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ABSTRACT 

 

Alford, Aniesha.  GENETIC AND EVOLUTIONARY BIOMETRICS: 

MULTIOBJECTIVE, MULTIMODAL, FEATURE SELECTION/WEIGHTING FOR 

TIGHTLY COUPLED PERIOCULAR AND FACE RECOGNITION (Major Professor: 

Dr. John C. Kelly), North Carolina Agricultural and Technical State University.  

 

The Genetic & Evolutionary Computation (GEC) research community has seen 

the emergence of a new subarea, referred to as Genetic & Evolutionary Biometrics 

(GEB), as GECs have been applied to solve a variety of biometric problems.  In this 

dissertation, we present three new GEB techniques for multibiometric recognition:  

Genetic & Evolutionary Feature Selection (GEFeS), Weighting (GEFeW), and 

Weighting/Selection (GEFeWS).  Instead of selecting the most salient individual features, 

these techniques evolve subsets of the most salient combinations of features and/or 

weight features based on their discriminative ability in an effort to increase accuracy 

while decreasing the overall number of features needed for recognition.  We also 

incorporate cross validation into our best performing technique in an attempt to evolve 

feature masks (FMs) that also generalize well to unseen subjects and we search the value 

preference space in an attempt to analyze its impact in respect to optimization and 

generalization. 

Our results show that by fusing the periocular biometric with the face, we can 

achieve higher recognition accuracies than using the two biometric modalities 

independently.  Our results also show that our GEB techniques are able to achieve higher 

recognition rates than the baseline methods, while using significantly fewer features.  In 



 

 

addition, by incorporating machine learning, we were able to create FMs that also 

generalize well to unseen subjects and use less than 50% of the extracted features.  

Finally, by searching the value preference space, we were able to determine which 

weights were most effective in terms of optimization and generalization. 
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CHAPTER 1 

Introduction 

Biometrics is the field of study devoted to the automatic identification and 

verification of individuals based on their physiological, chemical, and/or behavioral 

characteristics (also referred to as traits, modalities, indicators, or identifiers) [1, 108, 

112].  Unlike traditional methods of identification that rely on “something you know” 

(e.g. passwords, PINs) or “something you possess” (e.g. smart cards, ID cards), 

biometrics rely on “what you are” or “what you do” [1, 2, 50, 76, 110, 111, 112, 113] for 

identification.  As a result, biometrics are said to be more reliable because the traits are 

harder to steal and they cannot be forgotten, lost, or shared [1, 108, 109, 112].   

Examples of biometric traits that are currently in use for automatic recognition 

include the face [3, 5, 13, 30, 43, 58, 60, 62, 79, 80, 85, 92], iris [29, 46, 47, 48, 49, 62, 

74, 105], periocular [7, 10, 11, 12, 90], voice [55, 60], signature [4, 98], and gait [56].  

However, any characteristic can be used as a biometric trait as long as the following 

requirements are met [1, 76, 108, 110, 111, 113]: universality, distinctiveness, 

permanence, collectability (or measurability [1]), performance, acceptability, and 

circumvention.  Universality means that every individual possesses that given 

characteristic.  Distinctiveness means that the given characteristic is different for any two 

individuals.  To satisfy the permanence requirement, the given characteristic should not 

change significantly over an extended period of time.  The collectability/measurability 

requirement refers to the ability to acquire the given characteristic and to measure it 

quantitatively.  The performance requirement ensures that the given characteristic results 
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in acceptable recognition rates and that the required resources (i.e. computational speed 

and space) are suitable for the given application.  The acceptability requirement makes 

sure that individuals are willing to use the given characteristic.  The final requirement, 

circumvention, must be met so that it is not easy to spoof the system. 

The remainder of this chapter is as follows.  Section 1.1 provides an overview of 

biometric recognition systems, Section 1.2 provides an overview of multibiometric 

systems, and Section 1.3 introduces the field of Genetic & Evolutionary Biometrics 

(GEB).  In Section 1.4, we provide a brief overview of machine learning, and in Section 

1.5, we provide an overview of multiobjective optimization.  Section 1.6 provides the 

scope of this work and Section 1.7 provides the outline for the rest of this dissertation. 

1.1 Overview of Biometric Systems 

Jain et al. [1] defined biometric systems as pattern recognition systems that 

acquire a biometric sample from an individual, extracts a set of features from the 

acquired sample, compares the resulting feature sets to those stored in a database, and 

then makes a decision based on the comparison.  Therefore, a biometric system can be 

viewed as a collection of modules or components.  In the literature, the modules in a 

typical biometric system seem to vary.  In [51, 61, 108, 109], they defined four major 

modules:  a sensor module, a feature extraction module, a matching module, and a 

decision module.  However, in [78, 110, 111], they defined the following four modules:  

a sensor module, a feature extraction module, a matcher module, and a database module.  

Therefore, essentially, a biometric system consists of five major modules:  a sensor, a 
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feature extractor, a database, a matcher, and a decision-making module.  An overview of 

these modules follows.   

The sensor module is used to acquire a biometric sample from an individual.  This 

newly acquired biometric sample, which is referred to as a probe, is then passed to the 

feature extraction module, which extracts a set of salient features known as a feature set, 

feature vector, or feature template.  It is important that the resulting feature templates 

exhibit the following properties [1,86, 112]:  small intra-class variation, which means that 

there is little difference between feature templates belonging to the same individual, and 

large inter-class variation, which means that there is a bigger difference between 

templates belonging to different individuals in comparison to templates belonging to the 

same individual.  The matching module then compares the resulting feature template to 

those stored within the database module (or gallery) during the enrollment process.  The 

resulting match score, which is a measure of the similarity between a probe and gallery 

template, is then passed to the decision-making module.  The resulting decision depends 

on the recognition task being performed. 

A biometric system can perform two tasks [1, 86, 112]: verification or 

identification.  A verification system performs a one-to-one comparison, comparing an 

individual’s newly acquired feature template to his/her own feature templates stored in 

the database.  In such a system, the decision-making module returns either true (i.e. the 

person is who he/she claims to be) or false (i.e. the person is not who he/she claims to 

be).  In contrast, an identification system performs a one-to-many comparison, comparing 
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an individual’s newly acquired template to those stored within the database in an attempt 

to establish identity.  The individual is either accepted or denied access by the system. 

Unfortunately, like traditional methods used for recognition, biometric systems 

are not perfect, due to factors such as imperfect sensing conditions, variation in an 

individual’s biometric trait, and illumination variations [1, 92, 113].  As a result, two 

types of errors can occur: false accepts and false rejects.  False accepts occur when 

unauthorized individuals are incorrectly matched to gallery templates, while false rejects 

occur when individuals that should be recognized are denied access.   

1.2 Overview of Multibiometrics 

Biometric systems that use only a single biometric modality are referred to as 

unimodal biometric systems [1, 50, 51].  Although unimodal biometric systems can 

achieve high recognition accuracies, numerous issues can affect the system’s 

performance during implementation including noisy sensor data, intra-class variation, 

inter-class similarities, failure to capture a quality biometric sample, and susceptibility to 

spoof attacks [1, 2, 50, 51, 112].  These issues can be addressed by multibiometric 

systems.  In addition, multibiometric systems can achieve higher recognition rates in 

comparison to the unimodal systems.  Multibiometric systems fuse the information 

returned by multiple sources including multiple sensors (i.e. multi-sensor systems), 

samples (i.e. multi-sample system), modalities (i.e. multimodal systems), instances (i.e. 

multi-instance systems), algorithms (i.e. multi-algorithm systems), and combinations of 

these sources (i.e. hybrid systems) [2, 50, 51].  
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Multibiometric fusion techniques can be classified into two categories [51, 60]: 

pre-mapping and post-mapping (or pre-classification and post-classification [112]) 

fusion.  Pre-mapping fusion techniques (i.e. sensor-level and feature-level fusion) 

perform fusion before matching, while post-mapping fusion techniques (i.e. rank-level, 

decision-level, and score-level fusion) perform fusion after matching.  Figure 1.1 depicts 

the various fusion levels and an overview of these fusion levels follows. 

 

Figure 1.1. Various Fusion Levels. 

 Sensor-level fusion combines the raw data acquired from multiple sensors or from 

multiple samples obtained via a single sensor.  Feature-level fusion combines the feature 

templates obtained for multiple biometric modalities or from multiple feature extraction 

algorithms into a single feature template.  These pre-mapping fusion techniques are 

believed to achieve higher recognition rates in comparison to the post-mapping fusion 

techniques because they are said to combine the richest source information [50, 51, 61, 

112].  However, performing fusion at these levels is difficult due to problems such as 

Multibiometric 
Fusion 

Pre-mapping 

Sensor Level Feature Level 

Post-mapping 

Rank Level Decision Level Score Level 
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incompatible sensors and large dimensionality feature templates [51].  Therefore, post-

mapping fusion techniques are usually preferred.   

For rank-level fusion, first a subset of possible matches is returned for each 

biometric modality.  The individuals within the subsets are then sorted or ranked in 

decreasing order of confidence [112].  The ranks are then combined and the final decision 

is made based on the combined ranking.  For decision-level fusion, the decisions returned 

for each biometric modality (e.g. accept/reject) are combined using for example majority 

rules [51, 61].  Finally, for score-level fusion, the individual match scores obtained by the 

different biometric modalities are normalized and combined into a single match score, 

which is then used to make the final decision.  

Of the various fusion levels, score-level fusion (also known as measurement or 

confidence level fusion [51]) is the most commonly used because the match score is easy 

to access, easy to combine, and contains rich information about the feature templates 

[51].  Figure 1.2 depicts the match score-level fusion process.  Consider a multibiometric 

system that uses l biometric modalities, b1, b2, …, bl, to authenticate an individual and that 

si is the normalized match score returned for bi.  The normalized scores, s1, s2, …, sl, are 

then fused together using a fusion rule.  The resulting fused score, S, is then used to make 

the final decision for the multibiometric system.  

Several fusion rules have been proposed in the literature [51, 55, 61, 62].  Ross et 

al. [61] proposed using the sum rule to fuse the match scores obtained for a 

multibiometric system that used face, fingerprint, and hand geometry modalities.  

Assigning each biometric modality equal weights, the fused match score using the sum 
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rule is the average of the scores obtained by the multiple modalities.  Wang et al. [62] 

proposed using the weighted sum rule to fuse match scores returned for a multibiometric 

system that used iris and face modalities, and compared its performance to that of the 

sum rule.  For the weighted sum rule, different weights are assigned to each biometric 

modality based on its false accept rate (FAR) and false reject rate (FRR).  Essentially, 

higher weights are assigned to biometric modalities that result in lower error rates.  Their 

results showed that the weighted sum rule performed better than the sum rule at 

increasing the accuracy of multibiometric recognition. 

1.3 Overview of Genetic & Evolutionary Biometrics (GEB) 

Genetic & Evolutionary Computation (GEC) [6, 16, 17, 23, 24, 37, 38] is the field 

of study devoted to the design, development, and analysis of problem solvers based on 

natural selection [31].  GECs have been successfully used to solve a wide variety of 

complex, real world, search, optimization, and machine learning problems for which 

Figure 1.2.  Score Level Fusion Process. 
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traditional problem solvers yield unsatisfactory results [6, 32, 33].  GECs have been 

successfully applied to problems in the areas of robotics (commonly referred to as 

Evolutionary Robotics) [25], design (commonly referred to as Evolutionary Design) [24], 

scheduling (commonly referred to as Evolutionary Scheduling) [22], parameter 

optimization [27], data-mining [44], bioinformatics [35] and cyber security [26], just to 

name a few. 

GECs typically discover optimal or near optimal solutions to problems as follows.  

First, a population of candidate solutions (CSs) is randomly generated and each candidate 

solution is assigned a fitness based on a user-defined evaluation function.  The fitness is a 

measure of how well the CS solves the given problem.  Parents are then selected from the 

population, typically based on their fitness, and are allowed to create offspring.  Next, the 

offspring are assigned a fitness and usually replace the worst performing CS within the 

population.  This evolutionary process is continued until one of the following user-

specified stopping conditions is satisfied: a (near) optimal solution has been found, the 

population converges on a solution, a user-defined number of function evaluations have 

been performed, or a user-specified threshold has been reached.  Figure 1.3 shows a 

flowchart of the GEC process. 

Recently, the GEC research community has seen an increased interest in the 

application of GECs to problems within the area of biometrics [3, 4, 5, 7, 8, 18, 43, 45, 

63, 64, 65, 66, 67, 68, 69, 106].  This growing sub-area of GEC, which we will refer to as 

Genetic & Evolutionary Biometrics (GEB), is devoted to the discovery, design, and 

analysis of evolution-based methods for solving some of the traditional problems within 



 

9 

the biometrics community.  To date, GEB techniques have been focused on three areas: 

feature extraction, feature selection, and feature weighting.  An overview of GEB 

techniques in these areas follows. 

 

 

Figure 1.3. Flowchart of a Typical GEC. 

  

Evaluate the population. 

Randomly generate a population of 

candidate solutions (CS). 

Stopping condition 

satisfied. 

Select parents for mating. 

Create offspring. 

Evaluate the offspring. 

Yes 

No 
Stop 

Form a new population by selecting 

survivors from the current population 

and the offspring. 



 

10 

1.3.1 GEB Techniques for Feature Extraction 

Concerning GEB techniques for feature extraction, Shelton et al. [18] proposed 

Genetic & Evolutionary Feature Extraction (GEFE). GEFE evolved two types of Local 

Binary Pattern (LBP) based feature extractors (FEs): (a) those that consisted of patches 

that were of non-uniform size and (b) those that consisted of patches that were of uniform 

size.  Their results showed that GEFE can evolve FEs that use a smaller number of 

patches (approximately 8) and that cover a smaller area of the image (approximately 

25%) when compared to the traditional method, which used 24 patches and covered the 

entire image.   

1.3.2 GEB Techniques for Feature Selection 

Concerning GEB techniques for feature selection, Galbally et al. [4] developed 

binary-coded and integer-coded Genetic Algorithms (GAs) for feature selection applied 

to the signature verification problem.   The signatures of 330 subjects from the MCYT 

Signature database [19] were used.  Two training sets were formed: one consisting of five 

signatures of each subject and the other consisting of 20 signatures of each subject.  The 

remaining signatures were used as the test set. Their results showed that both schemes, 

when compared to the baseline method, which used all of the features, were able to 

reduce the number of features used and improve the recognition accuracy of the system.  

Ramadan and Abdel-Kader [3] compared the performances of Particle Swarm 

Optimization (PSO) [33] and a GA for feature selection for a facial recognition problem.  

