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ABSTRACT 

 

Mei, Xiaoyan. RATE-BASED ROBUST ADAPTIVE PERFORMANCE TRACKING 
CONTROL OF NETWORK FLOWS.  (Major Professor: Dr. Marwan U. Bikdash), 
North Carolina Agricultural and Technical State University. 

 

Network flow control methods have been studied for years to ensure the efficient 

usage of network resources. By adopting a representation reminiscent of the sliding 

surface representation, this work explores a highly adaptive network flow control 

strategy. The rate-based network flow control scheme is investigated through a novel 

model description in the matrix notation, and guaranteed to be stable under mild 

assumptions. The control law has a simple form but the proof of robust stability is quite 

involved via the Lyapunov theory. Simulations demonstrated that the developed adaptive 

algorithms are robust and effective in maintaining good link price and backlog tracking 

precision, with both constant and time-varying reference source rate inputs. The 

robustness and adaptation of the designed control law were also investigated in the 

presence of uncertain state dynamics and external disturbances. The salient feature of the 

proposed approach is its simple design procedures, easy real-time implementation and 

less on-line computations.  

The proposed algorithm was tested using simple network models as well as using 

more realistic models such as those developed using the small-world network topologies.   
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CHAPTER 1

INTRODUCTION

Today’s society is growing increasingly dependent upon large-scale, highly distributed

systems that operate in unbounded network environments. Unbounded networks, such as

the transportation network, communication network, etc., is in urgent need an intelligent

administrative control and unified security protocol to react when subjected to multiple

failures [1]. Flow control is one of the most important dynamic processes adopted to avoid

congestions in an unbounded network.

1.1 Literature Review

In general, flow control methods were classified into two types: preventive control

and reactive control [2]. The aim of the preventive control is to protect the network from

becoming overload by using static resource allocation, as opposed to an adaptive resource

allocation. A reactive flow controller endeavours to prevent the congestion when it senses

a tendency towards congestion by employing a closed-loop feedback control mechanism,

thus ensuring efficient use of network resources.

Rate-based and credit-based flow controls are two classes of reactive network flow

control schemes [3]. Rate-based flow control strategies manipulate the transmission rate

by controlling the rate of traffic entering the network. There has been a large collection

of mathematical techniques dedicated to the design and analysis of network rate-control

and flow optimization aiming to maximize network utility. An important generalized rate-
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control algorithm [4] provided a mathematical formulation for two concepts of communi-

cation flow control algorithms in terms of the primal and dual forms. Their work also

addressed the stability, proportional equilibrium fairness, and routing control problems

with respect to queue signals and shadow prices, as well as studies on the consequences

of stochastic disturbance and time delays. Low and Lapsley [5] discussed an optimization

algorithm to maximize the aggregate source utility over transmission rate subject to link

capacity constraints. Convergence to globally optimal tracking was achieved when the

network is slowly varying. To maximize aggregate utility, Low [6] proposed a distributed

primal-dual algorithm that treated source rate as a primal variable. The algorithm responds

to congestion in the path and uses congestion measures as a dual feedback to sources that

use the link. Low [6] focused mainly on the analysis of the equilibrium properties of var-

ious Transmission Control Protocol (TCP) / Active Queue Management (AQM) protocols

while ignoring the stability and dynamics discussion.

A cross-layer dual optimization algorithm which considers the equilibrium properties

of TCP and an active queue management scheme were given in [7] and [8]. They show

a trade-off between equilibrium stability of dynamic routing and utility maximization. A

limited utility can be achieved by adding a static term to the link cost to ensure stability.

Therefore, the layering of single-path routing can achieve the same utility. Multipath rout-

ing was introduced as a decomposition of the utility optimization over source rates and

routes.

Various heuristics for stable and robust networks are proposed by Paganini [9] and

[10]. Athuraliya [11] considered the problem of random exponential marking to decou-
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ple congestion measures from performance measures aiming to get high utilization with

less loss and delays. Wen and Arcak [12] presented a unifying passivity formulation of

the problem of stabilizing source and link control, with a combination of primal/dual con-

gestion control, as to ensure robustness in stability and performance with respect to time

delays, uncertain flows and varying capacity.

Another network flow control method based on the pricing signal strategy was pre-

sented by Paganini [13], in which linearization around the source rate equilibrium was

attempted to discuss stability and capacity-variation tracking. Recently some intelligent

route-guidance and trajectory planning methodologies have been designed to address the

Dynamic Traffic Assignment and Dynamic Traffic Routing problems [14] - [21].

However, adaptive algorithms have not been developed for source control or routing

control. A source control algorithm will be derived in this dissertation and they will be

able to neutralize the effect of uncertainties and disturbances from unknown local traffic or

from outside of the controlled network, while at the same time guarantee robust asymptotic

stability.

1.2 Research Motivation

Indirect adaptive controllers have been shown to provide stability and asymptotic

tracking of a reference signal for a wide class of continuous-time nonlinear plants with

zero or non-zero dynamics, uncertainties and unmodeled fault or disturbances, provided

that the state error in representing the nonlinear plant dynamics converges to zero or com-

pact regions [22] - [27]. Encouraged by the tracking control spirit of Song [23], the focus
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of this work will be on new network flow control algorithms that exhibit intelligent at-

tributes such as robustness, adaptation, tracking, and have reasonable performance under

extreme complex and changing operating environments. Inspirations drawn from commu-

nication network control will be used to develop these novel control schemes. A filtered

error vector reminiscent of the sliding mode control methodology is employed in this work

not only to ensure control precision and good dynamic tracking performance, but also to

take care of (i) the high degree of uncertainties in the network itself and in the environment;

(ii) the large operation envelope of the network, and (iii) the high performance demands in

terms of reliability and adaptation.

The primary objective of this work is to find a source-rate control vector that can

mitigate the effect of unknown traffic generated from outside of the controlled sources

and the effect of unknown local traffic. However, this control must possess asymptotic

stability. The framework we adopt in this work is more complex than that studied in the

research alluded to above. Here, a network consisting of an arbitrary number of bottleneck

resources is investigated. Global asymptotic stability was demonstrated theoretically using

Lyapunov stability and through simulations.

This dissertation is organized as follows:

1 A review of a basic continuous-time network model with a specific example is given

in Chapter 2.

2 The set of possible equilibrium conditions of the studied model was reduced in

Chapter 3.

3 Based on a novel matrix notation of the nonlinear model, Chapter 4 develops an

4



adaptive control scheme to ensure robust network flow tracking performance to

meet the expected network equilibria. The adaptation and stability of the proposed

control law are proved by adopting Lyapunov theory and the robustness and relia-

bility are investigated by simulations in Matlab.

4 Further investigations of the designed control scheme in terms of counteracting the

harsh effect of uncertainties and disturbances are studied in Chapter 5.

5 A small-world network concept is introduced in Chapter 6 to verify the robustness

and adaptation in a more practical stressed network topology.

6 Chapter 7 concludes this dissertation with a summary of the key results, conclusions

and future work possibilities.

5



CHAPTER 2

MODEL OF THE NETWORK FLOW CONTROL

This chapter introduces a mathematical model representing the network dynamics and

gives an example of the used model.

2.1 Network Model

A network is modeled as a set L of directed links with finite capacities c = (cl, l ∈ L),

shared by a set K of origin-path-destination combinations, indexed by k; in this work we

simply refer to an origin-path-destination combination as "source". There is a set Lk ⊆ L

of links used by source k, and defined by a L×K routing matrix Rlk, with binary elements.

Rlk =

½
1 if source k uses link l
0 otherwise .

For each link l, we consider the following variables: the capacity cl; the rate yl of the

aggregate flow through link l; the backlog or queue length bl; and the price signal pl.

For each route k, we only discuss the route rate xk and the aggregate price qk of all

links used by source k.

The framework of the network flow control model as shown in Figure 2.1 adopted in

[4], [5], [12] and [13] is that the links only feed back the price information to the routes or

sources that go through them:

y = Rx ⇐⇒ yl =
P
l

Rlkxk, (2.1)

q = RTp ⇐⇒ qk =
P
k

RT
lkpl, (2.2)
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Figure 2.1. Model of network flow control

where xk ∈ RK is the flow generation rate corresponding to source k, yl ∈ RL is the

aggregate rate of each link l, pl ∈ RL is the link price, and qk ∈ RK is the aggregate price

of all the links used by a certain source k; (·T ) indicates transpose.

