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ABSTRACT 

 

Mills, Godfrey. APPLICATION OF KALMAN FILTER WITH TIME CORRELATED 

MEASUREMENT ERRORS IN SUBSURFACE CONTAMINANT TRANSPORT 

MODELING.(Major Professor: Dr. Shoou-Yuh Chang), North Carolina Agricultural 

and Technical State University. 

 
 Contaminant transport modeling of a conservative solute in the subsurface is 

investigated by applying a Kalman filter (KF) with time correlated measurement errors. 

The usual method or assumption often employed is white Gaussian errors, but time 

correlated measurement errors were used instead for this research, since some 

hydrological observation data exhibit time correlated error characteristics.  

 An observation data was generated from a two dimensional analytical solution 

with an additive time correlated random errors. This was used as the measurement 

Equation for the KF with time correlated measurement errors and the KF with white 

Gaussian errors. The measurement differencing algorithm was adopted in deriving a 

discrete time varying KF with time correlated measurement errors for a two-dimensional 

contaminant transport prediction in the subsurface. An expression for the correlation 

coefficient matrix for colored noise, termed as “Time correlated operator matrix”, is 

derived instead of using a traditional diagonally assigned one. A computer code was 

generated for both KF with white Gaussian errors and KF with time correlated errors.

 Simulation results indicated an improved root mean square error (RMSE) profile 

of KF with time correlated errors over KF with white Gaussian errors.  The KF with 

correlated errors reduced the errors in prediction by 11.4% compared to the KF with 



xii 
 

white Gaussian errors using only 9 observation points in the entire 20×20 space domain. 

Further investigation revealed that the performance of the KF with time correlated 

observation errors was improved when the measurement errors standard deviation was 

reduced.  
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CHAPTER 1 

INTRODUCTION 

      

 Contaminant transport in the subsurface is an area of keen interest. The 

groundwater resource is a valuable asset that needs protection because of its usefulness to 

humans, the important role it plays in hydrological processes such as base-flow and also 

its vulnerability to pollutants. Some communities and cities in the United State of 

America depend solely on groundwater for water supply. It was estimated in 2005, that 

out of the total water withdrawn in the US, 20% constituted groundwater (USGS 2009). 

However, there are instances that this resource suffers from severe pollution due to 

natural causes or by human activity. In most cases, little or no attention is paid to the 

impact of industrial activities on the groundwater resource, leading to this vital resource 

becoming polluted. In view of this, an in depth understanding of the dynamics within the 

subsurface is an important tool that can effectively be employed in the wake of a 

pollution event.  

The complex nature of groundwater systems makes it difficult to successfully 

predict the fate and transport of contaminant. Due to this, measurement of aquifer 

parameters and contaminant plume concentrations from the field may be localized, not 

representing the entire system or even erroneous. Apart from this, it is difficult, time 

consuming and expensive to have an accurate estimate of the extent of pollution in a 

groundwater resource just by field measurements. For a cost effective remediation 

activity of such contaminated aquifers, it is essential to obtain a somewhat accurate 
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knowledge of the extent of the pollution in time and in space in a manner that eliminates 

or reduces the prediction error. This has led to a lot of research on the fate and transport 

of contaminant in subsurface (Hossain and Yonge 1997; Ganguly et al. 1998; Solo-

Gabriele 1998; Rabideau and Khandelwal 1998; Lee 2004; Yan et al. 2006; Zou and Parr 

1995).  Mathematical models for contaminant transport in the subsurface are widely used. 

Such models offer information on areas in the subsurface that would have otherwise been 

impossible to obtain information with field equipment. The results obtained are 

somewhat relevant but not accurate enough to characterize the subsurface. A better way 

of obtaining accurate results is by data assimilation. This approach aims at adding extra 

information from field measurement to the mathematical model for improved prediction.  

 Data assimilation is a technique that can be employed for parameter estimation 

and improving model accuracy. It involves a combination of the observational data and 

the underlying dynamical principles (Equations) governing the system under observation 

for an accurate prediction (Robinson and Lermusiaux 2000). On the contrary, the strength 

of the data assimilation for parameter estimation can be its weakness as well, since the 

results are forced towards the observation, it is possible to introduce algorithms that are 

theoretically correct but the resulting model may be unstable. It is of importance to 

confirm the assumptions made in the model in order to prevent a forcing that results in an 

unstable model (Drecourt 2003). Parameter estimation techniques come in many forms, 

depending on the specific goals and aims of the user. The three most relevant goals are 

model improvement, the study of dynamical processes through state estimation, and 

forecast improvement. Model improvement implies refining parameters or inputs to the 
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model. The general idea is to ask what set of parameters would best reproduce the 

observations, thus the name parameter estimation. Inverse theory is another traditional 

name, especially when referring to solid-earth geophysics where the systems are 

considered time independent (Paola and Eli; 1996). 

 The main objectives for this research are to: 

1. Investigate the predictive performance of KF with colored measurement errors in 

subsurface contaminant transport modeling using a conservative solute. 