They used the Cambridge ORL database [20], which consists of 10 images of 40 subjects, 

to evaluate the performances of the PSO and the GA.  Four images of each subject were 
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used to form the training set, and six images of each subject were used to form the test 

set.  The Discrete Cosine Transform and Discrete Wavelet Transform methods were used 

to extract the original set of features.  Their results showed that both GECs performed 

well in terms of recognition accuracies; however, the PSO used fewer features than the 

GA. 

Kumar et al. [5] compared the performances of a Memetic Algorithm (MA) and a 

GA for feature selection for a face recognition system. The MA and GA were tested on 

two facial databases: the ORL database [20], and a subset of the YaleB [21] database (20 

subjects).  The original feature sets were obtained using the following feature extraction 

methods: Principal Component Analysis (PCA), Linear Discriminant Analysis, and 

Kernel PCA. After the original feature sets were created, the MA and GA were applied in 

an effort to reduce the feature set size as well as to increase recognition accuracy.  

  For their experiments, Kumar et al. used two approaches for designing their 

training and test sets for each dataset. In the first approach, three random images of each 

subject were used to form the training set, and the remaining images were used to form 

the test set.  In the second approach, five random images of each subject were used to 

form the training set, and the remaining images were used to form the test set.  Their 

results showed that in terms of accuracy and feature reduction, both GECs outperformed 

the baseline methods, which used all of the extracted features. However, the MA proved 

to be superior to the GA. 
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1.3.3 GEB Techniques for Feature Weighting 

Abegaz et al. [43] compared the performances of two GECs, Genetic & 

Evolutionary Feature Selection (GEFeS) and Weighting (GEFeW), on four facial 

datasets:  Face Recognition Grand Challenge (FRGC) [9], Face Recognition Technology 

(FERET) [57], Essex [59], and Yale [58].  Their results showed that GEFeS obtained 

higher recognition accuracies than the baseline methods while using 50% fewer features.  

In addition, their results showed that GEFeW performed better in terms of recognition 

accuracy.  

1.4 Overview of Machine Learning 

The goal of any machine learning technique is to develop an artifact (in the form 

of a neural network, classifier, decision tree, neuro-fuzzy inference system, etc.) that 

generalizes well to unseen instances [39, 40, 41, 42]. Most machine learning techniques, 

including GECs [34, 44], will tend to overfit the set of training instances – those 

instances that are ‘seen’ by the machine learning technique as it attempts to develop a 

high performance artifact for classification or regression. This means that the best 

performing artifact, with respect to the training set, will perform well on these ‘seen’ 

instances but will perform relatively poorly on the ‘unseen’ instances of a test set.  

 The concept of cross validation [34, 39, 40, 41, 42] was developed in an effort to 

prevent overfitting. In cross validation, the total set of available instances is broken up 

into three sets: a training set, a validation set, and a test set. The training set contains 

instances that are ‘seen’ by the machine learning technique, while the validation and test 

sets contain instances that are ‘unseen’ by the learning technique. 
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As a machine learning technique attempts to develop artifacts that reduce the 

classification/regression error on the training set, periodically, artifacts are checked with 

the validation set. An artifact’s performance on the validation set is kept ‘hidden’ from 

the machine learning technique. After a user-specified number of artifacts have been 

developed without reducing the overall best error on the validation set, the learning 

technique is halted and the artifact with the best performance on the validation set is 

extracted and applied to the test set and future unseen instances. 

 As long as a machine learning technique interacts with a training set, the 

corresponding error rates of successive artifacts will typically move towards zero. The 

validation set is used to approximate the actual error associated with an artifact if it were 

to be applied to a test set of unseen instances [34]. 

1.5 Overview of Multiobjective Optimization 

The goal of an optimization problem is to find the best solution to a given 

minimization or maximization problem.  For a single-objective optimization problem, 

usually a single solution, the optimal solution, is found.    However, there are several 

problems for which multiple objectives are to be optimized, many of which are 

conflicting.  These problems are defined as multiobjective optimization problems 

(MOPs) [52, 53, 54, 77].   The MOP problem can be stated as follows [54]:  Given a set 

of objective functions,  ⃗  {          }   find a candidate solution xi, where  ⃗  

{          } represents the solution space, such that the objective functions of  ⃗ are 

simultaneously optimized.  
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For a MOP, there is usually not a single optimal solution.  Instead, there is often a 

set of trade-off solutions called the Pareto-optimal set [52, 53, 54, 77].  The solutions 

within this set are said to be non-dominated, or in other words, for a given solution xi, 

there is no solution, xj, that performs better than (or dominates) xi for every objective. 

When these non-dominated solutions are plotted in the objective space, they form what is 

referred to as a Pareto front [52, 53, 77].  However, in practice, only one solution is 

needed for a given MOP.  In order to discriminate between the solutions, a preference 

structure must be imposed [53, 54].  A preference structure defines the relevance of each 

objective function in  ⃗. Yu [53] proposed three preference structures for a MOP: Pareto 

preference, lexicographical preference, and value preference.  An overview of these 

preference structures follows. 

The most commonly used preference structure is Pareto preference [54].  In 

Pareto preference, a solution xi is preferred over (or dominates) solution xj (denoted by 

     ) if and only if the following condition is satisfied [54]: 

    (  )    (  )      (  )    (  )  (1) 

In other words, for every objective function, xi is better than or equal to xj and there exists 

an objective function for which xi is strictly better.  The problem with Pareto preference 

is that a decision maker must be in the loop to select a solution from the resulting Pareto 

front. 

 For lexicographical preference, first, a decision-maker must arrange the objective 

functions in order of importance, such that    is more important than      for   

       .  A solution xi is preferred over xj if [54]: 
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  (  )    (  )     (  )    (  ) for            (2) 

The problem with this preference structure is that a decision maker must assign a priority 

to each objective function.   

 For value preference structure, the MOP is represented as a single objective 

function.  A function y is defined on  ⃗ such that xi is preferred over xj if and only if 

 (  )   (  ), where:  

 ( )      ( )      ( )            ( )   (3) 

and where ηi is the weight assigned to fi, and the sum of the η values is 1. 

1.6 Scope of the Work 

In this dissertation, we will present new GEB techniques for multibiometric 

recognition:  Genetic & Evolutionary Feature Selection (GEFeS), Weighting (GEFeW), 

and Weighting/Selection (GEFeWS).  These techniques will be used to decrease the 

number of features necessary for recognition as well as increase the recognition accuracy.   

In addition, we will show how incorporating machine learning into GEFeWS results in an 

increase in the generalization performance of the evolved feature masks.  Finally, we will 

analyze the value preference space and its impact with respect to optimization and 

machine learning.  

The significance of this work stems from the fact that the use of GEC within the 

field of biometrics has been extremely limited.  To our knowledge, GEC has not been 

used for feature selection and/or weighting of multibiometric systems that use facial and 

periocular features.  In addition, we provide an analysis of the results of our GEB 
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techniques to determine which areas of the face were considered important for 

recognition.   

1.7 Organization of Dissertation 

The remainder of this dissertation is as follows.  Chapter 2 provides some 

background information on the feature extraction techniques used within this work, as 

well as an overview of feature selection and weighting in general and within the 

biometrics community. We will also provide an overview of the optimization software 

program and the GECs utilized within this work.  Chapter 3 presents Genetic & 

Evolutionary Feature Selection (GEFeS), Chapter 4 presents Genetic & Evolutionary 

Feature Weighting (GEFeW), and Chapter 5 presents Genetic & Evolutionary Feature 

Weighting/Selection (GEFeWS).  Chapter 6 presents GEFeWS-Machine Learning 

(GEFeWSML) and in Chapter 7, we investigate the value preference space for 

GEFeWSML.  In Chapter 8, we provide an analysis of the feature masks evolved by our 

best performing GEB techniques, and we evaluate the advantages and disadvantages of 

our proposed technique over a conventional biometric recognition system.  Finally, in 

Chapter 9, we present our conclusions and in Chapter 10, we present our 

recommendations for future work. 
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CHAPTER 2 

Background 

This chapter provides background information on feature extraction, feature 

selection, and feature weighting.  In addition, we provide an overview of the software 

program used to perform our experiments, and some additional background information 

on the GECs used within this research. 

2.1 Feature Extraction 

Feature extraction is one of the most essential tasks performed for biometric 

recognition and can be categorized into holistic and local approaches [87].  Holistic 

approaches extract features from the entire biometric sample, while local approaches 

extract features from selected regions of an acquired sample.   

In this section, we discuss the two feature extraction techniques used within our 

research: the Eigenface method [79, 80, 82, 83, 85], which is a holistic approach, and the 

Local Binary Patterns (LBP) method [13, 14, 15, 88, 89], which is a local approach.   

2.1.1 The Eigenface Method 

The Eigenface method is a technique proposed by Turk and Pentland [79, 85] for 

facial recognition and is based on Principle Component Analysis (PCA) [81, 83].  This 

method is a statistical dimensionality reduction technique that is used to extract only 

those dimensions of a facial image that are necessary to efficiently represent a face.  This 

reduced dimensionality feature space is referred to as ‘face space’ [79, 85]. 

The idea of using PCA to represent facial images was first proposed by Kirby and 

Sirovich [82].  They used PCA to calculate the best coordinate system for facial image 
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representation, which is defined by the most significant eigenvectors (referred to as 

eigenpictures).  Kirby and Sirovich then claimed that any collection of facial images 

could be (approximately) reconstructed by storing a small collection of weights for each 

facial image.  These weights were determined by projecting a facial image onto each 

eigenpicture. 

Turk and Pentland extended the research of Kirby and Sirovich, showing that not 

only could the eigenpictures be used to reconstruct facial images, but that they could also 

be used to learn and recognize them. Because the eigenpictures appeared to be ghostly 

images of the original faces, they referred to them as eigenfaces and referred to the 

process of creating them as the Eigenface method.    

Assume that there is a set of H training facial images, I = {I1, I2, …, IH}, where 

each image Ii  is a grayscale image of size M×M pixels. The set of training images are 

first converted into a set of M
2
-dimensional vectors, Γ = {Γ1, Γ2, …, ΓH}, by 

concatenating the successive pixel rows (or columns).  Next, the average face vector of 

the set of images is calculated using Equation 4. 

  
 

 
∑   

 
     (4) 

The average face vector, Ψ, is then subtracted from each image vector, Γi, as shown in 

Equation 5.  This provides the amount for which each image differs from the average. 

            (5) 

Typically, PCA would then be used to determine the eigenvectors and eigenvalues 

of the following covariance matrix:  



 

19 

   
 

 
∑     

  
        (6) 

where A is a matrix consisting of the concatenation of the    , or expressed 

mathematically,   [        ]. However, the resulting covariance matrix would 

have dimensions M
2

 × M
2
, making this operation computationally expensive.   

Instead of performing PCA on this large covariance matrix, matrix L is 

constructed using Equation 7.  This matrix is of size H × H and is much more 

manageable in comparison to matrix C.   

L=A
T
A  (7) 

PCA is then performed on L to determine a set of H eigenvectors (referred to as 

eigenfaces),   , and their associated eigenvalues,   .   

The resulting v eigenvectors are then sorted based on their associated eigenvalue.  

Because the eigenvectors with the highest associated eigenvalues account for most of the 

variance within a set of facial images, only the G, where G < H, best eigenvectors (those 

with the highest eigenvalues), are retained and are used to define the subspace of face 

images which is referred to as ‘face space’. 

Next, the training images are projected into ‘face space’ (or transformed into their 

eigenface components [79]) using the following formula: 

     
 (    ) (8) 

where i = {1, 2, ..., G} and where    represents the weight of each eigenvector.  The 

vector    [         ] is then used to represent a training image in ‘face space’. 

 Once ‘face space’ has been defined, to recognize a test image, Itest, the image is 

first converted to a M
2
-dimensional vector, Γtest, and the average face, Ψ, is subtracted 
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from the vector, resulting in      .  The resulting vector is then projected into ‘face 

space’ using Equation 8 and the weight vector, Ωtest, is formed.  A similarity measure 

(e.g. Manhattan distance) is then used to compare Ωtest to the set of training weight 

vectors.  The training weight vector that matches closest to Ωtest is considered as the 

matching template if the distance is below a certain threshold, θ.  Otherwise, the test 

image is not considered to match any of the images within the training set. 

2.1.2 The Local Binary Patterns (LBP) Method 

The Local Binary Patterns (LBP) method is a texture classifying algorithm 

proposed by Ojala et al. [14].  Although originally designed for contrasting pixels within 

a grayscale image for the purposes of image analysis, the LBP method has become a 

popular feature extractor within the biometrics community [7, 8, 10, 11, 12, 13, 18, 30, 

64, 65, 69, 90, 91], due to its discriminative power, computational simplicity, and its 

tolerance for monotomic grayscale changes which makes it less sensitive to illumination 

changes [13].   

LBP descriptors of an image are formed by first segmenting the image into a user-

defined number of regions, referred to as patches.  The pixels within each patch are then 

compared to their P neighboring pixels.  The original LBP method [14] works with a 

neighborhood size of eight.  However, in [15], Ojala et al. extended the method to use 

different neighborhood sizes. This is denoted by the LBPP,R notation, where P represents 

the number of neighbors at radius R from a center pixel.   

For a given center pixel at location (xc, yc), its intensity value, ic, is compared to 

the intensity value of its P neighboring pixels, ip, where p = 0, …, P-1. As shown in 
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Equation 9, if the difference in the intensity values is negative, it is represented by a 0, 

otherwise the difference is represented by a 1.   

 (     )  {
          

          
  (9) 

A texture, τ, is then formed by concatenating the resulting values as shown in Equation 

10. 

  { (     )    (       )} (10) 

Next, a binomial weight is given to the elements in τ as follows:   

      (     )  ∑  (     ) 
    

     (11) 

By doing so, the differences in the intensity values are transformed into a unique LBP 

code.  Using a neighborhood size of P, there are 2
P
 possible texture patterns and therefore 

2
P
 distinct LBP codes.  However, Ojala et al. [15] showed that a subset of the 2

P
 patterns 

could be used to describe the texture of an image without losing too much information.   

The subset of patterns, known as uniform patterns, contain at most two one-to-zero or 

zero-to-one bit transitions when the texture, τ, is traversed circularly (i.e. 11110001). 

They also observed that these patterns contained the most texture information and 

accounted for a high percentage of the resulting texture patterns (approximately 90% for 

LBP8,1).   

For each patch, the occurrence of each LBP code is then encoded in a histogram.  

