
North Carolina Agricultural and Technical State University North Carolina Agricultural and Technical State University 

Aggie Digital Collections and Scholarship Aggie Digital Collections and Scholarship 

Theses Electronic Theses and Dissertations 

2011 

Building And Implementing An Accessbased Computational Building And Implementing An Accessbased Computational 

System That Produces And Plots Conditional Production System That Produces And Plots Conditional Production 

Possibilities Frontier For Corn And Soybean Production Using Vba Possibilities Frontier For Corn And Soybean Production Using Vba 

Programming Language Programming Language 

Sidibe Mariama Oumarou 
North Carolina Agricultural and Technical State University 

Follow this and additional works at: https://digital.library.ncat.edu/theses 

Recommended Citation Recommended Citation 
Oumarou, Sidibe Mariama, "Building And Implementing An Accessbased Computational System That 
Produces And Plots Conditional Production Possibilities Frontier For Corn And Soybean Production Using 
Vba Programming Language" (2011). Theses. 41. 
https://digital.library.ncat.edu/theses/41 

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Aggie Digital 
Collections and Scholarship. It has been accepted for inclusion in Theses by an authorized administrator of Aggie 
Digital Collections and Scholarship. For more information, please contact iyanna@ncat.edu. 

https://digital.library.ncat.edu/
https://digital.library.ncat.edu/theses
https://digital.library.ncat.edu/etds
https://digital.library.ncat.edu/theses?utm_source=digital.library.ncat.edu%2Ftheses%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digital.library.ncat.edu/theses/41?utm_source=digital.library.ncat.edu%2Ftheses%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:iyanna@ncat.edu


BUILDING AND IMPLEMENTING AN ACCESS-BASED COMPUTATIONAL
SYSTEM THAT PRODUCES AND PLOTS CONDITIONAL PRODUCTION
POSSIBILITIES FRONTIER FOR CORN AND SOYBEAN PRODUCTION

USING VBA PROGRAMMING LANGUAGE.

by

Mariama Oumarou Sidibe

A thesis submitted to the graduate faculty
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Department: Computational Science and Engineering
Major: Computational Science and Engineering

Major Professor: Dr. Lyubov Kurkalova

North Carolina A&T State University
Greensboro, North Carolina

2011



ii

School of Graduate Studies
North Carolina Agricultural and Technical State University

This is to certify that the Master’s Thesis of

Mariama Oumarou Sidibe

has met the thesis requirements of
North Carolina Agricultural and Technical State University

Greensboro, North Carolina
2011

Approved by:

_________________________________           ________________________________
Dr. Lyubov Kurkalova Dr. Marwan Bikdash
Major Professor Committee Member

_________________________________           ________________________________
Dr. Ken Flurchick Dr. Marwan Bikdash
Committee Member Department Chairperson

___________________________________
Dr. Sanjiv Sarin

Dean of Graduate Studies



iii

DEDICATION

This thesis is dedicated to my husband Amadou Mounkaila Yacouba. You are the

most generous person I ever met in my life. Thank you for your love, support and

patience since we have been together. I am eternally grateful.

Also, I dedicate this work to my son Cheick Mouslim, for understanding all of the

times when I could not be there due to projects and academic obligations. May God bless

you! It is also dedicated to my lovely mother Haouaou Altine for her unconditional love

and support, my brothers and sisters and to all my family and friends who supported and

helped me accomplish my goal in getting higher education.



iv

BIOGRAPHICAL SKETCH

Mariama Oumarou Sidibe was born on September 14, 1980 in Niamey, Niger,

West Africa. Speaking four languages: French, Djerma, Haouassa and Fulfulde, Mariama

graduated from Lycee Mariama High School in 2000 and attended Mohamed V- Souissi

University of Rabat, Morocco where she earned her Bachelor of Science degree in

Economics in 2005.

After graduating from college, Mariama worked as an agent of credit in Niamey,

Niger for a period of one year.

In December, 2006 Mariama immigrated to the United States of America and

stayed between Oklahoma and New York for a period of eighteen months to learn

English as a fifth language for graduate study, then transferred to North Carolina where

she attended the Forsyth community college as a transfer student from August 2008 to

May 2008.

She joined North Carolina Agricultural and Technical State University in 2009 for

Master’s degree in Computational Science and Engineering. Mariama is married to

Amadou Mounkaila Yacouba, a man from her country and they have a three years old

son named Cheick Mouslim Amadou Mounkaila.



v

ACKNOWLEDGMENTS

I would like to thank almighty God for always leading me through my life,

granting me the opportunity and providing me with the strength to accomplish this thesis.

I would like to express deep gratitude to my advisor, Dr. Lyubov Kurkalova, for

her wonderful support and guidance throughout my graduate career. I am very much

thankful to her for giving me this opportunity to work for such a challenging project.

I would like to thank Dr. Marwan Bikdash and Dr. Ken Flurchick for agreeing to

chair the defense committee. My special thanks to Dr. Ken Flurchick for introducing me

to the world of programming and always providing feedback when asked. I extend my

thanks to Dr. Ram Mohan for referring me to my major advisor.

I am very much grateful to Dr. Ajit Kelkar, whose guidance and support has

helped me complete this thesis successfully. I am also grateful to Ms. Lydia Leak of the

CSE program.

I would like to thank my son and my husband for their love, support and

seemingly endless editing of this thesis. Their pride and belief in my abilities and

capabilities were of immeasurable importance to the completion of my research.

Last but definitely not least, my greatest recognition to my family and friends

whose love, encouragement and support have always been with me. Without their

support, this work would not have been possible.



vi

TABLE OF CONTENTS

LIST OF FIGURES ........................................................................................................... ix

LIST OF TABLES............................................................................................................ xii

LIST OF ABBREVIATIONS.......................................................................................... xiii

ABSTRACT...................................................................................................................... xv

CHAPTER 1. INTRODUCTION ...................................................................................... 1

1.1 Motivation of Research ............................................................................................ 1

1.2 Production Possibilities Frontier (PPF).................................................................... 2

1.3 Economic Modeling ................................................................................................. 2

1.4 Research objectives .................................................................................................. 3

1.5 Overview of the chapters.......................................................................................... 3

CHAPTER 2. DATABASE FUNDAMENTALS AND CONCEPTS .............................. 5

2.1 Definition of Database ............................................................................................. 5

2.2 Database Management System (DBMS).................................................................. 5

2.2.1 Controlling redundancy ..................................................................................... 6

2.2.2 Restricting unauthorized access......................................................................... 6

2.2.3 Providing multiple user interfaces ..................................................................... 6

2.2.4 Providing backup and recovery ......................................................................... 7



vii

2.2.5 Ability to represent complex relationships between data items ........................ 7

2.2.6 Enforcing integrity constraints .......................................................................... 7

2.3 Database Models ...................................................................................................... 8

2.3.1 Object based logical models .............................................................................. 8

2.3.2 Record based logical models ............................................................................. 8

2.3.2.1 Hierarchical model..................................................................................... 8

2.3.2.2 Network model........................................................................................... 9

2.3.2.3 Relational model ........................................................................................ 9

CHAPTER 3. COMPUTATIONAL FORMULAS AND REQUIREMENTS
SPECIFICATIONS.................................................................................. 12