 

2. Compare the performance of the conventional discrete KF with white Gaussian 

noise versus the KF with colored measurement noise in contaminant transport 

prediction in the subsurface. 
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CHAPTER 2 

LITERATURE REVIEW 

 

The Kalman filter (KF) is a data assimilation technique that is able to process data 

recursively to generate optimum estimates of the state. The KF can be used for past, 

present and future state estimates (Welch and Bishop 2006). The KF has been used in 

subsurface pollutant transport and groundwater flow modeling for last three decades 

(Chang and Jin 2005; Eppstein and Dougherty 1996; Ferraresi et al. 1996; Geer 1982; 

Graham and McLaughlin 1989; Pimentel et al. 1982; Van Geer and Van Der Kloet 1985; 

Van Geer et al. 1991; Zou and Parr 1995). Its effectiveness and efficiency is due to its 

ability to handle dynamic and stochastic processes, providing optimal solutions for linear 

systems (Chang and Jin 2005). In applying the KF for contaminant transport estimation, 

it was assumed the process and measurement noise were white Gaussian, implying zero 

mean, uncorrelated and flat or constant power spectral density. Additionally, Chang and 

Latif (2007)  applied Kalman and Particle filters to effectively predict a one dimensional 

leachate transport model and also used an Extended Kalman filter (EKF) to improve the 

accuracy of a two dimensional subsurface contaminant transport model  for a 

conservative solute (Chang and Latif 2010). In some other areas of hydrology, the KF 

was applied with the assumption of white Gaussian noise (Yu et al. 1989; Ngan and 

Russel 1986). Most applications of KF in hydrology not mentioned here have been done 

based on white Gaussian noise assumptions. Contrary to traditional knowledge, this 

assumption is not always valid. In certain situations it makes more sense to consider 
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colored noise or correlated errors instead of white noise, especially for cases where 

measurement data were found to contain correlated errors. 

It is a priority to simulate stochastic process to closely represent the system under 

study. As such, application of correlated errors is vital in the accurate simulation of 

varied physical systems which exhibit such characteristics. Some of the areas correlated 

errors have been applied include physical, chemical and biological systems (Van Kampen 

1992; Huang et al. 2010; Billah et al. 1990). In an earlier application, Johnson (1970) 

applied the KF with colored-noise to a nonlinear system and a nonlinear observation 

model, with the assumption of a linear estimator. The Equations used in this earlier 

application were based on previously developed formulae; including the colored 

measurement noise statistics and the statistics of non-estimated model parameter errors. 

He compared several simulations made with this filter and results of an estimation 

procedure constructed with the utilization of the standard white noise assumptions. The 

difference between the KF with white-noise results and the KF with colored-noise results 

were found to be minimal. Another study on the influence of surface and soil moisture 

processes on atmospheric precipitation and radioactive forcing on soil moisture was 

conducted by Wang et al. (1997) based on non-Gaussian colored-noise. It was observed 

that soil moisture for climatic regions with larger land-atmospheric positive feedback 

have large correlation time scales.  The KF with correlated errors has, with equal success 

been applied to predict flooding events in the occurrence of rainfall. Colored-noise was 

added to a KF to effectively control the divergence of the filter for predicting rainfall and 

river flow models in the event of flooding. An autoregressive moving average model was 
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fitted to hourly rainfall to enable the prediction. These two systems were connected in a 

series to form a state-space system which was then used in the KF algorithm with 

colored-noise to correct and update the estimated state variables (Wang et al. 1999). 

Another area correlated errors have been used is in the study of the movement of 

continental-scale water balance in the central United States. Two separate models of 

white noise and colored noise were designed based on available atmospheric data. The 

results indicated that time correlated atmospheric moisture fluctuation removes the 

bimodality of the soil moisture probability distribution and that, the correlated-error 

approach successfully captured the water balance dynamics in the study region despite 

the absence  of multiple soil moisture states (Kochendorfer and Ramirez 2003). 

In the ensuing years, application of time correlated measurement and process 

noise in hydrological modeling was suggested by Drecourt (2003) especially in the use of 

GPS equipments for field measurements. In support of this claim, Kuhlmann (2003) 

obtained some GPS observations results with high sampling rate that were time 

correlated. In the case of Kuhlmann (2003), a KF with shaping filter was applied in a 

GPS time series to simulate these correlated measurement errors which yielded good 

results. Later, a novel approach to the setup of a KF using an automatic calibration 

framework for estimation of covariance matrices was presented by Drecourt et al. (2006). 

This method was applied to a twin-test experiment with a groundwater model and a 

colored noise KF. The results indicated that lattice sampling was more favorable than the 

usual Monte Carlo simulation because its ability to preserve the theoretical mean reduces 

the size of the ensemble needed. The resulting KF with colored noise proved to be 
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efficient in correcting dynamic errors and bias over the whole domain studied. The 

uncertainty analysis provided a reliable estimate of the error in the neighborhood of 

assimilation points but the simplicity of the covariance models led to underestimation of 

the errors far from assimilation points. In a different area of application, Kumar et al. 