A typical strategy for flow control is to decompose the problem into a static utility op-

timization problem and a dynamic stabilization problem [4], [5]. For static source control,

the optimization problem in [12] and [13] is to maximize the sum of the utility function

Uk(xk) for the sources with respect to the capacity constraints in the links:

max
x≥0

KX
k=1

Uk(xk) subject to y = Rx ≤ c. (2.3)

The utility functions are assumed to be strictly concave and differentiable, which

means that as the maximum is achieved at xk = U
0−1
k (qk), where U 0−1

k is the inverse func-

7



tion of the derivative of Uk, xk is a strictly monotone decreasing function of qk, because U 0
k

is strictly decreasing in xk > 0.

The dynamic link price control is designed as a continuous-time version of price dy-

namics [13], for each link l:

dbl
dt

=

½
(yl − cl) if bl(t) > 0
[yl − cl]

+ if bl(t) = 0
, (2.4)

dpl
dt

=

½
γ(αlbl + yl − cl) if pl(t) > 0
γ[αlbl + yl − cl]

+ if pl(t) = 0
, (2.5)

where[z]+ = max{0, z}, γ > 0 and αl > 0 are small constants.

According to [13], the source rate equation x = f(qk), where fk is a strictly monotone

decreasing function of qk (2.2). When the aggregate price qk of all the links used by a

certain source k increases; consequently, the source rate x decreases, which means that the

more severe the congestion, the smaller the aggregate rate.

The stability of flow control via source aggregate rate (2.3), link queue length rate (2.4)

and link price rate (2.5), was theoretically analyzed [9], [10] and [13]. However, a simple

method that can cope with the effect of uncertainty and disturbance from unknown local

traffic or from outside of the controlled network, while at the same time maintain robust

asymptotic stability, has not been studied yet. This work will introduce a new network

flow control algorithm that can demonstrate intelligent attributes such as robustness, adap-

tation, stability, and are capable of counteracting the uncertain term, which is assumed to

be bounded. The notations introduced throughout this work are summarized in Table 2.1.
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Table 2.1. Notation
Notation Definition
L, l number of network links, link index
K, k number of sources, source index
R, r L×K dimension routing matrix, row vector index
b, bl traffic network backlog vector, link backlog index
p, pl traffic network price vector, link price index
y, yl aggregate rate vector, aggregate rate index
c, cl link capacity vector, link capacity index
e1 error between backlog b and desired state bd
e2 error between price p and desired state pd
s designed sliding surface, s = e1 + ηe2
W ∈ RL a column vector representing traffic fluctuation and disturbance
H1, h1l diagonal matrixes of RL×L with h1l,sign function of bl
H2, h2l diagonal matrixes of RL×L with h2l,sign function of pl
H H = H1 + ηγH2

Γ represents the nonlinearity, disturbance and uncertainty of the system
μ a known scalar shape function only depending on s
a unknown but finite nonnegative constants need to be defined
Q positive semidefinite matrix, Q = HRRTHT

V1, V2 Lyapunov candidate function
ε, η, ρ0, σ, κ control parameters introduced in the control law
k1 average degree of connections for any arbitrary node
ρ the probability of the edge be randomly rewired over the entire graph

L2 L4

L5

L8

L7

L3

L6 L11

L10

L9
L15 L16

L17L14L12

L13

L1

4

5

8

3
6

7
9

2

1
11

10
L2 L4

L5

L8

L7

L3

L6 L11

L10

L9
L15 L16

L17L14L12

L13

L1

L2 L4

L5

L8

L7

L3

L6 L11

L10

L9
L15 L16

L17L14L12

L13

L15 L16

L17L14L12

L13

L1

4

5

8

3
6

7
9

2

1
11

10

4

5

8

3
6

7
9

2

1
11

10

Figure 2.2. Traffic network with 17 links and 11 nodes
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2.2 Network Example

This section will give out an example to illustrate the network model addressed as (2.1).

The traffic network example illustrated in Figure 2.2 consists 11 nodes and 17 links, from

which we randomly chose 10 sources of origin-path-destination and we assume that each

route is in one direction. The detailed routes set of origin-path-destination demonstrated

by both nodes and links are enumerated in the Table 2.2.

Table 2.2. Routes randomly choosen by origin-destination pairs

k=10
k=8
k=6
k=4
k=2

Source
Number

k=9
k=7
k=5
k=3
k=1

Source
Number

13-177-9-1012-15-167-8-11-10N7 - N10

8-11-13-175-6-7-9-109-15-165-8-11-10N5 - N10

6-10-152-6-8-113-4-5-9-152-3-4-5-8-11N2 - N11

2-4-51-3-4-511-5N1 - N5

2-7-11-13-171-3-6-7-9-101-9-15-161-5-8-11-10N1 - N10

Route 2 
by Links

Route 2 
by Nodes

Route 1 
by Links

Route 1 
by Nodes

Origin 
Destination 

Pair

k=10
k=8
k=6
k=4
k=2

Source
Number

k=9
k=7
k=5
k=3
k=1

Source
Number

13-177-9-1012-15-167-8-11-10N7 - N10

8-11-13-175-6-7-9-109-15-165-8-11-10N5 - N10

6-10-152-6-8-113-4-5-9-152-3-4-5-8-11N2 - N11

2-4-51-3-4-511-5N1 - N5

2-7-11-13-171-3-6-7-9-101-9-15-161-5-8-11-10N1 - N10

Route 2 
by Links

Route 2 
by Nodes

Route 1 
by Links

Route 1 
by Nodes

Origin 
Destination 

Pair

The corresponding routing matrix of this traffic network is

RL×K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
1 0 0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 1 1 0 1 0
1 0 0 0 0 0 1 0 1 0
0 1 0 0 0 0 0 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.6)
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CHAPTER 3

THE EQUILIBRIUM POINTS

An important concept in dealing with the state equation is the concept of an equilibrium

point. A point x∗ in the state space is said to be an equilibrium point if it has the property

that whenever the state of the system starts at x∗ it will remain at x∗ for all future time

[22]. For the continuous-time dynamics in (2.4) and (2.5), the equilibrium points are the

real roots of the equations

dbl/dt|bl=b∗l = 0 or simply ḃl = 0, (3.1)

dpl/dt|pl=p∗l = 0 or simply ṗl = 0. (3.2)

We assume that at the equilibrium status, for each l ∈ L, k ∈ K, the expected aggre-

gate rate of each link is y∗l and of each source is x∗k, respectively, and the expected backlogs

and link price are b∗l , p∗l .

From (2.4), ḃl = 0 implies that

yl = cl if bl > 0, (3.3)

yl ≤ cl if bl = 0. (3.4)

From (2.5), ṗl = 0 implies that

αlbl + yl − cl = 0 if pl > 0, (3.5)

αlbl + yl − cl ≤ 0 if pl = 0, (3.6)

where αl > 0.
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There are only two allowable equilibria conditions:

bl = 0, pl = 0, yl ≤ cl, (3.7)

bl = 0, pl > 0, yl = cl. (3.8)

Note that the equilibrium

bl > 0, pl > 0 (3.9)

is not allowed, because (3.3) implies that yl = cl, and hence (3.5) becomes αlbl = 0, which

contradicts bl > 0.

Similarly, the equilibrium

bl > 0, pl = 0 (3.10)

is also not allowed, because (3.3) implies that yl = cl, and hence (3.6) becomes αlbl ≤ 0,

which contradicts bl > 0.

Note that at the two allowable equilibria (3.7) and (3.8), the backlogs are zero but the

link prices can be positive if the corresponding link flows equal to their capacities.
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CHAPTER 4

ROBUST ADAPTIVE NETWORK PERFORMANCE TRACKING CONTROL

This chapter is dedicated to designing an adaptive robust-stable network performance

tracking control strategy in the presence of uncertainties and disturbances from unknown

local traffic or from outside of the controlled network. The uncertainties and disturbances

are assumed to be bounded. The basic structure for implementing the adaptive control

law is illustrated in Figure 4.1. A novel matrix denotation of the network model will be

developed to simplify the design of adaptive controller.