3.1 Computational Formulas ........................................................................................ 12

3.1.1 CSR-level computations .................................................................................. 12

3.1.1.1 Revenues .................................................................................................. 13

3.1.1.2 Costs......................................................................................................... 14

3.1.2 State-level computations.................................................................................. 17

3.1.2.1 Calculation of Effective Crop Yield ........................................................ 18

3.1.2.2 The Total Crop Production ...................................................................... 19

3.1.3 Construction of cPPF....................................................................................... 19

3.2 Requirements Specifications .................................................................................. 20

CHAPTER 4. DESIGING THE DATABASE ................................................................ 21



viii

4.1 Choosing the Right Application............................................................................. 21

4.1.1 Microsoft Office Access .................................................................................. 21

4.1.1.1 Macros...................................................................................................... 22

4.1.1.2 SQL.......................................................................................................... 22

4.1.1.3 VBA ......................................................................................................... 22

4.2 Modeling the Application Design .......................................................................... 24

4.2.1 The Input Parameters....................................................................................... 28

4.2.1.1 The User Inputs........................................................................................ 28

4.2.1.2 The Parameters Inputs Tables .................................................................. 28

4.2.2 The Parameters Output Tables ........................................................................ 28

CHAPTER 5. BUILDING AND IMPLEMENTING THE DATABASE....................... 30

5.1 Building the Table Structures................................................................................. 30

5.2 Building the User Interface .................................................................................... 42

5.3 Building the VBA Code ......................................................................................... 43

5.4 Building the queries ............................................................................................... 44

5.5 Plotting the Conditional Production Possibilities Frontier..................................... 53

CHAPTER 6. CONCLUSION AND FUTURE WORK ................................................. 56

REFERENCES ................................................................................................................. 58

APPENDIX ...................................................................................................................... 60



ix

LIST OF FIGURES

FIGURES                                                                                                                   PAGE

4.1. Screenshot of VBA IDE...........................................................................................23

4.2.    Database draft ..........................................................................................................27

5.1a. InputOneFertilizer table in Design View ................................................................31

5.1b. InputOneFertilizer table in Datasheet View ...........................................................31

5.2a. InputOneParametersBudget table in Design View .................................................32

5.2b. InputOneParametersBudget table in Datasheet View.............................................32

5.3a. InputOneAcres table in Design View .....................................................................33

5.3b. InputOneAcres table in Datasheet View.................................................................33

5.4a. InputOneParametersCost table in Design View......................................................34

5.4b. InputOneParametersCost table in Datasheet View .................................................35

5.5a. InputOneParametersDrag table in Design View .....................................................35

5.5b. InputOneParametersDrag table in Datasheet View ................................................36

5.6a. OutputOneCostOfStover table in Design View ......................................................36

5.6b. OutputOneCostOfStover table in Datasheet View .................................................37

5.7a.   OutputOneCostOfCropProduction table in Design View.......................................38

5.7b. OutputOneCostOfCropProduction table in Datasheet View ..................................38

5.8a. OutputOneBudget table in Design View.................................................................39

5.8b. OutputOneBudget table in Datasheet View............................................................39

5.9a. OutputOneYcYS table in Design View ..................................................................40



x

5.9b. OutputOneYcYS table in Datasheet View..............................................................40

5.10a. OutputOneEYcEYS table in Design View ............................................................41

5.10b. OutputOneEYcEYS table in Datasheet View........................................................41

5.11. UserInterface in form view ....................................................................................43

5.12a. OutputOneMaxResult query in SQL View............................................................45

5.12b. OutputOneMaxResult query in Design View........................................................45

5.12c. OutputOneMaxResult query in Datasheet View....................................................45

5.13a. OutputOneMaxResult query in SQL View............................................................46

5.13b. OutputOneMaxResult query in Design View ........................................................46

5.13c. OutputOneMaxResult query in Datasheet View....................................................47

5.14a. OutputOneCsrYieldDrag query in SQLView ........................................................47

5.14b. OutputOneCsrYieldDrag query in Design View ...................................................48

5.14c. OutputOneCsrYieldDrag query in Datasheet View...............................................48

5.15a. OutputOneCsrAcres query in SQL View...............................................................49

5.15b. OutputOneCsrAcres query in Design View...........................................................49

5.15c. OutputOneCsrAcres query in Datasheet View ......................................................50

5.16a. OutputOneCornSoybeanProduction query in SQL View ......................................51

5.16b. OutputOneCornSoybeanProduction query in Design View ..................................51

5.16c. OutputOneCornSoybeanProduction query in Datasheet View ..............................51

5.17a. OutputOneCornSoybeanProduction query in SQL View ......................................52

5.17b. OutputOneCornSoybeanProduction query in Design View ..................................52

5.17c. OutputOneCornSoybeanProduction query in Datasheet View ..............................52



xi

5.18. Screenshot of 2D cPPF plot in report View............................................................53

5.19. Screenshot of 3D cPPF plot in report View............................................................54

5.20a. cPPFcoordinates table in Design View ..................................................................55

5.20b. cPPFcoordinates table in Datasheet View .............................................................55



xii

LIST OF TABLES

TABLES PAGE

3.1. Yield Drag Assumptions ........................................................................................14

3.2. Parameters of costs of production of individual crops.............................................16

3.3. Assumed fertilizer rates ...........................................................................................17



xiii

LIST OF ABBREVIATIONS

ADO ActiveX Data Objects

CSR Corn Suitability Rating

cPPF conditional Production Possibility Frontier

C1C1sr Continuous corn with conventional and with stover harvesting

C2C2sr Continuous corn with mulch and with stover harvesting

C3C3sr Continuous corn with no-till and with stover harvesting

C1C1ns Continuous corn with conventional and without stover harvesting

C2C2ns Continuous corn with mulch and without stover harvesting

C3C3ns Continuous corn with no-till and without stover harvesting

C1S1sr Corn after soybeans with conventional and with stover harvesting

C2S2sr Corn after soybeans with mulch and with stover harvesting

C3S3sr Corn after soybeans with mulch and with stover harvesting

C1S1ns Corn after soybeans with conventional and without stover harvesting

C2S2ns Corn after soybeans with mulch and without stover harvesting

C3S3ns Corn after soybeans with mulch and without stover harvesting

C1C1S1sr Corn-corn-soybeans rotation with conventional and with stover harvesting

C2C2S2sr Corn-corn-soybeans rotation with mulch and with stover harvesting

C3C3S3sr Corn-corn-soybeans rotation with mulch and with stover harvesting

C1C1S1ns Corn-corn-soybeans rotation with conventional and without stover

harvesting



xiv

C2C2S2ns Corn-corn-soybeans rotation with mulch and without stover harvesting

C3C3S3ns Corn-corn-soybeans rotation with mulch and without stover harvesting

DAO Data Access Objects

DBMS Database Management System

IDE Integrated Development Environment

PPF Production Possibility Frontier

RDBMS Relational Data Base Management Systems

SQL Structured Query Language

VBA Visual Basic Application

yc Corn per acre yield

ys Soybean per acre yield

ystover Stover per acre yield



xv

ABSTRACT

Oumarou Sidibe, Mariama. BUILDING AND IMPLEMENTING AN ACCESS-
BASED COMPUTATIONAL SYSTEM THAT PRODUCES AND PLOTS
CONDITIONAL PRODUCTION POSSIBILITIES FRONTIER FOR CORN AND
SOYBEAN PRODUCTION USING VBA PROGRAMMING LANGUAGE. (Major
Advisor: Dr. Luba Kurkalova), North Carolina Agricultural and Technical State
University.