Instead of having a bin for each of the 2
P
 possible LBP codes, only uniform patterns are 

distinguished within the histogram.  Therefore, each histogram consists of P(P-1)+3 bins, 

because there are P(P-1)+2 possible uniform patterns, where P is the number of uniform 
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patterns with exactly two bit changes, P-1 is the number of possible variations, and there 

are 2 uniforms patterns with zero bit changes (i.e. all zeros, and all ones).  The remaining 

bin is used to store the frequency of the non-uniform patterns.  

The resulting histograms for each patch are then concatenated to form a feature 

vector for each image consisting of the number of bins, P(P-1)+3, times the number of 

patches used.   

2.2 Feature Selection and Weighting 

As mentioned earlier, in order for a biometric system to achieve high recognition 

rates, it is important that the extracted features are consistent for the same subject (i.e. 

exhibit small intra-class variation) as well as distinct between different subjects (i.e. 

exhibit large inter-class variation) [1, 86, 112].  However, due to factors such as poor 

image quality, illumination variation, and varying poses and facial expressions, the 

extracted set of features do not always exhibit these properties [1, 92, 113]. 

To improve the recognition performance, feature selection and weighting 

techniques are often used.  Feature selection techniques attempt to reduce the 

dimensionality of feature templates by selecting optimal or near optimal subsets of the 

features while maintaining or improving the recognition accuracy [95, 96].  Typically, 

features that do not contribute positively to recognition are eliminated (or assigned a 

weight of 0), while features that are relevant are retained (or assigned a weight of 1) [98].  

Feature weighting is a more general case of feature selection. Instead of eliminating 

features, feature weighting techniques multiply each feature by a continuous weight 
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proportional to its discriminative ability [95, 97, 98].  Typically, higher weights are given 

to those features that aid most in recognition. 

For any feature selection technique, there are two major components [100]: (1) a 

search (or generation [99]) procedure, and (2) an evaluation procedure.    The search 

procedure explores the feature space to create candidate feature subsets (FSs), while the 

evaluation procedure measures the goodness of the resulting FSs. 

In the literature, three types of algorithms have been used for the search procedure 

[95, 96, 99, 100, 101, 102]: enumeration search algorithms, sequential search algorithms, 

and randomized search algorithms.  Enumeration (also referred to as exponential [101] or 

complete [99]) search algorithms evaluate all of the possible subsets of the features and 

then choses the best performing subset.  Although these algorithms guarantee that the 

optimal feature subset is found, the number of subsets grows exponentially with the 

dimensionality of the search space [100]. Sequential (or heuristic [99]) search algorithms 

are greedy algorithms that add or remove features from a candidate FS while evaluating 

its performance based on some criterion.  When compared to enumeration search 

algorithms, sequential search algorithms have reduced computational complexity, 

however, they tend to gravitate toward local minima [102]. Randomized search 

algorithms, such as genetic algorithms (GAs), incorporate randomness into the search 

procedure.  These algorithms are able to find good solutions within a large search space 

and are able to avoid the problem of falling into local minima [101, 102]. However, the 

appropriate parameter values must be determined in order to find the best FSs. 
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In addition, there are two types of evaluation procedures [97, 100, 104]: filter 

models and wrapper models.  In the filter model, first, subsets of features are evaluated 

based on some statistical measurement (e.g. interclass distance, statistical independence 

[102]).  Once the ‘optimal’ FS is determined, classification is then performed.  In the 

wrapper model, the ‘optimal’ FS is determined based directly on its recognition accuracy.  

Although the filter model is more computationally efficient, the resulting FSs tend to 

consist of more features in comparison to the wrapper model.  In addition, the wrapper 

model results in FSs that achieve higher classification accuracy [102]. 

2.2.1 Feature Selection in the Biometrics Community 

In the biometrics community, feature selection techniques have typically focused 

on retaining the most variant individual dimensions, the most consistent individual 

features, or the most discriminative individual features.  An overview of feature selection 

techniques currently used in the biometrics community follows. 

In the face recognition community, there has been an emphasis on finding optimal 

feature sets. The Eigenface method, as discussed previously, uses only the best 

eigenvectors (those associated with the highest eigenvalues), and discards those that 

correspond to the lower eigenvalues [79, 82, 85]. The retained eigenvectors are said to 

capture the greatest variance within a set of facial images. However, Swets and Weng 

[107] stated that the retained eigenvectors do not necessarily correlate to the most 

discriminative features.  Instead, they stated that the Eigenface method provides the Most 

Expressive Features (MEFs), which describe major variations in a class, such as those 

due to lighting direction. 
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Hollingsworth et al. [48], Gentile et al. [105], and Baker et al. [106] proposed 

feature selection techniques for iris recognition.  Hollingsworth et al. investigated the 

existence of fragile (inconsistent) bits within iris codes.  A fragile bit is any bit that flips 

more than 40% of the time.  By removing these fragile bits, they were able to lower the 

false reject rate (FRR) of the system.  Gentile et al. proposed using Kolmogorov-Smirnov 

(KS) analysis, a statistical technique, to determine which regions of the iris were most 

discriminative.  The most discriminative regions were then further reduced by sub-

sampling them uniformly to produce short-length iris codes (SLICs).  Their results 

showed that the SLICs, although 12.8 times smaller than the full-length iris codes, were 

able to achieve comparable accuracy rates. Baker et al. used GEC to reduce the number 

of iris code bits while retaining the most discriminative regions (i.e. rings). They were 

able to further reduce the number of bits by sub-sampling these regions to produce 

genetic and evolutionary based short length iris codes (GESLICs) that were comparable 

to those developed by Gentile et al.  

Instead of selecting the most salient individual features, in this dissertation we 

present feature selection and weighting techniques that either: (a) evolve subsets of the 

most salient combinations of features and/or (b) weight features based on their 

discriminatory ability in an effort to increase accuracy while decreasing the overall 

number of features needed for recognition.  Our techniques utilize randomized search 

algorithms, specifically GECs, to create FSs (which we will refer to as feature masks).  

The candidate FSs are then evaluated using a wrapper model, in which an evaluation 

function that takes into account the number of recognition errors associated with the 
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given subset is used to assign a fitness to the candidate FSs.  Candidate FSs with lower 

recognition errors and that use fewer features are considered as the best. 

2.3 X-TOOLSS 

The experiments presented in this dissertation were performed using the 

eXploration Toolset for the Optimization of Launch and Space Systems (X-TOOLSS).  

X-TOOLSS is an open-source optimization software package that is currently being 

developed by the Center for Advanced Studies in Identity Sciences at NC A&T State 

University (CASIS@A&T) [70].  X-TOOLSS consists of a suite of twelve GECs, which 

interface with evaluation functions expressed as executables of any programming 

language [70, 71]. The GECs included in the X-TOOLSS suite are as follows: 

Generational GA (GGA) with Blend Crossover (BLX), Steady-State GA (SSGA), SSGA 

with BLX, Steady-Generational GA (SGGA) with BLX, Particle Swarm Optimization 

(PSO), Generational Differential Evolutionary Algorithm (DEA), Steady-State DEA, 

Elitist Estimation of Distribution Algorithm (EDA), Standard Evolutionary Programming 

(EP), Continuous Standard EP, Meta-EP, and Continuous Meta-EP. 

In order for X-TOOLSS to run a simulation, a module file must be provided.  An 

example module file is shown in Figure 2.1.  The module file, which is a text file with a 

.xts extension, specifies the following:  the input variables (variable name, range, and 

type), the input file name, the code file (name and type), the name of the output (fitness) 

variable that is outputted by the code file, and the output file name. The input variables 

specify the representation of the candidate solutions (CSs) that will be evolved by a GEC.  
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The resulting CSs are then written to the input file.  The code file, which is an executable, 

evaluates each CS read in from the input file and returns its fitness to the output file. 

After the required files have been created, the .xts file is loaded into the X-

TOOLSS Application Builder, and the user selects the type of GEC to be used and 

modifies the parameters for that specific GEC.  Upon completion of the simulation, the 

best performing CS and its associated fitness are returned. 

 

 

Figure 2.1. An Example .xts File. 

 In this dissertation, we utilize two types of GEC within the X-TOOLSS suite:  the 

SSGA and the Elitist EDA.  An overview of these two GECs follows. 

2.3.1 Steady State Genetic Algorithm (SSGA) 

Introduced in 1975 by John Holland, Genetic Algorithms (GAs) were the first 

GEC paradigms [38].  There are two basic types of GAs: generational GAs (GGAs) [6, 
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24] and steady-state GAs (SSGAs) [32]. These GAs differ in the replacement strategy 

used to create a new population [16, 23, 24, 38].  For GGAs, all parents are replaced by 

their offspring.  For SSGAs, typically two parents are selected and allowed to create one 

or two offspring.  The offspring then replace the worst performing individuals within the 

population, even if the offspring have better fitness values than the individuals they 

replace. 

SSGAs work as follows. First, an initial population of CSs is randomly generated.  

Each CS within the population is then evaluated and assigned a fitness based on a user-

specified evaluation function.  Next, individuals from the population are selected to be 

parents.  Several selection strategies can be used, including random selection, 

proportional selection, tournament selection, and rank-based selection.  In this 

dissertation, we use binary tournament selection to select two parents from the 

population.  In binary tournament selection, two individuals are randomly selected from 

the population and the best individual is chosen as a parent.   

Once the parents have been chosen, crossover operators are applied in an effort to 

create offspring.  Crossover operators recombine the genetic material of the selected 

parents [16, 24].  Several crossover operators have been used for GAs, including single-

point crossover, two-point crossover, and uniform crossover.  In this dissertation, we use 

uniform crossover, where genes have equal probability of being selected from each 

parent to create a new offspring. 

Mutation operators are then applied to the offspring in an attempt to add diversity 

to the population.  The probability that an offspring will undergo mutation is known as 
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the mutation usage rate.  The mutation rate, pm, is the probability an offspring’s gene will 

undergo mutation.  In this dissertation, we use Gaussian mutation.  The Gaussian 

Mutation Amount, σ, determines the range that the gene’s value can mutate.  Therefore, 

using Gaussian mutation, the value of an offspring’s gene after mutation is: 

           (       ) (   )   (12) 

where      is the j
th

 gene of offspring oi, ubj and lbj are the upper and lower bounds for the 

gene, and where N(0,1) is a sample from the Gaussian random variable with a mean of 0 

and a standard deviation of 1. 

The offspring are then evaluated and assigned a fitness, and a new population is 

then formed by replacing the worst performing individual in the current population with 

the offspring.  This process is then repeated until some stopping condition has been 

satisfied.  Figure 2.2 shows a pseudocode version of a SSGA. 

 

Figure 2.2.  Pseudocode Version of a Steady-State Genetic Algorithm (SSGA). 

  

Procedure SSGA { 
t = 0; 
Initialize(Pop(t)); 
Evaluate(Pop(t)); 
While(Not Done){ 
   Parent1 = Select_Parent(Pop(t)); 
   Parent2 = Select_Parent(Pop(t)); 
   Offspring = Crossover(Parent1, Parent2); 
   Mutate(Offspring); 
   Evaluate(Offspring); 
   Pop(t+1)=Replace(Worst(Pop(t)),Offspring); 
   t = t+1; 

  } 
} 
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2.3.2 Estimation of Distribution Algorithm (EDA) 

Estimation of Distribution Algorithms (EDAs) were developed as an alternative to 

GAs. Unlike GAs, EDAs do not use crossover and mutation operators to create offspring 

[17].  Instead, EDAs create a new population by sampling the probability 

density/distribution function (PDF) of selected individuals from the current population.  

Figure 2.3 shows a pseudocode version of an EDA.  First, an initial population of 

ρ CSs is randomly generated.  Next, a user-specified evaluation function is used to assign 

a fitness to each CS within the population.  The top 0.5ρ CSs are then selected to be 

parents and are used to create a PDF.  The PDF is then sampled to create (1-α)ρ 

offspring, where α is the percentage of the best performing CSs (known as the elites [24]) 

that are allowed to survive into the next generation.  Each offspring’s gene is determined 

using the following equation: 

                (   )   (13) 

where      is the j
th

 gene of offspring oi, meanj is the mean of the parents’ j
th

 gene, stdj is 

the standard deviation of the parents’ j
th

 gene, and N(0,1) is a sample from the Gaussian 

random variable with a mean of 0 and a standard deviation of 1. The offspring are then 

evaluated, and a new population is created using the elites and the offspring. 
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Figure 2.3.  Pseudocode Version of an Estimation of Distribution Algorithm (EDA). 

  

Procedure EDA { 
t = 0; 
Initialize(Pop(t)); 
Evaluate(Pop(t)); 
While(Not Done){ 
    Elites = Best(Pop(t)); 

 Parents = Select_Top(Pop(t), 50%); 

    Offspring = Sample(PDF(Parents)); 
    Evaluate(Offspring); 
    Pop(t+1)= Offspring + Elites; 
    t = t+1; 

  } 
} 
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CHAPTER 3 

Genetic & Evolutionary Feature Selection (GEFeS) 

This chapter introduces Genetic & Evolutionary Feature Selection (GEFeS) [8, 9, 

63, 64, 65, 66, 67, 68, 69].  The goal of GEFeS is to evolve subsets of the most salient 

features in an effort to increase the recognition accuracy of a biometric system, while 

decreasing the number of features needed for recognition.  

GEFeS evolves a population of real-valued candidate feature masks (FMs).  Each 

candidate FM, fmi, can be viewed as a tuple 〈       〉 where    {                  } 

and where      is the j
th

 mask value for fmi.  The value fiti represents the fitness of fmi.  The 

mask values are initially within the range [0..1].  For GEFeS, mask values that are less 

than 0.5 are set equal to 0, meaning that the corresponding feature in the biometric 

template will not be used.  Otherwise, the value is set equal to 1 and the associated 

biometric feature will be used.   

In this dissertation, we used GEFeS to evolve FMs for facial, periocular, and 

multibiometric (facial and periocular) recognition.  For the multibiometric system, the 

FMs consist of n1 + n2 mask values, where values [    ...        ] represent the facial 

feature submask and features [     
...           ] represent the periocular feature 

submask.  The facial and periocular biometric modalities are fused at the score-level.  

Score-level fusion is performed in the following manner. For each candidate FM, there 

exist two weights, wf and wp. These weights are associated with the facial and periocular 

feature submasks respectively [45, 51, 56]. The weights range from [0..1] and are co-
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evolved with the candidate FM.  The evolved weights are first normalized as follows 

[45]: 

  
  

  

     
 (14) 

    
  

     
   (15) 

where   
  and     are the normalized weights for the facial and periocular feature 

submasks.  The resulting normalized weights are then used to fuse the facial and 

periocular features using the following weighted sum rule [29, 45]: 

                   (16) 

where Si  is the fused score for Subject i, and sf,i and sp,i are the weighted Manhattan 

distances between the probe and gallery templates for the facial and periocular templates 

for Subject i. 