(2007) also used a colored-noise KF to diminish the error effects caused by GPS sensors 

placed on vibrating structures. Effects due to vibration were added and a colored-noise 

filter was designed to mitigate the effects of the beacon movements on state estimation. 

The sensitivity analysis conducted indicated that the colored-noise filter provides 

significant improvements over a filter that does not account for vibrational effects. 

Additionally, Charles et al. (2008) used colored noise as the driving force to simulate 

contaminant transport in shallow waters. The Colored noise was used because initial 

application of white noise could not accurately account for the short-term dispersion of 

contaminants. In this investigation, the particle model with an additive colored noise was 

used to simulate the contaminant transport process to improve the results of the model 

shortly after the contaminant is deployed. 

In the application of KF with colored or correlated noise, the process noise may 

be colored, the measurement noise may be colored or both of them may just be correlated 

(Simon 2006). The derivation of the algorithm for colored noise in KF originally 

involved the state augmentation method as explained by Brown et al. (1997), Welch et al. 

(2006) and Gelb (1974). But, this method increases the complexity of the algorithm, 

making the state variable two dimensional and also increasing the computational 

difficulty for systems with large matrix dimensions. Another problem is the difficulty of 
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implementing this method in the case of correlated measurement errors because of the 

instability of the Kalman gain matrix Kt (Bryson and Henrikson 1968; Gelb 1974; 

Popescu and Zeljkovic 1998; Sun and Deng 2004). In overcoming these short comings, 

Wang et al. (2010) proposed the Perturbed-P algorithm to make it possible to apply the 

state augmented method while avoiding the problem of a singular error covariance matrix 

Pt. Petovello et al. (2009) also presented a new algorithm for considering time-correlated 

measurement errors in KF. This algorithm was derived based on the measurement- 

differencing concept, originally formulated by Bryson and Henrikson (1968). The 

difference between the original algorithm and the modified one by Petovello et al. (2009) 

lies in the numerical competence of the latter one. Also, the new algorithm gives full 

consideration to additive white noise which is often still present but ignored in the 

previous implementation of KF with colored-noise algorithm. Simulated results based on 

this new algorithm yielded more realistic results than the previous algorithm based on the 

measurement differencing method.  
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CHAPTER 3 

METHODOLOGY 

 

 The methodology employed in this research involves a consideration of the 

numerical (an explicit finite difference method), analytical (which is used as a reference 

true solution), KF with white Gaussian noise and finally KF with colored measurement 

noise results. Comparison is made between the four results relative to the true solution to 

find their effectiveness and usefulness in state estimation in subsurface contaminant 

transport. 

 

3.1  Numerical Solution Approach 

 The classical advection-dispersion equation is solved numerically using Forward 

Time and Central-Space (FTCS) method as used by Chang and Jin (2005). Making use of 

the two dimensional version of the governing solute transport equation (Equation-1), the 

concentration of the conservative solute will be determined for each time step and their 

corresponding plume spread in the subsurface porous media.  
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∂

∂

t

C

xR

C
v

xR

CD

yR

CD

2

2

x

2

2

y

∂

∂
−

∂

∂
+

∂

∂

                                                                           (1) 

 

t = Time (T), 

R = Retardation 
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D  = Coefficient of hydrodynamic dispersion (L
2
T

-1
), 

v= Average linear pore water velocity in the x direction (LT
-1

), 

C= Conservative solute concentration (ML
-3

). 

 

At a non-steady state, the solution of the equation is found by finding the partial 

differential solution for each of the partial differential terms using a numerical solution 

approach. The approximate solution for each term in the advection-dispersion equation is 

then computed using FTCS method. This gives an approximate solution since it involves 

truncation and other numerical errors. 

 

3.2  Reference True Solution Approach  

 The two dimensional analytical solution for pulse input is adopted as the reference 

true solution for this research work (Schwartz and Zhang; 1994). This model assumes a 

homogeneous, isotropic aquifer with a non-steady state in a two dimensional flow field. 

The advection-dispersion equation will be used to determine the changes in concentration 

with respect to time and space in the subsurface. It is assumed that spill occurs 

instantaneously as a plane source. 
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Where,  

C = Conservative solute concentration (ML
-3

),  

x = Distance (L) in x direction  

y = Distance (L) in y direction  

t = Time (T),  

xD = Constant horizontal hydrodynamic dispersion coefficient (L
2
 T

-1
), 

yD = Constant vertical hydrodynamic dispersion coefficient (L
2
 T

-1
), 

R = Retardation constant  

µ= Porosity 

b=Aquifer thickness (L) 

v= Average linear pore water velocity (LT
-1

) 

 

 Equation-2 represents the changes in time and distance in concentration, 

depending on the initial mass of contaminant per unit area ( oM ) injected uniformly 

across the aquifer cross section during a spill at time t =0. It is assumed that the aquifer 

has a uniform cross section area. The boundary condition of the two dimensional mass 

transport with an instantaneous point source is expressed as, 

 

)yy,x(xMt)y,M(x, ii00t
===

=
 

)yy,x(xCt)y,C(x, ii00t
===

=
 

0t)y,C(x,
Ω
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Where, )y,(x ii
is the initial co-ordinate that the pulse input occurred and Ω  is a square 

boundary. 

