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Abstract 

A recent study of biomass fires and some field measurements have revealed that isocyanic acid 

can reach levels as high as 600 ppbv near fires and up to 200 pptv in ambient air. After the 

solubility was measured for the first time, it was then possible for any potential human health 

effects of HNCO to be evaluated. HNCO is highly soluble in the human body given that the 

physiological pH is 7.4, and there exists an increased risk for atherosclerosis, cataracts, and 

rheumatoid arthritis via protein carbamylation.  Based on preliminary experimental results 

conducted at a pH of 3.0 ± 0.1 and room temperature (T = 25 ± 1°C), Henry’s coefficient was 

found to be 21.1 ± 2.7 M/atm with the first order loss rate k = (6.3 ± 1.6) x 10-4 s-1 (in solution).  

This solubility measurement made it possible for HNCO atmospheric sensitivity and in-cloud 

lifetimes to be estimated using a numerical cloud box model. It is revealed that it is essential for 

the cloud pH to be calculated at every timestep rather than prescribing a constant pH value. The 

model shows that the elevation, liquid water content, droplet size, and gas-phase nitric and 

isocyanic acid concentrations are critical in characterizing HNCO in clouds and the -cloud 

lifetime of HNCO which is estimated to range from approximately 6.156 ± 0.007 to 82.435 ± 

0.188 hours. It is also noteworthy to mention that the lower liquid water content of a cloud such 

as fog or haze (approximately .05 g/m3), the better the chance of reducing the HNCO 

concentration. We also demonstrate that the idea of making a numerical cloud chemistry estimate 

with a static pH leads to completely inaccurate results. A dynamic cloud acidity calculation is 

determined to be essential. 
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CHAPTER 1 

Scope of the Work 

1.1. Background 

One major source of trace airborne contamination and aerosols is from biomass burning 

(BB).  BB is widespread, especially in the tropics and it serves to clear land for shifting 

cultivation, to make forests to agriculturally productive, and to remove dry vegetation in order to 

promote the growth of higher yield grasses.  BB is a major source of many trace gases especially 

the emissions of CO, CH4 and other hydrocarbons, NO, HCN, CH3CN, and CH3C1 are of the 

greatest importance (Bowman et al., 2009; Crutzen & Andreae, 1990).  BB influences global 

ecosystem patterns and processes including the carbon cycle and climate. Andreae and Merlot 

(2001) derived global estimates of pyrogenic emissions for several species emitted by the various 

types of biomass burning from savannah fires. 

Recent investigations into the impact that biomass burning emissions have on our air 

quality (Roberts et al., 2010) have yielded new information about the extent of organic and 

inorganic acids concentrations in the troposphere.  That investigation verified the elevated levels 

of organic acids and, more specifically, carboxylic acids were as expected, but also revealed that 

there were unexpectedly high levels of inorganic acids produced such as nitrous acid (HONO) 

and hydrochloric (HCl).  The properties and impacts of trace acids, along with the cutting edge 

methods, modeling, and instrumentation used to detect, quantify, and analyze them are the 

focuses of this dissertation. 

The composition and chemistry of the atmosphere is of importance for several reasons, 

but primarily because of the potential negative health effect and ecological hazards from 

interactions between the atmosphere and living organisms (Mahecha et al., 2007). The climate 
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can also be affected through the increase and/or decrease in chemical concentrations which can 

alter the albedo.  There is also value in providing parameters for more accurate atmospheric 

modeling in order to determine fate and transport of different contaminants.  The composition of 

the Earth’s atmosphere changes due to natural (Kesselmeier et al., 2002) and man-made  

(Novakov & Penner, 1993) influences and some of these changes may be  harmful to human 

health, crops, and ecosystems. 

Two of the more important constituents of the atmosphere are volatile organic 

compounds (VOC) (de Gouw & Warneke, 2007) and secondary organic aerosols (SOA) 

(Tsigaridis & Kanakidou, 2007).  Global models have been developed to investigate the SOA 

response to changes in biogenic volatile organic compound emissions in the future atmosphere 

and how important SOA will be relative to sulfate (SO4
-2) which is often the major anthropogenic 

aerosol component.  Examples of VOCs are aldehydes, ketones, and other light hydrocarbons.  

They are categorized as organic chemical compounds that have high enough vapor pressures 

under normal conditions to significantly vaporize and enter the atmosphere.  The United States 

Environmental Protection Agency (EPA) defines a VOC as any compound of carbon, excluding 

carbon monoxide, carbon dioxide, carbonic acid, metallic carbides or carbonates, and ammonium 

carbonate, which participates in atmospheric photochemical reactions (40 CFR 51.100(s) as of 

2/9/2007).   VOCs are key participants in the formation of ozone and aerosols.  They play a 

significant role in determining regional air quality, the chemistry of the global troposphere, and 

the global carbon cycle (Warneke & de Gouw, 2001; Warneke et al., 2005). 

A subgroup of VOCs is organic acids and the method and instrumentation described later 

is fast and sensitive to many of the organic acids, particularly carboxylic acids (formic, acetic, 

pyruvic, etc.). Organic acids are extremely important as they are trace gases that contribute 



5 

 

significantly to the acidity of atmospheric condensed phase and precipitation (Keene, Galloway, 

& Holden, 1983).  In addition, analysis by aerosol mass spectrometry (AMS) suggests that a 

significant fraction of SOA consists of organic acids (Takegawa, Miyakawa, Kawamura, & 

Kondo, 2007).  As an example of how organic acids have an influence on chemical processes in 

cloud droplets, the liquid-phase oxidation of SO2 by H2O2 depends critically on the pH value of 

cloud droplets (Viidanoja, Reiner, & Arnold, 1998).  This heterogeneous interface (gas to liquid 

phase) is a relatively active area of research due to the difficulty in garnering good agreement 

between measurements given that the experimental error is very high. Given that products of 

biomass burning (Roberts et al., 2010) are the focus of this work, carboxylic acids and inorganic 

acids (isocyanic, nitrous, hydrochloric, etc.) will be studied in detail.  Isocyanic acid will be 

singled out for additional characterization due to the unexpectedly high concentrations observed 

in pyrolysis and its suspected negative impact to human health. 

1.2. Experimental Goals 

Emissions from 34 laboratory biomass fires were investigated at the combustion facility 

of the U.S. Department of Agriculture Fire Sciences Laboratory in Missoula, Montana (Veres et 

al., 2010). Gas phase organic and inorganic acids were quantified using negative ion proton-

transfer chemical-ionization mass spectrometry (NI-PT-CIMS), open-path Fourier transform 

infrared spectroscopy (OP-FTIR), and proton-transfer reaction mass spectrometry (PTR-MS). 

The fire sciences lab studies led to the decision to measure organic and inorganic acids  

the CalNex 2010 field campaign (NOAA Earth Systems Research Laboratory, 2009) with the 

mass spectrometric method of negative ion proton transfer chemical ionization (NI-PT-CIMS), 

which will be described in detail later.  A description of a similar laboratory based experiment, 

that attempted to make the same measurements using a time-of-flight method, will also be 

discussed.  The mission of the CalNex 2010 campaign was to study the important issues at the 
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nexus of the air quality and climate change problems, and to provide scientific information 

regarding the trade-offs faced by decision makers when trying to address these issues 

simultaneously.  This work was an opportunity to verify controlled burn measurements, if there were 

any wild fires in the vicinity during the experiment. This leads to another focus of this dissertation, 

which is to address the kinetics at the gas-liquid interface known as “heterogeneous uptake” 

(Molina, Molina, & Kolb, 1996).  It is achieved directly by using a dynamic method (Kames & 

Schurath, 1995) to make kinetic and solubility measurements. This is extremely valuable work as 

it not only characterizes an exotic chemical that is rarely studied, not well characterized in terms 

of kinetics, and had not been widely recognized as an important constituent of biomass burning 

emissions, but also measures its solubility which has never been done.  This work opens the door 

for a simple method to provide solubilities for numerous other exotic and reactive species. 

 The advent of this first solubility measurement of HNCO enables it to be modeled as it 

traverses the troposphere through cloud and aerosol interactions.  Given the ubiquity of aqueous 

phase material in the atmosphere (especially the lower troposphere and planetary boundary layer) 

it is imperative to understand the chemistry and kinetics of HNCO with clouds and also aerosols 

in order to assess the extent of and associated health risk involved. 

1.3. Modeling Goals 

A cloud chemistry numerical model (Barth et al., 2003; Lelieveld & Crutzen, 1991) was 

run to complement the experimental work with the goal of making predictions about the lifetimes 

HNCO under different conditions of cloud acidity, droplet size, liquid water content, and 

temperature.  The model was also converted to simulate HNCO interactions with aerosol 

surfaces. This would be a thorough study of HNCO interactions with the condensed phase 

(aerosol and water).  As will be detailed later, HNCO is extremely sensitive to acidity and the 

model was modified to calculate the pH of the condensed phase as it changes over time due to 
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equilibrium reactions. Finally, HNCO kinetics in supercooled and pyrocumulus cloud will also 

be explored in order to better characterize HNCO loss in the true troposphere.   

This dissertation is organized as follows: following the goals and the motivation for this 

work in the scope of the work, Chapter 2 details the experimental and theoretical methods and 

equipment involved in this work and the scientific background. The final chapter describes the 

numerical cloud modeling work done to help better understand and characterize the fate of 

HNCO in the troposphere. Finally, results and conclusions will be presented. 
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CHAPTER 2 

Experimental Characterization of Isocyanic Acid: A Product of Biomass Burning 

2.1. Overview 

The trace gas products of biomass burning are presently being investigated on a grand 

scale (Veres et al., 2011; Vicente et al., 2011) and very sophisticated and extremely sensitive 

instrumentation is required to make measurements at the trace level (100 pptv and lower).  The 

method of (positive ion) proton transfer mass spectrometry (PTR-MS) has proven to be an 

excellent method to probe for gas concentrations at this trace levels both in the laboratory and the 

field (de Gouw et al., 2003) (de Gouw & Warneke, 2007). A more specialized version of this 

instrument, designed specifically for trace acid measurements, is known as the negative ion 

proton transfer chemical ionization mass spectrometry (NI-PT-CIMS) and is ideal for field 

measurements in that it can make rapid, sensitive, and selective measurements of acidic species 

(Veres et al., 2008).  It was deployed recently for the specific intent of measuring the amount of 

trace organic and inorganic acids resulting from biomass burning (Veres et al., 2010).  It was 

also used to measure isocyanic acid uptake in water solutions yielding the first laboratory 

measurement of the Henry’s Law solubility constant (H) for HNCO and its first order loss rate 

(k).  The resulting solubility measurement was used to estimate the lifetime of HNCO in a recent 

paper by Roberts et al. (2011).  As part of this dissertation research, the measurement was also 

used in a cloud microphysics numerical model in order to better understand the uptake and 

evolution of HNCO in the condensed phase (aerosol and cloud water).  An introduction to the 

model and cloud microphysics is given later in Chapter 3.   

Reflectron time-of-flight (RTOF) mass spectrometry was tested in attempt to make 

complementary and more thorough measurements of the Henry’s Law constant at several pH 
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values as a function of temperature but unfortunately sensitivity limitations proved to be 

insurmountable.  The RTOF experiments and observations will be discussed in the experimental 

section in an effort to aid future related experiments.  The kinetic and lifetime information 

obtained will be vital in understanding the fate and transport of these trace gas contaminants 

from biomass burning.  This section will provide the summary of the state of knowledge in this 

area and background information on chemical kinetics, chemical thermodynamics, 

heterogeneous uptake, and selected instrumentation involved in making trace gas measurements.  

Since this study deals with organic and inorganic acids in the atmosphere resulting from biomass 

burning, a brief summary on biomass burning is also provided. 

2.2. Biomass Burning 

Considerable progress has been made over the last decade in the effort to determine 

emissions from biomass burning(Andreae & Merlet, 2001). Evaluation of the available data 

(Streets et al., 2003) indicates that a vast number of chemical species have been identified in 

biomass burning smoke and that reliable emission information exists for most of the key species, 

at least for savanna fires. There remain, however, serious gaps for important species, including 

ones that could be valuable atmospheric tracers, such as HCN and acetonitrile (Andreae & 

Merlet, 2001).  The species HNCO presented in this work was observed but not expected in such 

a large abundance. 

Soot deposits in the lungs of 5000 year old mummies is an excellent way to portray just 

how long the pollution from biomass fires has had an impact to human health (Pabst & Hofer, 

1998).  Although biomass burning is one of the most ancient forms of anthropogenic 

atmospheric pollution, its importance on the chemistry of the atmosphere has only been 

recognized since the late seventies. (Crutzen, Heidt, Krasnec, Pollock, & Seiler, 1979; Radke, 
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Stith, Hegg, & Hobbs, 1978). Interest in this topic grew during the 1980’s, when several studies 

suggested that biomass burning emissions are as important as fossil fuel emissions (Andreae, 

1983; Fishman, Watson, Larsen, & Logan, 1990) and that these emissions needed much better 

characterization due to not only their direct health concerns, but also to their impact on climate 

change, since they, have an impact on the radiation budget via light scattering and complex 

microphysical processes (Crutzen & Andreae, 1990; Penner, Dickinson, & Oneill, 1992).    

It is estimated that 90% of biomass fires are anthropogenic and in the United States from 

1991 to 2008, the annual average number of wild fires was approximately 80,000 and the 

number of prescribed fires was 14,000 (Burling et al., 2010) .  In 2001 an excellent review was 

conducted by Andreae and Merlet (Andreae & Merlet, 2001) where they accumulated and 

evaluated the large body of biomass burning emission data available at the time to derive global 

estimates of pyrogenic emissions.  They then derived global estimates of pyrogenic emissions for 

important species emitted by various types of biomass burning (grasslands, tropical forests, 

charcoal burning, etc) and compared their estimates with results from inverse modeling studies.  

They concluded that further study was needed in biofuel production such as charcoal, and that 

the global emission estimate of biomass burning needed to be validated. 

Biomass burning results from forest clearing for agricultural and grazing purposes, weed 

and other vegetation control, and elimination of agricultural waste and stubble after harvest.  

Biomass fuels are also used for heating, cooking, and producing charcoal (Crutzen & Andreae, 

1990).  Burning of savannas has been the focus of several studies and is thought be a 40% 

contribution to the total yearly carbon released by biomass burning.  Other processes (i.e. boreal 

forest burning) can also contribute at certain times of the year (Levine, Cofer, Cahoon, & 

Winstead, 1995).  
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Following well-publicized large fire catastrophes in recent years and intensive scientific 

efforts over the last decade, the general public as well as the scientific community is now aware 

that emissions from biomass burning represent a large perturbation to global atmospheric 

chemistry, especially in the tropics. Whether it is due to either ‘natural’ wildfires or in relation to 

anthropogenic land-clearance activity, biomass burning is an important land surface disturbance 

agent and a key process in changing the composition of the atmosphere through the release of 

carbon, trace gases, and aerosols. Figure 2.1 (Finneran, 2010) is an image from NASA’s 

MODSIS sensor that shows some burning focal points across the planet. 

 

Figure 2.1. Global biomass burning from NASA’s MODSIS sensor (Finneran, 2010) 

Trace gas emissions and aerosols from biomass burning represent a significant part of 

total gas emissions. Table 2.1 (Finlayson-Pitts & Pitts, 2000a) shows some estimated emissions 

from biomass burning.  Water vapor, carbon dioxide, carbon monoxide, tropospheric ozone, and 

organic aerosol are among products with the higher contributions from burning, but also include 

significant amounts of many other compounds such as nitric oxide (NO), nitrogen dioxide (NO2), 

methane (CH4), ammonia (NH3), and a multitude of non-methane organic compounds (NMOC) 
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and oxygenated volatile organic compounds  (OVOC) comprise a large fraction of the NMOCs 

(Christian et al., 2003).   

There have been measurements made recently that indicate that there are elevated levels 

of trace organic acids and some inorganic acids present in the burning/pyrolysis process (Roberts 

et al., 2010; Veres et al., 2010). It was determined that the expected organic acid gases were 

present, but there were also elevated inorganic acids as well (nitrous and isocyanic acid).  The 

focus of this thesis is on a subgroup of organic acids called carboxylic acids and the exotic 

isocyanic acid (HNCO). Biomass burning emissions have an effect on regional air quality, and 

depending on the emission product and elevation of the source, can also be transported over large 

distances to impact regions far from the source (Warneke et al., 2009).   

Table 2.1 
 
Biomass burning products (Finlayson-Pitts & Pitts, 2000a) 
 

Species 

Biomass burning 
(Tg of  

element/yr) 

All sources 
(Tg of  

element/yr) 

Biomass 
burning 

(%) 
Carbon Dioxide (gross from combustion) 3500 8700 40 

Carbon Dioxide (net from deforestation) 1800 7000 26 

Carbon Monoxide 350 1100 32 

Methane 38 380 10 

Nonmethane hydrocarbonsb 24 100 24 

Nitrous oxide 0.8 13 6 

NOx 8.5 40 21 

Ammonia 5.3 44 12 

Nitrous oxide 0.8 13 6 

Sulfur gases 2.8 150 2 

Carbonyl sulfide 0.09 1.4 6 

Methyl chloride 0.51 2.3 22 

Hydrogen 19 75 25 

Tropospheric ozonec 420 1100 38 
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Table 2.1 (cont.) 

Species 

Biomass burning 
(Tg of  

element / yr) 

All sources 
(Tg of  

element / yr) 

Biomass 
burning 

(%) 
Total particulate matter 104 1530 7 

Particulate organic carbon 69 180 39 

Elemental carbon (black soot) 19 <22 >86 
aFrom Andreae (1991); see for original references 
bExcluding isoprene and terpenes. 
cFormed from reactions in air due to biomass burning. 
 

To assess the atmospheric impact of biomass burning, and especially to represent it 

quantitatively in models of atmospheric transport and chemistry, accurate data on the fates, 

lifetimes, and reaction rates of trace gases and aerosols from biomass fires are required. The 

work here contributes to this effort. 

2.3. Organic Acids in the Troposphere 

 2.3.1. Introduction. Sources of atmospheric organic acids can be direct and indirect as 

well as natural and manmade. Direct sources include emissions from the biosphere, biomass 

burning, and motor vehicle exhaust (Talbot, Andreae, Berresheim, Jacob, & Beecher, 1990). 

Secondary sources include production via photochemical oxidation of atmospheric hydrocarbons 

(Fisseha et al.; Madronich et al., 1990). Formic and acetic acid are the two most abundant of the 

carboxylic acids (Chapman, Kenny, Busness, Thorp, & Spicer, 1995; Madronich et al., 1990) 

and are both formed via reactions of biogenic and anthropogenic alkenes with ozone, while 

acetic acid can also be formed by reactions of peroxy acetyl radicals (CH3C(O)O2) with HO2 and 

organic peroxy radicals, particularly CH3O2  (Madronich & Calvert, 1990; Moortgat, Veyret, & 

Lesclaux, 1989). 

