresh produce industry. Like aerobic bacteria, anaerobic bacteria may survive 

after the chlorine or LA-PAA mixture washes.  
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(a) 

 

 
(b) 

 

Figure 18.  Anaerobic microorganism counts on green leafy produce contaminated with E. coli 

O157:H7 RM4407 NalR, treated with bacteriophage cocktail, and stored at 4°C 

under; (a) MAP with atmospheric air, (b) MAP with 5% O2, 35% CO2, 60% N2. 
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(a) 

 

 
(b) 

 

Figure 19.  Anaerobic microorganism counts on green leafy produce contaminated with E. coli 

O157:H7 RM4407 NalR, treated with bacteriophage cocktail, and stored at 10°C 

under; (a) MAP with atmospheric air, (b) MAP with 5% O2, 35% CO2, 60% N2. 
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CHAPTER 5  

Conclusions 
In this study, the effect of an EHEC-specific phage cocktail on the survival and growth of 

an E. coli O157:H7 strain on the fresh-cut green leafy vegetables stored under different 

atmospheric conditions was investigated. At 4°C, phage cocktail significantly (P < 0.05) lowered 

the E. coli O157:H7 count by 1.19, 3.21, and 3.25 log units on spinach, green leaf lettuce, and 

romaine lettuce packaged under atmospheric air after 24 h storage. The reduction levels were 

2.18, 3.50, and 3.13 log units in the same order under the modified atmosphere conditions tested. 

There was no significant (P > 0.05) difference in the recovered EHEC counts from the produce 

stored under 2 different oxygen and carbon dioxide concentrations, atmospheric air and modified 

(5% O2, 35% CO2, 60% N2) air. Although E. coli O157:H7 populations on all produce samples 

started decreasing after 3-day storage at 4°C, the EHEC numbers recovered from the phage 

treated samples were always lower than those of the control samples throughout the storage.  

The EHEC-specific phage cocktail significantly (P < 0.05) reduced the EHEC levels by 

1.99 log on spinach, 3.90 log on green leaf lettuce, and 3.99 log units on romaine lettuce leaves 

stored at 10°C under atmospheric air for 24 h. The amount of reduction in the recovered E. coli 

O157:H7 counts was not significantly different under modified atmosphere conditions with the 

log reduction values of 3.08, 3.89, and 4.34 log units, respectively. The numbers of EHEC 

recovered from the samples incubated under different atmospheric conditions were not 

significantly (P > 0.05) different from each other. This may mean the ambient oxygen and 

carbon dioxide concentrations are not the determining factors for the phage efficacy.  

The phage treatment did not change the numbers of indigenous aerobic mesophiles and 

the anaerobes. The oxygen and the carbon dioxide concentrations inside the packages also were 
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not determining factors for the amounts of aerobic and anaerobic microflora of the leafy greens 

based on the statistical analysis. For both populations, the storage time and temperatures were 

significant, indicating the importance of the storage and shelf conditions of the fresh produce.  

To the best of our knowledge, this study is the first to test phage efficiency against the 

target bacteria on leafy green vegetables stored under modified atmosphere packaging condition 

that is composed of lower O2 and higher CO2 than the atmospheric air. Overall, it was shown that 

the efficiency of an E. coli O157:H7-specific bacteriophage cocktail under 5% O2, 30% CO2, and 

60% N2 is not significantly different from that of atmospheric air condition. The results of this 

study suggest that the phages may be employed onto produce to successfully control/reduce 

pathogenic bacterial presence and/or growth under modified atmosphere packaging.  

Since small (2x2 cm2) leaf pieces of the leafy green vegetables were used in this study, it 

would be necessary to use whole leaves in future studies to better understand the efficiency of 

the phage cocktail under MAP conditions. The application method of the phage cocktail onto the 

produce may also be changed when whole produce is used. Introducing the phage cocktail to the 

wash tank might provide higher bacterial lysis as the wash water may carry the phage particles to 

the deeper areas of the produce compared to the surface exposure obtained in spray method. 

Additionally, to improve the effectiveness of the phage cocktail used in this study, produce 

samples could be first washed with hypochlorite or organic acid wash solutions and sprayed with 

specific phage cocktail to combat pathogenic growth on produce.   

Although the bacteriophages are ubiquitously present in practically every food items, 

drinks, and the air, the use of phages that are specific for bacteria in food safety might face 

strong resistance from the public. The notion of added viruses inside the food items, such as 

fresh leafy green vegetables, for food safety may not be perceived as a safe method. The 
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consumers should be educated about the phages to overcome their potential reservations toward 

the issue since phages are natural antibiotics that are highly effective in controlling target 

pathogens.   
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