For GEFeS, the weighted Manhattan distance between two feature templates, hj 

and hl, is defined as: 

    (         )  ∑ |         | (    )
   
     (17) 

 (    )  {
             

           
 (18) 

where wMD1 represents the weighted Manhattan distance (the subscript 1 denotes our 

first technique, GEFeS), n is the original number of features,      is a FM value, k is the 

k
th

 feature, and the function   represents the process of feature selection as performed by 

GEFeS.   

For the unimodal systems, the associated subject of the template within the 

gallery with the smallest weighted Manhattan distance when compared to the probe is 
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considered the match.  Similarly, for the multibiometric system, the associated subject of 

the template within the gallery set with the smallest fused score, S, when compared to the 

probe template is considered the match.  If the subject of the gallery template matches the 

subject of the probe template, the probe subject is accurately recognized; otherwise, a 

recognition error has occurred. 

Each candidate FM is assigned a fitness using the following evaluation function:  

         
 

 
 (19) 

where ε is the number of recognition errors that occurred when the candidate FM was 

applied to the probe and gallery templates, where m is the number of features used by the 

candidate FM, and where n is the original number of features in the biometric templates.  

Note that by multiplying the number of errors by 10, we are placing more emphasis on 

the reduction of errors.  The goal of GEFeS is to minimize the fitness function, therefore 

candidate FMs with lower fitnesses are preferred.  

3.1 Experiments 

To evaluate the effectiveness of GEFeS, the following experiment was performed.  

The objective of the experiment is to evolve short-length biometric templates that can be 

used in a ‘Gentile-style’ recognition system.  In [74], Gentile et al. proposed a 

hierarchical two-stage iris recognition system that used a reduced feature set size in an 

effort to reduce the total number of feature checks required.  For a conventional biometric 

recognition system, a probe is compared to every individual within a biometric database.  

The number of feature checks performed by a conventional biometric system, γc, is: 

        (20) 
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where N is the number of individuals in the database and n is the number of features used 

to represent an individual.  Gentile’s two-stage hierarchical biometric system reduces the 

number of feature checks performed by first using the reduced length biometric template 

to select a subset of the r closest matches to a probe.  The subset is then compared to the 

probe using all of the n features.  The number of feature checks performed by a 

hierarchical system, γh, is the summation of the calculations of the two stages, represented 

by: 

             (21) 

where, once again, N represents the number of individuals in the database, m is the 

number of features in the reduced feature set, r is the subset of the closest r-individuals to 

the probe, and n is the number of features used to represent an individual.  The savings 

gained by using the hierarchical biometric system, γs, instead of the conventional 

biometric system is: 

     
  

  
 

       

  
 

 

 
   

 

 
 (22) 

The dataset used for our experiment consisted of images of 105 subjects taken 

from the Face Recognition Grand Challenge (FRGC) database [9], and will be referred to 

as the FRGC-105 dataset.  One image of each of the selected subjects was used to form 

the probe set and two additional images of each subject were used to form the gallery set.  

The images selected were frontal views of the subjects with neutral facial expressions.  

We will refer to this experiment as the FRGC-105 Optimization Experiment because we 

are attempting to optimize two objectives:  (a) maximize the recognition rate and (b) 

minimize the number of features.  
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The facial images were pre-processed as follows.  The images within FRGC-105 

were first cropped to include only the face region (i.e. no background and little hair).  The 

images were then resized to 100 × 127 pixels, converted to grayscale, and histogram 

equalization [72] was performed.  The Eigenface method was then used to extract 210 

facial features from each image.  The LBP method was also used to extract 2124 (36 

patches × 59 bins) facial features from each image. 

The periocular images were pre-processed as follows.  First, the left and right 

periocular regions were cropped individually from each image within FRGC-105.  The 

extracted periocular regions were then converted to grayscale and histogram equalization 

[72] was performed.  In addition, the centers of the periocular regions were masked to 

eliminate the effect of texture and color in the iris and sclera area, as was done in [12].  

The LBP method was then used to extract 1416 (24 patches × 59 bins) periocular features 

from each region.  The resulting feature templates for the left and right periocular regions 

were then concatenated together to form a feature template consisting of 2832 (1416 

features per periocular region) periocular features.   

For the FRGC-105 Optimization Experiment, GEFeS was used to evolve FMs for 

the face-only, periocular-only, and face + periocular feature templates.  The performance 

of GEFeS on these biometric templates was compared to the performance of the 

biometric feature templates without the use of GEFeS. 

3.2 Results 

For the FRGC-105 Optimization Experiment, the X-TOOLSS SSGA and EDA 

techniques were used to form GEFeSSSGA and GEFeSEDA.  GEFeSSSGA evolved a 
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population of 20 FMs, had a crossover rate of 1.0, a mutation usage rate of 1.0, and a 

Gaussian Mutation Amount of 0.2.  GEFeSEDA evolved a population of 20 FMs and 

always retained the 5 (α = 25% of the population) best FMs within the population, known 

as the elites.  GEFeSSSGA and GEFeSEDA were run 30 times with a maximum of 1000 

function evaluations allowed for each run. 

The results of our experiment are shown in Table 3.1.  The first column represents 

the biometric modalities used.  The second column represents the methods that were 

compared.  The third and fourth columns record the average recognition accuracy and the 

average percentage of features used.   

In Table 3.1, the performances of a number of baseline feature extraction 

techniques are recorded as well.  These baseline techniques are denoted by their 

subscripts, where E denotes the Eigenface method, and where L denotes the LBP method.  

For the multibiometric system, the first subscript denotes the facial feature extraction 

technique and the second subscript denotes the periocular feature extraction technique.  

In addition, for the multibiometric systems, the numbers within the parentheses are the 

weights assigned to the face and periocular biometric modalities for score-level fusion.  

The weights represent fusing the modalities evenly and optimizing the weights for each 

biometric modality [45].  Note that the baseline methods were deterministic (used 100% 

of the extracted features) and were only run once. 

In addition, the feature templates that were used by the GEFeS instances are 

denoted in parentheses.  FaceE refers to the Eigenface features, FaceL refers to the facial 

LBP features, and PerioL refers to the periocular LBP features. 
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Table 3.1.  FRGC-105 Optimization Experiment Results of GEFeS  

Modalities Method 

Average 

Recognition 

Accuracy 

Average % of  

Features Used 

Face-Only 

BaselineE 

GEFeSSSGA(FaceE) 

GEFeSEDA(FaceE) 

  65.76% 

  86.13% 

  85.59% 

100.00% 

 50.30% 

 42.86% 

BaselineL 

GEFeSSSGA(FaceL) 

GEFeSEDA(FaceL) 

  98.00% 

 100.00% 

  99.71% 

100.00% 

  43.59% 

  39.66% 

Periocular-Only 

BaselineL 

GEFeSSSGA(PerioL) 

GEFeSEDA(PerioL) 

  94.29% 

  95.14% 

  95.87% 

100.00% 

  48.03% 

  41.03% 

Face + 

Periocular 

BaselineEL(0.5, 0.5) 

BaselineEL(0.11, 0.89) 

GEFeSSSGA(FaceE, PerioL) 

GEFeSEDA(FaceE, PerioL) 

  90.77% 

  95.24% 

  97.40% 

  96.70% 

100.00% 

100.00% 

  48.18% 

  45.24% 

BaselineLL(0.5, 0.5) 

BaselineLL(0.69,0.31)  

GEFeSSSGA(FaceE, PerioL) 

GEFeSEDA(FaceE, PerioL) 

  99.52% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

  45.16% 

  41.94% 

 

For each biometric modality, the average recognition rate and the average 

percentage of features used by the instances of GEFeS were divided into equivalence 

classes using a t-test [75].  For our analysis, the two instances of GEFeS were considered 

statistically different if            .  

3.2.1 Face-Only 

3.2.1.1 FaceE 

With respect to the Face-Only Eigenface results, in terms of recognition accuracy 

and the percentage of features used, the performances of the instances of GEFeS 

outperformed the baseline method.  When the performances of the instances of GEFeS 
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were compared in terms of accuracy, both were in the same equivalence class.  However, 

in terms of the percentage of features used, GEFeSEDA used significantly fewer features 

than GEFeSSSGA. 

3.2.1.2 FaceL 

With respect to the Face-Only LBP results, in terms of recognition accuracy and 

the percentage of feature used, the instances of GEFeS outperformed the baseline 

method.  Comparing the performances of the instances of GEFeS in terms of accuracy, 

GEFeSSSGA was in the first equivalence class, accurately recognizing all of the subjects 

for each of the 30 runs.  GEFeSEDA was in the second equivalence class.  However, in 

terms of feature reduction, GEFeSEDA was in the first equivalence class, using an average 

of 39.66% of the features.  GEFeSSSGA was in the second equivalence class using an 

average of 43.59% of the features.    

3.2.2 Periocular-Only 

With respect to the Periocular-Only results, when compared to the baseline LBP 

method, the instances of GEFeS used significantly fewer features to achieve higher 

recognition accuracies.  GEFeSEDA performed the best in terms of recognition accuracy 

and the percentage of features used, having a 95.87% average accuracy while using only 

41% of the features.   

3.2.3 Face + Periocular 

3.2.3.1 FaceE + PerioL 

With respect to the FaceE + PerioL results, comparing the performances of the 

BaselineEL methods and the instances of GEFeS, GEFeS used less than 50% of the 
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features to achieve higher recognition accuracies.  When the performances of the 

instances of GEFeS were compared in terms of accuracy, there was not a statistically 

significant difference between their performances.  However, in terms of the percentage 

of features used, GEFeSEDA was in the first equivalence class. 

3.2.3.2 FaceL + PerioL 

With respect to the FaceL + PerioL results, when the performances of the 

BaselineLL methods were compared to the performances of the instances of GEFeS, the 

GEFeS performed the best.  GEFeSSSGA and GEFeSEDA achieved a 100% recognition 

accuracy while using significantly fewer features.  In terms of feature reduction, 

GEFeSEDA used the lowest percentage of features and was in the first equivalence class. 

3.3 Discussion of Results 

The results of the FRGC-105 Optimization Experiment showed that GEFeS could 

be used to efficiently increase the recognition accuracy of a biometric system while 

reducing the number of features necessary for recognition.  Thus, GEFeS would be ideal 

for developing short-length biometric templates for use in a ‘Gentile-style’ biometric 

system.  In addition, our results show that the multibiometric system can achieve higher 

recognition accuracies than the unimodal biometric systems. 

To illustrate the performance of GEFeS in comparison to the baseline methods, 

the Cumulative Match Characteristic (CMC) curves are shown in Figures 3.1 to 3.5.  A 

CMC curve plots the percent of times a correct match was made for a given rank, where 

rank is defined as the number of attempts necessary to correctly match a given probe 

subject [1, 10].  Each figure shows the CMC curve of the baseline method and the best 
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performing FM evolved by GEFeSSSGA and GEFeSEDA for the respective biometric 

modality up to Rank 10.  In other words, if given a subset of the 10 closest matches to a 

given probe, how often would these methods match the subject of the probe correctly? 

Figures 3.1 and 3.2 show the CMC curves for the Face-Only results.  In Figure 

3.1, GEFeSSSGA and GEFeSEDA both outperformed the baseline Eigenface method for 

Ranks 1-10.  In Figure 3.2, the GEFeS instances outperformed the baseline LBP method 

for Ranks 1-7.  By Rank 8, the three methods reach 100% recognition accuracies.   

Figure 3.3 shows the CMC curve for the Periocular-Only results.  For Ranks 1-4, 

the GEFeS instances outperformed the baseline method.  At Rank 5, the baseline LBP 

method performed the best.  At Ranks 6-8, the three methods have equal performances, 

however by Rank 9, GEFeSSSGA outperforms GEFeSEDA and the baseline method. 

Figures 3.4 and 3.5 show the CMC curves for the Face + Periocular results.  In 

Figure 3.4, for Ranks 1-10, the GEFeS instances have equal performances and both 

outperform the baseline method, which fuses the facial Eigenface features and the LBP 

periocular features.  In Figure 3.5, the GEFeS instances achieved 100% Rank 1 

accuracies, outperforming the baseline method, which fuses the LBP facial and 

periocular features. 
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Figure 3.1.  CMC Curves for GEFeS(FaceE). 

 

 

Figure 3.2.  CMC Curves for GEFeS(FaceL). 
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Figure 3.3.  CMC Curves for GEFeS(PerioL). 

 

 

Figure 3.4.  CMC Curves for GEFeS(FaceE, PerioL). 
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Figure 3.5.  CMC Curves for GEFeS(FaceL, PerioL). 
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CHAPTER 4 

Genetic & Evolutionary Feature Weighting (GEFeW) 

In the previous chapter, we presented Genetic & Evolutionary Feature Selection 

(GEFeS).  Our results showed that GEFeS could effectively reduce the dimensionality of 

biometric feature templates and increase the recognition accuracy.  In this chapter, we 

introduce a variant of GEFeS, referred to as Genetic & Evolutionary Feature Weighting 

(GEFeW) [8, 9, 63, 64, 65, 66, 67, 68, 69].  Unlike GEFeS, which evolves subsets of 

features, GEFeW evolves a weight for each feature.  Ideally, higher weights are given to 

features that contribute more towards recognition accuracy. 

In similar fashion to GEFeS, GEFeW evolves a population of real-valued 

candidate FMs.  However, instead of converting these values to a binary FM (as does 

GEFeS), GEFeW uses these values as weights for each associated feature.  In addition, 

the candidate FMs are evaluated using the same function used by GEFeS (Equation 19). 

For GEFeW, the weighted Manhattan distance between two templates is 

calculated differently than for GEFeS.  Given two templates, hj and hl, and a candidate 

FM, fmi, the weighted Manhattan distance is calculated using Equation 23, where wMD2 

represents the weighted Manhattan distance (the subscript 2 denotes our second 

technique, GEFeW), where n is the original number of features, and where      is the k
th

  

weight in fmi associated with the k
th

 feature. 

    (         )  ∑ |         |    
   
     (23) 
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The subject associated with the template within the gallery set with the smallest weighted 

Manhattan distance (smallest fused score for the multibiometric system) when compared 

to the probe was considered the match. 

4.1 Experiments 

As in Chapter 3, we performed the FRGC-105 Optimization Experiment, allowing 

GEFeW to evolve weights for the face-only, periocular-only, and face + periocular 

templates formed from the FRGC-105 dataset.  The performance of GEFeW on these 

templates was then compared to the performance of GEFeS and the baseline methods 

presented in Table 3.1.   