The objective of the present study is to build and implement a database

application system that produces and plots conditional Production Possibilities Frontier

(cPPF) for corn and soybean including a user friendly interface, where the user can easily

interact with the data. It is an effort to provide economists with an accessible and easy to

use data management tool which will facilitate the future analyses of the economy-wide

impacts of bioenergy production and policy.

The study uses the economic modeling systems operating on field-level, GIS-

based cropping history and soils data developed for the state of Iowa [1].

The database was implemented based on single-tier application using the

Microsoft Access application. A single-tier application is one where the entire application

is contained and runs on a single computer [2]. The main reason for choosing Microsoft

Access over others database management system (DBMS) products such as Oracle, SQL

Server or MySQL was the user’s natural choice: Microsoft Office Access is a great

engine that is easy to learn and cost effective [3], the user wished to have a user interface

that is easy to interact with. Therefore Microsoft Office Access with its great user

interface design served fine.



1

CHAPTER 1

INTRODUCTION

This chapter describes the motivation of research, followed by a brief definition

of conditional production possibilities frontier, then the data source is introduced. This

section presents also a detailed overview of the goals of the present study. Finally the

chapter concludes with an outline of the remaining chapters organized in this thesis.

1.1 Motivation of Research

Cellulosic ethanol production technologies have undergone an accelerated

development in the United States and now are expected to lead to the establishment of

viable markets for corn residues (stover), which are comprised of corn stalks, cobs, and

leaves left in the field after grain harvest. With corn stover being a by-product of corn

production in essence, a large, viable market for stover will alter the profitability of corn

relative to other traditional row crops and may affect significantly the supplies of both

corn and other crops. Empirical estimates of the stover market impact on the production

and acreage under traditional row crops are scarce [4]. Therefore, an analysis to show

how farmers would respond to the market and policy incentive in providing such

feedstock for cellulosic biofuels is urgently needed [5], thus the capability to provide an

accessible and easy to use data management tool which would determine how much corn

and soybeans can be producing for any given resources constitutes an essential feature to

the future analyses of the economy-wide impacts of bioenergy production and policy.



2

1.2 Production Possibilities Frontier (PPF)

A production-possibility frontier (PPF), sometimes called a production-possibility

curve or product transformation curve, is a graph that shows the different rates of

production of two goods and/or services that an economy can produce efficiently during a

specified period of time with a limited quantity of productive resources, or factors of

production. The production possibility frontier shows the maximum amount of one

commodity that can be obtained for any specified production level of the other

commodity (or composite of all other commodities), given the society's technology and

the amount of factors of production available [6].

In the present study the production possibility frontier (PPF) is the boundary

between the sets of feasible and infeasible output combinations of corn and soybean

production. It is explicitly conditional on the factors that the user specifies the level of

inputs (labor, diesel, LP gas, fertilizer), thus the name conditional production possibility

frontier (cPPF). The cPPF tells us the maximum amount of each product corn or soybean

that can be produced given a conditional level of user inputs and how the frontier could

shift if the user changes the level of inputs.

1.3 Economic Modeling

The study uses the economic modeling systems operating on field-level, GIS-

based cropping history and soils data developed for the state of Iowa [1], given that the

state of Iowa possesses the largest quantity of corn stover in the United States [7].

Therefore, the state of Iowa is posed to play a major role in the bioeconomy [8].



3

1.4 Research objectives

The present research effort aims towards building and implementing a Microsoft

Office Access database system using the Visual Basic Application programming

language. The specific objectives of the present investigation were as follows:

 Designing a user friendly interface where the user can easily interact with the

data.

 Pulling the data from the user’s inputs (price of diesel, price of corn Stover, price

of soybean and percentage of Stover collected).

 Output of the table that relates alternative corn-to-soybean price ratios to corn

production and soybean production.

 Producing the two-dimensional plot of cPPF (corn production along the x-axis,

and soybean production along the y-axis).

 Producing the three-dimensional plot of cPPF (corn production along the x-axis,

soybean production along the y-axis, and stover price along the z-axis)

1.5 Overview of the chapters

Mainly, this thesis is divided into six major chapters. The next chapter discusses

the fundamentals and concepts of a database. Chapter 3 deals with the different

computational formulas and requirements specifications. Chapter 4 discusses the design

of the database. This chapter also presents the technologies used to implement the

database. Chapter 5 discusses the building and implementation details of the database

‘creation, including building table structures, user interface, the VBA code, the queries



4

and plotting the conditional production possibilities frontier. The final chapter presents

conclusion and recommendations for future work.



5

CHAPTER 2

DATABASE FUNDAMENTALS AND CONCEPTS

This chapter presents an overview of database.  This includes a brief review of

database concepts and terminology.

2.1 Definition of Database

A database is an organized storehouse of data, it is defined as a collection of data

which is structured in a particular format and which is logically related. The size and

complexity of a database may vary as the situation warrants.

The raw data are the building blocks of information. A well formed database is a

very good source of information and hence it requires a planned and systematic approach

to designing a proper database.

A database system consists of two major parts namely the Database Management

System and the Database Application. The Database Management System (DBMS) is the

program that organizes the data and maintains the information. The Database Application

is the program that lets the user view, retrieve and update the information stored in the

DBMS.

2.2 Database Management System (DBMS)

DBMS (Data base management systems) [9] is a collection of programs that

enable the user to create and maintain a database. It helps in defining, constructing and



6

manipulating a database. Defining a database involves specifying the data types and the

various applicable constraints. Constructing a database involves entering the data into the

memory, and manipulation includes various queries made to the database.

The primary objective of a database management system is to provide a

convenient environment to store and retrieve database information. Database systems

support single user and multiple user scenarios. While the single user system allows only

one person to access the database at a given time, multiple user system, allows many

users to simultaneously access the database.

The intended use and capabilities of a DBMS are [10]:

2.2.1 Controlling redundancy

Redundancy in storing the same data multiple times can lead to several problems

such as duplication of effort, wastage of storage space, inconsistent data, difficulty in

management and manipulation of the database. The DBMS software makes sure that the

data entered is not redundant; the various triggers such as when to validate an item are

activated when any redundant data is being inputted.

2.2.2 Restricting unauthorized access

The Database Administrator can program the DBMS to restrict unauthorized

access.

2.2.3 Providing multiple user interfaces

Various users are involved in accessing a database and running different queries.

The DBMS helps provide different user interfaces such as a query language for the user,



7

programming language interface for the application programmer and forms for the end

user

2.2.4 Providing backup and recovery

Backup and recovery is an essential requirement of a DBMS. In case of a system

failure during the middle of a complex program it is essential that the database be

restored to the state it was in, and the recovery system must ensure that the program can

be effectively resumed.

2.2.5 Ability to represent complex relationships between data items

Any database can include a large amount of data, which can be interrelated in

many possible ways. The RDBMS (Relational Data Base Management Systems) should

be able to display these relationships effectively so it is able to assist the end user in

understanding the various relationships existing in the data.