 2.3.2. Carboxylic acids: An important subgroup of organic acids. Carboxylic acids, 

RC(O)OH play a central role in the VOC chemistry of the troposphere. They are key 
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intermediate species in the photooxidation of organic compounds and undergo interesting and 

important chemistry in both the gas phase and particle phases. Sources of small carboxylic acids 

include plant and soil biogenic sources, gas phase chemistry involving; O3-alkene chemistry, 

RC(O)OO + HO2 chemistry, RC(O)OO + aqueous droplets, and particle phase oxidation of 

organic compounds involving OH and O3 (Altshuller, 1991). The particulate phase behavior of 

carboxylic acids is of particular interest since these compounds are important constituents of 

organic secondary organic aerosol (SOA) (Alfarra et al., 2006; de Gouw et al., 2005; Gelencser 

& Varga, 2005; Yang, Ray, & Yu, 2008).  This link between photochemical production of SOA 

and gas phase organic acids opens the door for the possibility of using gas phase measurements 

of organic acids as a marker of SOA chemistry.  The occurrence, sources, and sinks of 

carboxylic acids is reviewed  by Chebbi and Carlier (Chebbi & Carlier, 1996). 

Formic and acetic acids are the most abundant and ubiquitous trace acids in ambient air, 

but their sources are not yet fully understood. They originate from photochemical oxidation of 

VOCs.  Formic acid is the simplest of the carboxylic acids and retains virtually no information 

concerning the carbon backbone that produced it. There are numerous other relatively volatile 

carboxylic acids that contain more chemical information on clustering, solubility and acidity 

(Graul, Schnute, & Squires, 1990). The C2-C3 simple and oxygenated carboxylic acids have 

origins that range from general (acetic, propionic, and oxalic acids) (Strobel, 2001), to biogenic 

(glycolic, glyoxylic, pyruvic, methacrylic acids) (Ai & Ohdan, 1997), to petrochemical or 

industrial (acrylic acid) (Ghilarducci & Tjeerdema, 1995). In addition, there are acids that have 

special roles  that are potential pollutants such as trifluoroacetic and trichloroacetic acids in 

peptide synthesis (King, Fields, & Fields, 1990) and macromolecule precipitation (Sun & Dent, 

1980) (respectively). 



15 

 

 Organic acids in the troposphere have become an issue of growing concern since low 

molecular weight carboxylic acids such as formic and acetic acids are major components in the 

troposphere and can lead affect the climate (Caldwell, Renneboog, & Kebarle, 1989; Graul et al., 

1990). Carboxylic acids are water soluble and represent a major fraction of the total organic 

carbon in fog and cloud water and in precipitation and also have the ability to increase cloud 

acidity depending on the gas phase concentration (Chebbi & Carlier, 1996).  They may also be 

involved in potentially important atmospheric transformations such as heterogeneous uptake 

from the gas to aqueous phase (Chameides & Davis, 1983).  It has been shown that carboxylic 

acids contribute to the acidity of precipitation (Fornaro & Gutz, 2003; Kawamura, Steinberg, & 

Kaplan, 1996).   It was estimated that carboxylic acids, particularly formic and acetic acids, may 

contribute between 16% and 35% of the free acidity of precipitation in the United States. The 

contribution of these acids to the free acidity of precipitation may be as high as 65% in some 

remote areas (Keene et al., 1983). Table 2.2 lists numerous carboxylic acids and their gas-phase 

acidities (∆G) that make some of them favorable for detection by mass spectrometry (discussed 

later in the chapter) (Veres et al., 2008). 

 The elementary and complex interaction of these acids with other species in the 

troposphere is the key to understanding their fates, lifetimes, and how they transport through 

across the globe. There are also broader questions involving other acids species in the 

troposphere that are active areas of research.  Examples of such questions include the importance 

of nitrous acid (HONO) as a source of radicals (Calvert, Yarwood, & Dunker, 1994) and the 

origin and fate of inorganic acids, such as the Bronsted acids (HCl, HBr, and HI). A method for 

the sensitive and rapid measurement of those species would represent a significant improvement 

in the tools available for understanding that chemistry. 
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Table 2.2 

Gas-phase acidities, anion masses, and anion abundances of common acids (Veres et al., 2008) 

Compound Formula 
AG 

(kcal/mol) 
Anion Observed 

(m/z) 
Detectable 

Species 
Hydrochloric acid HCl 328.15 35 (76%), 37 (24%) - 
Formic acid CH2O2 338.2 45 yes 
Nitrous acid HNO2 333.7 46 - 
Acetic acid C2H4O2 341.5 59 N/A 
Nitric acid HNO3 317.8 62 - 
Acrylic acid C3H4O2 337.2 27 (8%), 71 (92%) yes 
Propionic acid C3H6O2 340.1 73 yes 
Glycolic acid C2H4O3 327.8 75 yes 
Hydrobromic acid HBr 317.9 79 (51%), 81 (49%) - 
Methacrylic acid C4H6O2 337.1 85 yes 
Butyric acid C4H8O2 339.1 87 yes 
Pyruvic acid C3H4O3 326.5 43 (1%), 87 (99%) yes 
Oxalic acid C2H2O4 N/Aa 89 no 
Lactic acid C3H6O3 330.3 89 yes 
Methanesulfonic acid CH4O3S 315.5 95 - 
Sulfuric acid H2SO4 300.0 91 - 
Malonic acid C3H4O4 N/Aa 103 no 
Trifluoroacetic acid C2HF3O2 316.3 113 - 
Benzoic acid C7H6O2 333.0 121 yes 
Hydroiodic acid HI 308.98 127 - 
Nitrophenols C6H5NO3 320.9–329.5 138 yes 
Trichloroacetic acid C2HCl3O2 N/Ab 161 - 
Pentafluoropropionic 
acid C3HF5O2 N/Ab 19 (3%), 119 (67%), 163 

(30%) yes 

Species that are measurable on the NI-PT-CIMS are denoted with ‘yes,’ unmeasurable species are denoted as such 
with a ‘no,’ and species which have not yet been studied are marked with ‘-.’ 
a Data not readily available. However, the first proton of these diacids is much more acidic in solution that the mono 
carboxylic acids 
b Data not readily available. The strong electron withdrawing nature of halogen substituents should shift gas phase 
acidities to much lower values than corresponding hydrocarbon acids. Our observations are consistent with this 
assumption 
 

2.3.3. Isocyanic acid (HNCO): A unique organic acid from biomass burning. People 

are constantly exposed to smoke, whether it be from wildfires, tobacco, biomass burning, or coal 

combustion used in cooking and heating (Crutzen & Andreae, 1990).  Pyrolysis research of 

biomaterials has shown that various volatile and semi volatile organic compounds (SVOCs) are 

produced (Andreae & Merlet, 2001; Burling et al., 2010).  The extent of the human impact of 
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these products needs to be understood for obvious health effect reasons on both the regional and 

global scale. Cataracts, cardiovascular impairment, and chronic diseases such as rheumatoid 

arthritis are human health effects that have already been identified as smoke related risks (Scott, 

Wolfe, & Huizinga, 2010).  Inflammatory response to protein carbamylation is a common 

biochemical pathway causing these health effects (Beswick & Harding, 1984).   

Isocyanic acid has been known since 1830 and saw an increase in investigations in the 

1950s and 1960s (Herzberg & Reid, 1950) (Ashby & Werner, 1965) through spectral analysis, 

but it had not previously been measured in the atmosphere.  Cyanate salts are known to have the 

structure KOCN (potassium cyanate for example), but acidification of cyanate solutions are 

known to produce HNCO exclusively.  Proton transfer reactions were used to measure the 

basicity and acidity of HNCO using an ion cyclotron resonance mass spectrometer (Wight & 

Beauchamp, 1980) .   

HNCO is slightly acidic (pKa = 3.7) and unstable in pure form as it prefers to polymerize 

(D. J. Belson & A. N. Strachan, 1982) under normal conditions which makes it difficult to 

produce and measure in the laboratory.  Fortunately it is stable and volatile at dilute 

concentrations (a few ppmv) in the gas-phase.  In California, low limits for occupational 

exposure on the order of 0.5 ppbv for methyl isocyanate (California, 2001) and 5 ppbv for total 

isocyanates ( Statute Book of the Swedish Work Environment Authority, 2005) have been 

established. 

A sensitive negative-ion proton-transfer chemical ionization mass spectrometer (NI-PT-

CIMS) was developed that offers a fast response measurement of HNCO and other acids in air 

(Roberts et al., 2010).  In addition, the NI-PT-CIMS instrument can be used to measure the 

Henry’s Law solubility of HNCO.  It was shown in work by Roberts et al. (2011) that smoke 
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from biomass burning and other smoke related sources contains HNCO at concentrations that 

cause carbamylation at physiologically significant levels.  Therefore it is imperative to 

understand the fate and transport of isocyanic acid and this is achieved in this thesis through 

modeling the cloud chemistry and microphysics of HNCO as well as its aerosol interactions. 

2.4. Gas Phase Kinetics 

Understanding the kinetics of reactions of trace gases in the atmosphere is important due 

to the need to assess their lifetimes and ultimately their atmospheric fates.  It’s useful to be able 

to predict factors that will affect the rate at which a chemical reaction proceeds.  Knowing the 

reaction kinetics of classes of compounds such as organic acids with OH or even isocyanic acid 

(Jensen, 1958) allows one to estimate lifetimes under typical atmospheric conditions and hence 

to rule out those reactions that are too slow to be significant, allowing one to concentrate on the 

most important reactions. 

There are several factors that can influence the rate of a chemical reaction. In general, a 

factor that increases the number of collisions between particles will increase the reaction rate and 

vice versa. A higher concentration of reactants leads to more effective collisions per unit time, 

which leads to an increasing reaction rate (except for zero order reactions). The process can be 

understood by applying the collision theory of gases and predicting the magnitude of the reaction 

rate coefficient.  In basic collision theory, the collision rate is an upper limit to the actual reaction 

rate constant.  In this work, we focus on bimolecular ion-molecule reactions. The most 

elementary approach to bimolecular reactions is based on the collision of “hard” spheres that 

have no structure.  This was investigated theoretically by Kummerlöwe and Beyer (Kummerlöwe 

& Beyer, 2005) where they obtained rate estimates for collisions of ionic clusters with neutral 

reactant molecules using the hard-sphere approach. 
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NI-PT-CIMS is a negative ion proton transfer reaction (PTR) between ion species A- (say 

acetate ions) and a neutral molecule B (say formic acid molecules) can be represented by the 

second-order reaction; 

A B C D− −→+ +←                 (2.1) 

where A is an ion and the products can be neutral molecules, ions or radicals, B is the neutral 

colliding partner. Since the equilibrium constant is given by Equation 2.2, 

]][[
]][[
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Keq −

−

=                                                           (2.2) 

measuring the rate constants in both directions and given that the reaction is at equilibrium, the 

value of the Gibbs free energy of reaction can be calculated from the relationship; 

            eqRT K  G  H  T Sln− = ∆ = ∆ − ∆                        (2.3) 

where R is the universal gas constant, T is the temperature in K, Keq is the equilibrium constant, 

∆G is Gibbs free energy change, ∆H is the enthalpy change, and ∆S is the entropy change 

associated with a given reaction.   

In the reaction in Equation 2.1 where the neutral species is in much greater abundance 

than the ionic one, pseudo first order approximations are valid and it can be shown that 

                    ( )tBk
t eAA ][

0][][ −−− =          (2.4) 

where [A-]t is the concentration [A-]0 is the concentration at reaction time t = 0 and k is the 

bimolecular rate constant. Furthermore since, 

          t 0 t
A  A  C− − −     = −                           (2.5) 
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Substituting Equation 2.5 into Equation 2.4, and assuming that the reaction involving the 

reagent ions is not significant enough to deplete the reagent ion concentration, i.e. the 

concentration is constant and large, it can be shown that  

                     [ ]( ) [ ]
0 

C   A exp 1 k B t k B t− −   = − ≈              
                (2.6) 

In this situation, the abundance of the product ion [C-] is proportional to the concentration of its 

neutral precursor [B]. From (2.6) it is possible to obtain k in the forward direction: 

[ ]
C

k  
A tB

−

−

  =
  

                                                         (2.7) 

where we can measure the ion intensities [C-] and [A-] using the mass spectrometer and the 

reaction time t can be  obtained from flow velocity calculations for a given position where 

reaction takes place along the tube. 

The primary initial goal of this work was to use the novel flow tube to extract kinetic 

information from the reaction of carboxylic acids and also measure the effect that water 

clustering had on the reaction kinetics. The lessons learned from this initial experiment and 

recommendations to improve the method will be discussed in much further detail in section 8 of 

this chapter. 

2.5. Heterogeneous Chemical Kinetics: Gas Uptake 

2.5.1. Resistance model of gas uptake. Given the gaseous nature of most of the primary 

and secondary pollutants of interest, the emphasis on kinetic studies of atmospheric reactions has 

typically been on gas-phase systems.  It is now evident that reactions that occur in bulk liquid 

and on the surfaces of solids and liquids (collectively termed the condensed phase) have an 

impact on problems like stratospheric ozone depletion (Barth, Hess, & Madronich, 2002). A 

significant portion of this dissertation is dedicated to the understanding heterogeneous (gas-
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liquid phase) interactions in the troposphere.  Biomass burning products in the gas phase have 

the potential to be taken up by the condensed phase (aerosol or water).  These are known as 

heterogeneous interactions and review of the kinetics involved is given by Molina and coworkers 

(Molina et al., 1996) where they have compiled the results of laboratory measurements of rate 

parameters and presented current views on the physical and chemical foundation underlying the 

interpretation of the kinetic parameters.  The aqueous phase that serves as a reaction medium in 

the atmosphere can be in the form of clouds, fogs, rain, and even particulate matter. 

Interpreting the experimental results of gas-phase atmospheric chemical processes 

requires understanding of aqueous-phase reactions in cloud droplets and deliquesced aerosol 

particles. At heterogeneous equilibrium, Henry’s law can be used to describe the distribution 

between the phases provided that the Henry’s law coefficient is known.   

 There are four main aspects of heterogeneous kinetics of gases: 

1) Diffusion of the gas to the surface of the condensed-phase medium 

2) Transport of the gas across the interface (known as accommodation) 

3) Diffusion of the absorbed gas into the bulk phase (solubility) 

4) Reaction of the absorbed gas in the bulk phase 

It should be noted that reactions that occur at the interface are complex and not addressed here, 

as it is not an important factor in the system under consideration. 

 Figure 2.2 (Finlayson-Pitts & Pitts, 2000a) shows the uptake process and is taken from 

the work of Finlayson-Pitts (Finlayson-Pitts & Pitts, 2000b) which also provides a very good 

description of the heterogeneous process under different  conditions which determine the rate 

limiting processes (Kolb et al., 2010). 
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Figure 2.2. The heterogeneous uptake processes (Finlayson-Pitts & Pitts, 2000a) 
 

Gases dissolve in the condensed phase to various degrees, depending on the 

characteristics of the gas and the solvent. As mentioned in Finnlayson-Pitts (Finlayson-Pitts & 

Pitts, 2000a), at a sufficient span of time, equilibrium can be established between the gas- and 

liquid-phase concentrations, which is described by Henry’s law.  Henry’s law can be used to 

predict solution concentrations only under specific conditions. It assumes that there are no 

irreversible chemical reactions that are so fast that the equilibrium cannot be established.  The 

other assumption is that the surface of the droplet is an unimpeded air/water interface, since 

some aerosols can have an organic covering on the surface (Husar & Shu, 1975). 

In the liquid phase molecules are in close contact, with the space between molecules 

being ~10% of the distance between their centers.  Thus, reactants have between 4 and 12 nearest 

neighbors that they can collide with.  The reactants can then be thought of as existing in a solvent 

“cage,“ in which several collisions occur before breaking out of that “cage” environment.  

Relative to the gas phase, reactants take longer to diffuse together when in aqueous solution, but 

once they find themselves as nearest neighbors, they undergo a series of collisions rather than 
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separating after one collision (Finlayson-Pitts & Pitts, 2000a). In other words, solution phase 

reactions tend to be slower because, in the gas phase, the reaction barriers are effectively lowered 

by the solvation energy.  In solution, solvent molecules already interact with the reagent, 

whereas, in the gas phase, energy is produced upon intermolecular interactions between the two 

reagent molecules. 

Figure 2.3 shows the “resistance model” as described in Molina et al. (Molina et al., 

1996). The resistance model is a simplified representation based on electrical circuit analog, and 

it assumes that the uptake governing process are decoupled; each process is then expressed as a 

resistance term which represents its uptake limiting effect relative to the overall process.  

Therefore, treatment of systems in which gas-phase diffusion, mass accommodation, liquid phase 

diffusion, and reaction both in the bulk and at the interface must be taken into account can be 

characterized by Equation 2.8. 

1 1 1 1

g sol rxnγ α
= + +
Γ Γ +Γ                     (2.8) 

 

Figure  2.3. Resistance model of the heterogeneous process (Molina, Molina, & Kolb, 1996) 
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In the general case, Equation 2.8 describes the overall uptake process where γ is the 

uptake coefficient, Γg describes the gas-phase diffusion toward the liquid, the second term α 

describes the reaction at the interface, also known as accommodation and is the ratio of the 

number of gas molecules that make it into the bulk liquid to the total numbers of molecules that 

collide with the surface. The last terms are for the kinetics that occurs in the bulk and these are 

coupled since they occur simultaneously. Γsol is the liquid phase diffusion and solubility and Γrxn 

represents the liquid phase chemical reaction processes.  

The uptake coefficients Γg, Γsol and Γrxn represent parameters normalized to the rates of 

gas-surface collisions and are unitless and can have values larger than 1. Therefore, in the limit 

of large Γg, Γsol and Γrxn their resistance becomes negligible and the maximum value of γ 

approaches α. 

Often one process is rate limiting, simplifying the above representation.  The time scale 

for gas-phase diffusion to particles is fast (on the order of seconds to a few minutes) depending 

on particle size and number.  The time scales for losses of HNCO in the aqueous-phase (liquid, 

liquid aerosol, or cloud droplets) are much slower.  Uptake of a modestly soluble and reactive 

trace gas by an aqueous droplet can depend on both its Henry’s law constant, H and its aqueous 

phase reaction rate  khyd  and  for species with a khyd small enough that liquid-phase diffusion 

does not act as a  constraint on the reaction rate, the life time (τ)  for loss of a trace gas to cloud 

droplets can be approximated by (Molina et al., 1996): 

1

hyd c cHRTk L F
τ =          (2.9) 

where Lc is the liquid water content, Fc is the cloud volume fraction of liquid water (ranging 

from 10−12 for an aerosol of total surface area of 200 µm2⁄cm3, and .2 µm mean diameter, and up 
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to 10−6 for fogs or clouds), and khyd is the first order rate constant for the aqueous-phase 

hydrolysis reaction.  Thus the approximated lifetimes for HNCO then range from more than 104 

years for reaction on an aerosol at pH 3, to approximately 12 hours for reaction in cloud or fog 

water of pH 5.5, khyd of 7.8 × 10−4 sec−1, and the above liquid water content.  The lifetime of 

HNCO is apparently limited by uptake on aerosols and clouds in the aqueous-phase.  The 

lifetime of HNCO in clouds will be calculated from the current experimental work in the next 

chapter under various water content and pH values, but it will be seen that there is good 

agreement to the approximation of Equation 2.9. 