Calculate
link flow

Calculate
errors

Update
controller

Update
sliding 
surface

( ) ( ) ( )cy t R x t x t W= + Δ +⎡ ⎤⎣ ⎦

s

1 2,  e exΔ

W
( )y t

( )cx t

•••

Disturbance

Side information

•••

Figure 4.1. Basic structure of adaptive tracking control

4.1 Model in Matrix Notation

Before proposing the robust adaptive network performance tracking control algorithm,

we discuss the continuous-time network model of (2.4) and (2.5). For reading convenience,
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we repeat the model here. For each link l:

dbl
dt

=

½
(yl − cl) if bl(t) > 0
[yl − cl]

+ if bl(t) = 0
, (4.1)

dpl
dt

=

½
γ(αlbl + yl − cl) if pl(t) > 0
γ[αlbl + yl − cl]

+ if pl(t) = 0
, (4.2)

where[z]+ = max{0, z}, γ > 0 and αl > 0 are small constants.

To facilitate the control design, we adopt the notation of switch function

for x ∈ R, sgn(x) =
½ x

|x| x 6= 0
0 x = 0

,

and rewrite the dynamics of backlog (4.1) and link price (4.2) as:

ḃl = (yl − cl) if bl(t) > 0, (4.3)

ḃl =
1

2
(yl − cl)(1 + sgn(yl − cl)) if bl(t) = 0, (4.4)

ṗl = γ(αlbl + yl − cl) if pl(t) > 0, (4.5)

ṗl =
1

2
γ[αlbl + yl − cl](1 + sgn(αlbl + yl − cl)) if pl(t) = 0. (4.6)

Let

β1l =
1

2
(1 + sgn(yl − cl)), (4.7)

β2l =
1

2
(1 + sgn(αlbl + yl − cl)), (4.8)

where β1l depends on the mismatch between the aggregate flow yl and the link capacity cl;

β2l depends on the difference between the sum of queue length bl and the traffic flow of

each link yl and link capacity cl. Please note that β1l = 1
2
, β2l =

1
2

will make no influence
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to the variations rate of queue length and link price at the moment yl = cl and αlbl+yl = cl.

β1l =

⎧⎨⎩ 0 if yl < cl
1
2

if yl = cl
1 if yl > cl

, (4.9)

β2l =

⎧⎨⎩ 0 if αlbl + yl < cl
1
2

if αlbl + yl = cl
1 if αlbl + yl > cl

. (4.10)

In addition, the derivatives of the backlogs (4.3), (4.4), and the derivatives of link prices

(4.5), (4.6), respectively, can be combined into

ḃl = (yl − cl) [sgn(bl) + β1l(1− sgn(bl))] if bl ≥ 0, (4.11)

ṗl = γ(αlbl + yl − cl) [sgn(pl) + β2l(1− sgn(pl))] if pl ≥ 0. (4.12)

Furthermore, let

h1l = sgn(bl) + β1l(1− sgn(bl)), (4.13)

h2l = sgn(pl) + β2l(1− sgn(pl)), (4.14)

where h1l depends on the sign of bl and h2l depends on the sign of pl. They also depend

on β1l and β2l, respectively. Moreover,

h1l =

½
1 if bl > 0
β1l if bl = 0

, (4.15)

h2l =

½
1 if pl > 0
β2l if pl = 0

, (4.16)
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and therefore h1l, h2l ∈
©
0, 1

2
, 1
ª

. The rewritten dynamics of the backlogs (4.11) and link

prices (4.12) are

ḃl = h1l(yl − cl), (4.17)

ṗl = γh2l(αlbl + yl − cl). (4.18)

Therefore, extending to the entire networks by using matrix notation, the dynamics of

backlogs and link prices become

ḃ = H1(y − c), (4.19)

ṗ = γH2(αb+ y − c), (4.20)

where

H1 = diag(h11, h12, · · · , h1l), (4.21)

H2 = diag(h21, h22, · · · , h2l), (4.22)

H1, H2 are RL×L diagonal matrices of h1l as in (4.15), h2l as in (4.16); α is the parameter

vector of αl ; and b, p, y, c denote the vectors of the backlogs, costs, traffic flows and

capacities of the traffic network.

4.2 Boundedness Analysis of Uncertainties and Disturbances

As previously noted in Section 1.1, it is difficult to know the dynamic traffic flow

characteristics precisely. The flow tracking control problem is stated as: Design the source

aggregate rate x based on b, ḃ, p, and ṗ such that the actual traffic flow asymptotically
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tracks the desired backlog bd and the desired link price pd in the existence of unknown or

unmodeled flow and the block-form routing matrix.

To investigate the control design and stability analysis, we define the desired flow

tracking in terms of backlogs and link prices as

Zd =

∙
bd

pd

¸
,

and the tracking errors as

e = Z − Zd =

∙
b− bd

p− pd

¸
M
=

∙
e1
e2

¸
. (4.23)

A sliding mode, or sliding surface, is a switching (discontinuous) control method com-

monly employed in the variable structure control, in which switching functions need to be

designed to keep the trajectory on the sliding surface for the sake of yielding the desired

dynamics and consequently to enable the closed loop system to become insensitive to pa-

rameter variations and disturbances in the state space.

For the network flow control problem under consideration, we introduce a vector rem-

iniscent of the sliding surface notation as

s = e1 + ηe2 η > 0, (4.24)

where η is a positive small constant, errors e1 and e2 are defined in (4.23), s ∈ RL, and e1,

e2 converge to a small compact set

S(e1, e2) = {(e1, e2) | ke1k ≤ s1, ke2k ≤ s2} ,
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as time increases, s1 ≥ 0, s2 ≥ 0 are constants indicating tracking precision, here k·k

denotes the Euclidean norm.

Due to the uncertainty and inevitability of traffic fluctuation, the traffic fluctuation is

explicitly introduced into the aggregate rate [28]. We assume that the measured backbone

traffic flow is xc. The control strategy is to design a controller ∆x to counteract the effect

of uncertainties and disturbances, then function (2.1) turns out to be

y = Rx+W

= R(xc +∆x) +W, (4.25)

where y ∈ RL, xc ∈ RK is a deterministic column vector representing backbone source

rate, ∆x ∈ RK represents a column vector we need to design, W ∈ RL is a column vector

representing uncertainties and disturbances from unknown local traffic sources and from

outside of the controlled network.

Using Matrix notation, the derivatives of tracking errors turn to be

ė1 = ḃ− ḃd = H1(y − c), (4.26)

ė2 = ṗ− ṗd = γH2(αb+ y − c)− ṗd, (4.27)

where H1 as in (4.21), H2 as in (4.22) areRL×L diagonal matrices defined in Section 4.1.

For a feasible network traffic flow control, the desired backlog bd and its rate of vari-

ation ḃd should be zero, the link price pd and its rate of variation ṗd should be bounded.

Therefore, we assume that

°°bd°° = °°°ḃd°°° = 0, °°pd°° ≤ Bpd , and
°°ṗd°° ≤ Bṗd,

18



where Bpd and Bṗd are non-negative constants, i.e. Bpd ≥ 0, Bṗd ≥ 0.

The derivative of sliding surface becomes

ṡ = ė1 + ηė2

= H1(y − c) + ηγH2(αb+ y − c)− ηṗd

= (H1 + ηγH2)R∆x+ (H1 + ηγH2)(xc +W − C) + ηγαH2b− ηṗd

= HR∆x+ Γ(·), (4.28)

where

H = H1 + ηγH2

= diag(h11 + ηγh21, h12 + ηγh22, · · · , h1l + ηγh2l), (4.29)

and

Γ(·) = H(xc +W − C) + ηγαH2b− ηṗd, (4.30)

where H is a diagonal matrix since H1, H2 are diagonal matrixes of RL×L, and H = HT .

The lumped quantity Γ(·) represents the measured traffic flow as well as the nonlinearity,

disturbances and uncertainties of the system, which are the main challenge of controller

design and implementation.