2.2.6 Enforcing integrity constraints

Most databases require certain integrity constraints to be enforced. The integrity

constraints are essential to ensure the accuracy of the data retrieval from the database.

There are two rules for data integrity: entity integrity and referential integrity.

Entity integrity merely states that the primary key cannot have an empty value.

Referential integrity ensures that every instance of a foreign key matches with the

primary key value in a relationship.



8

2.3 Database Models

DBMSs have evolved through a number of technological stages since their

introduction in the 1960s. The most significant change has been the type of model used to

represent and access the content of the physical data store [11]. Two major categories

have been widely used

2.3.1 Object based logical models

The object based logical model can be defined as a collection of conceptual tools

for describing data, data relationships and data constraints.

2.3.2 Record based logical models

The Record based logical model describes the data structure and access

techniques of a database management system. There are three types of record based

logical database models. They are as follows:

2.3.2.1 Hierarchical model

The Hierarchical database model is exactly as the name suggests. The data are

organized in a parent-child relationship structure. The database can be thought of as a

logical tree where the origin of data is the root. The data located at different levels along

a particular branch from the root is called the node. The last node in the series is called

the leaf. This model supports only a “one to many” relationship. The main disadvantage

in this system is that a new level in data cannot be inserted easily and requires a change in

the tree structure. Also there is a tendency to have multiple copies of data in different

levels thereby causing data redundancy.



9

2.3.2.2 Network model

The Network model brings about the “many-to-many” relationship in the data.

The relationship between many data items is called sets. This is a slightly advanced

system and uses data pointers to locate specific records. However, when the size and

volume of data stored in a network model increases it becomes increasingly difficult to

locate data as all individual models apply pointers and it becomes very complex with so

many pointers.

2.3.2.3 Relational model

To avoid these inherent disadvantages and complexities, Dr. E.F. Codd of IBM’s

San Jose Research Laboratories developed the relational database model in1970.This

relational model allows all data to be represented in a simple row-column format. Each

data field is considered as a column and each record a row of the table.

The relational database model is implemented through a very sophisticated

relational database management system (RDBMS). Examples of RDBMS systems are

database products from Microsoft (Access), Oracle (Oracle 8i), and IBM (DB2). RDBMS

systems are widely used in corporations, small business, and personal databases; it

performs the same basic functions provided by the hierarchical and network DBMS

system plus a host of other functions that make the relational database model easier to

understand and to implement. It creates transitory virtual pointers to records of relational

tables in memory. Virtual pointers appear as they are needed to relate (join) tables and are

disposed of when the relation is no longer required by a database application. Joins are

created between primary key fields and foreign key fields of relational tables. A primary



10

key is a unique identifier for a row in a table. A foreign key, however, is a primary key

that is duplicated onto another table. Matching the keys from the two tables forms a

relationship.

The relational database is a single data repository in which data independence is

maintained. However, the relational database model should obey Codd’s twelve rules for

it to be relational. The twelve rules are briefly discussed below [12]:

 The Information rule: All information is explicitly and logically represented in

tables as data values.

 The rule of guaranteed access: Every item of data must be logically addressable

with the help of table name, primary key value and column name. From this it is

clear that any individual record can be retrieved with the use of a table name

primary value of the row and the column name where it is to be found.

 The Systematic treatment of all null values: The DBMS must be able to support

null values to represent missing or inapplicable information. They must be distinct

from zeros and spaces. Null values for all data types must be the same. One of the

most important aspects that must be noted here is that there is a vast difference

between a null value and zero and a space.

 The database description rule: A description of the database is maintained using

the same logical structures with which data has been defined by the DBMS. These

are accessible to users with appropriate authority and are stored in the data

dictionary.



11

 Comprehensive data sub language: According to this rule, the system must

support the following: Data definition, View definition, Data manipulation,

Integrity constraints, Authorization and Transaction management operations

 The view updating rule: All views that are theoretically updateable must also be

updateable by the system.

 The insert and update rule: A single operand must hold good for all retrieval,

update, delete and insert activities. This rule implies that all the data manipulation

commands must be operational on sets of rows in relation rather than on a single

row.

 The physical independence rule: Application programs must remain unimpaired

when any changes are made in storage representation or access methods.

 The logical data independence rule: The changes that are made should not

affect the user’s ability to work with the data. The change can be splitting the

table into many more tables.

 The Integrity independence rule: The integrity constraints should be stored in

the system catalog or in the database as a table.

 The Distribution rule: The system must be able to access or manipulate the data

that is distributed in other systems.

 The Nonsubversion rule: The nonsubversion rule states that different levels of

the language cannot subvert or bypass the integrity rules and constraints. Simply

put, if an RDBMS supports a lower level language then it should not bypass any

integrity constraints defined in the higher level.



12

CHAPTER 3

COMPUTATIONAL FORMULAS AND REQUIREMENTS SPECIFICATIONS

This chapter gives a detailed explanation of the different computational formulas

used to implement the VBA code. Those formulas were provided by Dr. Luba Kurkalova.

Additionally, this chapter also specifies the requirements the user expects from the

database.

3.1 Computational Formulas

For a given set of corn and stover prices, the computations are first conducted on

the individual CSR (corn Suitability Rating values 1 through 100) and then the state-total

quantities are derived. The cPPF is derived as the collection of state-total quantities for

varying corn and stover prices.

3.1.1 CSR-level computations

The corn Suitability Rating (CSR) measures land’s productivity in crop

production. It is an index from zero to one hundred and each CSR represents a farmer

with the number of acres represented by the CSR acreage.  Each farmer makes the

rotation-tillage-stover harvesting choice based on the highest profit. There are a total of

eighteen choices:

 Six choices correspond to continuous corn with conventional, mulch, or no-till

with stover harvesting (C1C1sr, C2C2sr, C3C3sr) and those without stover

harvesting (C1C1ns, C2C2ns, C3C3ns),



13

 Six  choices correspond to corn after soybeans with conventional, mulch, or no-

till with stover harvesting (C1S1sr, C2S2sr, C3S3sr) and those without stover

harvesting (C1S1ns, C2S2ns, C3S3ns), and

 Six choices correspond to corn-corn-soybeans rotation with conventional, mulch,

or no-till with stover harvesting (C1C1S1sr, C2C2S2sr, and C3C3S3sr) and those

without stover harvesting (C1C1S1ns, C2C2S2ns, and C3C3S3ns).

For each of the choices, the profits are computed as the yearly-average difference

between revenue and the costs of production, with the average taken over the length of

rotation (one year for continuous corn, two years for corn after soybeans, and three years

for corn-con-soybean rotation).

3.1.1.1 Revenues

For each year of rotation, the expected revenue is the product of crop price and

expected per acre yield. If the crop is corn and stover is harvested, then the revenue

increases by the product of Stover price and expected stover yield times the percentage of

Stover collected.

The crop yield (bu/ac) is computed as 2.25*CSR for corn and 0.67*CSR for

soybean, and then adjusted for the yield drag due to rotation and tillage. The final crop

yield formulas are as follows:

For corn: ( , . , ) 2.25cy CSR prev crop tillage CSR drag  

For soybeans: ( , . , ) 0.67sy CSR prev crop tillage CSR drag  



14

The values of the yield drag are provided in the Table 3.1 below.