 2.5.2. Gas stripping and extracting equilibrium constants. Henry’s Law constant is 

defined as the chemical concentration in the aqueous phase at equilibrium divided by the partial 

pressure of the chemical at infinite dilution.  Gas stripping is the process of flowing gas through 

a liquid through an interface with porosity on the order of 10µm in order to maximize the gas to 

liquid surface reactions.  One example of a successful gas stripping experiment used to 

determine Henry’s coefficients for benzene, toluene, and several other VOCs is described by 

Mackay et al. (Mackay, Shiu, & Sutherland, 1979).   

The equilibrium concentration of a dissolved gaseous species is proportional to the partial 

pressure of the gas, the proportionality constant being a property of the gas and a function of 

temperature, or; 

aqC H P= ⋅               (2.10) 

where [Caq] is the aqueous equilibrium concentration (in mol/L or M), P is the gas-phase 

equilibrium pressure, and H(T) (typically reported in units of M/atm) is the Henry’s law 

coefficient of the gas X in water at temperature T.  The Henry’s law coefficient is defined as the 

equilibrium constant for the heterogeneous reaction; 
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g aqC C→←                                             (2.11) 

 The kinetics of this concentration gradient can be thought of in terms of the mass transfer 

rate of gas-phase molecules into and out of the aqueous phase and chemical reaction at the 

surface or in solution.  Any losses in the aqueous phase must be accounted for and conserved, 

therefore the change in concentration over time is a combination of solubility of the gas, which is 

governed by Henry’s law, and the loss due to reaction in the condensed phase. The liquid 

concentration or cumulative analyte concentration at time t  is Caq and the rate of loss of liquid 

concentration dCaq/dt can be expressed as a sum of the rate of loss due to dissolution (solvation) 

of  (dCsol/dt) and chemical reaction rates (dCrxn/dt ) that occur in solution (such as hydrolysis of 

acids). In the derivation that follows we use C instead of Caq Therefore the first order 

concentration loss rate can be given as Equation 2.12. 

 sol rxndC dCdC
dt dt dt

= +
         (2.12)

 

Since the solubility concentration can be expressed by Henry’s law constant the relationship; 

solC H p= ⋅             (2.13)
 

where Csol is the aqueous phase concentration, H is Henry’s coefficient, and p is the gas phase 

partial pressure of x.  From the ideal gas law, PV = nRT, the concentration is; 

g aq

n p
C C

V RT
= = =

         (2.14)
 

and using Henry’s relationship above; 

solP C
RT HRT

=
             (2.15) 
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and thus,
 

sol

V HRT

d
dt
C C

=
Φ

−
     (2.16)

 

where Csol is the aqueous phase concentration.  Thus at equilibrium, the concentration in solution  

is time dependent and is governed by the rate of gas flow into solution Φ (cm3s-1) and the volume 

of solution V (cm3). The ratio of Φ to V gives the gas uptake rate in inverse seconds.  

Multiplying this by the concentration expression gives the loss rate due to solubility. 

 The second component contributing to the concentration loss in solution is from chemical 

reactions that occur in solution. The first order loss rate is given as: 

rxndC
kC

dt
− =

               
(2.17)

 

where k is the overall reaction rate constant and given in units of inverse minutes (m-1 ).  Pulling 

these two expressions together, we have the full expression for the first order loss. 

1
k

V HRT

dC
C C

dt
Φ

+− =
          (2.18)

 

Integrating Equation 2.18 in order to solve for C, we get 

0 1
ln ( )C

k t
C V HRT
= +

Φ

            (2.19)
 

Therefore C can be solved for easily by taking the exponential of both sides; 

0

1( )k t
V HRTC C e

Φ
− +

=          
(2.20)

 

where C0 and C are the gas phase concentrations initially and at a time t respectively, Φ is the 

gas volume flow rate at ambient pressure, V is the liquid volume, H is Henry’s coefficient, R is 
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the ideal gas constant, T is the liquid temperature, k is the first order reaction rate constant. The 

stripping process assumes (i) the system is isothermal, (ii) the liquid phase is well mixed, (iii) the 

vapor behaves ideally, (iv) Henry’s law is obeyed over the relevant concentration range, 

(v) the volume of liquid remains constant, (vi) the partial pressure of the solute is small 

compared to the total pressure, and (vii) the solute in the exit vapor is in equilibrium with the 

liquid. 

 If these assumptions hold,  H and k can be experimentally extracted very easily by 

varying the flow rate and volume as described by Kames et al. (Kames & Schurath, 1995).  This 

method is among a host of condensed phase uptake methods that have been recently reviewed 

(2010) by Kolb and coworkers (Kolb et al., 2010), where they identified the need for consistent 

definitions of the various parameters for the quantitative representation of the wide range of 

gas/condensed surface kinetic processes. Equation 2.20 will be used later in the calculation of the 

Henry’s coefficient. 

2.5.3. pH dependence of H. Another effect to consider when working with weak acids, 

as is the case in this work, is the pH of the system at equilibrium.  For a generic acid HA in 

solution: 

aqHA A H− +→ +←          (2.21) 

[ ][ ]
[ ]a

aq

A H
K

HA

− +

=
      (2.22) 

where Ka is the equilibrium dissociation constant.  The solubility of this acid is increased 

(additional [A-]/[HAaq] which is the definition of Henry’s law) due to this effect and is added to 

Henry’s coefficient as 
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=       (2.23) 

[ ]
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[ ]
a aqK HA
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H
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+

=        (2.24) 

* * [ ]
[ ]eff

aq

A
H H H

HA

−

= +              (2.25) 

Using the equilibrium constant relationship above, Heff can be simplified and expressed as 

* 1
[ ]

( )a
eff

K
H H

H +
= +

             (2.26)
 

In Equation 2.26, H* is the intrinsic Henry’s coefficient independent of any liquid phase 

equilibria.  For this reason, the pH needs to be known and remain constant over the course of the 

experiment. To achieve this, an appropriately selected buffer is used for a given pH.  The 

effective H can be plotted for any acid as a function of pH if the pKa is known. A much more in-

depth look at this is given by Sander (Sander, 1999).  Measurement of this solubility would allow 

for the HNCO lifetime to be estimated and thus the exposure level can be assessed through 

modeling of its fate and transport.  

2.6. Experimental Techniques: Mass Spectrometry in Biomass Burning 

2.6.1. Background. Mass spectrometry is an age old method of elemental identification 

rooted in the work of J. J. Thompson in the late 1800s.  More recently in the mid-1990s, a 

powerful instrument and method for studying gas-phase ion-molecule reactions is proton-transfer 

reaction mass spectrometry (PTR-MS) (Hansel et al., 1995; Jordan, Hansel, Holzinger, & 

Lindinger, 1995; Warneke et al., 1996). PTR-MS is a technique developed almost exclusively for 

the detection of gaseous organic compounds in air. PTR-MS allows real-time measurements of 
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VOCs in air with a high sensitivity and a fast time response. Comprehensive reviews of the 

recent progress that has been made in the field of PTR-MS include work by de Gouw, Warneke 

et al. (de Gouw & Warneke, 2007; de Gouw et al., 2003) which focused on VOC measurements 

and the development of instruments and methods.  They state that PTR-MS has emerged as a 

fully useful tool to study the atmospheric chemistry of volatile organic compounds (VOCs) given 

its fast response time of 1 second and low detection limits in the range of 10 to 100 ppt. 

A more recent review is by Blake et al. (Blake, Monks, & Ellis, 2009) in 2009 discusses 

applications of the PTR-MS method.  It is concluded that more accurate determinations of the 

instrument response can be achieved by conducting calibrations using standard mixtures. They 

also conducted specificity studies of several PTR-MS instrument as well coupling their PTR-MS 

with a gas chromatograph (GC) for added flexibility. 

Proton-transfer reaction mass spectrometry has its origins in the development of the 

“flowing afterglow” method for the study of ion-molecule reaction kinetics. It was first 

introduced in the 1960s by Ferguson and co-workers and involved the injection of ions into an 

inert buffer gas containing a small amount of neutral reactant to achieve reactions at thermal or 

near-thermal collision energies (Ferguson, Fehsenfeld, Schmeltekopf, Bates, & Immanuel, 

1969).  The study of ion-molecule reaction kinetics and thermodynamics was revolutionized by 

this flowing afterglow approach but a major weakness was that no ion selection was made before 

the chemical reaction.  For more complex molecular ions, the possibility of producing a variety 

of secondary ions in the discharge source caused excessive complications in the product analysis 

and a means of ion selection prior to reaction was obviously necessary. This key step was tackled 

by Adams and Smith in a groundbreaking piece of work that led to the introduction of the 

selected ion flow tube (SIFT) technique (Adams & Smith, 1976).  The basic components of a 
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SIFT instrument, that has improved selectivity over the flowing afterglow method, is the 

quadrupole filter that allows ions of only a specific mass-to-charge ratio (m/z) to pass into the 

flow tube thus limiting the reactions of unwanted reagent ions. 

Proton-transfer-reaction mass spectrometry was developed by Lindinger et al. and the 

design is described in detail here (Lindinger, Hansel, & Jordan, 1998).  It is a merger of the ideas 

of chemical ionization (CI) introduced by Munson and Field in 1966 (Munson & Field, 1966) 

with the swarm technique of flow-drift-tube type (FDT), invented by McFarland et al. in the 

early 1970s (McFarland, Albritton, Fehsenfeld, Ferguson, & Schmeltekopf, 1973). It 

significantly overcomes some of the disadvantages of GC methods but at the price of chemical 

detail and some compounds are not volatile enough for the GC.  The GC has superb resolution 

but at the cost of long collection times (1/2 to 1 hr.).  PTR-MS was particularly intended and 

favored for on-line measurements of VOCs during airborne field campaigns due to its rapid and 

sensitive performance, but there is a sacrifice in resolution achievable by a GC. The experimental 

realization of proton-transfer reaction mass spectrometry was refined by Hansel et al. (Hansel et 

al., 1995) with the drift tube reactor shown in Figure 2.4.  

PTR-MS instruments used to date have utilized hollow cathode DC discharge ionization 

sources with drift tubes that suppress clustering, and quadruple mass analyzers that have limited 

mass resolution and mass range.  The need for more flexibility and sensitivity led to the idea of 

chemical ionization and a thermal dissociation-chemical ionization mass spectrometry (TD-

CIMS) technique for the simultaneous measurement of peroxyacyl nitrates (PAN) and dinitrogen 

pentoxide was introduced by Slusher et al. (Slusher, Huey, Tanner, Flocke, & Roberts, 2004) in 

2004.  A modified version of this of the Slusher CIMS is presented in the work by Veres et al. at 

the NOAA Earth Systems Research Laboratory (Veres et al., 2008) where negative ions are 
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utilized in the proton transfer reaction (NI-PT-CIMS). Veres et al. have excellent reagent ion 

production on the order of 6 x 106 counts per second.  This translated into a formic acid 

calibration with a sensitivity of 21 ± 4.3 counts per second per pptv and the detection limit for 

formic acid is approximately 80 to 90 pptv for a 1 s integration period.  This well suited for on-

line field campaign work, but the instrument is limited to only probing a few species per 

experiment, since each needs to be properly calibrated.   

 

Figure 2.4. Original PTR-MS (Hansel et al., 1995) 

 Given its greater mass resolution, time-of-flight mass spectrometry has the potential to 

resolve isobaric species (those that have the same nominal mass).  Blake et al. introduced the 

first time of flight instrument for PTR-MS study (Blake, Whyte, Hughes, Ellis, & Monks, 2004).  

The system possessed high mass resolution (m/∆m>1000) but had a low reagent ion production 

that was on the order of 104 counts per second, which was 2 orders of magnitude lower than the 

quadruple (PTR-QMS) instruments. Their reagent ions were produced by radioactive source (soft 

ionization), rather than the usual hollow cathode, which allows for the potential to measure 

clustering effect of the target molecule. 
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 Ennis et al. (Ennis, Reynolds, Keely, & Carpenter, 2005)  reported a reflectron PTR-

TOFMS instrument coupled with a hollow cathode ion source demonstrating its portability and 

high mass resolution, though the sensitivity of this instrument was 5 to 10-fold less than that of 

PTR-QMS instruments.  The instrument was capable of detecting trace gases as low as 1 ppbv on 

a timescale of between 10 and 60 s and with a sensitivity of 3.7 ncps ppbv−1 (normalized counts 

per second per parts per billion by volume) for toluene and 28 ncps ppbv−1 for acetone.  This 

instrument is capable of high mass resolution, high mass accuracy (~300 ppm), and multiplexed 

spectral acquisition which leads to rapid and selective online analysis of trace components in 

complex gas mixtures. 

 A novel source was developed by Inomata et al. (Inomata, Tanimoto, Aoki, Hirokawa, & 

Sadanaga, 2006) that was capable of hydronium (H3O+) ion intensities at typically (5–7) x105 

counts for a 1-min integration time with a duty cycle of 1%. Most recently, in 2009 Jordan et al. 

(A Jordan et al., 2009)  reported on a high resolution and high sensitivity proton-transfer-reaction 

time-of-flight mass spectrometer.  They report the development of a new version of PTR-MS 

using a time-of-flight mass spectrometer, which is capable of measuring VOCs at ultra-low 

concentrations (as low as a few pptv) under high mass resolution (as high as 6000 m/∆m in the 

so-called V-mode) with a mass range > 100,000 amu.  This instrument was constructed by 

interfacing commercially available components such as the Ionicon hollow cathode ion source 

and drift tube section with a Tofwerk orthogonal acceleration reflectron time-of-flight mass 

spectrometer.  In addition the instrument is highly sensitive (even for large masses yielding 

several tens of cps/ppbv) and features an extremely low detection limit on the order of a few 

pptv. This will make this instrument a useful and valuable tool for trace gas analysis in many 
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fields, including atmospheric and environmental science, food and flavor science, medical 

applications, and industrial monitoring. 

Our initial goal was to develop an instrument, method, and protocol for the sensitive and 

rapid measurement of gas-phase acidities of key carboxylic acids in the troposphere. Our 

improvement lies in the orthogonal coupling a novel flow reactor for the chemical reaction to a 

reflectron time-of-flight (TOF) mass analyzer to achieve a reasonably rapid time response and 

superior resolution as attempted by Tanimoto et al. (Tanimoto, Aoki, Inomata, Hirokawa, & 

Sadanaga, 2007) . 

 Our instrument is fitted with a novel flow tube that allows for higher pressure chemical 

reactions, which should increase the sensitivity due to the increased number density and reaction 

rate.  Clustering is a drawback in a QMS tool because the presence of water clusters complicates 

the qualitative and quantitative information in the mass spectra. Since our spectrometer does not 

have an electrically biased drift tube, our instrument has the ability to observe and potentially 

characterize the reactivity of ion clusters. We also introduce the capability of easily detecting 

negative ions; a feature not commonly seen in TOF-MS.  All of this coupled with the high 

resolution data collection of a reflectron TOF-MS should give our instrument the ability to 

measure thermochemical and kinetic data of negative ion proton transfer reaction of carboxylic 

acids with carboxylate ions and their hydrated states. Despite this, however, there are 

fundamental challenges associated with studying hydrated ion clusters that were not 

surmountable using this device, as detailed in section 2.6.4. 

 The next section describes the initial focus of this work. The initial project focused on 

two aspects that lead toward the development of NI-PTRMS: (1) the development of a clean, 

dependable source of acetate ions under different conditions of pressure, temperature and water 



35 

 

vapor concentration, and (2) the determination of the gas-phase acidities of carboxylic acids of 

potential atmospheric interest. The following activities were attempted: 

1) Optimizing the method of producing a clean, dependable source of acetate ions in the gas 

phase using 210Po irradiation of acetic anhydride in nitrogen. 

2) Determining the rate constants for forward and reverse proton transfer ion-molecule 

reactions 

3) Determining the gas-phase acidities of carboxylic acids and other  compounds of 

atmospheric interest 

2.6.2. Equipment and methods. Studies of gas phase organic and inorganic acids in the 

troposphere from biomass burning require rapid, selective, and sensitive instrumentation far 

beyond the means of commercial instrumentation. The following chapter details the experimental 

apparatus that were used to obtain concentration, gas-phase kinetic, and heterogeneous kinetic 

information about HNCO, one of the biomass burning products which has attracted interest.  The 

preferred apparatus for measuring the concentration and identity of gaseous molecules has been 

some version of the mass spectrometer (MS) and has been extensively covered and is generally 

well understood (Allan, 1999), thus it will only be described briefly here in order to describe the 

novelties of the instrumentation used in this work.  The reflectron time-of-flight mass 

spectrometer (RTOF-MS) will be described first, as it was the initial focal point of the thesis, in 

an attempt to use negative ion chemical ionization in the study gas-phase kinetics.  There are 

several novel aspects to the North Carolina A&T State University (NCAT) TOF system and they 

will be described in detail.  The National Oceanic and Atmospheric Administration (NOAA) 

Earth Systems Research Laboratory (ESRL) negative ion proton transfer chemical ionization 

mass spectrometer (NI-PT-CIMS) is a companion system that has the versatility of being used 
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both in the laboratory and the field.  It has been described recently by Veres et al. (Veres et al., 

2008) and only a brief description will be given here.   

The final portion in this chapter is the heterogeneous uptake system (HUS) designed to 

produce and study the newly discovered biomass burning product, isocyanic acid (HNCO). The 

HUS can be used on either platform (RTOF or CIMS) in order to obtain solubility information 

on rarely studied biomass burning products.  This HUS will prove to be a powerful and versatile 

method for extracting this information for not only HNCO, but several other uncharacterized 

biomass burning products to be identified as viable candidates for this method. 

2.6.3. NCAT time-of-flight system. The complete RTOF-CIMS experimental setup at 

NCAT is a combination of several individual components coupled to the mass spectrometer.  

This work makes use of the time-of-flight (TOF) method of obtaining a mass spectrum as 

described thoroughly in the 2008 review by Mirsaleh-Kohan and coworkers (Mirsaleh-Kohan, 

Robertson, & Compton, 2008).  This review is specific to the electron impact ionization method; 

however, this work attempts to use chemical ionization. 