4.2 Results 

Like GEFeS, GEFeW was implemented using the SSGA and EDA techniques 

within the X-TOOLSS suite.  The parameters for GEFeWSSGA and GEFeWEDA were the 

same as those used in Chapter 3 for GEFeSSSGA and GEFeSEDA.  The GEFeW instances 

were also run 30 times with a maximum of 1000 function evaluations allowed on each 

run. 

Table 4.1 shows the comparative results of the performances of GEFeS and 

GEFeW.  As in Table 3.1, the first column represents the biometric modalities used, the 

second column represents the methods that were compared, the third column records the 

average recognition accuracy, and the fourth column records the average percentage of 

features used.     
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Table 4.1.  FRGC-105 Optimization Experiment Results of GEFeS and GEFeW 

Modalities Method 

Average 

Recognition 

Accuracy 

Average % of  

Features Used 

Face-Only 

BaselineE 

GEFeSSSGA(FaceE) 

GEFeSEDA(FaceE) 

GEFeWSSGA(FaceE) 

GEFeWEDA(FaceE) 

  65.76% 

  86.13% 

  85.59% 

  87.56% 

  87.81% 

100.00% 

 50.30% 

 42.86% 

 87.16% 

 96.53% 

BaselineL 

GEFeSSSGA(FaceL) 

GEFeSEDA(FaceL) 

GEFeWSSGA(FaceL) 

GEFeWEDA(FaceL) 

      98.00% 

100.00% 

  99.71% 

  99.37% 

  99.05% 

100.00% 

  43.59% 

  39.66% 

  85.69% 

  94.99% 

Periocular-Only 

BaselineL 

GEFeSSSGA(PerioL) 

GEFeSEDA(PerioL) 

GEFeWSSGA(PerioL) 

GEFeWEDA(PerioL) 

  94.29% 

  95.14% 

  95.87% 

  95.46% 

  94.67% 

100.00% 

  48.03% 

  41.03% 

  86.22% 

  95.78% 

Face + Periocular 

BaselineEL(0.5, 0.5) 

BaselineEL(0.11, 0.89) 

GEFeSSSGA(FaceE, PerioL) 

GEFeSEDA(FaceE, PerioL) 

GEFeWSSGA(FaceE, PerioL) 

GEFeWEDA(FaceE, PerioL) 

  90.77% 

  95.24% 

  97.40% 

  96.70% 

  98.98% 

  96.64% 

100.00% 

100.00% 

  48.18% 

  45.24% 

  87.59% 

  97.40% 

BaselineLL(0.5, 0.5) 

BaselineLL(0.69,0.31)  

GEFeSSSGA(FaceL, PerioL) 

GEFeSEDA(FaceL, PerioL) 

GEFeWSSGA(FaceL, PerioL) 

GEFeWEDA(FaceL, PerioL) 

  99.52% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

  45.16% 

  41.94% 

  86.80% 

  95.37% 

 

The performances of the baseline methods, GEFeS, and GEFeW were compared 

with respect to average recognition accuracy and the average percentage of features used.  

An ANOVA test [73] was used to determine whether the differences of these 

performances were statistically significant and to divide them into equivalence classes.  

For an ANOVA test, if the p-value < 0.05, the performances of the methods were 

different.  The method with the highest average was then excluded from analysis, and the 
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performances of the remaining methods were analyzed with either an ANOVA test (if 

more than two methods remain) or a t-test (if only two methods are being compared).  

For the t-test, as in Chapter 3, two methods were considered statistically different if 

           .  The results of the statistical tests were then used to classify the 

performance of the methods into equivalence classes.  The equivalence classes were 

ordered based on superiority, therefore methods in lower equivalence classes 

outperformed those in higher equivalence classes.  In addition, methods within the same 

equivalence class were the same statistically. 

4.2.1 Face-Only 

4.2.1.1 FaceE 

With respect to the Face-Only Eigenface results, the instances of GEFeW 

performed better than the baseline method.  The instances of GEFeW also outperformed 

the instances of GEFeS in terms of accuracy.  In terms of equivalence classes, the 

performances of GEFeWSSGA and GEFeWEDA were in the first equivalence class, while 

the performances of GEFeSSSGA and GEFeSEDA were in the second equivalence class.  

However, in terms of feature reduction, the instances of GEFeS outperformed the 

instances of GEFeW.   

4.2.1.2 FaceL 

With respect to the Face-Only LBP results, when compared to the baseline 

method, the instances of GEFeW had higher recognition accuracies and used fewer 

features.  Yet, the instances of GEFeS outperformed the instances of GEFeW in terms of 

accuracy and the percentage of features used. 
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In terms of accuracy, GEFeSSSGA was the best performing GEC, achieving 100% 

recognition accuracy.  The performance of GEFeSEDA was in the second equivalence 

class, while the performance of GEFeWSSGA was in the third equivalence class, and the 

performance of GEFeWEDA was in the fourth equivalence class.  

In terms of feature reduction, the performance of GEFeSEDA was in the first 

equivalence class, GEFeSSSGA was in the second equivalence class, GEFeWSSGA was in 

the third equivalence class, and GEFeWEDA was in the fourth equivalence classes. 

4.2.2 Periocular-Only 

With respect to the Periocular-Only results, GEFeW outperformed the baseline 

method.  However, when compared to GEFeS in terms of accuracy, GEFeSEDA had the 

best performance.  The performances of GEFeSSSGA and GEFeWSSGA were in the second 

equivalence class while the performance of GEFeWEDA was in the fourth equivalence 

class.   

In terms of the percentage of features used, GEFeSEDA also had the best 

performance.  The performances of GEFeSSSGA, GEFeWSSGA and GEFeWEDA were in the 

second, third, and fourth equivalence classes respectively. 

4.2.3 Face + Periocular 

4.2.3.1 FaceE + PerioL 

With respect to the FaceE + PerioL results, in terms of accuracy, GEFeWSSGA had 

the highest average recognition accuracy.  The performances of the instances of GEFeS 

were in the second equivalence class, and the performance of GEFeWEDA was in the third 

equivalence class.   
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In terms of the percentage of features used, GEFeSEDA performed the best.  The 

performance of GEFeSSSGA was in the second equivalence class, GEFeWSSGA was in the 

third equivalence class, and GEFeWEDA was in the fourth equivalence class. 

4.2.3.2 FaceL + PerioL 

With respect to the FaceL + PerioL results, the instances of GEFeW achieved 

100% recognition accuracies.  There was not a statistically significant difference in the 

performance of the instances of GEFeS and GEFeW in terms of accuracy.  However, in 

terms of the percentage of features used, the instances of GEFeS performed better than 

the instances of GEFeW.  GEFeSEDA performed the best in terms of feature reduction.  

The performance of GEFeSSSGA was in the second equivalence class, while the 

performance of GEFeWSSGA was in the third equivalence class.  The performance of 

GEFeWEDA was in the fourth equivalence class. 

4.3 Discussion of Results 

Our results showed that GEFeW performed better than the baseline methods in 

terms of accuracy and the percentage of features used.  However, it would not be the best 

technique to use if we were to implement Gentile’s two-stage hierarchical system because 

it uses a higher percentage of features when compared to GEFeS. 

To illustrate the performance of GEFeW, GEFeS, and the baseline methods, the 

CMC curves for the unimodal and multimodal results are shown in Figures 4.1 to 4.2.  

Figures 4.1 and 4.2 show the CMC curves for the Face-Only results.  In Figure 4.1, the 

instances of GEFeS and GEFeW outperformed the baseline Eigenface method for Ranks 

1-10.  At Rank 1, GEFeWEDA has the highest accuracy.  However, by Rank 3, 



 

51 

GEFeWSSGA performs the best.  In Figure 4.2, at Rank 1 the instances of GEFeS and 

GEFeW outperformed the baseline LBP method.  GEFeSEDA and GEFeWSSGA achieved 

100% Rank 1 accuracies.  GEFeSSSGA reaches 100% recognition accuracy at Rank 2, and 

GEFeWEDA achieves 100% recognition accuracy at Rank 5. 

Figure 4.3 shows the CMC curve for the Periocular-Only results.  The instances 

of GEFeS and GEFeW achieved higher Rank 1 accuracies than the baseline LBP 

method.  In addition, GEFeSSSGA, GEFeSEDA, and GEFeWSSGA performed best for Ranks 

1-4. 

Figures 4.4 and 4.5 show the CMC curves for the Face + Periocular results.  In 

these CMC curves, the instances of GEFeS and GEFeW achieved 100% recognition 

accuracy at Rank 1, outperforming the baseline method while using significantly fewer 

features. 

 

 

Figure 4.1.  CMC Curves for GEFeS(FaceE) and GEFeW(FaceE).  
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Figure 4.2.  CMC Curves for GEFeS(FaceL) and GEFeW(FaceL).  

 

 

Figure 4.3.  CMC Curves for GEFeS(PerioL) and GEFeW(PerioL).   
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Figure 4.4.  CMC Curves for GEFeS(FaceE, PerioL) and GEFeW(FaceE, PerioL).   

 

 

Figure 4.5.  CMC Curves for GEFeS(FaceL, PerioL) and GEFeW(FaceL, PerioL).   
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CHAPTER 5 

Hybrid Genetic & Evolutionary Feature Weighting and Selection (GEFeWS) 

In Chapter 3, we presented Genetic & Evolutionary Feature Selection (GEFeS) 

and in Chapter 4, we presented a variant of GEFeS, known as Genetic & Evolutionary 

Feature Weighting (GEFeW).  Our results showed that GEFeS performed better at 

reducing the dimensionality of the feature sets, while GEFeW performed better in terms 

of recognition accuracy.  However, it is possible to combine these two techniques to 

further improve the performance of Genetic & Evolutionary Feature Selection.  In this 

chapter, we present a GEFeS/GEFeW hybrid referred to as Genetic & Evolutionary 

Feature Weighting/Selection (GEFeWS) [9, 65].   

Similar to GEFeS and GEFeW, GEFeWS evolves a population of real-valued 

candidate FMs.  Values within the FMs that are less than 0.5 are set to 0, masking out the 

corresponding features as done by GEFeS.  Otherwise, the values are used to weight the 

features as done by GEFeW. 

GEFeWS was used to evolve FMs for face-only, periocular-only, and face + 

periocular templates.  The templates within the probe and gallery sets were compared 

using the following weighted Manhattan distance formula: 

    (         )  ∑ |         | (    )
   
     (24) 

 (    )  {
                

           
    (25) 

where wMD3 is the weighted Manhattan distance (the subscript 3 denotes our third 

technique, GEFeWS), hj and hl are two feature templates which are being compared, n is 
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the original number of features,      is the k
th

 feature of fmi, and the function q represents 

the process of feature weighting/selection as performed by GEFeWS. 

As in the previous chapters, the subject associated with the template within the 

gallery set with the smallest weighted Manhattan distance (smallest fused score for the 

multibiometric system) when compared to the probe was considered the match.  In 

addition, each candidate FM was evaluated using Equation 19 presented in Chapter 3. 

5.1 Experiments 

To test the efficiency of GEFeWS as compared with GEFeS and GEFeW, the 

FRGC-105 Optimization Experiment was performed as described in Chapter 3.  The 

performance of GEFeWS on the face-only, periocular-only, and face + periocular 

templates was compared to the performances of GEFeS, GEFeW, and the baseline 

methods presented in the previous chapters.  

5.2 Results 

For the FRGC-105 Optimization Experiment, GEFeWS was implemented using 

the X-TOOLSS SSGA and EDA.  The parameters selected for the instances of GEFeWS 

were the same as those used for GEFeS and GEFeW.  As with GEFeS and GEFeW, each 

instance of GEFeWS was run 30 times with a maximum of 1000 function evaluations 

allowed for each run. 

The results of the performance of GEFeWS as compared with GEFeS and 

GEFeW are shown in Table 5.1.  The first column represents the biometric modalities.  

The second column represents the methods that were compared.  The third column 

records the average recognition accuracy and the fourth column records the average 
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percentage of features used.  The performances of the methods were separated into 

equivalence classes in terms of accuracy and the percentage of features used by 

performing ANOVA and t-tests. 

5.2.1 Face-Only 

5.2.1.1 FaceE 

With respect to the Face-Only Eigenface results, the instances of GEFeWS 

performed better than the baseline method in terms of accuracy and used significantly 

fewer features.  Comparing the performances of the methods in terms of accuracy, 

GEFeWSEDA was in the first equivalence class along with the instances of GEFeW.  The 

performance of GEFeWSSSGA was in the second equivalence class along with the 

performances of the instances of GEFeS. 

In terms of the percentage of features used, the performance of GEFeWSEDA was 

in the first equivalence class along with the performance of GEFeSEDA, which used 

approximately 43% of the features.  The performance of GEFeSSSGA was in the second 

equivalence class and the performance of GEFeWSSSGA was in the third equivalence 

class.  The performances of GEFeWSSGA and GEFeWEDA were in the fourth and fifth 

equivalence classes respectively.   
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Table 5.1.  FRGC-105 Optimization Experiment Results of GEFeS, GEFeW, and      

GEFeWS 

Modalities Method 

Average 

Recognition 

Accuracy 

Average % of  

Features Used 

Face-Only 

 

BaselineE 

GEFeSSSGA(FaceE) 

GEFeSEDA(FaceE) 

GEFeWSSGA(FaceE) 

GEFeWEDA(FaceE) 

GEFeWSSSGA(FaceE) 

GEFeWSEDA(FaceE) 

  65.76% 

  86.13% 

  85.59% 

  87.56% 

  87.81% 

  86.38% 

  87.02% 

100.00% 

50.30% 

42.86% 

87.16% 

96.53% 

51.71% 

43.35% 

BaselineL 

GEFeSSSGA(FaceL) 

GEFeSEDA(FaceL) 

GEFeWSSGA(FaceL) 

GEFeWEDA(FaceL) 

GEFeWSSSGA(FaceL) 

GEFeWSEDA(FaceL) 

  98.00% 

100.00% 

  99.71% 

  99.37% 

  99.05% 

100.00% 

  99.75% 

100.00% 

  43.59% 

  39.66% 

  85.69% 

  94.99% 

  43.69% 

  38.83% 

Periocular-Only 

BaselineL 

GEFeSSSGA(PerioL) 

GEFeSEDA(PerioL) 

GEFeWSSGA(PerioL) 

GEFeWEDA(PerioL) 

GEFeWSSSGA(PerioL) 

GEFeWSEDA(PerioL) 

  94.29% 

  95.14% 

  95.87% 

  95.46% 

  94.67% 

  96.16% 

  95.75% 

100.00% 

  48.03% 

  41.03% 

  86.22% 

  95.78% 

  45.39% 

  41.01% 

Face + Periocular 

BaselineEL(0.5, 0.5) 

BaselineEL(0.11, 0.89) 

GEFeSSSGA(FaceE, PerioL) 

GEFeSEDA(FaceE, PerioL) 

GEFeWSSGA(FaceE, PerioL) 

GEFeWEDA(FaceE, PerioL) 

GEFeWSSSGA(FaceE, PerioL) 

GEFeWSEDA(FaceE, PerioL) 

  90.77% 

  95.24% 

  97.40% 

  96.70% 

  98.98% 

  96.64% 

  98.48% 

  98.10% 

100.00% 

100.00% 

  48.18% 

  45.24% 

  87.59% 

  97.40% 

  46.24% 

  41.72% 

BaselineLL(0.5, 0.5) 

BaselineLL(0.69,0.31)  

GEFeSSSGA(FaceL, PerioL) 

GEFeSEDA(FaceL,PerioL) 

GEFeWSSGA(FaceL, PerioL) 

GEFeWEDA(FaceL, PerioL) 

GEFeWSSSGA(FaceL, PerioL) 

GEFeWSEDA(FaceL, PerioL) 

  99.52% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

  99.94% 

100.00% 

100.00% 

  45.16% 

  41.94% 

  86.80% 

  95.37% 

  45.18% 

  42.00% 
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5.2.1.2 FaceL 

With respect to the Face-Only LBP results, the instances of GEFeWS achieved 

higher accuracies than the baseline method while using less than 50% of the features.  