Since h1l, h2l ∈
©
0, 1

2
, 1
ª
, every diagonal factor of H has the form of

©
0, 1

2
, 1
ª
+

ηγ
©
0, 1

2
, 1
ª

. Hence, the induced Euclidean norm of H is

||H|| = max{h11 + ηγh21, h12 + ηγh22, · · · , h1l + ηγh2l}

≤ 1 + ηγ (4.31)
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We assume the difference between external disturbances and capacities is bounded as

kW − Ck ≤ Bw, (4.32)

where Bw > 0. The measured backbone traffic flow is bounded as

||xc|| ≤ Bx, (4.33)

where Bx > 0. The Euclidean norm of the first term of Γ(·) (4.30) can be bounded as

kH(xc +W − C)k ≤ (1 + ηγ) kxc +W − Ck

≤ (1 + ηγ)(Bx +Bw), (4.34)

and the Euclidean norm of the second term of Γ(·) can be bounded as

kηγαH2bk = kηγαH2e1k

≤ ηγα kH2k ke1k

≤ ηγα kH2k ksk , (4.35)

where kH2k ≤ 1 with respect to h2l ∈
©
0, 1

2
, 1
ª
, kbk = ke1k ≤ ksk with the assumption

that
°°bd°° = °°°ḃd°°° = 0;Moreover, the Euclidean norm of the third term of Γ(·) is

°°ηṗd°° ≤ ηBṗd. (4.36)
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Therefore, combining (4.30), (4.34), (4.35) and (4.36) yields

kΓ(·)k ≤ (1 + ηγ)(Bx +Bw) + ηγα ksk+ ηBṗd

= a1 + a2 ksk

≤ aμ, (4.37)

where a, a1, a2 are unknown but finite nonnegative constants and defined as

a1 = (1 + ηγ)(xd + wd) + ηξd, (4.38)

a2 = ηγα, (4.39)

a = max{a1, a2}, (4.40)

and μ is a known scalar shape function only depending on s

μ = 1 + ksk . (4.41)

4.3 Robust Adaptive Network Performance Tracking Control

Note that, given the matrix

Q = HRRTHT , (4.42)

where H is defined in (4.29). From standard linear algebra [25], if

sTQs = α0 ||s||2 , (4.43)

then the positive scalar α0 satisfies

0 < σmin(Q) ≤ α0 ≤ ||Q|| = σmax(Q), (4.44)
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where σmax(Q) = ||Q|| is the maximum singular value of Q. However, since Q and H can

be singular, which implies that Q can be positive semidefinite, then σmin(Q) the minimum

singular value of Q can be zero.

We can now establish the main theorem of this work.

Theorem 4.1: For a network subjected to bounded uncertainties and disturbances as-

sumptions as (4.32) - (4.41), the control strategy defined about a desired equilibrium

∆x = −ρ0 + ρt
α0

RTHTs, (4.45)

with

ρt =
âμ2

kskμ+ ε
, (4.46)

¦
â = −κâ+ σ

||s||2 μ2
||s||μ+ ε

, (4.47)

where ρ0 > 0, μ > 0, � > 0, κ > 0, and σ > 0 are constants parameters, α0 is a positive

scalar defined in (4.43), μ is given in (4.41), leads to the following stability results: (a) s,

ṡ, and (a− â) converge to a set containing origin, with the converge rate e−ςt (ς > 0). (b)

Besides, the tracking error of backlog and link price are bounded to the set

S = {e1, e2 |ke1k ≤ s1, ke2k ≤ s2}

where s1 =
q

d1
ς
, s2 =

q
d1
η2ς

, d1 =
κa2

2σ
+ aε.

In this control law, s is a vector reminiscent of the sliding surface notation as defined

in (4.24), σ > 0 in (4.47) is an adaptive gain chosen to adjust tracking precision, κ > 0 is
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a parameter designed to ensure the boundedness of â, and the term −κâ is introduced to

make appropriate corrections to prevent parameter drift [23].

4.4 Proof of the Theorem

First, we introduce the following two Definitions and Lemma.

Definition 4.2: [26] A continuous function ϕ: [0, r] 7−→ R+ (or ϕ: [0,∞) 7−→ R+)

is said to belong to Class K, i.e., ϕ ∈ K if (i) ϕ(0) = 0 (ii) ϕ is strictly increasing on [0, r]

(or on [0,∞)).

Definition 4.3: [26] A continuous function ϕ: [0,∞) 7−→ R+ is said to belong

to Class KR, i.e., ϕ ∈ KR if (i) ϕ(0) = 0 (ii) ϕ is strictly increasing on [0,∞) (iii)

limr→∞ϕ(r) =∞.

Note that ϕ ∈ KR implies that ϕ ∈ K, but not the other way.

Lemma 4.4: [26] Assume that a system described by ordinary differential equations

form

ẋ = f(t, x), x(t0) = x0

where x ∈ Rn, f : J × B(r) 7−→ R, J = [t0,∞) and B(r) = {x ∈ Rn | |x| < r},

possesses a unique solution ∀x0 ∈ Rn. If there exists a function V (t, x) defined on

|x| ≥ R0 (where R0 may be large) and t ∈ [0,∞) with continuous first-order partial

derivatives with respect to x, t and if ∃ϕ1, ϕ2 ∈ KR as defined in Definition 4.2 such that

(1) ϕ1(|x|) ≤ V (t, x) ≤ ϕ2(|x|); (2) V̇ (t, x) ≤ 0 for all |x| ≥ R0 and t ∈ [0,∞) , then

the solutions of this system are uniformly bounded. In addition, if ∃ϕ2 ∈ K as defined in
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Definition 4.3 on [0,∞) as well as (3) V̇ (t, x) ≤ −ϕ3(|x|), ∀ |x| ≥ R0 and t ∈ [0,∞) ,

then the solutions are uniformly ultimately bounded.

Then, we proceed to prove Theorem 4.1 in Section 4.3.

4.4.1 Proof of the Convergence

Proof: We consider the Lyapunov function candidate

V1
4
=
1

2
sTs+

1

2σ
(a− â)2. (4.48)

The time-derivative of V1 along s (4.24) and ṡ (4.28) is deduced as

V̇1 = sT ṡ− 1
σ
(a− â)

¦
â

= sT [HR∆x+ Γ(·)]− 1
σ
(a− â)

¦
â

= sTHR∆x| {z }
W1

+ sTΓ(·)| {z }
W2

− 1
σ
(a− â)

¦
â| {z }

W3

. (4.49)

Now substituting the controller ∆x (4.45) into W1 of (4.49) leads to

W1 = sTHR∆x = −ρ0 + ρt
α0

sTHRRTHTs. (4.50)

Using α0 in (4.43), we obtain

W1 = −ρ0 + ρt
α0

sTQs

= −ρ0 + ρt
α0

α0 ||s||2

= −(ρ0 + ρt) ||s||2 . (4.51)
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Substituting ρt (4.46) into modified W1 (4.51) leads to

W1 = −ρ0 ||s||2 −
âμ2

kskμ+ ε
||s||2 . (4.52)

Similarly, W2 can be conditioned by ||s|| as

W2 = sTΓ(·)

≤
¯̄¯̄
sTΓ(·)

¯̄¯̄
≤

¯̄¯̄
sT
¯̄¯̄
||Γ(·)|| ≤ aμ ||s|| . (4.53)

In addition, applying
¦
â (4.47) into W3 leads to

W3 =
1

σ
(a− â)

¦
â

=
κ

σ
(a− â)â− (a− â)

ksk2 μ2
kskμ+ ε

. (4.54)

Combining W1 in (4.52), W2 in (4.53) and W3 in (4.54), V̇1 in (4.49) turns to be

V̇1 ≤ −ρ0 ||s||2 −
âμ2

kskμ+ ε
||s||2 + aμ ||s||| {z }

W
0
2

+
κ

σ
(a− â)â| {z }

W4

− (a− â)
ksk2 μ2
kskμ+ ε| {z }
W5

. (4.55)

For the purpose of cancelling W5 in (4.55), we rewrite W 0
2 as

W
0
2 = ||s|| aμkskμ+ ε

kskμ+ ε

=
aμ2 ksk2

kskμ+ ε
+

aεμ ksk
kskμ+ ε

. (4.56)
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Consequently, substituting W
0
2 (4.56) into V̇1 (4.55) leads to

V̇1 ≤ −ρ0 ||s||2−
âμ2

kskμ+ ε
||s||2 + aμ2 ksk2

kskμ+ ε| {z }
W6

+
aεμ ksk
kskμ+ ε| {z }

W7

+W4− (a− â)
ksk2 μ2
kskμ+ ε| {z }

W5

, (4.57)

it can be seen that

W6 −W5 = 0.