The basic principle of a time-of-flight (TOF) mass spectrometer is simple. At an initial 

time t = 0 ions are produced in a small volume. They are accelerated by a voltage V to a velocity 

v = (2qV/m)1/2 where m is their mass and q their charge. The ions drift through a field-free region 

of length L before they are detected. Measuring the time delay between ion production at t = 0 

and mass-dependent arrival time 

mqV
L

v
L

tm
/2

==            (2.27) 

at the detector gives the mass m of the ion: 
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Though the acceleration voltage can be measured, it is typical that a compound with a known 

mass spectrum is used to relate arrival time to the mass to charge ratio (m/z). The mass 

resolution m /∆m depends on the shortest time interval ∆t that can still be resolved.  From 

Equation 2.28 we obtain 

mt
t

m
m ∆
=

∆ 2
                                (2.29) 

In practice a problem arises because the ions are not all produced at the same location, 

but within a finite volume. The electric field used to extract the ions varies over this volume and, 

therefore, the kinetic energy of the ions varies accordingly. Therefore, the velocities of ions, 

produced at different locations, are different which smears out the arrival times and limits the 

mass resolution. 

The advantages of time-of-flight spectrometers are in that it is (a) possible to measure all 

mass components of a mixture of different species, (2) atoms or molecules with very large 

masses (for example biological molecules with m/z > 104) can be detected, and (c)  the TOF 

design is simple and easy to construct.  

Additional improvement in resolution of TOF are typically achieved by reflecting the 

ions at the end of the drift distance L by an electrostatic reflector, which consists of a stack of 

grids or rings at a positive voltage producing an electric field that repels the ions. The faster ions 

penetrate deeper into the reflecting field and therefore travel a larger distance, just compensating 

for an earlier arrival time at the reflecting field. This device, called a “reflectron” achieves the 

same total travel time for all ions within a velocity interval ∆v. 
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A cross section scheme of the entire RTOF at NCAT is shown in Figure 2.5.  It was built by 

Comstock Inc. (Oak Ridge, TN) and customized by Atom Sciences Inc. (Oak Ridge, TN) 

(Whitaker, 2004).  Figure 2.5 shows the core of the system, with a source region where ion can 

be created and introduced into the “flight” region for mass separation.  Ions are pulsed into the 

flight region by an electrostatic potential at a rate of 1500 to 2200 Hz.  It is a reflectron time-of 

flight unit equipped with a standard 70 eV electron impact ionization source and is modified to 

allow for orthogonal injection of ion from chemical ionization. 

 

Figure 2.5. NCAT reflectron time of flight mass spectrometer 

The source chamber is a custom 8” stainless steel tube with 10” Conflat flanges at each 

end and multiple 2-3/4” ports around it.  The source chamber is described in detail in the Atom 

Sciences manual (Whitaker, 2004) so in brief, vacuum is provided by a Pfeiffer TMU 521 

turbomolecular pump (~520 L/s) mounted horizontally (see TMP2 in Figure 2.6) with respect to 

the chamber and provides the main pumping for the source region. TMP2 is backed by a Pfeiffer 

DUO 5 rotary vane pump (not shown in Figure 2.6). The roughing pressure is monitored by an 

Edwards APG-M-NW25 Pirani ion gauge and the pressure in the source region is monitored by a 

Granville Phillips model 354 dual filament ion gauge which is mounted into one of the 2-3/4” 

ports. In one configuration, gaseous samples are introduced at a rate of 10 Hz by an R.M. Jordan 

C-211 pulsed valve mounted horizontally to the source region on a 6” flange, which is triggered 
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by the computer. Ions are detected by a dual microchannel plate detector assembly and the 

resulting signal is amplified by a Minicircuits ZFL-500 wideband (0.05 to 500 MHz) amplifier. 

The resulting signal is raw time structured data that is converted into a digital signal via a time-

to-digital converter (TDC) designed by PCB of London, England. 

 

Figure 2.6. Glass bubbler with 10 µm porous frit 

The converted data is managed by a direct memory access (DMA) system that allows 

certain hardware subsystems within the computer to access system memory independently of the 

central processor, and feeds data into LabView for analysis.  Preprocessed data is used for online 

monitoring of signals and optimization. A final ascii data file containing the time, mass, and 

count intensity data can be saved for offline analysis at any time. 

2.6.3.1. Chemical ionization. In order to obtain chemical kinetic and thermochemical 

information from gas phase reactions, a special ionization and ion transport method is needed 
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that exploits the use of ions with favorable proton affinities which will allow for negative ion 

proton transfer reaction (see Table 2.2). The following is a description of the necessary 

components to achieve this and how they couple to the RTOF system.   

The chemical ionization is achieved by first generating the reagent ions that then react 

with neutral molecules in what is termed “ion-molecule” reactions.  Depending on the 

thermochemistry of the reactants, certain ion-molecule reactions are kinetically and/or 

thermodynamically favorable over others, which gives the method the necessary selectivity 

needed to ionize certain species and not others.  The acetate ion is a suitable candidate for 

probing for many trace organic acids and particularly the carboxylic acids.  The acetate ions are 

produced by bubbling about 200 standard cubic centimeters (sccm) of dry nitrogen through 

acetic anhydride (C4H6O3, Fischer Scientific, 99.5%) via 1/8 inch PFA Teflon tubing (Fisher 

Scientific). The custom designed bubbler (Quark Glass Inc.) is shown in Figure 2.6. This creates 

a steady flow of acetic anhydride vapor which is then “soft” ionized by alpha particles from a 

Polonium-210 radioactive source (shown and described in greater detail below). The flow is 

controlled by Sierra Instruments, model 100CL mass flow controllers. The neutral reagent gas is 

produced and its concentration regulated by the custom diffusion cell (Quark Glass Inc.) shown 

in Figure 2.7. 

The neutral reagent is carried by another 2 standard liters per minute (slpm) of nitrogen 

gas into a switching manifold (shown in Figure 2.8) where it can be controlled to inject the 

neutral species at 1 of 5 positions along a custom built flow tube.  The manifold also has a 

second inlet where a third species may be added such as water vapor, allowing ion-molecule 

clustering effects to be measured. 
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Figure 2.7. HNCO production cell 

 

Figure 2.8. Gas switching manifold: The right side is the schematic (in inches) of the graphical 

image on the left 
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2.6.3.2. Soft ionization. The reagent ions are generated by flowing acetic anhydride 

(C4H6O3) across a high energy alpha particle emitting source. The since the acetic anhydride is 

carried by nitrogen gas, dissociative electron attachment (Pariat & Allan, 1991) takes place after 

acetic anhydride bonds are broken (CH3–C(O)–O–C(O)–CH3).  This yields the desired acetate 

ion, CH3COO-. 

The alpha source is shown in Figure 2.9 and is a P-2031 Alpha ionizer (NRD Inc.) 

commercially used as a static removal product. The source of alpha particles is a polonium-210 

(210Po) embedded foil, which has an activity of 20 mCi (740 MBq) and a half-life of 

approximately 138 days. The P-2031 is designed to deliver high volumes of ionized compressed 

gases at near-ambient pressures and is placed in-line with the gas flow. The output flow of acetic 

anhydride vapor is coupled to the ionizer via ¼ -inch PFA Teflon tubing and a SS ¼ inch 

Swagelok to female NPT adapter. The output of the ionizer is connected to an NPT to KF-50 

flange adapter (MDC, Inc.) at the entrance of the flow tube which is at the right side of Figure 

2.10. 

 

Figure 2.9. Polonium-210 ionization source and efficiency curve (image courtesy of NRD Inc.) 

 



43 

 

 

Figure 2.9. (cont.) 
 

 
 
Figure 2.10. Custom-built flow tube reactor 

 2.6.3.3. Flow tube. The origin of the flow tube method is discussed by Carleton J. 

Howard (Howard, 1979). Howard also discusses the use of the flow tube in obtaining kinetic 

measurements. Our flow tube, pictured in Figure 2.10, is custom built (Atom Sciences, Inc.) and 

is designed to couple to the TOF MS (Figure 2.5) as close to the repeller region as possible.  Ions 

Ionizer connects here to the KF-50 
flange 
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which have undergone the proton transfer reaction within the flow tube are differentially pumped 

and focused into the first stage of the TOF using an Einzel lens, where the first element is the 

pinhole that provides the differential pumping. 

The acetate ion and carrier gas is the main flow and enters the flow tube at the right in the 

center of the flange, while the neutral reagent gas enters one of 5 mixing inlet points along the 

flow tube. This allows for 5 different reaction times to be measured, which is the key to kinetic 

measurements. 

The ion and carrier stream is the major component in the flow tube and thus serves to 

define the physical properties of the gas stream, e.g., pressure, flow velocity, heat capacity, 

thermal conductivity, viscosity, etc.  The neutral species is only flowed in at about 10 sccm.   

2.6.4. Results. After much troubleshooting and reconfiguration, the NCAT RTOF system 

was prepared for negative ion detection.  In order to verify that the system was functioning in 

negative ion mode, electron impact ionization was used to generate the first negative ion 

spectrum from a sample of ambient air. The resulting spectrum is in red as shown in Figure 2.11 

(the blue spectrum is the instrument background or negative ion baseline). This spectrum was not 

calibrated to specific masses, but several peaks can easily be seen in red that are well above the 

minimum pressure background level shown in blue. The background was of the same collection 

time and is negligible compared to the negative ion signal. This shows the excellent signal to 

noise ratio for electron impact in the negative ion mode. The peaks seen below 5 amu are not 

from ions but from electronic interference in the repeller due to a combination of voltage or time 

settings. Though it cannot be certain since no mass calibration could be performed, the most 

probable identity of the main peak is OH- (m/z =17). 
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Figure 2.11. First negative ions detected on the NCAT RTOF-MS from electron impact 

ionization 

As mentioned above in the experimental sections, attempts were made to detect ions in 

the spectrometer from “soft” ionization via CIMS.  There was difficulty detecting the negative 

reagent (acetate) ions. Therefore, in order to verify that reagent ions were being created by alpha 

particle ionization from polonium-210 radioactive decay, an attempt was made to measure the 

ion current at the flow tube pinhole exit of the flow reactor. This would at least indicate that 

acetate ions were being created and available for proton transfer reactions. This was 

accomplished by connecting a digital volt meter to a BNC feed through connector electrically 

connected to the pinhole for biasing potential and grounding it to the instrument chassis. The 

results are shown in Figure 2.12 and one can see not only the proof of ion production in the form 

of voltage (from the current as it passes thought the 1 MΩ resistance of the multimeter), but also 

the dependence of the ion production on the flow tube pressure. The optimal operating pressure 

can easily be extracted from a similar graph when the final instrument parameters are chosen. 

The dip in voltage at ~15 torr is reproducible, though its cause is presently unknown. 



46 

 

 

Figure 2.12. Ion current produced at the flow tube/TOF interface from soft ionization (polonium 

source) 

The system was eventually determined to be reasonably sensitive enough to transport soft 

ions from the flow tube to the time-of-flight source. Only under extreme pressure conditions 

were ambient ions able to be detected via soft ionization. At approximately 5x10-4 torr in the 

TOF source region, the data in Figure 2.13 shows that a reproducible spectrum of ambient 

oxygen and nitrogen and a slight detection of water vapor could be detected. But this is not 

sufficient for detection of trace gas concentrations. 

 
 
Figure 2.13. Positive ions from soft ionization source 
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 2.6.5. Conclusions. This section provides in detail the technical problems encountered in 

using the RTOF, lessons learned, and recommendations for improving the system. 

Sensitivity for EI ionization is typically in the ppm range (ignoring the sensitivity of the 

mass analyzer), which is problematic under laboratory conditions and makes measurements 

impossible under atmospherically realistic concentrations. 

2.6.6. Electrical issues and improvements. 

2.6.6.1. Repeller plate. There have been several electrical issues associated with the 

Atom Sciences NCAT RTOF-300 Mass Spectrometer.  Many of these have been associated with 

operating in negative ion mode.  Though this system was allegedly constructed to operate in 

negative ion mode, the needed alterations have shown that his is not the case.  One of the first 

issues dealt with the repeller plate. Initially, the output of Counter 1 (J9, 6602) was connected 

(via a driver) to both the repeller pulser trigger and to the Start on the TDC. The high voltage 

output of the repeller pulser follows the +HV input when the trigger is high and it follows the –

HV input when the trigger is low. When positive ions are being analyzed, –HV is set to ground 

potential and +HV is set to a positive, user specified voltage.  

In the instrument’s initial configuration, in negative ion mode, +HV is set to ground 

potential and –HV is set to the negative voltage specified by the user. This negative ion case is 

inappropriate for acquiring mass spectra of negative ions because the repelling voltage (typically 

-200 V) is on almost all the time. That is, it was necessary for proper operation for the pulse to be 

a mirror image of positive operation, so that ions are admitted or generated while the voltage is 

grounded, and thrust into the flight tube during the pulse. In this configuration, however, external 

ions are prevented from entering the repeller region or constantly entering the flight tube when 
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generated internally. Only during the pulse, when the repeller is grounded, are ions allowed to 

accumulate. 

2.6.6.2. Electrical discharges and the detector. When the X-Y board was damaged for 

the first time, an analysis of the circuit suggested an issue with the detector assembly. To 

diagnose these issues, the detector assembly was removed and various resistances were checked.  

The resistance across each resistor was consistent with the listed in the circuit diagram in Figure 

2.14. There was no obvious damage to the detector, no burrs where an arc could take place, and 

no burn marks due to arcing. There was a slight blemish on the face of the MCP, but it was very 

small. There were also two capacitors that were not indicated in the circuit diagram. They were 

class 2 ceramic dielectrics and were 4.7 nF ± 20% (part number 564R60GAD47), and are shown 

in the revised circuit diagram shown in Figure 2.14. These capacitors should have been able 

handle 10.5 kV (at atmospheric pressure) before arcing across the leads.   

 

Figure 2.14. The revised circuit diagram for the detector assembly 
 
 It was later found, however, that the 4.7 nF capacitors were not appropriate for the 

voltages that were being applied to them. The detector is always biased positive (1800-2000 V) 

relative to the flight tube in either ion mode. In positive mode, the flight tube is ~3 kV below 

ground, making the detector fairly close to ground potential. However, the discharge issues were 
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more prevalent in negative ion mode, because the flight tube is ~3 kV above ground, making the 

detector voltage ~5 kV above ground potential. Given that these capacitors were inappropriate to 

begin with, and were later internally altered by arcing, they presented the easiest path to ground. 

The reason the preamplifiers were damaged was because they were sensitive to any discharge to 

ground within the system. It is worth noting that damaged preamplifiers are evident by a 

significant decrease or total loss of signal. 

The second time the X-Y board was damaged was, and still is, somewhat mysterious. It 

occurred during negative ion mode, though no arc was evident. In fact, the preamplifier was 

undamaged. A postmortem of the board suggested an arc directly to an X-Y plate. This is 

strange, since the closest elements to the plates inside the instrument are the flight tube and the 

tube lens. The X-Y plates are biased only a few volts away from the flight tube (indeed, it is 

biased against it). The tube lens, though not biased against the flight tube, is not likely the cause 

because it is typically within 500 V of the flight tube.  This suggests there could be an issue with 

the wires between the feedthroughs and the ion optics, though not the cables external to the 

vacuum system.  Though some damage was later noticed on the extraction grids (which are 

grounded) in the source region, they are too far away from the X or Y plates to have any effect 

(see Figure 2.14). Since this time, damage to preamplifiers has been very infrequent, though not 

all together absent. One contributing factor to the discharge issue may be the practice of 

removing the +15 V supply and the output from the preamplifier while it is not in operation. 

However, since the X-Y board was damaged without an adequate cause being determined, the 

instrument has largely been relegated to positive ion mode. Should acetate anion or other 

negative mode ion chemistry be used, further efforts would be needed to determine the sources 

of arcing, both internally and externally. 
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 2.6.6.3. Feedthrough mapping. The high voltage feedthroughs were also checked and 

mapped to elements within the spectrometer. The diagram in Figure 2.15 shows the assignments 

and their feedthrough numbers in brackets. All elements were found to be independent of each 

other (>1000 MΩ resistance) except the flight tube to ground, which only read 140 MΩ. It is 

likely that this reading was due to it being wired to the reflectron and the reflectron feedthroughs 

still attached. 

 

Figure  2.15. The assignments of HV feedthroughs to various elements within the RTOF 

 2.6.6.4. Detector noise. Since the mass spectrometer’s installation, it has been noticed 

that there are noise spikes in the detection system. These are present at specific masses (or at the 

same time during each detection cycle), and they are independent of the presence of ions (i.e. 

they are there when the EII filament is off). The locations and abundances of the noise peaks 

change with the repeller repetition rate, which are at a minimum at 20 kHz, and suggest a 

relationship between the detector and repeller. The likely cause is the proximity between the 

repeller wire and the detector. The repeller feedthrough is in the flight tube region, and the wire 

goes very close to the detector, goes through the ceramic holding the flight tube, through 

grounded mesh in the source region, and connects to a screw that holds the repeller plate to the 

grounded housing of the repeller region. The conflate flange that holds the repeller feedthrough 

should be moved to the source region, the hole in the grounded mesh should be closed, and the 
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wire should take a much more direct route from the feedthrough to the repeller plate. This would 

result in much less RF noise from the repeller reaching the detector, since there would be nothing 

but grounded elements between the two. 

2.7. NOAA ESRL Equipment 

2.7.1. NI-PT-CIMS. Another instrument used in the efforts of this thesis is the negative 

ion proton transfer chemical ionization mass spectrometer (NI-PT-CIMS). It is an instrument that 

was designed at the NOAA Earth Systems Research Laboratory to sample trace organic acids in 

the troposphere (Figure 2.16). It was described thoroughly by Veres et al. in 2008 (P. Veres et 

al., 2008). In terms of the work here, it is used in both ground based field measurements and 

laboratory measurements of important biomass burning products.  Those applications and results 

will be described in the next section. The instrument scheme is shown in Figure 2.16. Ambient 

air is sampled into the NI-PT-CIMS instrument by 0.25” outer diameter PFA Teflon tubing, 

which is heated to an external temperature of 75ºC to minimize inlet effects. The total inlet flow 

rate is about 2 slpm. The acetate ion is synthesized by dissociative electron attachment as 

mentioned above.  The sample air is drawn into the flow tube (32 torr) and mixes with the 

acetate reagent ions.  Ion-molecule reactions occur over the entire 12 cm length of the flow tube 

and the resulting analyte ions are then accelerated through the collisional dissociation chamber 

(CDC) via an electric field of approximately 25 V-cm-1.  The CDC is maintained at 0.15 Torr 

with a molecular drag pump and molecular collisions in the CDC dissociate weakly bound 

cluster ions, such as those from the inescapable water vapor CH3C(O)O-(H2O)n.  Eliminating 

clusters is more important here than in the RTOF since the RTOF has much better resolving 

power than a quadrupole mass spectrometer.  An electron multiplier at a pressure less than 7x10-5 

Torr is used to detect the ions. 
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Figure 2.16. NI-PT-CIMS hardware (image courtesy of P. Veres) 

2.7.2. Mobile calibration system. It is necessary to zero and calibrate the instrument for 

quality assurance and to be able to interpret the data in terms of concentration. Figure 2.17 is a 

schematic diagram of the mobile organic carbon calibration system (MOCCS) (Veres et al., 

2010) for the generation and absolute measurements of calibrated VOC mixtures in air that is 

relatively inexpensive and easy to set up. The MOCCS combines the production of standards 

using permeation or diffusion sources, quantitative catalytic conversion of carbon containing 

species to CO2, and CO2 measurement. Its effectiveness will be demonstrated in the next chapter 

where field measurements are calibrated. 