 

3.3  Kalman Filter 

The Kalman filter (KF) as introduced in 1960 by Rudolf Emile Kalman in his 

publication for use in electrical control systems is a widely used method for deformation 

analysis nowadays. It serves as a recursive solution to the discrete-data linear filtering 

problem.  This estimation procedure can still be done even when the precise nature of the 

modeled system is not known (Welch and Bishop 2006). The recursive model is based on 

a Markov chain with operators disturbed by Gaussian error. For every time step the new 

state is generated based on a combination of the old state and added Gaussian error 

(Welch and Bishop 2006). 

 Random noise or error is most of the time applied to subsurface systems to reflect 

their heterogeneous nature so that a model can have characteristics close to the 

subsurface in order to have more accurate results. The state-space model is governed by 

process equation and measurement equation, which are   required in order to run the KF. 

3.3.1  Process Equation 

 In the application of KF in contaminant transport modeling in the subsurface, the 

process equation is a slight modification of the linear numerical model of the advection 

dispersion differential equation employed in the subsurface contaminant transport 

equation. The modification involves the addition of an error term as shown in Equation-3. 
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 t+1 t tx = Φx + w
                                                                                                      

(3) 

 

Where, 
1tx +
 is the state vector describing the concentration plume at epoch 1t +  ; Φ  is 

the State Transition Matrix; 
tx is the state vector describing the previous concentration 

plume at epoch t  ; tw is the model process noise or system error with covariance 

matrix tQ  and zero mean. 

3.3.2  Measurement Equation 

 In the absence of field data, the analytical solution was adopted as the true 

solution for this study. This assumption is justified since the true solution in reality could 

be of any form. As in the case of Geogebeur and Pauwels (2007), synthesized data was 

employed as the true solution for their hydrologic parameter estimation using EKF. To 

make the analytical solution representative of a temporally correlated observation data, a 

time correlated (additive with time line) random error was added to the analytical 

solution for the whole experimental domain. This was used as the measurement equation 

for the KF with time correlated errors and the KF with white Gaussian errors. The 

observation equation for the entire domain is represented by Equation-4. 

 

           t

T

tt vHxz +=
                                                                                                        

(4) 

 

Where, 
tz represents the state vector for all the observed data at all time steps; H denotes 

the measurement operator or design matrix; tv is the error inherent in the observation 
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data with covariance 
tR and zero mean; 

T

tx  is the transpose of the true value of the state 

vectors for all of the time steps. 

 

3.4  Discrete Kalman Filter Algorithm 

  The KF works by estimating a process state using a form of feedback control. The 

Filter estimates the process state at some time and then obtains feedback in the form of 

noisy measurements. As such, the equations for the Kalman filter fall into two groups; 

time update or predictor equations and measurement update equations or corrector 

equations. The time update equations are responsible for projecting forward in time the 

current state and error covariance estimates to obtain the a priori estimates for the next 

time step. The measurement update equations are responsible for the feedback, in other 

words for incorporating a new measurement into the a priori estimate to obtain an 

improved a posteriori estimate (Welch and Bishop 2006). The KF Algorithm includes an 

optimal estimation equation for the stochastic process. This optimal estimate is given by 

the expression below; 

 

(+) (-) (-)

t+1 t+1 t+1 t+1 t+1x = x + K {z - Hx }
                                                                        

(5) 

 

The 1tK +  
denotes the Kalman gain matrix responsible for minimizing the optimal 

estimate error covariance matrix tP . The Kalman gain matrix is obtained from Equation-

6. 
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The noise is advanced recursively for all time steps by Equation-7 
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In this regard, 
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3.5  Kalman Filter with Time Correlated Measurement Errors  

 As stated earlier on, a prerequisite for optimal estimation using the KF is that the 

system has no time-correlated process and measurement errors in other words they are 

both white noise. However, this is not always the case in practice. There are certain cases 

that the errors have been found to be time correlated random errors. The algorithm or 

method in applying time correlated errors in Kalman filtering (KF) for contaminant 

transport in the subsurface is adopted from Petovello et al. (2009). Some advantages of 

this algorithm over other algorithms include: 

1. This algorithm does not suffer from numerical problems or it does not yield 

systems whose transition matrices are near identity or ill-conditioned and does not 

increase the size or dimension of the state vector as proposed in the state 

augmentation approach by Gelb (1974). 
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2. This algorithm gives full consideration to additive white noise which in most case 

is ignored in other time correlated error algorithms. 

 

3. It does not require reinterpretation of Kalman filter parameters. It is based on 

measurement differencing but does not have time latency problem. 

 

 In the case of observations tL with time-correlated errors the observation is 

expressed in terms of the state vector and noise parameters as indicated in Equation-9. 