Therefore, V̇1 in (4.57) becomes

V̇1 ≤ −ρ0 ||s||2 +
aεμ ksk
kskμ+ ε| {z }

W7

+
κ

σ
(a− â)â| {z }

W4

. (4.58)

Since ε is a small positive constant, then

kskμ
kskμ+ ε

< 1

which leads to

W7 ≤ aε. (4.59)

Let us proceed to discuss W4 in (4.55). On account of the identifies

(a− â)â = aâ− â2

= −1
2
a2 + aâ− 1

2
â2 +

1

2
a2 − 1

2
â2

= −1
2
(a− â)2 +

1

2
a2 − 1

2
â2

≤ −1
2
(a− â)2 +

1

2
a2,

we obtain
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W4 ≤ −
κ

2σ
(a− â)2 +

κa2

2σ
. (4.60)

Finally, from V̇1 in (4.58), W7 in (4.59) and W4 in (4.60), we deduce that

V̇1 ≤ −ρ0 ||s||2 + aε+− κ

2σ
(a− â)2 +

κa2

2σ

≤ −ρ0 ksk2 −
κ

2σ
(a− â)2 +

κa2

2σ
+ aε

≤ −ρ0sTs−
κ

2σ
(a− â)2 +

κa2

2σ
+ aε

≤ −ςV1 +
κa2

2σ
+ aε, (4.61)

where ς > 0 and ς = min {2ρ0, κ} , the confined V̇1 (4.61) implies that for V1 ≥ V10 =

ς(κa
2

2σ
+ aε), V̇1 ≤ 0. Therefore, according to Lemma 4.4, s, â ∈ L∞ which, together with

μ ∈ L∞, implies that ∆x, ρt and
¦
â ∈ L∞ on the time interval [0, T ]. In addition, we can

establish by integrating V̇1 (4.61) that

V1 =
1

2
sTs+

1

2σ
(a− â)2

≤ e−ςtV10 +
κa2

2σ
+ aε,

which implies that (s, a − â) converges exponentially with a rate e−ςt to a set containing

origin:

D1 = {(s ∈ R, a− â ∈ R) | V10 ≤ d1} , (4.62)

where d1 = κa2

2σ
+ aε.
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4.4.2 Proof of the Boundedness of Tracking Errors

To restrict the bound set of the tracking errors e1 and e2, we first consider the Euclidean

norm of s (4.24):

||s||2 = sTs

= (e1 + ηe2)
T (e1 + ηe2)

= ||e1||2 + η2 ||e2||2 + 2ηeT1 e2. (4.63)

In Chapter 3, we already clarified that there are two cases of equilibria (1) b∗l = 0,

p∗l = 0, and (2) b∗l = 0, p∗l > 0. The tracking error boundedness will be studied based-on

these two cases.

1. Assuming bdl = 0 and pdl = 0

From (4.23), if bdl = 0, then e1l = bl − bdl ≥ 0 since bl ≥ 0. Similarly, if pdl = 0, then

e2l = pl − pdl ≥ 0 since pl ≥ 0. Hence, eT1 e2 ≥ 0. Since s is bounded, then

2ηeT1 e2 = ||s||
2 − ||e1||2 − η2 ||e2||2 (4.64)

is either bounded or negative if either e1 or e2 are unbounded, but the latter case is not

acceptable because eT1 e2 ≥ 0. Hence, e1 and e2 are bounded.

2. Assuming bdl = 0 and pdl > 0

If pdl = a0 > 0 but a0 is finite, since e2l = pl − pdl , we deduce that

−a0 ≤ e2l ≤ ∞,
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note that 0 ≤ e1l ≤ ∞, then, eT1 e2 is either (a) bounded or (b) positive or (c) decrease to-

wards −∞ linearly. From 2ηeT1 e2 (4.64), if either ||e1|| or ||e2|| is unbounded, the right

hand side (RHS) will decrease towards−∞ quadratically, which contradicts the three pos-

sibilities (a), (b) and (c).

Therefore, the tracking error of backlog e1 and link price e2 are bounded in both cases.

Since (s, a − â) converges exponentially with a rate e−ςt to a set containing the origin,

V10 ≤ d1 =
κa2

2σ
+ aε as in (4.62), then from the boundedness of V̇1 in (4.61), we deduce

that

||s|| ≤

s
κa2

2σ
+ aε

ς
=

r
d1
ς
,

where ς > 0 and ς = min {2ρ0, κ} as defined in (4.61). From the Euclidean norm of ||s||2

in (4.63), it can be deduced that the tracking errors are constrained in the compact region

S =

(
e1, e2

¯̄̄̄
¯ke1k ≤ ||s|| =

r
d1
ς
, ke2k ≤

||s||
η
=

s
d1
η2ς

)
, (4.65)

which means that V̇1 < 0, if e1, e2 exceed the region of S in (4.65), then V1 will strictly

decrease, and consequently, e1, e2 and (a− â) will decrease until the error states move back

into the compact region of S.
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4.5 Simulation Study

Next, we simulate the performance of our algorithm using the example network given

in Section 2.2. The adaptation and robustness of the designed tracking control algo-

rithm were investigated by adopting both constant and time-varying measured deterministic

source accumulation rate. Note that the identical routing matrix

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
1 0 0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 1 1 0 1 0
1 0 0 0 0 0 1 0 1 0
0 1 0 0 0 0 0 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
17×10

was applied for all situations in this chapter.

4.5.1 Simulations for Constant Backbone Source Rate

Here, we assume that the link capacity c, the measured backbone source aggregate rate

xc, and the uncertainties are constant and chosen as

cl = 100, xcl = 50, and Wl = 15, (4.66)
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respectively. The network parameters are assigned as

γ = 0.2, and α = 0.01.

The control parameters are chosen as follows:

ε = 0.5, η = 0.01, ρ0 = 0.002, σ = 0.6, and κ = 1.6.

The initial conditions are set to be

â(0) = 4,

bl(0) = 0, pl(0) = 0.2, sl(0) = 0,

x(0) =
£
20 20 · · · 20

¤T
1×10 ,

y(0) = Rx(0).

The simulations are conducted under the two desired equilibria obtained in Chapter 3.

For the case of bdl = 0 and pdl = 0:

The tracking errors are defined as (4.23) in Section 4.2. Then, for this case, e1 = b and

e2 = p. From Figure 4.2, the tracking error performance shows how well the controller

is able to track the desired backlog and link price. The performance of controller ∆x,

the sliding surface s, parameters â and ρt illustrates promising adaptation and robustness

in Figure 4.3. Table 4.1 shows the tracking errors at the steady state. It is clear that the

backlogs ended up at zero except for three bottleneck links l13, l15 and l17.
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Figure 4.2. Tracking performance with xcl at bdl = 0 and pdl = 0

Table 4.1. Steady state tracking errors as desired bdl = 0 and pdl = 0

0.661201.803600.6612e2

2.251706.676502.2517e1

l17l16l15l14l13

000000e2

000000e1

l12l11l10l9l8l7

000000e2

000000e1

l6l5l4l3l2l1

0.661201.803600.6612e2

2.251706.676502.2517e1

l17l16l15l14l13

000000e2

000000e1

l12l11l10l9l8l7

000000e2

000000e1

l6l5l4l3l2l1
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Figure 4.3. Control performance with xcl at bdl = 0 and pdl = 0

For the case of bdl > 0 and pdl > 0:

According to the definition of sliding surface s in (4.24) of Section 4.2, the tracking

error e1 is the main effective element reflecting s, which was indicated in Figure 4.4. The

trajectories of backlog and link price, as well as the link aggregate rate y are shown in

Figure 4.5. Clearly, the settling is not reached as quickly as in Figure 4.3. Table 4.2

slightly differs from Table 4.1 because of the positive bdl and pdl . However, the tracking

errors are still bounded and stability is maintained.
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Figure 4.4. Tracking performance with xcl at bdl > 0 and pdl > 0