Comparing the performances of the GECs in terms of accuracy, GEFeWSSSGA and 

GEFeSSSGA were in the first equivalence class, accurately recognizing all of the subjects 

for each of the 30 runs.  The performances of GEFeWSEDA and GEFeSEDA were in the 

second equivalence class, GEFeWSSGA was in the third equivalence class, and GEFeWEDA 

was in the fourth equivalence class.   

In terms of feature reduction, the performance of GEFeWSEDA was in the first 

equivalence class, using an average of 38.83% of the features.  The performance of 

GEFeSEDA was in the second equivalence class, while the performances of GEFeSSSGA 

and GEFeWSSSGA were in the third equivalence class.  The performances of GEFeWSSGA 

and GEFeWEDA were in the fourth and fifth equivalence classes respectively. 

5.2.2 Periocular Only 

For the Periocular-Only results, the instances of GEFeWS outperformed the 

baseline method in terms of accuracy and feature reduction.  In addition, when compared 

to the other techniques in terms of accuracy, GEFeWSEDA performed the best, having a 

96.16% average accuracy.  The performances of GEFeWSSSGA and GEFeSEDA were in the 

second equivalence class, GEFeSSSGA and GEFeWSSGA were in the third equivalence 

class, and GEFeWEDA was in the fourth equivalence class.  

In terms of the percentage of features used, the performances of GEFeWSEDA and 

GEFeSEDA were in the first equivalence class using only 41% of the features.  The 
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performance of GEFeWSSSGA, GEFeSSSGA, GEFeWSSGA and GEFeWEDA were in the 

second, third, fourth, and fifth equivalence classes respectively.  

5.2.3 Face + Periocular 

5.2.3.1 FaceE + PerioL 

For the FaceE + PerioL results, the instances of GEFeWS outperformed both of the 

baseline methods.  Comparing the GECs in terms of accuracy, GEFeWSSGA still had the 

highest average accuracy.  The performance of GEFeWSSSGA belonged to the second 

equivalence class while the performance of GEFeWSEDA belonged to the third 

equivalence class.  The performances of GEFeSSSGA and GEFeSEDA were in the fourth 

equivalence, and the performance of GEFeWEDA was in the fifth equivalence class.   

In terms of the percentage of features used, however, GEFeWSEDA performed the 

best.  The performances of GEFeSEDA and GEFeWSSSGA were in the second equivalence 

class, GEFeSSSGA was in the third equivalence class, GEFeWSSGA was in the fourth 

equivalence class, and GEFeWEDA was in the fifth equivalence class. 

5.2.3.2 FaceL + PerioL 

For the FaceL + PerioL system, the instances of GEFeWS outperformed the 

baseline methods.  In addition, when compared to the other GECs in terms of accuracy, 

the performances of the instances of GEFeWS were in the first equivalence class along 

with the instances of GEFeS and GEFeW.  

In terms of the percentage of features used, GEFeSEDA used the smallest 

percentage of features.  The performance of GEFeWSEDA was in the second equivalence 

class.  The performances of GEFeSSSGA and GEFeWSSSGA were in the third equivalence 
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class.  GEFeWSSGA was in the fourth equivalence class, and GEFeWEDA was in the fifth 

equivalence class. 

5.3 Discussion of Results 

Our results showed that GEFeWS is able to achieve higher recognition accuracies 

than using GEFeS alone, while using significantly fewer features to achieve 

approximately the same accuracies as using GEFeW.  Our results suggest that GEFeWS 

would be the most appropriate technique to use to create the short-length templates to be 

used in a Gentile-style biometric recognition system. 

To better visualize the identification performance of GEFeWS in comparison to 

the other techniques, the CMC curves for the best performing FMs for the FRGC-105 

Optimization experiment are shown in the Figures 5.1 to 5.5.   

Figure 5.1 shows the CMC curves for the Face-Only Eigenface results.  At Rank 

1, all of the GECs have an accuracy of approximately 90%, significantly outperforming 

the baseline method.  At Rank 2, GEFeWSSSGA had the highest recognition accuracy.  At 

Rank 3, GEFeWSSGA had the highest recognition accuracy; however, it is important to 

note that GEFeWSSGA also used the highest percentage of features.  GEFeWSSSGA 

obtained accuracy only slightly lower that GEFeWSSGA while using approximately 50% 

of the features. 

Figure 5.2 shows the CMC curves for the Face-Only LBP results.  The instances 

of GEFeWS achieved 100% Rank 1 accuracies, while using less than 45% of the features.   

Figure 5.3 shows the CMC curves for the Periocular-Only results.  For Ranks 1-4, 

the instances of GEFeWS, along with the instances of GEFeS and GEFeWSSGA, had the 
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highest accuracies.  At Rank 5, GEFeWSSSGA and the baseline method had the highest 

recognition accuracy.  However, GEFeWSSSGA used less than 50% of the features. 

Figures 5.4 and 5.5 show the CMC curves for the multibiometric results.  The best 

FMs for each of our techniques significantly outperformed the baseline methods.  For the 

FaceE + PerioL system, the techniques achieved 99% Rank 1 accuracies.  For the FaceL + 

PerioL system, the techniques achieved 100% Rank 1 accuracies. 

 

 

Figure 5.1.  CMC Curves for GEFeS(FaceE), GEFeW(FaceE), and GEFeWS(FaceE). 
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Figure 5.2.  CMC Curves for GEFeS(FaceL), GEFeW(FaceL), and GEFeWS(FaceL). 

 

 

Figure 5.3. CMC Curves for GEFeS(PerioL), GEFeW(PerioL), and 

GEFeWS(PerioL). 
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Figure 5.4. CMC Curves for GEFeS(FaceE, PerioL), GEFeW(FaceE, PerioL), and 

GEFeWS(FaceE, PerioL). 

 

 

Figure 5.5. CMC Curves for GEFeS(FaceL, PerioL), GEFeW(FaceL, PerioL), and 

GEFeWS(FaceL, PerioL). 
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CHAPTER 6 

GEFeWS-Machine Learning (GEFeWSML) 

In the previous chapters, we addressed an optimization problem for the 

development of short-length templates for use in a Gentile-based recognition system.  In 

this chapter, we extend the work presented in Chapter 5 and present a hybrid GEC known 

as Genetic & Evolutionary Feature Weighting/Selection – Machine Learning 

(GEFeWSML) [115].  GEFeWSML is similar to GEFeWS with the exception that the 

machine learning concept of cross validation is incorporated in an effort to evolve FMs 

that generalize well to unseen subjects.   

As mentioned in Section 1.4, in cross validation, the total set of available subjects 

is broken up into three sets: a training set, a validation set, and a test set.  GEFeWSML, 

which is an instance of an EDA (because GEFeWSEDA performed better than 

GEFeWSSSGA in Chapter 5), works as follows.  An initial population of Q real-valued 

candidate FMs is randomly generated.  Each candidate FM is then evaluated, using 

Equation 19, based on its performance on a training set.  The candidate FMs are also 

applied to a validation set, and the best performing candidate FM on the validation set, 

which will be referred to as FM*, is retained.  Next, the top 50% performing candidate 

FMs in the population are used to form a probability density function (PDF).  The PDF is 

then sampled to create (1-α)Q offspring FMs, where α is the percentage of elites.  Each 

offspring is evaluated and assigned a fitness based on its performance on the training set.  

In addition, the offspring are evaluated based on their performance on the validation set.  

The offspring’s performance on the validation set is then compared to the performance of 
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FM*.  If its performance is better than FM*, the offspring will become the new FM*.  A 

new population is then formed using αQ elites, and the (1-α)Q offspring.  This process 

continues until a user-specified stopping condition is satisfied.  When the stopping 

condition has been satisfied, the best performing FM in the population as well as FM* are 

returned.  Figure 6.1 provides a flowchart of the GEFeWSML learning process.  

 

 

Figure 6.1.  Flowchart of the GEFeWSML Learning Process.   
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6.1 Experiments 

To examine the generalization ability of the evolved FMs, we used a cross 

validation strategy:  a training set, a validation set, and a test set.  For our experiment, 

FRGC-105 (described in Chapter 3) was used as the training set.  An additional 204 

subjects were selected from the FRGC database and were used to form our validation and 

test set.  The validation set was formed using 105 of the selected subjects and will be 

referred to as the FRGC-105b dataset.  The test set consisted of the remaining 99 subjects 

and will be referred to as the FRGC-99 dataset.  For each of these datasets, one image of 

each subject was used to form the probe set and two additional images of each subject 

were used to form the gallery set.  As before, the images selected were frontal views of 

the subjects with neutral facial expressions and the images were preprocessed as 

described in Chapter 3.  For each selected image, the LBP method was used to extract 

2124 (36 patches × 59 bins) facial features and 2832 (24 patches × 59 bins = 1416 

features per periocular region) periocular features.  Only the LBP method was used to 

extract features because the resulting LBP templates performed best in the previous 

experiment. 

For our experiment, as done with GEFeWS, GEFeWSML was used to evolve FMs 

for the FRGC-105 face, periocular, and face + periocular templates.  As in the previous 

chapters, this will be referred to as FRGC-105 Optimization.  The evolved FMs were then 

applied to the test set in order to evaluate how well they generalized to unseen subjects.  

This will be referred to as FRGC-99 Opt-Gen.  In addition, the best performing FMs for 
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the validation set, FM*s, were applied to the test set in order to evaluate how well they 

generalized to unseen subjects.  This will be referred to as FRGC-99 Val-Gen. 

6.2 Results 

The EDA instance of GEFeWSML used a population size of 20 and always 

retained 5 (α = 0.2) elites.  GEFeWSML was run 30 times with a maximum of 1000, 2000, 

and 4000 function evaluations allowed.  At the end of each run, the best performing FM 

on the training set and the best performing FM on the validation set, FM*, were returned.  

These FMs were then applied to FRGC-99.   

The optimization and generalization performances are presented in Table 6.1.  

The first column represents the biometric modalities and the second column represents 

the methods that were compared.  Note that for each method, the number of function 

evaluations allowed is denoted in parentheses.  The FRGC-105 Optimization 

performances are represented in the third column, the FRGC-99 Opt-Gen performances 

are in the fourth column, and the FRGC-99 Val-Gen performances are in the final 

column.  For the last three columns, the first number denotes the average recognition 

accuracy and the number in parentheses denotes the average percentage of features used.  
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The performances of the GEFeWSML methods were separated into equivalence 

classes based on accuracy and the percentage of features used by performing the 

ANOVA and t-tests.  As explained in Chapter 4, for an ANOVA test, the performances of 

the methods were considered statistically different if the p-value < 0.05.  For the t-test, the 

performances of two methods were considered statistically different if            .  

Methods that had higher recognition accuracies and used lower percentage of features 

were preferred. 

6.2.1 Face-Only 

With respect to the Face-Only FRGC-99 Opt-Gen results, the evolved FMs 

generalized well to the test set.  In terms of the average recognition accuracy, there was 

not a statistically significant difference between the performances of GEFeWSML.  

However, in terms of feature usage, GEFeWSML(4000) performed best and was in the first 

Table 6.1.  Optimization and Generalization Results for the FRGC Datasets 

Modality Method 

FRGC-105 

Optimization 

Acc. (% feat) 

FRGC-99 

Opt-Gen 

Acc. (% feat) 

FRGC-99 

Val-Gen 

Acc. (% feat) 

Face 

Only 

GEFeWSML(1000) 

GEFeWSML(2000) 

GEFeWSML(4000) 

0.997 (38.3%) 

0.997 (35.1%) 

0.996 (34.4%) 

0.974 (38.3%) 

0.966 (35.1%) 

0.975 (34.4%) 

0.984 (45.5%) 

0.986 (45.5%) 

0.985 (45.0%) 

Periocular 

Only 

GEFeWSML(1000) 

GEFeWSML(2000) 

GEFeWSML(4000) 

0.958 (40.7%) 

0.957 (37.4%) 

0.956 (36.7%) 

0.876 (40.7%) 

0.870 (37.4%) 

0.872 (36.7%) 

0.882 (46.4%) 

0.870 (45.3%) 

0.874 (46.0%) 

Face +  

Periocular 

GEFeWSML(1000) 

GEFeWSML(2000) 

GEFeWSML(4000) 

1.00 (41.3%) 

1.00 (38.7%) 

1.00 (38.2%) 

0.994 (41.3%) 

0.994 (38.7%) 

0.994 (38.2%) 

0.994 (42.8%) 

0.994 (41.3%) 

0.994 (41.6%) 
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equivalence class.  GEFeWSML(2000) was in the second equivalence class, while 

GEFeWSML(1000) was in the third equivalence classes. 

Similarly, with respect to the FRGC-99 Val-Gen results, the best performing FMs 

on the validation set generalized well to the test set.  When the performances of 

GEFeWSML were compared in terms of accuracy and the percentage of features used, 

there was not a statistically significant difference between their performances.   

Comparing the performances of Val-Gen and Opt-Gen, the Val-Gen performances 

were better in terms of accuracy.  This result shows that cross validation improves the 

performance when generalizing to unseen subjects.  However, in terms of the percentage 

of features used, the Val-Gen performances used more features than the Opt-Gen 

performances.  This is most likely because more features may be needed for adequate 

generalization. 