 

           t t t t tL = A x + u + n
                                                                                                 (9)

 

 

Where, tA
 
represents the design matrix for the time correlated measurement, which is 

also equivalent to the design matrix H  in Equation-4. The errors for the measurement 

equation consist of both colored and white additive noise tu  and tn  , respectively. In the 

case of correlated errors, the colored noise vector of the observation has two components, 

colored part and white part as expressed in Equation-10. 

 

           t t-1 t-1u = Su + ε
                                                                                                     (10) 

 

Where, tu
 
is the colored noise vector at time step t ; 1tu −  

is the colored noise vector for 

previous time step; S is the state transition matrix containing the correlation coefficient. 

In the measurement differencing derivation explained by Simon (2006) he defines the 

Sas a diagonal matrix with constant values ranging between 0 and 1. Setting the diagonal 

elements in S = 0 implies white noise, and any value other than 0 but less than 1 is a 
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characteristic of  a particular time correlated measurement errors; 1tε −  is equivalent to the 

process noise vector for the correlated measurement error process, assumed to be 

uncorrelated with both tn and the process noise vector tw . A new measurement equation 

based on the time difference approach is given by Equation-11. 

 

           t t t t-1z = L - S L
                                                                                                     (11)

 

               
( )t t t t t t-1 t-1 t-1 t-1= A x + u + n - S A x + u + n  

               
( ) ( )t t t t-1 t-1 t t t-1 t-1 t-1 t-1= A x + S u + ε + n - S A x + u + n  

               t t t-1 t t t-1 t-1 t t-1= A x + ε + n - S A x -S n  

 

Equation 3 could be re-arranged in the form as shown in Equation-12. 

 

           
( )-1

t-1 t-1,t t t-1x = Φ x - w
                                                                                            

(12) 

 

This is then substituted back into Equation-11 yielding a new Equation-13 

 

           t t t t-1 t t t-1 t-1 t t-1z = A x + ε + n - S A x - S n  

          
( )-1 -1

t t t-1 t-1,t t t t-1 t-1,t t-1 t t-1 t-1 t= A - S A Φ x + S A Φ w - S n + ε + n
                               

  (13) 

 

Comparing Equation-13 and Equation- 4 it can be deduced that; 
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-1

t t t-1 t-1,tH = A - S A Φ
                                                                                                                                           (14) 

           
-1

t t t-1 t-1,t t-1 t t-1 t-1 tv = S A Φ w - S n + ε + n
                                                                  

(15) 

 

The new covariance matrix of the measurement noise tR
 
is expressed as 

 

           
T

t

T

1t

T

1t1t

1

1t1ttt1tt SAΦQΦASNMR −

−

−−

−

−−− ++=
                                                       (16) 

 

Where, M and Nare the covariance matrices of ε andn  respectively, or equivalently, the 

sum of the two covariance matrixes M and N is the same as R in Equation-6. Since the 

measurement error vector tv is an explicit function of 1tw − , it implies that these two error 

vectors tv and tw  are correlated. The correlation is given by Equation-17. 

 

                
T T -T

t t-1 t-1 t-1,tC = Q S A Φ
                                                                                                                                           (17) 

 

 The new Kalman gain of Equation-18 and the new update covariance matrix 

equation of Equation-19 make use of the correlation expression from Equation-17 and the 

new measurement design matrix from Equation-14 as well as the new covariance matrix 

of Equation-16. 

 

           
(+) (-) T (-) T T T -1

t t t t t t t tK = (P H + C )[HP H + R + H C + C H ]
                                         (18)
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(+) (-) (-) T T T T

t t t t t t t t tP = P - K [P H H + R + H C + C H ]K
                                               (19) 

 

 S, is the time correlation operator matrix. Hypothetically, if the measurement 

errors are not time-correlated, the u term will be absent. In other words, the measurement 

would contain white noise. The matrix H  is the design matrix for time correlated 

measurements and A  is the design matrix for measurement with no time-correlation. In 

our transport problem, where the state and measurement variable are the same entity, A  

matrix gives a linear relationship between the sate vector x  and the measurement vector 

z . Both x  and z  denotes the contaminant concentration vector. This leads to shape and 

construct the A  matrix as a 0-1 matrix that has 1 in the cell having observation and 0 in 

the cell with no available observation. For each time step, if measurements are done with 

the same number of observation, which is most practical, the design matrix will remain 

the same at every time step. Again the design matrix for correlated measurement H
 
will 

remain the same at every time step. Mathematically,  

 

          t-1 t t-1 tH = H = A = A . 

 

Recalling the relationship betweenS, H and A and using the above criterion. 

 

               
=-1 -1

t t t-1 t-1,t t t-1,tH = A - S A Φ H - S HΦ  
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S must depend on A and H to keep the relation valid. In other words, the time correlation 

operator S is dependent on system operator A and the measurement operator H. There 

must exist an expression for S while it is treated as a matrix with unknown cell values, 

other than a matrix with some assigned value as stated earlier. An empirical expression 

for S is attempted to establish the following on the basis of this relational background 

along with the dimensional analysis of matrices. A is an n’ n square matrix. H is an m’ n 

rectangular matrix. Here n is the number of Eulerian nodes in the experimental space 

domain and m is the number of observation nodes. To make the matrices multiplication 

possible, the dimensions of the matrices need to be consistent. From the above 

expression, the following dimensional analysis of the matrices can be done. 