Table 4.2. Steady state tracking errors as desired bdl > 0 and pdl > 0

-0.3907-1.20010.5178-1.2001-0.3907e2

1.8719- 1.00005.3221- 1.00001.8719e1

l17l16l15l14l13

-1.2001-1.2001-1.2001-1.2001-1.2001-1.2001e2

- 1.0000- 1.0000- 1.0000- 1.0000- 1.0000- 1.0000e1

l12l11l10l9l8l7

-1.2001-1.2001-1.2001-1.2001-0.9851-1.2001e2

- 1.0000- 1.0000-1.0000-1.0000-0.4388-1.0000e1

l6l5l4l3l2l1

-0.3907-1.20010.5178-1.2001-0.3907e2

1.8719- 1.00005.3221- 1.00001.8719e1

l17l16l15l14l13

-1.2001-1.2001-1.2001-1.2001-1.2001-1.2001e2

- 1.0000- 1.0000- 1.0000- 1.0000- 1.0000- 1.0000e1

l12l11l10l9l8l7

-1.2001-1.2001-1.2001-1.2001-0.9851-1.2001e2

- 1.0000- 1.0000-1.0000-1.0000-0.4388-1.0000e1

l6l5l4l3l2l1
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Figure 4.5. Control performance with xcl at bdl > 0 and pdl > 0

Remark: From the simulations of both cases, we can see that 1) the links l13, l15 and

l17 are congested in both cases due to at least three routes passing along these links. The

congestion is signaled by the buildup of a backlog at the bottleneck, and the propagation

delays become significant; 2) since there are five routes assigned along link l15, the conges-

tion of this bottleneck is more severe than that of links l13 and l17, but there is no backlog

in l16; 3) l14 is an idle link in this network, l13 and l17 are in the same congestion situation.
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4.5.2 Simulations for Time-Varying Backbone Source Rate

An important aspect of various networks is their dynamic behavior. Next, we consid-

ered the case where the measured backbone source aggregate rate is time varying:

xcl(t) = 10 +max {0, 40 sin(π(t− 5)/6)} , (4.67)

The profile of control input xcl is shown in Figure 4.6. The other network parameters,

initial conditions and control parameters are set same as that in Subsection 4.5.1.

For the case of bdl = 0 and pdl = 0:

Figure 4.7 gives the trajectory of the adaptive gain ρt and the estimated parameter â.

There are slight overshoots in the trajectory of tracking errors e1, e2, and demanded link

aggregate rate y shown in Figure 4.6 and Figure 4.7, owing to the severe congestion on

bottleneck link l15. However, the steady state is reached in a short time.
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Figure 4.6. Tracking performance with xcl(t) at bdl = 0 and pdl = 0
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Figure 4.7. Control performance with xcl(t) at bdl = 0 and pdl = 0
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For the case of bdl > 0 and pdl > 0:

Figure 4.8 also shows very promising tracking performance with ∆x taking stronger

control actions, and that asymptotic stability is maintained with respect to challenging pos-

itive desired bdl and bdl .

Therefore, we can conclude that, under the assumptions of bounded constant distur-

bances and uncertainties, the designed control scheme is effective and able to ensure sta-

bility on the dynamic network source aggregate rate.
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Figure 4.8. Performance of e1, e2 ∆x and y with xcl(t) at bdl > 0 and pdl > 0
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CHAPTER 5

EFFECTS OF UNCERTAINTIES AND DISTURBANCES

Adaptation represents the ability of the network to respond to varying conditions. This

chapter investigates the effectiveness and adaptation of the proposed control scheme in

terms of counteracting the effect of uncertainties and disturbances from unknown local

traffic or from outside of the controlled network.

5.1 Effect of Uncertainties

We postulate an uncertainty Γ in (4.37) of Section 4.2 that is dynamic and depends on

the system state b as

Γ =
(Fb) ¦ b
||b|| (5.1)

where F is a matrix randomly generated in the simulations, the initial backlog b is also

randomly chosen between [0, 1] , and (¦) denotes element-wise multiplication. Here, with

the same control parameters set in Chapter 4, we only discuss the case of bdl > 0 and

pdl > 0. Comparing with Figure 4.8, at least one link of the controlled network resulted in

an increase of tracking errors e1, e2 as well as backlog b and travelling cost p in Figure 5.1,

due to the influence of uncertainty Γ. We see that although the controller ∆x needed more

time to "learn" how to control the source aggregate rate, the steady state was reached in a

short time as shown in Figure 5.2. The controller is apparently able to stabilize the system.
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Figure 5.1. Tracking performance with xcl(t) and elastic uncertainty Γ
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Figure 5.2. Control performance with xcl(t) and elastic uncertainty Γ
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5.2 Effect of Random Disturbances

We assume the disturbance W defined in (4.25) of Section 4.2 is dynamic instead of

constant, which was investigated in subsection 4.5.1 and subsection 4.5.2. Without loss

of generality, we assume W is random but low-frequency and bounded within the link

capacity c, i.e. W (t) ∈ [0, c] for ∀t. The simulations are conducted under the conditions

bdl > 0 and pdl > 0.
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Figure 5.3. Tracking performance with random disturbance W at bdl > 0 and pdl > 0

As can be seen in Figure 5.3 and Figure 5.4, the performance of tracking errors and

controller with random disturbances W involves severe unwanted chattering. The chatter-

ing usually exists in normal sliding mode control, due to switching actuations responding

to sensitive compensating units. Therefore, additional measures are needed to eliminate

the chattering problem and at the same time maintain asymptotic stability.
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Figure 5.4. Control performance with random disturbance W at bdl > 0 and pdl > 0

5.2.1 Adding a dead zone

Considering the controller ∆x (4.45), we denote

g = RTHTs, (5.2)

where g ∈ Rk, by introducing a dead-zone vector such that

ḡk =

⎧⎨⎩ 0 if |gk| ≤ ξ
gk − ξ if gk > ξ
gk + ξ if gk < −ξ

, (5.3)

where ξ is a small positive number. We choose time step ∆T = 0.01, and the dead zone

weight of ∆x is ξ = 3.6. Figure 5.5 shows the chattering-free adaptation of the resulting

algorithm, and the controller needs more actions to stabilize the system.
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Figure 5.5. Tracking and control performance with random W at bd > 0 and pd > 0

5.3 Conclusions

With the promising simulations illustrated in the precede Sections, we can conclude

that the uncertain local traffic and external disturbances can be effectively handled without

sacrificing the robustness and stability.
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CHAPTER 6

SIMULATIONS IN A SMALL WORLD NETWORK

This chapter investigates the adaptation and robustness of the control law proposed in

Chapter 4 to more general such as small-world networks. The topology of a small-world

network is obtained by random rewiring a regular network, typically a lattice. The random

rewiring typically changes the average path length and the clustering coefficient favorably.

The salient features of this system lie in high clustering of the nodes, like regular lattices,

yet having small characteristic path lengths, like random graphs [29].

6.1 Property of the Small World Network

The small-world phenomenon is a feature of many complex networks in which any

two arbitrary nodes can be connected by a path of a few links. This means that the average

distance between two nodes (i.e. characteristic length) is relatively small in small-world

networks.

A small world network can contain cliques, and near-cliques, meaning sub-networks

which have connections between almost any two nodes within them. Therefore, most pairs

of nodes will be connected by at least one short path. We denote the average node degree

by k1, and the probability of random rewiring as ρ. The random rewiring procedure for

interpolating a regular original lattice is illustrated in Figure 6.1. Two other instances of

small world networks are shown in Figure 6.2 and Figure 6.3. Note that the construction

does not alter the number of vertices or edges in the graph. With a rewiring probability,
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an edge will be rewired to a vertex chosen uniformly at random over the entire graph, with

duplicate edges forbidden; otherwise the edge will be left in place.

Models of dynamic systems possessing the small-world property have enhanced signal

propagation speed, computational power, and synchronizability. In particular, infectious

diseases spread more easily in small-world networks than in regular lattices.