 
 
Figure 2.17. Mobile organic carbon calibration system (MOCCS) 
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 2.7.3. Heterogeneous reaction production and delivery system. Both mass 

spectrometer systems mentioned above can be placed in line with the isocyanic acid gas (HNCO) 

production and delivery system shown in Figure 2.18 in order to measure heterogeneous (gas-

liquid) reactions. A gas phase species is generated in the source by heating and it is then injected 

into an aqueous solution within the bubbler.  Hydrolysis and solubility constants can be extracted 

from carefully crafted experiment where temperature, flow rate, and solution acidity are varied. 

 
 
Figure 2.18. Schematic of system built to make the first solubility measurements of HNCO 
 
2.8. NOAA ESRL CSD Experimental Work 

2.8.1. CalNex 2010 field campaign. The negative-ion proton-transfer chemical-

ionization mass spectrometer (NI-PT-CIMS) described above was deployed in the field to 

conduct ambient measurements as part of a field study that sought to get a better understanding 

of the nexus of air quality and climate change. Gas-phase acids (nitric, formic, acrylic, 

methacrylic, propionic, and pyruvic/butyric acid) were measured using the NI-PT-CIMS in 

Pasadena, CA as part of the CalNex 2010 regional field campaign and reported by Veres et al. 
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(2011). Organic acid concentrations ranged from a few parts per trillion by volume (pptv) to 

several parts per billion by volume (ppbv), with the largest concentrations observed for formic 

and propionic acids. Figure 2.19 shows the time series measurements from the NI-PT-CIMS over 

the duration of the campaign in California Institute of Technology (Pasadena, CA).  Figure 2.20 

shows the diurnal variations of HCl and also shows some night time HONO production. 

 

Figure 2.19. Diurnal concentration measurements (ppb) of acids from the CalNex 2010 field  
 
campaign 



55 

 

 

Figure 2.20. Time series measurements of HONO, formic acid, and HCl using the NI-PT-CIMS 

during 5/16/10 

2.8.2. HNCO solubility. HNCO is a moderately weak acid in aqueous solution (pKa=3.7) 

(D.J. Belson & A.N. Strachan, 1982) and exhibits relatively slow hydrolysis that is pH-

dependent (Jensen, 1958). The partitioning of HNCO to aqueous solution at low-concentration, 

i.e. Henry’s Law solubility, H (M/atm), has apparently not been measured previously. We have 

measured H for isocyanic acid in an aqueous buffer at pH=3.0±0.1, and room temperature 

(T=25±1°C) and liquid volume of 25 ml. 

Figure 2.21 shows the data for a full experimental sequence where the flow rate is varied.  

It shows the raw data which first measures the instrument background. Then maximum available 

concentration of HNCO is measured, followed by a series of (near) saturation and purge 

sequences that are made at the various flow rates. The linear decay on the log scale is easily 

noticeable and is the only data used in the calculation.  Instrument background data are collected 

to characterize the minimum instrument signal which is subtracted from the measurement data. 
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Figure 2.21. HNCO gas stripping experiments; each cycle is at a different (increasing) flow rate 

 
From each cycle, a sample of the log-linear portion of each exponential decay of the 

HNCO concentration (see Equation 2.20) can be used to extract the slopes at different flow rates 

from the raw data.  Figure 2.22 displays all of the slopes from the various flow rates.  These 

slopes are from the value in parenthesis in Equation 2.32. 

The lognormal plot of the relative HNCO concentration against time (Figure 2.22), 

results in a linear relationship.  A linear fit of each cycle produces the hydrolysis rate constant 

(from the intercept) and Henry’s Law constant (from the slope), using Equation 2.20 in section 

2.5.2. 

The decrease in gas phase HNCO, exiting a saturated liquid sample, was measured for a 

range of volume flow rates to liquid volumes (Ф/V) (Figure 2.23).  For a system in which the 

mass transfer between the liquid and gas phases is rapid, the relationship in Equation (2.29) 

holds: 
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            (2.29)
 

where Ct/Co is the relative concentration in the gas phase exiting the reactor, Ф is the volumetric 

flow rate, V is the liquid volume, R is the ideal gas constant, T is temperature, k is the first order 

loss rate in solution, and t is the time. The slopes of these exponential curves vs. the flow-

rate/liq.-volume yield the Henry’s coefficient (Figure 2.23). 

 

Figure 2.22. Flow rate sensitivity in the gas stripping process 
 

 

Figure 2.23. Data revealing Henry’s Law and hydrolysis rate constants of HNCO at pH=3 and 

room temperature (T=25±1°C) 
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The first order loss rate coefficient (k) of HNCO in aqueous solution was also measured. 

Results show that at a pH of 3.0 ± 0.1 and room temperature (T = 25 ± 1 °C), H was found to be 

21.1 ± 2.7 M/atm and k was found to be 6.3 ± 1.6 x10-4 s-1. 

2.8.4. Conclusion. The CalNex results provide direct evidence for rapid photochemical 

production of organic acids in urban atmospheres.  Observations with a fast time response such 

as with the NI-PT-CIMS are necessary to identify the photochemical production mechanisms 

responsible for the high organic acid concentrations observed, and then they should be 

incorporated into existing photochemical models for better accuracy. Organic acid 

concentrations correlated well with HNO3 and Ox (odd oxygen Ox = O3 + NO2) measurements 

demonstrating that the dominant source of organic acids in Pasadena is the photochemical 

production from urban emissions. 

We measured the Henry’s Law solubility of HNCO at pH = 3, and using the expression 

for solubility of a weak acid, estimate HNCO to be highly soluble at physiologic conditions, pH 

= 7.4.  The HNCO solubility measurement has shown that it is highly soluble in the range of the 

human body’s pH level.  If concentrations of HNCO from biomass burning and other sources are 

significant, there is a great risk for human health effects, since it has been shown that HNCO 

causes protein carbamylation (Beswick & Harding, 1984) and can cause arthritis and have other 

negative impacts. 

After the solubility measurement was made we were able to make an estimate of the 

lifetime and published a full study (Roberts et al., 2011) of the potential risks (arthritis, cataracts, 

and atherosclerosis).  People are constantly exposed to smoke from wildfires, tobacco, from 

biomass burning, or from coal combustion used in cooking and heating (Crutzen & Andreae, 

1990).  The production of HNCO is expected to increase due to industrial and economic changes.  
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Given the current levels of exposure in populations that burn biomass or use tobacco, the 

expected growth in biomass burning emissions with warmer, drier regional climates, and planned 

increase in diesel SCR controls (Zhao, Hu, Hua, Shuai, & Wang, 2011), it is imperative that we 

understand the extent and effects of this HNCO exposure. 

The results of the experimental work mentioned above in the area of trace gases produced 

from biomass burning, and isocyanic acid in particular, have lead to an interest in the specific 

investigation into the lifetime of HNCO given the potential health effects related to it. The next 

chapter is an exploration into the characteristics of HNCO as it traverses the troposphere through 

clouds via a 1-dimensional numerical model. This is critical to the research community in not 

only providing new data for regional and global models, but also in planning future airborne field 

campaigns. Airborne HNCO measurements have not been conducted at the time of this 

publication. The lifetimes of HNCO will be reported for various situations, which are necessary 

given the enormous number of parameters that go into assessing a chemical’s risk in the 

atmosphere. 
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CHAPTER 3 

Cloud Chemistry Modeling—Heterogeneous Uptake of HNCO 

3.1. Introduction 

In order to adequately describe the aqueous chemistry of HNCO and any modification in 

its gas phase chemistry in the atmosphere, it is necessary to know how clouds affect the 

chemistry and transport of these species.  A description of clouds, cloud chemistry, cloud 

microphysics, aerosol interactions, and the modeling method is given in this chapter.  It will 

become evident that chemical processing of HNCO in clouds will be difficult to characterize due 

to numerous variables involved and the wide range of values that the variables needed to 

accurately describe the system. 

3.2. Clouds 

The World Meteorological Organization (WMO) defined a cloud as an aggregate of 

minute, suspended particles of water or ice, or a combination of both, that are in sufficient 

concentrations (Holton, Curry, & Pyle, 2003). Clouds are visible accumulations of water droplets 

or ice crystals that migrate through the Earth’s troposphere, moving with the wind.  Clouds form 

when water vapor condenses onto microscopic dust particles known as cloud condensation nuclei 

(CCN). Varying pressures, temperatures, and relative humidity in the troposphere and at the 

Earth’s surface can cause water to constantly transfer between its gaseous, liquid, and solid 

states.  Clouds, fogs, rain, dew, and wet aerosol particles are forms of this water. Condensed-

phase particles play a major role in atmospheric chemistry, atmospheric radiation (reflection and 

absorption for example), and atmospheric dynamics. 

Clouds come in many different forms, and their characteristics reveal the meteorological 

properties of the atmosphere in which they were born.  In the troposphere, four groups of clouds 

are recognized, depending on the altitude of their bases and their vertical evolution: low level, 

http://www.enchantedlearning.com/subjects/astronomy/glossary/indext.shtml#troposphere
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midlevel, high-level, and clouds with vertical development (see Table 3.1 for the groups and 

types). These groups are also subdivided depending on their structure. Figure 3.1 is a simplified 

depiction of where the different clouds are and their structure. 

Table 3.1 

Major cloud groups and types 

Cloud Group Cloud Type 

High clouds Cirrus 
  Cirrostratus 
  Cirrocumulus 
  
Middle clouds Altostratus 
  Altocumulus 
  
Low clouds Stratus 
  Stratocumulus 
  Nimbostratus 
  
Clouds with vertical development Cumulus 

Cumulonimbus 
 

 

Figure 3.1. Cloud altitudes. Image courtesy of http://scientificmadness.blogspot.com/2011/07/ 

cloud-identification.html  
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Clouds exist very temporarily; no cloud exists for more than a few hours, and most of the 

small clouds in the troposphere exist for only a few minutes. But it is difficult to define what 

water concentration or liquid water content defines a cloud type, so a wide range of droplet sizes 

constitutes a cloud and ice crystals need to be accounted for as well.   

 For some scientists, a 50 mm diameter drop represents a ‘drizzle’ droplet likely formed 

via coalescence; but others define a ‘cloud’ droplet based on its settling velocity (Warner, 1969) 

for instance, the further that an observer is from falling precipitation, the more it appears to be a 

‘cloud’ due to perspective. Many of the higher ‘clouds’ above us, such as cirrus and altostratus 

are composed mainly of ice crystals and snowflakes that are settling toward the Earth, and would 

not be considered ‘clouds’ by an observer inside them, but rather a light snowfall.  

Some clouds provide a means of transporting constituents found primarily in the 

boundary layer to the free troposphere if they are part of the convective system. Because clouds 

scatter solar radiation the actinic flux, and consequently chemical rates for photodissociation, can 

be altered above, below, and in clouds (Barth et al., 2003).  The physics of the interactions 

between cloud particles can also affect the chemical production and the distribution of chemical 

species.  The behavior of isocyanic acid in clouds is the focus of this modeling work. 

3.3. Cloud Chemistry 

Even though clouds occupy a small fraction of the total volume of the troposphere, they 

play a significant role in the chemical processing of the atmosphere, for example, in the global 

hydrologic cycle (Randall, Harshvardhan, & Dazlich, 1991) and also in influencing atmospheric 

radiative transfer and the overall albedo (Holloway & Manabe, 1971). Clouds interact with 

numerous chemical species including the focus of this chapter, isocyanic acid (HNCO).  

Together with gases and aerosols, clouds make up part of the complex multiphase system (gas, 

aqueous, surfaces, etc.) that is our atmosphere. Clouds are both engines for the production of 
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new chemical species and as “scrubbers” for particle and trace gas removal (especially HNCO) 

by wet and direct deposition since they are captured by the surface of cloud and fog droplets and 

the interior of aerosols (Ravishankara, 1997). 

Figure 3.2 is a pictorial overview from of the cloud/particle/trace gas atmospheric system.  

Isocyanic acid and other trace gases are perpetually forming, reacting, and depositing in the 

atmosphere. It will be shown later that HNCO does not significantly react in the gas phase 

chemically or photochemically but it does have condensed phase reactions due to its high 

solubility. 

 

Figure 3.2. A schematic representation of the multiphase cloud-particle-trace gas system in the 

atmosphere. Included are the sink processes of dry and wet deposition, particle and gas 

scavenging by cloud drops, chemical reaction, and precipitation formation in a mixed-phase 

(ice–liquid water) cloud (reproduced from Collett & Herckes, 2003) 
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Clouds and fogs interact with both aerosol particles and trace gases.  The incorporation of 

particles and gases into cloud drops are key steps in determining the initial chemical composition 

of the cloud which are necessary in order to determine modeling boundary conditions and cloud 

composition.   

Cloud drops form by condensation of water vapor onto a subset of particles called cloud 

condensation nuclei (CCN), a process also known as heterogeneous nucleation (Fletcher, 1958).  

In the absence of CCN, clouds would not readily form since extreme supersaturations would be 

required for the homogeneous nucleation of water vapor (water to water coalescence).  

Particles that have deliquesced (i.e. acquired water from the surroundings via adsorption) 

are referred to as haze particles. As the humidity increases above what is known as the relative 

humidity of deliquescence, haze particles can take on additional water as humidity increases in 

order to maintain equilibrium with the partial pressure of water vapor in the atmosphere.  The 

equilibrium partial pressure of water vapor above a haze drop depends on the drop size and its 

composition.  Increased drop curvature raises the equilibrium water vapor pressure via the 

Kelvin effect (droplet growth and curvature radius relationship, as shown in equation 3.1).  

Increased drop solute content such as HNCO lowers the equilibrium vapor pressure by 

displacement of water molecules near the drop surface. The combined effects of drop curvature 

and solute content are described in aerosol theory (Danckwerts, 1951) and not described here but 

have a close relationship. 

Droplet growth can be described using an equation developed in 1970 by Fukuta and 

Walter (Fukuta & Walter, 1970). It was known as the Kelvin effect and accounted for the 

simultaneous growth and evaporation of what they termed hydrometeors. Essentially the Kelvin 
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effect is the increase in vapor pressure due to an increase in the curved surface competing with 

the addition of solute that increases the vapor pressure.  The governing equation is: 

0

2
ln m

VP

P rRT

γ
=

 
 
           (3.1) 

where P is the vapor pressure, P0 is the saturated vapor pressure, γ is the surface tension, Vm is 

the molar volume, R is the gas constant, r is the hydrometeor radius, and T is the temperature.   

Activated drops are those that have reached a critical point of supersaturation described 

by the Kohler theory (Corrigan & Novakov, 1999). Growth of activated drops is limited 

primarily by the availability of water vapor.  Haze particles which do not reach their critical 

supersaturation will not activate and will stay in equilibrium with the surroundings (Collett & 

Herckes, 2003). 

In most clouds, particles as small as 0.1 micron in diameter can activate and grow into 

cloud drops (Collett & Herckes, 2003).  In other cases, such as particles with low supersaturation 

values and/or high particle concentrations, the minimum particle size activated may be 0.5 to 1 

microns.  CCN are typically thought of as being comprised of mainly sulfate particles, sea salt 

particles, and, potentially nitrate particles.  Studies have revealed that many carbonaceous 

particles are also capable of acting as CCN (Rivera-Carpio et al., 1996).  Much more work is 

needed to understand interactions of carbonaceous particles with fogs and clouds. 

 3.3.1. Isocyanic acid in cloud chemistry: Atmospheric removal. HNCO is one very 

interesting carbonaceous species with several sources and known health effects at trace levels 

and pH levels similar to the human body.  Though there is some debate in whether it is organic 

or inorganic, it is generally and most recently given the inorganic label (Roberts et al., 2010, 

2011; Veres et al., 2010). 
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 Trace organics are generally cleaned from the atmosphere by the hydroxyl radical (OH) 

(Sun & Saeys, 2008).  HNCO is essentially stable with respect to OH reactions in the gas phase 

(Tsang, 1992), with lifetimes on the order of several decades.  HNCO is also not expected to be 

affected by photolysis or photodisintegration due to the fact that it has very low absorption in the 

visible to near-UV (Brownsword, Laurent, Vatsa, Volpp, & Wolfrum, 1996).   

 This leads to the conclusion that the relevant loss processes of HNCO is going to be 

heterogeneous uptake into one of the aqueous phases (aerosols, fogs, clouds, precipitation, and 

liquid water and deposition surfaces). The cloud chemistry that is involved in HNCO uptake is 

listed in the series of reactions below, starting with the actual uptake of the gas-phase HNCO 

into the aqueous phase (cloud): 

( ) ( )g aqHNCO HNCO→←     (3.2) 

where it should be noted that this is an equilibrium balanced equation.  Once in the cloud, HNCO 

undergoes ionic dissociation 

( ) 3 .aqHNCO H O NCO+ −→ +←     (3.3) 

From here an equilibrium constant Keq can be expressed as 

[ ][ ]
.

[ _ ]eq

H NCO
K

HNCO aq

+ −

=      (3.4) 

This equilibrium expression will be used to calculate the pH of cloud later in this chapter.  

The non-equilibrium reactions in the aqueous phase that dictate the loss are: 

2 3 2HNCO H O NH CO+ ⇒ +     (3.5) 

3 4 2HNCO H O NH CO+ ++ ⇒ +     (3.6) 

 



67 

 

2 3 32NCO H O NH HCO− −+ ⇒ +     (3.7) 

and they collectively govern the rate of hydrolysis of HNCO. 

3.4. Cloud Microphysics 

3.4.1. Introduction. Cloud microphysics a sub-branch of atmospheric sciences 

concerned with the many particles that constitute a cloud (Albrecht, 1989).  Relative to the cloud 

as a whole, the individual particles exist on the ‘microscale,’ and the microscale ‘structure’ of a 

cloud, a specification of the number concentrations, sizes, shapes, and phases of the various 

particles, is important to the behavior and lifetime of the cloud. This scale is where gas phase 

products like HCNO react. The abilities of clouds to produce rain or snow, generate lightning, 

and alter the radiation balance of the earth through albedo (Twomey, 1977) is dictated by their 

microstructures. Cloud physicists, due to the limitation of instrumentation, attempt to 

characterize the wide range of microstructures theoretically through modeling and simulation 

(Fowler, Randall, & Rutledge, 1996; Khairoutdinov & Kogan, 2000). 