 

          

[ ] [ ] [ ] [ ] [ ]

[ ][ ][ ] [ ][ ]

Dim Dim Dim Dim Dim

m n m n q r m n n n m n q r m n

= -

´ = ´ - ´ ´ ´ = ´ - ´ ´ ´

-1

t-1,t
H H S H Φ

 

 

 To conduct a consistent matrix manipulation, q  has to be equal to mand r has to 

be equal tom . Thus it is deducible that S is a m n´  square matrix
. 

Finally an expression for S is established as m n´ . 

 

          
a= T

t t-1,tS HΦ H  
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Here a is a scalar which stands for the correlation coefficient that lies between and along 

with 0 and 1. If there is no time-correlation in measurement errors, a is set to zero. In our 

transport problem, a =1/3 gives the least square error or the best fit prediction. This 

implies that the choosing of a is dependent on the extent of time correlation of the 

measurement error and needs model calibrations to have an accuratea .  

Again, 

 

          
[ ] [ ] [ ] [ ] ( )( )( )Dim Dim Dim Dim m n n n n m m m= = ´ ´ ´ = ´T

t t-1,tS H Φ H  

 

Which is identical to the earlier deduction of the dimension of S.  

 

3.6  Simulation Parameters 

The contaminant transport simulation in the subsurface was carried out with 

parameter values adopted from Zou and Parr (1995). These parameters were used to 

generate results for both KF with Gaussian white noise and KF with time correlated 

measurement errors with the latter based on the measurement differencing approach by 

Petovello (2009). The model for this simulation is a 2 dimensional domain with a grid 

spacing of 1.524 m for both axes. The hydro-dynamic dispersions, 
xD  and 

yD  are 1.554 

m
2
day

-1
 and 0.4662 m

2
day

-1
, respectively. The flow velocity was assumed to be 1.054 

mday
-1

 in the x  direction. The porosity (µ), aquifer thickness (b) and time interval for 

each time step were set at 0.3, 6.1 m and 0.2 day, respectively. The correlation coefficient 
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matrix (S) and retardation ( R ) were set at 1/3 and 1 for running a total of 50 time step 

simulation. The value of the correlation parameter was chosen based on trial and error. 

For a more practical and realistic consideration, 9 sparse measurement data set was used 

to predict the simulation area of 400 nodes. Finally, a standard deviation of 4 mg/L and 

2.5 mg/L was applied as the process errors and observation errors, respectively. The 

initial concentration of the conservative pollutant occurring as a spill was 10,000 mg/L 

and is assumed to occur at grid point (5, 10) in the 20×20 space domain.  Simulations 

were carried out by writing codes for numerical, reference true field (which is based on 

analytical solution with added random errors), Kalman filter with Gaussian noise and 

Kalman filter with time correlated measurement errors.  

 

3.7  Performance Indicator 

 The root mean square error (RMSE) was used as an indicator to measure the 

performance of the KF with Gaussian white noise, KF with colored noise measurement 

errors and numerical results relative to the true solution in the entire space and time 

domain. The RMSE results of these three simulations were then compared and contrasted 

with each other in prediction results and unique behavior of RMSE for particular time-

steps of interest. 

 

[ ]∑ −
−

=
2E

t

t)y,C(x,t)y,(x,C
1N

1
RMSE

                                                       (20) 
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In this case, the total number of sampling nodes is, tN , where ( )ty,x,C  and ( )ty,x,C
E

 

are the reference true values and estimated values, respectively in the two dimensional 

plane ( )yx,  for a particular time t . 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

 It is assumed that all the parameters in both the KF with white Gaussian noise and 

the KF with time correlated measurement errors are all known or derived for this study. 

This implies that the measurement design matrix H , the covariance Q  and R  for the 

process noise and measurement noise, respectively and all other parameters in both filter 

algorithms are all known including the a for the S matrix. The initial concentration at the 

time of spill is known. Several simulations were conducted to verify the possibility and 

efficiency in predicting contaminant transport in the subsurface by comparing the 

measurement differencing algorithm by Petovello (2009) to the standard Kalman filter.  

 

4.1  Simulation Output 

 There was a significant improvement in plume prediction for both filters 

compared to the FTCS results for all time steps, as shown in Figures 4.1 through 4.9, 

which represent the concentration profile from the numerical KF and KF with colored 

noise for time steps 10, 20 and 30 respectively. Taking a closer look at the contour 

profiles for the two filters suggest an optimum performance of the KF with correlated or 

colored measurement noise as the time steps increases. On the other hand, the apparent 

poor performance of the FTCS model can mainly be attributed to numerical errors. As 

explained by Spitz and Moreno (1996), there are several sources of errors in numerical 

models. To mention a few, we have truncation errors, round off errors, distance-related 
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dispersion errors and instability. Truncation errors occur when a complex function such 

as concentration is expressed as a series of simpler functions. Round off errors may also 

be a very significant reason for the out-put of the numerical results. Rounding off has the 

tendency of accumulating with time, hence causing numerical instability. Errors due to 

distance-related dispersion originate in all finite difference (FD) models including FTCS 

because grid concentrations are only known at the nodes that represents an entire cell. 