Figure 6.1. Small world network with 50 nodes as k1 = 3, ρ = 0.5
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Figure 6.2. Small world network with 50 nodes as k1 = 3, ρ = 0.5 in free 2-D

Figure 6.3. A random small world network with 50 nodes as k1 = 3, ρ = 0.5
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6.2 Small World Network Case Study

6.2.1 Generating the Routing Matrix

Assume the number of nodes in a small world network is 50, from which we ran-

domly choose 20 Origin-Destination (OD) pairs. These OD pairs are obtained by ran-

domly choosing origin nodes and destination nodes from 50 nodes. Note that there are

multiple paths for each OD pair, many of which can be disjoint. The three shortest dis-

joint paths will be chosen for each OD pair. Since the number of disjoint paths of some

OD pairs might be less than 3, the sum of disjoint paths will not exceed 60. The method

to specify a routing matrix for the simulation is illustrated in Figure 6.4.

Randomly choose  
5 origin nodes and  
4 destination nodes

Genearte 
Routing 
Matrix R

Generate 
adjacency 

matrix

Given a graph 
of 50 nodes

Obtain 20 OD 
pairs

Find three shortest 
disjoint paths of each 

OD pair

Figure 6.4. Flow chart of obtaining the routing matrix from a small world network

Because of the randomness of choosing the origin and destination nodes, the generated

OD pairs are different for each simulation run. Hence the routing matrix is also different

for each run. Subsequently, the image of routing matrix will show the links used by the
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disjoint paths under considered. We investigate the performance of the control algorithm of

the small-world network by considering different node degree k1 and rewiring probability

ρ.

6.2.2 Simulations for Constant Backbone Source Rate xc

The control parameters and initial conditions are chosen same as those in Section 4.5.

For the case of bdl = 0 and pdl = 0:

Figure 6.6 illustrates the tracks of backlogs and link prices for the routing matrix in

Figure 6.5 as well as the corresponding errors. It can be seen from Figure 6.7 that the

system reaches the steady state in a short time. ∆x is the adaptive control algorithms

proposed in Chapter 4. The adaptive gain ρt and the estimated parameter â converge to

constant in the steady-state.

Figure 6.5. Routing Matrix R(100, 60) with xcl as bdl = pdl = 0, k1 = 2 and ρ = 0.3
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Figure 6.6. Tracking performance with xcl as bdl = pdl = 0, k1 = 2 and ρ = 0.3

For the case of bdl > 0 and pdl > 0:

For this simulation we will choose the desired network states

bdl = 0.8, (6.1)

pdl = 0.9, (6.2)

ṗdl = 0.01. (6.3)

Please note that at this condition, the desired states (6.1) and (6.2) are not the allowable

equilibrium states as specified in Chapter 3.

Figure 6.8 shows an example of routing matrix with k1 = 4 and ρ = 0.5. Although

the positive desired network dynamics bdl and pdl are not equilibrium points, the controller
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Figure 6.7. Control performance with xcl as bdl = pdl = 0, k1 = 2 and ρ = 0.3

Figure 6.8. R(100, 60) with xcl at bd > 0, pd > 0, k1 = 4 and ρ = 0.5
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Figure 6.9. Tracking and control performance at bd > 0, pd > 0, k1 = 4 and ρ = 0.5

still achieved reasonable tracking precision and robust stability in Figure 6.9. However,

comparing this case to the case of bdl = 0 and pdl = 0, the controller needs more time to

stabilize the network flow.

6.2.3 Simulations for Time-Varying Backbone Source Rate xc

Next, we considering the case of a time-varying backbone source rate. For simplicity,

we assume the same profile of xc in equation (4.67).

For the case of bdl = 0 and pdl = 0:

Figure 6.10 shows an example of the routing matrix with k1 = 5 and ρ = 0.7. The

controller∆x responded effectively in adapting to the variation pace of the backbone source

rate xc and stabilized the system in a very short time. The tracking errors e1 and e2 and the

aggregate rate y are bounded as shown in Figure 6.11.
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Figure 6.10. R(100, 60) with xcl(t) at bd = pd = 0, k1 = 5 and ρ = 0.7
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Figure 6.11. Tracking and control performance as bd = pd = 0, k1 = 5 and ρ = 0.7

52



For the case of bdl > 0 and pdl > 0:

Here, we conduct the simulations by choosing the desired network dynamics as

bdl = 0.5,

pdl = 0.6,

ṗdl = 0.01.

For this case, as well, the time-varying backbone source rate xc will increase the diffi-

culty of controlling the flow tracking error. The routing matrix in Figure 6.12 is obtained

by setting k1 = 3 and ρ = 0.5. Since the interactions between some links of the het-

erogeneous small-world network are highly clustered and disordered, it will be harder for

the controller to attain steady controlling and precise tracking. In fact, although the con-

troller ∆x in Figure 6.13 acts vigorously, the link aggregate rate y is large but bounded.

The control results show that additional rerouting methods are needed to reduce the con-

gestion when there are too many overlaps of the shortest disjoint paths that chosen by each

OD pair.

Figure 6.14 is obtained by increasing the node degree and link rewiring probability

to k1 = 5 and ρ = 0.8, the tracking and control performance shown in Figure 6.15 are

acceptable. The controller achieves robust tracking at both peak usage intervals and in

low-usage intervals of the source aggregate rate xc.
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Figure 6.12. R(100, 56) with xcl(t) as bd > 0, pd > 0, k1 = 3 and ρ = 0.5
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Figure 6.13. Tracking and control performance as bd > 0, pd > 0, k1 = 3 and ρ = 0.5
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Figure 6.14. R(100, 60) with xcl(t) as bd > 0, pd > 0, k1 = 5 and ρ = 0.8
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Figure 6.15. Tracking and control performance as bd > 0, pd > 0, k1 = 5 and ρ = 0.8
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For the case of bdl = 0 and pdl > 0:

Note that this case is an allowable equilibrium condition as stated in Chapter 3. The

simulations are conducted by choosing the desired network dynamics as

bdl = 0,

pdl = 0.6,

ṗdl = 0.01.

Figure 6.16 is a routing matrix generated by setting k1 = 4 and ρ = 0.8. Figure 6.17

shows terrific tracking performance of the desired link prices, as well as the high control

efficiency and strong adaptation to the source rate propagation of the proposed control

algorithms.

Figure 6.16. R(100, 60) with xcl(t) as bd = 0, pd > 0, k1 = 4 and ρ = 0.8
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Figure 6.17. Tracking and control performance as bd = 0, pd > 0, k1 = 4 and ρ = 0.8

6.2.4 Statistics analysis of the rewiring probability

To study the influence of the rewiring probability on the tracking errors, we performed

a statistical analysis of simulation results. For each rewiring probability ρ, generate 20

small world networks and we record the average values of the tracking errors. Please note

that the tracking errors considered are from the latter 30% of the simulation time, which

lies into the time interval of the steady state.

We studied the network as the case of bdl > 0 and pdl > 0, as well as of bdl = 0 and

pdl = 0. For simplicity, we utilize the same profile of xc in equation (4.67). The relationship

between the rewiring probability and the average errors of all the links is shown in the Table

6.1, Figure 6.18 and Figure 6.19.
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Table 6.1. The average tracking errors with different rewiring probability
Average 
Error

0.0598 0.0601 0.0612 0.0599 0.0654 0.0604 0.0617 0.065 0.0649 0.0654

0.0333 0.034 0.0335 0.0329 0.0352 0.0331 0.0333 0.0345 0.0348 0.0344

0.0472 0.0456 0.0475 0.0476 0.0475 0.0449 0.0452 0.0481 0.0445 0.0459

0.0094 0.0091 0.0095 0.0095 0.0095 0.009 0.009 0.0096 0.0089 0.0092

0.1ρ =

1e

2e

1e

2e

, 0d db p >

, 0d db p =

0.2ρ = 0.3ρ = 0.4ρ = 0.5ρ = 0.6ρ = 0.7ρ = 0.8ρ = 0.9ρ = 1ρ =

We conclude that the rewiring probability has a negligible effect on the performance

of the proposed control algorithm.
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Figure 6.18. Average tracking errors as bdl > 0 and pdl > 0
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Figure 6.19. Average tracking errors as bdl = 0 and pdl = 0
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

This work theoretically analyzed the adaptation, robustness and stability of flow con-

trol via source rate control as to regulate the link queue length and the link price. A

simple adaptive control law that can cope with the effect of uncertainty and disturbance

from unknown local traffic or from outside of the controlled network, while at the same

time maintain robust asymptotic stability, was developed and simulated. This is one of the

first attempts of applying robust control theory to network flows.