Figure 3.3 is from the cloud microphysics section written by (Lamb, 2003) of the 

Encyclopedia of Atmospheric Sciences. It shows the range of liquid drops found in clouds 

(roughly to scale). The terminal fall speeds increase with the size of the species, and the 

velocities typically determine how the categories are distinguished (though this is obviously not 

precise). This chapter will be limited to the cloud droplets ~10 µm and smaller.  

When only liquid-phase particles are present in a cloud, it is typically called a warm 

cloud. In the “mixed-phase” region of a cloud, both the liquid and solid phases of water may be 

present simultaneously. There is a metastable phase where liquid and solid water co-exists and is 

known as “supercooled” clouds. The relative abundance of each phase in a given cloud depends 

on the prevailing ambient conditions and the microphysical processes active throughout the 
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lifecycle of the cloud.  Warm clouds and supercooled clouds will be described briefly since they 

are a focus of a portion of the modeling work presented in the following chapters. 

 

Figure 3.3. Various categories of liquid drops found in clouds. The indicated drop radii (R) are 

drawn roughly to scale, as are the arrows representing the terminal fallspeeds (v) of the various 

drop categories. ‘CCN’ represents a ‘cloud condensation nucleus,’ a solution droplet that serves 

as the initial site of condensation. The large raindrop is shown distorted to represent the effect of 

a large dynamic pressure on its underside (Lamb, 2003) 

3.4.2. Water vapor release from biomass burning—Pyro-cumulus clouds. The heated 

air in a biomass wildfire rises due to convection, sending water vapor released during 

combustion into the atmosphere.  There can be intense updrafts of warm air into cooler air, and 

horizontal winds which could shape and drive the formation and dynamics of pyro-cumulus 

clouds. 

The moisture content from fresh vegetation contributes significantly to the water vapor in 

biomass burning emissions (Parmar, Welling, Andreae, & Helas, 2008), and its influence on the 
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cloud microphysics of fire plumes and pyro-cumulus clouds need to be evaluated. This is the 

focus of one phase of the modeling results mentioned later. Water vapor production from 

biomass burning is generally considered to have little effect on atmospheric water vapor 

concentration. On a local scale, however, large open fires can trigger cloud formation and may 

even lead to thunderstorms (Fromm, Tupper, Rosenfeld, Servranckx, & McRae, 2006).  It is not 

clear what role water vapor released from biomass combustion plays in the atmospheric 

conditions above the fire (Potter, 2005; Trentmann et al., 2006). This is therefore an attempt to 

model the interaction of HNCO in clouds under these pyro-cumulus conditions. 

Figure 3.4 is a photo of a smoke plume produced from a prescribed fire about 100 

minutes after ignition.  It depicts the obvious merging and influence on normal cumulus clouds 

in the lower troposphere. Figure 3.5 (Trentmann et al., 2006) shows the temperature and 

humidity dependence due to altitude. These will prove to be critical parameters in the model. 

 

Figure 3.4. Photograph of the smoke plume produced from the Quinault prescribed fire at 1250 

LT, at about 100 min after the ignition (photo taken by R. Ottmar, reproduced from Kaufman et 

al., 1996) 



70 

 

 

Figure 3.5. Initial atmospheric profiles of the temperature (lower axis), relative humidity (RH) 

(upper axis), and wind speed (upper axis) up to an altitude of 1.5 km used in the model 

simulations. Above 320 m, aircraft measurements are used (Trentmann et al., 2006) 

 3.4.3. Supercooled clouds. Supercooled clouds exist at higher altitudes and lower 

temperatures in the upper troposphere (Cantrell & Heymsfield, 2005). These are clouds 

containing pure water droplets at temperatures considerably below the nominal freezing 

temperature of 0°C. Though the upper troposphere is generally characterized by homogeneous 

nucleation (Heymsfield & Sabin, 1989), meaning that mostly liquid water or ice constitutes the 

medium and does not require an aerosol with which to form. However, heterogeneous 

nucleation is where CCN can be the source of nucleation in the presence of ice and water 

(DeMott et al., 1998). At high enough concentrations such as from a biomass fire, isocyanic acid 

can be transported to the upper troposphere given that it only reacts in the aqueous phase, thus it 

needs to be modeled under such conditions. 
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 Figure 3.6, from the Cantrell review (Cantrell & Heymsfield, 2005), is a plot of both 

calculated nucleation rates for temperatures of upper tropospheric interest, along with actual 

experimental data from several laboratories.  The calculated nucleation rates are in reasonable 

agreement with the data for temperatures greater than -38°C.  At the lower temperatures the 

Pruppacher’s calculation is up to two orders of magnitude lower than the measurements, but at 

the moment it seems that the theories and their representations in models are adequate to predict 

homogeneous nucleation rates for water droplets in the atmosphere. Isocyanic acid will be 

modeled under cirrus cloud conditions in these temperature ranges, but the water content of 

nuclei in this region can vary and one has to question whether it is truly in a heterogeneous 

nucleation medium when supercooled. 

 

Figure 3.6. Calculated nucleation rates using data from several experiments. All of the data taken 

from experiments are from suspended or freely falling droplets (reproduced from Cantrell & 

Heymsfield, 2005) 



72 

 

3.5. The Cloud Box Model 

Chemical models are designed to give us a better understanding of atmospheric 

chemistry, and for predicting the future state of the chemicals such as HNCO in the atmosphere. 

A model contains different modules to treat processes such as gas-phase chemistry, photolysis, 

aqueous phase chemistry, and heterogeneous chemistry. In some cases even the emission and 

deposition of chemical species can be modeled.   

The most recent review of the state-of-the-art numerical modeling of cloud microphysics 

was conducted by Khain et al. (Khain, Ovtchinnikov, Pinsky, Pokrovsky, & Krugliak, 2000).  

They highlight the problem and limitations in the numerical models and gaps and uncertainty in 

the field of cloud microphysics.  For example, assuming contact nucleus size of 0.3–0.5 microns, 

a concentration of 105 to 106 m3 for nuclei active at -4oC was deduced.  The fact that the droplet 

size, water content, and acidity have such wide distributions in cloud microphysics makes it 

difficult to model gas phase species such as HNCO. 

The cloud chemical box model used here (Barth, 2006; Barth et al., 2003) is based on the 

chemical continuity equation (Equation 3.8), which expresses the rate of change of a chemical 

species concentration.  Integration of Equation 3.8 allows the concentration to be modeled 

forward in time, where C is the species concentration, P is the chemical production rate of C and 

L is the first order loss of C. 

dC
 = P - LC

dt
               (3.8) 

Figure 3.7 is modified from the numerical models section in Chipperfield (2003) and it 

depicts the overall picture of the chemical model and where the continuity equation is the central 

component. In this work, we are only concerned with the aqueous phase heterogeneous/aqueous 
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chemistry since HNCO does not readily undergo and gas phase chemical reactions or photolysis 

(Roberts et al., 2011). 

 

Figure 3.7. Modified components of an atmospheric chemical model (Chipperfield, 2003).  A 

multidimensional model will also include dynamical and radiation modules. These may be 

combined so that the chemistry is or is not coupled 

The model used here for aqueous-phase characterization of HNCO is a modified version 

of the Barth-EBI (Euler Backward Iterative) method (Barth et al., 2003).  Equation 3.9 is the EBI 

equation and it solves the continuity Equation (3.8)  

1,
n+1,i+1

1,

C = .
1

n n i

n i

C P t
L t

+

+

+ ∆
+ ∆                (3.9) 

In this equation, ∆t is duration of each timestep, n is the time step, n+1 is the next time step. C, 

P, and L are vector ensembles of individual species from Equation 3.8. 

According to Barth et al. (2003), since P and L depend on the concentrations of different 

species, a Gauss-Seidel procedure is followed where current concentrations from the previous 
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time step are used an initial guess to calculate concentrations at the new time step and first 

iteration. Then the new concentrations are used to calculate P and L for the next time step and 

iteration. If all the species converge (i.e., the concentration at consecutive iterations are nearly 

the same) then the species’ concentrations have been determined for the current time step, 

otherwise the process is repeated.  The Barth-EBI uses a 0.01% threshold convergence criterion 

to terminate the iterations for all species. 

The next section describes how HNCO and cloud acidity calculations were added to the 

Barth-EBI model to in order to generate a more accurate cloud modeled representation.  

Extended details of the calculations and programming involved can be found in the appendices. 

3.6. Methods and Results 

 In order to use the Barth-EBI model for modeling the fate and transport of HNCO in the 

troposphere, the following steps must be achieved: 

1. All relevant reactions in the gas and aqueous phase must be identified 

2. The cumulative rate constant must be calculated in each phase 

3. The Henry’s coefficient and heterogeneous uptake calculations must be made 

4. The model FORTRAN code must be modified accordingly 

5. Proper input parameters must be chosen and assumptions identified 

 Appendix A lists the coded species included in the Barth-EBI model.  As mentioned 

earlier in section 3.3.1 when the cloud chemistry was discussed, it was noted that there are not 

expected to be any gas-phase chemical reactions nor photolysis involved with HNCO.  

Comparing the rate constants in the Tables 3.2 and 3.3, it is apparent that the reactions occurring 

in the aqueous phase are much slower and therefore are the rate limiting steps in the process of 

heterogeneous uptake of HNCO from the gas to condensed phase. 
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 The next step is to identify all of the relevant reactions (both equilibrium and non-

equilibrium). It is also shown in section 3.3.1 that the equilibrium processes of HNCO are 

dissociation (3.3) and partitioning into the aqueous phase (3.2).  These equilibrium reactions do 

not contribute to any loss of HNCO. Three equations associated with the hydrolysis of HNCO 

(3.5 to 3.7) are the actual loss mechanisms of HNCO in the aqueous phase. Tables 3.2, 3.3, and 

3.4 list the gas phase, aqueous phase, and equilibrium reactions (respectively) that are taken into 

consideration in the code. Table 3.5 lists the additional aqueous phase reactions needed in order 

to characterize HNCO.  

Table 3.2 
 
Gas phase reactions in the Barth-EBI model 
 

Number Reaction k298 a -E/ R 

(G1)  O3 + hυ → O(1D) + O2  4.0 x 10-5 0 
(G2)  O(1D) + M → M+O3 2.9 x 10-11 -100 
(G3)  O(1D) + H2O → 2OH 2.2 x 10-10 0 
(G4)  HO2 +O3 → OH + 2O2 2.0 x 10-15 500 
(G5)  OH + O3 → HO2 +O2 6.8 x 10-14 940 
(G6)  HO2 +OH → H2O+ O2 1.1 x 10-10 -250 
(G7)  HO2 +HO2 → H2O2 +O2 ka =1.7 x 10-11b -600 
           kb =4.9 x 10-32 -1000 
  kc = 2.24 x 10-18 -2200 
(G8)  H2O2 + hυ → 2OH 9.2 x 10-6 0 
(G9)  H2O2 +OH → HO2 +H2O 1.7 x 10-12 160 
(G10)  NO + O3 → NO2 +O2 1.8 x 10-14 1400 
(G11)  HO2 +NO → OH + NO2 8.1 x 10-12 -250 
(G12) 
(G13) 
 
(G14)  

NO2 + hυ → NO + O3 
OH + NO2 +M → HNO3 +M 

 
HNO3 + hυ → OH + NO2 

9.4 x 10-3 
ko =2.5 x 10-30 (T/300)-4.4 
k∞ =1.6 x 10-11(T/300)-1.7 

6.5 x 10-7 

0 
 
 

0 
    (G15)  NO2 +O3 → NO3 +O2     3.2 x 10-17 2500 
    (G16)  NO3 + hυ → .92 NO2 + .08 NO + .92 O3     9.4 x 10-1 0 

(G17)  
(G18)  

NO3 +NO → 2NO2  
NO3 +NO2 +M → N2O5 +M 

2.6 x 10-11 
ko =2.2 x 10-30 (T/300)-3.9 
k∞ =1.5 x 10-12 (T/300)-0.7 

-170 
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Table 3.2 (cont.) 

Number Reaction k298 a -E/R 

(G17) 
(G18) 

NO3 +NO → 2NO2  
NO3 +NO2 +M → N2O5 +M 

2.6 x 10-11 
ko =2.2 x 10-30 (T/300)-3.9 
k∞ =1.5 x 10-12 (T/300)-0.7 

-170 

(G19) N2O5 +M → NO3 +NO2 +M KG19 =2.9 x 10-11 11,000 

(G20) N2O5 + hυ → NO3 +NO2  k =kG18 /KG19 
5.1 x 10-5 

 
0 

(G21) CH4 +OH + O2 → CH3OO + H2O  6.3 x 10-15 1800 

(G22) CH3OO + NO + O2 → CH2O+ NO2 +HO2  7.7 x 10-12 -280 

(G23) CH3OO + HO2 → CH3OOH + O2  5.6 x 10-12 -800 

(G24) CH3OO + HO2 → CH2O+H2O+ O2  2.0 x 10-12 0 

(G25) CH3OO + CH3OO + O2 → 2CH2O+2HO2  4.7 x 10-13 -190 
(G26) CH3OOH + hυ +O2 → CH2O+OH +HO2  8.7 x 10-6 0 

(G27) CH3OOH + OH → .7 CH3OO +.3 CH2O + .3 
OH  

7.4 x 10-12 -200 

(G28) CH2O+ hυ +2 O2 → CO + 2 HO2  3.6 x 10-5 0 

(G29) CH2O+ hυ → CO + 2 H2  5.0 x 10-5 0 

(G30) CH2O+OH +O2 → CO + HO2 +H2O  1.0 x 10-11 0 

(G31) CH2O+ NO3 +O2 → CO + HNO3 +HO2  5.8 x 10-16 0 

(G32) CO + OH + O2 → CO2 +HO2  2.4 x 10-13 0 

(G33) HCOOH + OH + O2 → CO2 +HO2 +H2O  4.3 x 10-13 0 
aUnits for the photolysis frequencies are s-1, for the second-order reaction rate constants are cm3 molecules-1 s-1, and 
for the third-order reaction rate constants are cm6 molecules-2 s-1. 
bHere, the rate constant is of the form k = (ka + kb [M]) (1 + kc[H2O]) where [H2O] is the water vapor concentration. 
 
Table 3.3 

Aqueous-phase reactions 

Number Reaction k298 a -E/R 
 (A1) O3+hυ+H2O→H2O2+O2 6.0x105   
 (A2) H2O2+hυ↔2OH 1.4x105  
 (A3) CH2(OH)2+OH+O2→HCOOH+HO2+H2O 2.0x109 1500. 
 (A4) HCOOH+OH+O2→CO2+HO2+H2O 1.6x108 1500. 
 (A5) HCOO+OH+O2→CO2+HO2+OH- 2.5x109 1500. 
 (A6) CH3OO+O2

-+H2O→CH3OOH+OH-+O2 5.0x107 1600. 
 (A7) CH3OOH+OH→CH3OO+H2O 2.7x107 1700. 
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Table 3.3 (cont.) 

Number Reaction k298 a -E/R 
 (A8) CH3OOH+OH→CH2(OH)2+OH 1.9x107 1900 
 (A9) HO2+O2

-→HO2
-+O2 1.0x108 1500 

 (A10) HO2
-+H+→H2O2 5.0x1010 1500 

 (A11) OH+OH→H2O2 5.2x109 1500 
 (A12) O3+O2

-+H2O→OH-+2O2+OH 1.5x109 1500 
 (A13) O3+OH-→HO2+O2+OH- 3.0x109 1500 
 (A14)  H2O2+OH→HO2+H2O 2.7x107 1700 
 (A15)  OH+O2

-→OH-+O2 1.0x1010 1500 
 (A16)  HCO3

-+OH→CO3
-+H2O 1.0x107 1500 

 (A17)  HCO3
-+O2

-→CO3
-+HO2

- 1.5x106 1500 
 (A18)  CO3+H2O2→HCO3+HO2 8.0x105 2800 
aUnits for the photolysis frequencies are s-1, for the second-order reaction rate constants are cm3 molecules-1 s-1.  
Reaction rates are of the form k = k298 exp[-E/R(1/T – 1/298)]. 
 
Table 3.4 

Equilibrium coefficientsa 

Number Reaction k298 ∆H/R 

Henry’s Law Equilibria 

(E1)  O3(g)↔O3(aq) 1.1x10-2  2300  

(E2)  H2O2(g)↔H2O2(aq) 8.3x104  7400  

(E3)  OH(g)↔OH(aq) 3.0x101  4500  

(E4)  HO2(g)↔HO2(aq) 4.0x103  5900  

(E5)  CH3OO(g)↔CH3OO(aq) 5.0x100  5600  

(E6)  CH3OOH(g)↔CH3OOH(aq) 3.1x102  5200  

(E7)  CH2O(g)↔H2C(OH)2(aq) 3.2x103  6800  

(E8)  HCOOH(g)↔HCOOH(aq) 5.4x103  5700  

(E9)  NO(g)↔NO(aq) 1.9x10-3  1500  

(E10)  NO2(g)↔NO2(aq) 6.4x10-3  2500  

(E11)  HNO3(g)↔HNO3(aq) 2.4x106  8700  

(E12)  N2O5(g)→2HNO3(aq) 1.0x1012  0  

(E13)  NO3(g)↔NO3(aq) 1.8x100  2000  
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Table 3.4 (cont.) 

Number Reaction k298 a -E/R 

(E14)  CO2(g)↔CO2(aq) 3.6x10-2  2200  

Acid Dissociation Equilibria 

(E15)  H2O2(aq)↔HO2
-+H+ 2.2x10-12 3700 

(E16)  HO2(aq)↔O2
-+H+ 3.5x10-5 0 

(E17)  HCOOH(aq)↔HCOO-+H+ 1.8x10-4 1500 

(E18)  HNO3(aq)↔NO3
-+H+ 1.5x100 0 

(E19)  CO2(aq)↔HCO3
-+H+ 4.5x10-7 1000 

(E20)  Cl2
-(aq)↔Cl-+Cl(aq) 5.3x10-6 0 

aUnits for the solubility constants are M atm-1, and units for dissociation constants are M.  
Coefficients are of the form k = k298 exp[-∆H/R(1/T – 1/298)]. 
 