Table 3.1 Yield Drag Assumptions
Crop Previous Crop Tillage Yield Drag
Corn Corn 1 0.95
Corn Corn 2 0.9
Corn Corn 3 0.8
Corn Soybeans 1 1
Corn Soybeans 2 1
Corn Soybeans 3 0.95
Soybeans Corn 1 1
Soybeans Corn 2 1
Soybeans Corn 3 0.8

The stover per acre yield (kg/ac) is estimated as a multiple of corn yield:

( , , ) 21.5stover c cy y sr ssr sr ssr y   

Here sr stands for a dummy variable that takes on the value 1 if Stover has been

chosen to be collected and zero otherwise, and ssr is the proportion of Stover collected.

3.1.1.2 Costs

For each year of rotation, the costs are the costs associated with the crop grown. If

the crop is corn and Stover is harvested, then the costs increase by the cost of Stover

collection. The costs of crop production have been estimated as follows:



15

, 0 1 2 3

4 , , 5 , , 6 , ,

i following j tillage t i dsl LPG i

N N i j P P i j K K i j

C a a y a p a p y
a p r a p r a p r
       

        

Where

Ci following j, tillage t is the per acre cost of growing crop i following crop j using the tillage

system t, $ per acre.

i is the crop grown (corn or soybeans),

j is the crop grown previous year (corn or soybeans),

t is the tillage system used (conventional, mulch, or no-till),

yi is the expected yield for the current year crop (bu/ac),

pdsl is the price of diesel fuel, $ per gallon,

pLPG is the price of LP Gas, $ per gallon,

pN is the price of Nitrogen fertilizer, $ per pound,

rN,i,,j is the rate of Nitrogen fertilizer used to grow the i-th crop after the j-th crop, lb per

acre,

pp is the price of Phosphate fertilizer, $ per pound,

rp,i,,j is the rate of Phosphate fertilizer used to grow the i-th crop after the j-th crop, pounds

per acre,

pk is the price of Potash fertilizer, $ per pound, and

rk,i,j is the rate of Potash fertilizer used to grow the i-th crop after the j-th crop, pounds per

acre.



16

The prices of fertilizer and LP gas are estimated from the price of diesel according

to the following formulas:

   $ / 0.069 0.089 $ /Nitrogen dieselp lb Nitrogen p gal  

   $ / 0.315 0.064 $ /Phosphate dieselp lb Phosphate p gal  

   $ / 0.120 0.0561 $ /Potash dieselp lb Potash p gal  

($ / ) 0.058 0.680 ($ / )LPG dslp gal p gal  

The budgets are summarized in Table 3.2.

Table 3.2 Parameters of costs of production of individual crops
Crop i Previous crop j Tillage t a0 a1 a2 a3 a4 a5 a6

Corn Corn Conv. 229.85 0.15 4.92 0.10 1.05 1.05 1.05

Corn Corn Mulch 222.17 0.15 3.76 0.10 1.05 1.05 1.05

Corn Corn No-till 212.25 0.15 2.76 0.10 1.05 1.05 1.05

Corn Soybeans Conv. 222.17 0.15 3.76 0.10 1.05 1.05 1.05

Corn Soybeans Mulch 215.12 0.15 3.18 0.10 1.05 1.05 1.05

Corn Soybeans No-till 212.25 0.15 2.76 0.10 1.05 1.05 1.05

Soybeans Corn Conv. 142.85 0.06 4.34 0 0 1.05 1.05

Soybeans Corn Mulch 152.40 0.06 2.76 0 0 1.05 1.05

Soybeans Corn No-till 145.34 0.06 2.18 0 0 1.05 1.05



17

Assumptions on fertilizer rates are detailed in Table 3.3.

Table 3.3 Assumed fertilizer rates
Crop i Previous crop j Tillage t rN,i,j rP,i,j rK,i,j

Corn Corn Conv. 175 55 45

Corn Corn Mulch 175 55 45

Corn Corn No-till 175 55 45

Corn Soybeans Conv. 120 60 50

Corn Soybeans Mulch 120 60 50

Corn Soybeans No-till 120 60 50

Soybeans Corn Conv. 0 40 75

Soybeans Corn Mulch 0 40 75

Soybeans Corn No-till 0 40 75

The costs of stover collection are given as follows:

 $ / 12.125

1.1
21.5 (0.01020851
0.00891947

0.00263124

0.01114933 )

diesel

c

Nitrogen

Phosphate

Potash

C ac
p

y
p
p
p



 

   

 

 

 

3.1.2 State-level computations

There are two steps for calculating the total crop production as detailed below.



18

3.1.2.1 Calculation of Effective Crop Yield

Calculation of effective crop yield takes into account land quality (CSR), the crop

yield as calculated before, and the assigned rotation. To account for the rotation factor, if

land is predicted to be in CS rotation, then ½ of every acre is assumed to be in corn, and

the other ½ acre is assumed to be in soybeans. Similarly, if land is in CCS rotation, then

2/3 of every acre is assumed to be in corn, and the other 1/3 acre is assumed to be in

soybeans. Finally, if land is predicted to be in continuous corn (CC), then every acre is

assumed to be in corn and no soybean production is assumed on that land. The effective

crop yield formulas are as follows:

1 1 2 2 3 3 1 1 1 2 2 2 3 3 3( , ) 0.5 (1/ 3)C S C S C S C C S C C S C C S
c cey CSR rotation y      

1 1 2 2 3 3 1 1 1 2 2 2 3 3 3

( , ) (1 1 1 2 2 3 3)

0.5 (1/ 3)
s s

C S C S C S C C S C C S C C S

ey CSR rotation y C C C C C C
   

    

 

Here y denotes yield in bu/ac as calculated for each CSR, and subscripts c and s

denote corn and soybeans, respectively. The rotation-tillage choice is captured by a set of

dummy variables as follows. C1C1 stands for a dummy variable that takes on the value 1

if the predicted rotation-tillage choice is continuous corn and conventional tillage, and 0

otherwise. The dummy variables C2C2 and C3C3 are defined similarly with tillage code

2 corresponding to mulch till, and tillage code 3 corresponding to no-till.



19

The other rotation-tillage choice dummies are defined in a similar manner: C1S1

stands for a dummy variable that takes on the value 1 if the predicted rotation-tillage

choice is CS and conventional and 0 otherwise and C1C1S1 stands for a dummy variable

that takes on the value 1 if the predicted rotation-tillage choice is CCS and conventional

and 0 otherwise. The dummy variables C2S2, C3S3, C2C2S2 and C3C3S3 are defined

similarly with tillage code 2 corresponding to mulch till, and tillage code 3 corresponding

to no-till.

3.1.2.2 The Total Crop Production

The total crop production is then calculated by multiplying the corresponding

effective yields by the number of acres in each CSR category and summing the numbers

over all CSRs:

( ) ( )
CSR

pcrop ey CSR acres CSR 

Here pcrop denotes the total corn or soybean production in bu, ey denotes the

corresponding crop’s effective yield in bu/ac, and acres are the number of acres in the

corresponding CSR.