In summary, GEFeWSML(4000) performed best for the Face-Only templates, using 

the fewest percentage of features while achieving accuracies that were practically the 

same as the other methods.  In addition, in terms of accuracy, the FM*s performed better 

on the test set than the FM
ts
s.  However, the FM*s used more features than the FM

ts
s, 

probably because more features may be required for adequate generalization. 

6.2.2 Periocular-Only 

With respect to the Periocular-Only FRGC-99 Opt-Gen results, the evolved FMs 

generalized well to the test set.  Comparing the Opt-Gen performances in terms of 

accuracy, there was not a statistically significant difference.  However, in terms of the 

percentage of features used, GEFeWSML(4000) was in the first equivalence class, 
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GEFeWSML(2000) was in the second equivalence class, and GEFeWSML(1000) was in the 

third equivalence class. 

Likewise, with respect to the FRGC-99 Val-Gen results, the best performing FMs 

on the validation set generalized well to the test set.  In terms of accuracy, 

GEFeWSML(1000) was in the first equivalence class, while GEFeWSML(2000) and 

GEFeWSML(4000) were both in the second equivalence class.  In terms of feature usage, 

there was no statistical difference between the GEFeWSML performances. 

When the performances of FRGC-99 Opt-Gen and Val-Gen were compared, in 

terms of accuracy, there was only a statistical difference between the GEFeWSML(1000) 

performances.  For GEFeWSML(1000), the Val-Gen performances were better statistically.  

In terms of feature usage, the Opt-Gen performances outperformed the Val-Gen 

performances. 

In summary, for the Periocular-Only templates, GEFeWSML(4000) performed best 

for FRGC-105 Optimization and FRGC-99 Opt-Gen.  GEFeWSML(4000) achieved 

recognition rates statistically equivalent to the other methods, while using significantly 

fewer features.  Although for Val-Gen, GEFeWSML(1000) performed best statistically, 

there may not be a practical difference between the performance of GEFeWSML(4000). 

6.2.3 Face + Periocular 

With respect to the Face + Periocular FRGC-99 Opt-Gen results, the evolved FMs 

had an average recognition accuracy of 99.4%.  Comparing the Opt-Gen performances in 

terms of accuracy, there was not a statistically significant difference.  However, in terms 

of the percentage of features used, the performance of GEFeWSML(4000) was in the first 
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equivalence class, the performance of GEFeWSML(2000) was in the second equivalence 

class, and the performance of GEFeWSML(1000) was in the third equivalence class. 

With respect to the FRGC-99 Val-Gen results, the best performing FMs on the 

validation set generalized well to the test set.  Comparing the Val-Gen performances, 

there was not a statistically significant difference in terms of accuracy.  However, in 

terms of feature usage, GEFeWSML(2000) and GEFeWSML(4000) were in the first 

equivalence class. 

In addition, when the performances of Val-Gen and Opt-Gen were compared in 

terms of accuracy, there was not a statistically significant difference in their 

performances.  However, in terms of the percentage of features used, the performances of 

Opt-Gen were statistically better. 

In summary, for the fusion of the face and periocular feature templates, 

GEFeWSML(4000) would also be the best method to use.  Statistically, GEFeWSML(4000)  

used the fewest percentage of features, while achieving practically the same accuracy as 

the other methods.   
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CHAPTER 7 

Investigating the Value Preference Space for GEFeWSML 

 The methods presented in this dissertation have attempted to solve a 

multiobjective problem.  They attempted to evolve FMs that (a) maximize the recognition 

accuracy and (b) minimize the number of features.  However, the fitness function used to 

evaluate FMs placed more emphasis on the reduction of errors.  Referring to Equation 19, 

the number of errors associated with a given FM was multiplied by 10.  As a result, the 

GECs do not attempt to reduce the number of features until the number of errors has been 

minimized.   

In this chapter, we investigate the relative weighting of each objective using a 

value preference structure [53].  We searched the value preference space in an attempt to 

analyze its impact in respect to optimization and generalization.  In order to do this, we 

evaluated GEFeWSML using the evaluation function as shown in Equation 26,  where η ϵ 

{0.1, 0.2, …, 1.0}, ε is the number of recognition errors that occurred when the candidate 

FM was applied to the probe and gallery templates, N is the number of subjects in the 

probe set, m is the number of features used by the candidate FM, and where n is the 

original number of features in the templates. 

      
 

 
 (   )

 

 
 (26) 

7.1 Experiments 

To examine the effect searching the value preference space has on the 

optimization and generalization ability of GEFeWSML, the following experiment was 

performed.  As in Chapter 6, we employed a cross validation strategy.  The FRGC-105 
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dataset was used as the training set, the FRGC-105b dataset was used as the validation 

set, and the FRGC-99 dataset was used as the test set.  Note that only the LBP templates 

were used in this experiment because they performed best in our previous experiments.    

GEFeWSML was used to evolve FMs for the face, periocular, and face + periocular 

templates within the training set, FRGC-105.  As in the previous chapters, we will refer 

to this process as FRGC-105 Optimization because we are attempting to optimize the 

recognition accuracy while reducing the number of features needed.  The best performing 

FMs on the training set (FM
ts
s) and the best performing FMs on the validation set (FM

*
s) 

were then applied to the test set in order to evaluate how well they generalized to unseen 

subjects.  As in Chapter 6, this process will be referred to respectively as FRGC-99 Opt-

Gen and FRGC-99 Val-Gen.   

7.2 Results 

As in Chapter 6, GEFeWSML was an instance of an EDA that used a population 

size of 20 and always retained 5 elites.  Because GEFeWSML(4000) performed best in 

Chapter 6, in this chapter GEFeWSML was run 30 times with a maximum of 4000 

function evaluations allowed.  At the end of each run, the best performing FM on the 

training set, FM
ts
,  and the best performing FM on the validation set, FM*, were applied 

to FRGC-99.  

The results of applying GEFeWSML to the face-only, periocular-only, and face + 

periocular templates are presented in Tables 7.1, 7.2, and 7.3.  Within these tables, the 

first column denotes the value of η.  The remaining columns present the performances of 

FRGC-105 Optimization, FRGC-99 Opt-Gen, and FRGC-99 Val-Gen respectively.  For 



 

74 

these columns, the first number denotes the average recognition accuracy and the average 

percentage of features used is denoted in parentheses.   

The performances of the methods were separated into equivalence classes in 

terms of accuracy and the percentage of features used by performing ANOVA and t-tests.  

The performances of the methods that had higher recognition accuracies and used lower 

percentage of features were considered to be better. 

7.2.1 Face-Only 

With respect to the Face-Only FRGC-105 Optimization performances, in terms of 

accuracy, the performance of η = 1.0 was in the first equivalence class.  The 

performances of the following η values were in the second equivalence class: 0.3, 0.4, 

0.5, 0.6, 0.7, 0.8, and 0.9, while the performances of η = 0.1 and 0.2 were in the third 

equivalence class.  In contrast, in terms of the percentage of features used, η = 0.1 was in 

the first equivalence class, while η = 0.2, 0.3, and 0.4 were in the second equivalence 

class.  In the third equivalence class was the performances of η = 0.5 and 0.6, and in the 

fourth equivalence class was the performances of η = 0.7, 0.8, and 0.9.  The performance 

of η = 1.0 was in the fifth equivalence class. 

With respect to the FRGC-99 Opt-Gen performances, the FM
ts
s generalized well 

to the unseen subjects within the test set.  In terms of accuracy, the performances of the 

following η values were all in the first equivalence class:  η = 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 

0.9, and 1.0, while the performances of η = 0.1 and 0.3 were in the second equivalence 

class.  In terms of feature reduction, the equivalence classes were the same as those for 

FRGC-105 Optimization. 
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With respect to the FRGC-99 Val-Gen performances, the FM
*
s also generalized 

well to test set.  In terms of accuracy, the performances of η = 0.7, 0.8, 0.9, and 1.0 were 

all in the first equivalence class, while the remaining η values were in the second 

equivalence class.  However, in terms of the percentage of features used, as the value of η 

increased, so did the feature percentage.  In the first equivalence class was η = 0.1, while 

η = 0.2 and 0.3 were in the second equivalence class.  The performances of η = 0.4 to 1.0 

were in the third to ninth equivalence classes respectively.   

Finally, comparing the performances of the Opt-Gen and Val-Gen results, in 

terms of accuracy, the Val-Gen performances were statistically better than the Opt-Gen 

performances for η = 0.6, 0.8, and 0.9, while the Opt-Gen performances were better for η 

= 0.4.  Although there was not a statistically significant difference better the 

performances for the other η values, the Val-Gen accuracies were higher.  In contrast, in 

terms of feature reduction, the Opt-Gen performances were best for η = 0.1 to 0.9.  This 

is most likely because more features may be needed for adequate generalization.  There 

was not a statistically significant difference in the generalization performances for η = 

1.0.  

In summary, taking into consideration the two objectives we are attempting to 

optimize, η = 0.4 appears to be the best value to use for the Face-Only templates because 

the FMs achieved high recognition accuracies on the training set as well as the test set 

while using a  low percentage of features.  
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Table 7.1.  Value Preference Space for GEFeWSML: Face-Only Results 

η 

FRGC-105 

Optimization 

Acc. (% feat) 

FRGC-99 

Opt-Gen 

Acc. (% feat) 

FRGC-99 

Val-Gen 

Acc. (% feat) 

0.1 0.9879 (31.89%) 0.9660 (31.89%) 0.9667 (31.91%) 

0.2 0.9905 (32.41%) 0.9690 (32.41%) 0.9694 (32.44%) 

0.3 0.9952 (32.62%) 0.9609 (32.62%) 0.9620 (32.73%) 

0.4 0.9949 (32.91%) 0.9707 (32.91%) 0.9697 (33.01%) 

0.5 0.9952 (33.36%) 0.9744 (33.36%) 0.9751 (33.63%) 

0.6 0.9956 (33.73%) 0.9731 (33.73%) 0.9771 (34.79%) 

0.7 0.9975 (34.56%) 0.9795 (34.56%) 0.9815 (36.06%) 

0.8 0.9978 (34.48%) 0.9751 (34.48%) 0.9832 (38.50%) 

0.9 0.9971 (34.64%) 0.9707 (34.64%) 0.9879 (45.19%) 

1.0 0.9997 (50.04%) 0.9818 (50.04%) 0.9842 (49.96%) 

 

7.2.2 Periocular-Only 

First, analyzing the performance of the Periocular-Only FRGC-105 Optimization 

results, higher η values achieved higher recognition accuracies.  In terms of equivalence 

classes, the performance of η = 1.0 was in the first equivalence class, while the 

performances of η = 0.5 to 0.9 were in the second equivalence class.  The performance of 

η = 0.4 was in the third equivalence class and the performances of η= 0.2 and 0.3 were in 

the fourth equivalence class.  The performance of η = 0.1 was in the fifth equivalence 

class.  

With respect to the FRGC-105 Optimization feature usages, lower η values 

resulted in the use of lower percentages of features.  In terms of equivalence classes, η = 

0.1 and η = 0.2 were in the first and second equivalence classes respectively.  The 

performances of η = 0.3 and 0.4 were both in the third equivalence class, while the 
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performance of η = 0.5 was in the fourth equivalence class.  The performances of η = 0.6 

and 0.7 were in the fifth equivalence class, and the performances of η = 0.8 and 0.9 were 

in the sixth equivalence class.  The performance of η = 1.0 was in the seventh 

equivalence class. 

Next, analyzing the Opt-Gen performances, in terms of accuracy, there was not a 

statistically significant difference in the performances of the η values.  However, the 

equivalence classes for the feature usage were the same as those for FRGC-105 

Optimization. 

With respect to the Val-Gen performances, in terms of accuracy, the 

performances of η = 0.1, 0.3, 0.6, 0.7, 0.8, 0.9, and 1.0 were all in the first equivalence 

class.  There was not a statistically significant difference in the performances of the other 

η values.  In terms of feature usage, lower η values resulted in the use of fewer features.  

The equivalence classes were as follows:  η = 0.1 was in the first equivalence class, η = 

0.2 was in the second equivalence class, η = 0.3 and 0.4 were in the third equivalence 

class, and the performances of η = 0.5 to 1.0 were in the fourth to ninth equivalence 

classes respectively. 

Finally, comparing the generalization performances in terms of accuracy, the Val-

Gen performances were statistically better for η = 0.5 0.6, 0.7, and 0.9, while the Opt-

Gen performances were statistically better for η = 0.3.  There was not a statistically 

significant difference in the performances of η = 0.1, 0.2, 0.4, 0.8, and 1.0.  In contrast, in 

terms of feature usage, the Opt-Gen performances were better for η = 0.2 to 0.9 and there 
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was not a statistically significant difference in the performances for η = 0.1 and 1.0.  

Again, this may be due to the need of more features for adequate generalization.   

In summary, for the Periocular-Only templates, η = 0.4 would be the best value to 

use, considering the two objectives, for both optimization and generalization. 

Table 7.2.  Value Preference Space for GEFeWSML: Periocular-Only Results 

η 

FRGC-105 

Optimization 

Acc. (% feat) 

FRGC-99 

Opt-Gen 

Acc. (% feat) 

FRGC-99 

Val-Gen 

Acc. (% feat) 

0.1 0.9451 (34.10%) 0.8680 (34.10%) 0.8684 (34.10%) 

0.2 0.9530 (34.55%) 0.8667 (34.55%) 0.8663 (34.48%) 

0.3 0.9537 (35.01%) 0.8697 (35.01%) 0.8677 (35.09%) 

0.4 0.9556 (35.23%) 0.8670 (35.23%) 0.8653 (35.38%) 

0.5 0.9571 (35.66%) 0.8636 (35.66%) 0.8657 (36.14%) 

0.6 0.9587 (36.23%) 0.8653 (36.23%) 0.8680 (37.27%) 

0.7 0.9562 (36.54%) 0.8687 (36.54%) 0.8717 (38.34%) 

0.8 0.9587 (37.38%) 0.8714 (37.37%) 0.8721 (42.14%) 

0.9 0.9594 (37.63%) 0.8700 (37.63%) 0.8764 (46.02%) 

1.0 0.9622 (50.22%) 0.8761 (50.22%) 0.8758 (50.32%) 

 

7.2.3 Face + Periocular 

First, comparing the FRGC-105 Optimization Face + Periocular performances, in 

terms of accuracy, the performances of η = 0.3 to 1.0 were all in the first equivalence 

class, while η =0.2 was in the second, and η=0.1 was in the third.  In terms of feature 

reduction, the performances of η = 0.1 to 0.3 were all in the first equivalence class, the 

performances of η = 0.4 to 0.8 were in the second equivalence class, and the 

performances of η = 0.9 and 1.0 were in the third and fourth equivalence classes 

respectively. 
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With respect to the FRGC-99 Opt-Gen results, there was not a statistically 

significant difference in the η value performances in terms of accuracy; however, the 

equivalence classes for the feature usage were the same as for the FRGC-105 

Optimization results. 