Table 3.5 

Hydrolysis reactions involving HNCO in the aqueous-phasea 

Number Reaction k298 -E/R 

 (A1)  HNCO + H2O → NH3 + CO2  
  

 (A2)  NCO− + 2H2O → NH3 + HCO3
- kIb = 7.8 × 10−4 sec−1  0 

 (A3)  HNCO + H3O+ → NH4+ + CO2 kII = 6.0 × 10−2 M−1 sec−1  1500 
aReaction rates are of the form k = k298 exp[-E/R(1/T – 1/298)]. 
b kI is the sum of A1 and A2 

 
 In order to model heterogeneous uptake of gas, knowledge of Henry’s coefficient 

characterizing the solubility of HNCO is necessary. However, these measurements have not yet 

been made experimentally. Instead, equations 3.10 and 3.11 were used to extrapolate measured 

Henry’s coefficient values to values under different conditions. These equations are described in 

greater detail in Sander (Sander, 1999), but in brief, equation 3.10 is the expression for the 

effective Henry’s coefficient (Heff) as a function of pH is 

*
effH  H 1

[ ]
,( )aK

H += +                     (3.10) 



79 

 

where H* is the intrinsic Henry’s coefficient, Ka is the dissociation constant (equation 3.4) and 

[H+] is the hydrogen ion concentration (in mol L-1 or M), which equals 10-pH. 

H 1 1
 

*
[ ]

H H R T Te
θθ

∆ − − 
 =     (3.11) 

The intrinsic Henry’s coefficient is also described by Sander (Sander, 1999), and mainly 

describes the temperature dependence.  Here Hh is H at standard temperature (298 K), ∆H is the 

enthalpy of dissolution, R is the gas constant, T is temperature and Th=298 K. After measuring 

the effective H for isocyanic acid in an aqueous buffer at pH=3.0 and room temperature, as 

detailed in Chapter 2, the written code was tested to verify that it reproduces the expected 

decrease in Heff with increasing temperature.  As shown in Figure 3.8 where for a given pH, as 

the temperature increase from 253 K to 298 K Heff decreses which translates to an increase in 

solubility. 

 

Figure 3.8. Effective H versus pH versus temperature 
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The next phase of incorporating HNCO into the model is to establish the overall reaction 

rate of it in solution.  Appendix C details the first step to this calculation, where the “family” of 

aqueous HNCO is defined as: 

[ _ ] [ _ ] [ ]HNCO aqfam HNCO aq NCO−= +                      (3.12) 

where [ _ ]HNCO aq  is the aqueous HNCO concentration and [ ]NCO−  is the isocyanate ion 

concentration.  The appendix goes through the calculation to arrive at the fraction or weight of 

each to the HNCO family. From the rate expression of each reaction (3.5-3.7 and Appendix C), 

the time derivative (rate of change) of the total [ _ ]HNCO aqfam  can be derived obtaining 

Equation 3.13: 

[ _ ]d HNCO aqfam
dt

=

2 31

[ ] [ ]
[ _ ] [ _ ][ ] [ _ ]

[ ] [ ] [ ]
eq

eq eq eq

KH H
HNCO aqfam k HNCO aqfam H k HNCO aqfam

H K H K H K
k

+ +
+

+ + +
− −

+ +
−

+
 

(3.13)
 

which is entered directly into the code for obtaining the HNCO concentrations. Appendix D 

shows the portion of the code created to solve equation 3.13.  Subsection 3.7.1 is the set of model 

results analyzed for the static pH case. Subsection 3.7.2 describes the improved results for the 

case of a dynamic pH that is calculated at each timestep. A contrast and comparison of the two 

cases is made in the conclusion. 

3.6.1. Model output with static pH. As expected, the partitioning and reactivity of 

isocyanic acid was highly sensitive to the acidity of a cloud due Henry’s law and the pH 

dependant reaction rates.  Removal of HNCO was sensitive to the liquid water content due to the 

volume of liquid in which HNCO can be taken up and reacted.  One unanswered question is how 

certain the extent to which the temperature will have on the system. Therefore this and other 

sensitivity studies were modeled.  The model input parameter unless otherwise noted are: 
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• Particle size = 10 micron 

• Temperature = 20 °C (293K)  (ranging from 233K to 293K) 

• pH = 4.5 (ranging from 3 to 6) 

• Liquid water content 0.05g/kg (air) (ranging from 0.05 to 1.3) 

• Pressure = 850 hPa 

Figure 3.9 shows the dramatic effect that the prescribed cloud acidity (pH) has on the 

initial gas phase concentration of 10 pptv HNCO as it traverses a cloud. The different slopes 

indicate that hydrolysis reactions are occurring much more rapidly, and thus less HNCO will 

remain at the end of the cloud. These slopes are directly related to the lifetime of HNCO if it 

were to remain in the cloud continuously. The lifetime estimates are plotted for each pH value in 

Figure 3.10. It should be noted that there is excellent agreement with these lifetimes and the 

lifetimes estimated from Roberts et al. (2011) shown in Figure 3.11. 

 

Figure 3.9. The uptake and removal of HNCO in simulated clouds of varying pH, as a function 

of cloud exposure time 
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Figure 3.10. HNCO lifetimes versus pH 

 

Figure 3.11. Plots of the Henry’s Law constant (blue), first order loss rate due to hydrolysis  

(solid red), and aqueous phase lifetime (dashed red) of HNCO versus pH. Also shown is the  
 
Henry’s Law constant for HCN (green). The yellow band indicates the range of pHs most  
 
characteristic of ambient aerosol, and the pink band indicates physiological pH. Clouds are  
 
typically in the pH=3 to 6 range (image from the addendum to Roberts et al., 2011) 
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 Table 3.6 shows the in-cloud reaction rate results extracted from the HNCO 

concentration sensitivity study in Figure 3.12. The rate constants are obtained by taking a sample 

from the aqueous phase reaction window (between 30 and 90 minutes) of the simulation. Since 

the HNCO concentration is decaying exponentially within this reaction window, it is easy to 

extract the rate constant by simply taking the natural log of the inverse of the selected data. The 

slope of the resulting data is the rate constant (k) in units of time-1. The in-cloud lifetime tau (τ) 

is the inverse of τ are plotted in Figure 3.13 versus the concentration. The lifetimes can all be 

seen to be within statistical agreement with each other with an average of 16.39 ± .29 hours.  

This method is used in the remainder of the thesis for extracting in-cloud lifetime estimates for 

HNCO. 

Table 3.6  

In-cloud reaction rates at different concentrations 

Concentration 
(pptv) k(min-1) 1σσσσ (min-1) 

35 0.0010191 1.74x10-06 

500000 0.0010098 5.12x10-07 

100 0.0010077 3.89x10-07 

200 0.0010066 2.18x10-07 

100000 0.0010533 3.38x10-07 

10000 0.0010059 3.86x10-07 
 

Figure 3.14 is a gas-phase study of HNCO temperature sensitivity in clouds using 100 

pptv of HNCO, a water content of .05 g/m3 and a 10 micron droplet size. It is qualitatively 

apparent that at increased temperatures, much more HNCO is taken up into the aqueous-phase 

but is essentially released back into the gas-phase. This indicates that the temperature does not 

dramatically affect the reaction rate in the condensed phase. 
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Figure 3.12. Gas-phase cloud processing of HNCO at multiple concentrations, with a LWC of 

0.05 g/m3 at 20 °C and a pH of 4.5 

 

Figure 3.13. In-cloud lifetimes versus concentration 
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Figure 3.14. Temperature effect on uptake and reaction of HNCO 
 

 Figure 3.15 shows the temperature dependence of the lifetime and this is due to the 

temperature dependence of the effective Henry’s law coefficient.  There appears to be a small 

increase with increasing temperature, but it would only be on the order of about 60 minutes. 

The liquid water content sensitivity as shown in Figure 3.16 shows two different stages of 

equilibrium. With increasing LWC, the rate of HNCO uptake is increased and a shorter amount 

of time elapses before equilibrium is reached. The initial slopes (within the first 10 minutes) 

associated with condensed-phase chemistry are altered and the rest of the reaction time the slopes 

remain the same therefore the loss of HNCO should be the same. This is why the final HNCO 

concentration is essentially the same. This makes sense, in that for a given droplet size, LWC 

would scale linearly with the number of droplets and, therefore, liquid surface area. Once in 

solution, though, all conditions relevant to the reaction rate (see Equation 3.13) are consistent. 
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Figure 3.15. Temperature dependence of the HNCO rate constant (black) and lifetime (green) 

 

Figure 3.16. Liquid water content sensitivity, saturation times affected 
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3.6.2. Dynamic pH modeling. The more accurate way to model HNCO in the 

troposphere is to know the time dependent nature of the acidity (pH) of each cloud that a parcel 

encounters.  The first step in making this calculation is to come up with an expression that 

accounts for all of the significant ionic (charged) species in the aqueous cloud chemistry.  The 

full charge balance equation used is 

2 2
3 4 4 3 3 3

2 2 3 3

[ ] [ ] 2[ ] [ ] 2[ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

H O NH SO HSO SO NCO HCO

OH O HO CO NO HCOO

+ + − − − − −

− − − − − −

+ = + + + +

+ + + + + +
   (3.14) 

It is assumed that the ammonium concentration is approximately equal to one unit of the sulfate 

ion therefore the final charge balance equation becomes 

2 2
3 4 3 3 3

2 2 3 3

[ ] [ ] [ ] 2[ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

H O SO HSO SO NCO HCO

OH O HO CO NO HCOO

+ − − − − −

− − − − − −

= + + + +

+ + + + + +
          (3.15) 

where H3O+ is hydronium ion concentration which is related to the aqueous phase pH of the 

cloud. 

 Each of these ions can be expressed in terms of their acid dissociations and Appendix E 

contains a definition of each term needed to evaluate the overall acidity in a cloud under 

equilibrium conditions.  The cloud model is initially based on gas-phase reactions and then 

aqueous phase reactions are modeled due to heterogeneous uptake of gas species into the 

condensed phase. Equations 3.16 to 3.18 shows the calculation of one of the charged species’ 

[NH4
+] concentration needed in the charge balance equation. The dissociation equilibrium 

reaction and the heterogeneous equilibrium reaction is necessary to solve for [NH4
+]. 

4

3

4

[ ( )][ ]
[ ]NH

NH aq H
K

NH
+

+

+
=           (3.16) 

33 3[ ( )] [ ( )]NHNH aq H NH g=             (3.17) 
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+

=                        (3.18) 

where KNH4
+ is the dissociation constant, HHN3 is Henry’s coefficient for ammonia and the 

remaining bracketed terms are the concentrations of each species.  The summation of all of the 

solved equations for the species in the charge balance equation (Appendix E) are added and 

solved for [H+] which is the value used to calculate the acidity at each time iteration. 

The following section details the model results for numerous sensitivity studies for the 

behavior of HNCO in clouds using the pH-modified model.  Section 3.8 describes the conclusion 

to not only the HNCO sensitivity but also a contrast of the differences in the static versus 

dynamic pH calculation. 

 3.6.2.1. HNCO sensitivity studies. Each sensitivity study was conducted under similar 

model inputs in order to make independent comparisons of each variable. Unless otherwise 

noted, the cloud model is a 2-hour process that has an initial 30 minute gas phase start-up time, 1 

hour of condensed phase cloud chemistry time, and a 30 minute lag time. The temperature is 

277K, pressure is 81.22 kPa, liquid water contend (LWC) is .25 g/m3, a droplet size of 10 

microns, initial pH is 4.5, and initial gas phase concentrations are noted in table 3.7 (note the 

HNCO mixing ratio is 10 pptv). 

Table 3.7 

Model input concentrations 

Species  Mixing Ratio (ppbv) 
H2  550 

O3  50 

H2O2  0.5 

HO  0.000162 

HO2  0.0162 
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Table 3.7 (cont.) 

Species  Mixing Ratio (ppbv) 
CH3OO  0 

CH3OOH  0.2 

CH2O  0.5 

HCOOH  0 

NO  0 

NO2  0.125 

HNO3  0.1 

N2O5  0 

NO3  0 

CO2  360000 

Cl2
-  1.67x10-09 

Cl-  0.836 

Cl  2.51x10-08 

CO3
-  0 

HNCO  0.01 

CH4  1700 

CO  100 
 
 The first model study was of the effect of altitude on the cloud acidity and ultimately the 

concentration of HNCO. The altitude was modeled by varying both the atmospheric pressure and 

temperature simultaneously. Table 3.8 shows the values used in generating the plots shown in 

Figures 3.17 and 3.18. Figure 3.17 shows the pH variation due to altitude and it can be seen that 

above 20,000 feet (6.1 km) the pH takes on a totally different characteristic. We are not too quick 

to draw conclusions here due to the fact that the clouds are expected to be supercooled at this 

point and there could be much more ice content involved and therefore the liquid water content 

would be much less than .25 g/m3. 
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Table 3.8 

Altitude sensitivity inputs 

Altitude (ft) Pressure (kPa) Temperature (K) 

2000 94.19 284 

4000 87.49 280 

6000 81.22 276 

8000 75.22 272 

10,000 69.64 268 

20,000 46.61 249 

30,000 30.13 229 

40,000 18.82 216 

50,000 11.65 216 
 

 
 
Figure 3.17. Effect of altitude (temperature and pressure differences) on the cloud pH 
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Figure 3.18. HNCO concentration sensitivity due to altitude 

An estimate of the in-cloud lifetime of HNCO can be made by taking the inverse natural 

log of a sample of the data from the cloud interaction portion (between 30 and 90 minutes) of the 

simulation. This can then be linearly fit and the resulting slope of that fit is the rate constant (k).  

The inverse of the rate constant is the lifetime which corresponds to the time that it takes for the 

concentration to drop to approximately 37% (1/e) of the initial concentration. Figure 3.18 is the 

altitude sensitivity where both the temperature and pressure were varied simultaneously. The 

constants, lifetimes, and statistics extracted from Figure 3.18 are listed in Table 3.9. It shows that 

deviations from the normal concentration pattern begin between above approximately 20,000 

feet. This can be also seen in the deflection in the lifetime plot (Figure 3.19) at 20,000 feet.     

Table 3.9 

HNCO rate constants and in-cloud lifetimes 

Altitude 
(x1,000 feet) rate constant (min-1) error (1σσσσ) lifetime (hours) error (1σσσσ) 

2 0.00089 1.23x10-06 18.7266 0.025881 

4 0.000917 1.32x10-06 18.1752 0.026163 

6 0.000939 1.38x10-06 17.7494 0.026085 
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Table 3.9 (cont.) 

Altitude 
(x1,000 feet) rate constant (min-1) error (1σσσσ) lifetime (hours) error (1σσσσ) 

8 0.000982 1.54x10-06 16.9722 0.026616 

10 0.00102 1.68x10-06 16.3399 0.026913 

20 0.001212 2.37x10-06 13.7514 0.02689 

30 0.001202 1.07x10-06 13.8658 0.012343 

40 0.001057 1.44x10-06 15.7679 0.014424 

50 0.001022 1.49x10-06 16.3079 0.023776 
 

 

Figure 3.19. HNCO rate constants and in-cloud lifetimes 

Finally, the HNCO lifetime dependence on altitude is graphically shown in Figure 3.19.  

The lifetime appears to decrease with the altitude (approximately 19 to 13 hours) until the 20,000 

ft point where it appears to increase. This may or may not be characteristic of altitude given the 

fact that this inflection happens at the point of freezing and there could be much more ice and 

less liquid water content. This simulation only varied the temperature and pressure and not water 

content. 
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All acid concentrations are going to affect the in-cloud pH primarily due to the fact that 

acid dissociation will increase the hydronium ion concentration.  With this in mind, the HNCO 

concentration sensitivity was studied under the basic conditions mentioned above. Figure 3.20 

shows the higher mixing ratios of HNCO that were explored (500 to 10 ppbv) only to enunciate 

the exponential decay which is more defined on the linear scale than the lower concentrations.  

The largest change in lifetime due to HNCO concentration is between 100 pptv and 1 ppbv. The 

pH sensitivity plot in Figure 3.21 shows the significant dependence of the acidity on the 

concentration of HNCO. The higher the concentration the higher the acidity but notable at the 1 

ppbv level and higher, the pH increases while in the aqueous phase. 

 

Figure 3.20. HNCO concentration sensitivity 



94 

 

 

Figure 3.21. Effect of [HNCO] on cloud pH 

Table 3.10 lists the concentrations explored which are all potentially realistic from 1 pptv 

(very clean) to 500 ppbv (extreme contamination such as close to a biomass fire). The lifetimes 

can also be found in Table 3.10 and the results are shown in Figure 3.22. 

Table 3.10 

Effect of [HNCO] on its in-cloud lifetime 

[HNCO] 
pptv 

rate constant 
(min-1) error (1σσσσ) 

lifetime 
(hours) error (1σσσσ) 

1 0.000909499 1.46x10-06 18.3251 0.029417 

10 0.000939 1.38x10-06 17.7494 0.026085 

100 0.00119603 6.66x10-07 13.935 0.00776 

1000 0.00245318 4.75x10-06 6.7939 0.013155 

10000 0.00458846 1.07x10-05 3.6323 0.00847 

100000 0.00609269 5.66x10-06 2.73552 0.002541 

250000 0.00634958 2.66x10-06 2.62485 0.0011 

500000 0.00642192 6.64x10-07 2.59528 0.000268 
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Figure 3.22. HNCO in-cloud lifetime due only to a change in HNCO concentration 

 The liquid water content was expected to be a critical factor in the uptake of HNCO, just 

as it was in the static pH case of section 3.7.1 (see Figure 3.16).  However, in the dynamic pH 

case, the results are drastically different. In this case (Figure 3.23) it appears that HNCO reacts 

less with increasing water content. This is likely due to the pH effect shown in Figure 3.24 as 

well as the other dissociation chemistry involved in the charge balance equation. Table 3.11 

contains the lifetime results and the results are graphed in Figure 3.25. It appears that the relation 

could be linear but more sample points would be needed.  A linear fit to the red trace in Figure 

3.25 has an R2 value of .985.  

The sulfate (SO4
-) and sulfite (HSO3

-) ion concentrations were expected to have a 

somewhat significant impact on the cloud acidity and thus affect the pH balance, but as can be 

seen from Figure 3.26 where reasonable concentrations of each were chosen, no significant 

change is seen in the HNCO concentration.  It should be noted that these values are prescribed 

and not calculated (i.e. they remain constant), but they are still not expected to reach level that 

would compete with HNO3 or HNCO. 
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Figure 3.23. Liquid water content sensitivity: Increased amounts of water content reduce the 

uptake rate of HNCO 

 

Figure 3.24. pH dependence of  the liquid water content of a cloud droplet 
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Table 3.11 

Liquid water content lifetime sensitivity 

LWC 
(g/m3) rate constant (min-1) error (1σσσσ) lifetime (hours) error (1σσσσ) 

0.05 0.00270716 2.99x10-06 6.15651 0.0068 

0.1 0.00180483 2.35 x10-06 9.23448 0.012024 

0.25 0.000938558 1.38 x10-06 17.7577 0.02611 

0.5 0.000553921 4.59 x10-07 30.0885 0.024933 

1 0.000321 3.70 x10-07 51.9211 0.059847 

2 0.00020218 4.62 x10-07 82.4348 0.18837 
 

 

Figure 3.25. Lifetime increases with increasing cloud water content 

 
 
Figure 3.26. Sulfite and sulfate effect on HNCO concentration 
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 Figure 3.27 shows both the pH and HNCO effect by droplet size where the pH increases 

with size and HNCO mixing ratios decrease. Table 3.12 shows the particle size sensitivity on the 

in-cloud lifetime of HNCO.  The lifetime is apparently increasing as the cloud droplet gets 

smaller. 