3.1.3 Construction of cPPF

To calculate the cPPF, the CSR and state-level calculations for alternative corn

and soybean prices were repeated. The alternative corn and soybean prices are chosen so

that the soybean-to-corn price ratio varies from 1.5 to 3.5, with a step of 0.5, i.e., for the



20

ratio values of 1.5, 2.0, 2.5, 3.0, and 3.5. For the purposes of these calculations, assume

that the corn price is fixed at $4/bu.

3.2 Requirements Specifications

Before designing any application, the first step is to specify the requirements that

the end user of the application expects from the system. Following are the requirements

needed to design the database.

 Users should be able to input (price of diesel, price of corn stover, percentage of

Stover collected), store the data and also browse through the stored data easily

through a user-friendly interface.

 The system should be able to pull the data from the user’s inputs (price of diesel,

price of corn stover, percentage of stover collected).

 The system should output the table that relates alternative corn-to soybean price

ratios to corn production and soybean production.

 The system should be able to produce the two-dimensional plot of cPPF (corn

production along the x-axis, and soybean production along the y-axis).

 The system should be able to produce the three-dimensional plot of cPPF (corn

production along the x-axis, soybean production along the y-axis, and Stover

price along the z-axis).

 The data should be presented to the user in a simple and useful manner.



21

CHAPTER 4

DESIGING THE DATABASE

This chapter presents an overview of the application used to implement the

database, the reasons and benefits of choosing that application. This section provides also

a blue-print of the database model.

4.1 Choosing the Right Application

As mentioned in the abstract, Microsoft Access was chosen over other database

software packages because of its widespread availability in the market and the fact that it

gets the job done efficiently without advanced expertise in database management.

4.1.1 Microsoft Office Access

Microsoft Access is a popular relational database management system for creating

and managing desktop and client/server database applications that run under the

Windows operating system. It is packaged with Microsoft Office Professional which

combines the relational Microsoft Jet Database Engine with a graphical user interface

[13]. It allows relatively quick development because all database tables, queries, forms,

and reports are stored in the database.

One of the benefits of Access from a programmer's perspective is its relative

compatibility with some programming languages that can be used within its environment

to add additional features to the applications namely:



22

4.1.1.1 Macros

The Access macros programming language is useful but limited, it provides a

limited (though still useful) set of tools for automating database actions. Macros have a

limited ability to respond to errors or other conditions out of the ordinary [14].

4.1.1.2 SQL

Structured Query Language, more commonly called SQL is the language that

Access uses to store database queries [15].

SQL queries may be viewed and edited as SQL statements, and SQL statements

can be used directly as Macros or as VBA Modules to manipulate Access tables [16].

4.1.1.3 VBA

Finally, there is VBA, the programming language used the most in this thesis,

allowing the construction of this complex application based in the Access interface.

VBA is an acronym that stands for Visual Basic for Applications. VBA is

included as part of several Microsoft products, including Access, Word and Excel [17].

VBA is a lightweight version of the full-fledged Visual Basic programming

language which is a standalone tool for creating separate software components, such as

executable programs. VBA offers the same powerful tools as Visual Basic in the context

of an existing application. VBA provides a complete integrated development

environment (IDE) that features the same elements familiar to developers using

Microsoft Visual Basic, including a Project window, a Properties window, and debugging

tools [18]. Screenshot of VBA integrated development environment is shown in Figure

4.1



23

Figure 4.1. Screenshot of VBA IDE



24

To use the VBA language for the database environment, Microsoft Office Access

employs two main ways: via Data Access Objects (DAO) or via ActiveX Data Objects

(ADO).

Data Access Objects (DAO) is the first programming interface between VBA and

the Microsoft Jet database engine that allows programmers to directly connect to

Microsoft Office Access tables as well as other databases through Open Database

Connectivity (ODBC). Data Access Objects are suited best for either single system

applications or for small, local deployments [19]. Data Access Objects remain a viable

technology for interacting with Microsoft Access databases as it is faster than ADO for

that purpose; however, ADO is more flexible [20].

ADO which stands for Microsoft ActiveX Data Objects enables us to write an

application to access and manipulate data in a database server through an OLE DB

provider. It's part of Microsoft's overall Component Object Model (COM) strategy and,

as such, works in a variety of environments ranging from Visual Basic to Active Server

Pages. ADO's primary benefits are data source independence, high speed, ease of use,

low memory overhead, and a small disk footprint [21].

In this thesis, we use the DAO technology to interact with the Microsoft Access

data from our VBA code as it is faster than ADO for that purpose.

4.2 Modeling the Application Design

After gathering all the requirements needed to create the database, the next step is

to start up with the designing. Modeling is best defined as the process of documenting



25

one or more parts of an application on paper (or with an electronic tool). A variety of

modeling techniques can be used to accomplish the end result: modeling the flow of

activities through the system, modeling the way the code will be structured, and so on

[22].

Regardless of the modeling techniques one decides to use, the objective is to

come up with a complete roadmap for building the system before writing a single line of

code.

Based on the above requirements specifications and computational formulas, the

database model was drafted as shown below in Figure 4.2. This is a sample draft for the

entire model.



26

User Input Input 1: Fertilizer Table

Equation 1: Price

Input 2: Parameters
Cost Table

2 Costs Equations

Equation 3: Cost of CropEquation 2: Cost of Stover

Output 2: Cost of Crop
Table (9 types, 100
rows for each type)

Output 1: Cost of Stover
Table (6 types, 100 rows
for each type)

Input 3:
Parameter
BudgetTable

2 Budgets Equations

CornPrice

DieselPrice

StoverCollected%

soybeanPrice

StoverPrice

Budget No Stover Equation 5Budget Stover Equation 4

Output 3: Budget Table (18 types, 100 rows for each type)

Query 1: MaxResult (max of each type)



27

Figure 4.2. Database draft

Query 1: MaxResult (max of each type)

Query 2: MaxOptimumResult
(choice corresponding to each max)

Input 4: Parameters Drag Table (18
types 9 with stover & 9 without stover)

Query 3: CsrYieldDrag (Yield Drag corresponding to each
CSR based on optimum choice)

Output 4: YcYs Table

Equation 3: YcYs

Equation 4: EYcEYs

Output 5: EYcEYs Input 5: Acres Table

Query 4: CsrAcres

Query 5: CornSoybeanProduction

Query 6: Total Crop Production From

User First
Input
interface

User Snd
Input
interface

User Third
Input
interface

User Fouth
Input
interface

User Fouth
Input
interface

Final Output: cPPF coordinates

2 D cPPF plot 3 D cPPF plot



28

Given the above model, our data was broken down into two major parts as

follows:

4.2.1 The Input Parameters

The database takes input from the user inputs and from the parameters input

tables.

4.2.1.1 The User Inputs

The User Inputs are the information that the user enter into the database. A tab

control has been used on an Access form to present five pages of information that was

needed to plot both 2D and 3D cPPF.

4.2.1.2 Parameters Input Tables

As showed in the database model, the parameters input tables consists of five

tables for each page of information in the tab control from the user interface as follows:

 The Fertilizer table.

 The Parameters Cost table.

 The Parameters Budget table.

 The Parameters Drag table.

 The Acres table.

4.2.2 The Parameters Output Tables

The output tables were stored in five different tables and six queries for each page

of information in the tab control from the user interface as follows:

 The Cost Of Stover table.