Finally there is the issue of instability which results in a feed-back process which 

accumulates the errors for every step taken to obtain the final results. Any of these 

sources of numerical errors discussed above could have been the reason for the numerical 

results output. There are several other possible sources of numerical errors that have not 

been addressed in this research. More information on other types of numerical errors can 

be found in Spitz and Moreno (1996). 
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Figure 4.1 Plume prediction by FTCS and analytical (true value)   

methods at time step 10 
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                   Figure 4.2 Plume prediction by KF and analytical (true value) methods   

at time step 10 
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                Figure 4.3 Plume prediction by KF with colored measurement noise and    

analytical   (true value) methods at time step 10        
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                     Figure 4.4 Plume prediction by FTCS and analytical (true value) 

methods at time step 20 
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    Figure 4.5 Plume prediction by KF and analytical (true value) methods 

at time step 20 
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                   Figure 4.6 Plume prediction by KF with colored measurement noise and 

analytical (true value) methods at time step 20                                
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                     Figure 4.7 Plume prediction by FTCS and analytical (true value)   

methods at time step 30 
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                   Figure 4.8 Plume prediction by KF and analytical (true value) methods 

at time step 30 
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                    Figure 4.9 Plume prediction by KF with colored measurement noise and 

analytical (true value) methods at time step 30     
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4.2 Root Mean Square Error Analysis 

 Simulation results obtained from KF with white Gaussian errors and KF with time 

correlated Gaussian errors look very close in terms of contour description but the RMSE 

profile in Figure 4.10 indicates that the later has slightly improved performance over the 

former.  Relative to the numerical solution, the KF with white noise improved the 

prediction by an average of 51.5% while the Kalman filter with correlated errors 

improved the prediction by an average of 62.9% in the total simulation time steps of 50 

using 9 observation points in the entire 20×20 space domain. Relative to the numerical 

results, the KF with correlated errors therefore reduces the errors in prediction by 11.4% 

compared to the KF with white Gaussian noise. Between time-steps zero and four, the 

Kalman filter with colored noise reduced the errors of the Kalman filter by 15% with 

time step 4 having the highest error reduction of 24% in this range. After time step 4 the 

error difference reduced steadily to time step 6 and remained nearly constant at about 

17% till time step 26. From these results, the measurement differencing approach to 

deriving a filter that takes into account correlated measurement noise proves to be 

superior in predicting contaminant transport in the subsurface in cases of correlated 

measurement errors than the ordinary Kalman filter which assumes white Gaussian noise 

with characteristics of no correlation. Note that in the event of colored measurement 

observations in contaminant transport data, it will be more appropriate to consider using 

the KF with the measurement differencing approach since this fully takes into account the 

time correlated nature of the observations. Since the use of GPS equipment is very 

common these days in taking field data that contain different time correlated errors 
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including clock errors and orbital errors (Olynik et al 2002), it can be assumed that most 

of these data are correlated to some extent even though further investigation needs to be 

carried out to ascertain the level of correlation or the extent of the colored noise available 

in the measured field data. 
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               Figure 4.10 RMSE profile for FTCS, KF and KF with colored 

measurement noise 

 

 

 The performance of the filters and numerical solution with was further 

investigated under three scenarios by performing sensitivity analysis on it. The different 

sensitivities conducted are listed below;  

1. by altering the observation noise standard deviation for the KF with time 

correlated errors  
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2. by changing the process noise standard deviation  of the KF with time correlated 

errors 

 

3. Stability and Convergence Analysis 

 

4.3  Altering Observation Noise 

 By varying the observation noise standard deviation for KF with correlated errors 

by specified amounts while maintaining the same process noise standard deviation, the 

results of the performance was analyzed as indicated in Figure 4.11. The standard 

deviation of observation noise (SDON) was set at 1, 6, 12 and 18 mg/l, respectively for a 

constant process noise standard deviation of 4 mg/l. For increasing observation noise 

standard deviation, it was observed that the RMSE results for the respective correlated 

error filters were much close at the end of the of the 50 time steps. The highest difference 

in results occurred at time step 1, with the standard deviation of 1 mg/l producing very 

optimistic results. Using a standard deviation of 1 mg/L improved the performance of the 

filter by about 29.5% relative to the RMSE results obtained with a standard deviation of 

6mg/l of the observation noise. Relative to the RMSE results produced with a standard 

deviation of 12 mg/L and 18 mg/L, the results obtained with the standard deviation of 1 

mg/L were improved by approximately 60.6% and 64.5%, respectively. This made sense 

for an increased standard deviation in observation; one should expect slightly decreased 

prediction efficiency of the filter.  
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Figure 4.11 RMSE profile of KF with time correlated measurement  

noise for different standard deviation of observation noise 

(SDON) values 

 