    

Figure 3.27. Droplet size pH and HNCO sensitivity 

Table 3.12 

Cloud droplet size effect on HNCO lifetime  

Size 
(microns) Rate Constant (min-1) 

Error 
(1σσσσ) Lifetime (hours) Error (1σσσσ) 

1 0.000836333 6.68 x10-07 19.9283 0.015917 

5 0.000911932 7.28 x10-07 18.2762 0.01459 

10 0.000938558 1.38 x10-06 17.7577 0.02611 

 
By far, the most interesting result of these sensitivity studies would have to be that of the 

effect that nitric acid (HNO3) has on the overall cloud system. Figure 3.28 shows both the HNCO 

concentration and pH sensitivity plots that show dramatic differences at different HNO3 mixing 

ratios making it the most sensitive of all the parameters studied. It basically dictates the acidity 

of cloud. Figure 3.29 is the lifetime plot and just a one order of magnitude change in HNO3 (.1 to 

1.0 ppbv) causes the lifetime to change 83%. This is evidence that the gas-phase nitric acid 
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concentration has the largest impact on cloud acidity and thus the rate at which other acids like 

HNCO will be removed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.28. [HNO3] impact on HNCO concentration and cloud pH 
 

 
 
Figure 3.29. Nitric acid effect on the HNCO in-cloud lifetime 
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 3.6.2.2. HNCO scenarios. Finally, some scenarios combining the effects of multiple 

variables were modeled.  The first scenario is of some common cloud types. Table 3.13 contains 

the characteristics of the lower tropospheric clouds not expected to contain large amounts of ice. 

Table 3.13 

Data used in modeling different types of clouds 

 
Cloud type 

Altitude 
(ft) 

Pressure 
(kPa) 

Temperature 
(K) 

LWC 
(g/m3) 

cumulonimbus  15,000 57.16 259 1.5 

cumulus 5000 84.33 278 0.25 

stratocumulus 5000 84.33 278 0.5 

fog/haze 1000 97.63 286 0.05 

  
Figure 3.30 shows the HNCO concentration as it is traversing different cloud types. Note 

that this is simulation uses a mixing ration of 100 pptv of HNCO instead of the 10 pptv run in 

previous simulations in order to model a somewhat contaminated sample. As expected from the 

earlier observation of liquid water content sensitivity, the fog and haze and cumulus clouds are 

better at “scrubbing” HNCO out of the troposphere due to their low water content. This is 

encouraging given that increased levels of HNCO are expected to be produced in the future from 

pyrolysis of biomass fire, cooking with coal, and urea selective catalytic reduction, and the lower 

clouds and fog have the potential to remove HNCO significantly, thus reducing the potential 

human health effects greatly. Table 3.14 shows that the lifetime of 100 pptv of HNCO in fog is 

only 6 hours whereas it is more than 50 hours for a cumulonimbus cloud.  This means that 

HNCO may not migrate very far from a given source. Combining this with the fact that the 

lifetime of HNCO decreases with increased concentration.  HNCO may not be much of a threat 

to human health even at small distances from a strong source.  
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Figure 3.30. Cloud type sensitivity 
 
Table 3.14 

HNCO lifetime in different cloud types 

Cloud type 
rate constant  

(min-1) 
error 
(1σσσσ) 

lifetime  
(hours) 

Error 
(1σσσσ) 

cumulus 0.00119074 6.40 x10-07 13.9969 0.007523 

stratocumulus 0.000719284 2.48 x10-07 23.1712 0.007989 

fog/haze 0.00275498 7.62 x10-07 6.04965 0.001673 

cumulonimbus 0.000318995 8.84 x10-07 52.2474 0.144788 
 
 Lastly, 3 scenarios of different levels of contamination were considered. Table 3.15 

shows the concentrations of each case.  Given that the values are extremely variable, estimates 

were taken from multiple sources and some of the biomass concentrations are maximum values 

for added contrast. The results shown in Figure 3.31 show that the most polluted situation has the 

shortest in-cloud lifetime. The increased HNO3 and HNCO concentrations both contribute to 

higher cloud acidity therefore HNCO will be removed faster. 
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Table 3.15 

Contamination scenarios 

Species Clean (pptv) 
Polluted 
(pptv) Biomass fire (pptv) 

H2  550  550  550 
O3  50  75  75 
H2O2  0.5  1  1.7 
HO  0.000162  0.000162  0.000162 
HO2  0.0162  0.0162  0.0162 
CH3OO  0  0  0 
CH3OOH  0.2  0.2  0.2 
CH2O  0.5  0.5  0.5 
HCOOH  0  3.5  200 
NO  0  0  6000 
NO2  0.125  19  1000 
HNO3  0.099998  6.5  40 
N2O5  0  0  0 
NO3  0  0  0 
CO2  360000  360000  4000000 
Cl2

-  1.67 x10-09  1.67 x10-09  1.67111 x10-09 
CL-  0.835785  0.835785  0.835785062 
CLA  2.51 x10-08  2.51E-08  2.50689 x10-08 
CO3

-  0  0  0 
HNCO  0.01  0.1  250 
CH4  1700  1700  120000 
CO  100  100  125000 

 
Figure 3.31. HNCO concentrations and in-cloud lifetimes at different levels of contamination 
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3.7. Conclusions 

 Given the apparent human health concerns of HNCO exposure due to biomass burning, 

cooking, diesel engine selective catalytic converters, and tobacco use, the modeling of HNCO in 

the atmosphere is of the utmost importance. An accurate method at estimating the lifetime is 

therefore of great interest. The pH of the aqueous medium that HNCO encounters a major factor.   

At normal physiological pH levels around 7.4, the data shows that the solubility is enormous at a 

level of 105 M/atm.  In other words, the HNCO would continuously be absorbed if constantly 

exposed.   

 Model results show first that there is a need for the acidity of the condensed phase to be 

calculated in real-time in order to get realistic values of aqueous-phase concentrations. The initial 

simulation showed that the concentration of HNCO does not impact the lifetime, since a 

variability of HNCO concentration over four orders of magnitude only produced a lifetime 

change of about 1.2%. However, with the addition of the dynamic pH calculation, this was 

shown to be far from accurate in that over the span of reasonable HNCO concentrations, there is 

an 86.3% difference between the minimum and maximum concentrations.   

The model shows that the elevation, liquid water content, droplet size, and gas-phase 

nitric and isocyanic acid concentrations are critical in characterizing HNCO in clouds. The in-

cloud lifetime of HNCO is estimated to range from approximately 6.156 ± 0.007 to 82.4348 ± 

0.188 hours.  It is also noteworthy to mention that the lower liquid water content of a cloud such 

as fog or haze (approximately .05 g/m3), the better the chance of reducing the HNCO 

concentration. 

 The cloud type and liquid water content sensitivity measurements show that HNCO may 

not be as much of a risk in the troposphere since the lower water content condensed phases are 

better at removal. It must be noted that this cloud scenario is just one of several mechanisms that 
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could aid in HNCO reduction.  In order for the uptake of HNCO to be properly understood, there 

also needs to be a study into the aerosol chemistry with HNCO as well as surface water 

interactions. 

 This work is not a definitive look at HNCO in the troposphere and the potential risks, but 

meant to be more of a call for further investigations  (both theoretically and experimentally) 

given the potential impact to human health. It is imperative that more studies be conducted in 

order to be confident of accurate modeling and work towards true HNCO exposure levels that 

would lead an a responsible risk assessment such as those determined by the U.S. Environmental 

Protection Agency. 
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Appendix A 

FORTRAN Code Definitions of Cloud Model Species Calculated 

 
H2O   = water vapor H2    = hydrogen 
O3    = ozone H2O2  = hydrogen peroxide 
HO    = hydroxyl radical HO2   = hydro peroxy radical 
2011  = methyl peroxy radical = CH3O2 h011  = methyl hydroperoxide (CH3OOH) 
CH2O  = formaldehyde a011  = formic acid = HCOOH 
NO    = nitric acid NO2   = nitrogen dioxide 
HNO3  = nitric acid N2O5  = dinitrogen pentaoxide 
NO3   = nitrate radical CO2   = carbon dioxide 
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Appendix B 

Heterogeneous Uptake, Dissociation, and Hydrolysis of HNCO 
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Appendix C 

Calculation of the Aqueous-phase Reaction Rate Expression for HNCO Family 
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Appendix D 

FORTRAN Code Calculating HNCO Aqueous-phase Hydrolysis 

 
c tony 
c HNCO_aqfam  
           if (iwhich(it) .eq. 16) then 
            do i=1,iend 
             k1 =7.8E-04 
             k2 =6.0E-02 
             k3 =5.5E-09 
             Keq = 2.0E-04 
             f_HNCO = 1./(1.+(Keq/hion)) 
             f_NCOM = Keq/(hion+Keq) 
      rk = k1*f_HNCO + k2*f_HNCO*hion + k3*f_NCOM  
             rate(i,j,k,ir)= rk  
            end do 
           endif  
  



125 

 

Appendix E 

Charge Balance Equation Definitions of Terms 
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Appendix F 

Dynamic pH Calculation FORTRAN Code 

 
subroutine getaqph(t, aspec, ph, qca, rhoair)  
      implicit none 
      include ‘chem_params.inc’ 
 
c Input parameters 
      real t                ! temperature (K) 
      real qca                 ! CW mixing ratio (g/kg) 
      real aspec(naq)        ! (molec/cm3) 
      real ahion, hion 
      real na                !Avogadro’s# 
      real lwc               ! liquid water content (cm3 H2O / cm3 air) 
      real rhoair                ! density of water kg/cm3 
      real fact                  !temperature correction factor 
 
c Output parameter 
      real ph 
 
c aqueous concentrations 
      real nh4p, so4a, hncoa, hso4a, hso2a, so2a, co2a, co3a, hco3a, 
     _ho2a, h2o2a, hcooa, oha, o2a, no3a, hso3a, so3a, hno2a, hno3a 
 
c missing types from chems_params.inc for aspec() 
      real kso3a, khco3a, kco3a, khso3a, ko2a, kso2a 
 
c dissociation constants 
      real dso4a, diso, dh2so4, dhnh3, dhso4m, dhso3m, dw, dso2, dco2, 
     _ dho2, dh2o2, dh2co3, dhco3m, dhno2, dhcooh, dh2so3, dhno3, 
     _ dnh3 
 
c Fractions 
      real f_ncom    ! fraction of HNCO(a) + HNCO- that is NCO- in terms of [H!+] 
      real f_nh4p, f_hso4m, f_so4m, f_hso3m, f_so3m, f_hco3m, f_co3m,  
     _f_ohm, f_o2m, f_ho2m,  f_no2m, f_no3m, faa, f_hcoom 
 
c because these fractions depend on H+, the calculation will be iterated 
c  to determine H+ and pH 
      if(qca .lt. 1.e-12) return 
      na = 6.022e23 
 
c Aqueous family concentrations 
c Static concentrations and converted concentrations molecules/cm^3 to mol/L (M) 
      lwc = rhoair*qca * 1.e-6               !1.e-6 converts g H2O to m3 H2O 
 
      so4a = 6.1E-9                       !already in mol/L (M) about 100ppb 
      hso3a = 1.0E-7                        !From S and Pandis graph  (too high?  about 10ppm?) 
      hncoa = aspec(khncoa)  *1000./ (na * lwc) 
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      co2a = aspec(kco2a) *1000./ (na * lwc) 
      oha = aspec(koha)  *1000./ (na * lwc) 
      ho2a = aspec(kho2a) *1000./ (na * lwc) 
c      o2a = aspec(ko2a)  *1000./ (na * lwc) 
      h2o2a = aspec(kh2o2a)  *1000./ (na * lwc) 
c      co3a = aspec(kco3a)  *1000./ (na * lwc) 
      hno2a = aspec(kno2a)  *1000./ (na * lwc) 
      hcooa = aspec(kfaa)  *1000./ (na * lwc) 
c      hco3a = aspec(khco3a)  *1000./ (na * lwc) 
      hno3a = aspec(khno3a)*1000./ (na * lwc) 
c ----------------------------------------------------------------------- 
      write(*,’(1p,(8e12.4))’) aspec(khncoa) 
      write(*,’(1p,(8e12.4))’) hion, ahion, hncoa 
 
c use initial guess of pH for this case 
c      if(so4a.eq.0. .and. hncoa .eq.0.) return 
      if (hno3a.eq.0.) return 
c Dissociation constants 
      fact = (1./t) - 1./298.         !temperature correction 
c using prefix “d” to denote dissociation constant to distinguish from “k” terms in chems_params.inc 
c      dh2so4 = 1.e3*exp(0.*fact)  !same as SO3*H2O <-> H+ + HSO4- 
c      dhso4m = 1.e-2*exp(2720.*fact) 
c      dh2so3 = 1.3e-2*exp(1960.*fact) 
c      dhso3m = 6.6e-8*exp(1500.*fact) 
      diso = 3.47e-4*exp(-1510.*fact)   !Renamed HNCO dissociation constant since khnco exists in chems 
      dw = 1.e-14*exp(-6710.*fact) 
      dho2 = 3.5e-5*exp(0.*fact) 
      dh2o2 = 2.2e-12*exp(-3730.*fact) 
      dh2co3 = 4.35e-7*exp(0.*fact)     !coefficient not found yet 
      dhco3m = 4.69e-11*exp(-1760.*fact) 
      dhno2 = 6.92e-4*exp(6.7*fact) !from pKa 3.16 da Silva et al.  
      dhcooh = 1.8e-4*exp(-1510.*fact)  !-20 (ref. Pandis table vs. -1500 in original code 
      dnh3 = 1.7e-5*exp(-450.*fact) !Barth et al 2006 
      dhno3 = 15.4*exp(0.*fact)         !Barth et al 2006 
 
  5   continue 
      hion = 10.**(-ph) 
 
c Local fractions defined 
c      f_nh4p=dnh3/(hion+dnh3) 
c      f_hso4m=1/(hion/dh2so4 + 1. + dhso4m/hion) 
c      f_so4m = 1./((hion*hion/dh2so4*dhso4m) + (hion/dhso4m) + 1.) 
c      f_hso3m = 1./((hion/dh2so3) + 1. + (dhso3m/hion))  
c      f_so3m = 1./((hion*hion/dh2so3*dhso3m) + (hion/dhso3m) +1. ) 
      f_hco3m = 1./((hion/dh2co3) + 1. + (dhco3m/hion))  
      f_co3m = 1./((hion*hion/dh2co3*dhco3m) + (hion/dhco3m) + 1.) 
      f_ncom = diso/(hion + diso) 
      f_ohm = dw/(hion + dw) 
      f_o2m = dho2/(hion + dho2) 
      f_ho2m = dh2o2/(hion + dh2o2)  
      f_no2m = dhno2/(hion + dhno2) 
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      f_hcoom = dhcooh/(hion + dhcooh) 
      f_no3m = dhno3/(hion + dhno3) 
 
c Full case [H+] = -[NH4+] + [HSO4-] + 2[SO4=] + [HSO3-] + 2[SO3=] + [HCO3-]+ 2[CO3=] + c 
     [NCO-] + [OH-] + [O2-] + [HO2-] + [NO2-] + [HCOO-]+ [NO3-] 
 
cq assume NH4+ = SO4=  (i.e. sulfate aerosol is NH4HSO4) 
c assume Na+ = Cl-    (i.e. NaCl aerosol) 
c assume HSO3- dominates S(IV) (which it does for pH of most cloudwater) 
c  
c assume aspec(kso4)  = SO4= entirely (all SO4 is in drops) 
c        aspec(khno3a) = NO3- (all HNO3 in drops is NO3- and not HNO3(a)) 
c other species gotten by dissociation equilibrium: 
c aspec(kso2) = concentration of S(IV) family, so HSO3- = f_hso3 * aspec(kso2) 
c  where f_hso3 = HSO3/S(IV)  =  K1*H+ / (H+*H+ + K1*H+ + K1*K2) 
c aspec(kfa) = concen of HCOOH(a) + HCOO-, so HCOO- = f_fo * aspec(kfa) 
c  where f_fo = K1/(H+ + K1) 
c NEED TO ADD so4 and so3a and fractions 
c Full case [H+] = [HSO4-] + [SO4=] + [HSO3-] + 2[SO3=] + [HCO3-]+ 2[CO3=] +  
c      [NCO-] + [OH-] + [O2-] + [HO2-] + [NO2-] + [HCOO-]+ [NO3-] 
 
c Full case [H+] = [SO4=] + [HSO3-] + [HCO3-]+ 2[CO3=] +  
c      [NCO-] + [OH-] + [O2-] + [HO2-] + [NO2-] + [HCOO-]+ [NO3-] 
 
c      ahion = f_hso4m*so3a + f_so4m*so3a +f_hso3m*so2a + f_so3m*so2a +  
      ahion = so4a + hso3a + . 
     _f_hco3m*co2a + 2.*f_co3m*co2a + f_ncom*hncoa + f_ohm*koha +  
c      ahion = f_hco3m*co2a + 2.*f_co3m*co2a + f_ncom*hncoa + f_ohm*koha + 
     _f_o2m*ho2a + f_ho2m*h2o2a + f_hcoom*hcooa +  
     _f_no3m*hno3a 
 
      ph = -alog10(ahion) 
 
      if(ph .lt. 0. .or. ph .gt. 10.) then 
       write(*,*) ‘pH = ‘, ph, ‘ stopping program’ 
       write(*,’(1p,(8e12.4))’) ahion, so4a, hso3a, f_ncom*hncoa, 
     _ f_hco3m*co2a, f_ohm*koha,  
     _ f_o2m*ho2a, f_ho2m*h2o2a, f_co3m*co2a, 
     _ f_hcoom*hcooa, f_no3m*hno3a 
       stop 
      endif 
      if(abs(hion-ahion) .gt. 0.001*hion) go to 5 
      write(*,*) ‘pH = ‘, ph 
      write(*,’(1p,(8e12.4))’) ahion, so4a, hso3a, f_ncom*hncoa, 
     _ f_hco3m*co2a, f_ohm*koha,  
     _ f_o2m*ho2a, f_ho2m*h2o2a, f_co3m*co2a, 
     _ f_hcoom*hcooa, f_no3m*hno3a 
 
      return 
        end 
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