Similarly, with respect to the FRGC-99 Val-Gen results, in terms of accuracy, 

there was not a statistically significant difference in the performances of the η values.  

However, in terms of feature usage, the equivalence classes were as follows:  η = 0.1 to 

0.3 were in the first equivalence class, η = 0.4 was in the second equivalence class, η = 

0.5 to 0.7 was in the third equivalence class, and the performances of η = 0.8, 0.9, and 1.0 

were in the fourth, fifth, and sixth equivalence classes respectively. 

When the performances of the Opt-Gen and Val-Gen results were compared in 

terms of accuracy, there was not a statistically significant difference.  In terms of feature 

usages, there was not a statistically significant difference between the performance of η = 

0.1, 0.4, and 1.0.  However, for the other η values, the Opt-Gen performances were 

better. 

In summary, η = 0.3 would be the best value to use to create FMs that perform 

well on the training and test sets because its performance was in the first equivalence 

class in terms of accuracy and feature usage for the optimization and generalization 

performances. 
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Table 7.3.  Value Preference Space for GEFeWSML: Face + Periocular Results 

η 

FRGC-105 

Optimization 

Acc. (% feat) 

FRGC-99 

Opt-Gen 

Acc. (% feat) 

FRGC-99 

Val-Gen 

Acc. (% feat) 

0.1 0.9949 (37.22%) 0.9896 (37.22%) 0.9896 (37.23%) 

0.2 0.9981 (37.26%) 0.9902 (37.26%) 0.9902 (37.29%) 

0.3 0.9994 (37.53%) 0.9926 (37.53%) 0.9923 (37.56%) 

0.4 1.0000 (37.80%) 0.9929 (37.80%) 0.9929 (37.81%) 

0.5 1.0000 (38.09%) 0.9926 (38.09%) 0.9933 (38.20%) 

0.6 1.0000 (38.16%) 0.9929 (38.16%) 0.9923 (38.49%) 

0.7 1.0000 (38.20%) 0.9909 (38.20%) 0.9926 (38.94%) 

0.8 1.0000 (38.20%) 0.9946 (38.20%) 0.9943 (39.97%) 

0.9 1.0000 (38.44%) 0.9923 (38.44%) 0.9926 (41.04%) 

1.0 1.0000 (50.07%) 0.9943 (50.07%) 0.9963 (50.09%) 

 

7.3 Discussion of Results 

To highlight the effect varying the value of η has on the average accuracy and 

percentage of features used, the Pareto fronts for the FRGC-99 Val-Gen performances 

were plotted in Figures 7.1, 7.2, and 7.3.  Within each figure, the average performance for 

each η value is plotted in the objective space, where the x-axis represents the average 

percentage of features used and the y-axis represents the average error rate.  Within each 

of these figures, one can notice that as the value of η increase, so does the average 

percentage of features used.  However, for generalization, η does not seem to correlate 

well with the reduction of the average error rates. 

In addition, the performance of the η values that were determined to be best for 

each biometric modality was compared to the performances obtained in Chapter 6.  The 

results showed that for each biometric modality, the best performing η value 
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outperformed the previously presented results, using significantly fewer features while 

performing statistically the same in terms of accuracy.    

 

Figure 7.1.  Pareto Front for Face-Only Val-Gen 
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Figure 7.2.  Pareto Front for Periocular-Only Val-Gen. 
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Figure 7.3.  Pareto Front for Face + Periocular Val-Gen. 

  

0

0.002

0.004

0.006

0.008

0.01

0.012

0.35 0.37 0.39 0.41 0.43 0.45 0.47 0.49 0.51

A
ve

ra
ge

Er
ro

r 
R

at
e

 

Average Percentage of Features 

FRGC-99 Face + Periocular Validation 
Pareto Front 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



 

84 

CHAPTER 8 

Analysis 

 In this chapter, we provide an analysis of the FMs evolved for the Eigenface and 

LBP facial templates in an attempt to learn which eigenvectors were determined to be the 

most useful as well as which areas of the face are most discriminative for recognition.  

We also provide an analysis of the advantages and disadvantages of using our proposed 

techniques in comparison to conventional biometric systems.   

8.1 Feature Analysis 

First, we analyzed the FMs evolved by GEFeWSEDA for the Eigenface facial 

features.  We then analyzed the FMs returned by GEFeWSML(4000) for the LBP facial 

features.  These FMs were chosen for analysis because they resulted in the best 

performance in terms of accuracy and feature reduction.   

8.1.1 Eigenface Features 

Figure 8.1 shows the average percentage of usage of each Eigenface feature for 

the FMs evolved by GEFeWSEDA.  From this figure, we can see that the eigenfaces that 

correspond to the highest eigenvalues are used the lowest percentage of the time.  This 

supports the research of Swets and Weng [107] who stated that the eigenvectors with the 

highest eigenvalues do not necessarily correlate to the most discriminative features.  In 

fact, our research shows that combinations of the eigenvectors achieve higher recognition 

rates than the feature selection method typically used within the biometrics community.   
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Figure 8.1.  Average Percentage of Eigenface Usage for Face-Only GEFeWSEDA 

FMs. 

 

8.1.2 LBP Features 

Figure 8.2 shows a sample facial image segmented into 36 patches as done for our 

LBP feature extraction.  We computed the average percentage of features used within 

each patch by the best performing FMs on the training set, FM
ts
s, and the best performing 

FMs on the validation set, FM
*
s, returned by GEFeWSML(4000).  
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Figure 8.2.  A Sample Face Image Divided Into 36 Patches. 

Figure 8.3 shows the average patch usage for the FM
ts
s and Figure 8.4 shows the 

average patch usage for the FM
*
s.  For the FM

ts
s, the patches within the periocular region 

were used the highest percentage of the time.  As before mentioned, the FM
*
s used a 

higher percentage of features in comparison to the FM
ts
s, therefore, the patch usage 

percentages were higher in Figure 8.4.  In addition, the regions correlated to the highest 

average patch usage of the FM
*
 is different from the FM

ts
s.  Besides the periocular 

region, the FM
*
s also included the information from the nose and mouth region.  This 

may be due to the differences in the training and validation datasets such as image 

quality, facial expressions, and pose of the individuals. 
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Figure 8.3.  Average Patch Usage for GEFeWSML(4000) Face-Only FM
ts
s. 

 

 

Figure 8.4.  Average Patch Usage for GEFeWSML(4000) Face-Only FM
*
s. 
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8.2 Comparison: Conventional vs. Hierarchical Biometric System 

As before mentioned, the original objective of our work was to evolve short-

length biometric templates that can be used in a ‘Gentile-style’ [74] recognition system.  

This recognition system would use a reduced feature set size in an effort to reduce the 

total number of feature checks required.  In Section 3.1, we presented how to compute the 

number of feature checks performed by a conventional biometric system and a ‘Gentile-

style’ system.  We also presented the savings gained by using the hierarchical biometric 

system instead of the conventional biometric system.  In this section, we first compare the 

performance of these two systems with respect to time, we then compare the 

implementation costs of these systems. 

8.2.1 Time Complexity 

To analyze the performance of our techniques, we computed the computational 

complexity, in terms of time, of our best performing technique, GEFeWSML, on the face 

+ periocular templates.  This analysis was performed on an Intel® Xeon® E5430 

Processor, which had a 2.66 GHz clock speed.   

First, we computed the average time (of 1000 runs), t, to compare one biometric 

feature.  Our results showed that 0.0074 ms or 7.4 × 10
-6

 seconds were required to do so.  

Next, we computed the time required to recognize N subjects using a conventional and 

hierarchical system, where the number of original features, n, is 4956.  The time 

complexity for a conventional system is computed using Equation 27, where γc is the 

number of features required for the conventional recognition system (described in Section 

3.1).  The time complexity for a hierarchical system was computed using Equation 28, 
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where γc is the number of features required for the conventional recognition system (also 

described in Section 3.1), m = 0.38n (average percentage of feature usage of 

GEFeWSML), and where r = 0.1N (as in [75]).   

                 (27) 

            (     )  (28) 

The time complexity of these two systems, computed in terms of seconds, are shown in 

Table 8.1, where the first column represents the number of subjects, the second column 

presents the average time complexity of a conventional system, and the last column 

presents the average time complexity of our hierarchical system.  These results prove that 

implementing a hierarchical system using our reduced-length biometric templates would 

perform faster than a conventional biometric system. 

Table 8.1.  Time Complexity of a Hierarchical and Conventional System 

# of Subjects Conventional   

System (secs) 

Hierarchical  

System (secs) 

1 0.0366744 0.01760164 

100 3.66744 1.760164 

500 18.3372 8.80082 

1000 36.6744 17.60164 

5000 183.372 88.0082 

10000 366.744 176.0164 

50000 1833.72 880.082 

100000 3667.44 1760.164 

500000 18337.2 8800.82 

1000000 36674.4 17601.64 
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To further analyze the time complexity of these two systems, we computed the 

expected speedup, Equation 29, of using our hierarchical system over the conventional 

system. 

        
     

     
 (29) 

Our results, as depicted in Figure 8.5, showed that our hierarchical system performs 

approximately 2 times faster than the conventional recognition system, while achieving 

better recognition accuracies. 

 

 

Figure 8.5.  Speedup Chart. 
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8.2.2 Implementation Issues 

 Depending on the needs and complexity of an access control system, a biometric 

system can be described as a stand-alone system or networked system [114].  Each of 

these systems has their own advantages and disadvantages, and by implementing our 

techniques, we believe we can alleviate some of these issues.   

For a stand-alone system, the entire biometric process is performed locally:  

enrollment of users, storage of the biometric templates, comparison of a probe and 

gallery templates, and the overall decision (e.g. allowing or denying an individual 

access).  The advantage of a stand-alone system is that the operations may be fast and 

convenient for a user, since the required tasks are all performed in one location.  We have 

proven that by using our techniques, these operations will be even faster.  However, the 

major disadvantage of this system is that the biometric templates are stored locally, 

making the entire system vulnerable to being stolen. 

For networked systems, a number of biometric sensors are connected.  One 

advantage of such a system is that the system can be monitored from a central location, 

thus more secured biometric databases.  Another advantage is that if the sensor is stolen, 

no information about the identity of the users of the system will be obtained.  One 

disadvantage of this type of system is that if a large number of sensors are working 

simultaneously and/or the size of the resulting biometric templates are large, the speed of 

the system may be significantly reduced.  One possible way to alleviate this traffic is to 

use our reduced dimensionality templates for recognition.  Our results have shown that 
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they achieve recognition accuracies that were practically the same as using the original 

templates. 
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CHAPTER 9 

Conclusions 

In conclusion, we have presented three new GEB techniques for multibiometric 

recognition.  These three techniques attempted to create short-length biometric templates 

that could be used in a Gentile-style hierarchical recognition system [74].  The first 

technique we introduced was GEFeS, which evolved subsets of the most salient 

combinations of features in an effort to increase accuracy while decreasing the overall 

number of features needed for recognition.    Our results showed that GEFeS was able to 

use less than 50% of the extracted features to achieve higher recognition accuracies than 

the baseline methods.  Our second technique, GEFeW, evolved weights for the biometric 

templates.   GEFeW performed better than the baseline methods in terms of accuracy and 

the percentage of features used.  However, it used significantly more features than 

GEFeS.  Our third technique, GEFeWS, was a hybrid of GEFeS and GEFeW.  GEFeWS 

achieved higher recognition accuracies than GEFeS, and used significantly fewer features 

to achieve approximately the same accuracies as using GEFeW. Therefore, GEFeWS was 

considered the best technique to use if we were to implement the hierarchical system. 

 Our next objective was to evolve FMs that not only performed well on the 

training set, but also generalized well to unseen instances.  To do so, we introduced 

GEFeWSML, which was similar to GEFeWS with the exception that the machine learning 

concept of cross validation was incorporated.  Our best performing method, 

GEFeWSML(4000), used less than 50% of the features to achieve high recognition 

accuracies on the test set. Our results also showed that the feature masks evolved via the 
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validation set performed better in terms of accuracy than those evolved via the training 

set.  

 The final objective of this dissertation was to investigate the relative weighting of 

our two objectives (i.e. maximize the recognition accuracy and minimize the number of 

features) using a value preference structure.  By varying the weights assigned to our 

objectives, we were able to suggest values that would result in the best optimization and 

generalization performances for face, periocular, and face + periocular recognition.  In 

addition, these suggested weights resulted in FMs that used significantly fewer features 

than the previously reported results. 
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CHAPTER 10 

Recommendations 

For future work, it would be interesting to see if, using the analysis presented in 

Chapter 8, we could reverse engineer LBP feature extractors (FEs), similar to those 

evolved by Shelton et al. [18], that obtain higher recognition accuracies than the baseline 

method.  The resulting FEs would extract features only from those patches that were 

determined to be the most useful by GEFeWSML.  We believe that, similar to 

GEFeWSML, these reverse engineered FEs will use significantly fewer features and will 

result in higher recognition rates due to the extraction of features only from 

discriminative regions.  

In addition, in this research there was not a lot of difference between the sizes of 

our training, validation, and test sets.  Therefore, one should evaluate what effect varying 

the sizes of these datasets would have on the generalization performance of GEFeWSML.  

Furthermore, the datasets used in this research consisted of snapshots of individuals taken 

in a controlled setting within a short period of time.  It would be interesting to see if our 

GEB applications could perform well on a longitudinal database, such as MORPH [36], 

in which the images of individuals were acquired over an extended period of time and 

collected in an uncontrolled setting.  Additionally, by performing training on datasets 

consisting of images extracted from multiple databases, we believe that we can evolve 

FMs that would perform well to any face, due to the diversity that would be present in the 

training set.  This would lead to a significant advancement in the biometrics community 

due to creation of universal FMs that could be further analyzed to identify the most 
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discriminative regions for recognition, which could result in the discovery of new 

biometric modalities. 

Finally, although the applications presented in this dissertation were used for the 

recognition of human faces and periocular biometrics, these applications should not be 

limited to this field.  There are opportunities for the use of these applications for 

recognition of other biometric traits, as well as the recognition of other species and 

objects.   
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