 

4.4  Altering Process Noise 

The influences of the process noise standard deviation (PNSD) on the result of the 

KF with correlated measurement errors was investigated by simulating the KF with 

correlated errors with different process error standard deviations as in the previous 

investigation. The standard deviation in the process noise was made (1 mg/L, 6 mg/L, 12 

mg/L) and finally 18 mg/L for different simulations, while the standard deviation of the 

observation noise was made constant for every simulation at a value of 2.5 mg/L. The 

result of the analysis is shown on Figure 4.12. For the first two scenarios, there was a 

significant change in performance of the result of the filter. The process noise standard 

deviation of 6 mg/L had a better output than the 1 mg/L standard deviation from time step 

1 to time step 13 ( about 35% difference). Even though from time step 13 to time step 50 
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the RMSE profile of the 1 mg/L standard deviation appears to be slightly better than the 6 

mg/L standard deviation, the difference is approximately 2%. So on the average, the 

second scenario had a better improved RMSE profile than the first scenario. The third 

scenario initially had an optimistic RMSE profile from time step 1 to time step 7 relative 

to the first scenario (about 26% difference), but beyond this range, the first scenario 

performance surpassed the third by approximately 57.7% for the remaining time steps, 

which makes the first scenario still superior in performance over the third. The result of 

the fourth scenario was much worse than the previous two relative to the first scenario. 

From time step 1 to time step 6 it proved to be better than the first scenario by about 18% 

but for the remaining time steps it performed about 71% worse than the first scenario. All 

4 scenarios arranged in order of performance superiority will be (6 mg/L and 1 mg/L) 

which are very close, followed by 12 mg/L and finally 18 mg/L the least of them all.  
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                    Figure 4.12 RMSE profile of KF with colored measurement noise for 

different process noise standard deviation (PNSD) values 
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4.5  Stability and Convergence Analysis 

 Figures 4.13, 4.14 and 4.15 show the convergence and stability of the numerical, 

KF with white Gaussian noise and KF with time correlated errors for a series of multiple 

runs. All the three results were fairly stable and also convergent as it can be seen in the 

RMSE profiles. This makes the comparison between the three results in terms of their 

stability and convergence unbiased. 
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                    Figure 4.13 10 Runs of RMSE of FTCS 
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                   Figure 4.14 10 Runs of RMSE of KF with white noise 
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         Figure 4.15 10 Runs of RMSE of KF with colored measurement noise 
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CHAPTER 5 

CONCLUSION 

 

There have been several instances that hydrological data has been found to be 

corrupted with time correlated measurement errors. For measurement errors that are 

correlated, in other words if the measurement data is corrupted by errors that are time 

dependent, the measurement differencing technique can effectively be applied to give a 

better prediction than the normal Kalman filter. The Kalman filter can only assume white 

Gaussian measurement and process errors; hence it does not take into account time 

correlated errors.  

 In this research one of the effective methodologies for applying data assimilation 

to an observed data that is characterized by time correlated measurement errors is 

investigated. The numerical advection dispersion equation was modified by adding a 

noise term and used as the process equation. The observation equation was derived from 

the 2 dimensional dispersion advection contaminant transport equation which was 

corrupted with random errors that have a time function. The investigation is carried out in 

the prediction of fate and transport of contaminant in time and in space within the 

subsurface by the measurement differencing method.  Simulations of both filters were 

carried out using a two-dimensional model describing the subsurface contaminant 

transport of a conservative solute.  

 First, the result of the two filters showed that the KF with time correlated 

measurement errors was slightly superior over the KF with white noise by about 11.4%. 
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Further investigation revealed that the performance of the KF with correlated 

measurement is enhanced when the observation errors standard deviation is made 

minimum by using 1 mg/L compared to when it is set at 8 mg/L, 12 mg/L and 18 mg/L. 

Much the same way, the results in performance of the KF with correlated errors improved 

when the process error standard deviation was made minimum (at 1 mg/L) in contrast to 

higher process noise values. 

 An important consideration in running the measurement differencing algorithm is 

the correlation coefficient value and the inverse of the state transition matrix. For 

purposes of stability, a S matrix needs to be formulated with a calibrated correlation 

coefficient value appropriate for a particular measurement data. The only considerable 

hurdle to overcome is to ensure that the inverse of the state transition matrix ‘Φ ’ can be 

computed since this is needed in the measurement differencing algorithm. Nevertheless, 

the measurement difference algorithm is very helpful when considering time correlated 

measurement. 

 For establishing the stability and convergence criteria of the results, a series of 

multiple RMSE runs of the results was conducted. At time step 50, all three results 

(FTCS, KF with white Gaussian errors and KF with time correlated errors) converged 

and were stable with minimal instability. In the near future, new algorithms for adaptive, 

extended and ensemble KF that consider time correlated measurement errors can be 

applied in subsurface contaminant transport to investigate their performance and potential 

to improve subsurface contaminant transport. Finally, these algorithms can also be 

explored on a bigger scale to yield more realistic results. 
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