 The Cost Of Crop Production table.



29

 The Budget table.

 The YcYs table (corn and soybean production).

 The EYcEYs table (effective corn and soybean).

 The MaxResult query.

 The MaxOptimumResult query.

 The CsrYieldDrag query.

 The CsrAcres query.

 The CornSoybeanProduction query.

 The TotalCropProduction query.



30

CHAPTER 5

BUILDING AND IMPLEMENTING THE DATABASE

In the following section the building and implementation details of the database

are discussed.

5.1 Building the Table Structures

According to the database model, we created for each page of information five

input tables and five output tables. For each table we determined the fields names and

data type needed for each field. Since all the five pages hold the same controls of

information, Figure 5.1 through 5.10 shows only the fields (Datasheet View) and the

appropriate data types for each of the fields (Design View) in the tables for the first page

labeled “UserFirstInputs”.

The InputOneFertilizer table holds the different slopes and intercepts of the

simple linear regression equation computed from the data on the different prices such as

diesel fuel price, LP Gas price and fertilizer price (Nitrogen and Potash price).

The InputOneFertilizer table contains eight fields as follows:

 InputOneNitrogenSlope.

 InputOneNitrogenIntercept.

 InputOnePhosphateSlope.

 InputOnePhosphateIntercept.

 InputOnePotashSlope.



31

 InputOnePotashIntercept.

 InputOneDieselSlope.

 InputOneDieselIntercept.

Figure 5.1a. InputOneFertilizer table in Design View

Figure 5.1b. InputOneFertilizer table in Datasheet View

The InputOneParametersBudget table consists of brief details about the budget as

follows:

 InputOneID designed as primary key for the table.

 InputOneTillageCrop (rotation tillage types).

 InputOneYieldDrag assumptions.



32

Figure 5.2a. InputOneParametersBudget table in Design View

Figure 5.2b. InputOneParametersBudget table in Datasheet View

The InputOneAcres table is structured in a way as to hold the acres details as

follows:

 InputOneCSR  designed as primary key for the table.

 InputOneAcres values, one hundred rows and each row corresponding at each

CSR value.



33

Figure 5.3a. InputOneAcres table in Design View

Figure 5.3b. InputOneAcres table in Datasheet View



34

The InputOneParametersCost table is the master table; it contains all the

information about the costs of production of individual crop such as:

 InputOneID designed as primary key for the table.

 InputOneCropTillage (rotation tillage types).

 InputOnea0 through InputOnea6 (parameters from the cost equation).

 InputOneNitrogenRate.

 InputOnePhosphateRate.

 InputOnePotashRate.

 InputOneYieldDrag assumptions.

Figure 5.4a. InputOneParametersCost table in Design View



35

Figure 5.4b. InputOneParametersCost table in Datasheet View

The InputOneParametersDrag table captures information describing assumptions

about expected yield drag for all the rotation-tillage-Stover and no Stover harvesting

choice as follows:

 InputOneID.

 InputOneTillageCrop designed as primary key for the table.

 InputOneYieldDrag assumptions.

Figure 5.5a. InputOneParametersDrag table in Design View



36

Figure 5.5b. InputOneParametersDrag table in Datasheet View

The OutputOneCostOfStover table is used to store the six rotation-tillage types as

follows:

 OutputOneCSR value, from one to one hundred.

 OutputOneType, one hundred rows for each type.

 OutputOneCost, six hundred rows since each type has one hundred rows

corresponding at each CSR value (one to one hundred).

Figure 5.6a. OutputOneCostOfStover table in Design View



37

Figure 5.6b. OutputOneCostOfStover table in Datasheet View

The OutputOneCostOfCropProduction table is used to store the nine rotation-

tillage types as follows:

 OutputOneCSR value, from one to one hundred.

 OutputOneType, one hundred rows for each type.



38

 OutputOneCost, nine hundred rows since each type has one hundred rows

corresponding at each CSR value (one to one hundred).

Figure 5.7a. OutputOneCostOfCropProduction table in Design View

Figure 5.7b. OutputOneCostOfCropProduction table in Datasheet View



39

The OutputOneBudget table outputs the nine rotation-tillage types as follows:

 OutputOneCSR value, from one to one hundred.

 OutputOneType, each type with Stover harvesting and no Stover harvesting one

hundred rows for each type.

 OutputOneBudget, eighty hundred rows since each type has one hundred rows

corresponding at each CSR value (one to one hundred).

 OutputOneBudgetType corresponding at each budget value.

Figure 5.8a. OutputOneBudget table in Design View

Figure 5.8b. OutputOneBudget table in Datasheet View



40

The OutputOneYcYS table is used to store the adjusted corn and soybean yield

for the yield drag due to rotation and tillage as follows:

 OutputOneID, designed as primary key for the table.

 OutputOneYc corresponding to the expected revenue for corn.

 OutputOneYs corresponding to the expected revenue for soybean.

 OutputOneCSR, the corresponding value is based on the optimum choice of

rotation and tillage type.

Figure 5.9a. OutputOneYcYS table in Design View

Figure 5.9b. OutputOneYcYS table in Datasheet View



41

The OutputOneEYcEYS table holds information describing corn and soybean

yield for the yield drag due to rotation and tillage as follows:

 OutputOneID, designed as primary key for the table.

 OutputOneEYc corresponding to the effective yield for corn.

 OutputOneEYs corresponding to the effective yield for soybean.

 OutputOneCSR, the corresponding value is based on the optimum choice of

rotation and tillage type.

Figure 5.10a. OutputOneEYcEYS table in Design View

Figure 5.10b. OutputOneEYcEYS table in Datasheet View



42

5.2 Building the User Interface

Once the tables had been created and populated, the next step was to design the

program interface.

The Graphical User Interface (GUI) has been developed and rendered using

Access unbound form allowing the user to input data into the database. Then, through

VBA code, a number of steps will be taken to get the data and plot both 2D and 3D cPPF.

In order to create a user-friendly interface and for better data presentation and

manipulation, a tab control has been used on the blank form to  present five pages of

information about that single form. Each page in the tab control holds eights controls.

The first fives controls of each page are text boxes, which will be utilized to enter the

user’s commodities prices (for each commodity a text box has been created) and the three

others are Command buttons. Theses Command buttons are as follows:

 Calculate button: When clicked, it will delete all the olds data, update and save

the news ones.

 Reset button: When clicked, it will clear the data enter by the user, allowing the

user to rectify the data.

 Close button: Will provide to the user, the option to close the form.

The form designed to accommodate this data entry is displayed in Figure 5.11

below.



43

Figure 5.11. UserInterface in form view

5.3 Building the VBA Code

The action for our database logic happens behind the click event of the Calculate

Button, the Reset Button and the Close Button. The basic requirements for our VBA code

are as follow:

 Pull the data from the form and ensure appropriate values have been entered.

 If values were not entered from one text box, notify the user and wait for the

value.



44

 Create an ADO connection to the database.

 Open connection to current Access database.

 Delete old data from the output tables.

 Creating a recordset for input tables.

 Close the recordset for input tables.

 Close the connection.

 Accessing data and do the calculation and update the output.

 Notify the user that the operation has been done successfully.

 Update both two and three dimensional plots for the cPPF.