We tried to explore mathematical and analytical methods of network flow control to

understand the behavior of stressed networks, as well as to demonstrate attributes such as

robustness, adaptation, stability, and suppression of uncertainties and disturbances. The

analysis and the simulations revealed the following:

1 The allowable equilibrium conditions were identified in Chapter 3 by analyzing the

feature of the continuous-time nonlinear network model adopted in Chapter 2.

2 A novel model description in terms of the matrix notation was developed, and a

comprehensive source rate control vector was designed in Chapter 4 based on a

vector reminiscent of the sliding surface representation.

3 Global asymptotic stability under mild assumptions is guaranteed by theoretical

proof.
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4 Simulations in Chapter 4 and Chapter 5 conducted in Matlab illustrated that the

proposed control laws ensured robust tracking of desired network dynamics with

respect to both constant and realistic time-varying backbone source rates. The

designed controller was also capable of mitigating the effect of uncertainties and

disturbances from unknown local traffic sources and from outside of the controlled

network. The proposed control laws exhibited promising tracking ability, adapta-

tion and robustness.

5 More simulations were carried out in a more realistic small-world network in Chap-

ter 6. Asymptotic stability and robust adaptation at equilibrium conditions of the

proposed control schemes were observed in a large network. The rewiring proba-

bility seemed to have a negligible effect on tracking errors.

7.2 Future Directions

In the future, the robust adaptive control algorithms proposed in Chapter 4 will be

extended to routing control. Routing protocols to achieve minimal communication time

with minimum consumption of network resources will be studied. Delayed global stability

with elastic link capacity will also be investigated.

Our effort will also be geared towards computational approaches that are amenable to

real-time implementations, and able to respond robustly to congestion.

61



REFERENCES

[1] R. J. Ellison, D. A. Fisher, R. C. Linger, H. F. Lipson, T. Longstaff, N. R. Mead. "Surviv-

able Network Systems: An Emerging Discipline." Technical Report, Software Engineering

Institute, Carnegie Mellon University, Pittsburgh, PA, November 1997.

[2] S Kamolphiwong, A. E. Karbowiak, H. Mehrpour. "Flow control in ATM networks: a

survey." Computer Communications, Volume 21, Issue 11, 951-968, August 1998.

[3] W. Fischer, E. Wallmeier, T. Worster, S. P. Davis, A. Hayter. "Data communications using

ATM: architectures, protocols, and resource management." IEEE Communications Maga-

zine, Volume 32, Issue 8, 24-33, August 1994.

[4] F. Kelly, A. Maulloo, and D. Tan. “Rate control in communication networks: Shadow

prices, proportional fairness and stability.” The Journal of the Operational Research Soci-

ety, Volume 49, Issue 3, 237-252, March 1998.

[5] S. H. Low and D. E. Lapsley. “Optimization flow control—I: Basic algorithm and conver-

gence.” IEEE/ACM Transactions on Networking, Volume 7, Issue 6, 861-874, December

1999.

[6] S. H. Low. “A duality model of TCP and queue management algorithms.” IEEE/ACM

Transactions on Networking, Volume 11, Issue 4, 525-536, August 2003.

[7] W. Wang, M. Palaniswami, and S. H. Low. “Optimal flow control and routing in multi-path

networks.” Performance Evaluation, Volume 52, 119-132, 2003.

[8] J. Wang, L. Li, S. H. Low and John C. Doyle. "Cross-layer Optimization in TCP/IP Net-

62



works." IEEE/ACM Transactions on Networking, Volume13, Issue 3, 582-595, June 2005.

[9] F. Paganini. "On the stability of optimization-based flow control." Proceedings of the

American Control Conference, Arlington, VA, Volume 6, 4689-4694, June 25-27, 2001.

[10] F. Paganini. "A global stability result in network flow control." Systems & Control Letters,

Volume 46, Issue 3, 165-172, 5 July 2002.

[11] S. Athuraliya, V. Li, S.H. Low, Q. Yin. "REM: active queue management." IEEE Network,

Volume 15, Issue 3, 48-53, May/June 2001.

[12] J. T. Wen and M. Arcak. "A unifying passivity framework for network flow control." IEEE

Transactions on Automatic Control, Volume 49, Issue 2, 162-174, February 2004.

[13] F. Paganini. “Flow control via pricing: a feedback perspective.” Proceedings of the Aller-

ton Conference, Monticello, IL, October 2000.

[14] A. Iftar. "An Intelligent Control Approach to Decentralized Routing and Flow Control in

High Ways." Proceedings of the 12th IEEE Conference on International Symposium on

Intelligent Control, Istanbul, Turkey, 269-274, July 1997.

[15] A. Iftar. "A decentralized routing controller for congested highways." Proceedings of the

IEEE Conference on Decision and Control, New Orleans, LA, 4089-4094, December 1995.

[16] P. E. Sarachik and U. Ozguner. "On decentralized dynamic Routing for congested traffic

networks." IEEE Transactions on Automatic Control, Volume 27, Issue 6, 1233-1238,

December 1982.

[17] R. Srikant. The Mathematics of Internet Congestion Control. Birkhäuser, Boston, MA,

2004.

63



[18] K. Collins and G. Muntean. “A vehicle route management solution enabled by wireless

vehicular networks.” IEEE INFOCOM, 1-6, 2008.

[19] Dan A. Rosen, frank J. Mammano and Rinaldo Favout. "An Electronic Route-Guidance

System for Highway Vehicles." IEEE Transactions on Vehicular Technology, Volume 19,

Issue 1, 143-152, February 1970.

[20] Y. E. Hawas, H. S. Mahmassani. "Comparative Analysis of Robustness of Centralized and

Distributed Network Route Control Systems in Incident Situations." Transportation Re-

search Record 1537, 83-90, 1996.

[21] S. Glaser, B. Vanholme, S. Mammar, D. Gruyer, and L. Nouvelière. "Maneuver-Based

Trajectory Planning for Highly Autonomous Vehicles on Real Road With Traffic and Driver

Interaction." IEEE Transactions on Intelligent Transportation Systems, Volume 11, Issue

3, 589-606, September 2010.

[22] H. K. Khalil. Nonlinear Systems. Prentice Hall, Inc., Upper Saddle River, New Jersey,

2002.

[23] Y. D. Song. "Adaptive Motion Tracking Control of Robot Manipulators – Non-regressor

Based Approach." International Journal of Control, Volume 63, Issue 1, 41-54, 1996.

[24] J. T. Spooner, K. M. Passino. "Stable Adaptive control Using Fuzzy Systems and Neural

Networks." IEEE Transactions on fuzzy systems, Volume 4, Issue 3, 339-359, August 1996.

[25] Lloyd N. Trefethen and David Bau III. Numerical linear algebra. SIAM: Society for

Industrial and Applied Mathematics, Philadelphia, PA, 1 June 1997.

[26] P. A. Ioannou and J. Sun. Robust Adaptive control. Prentice Hall, Inc., Upper Saddle River,

64



New Jersey, 1996 (Out of print in 2003). Electronic copy at

http://www-rcf.usc.edu/~ioannou/Robust_Adaptive_Control.htm.

[27] Y. D. Song. "Adaptive parameter estimators for a class of non-linear systems." Interna-

tional Journal of Adaptive Control and Signal Processing, Volume 11, Issue 7, 641-648,

November 1997.

[28] Augustin Soule, Antonio Nucci, Rene L. Cruz, Emilio Leonardi and NinaTaft. "Estimating

Dynamic Traffic Matrices by Using Viable Routing Changes." IEEE/ACM Transactions on

Networking, Volume 15, Issue 3, 485-498, June 2007.

[29] Duncan J. Watts, Steven H. Strogatz. "Collective dynamics of ‘small-world’ networks."

Nature, Volume 393, Issue 6684, 440-442, 4 June 1998.

65


	Rate-Based Robust Adaptive Performance Tracking Control Of Network Flows
	Recommended Citation

	dissertation_xiaoyan mei_0619.dvi