The Visual Basic Application (VBA) code behind which supports the functioning

of the application is shown in appendix.

5.4 Building the queries

Based on the above database model, six queries were needed for each page of

information to retrieve and store data into the database. Again since all the five pages

hold the same controls of information, Figure 5.12 through 5.18 shows only the queries in

SQL, Design and Datasheet Views for the first page labeled “UserFirstInputs”.

The OutputOneMaxResult query is set up to retrieve OutputOneCSR field and to

maximum the OutputOneBudget field, giving results of the OutputOneCSR and the

OutputOneMAXIMUM value corresponding to each CSR value from the above

OutputOneBudgetTable.



45

Figure 5.12a. OutputOneMaxResult query in SQLView

Figure 5.12b. OutputOneMaxResult query in Design View

Figure 5.12c. OutputOneMaxResult query in Datasheet View



46

The OutputOneMaxOptimunResult query selects fields (OutputOneCSR,

OutputOneBudget and OutputOneType) from previous OutputOneBudgetTable and then

from both OutputOneBudgetTable and OutputOneMaxResult query, gets the optimum

choice associated to each maximum value, giving results of the OutputOneCSR, the

OutputOneMAXIMUM and the OutputOneOPTIMUM fields.

Figure 5.13a. OutputOneMaxResult query in SQLView

Figure 5.13b. OutputOneMaxResult query in Design View



47

Figure 5.13c. OutputOneMaxResult query in Datasheet View

The OutputOneCsrYieldDrag query is a query with an Inner join; it joins

InputOneParametersDrag table and OutputOneOptimumResult query using the

InputOneTillageCrop field of InputOneParametersDrag table and OutputOneOptimum

field of OutputOneOptimumResult query; where OutputOneOptimum type matches

InputOneTillageCrop type. Thus, based on the join-predicate, the

OutputOneCsrYieldDrag query retrieves OutputOneCSR field value from

OutputOneOptimumResult query and the corresponding InputOneYieldDrag field value

from InputOneParametersDrag table.

Figure 5.14a. OutputOneCsrYieldDrag query in SQLView



48

Figure 5.14b. OutputOneCsrYieldDrag query in Design View

Figure 5.14c. OutputOneCsrYieldDrag query in Datasheet View

The OutputOneCsrAcres query inner joins InputOneAcres table on

OutputOneEYcEYs table using the InputOneCSR  field of InputOneAcres and

OutputOneCSR of OutputOneEYcEYs; where OutputOneCSR matches InputOneCSR



49

Thus, based on the join-predicate, the OutputOneCsrAcres query retrieves

OutputOneCSR field, OutputOneEyc and OutputOneEys from OutputOneEYcEYs table

and their corresponding InputOneacres field value from InputOneAcres table.

Figure 5.15a. OutputOneCsrAcres query in SQLView

Figure 5.15b. OutputOneCsrAcres query in Design View



50

Figure 5.15c. OutputOneCsrAcres query in Datasheet View

The OutputOneCornSoybeanProduction query is a simple select query that

retrieves fields (InputOneacres, OutputOneEYc and OutputOneEYs ) from the

OutputOneCsrAcres query and creates new fields (OutputOneCornProduction and

OutputOneSoybeanProduction) for the OutputOneCornSoybeanProduction query ;

giving that OutputOneCornProduction and OutputOneSoybeanProduction are equal

respectively to InputOneacres multiplied by OutputOneEYc and InputOneacres

multiplied by OutputOneEYs.



51

Figure 5.16a. OutputOneCornSoybeanProduction query in SQLView

Figure 5.16b. OutputOneCornSoybeanProduction query in Design View

Figure 5.16c. OutputOneCornSoybeanProduction query in Datasheet View



52

The OutputOneTotalCropProduction query sums up the values in the two fields:

[Output One Corn Production] and [Output One Soybean Production] from

OutputOneCornSoybeanProduction query. For clarity, the resulting fields are named

OutputOneTotalCornProduction and OutputOneTotalSoybeanProduction.

Figure 5.17a. OutputOneTotalCropProduction query in SQLView

Figure 5.17b. OutputOneCornSoybeanProduction query in Design View

Figure 5.17c. OutputOneCornSoybeanProduction query in Datasheet View



53

5.5 Plotting the Conditional Production Possibilities Frontier

In Microsoft Office Access, reports are utilized for enhanced record output. They

allow us to represent the data through text and/or charts, thus both 2D and 3D conditional

Production Possibilities Frontier have been plotted in two different reports as shown in

Figure 5.18 and Figure 5.19.

Figure 5.18. Screenshot of 2D cPPF plot in report View



54

Figure 5.19. Screenshot of 3D cPPF plot in report View

Both reports get data from the cPPFcoordinates table. This table holds the x y and

z-axes coordinates where total corn production along the x-axis, total soybean production

along the y-axis, and Stover price along the z-axis.

The cPPFcoordinates table is the final table and it is structured in a way as to

group total corn production, total soybean production and stover price resulting from all



55

the five pages of information giving that each page of information corresponds to one

point of coordinate x, y and z for the 3D and x, y for the 2D plots. Figure 5.20 (a) and

Figure 5.20 (b) shows the cPPFcoordinates table in design and datasheet view.

Figure 5.20a. cPPFcoordinates table in Design View

Figure 5.20b. cPPFcoordinates table in Datasheet View



56

CHAPTER 6

CONCLUSION AND FUTURE WORK

This thesis describes the design and implementation of an access based

computational system that produces two-dimensional (corn production along the x-axis,

and soybean production along the y-axis) and three-dimensional (corn production along

the x-axis, soybean production along the y-axis, and Stover price along the z-axis) plots

of conditional production possibilities frontier for corn and soybeans using Visual Basic

Application programming language.

The process of creating this database took some time in implementing because the

Microsoft Access software that is used is not very robust and has several limitations such

as performance deficiencies when dealing with complex data. This database can be built

rather quickly and with much greater ease using SQL Server or Oracle. However, the

database has turned out to be a very useful tool for the future analyses of the economy-

wide impacts of bioenergy production and policy. The database is friendly to use and can

determine the quantity of corn and soybeans that can be producing for any given

resources (prices of diesel, fertilizer).

Once again, just to maintain simplicity in the project, the Microsoft Access

database has been used, since the volume of data which is being handled is not huge.

In order to get the maximum advantage from such database application, it is

essential to keep them updated at regular intervals and also extreme care should be taken

to avoid unsystematic data handling, thus user level security has been integrated in this



57

application to provide a safe ground for producing and plotting conditional production

possibilities frontier for corn and soybeans.



58

REFERENCES

[1] L. A. Kurkalova, S. Secchi, and P.W. Gassman, “Corn Stover Harvesting:
Potential Supply and Water Quality Implications,”in Handbook of Bioenergy
Economics and Policy, Springer: New York, 2010, vol. 33, pp. 307-323.

[2], [3] D. M. Gosnell, “Beginning Access 2003 VBA,” Programmer to programmer,
Wiley: Indianapolis, c2004, pp. 12.

[4] B.C. English,  R. J. Menard, D. G. De La Torre Ugarte, and M. Walsh,
“Economic impacts of ethanol production from maize stover in selected
Midwestern States,” in Agriculture as a Producer and Consumer of Energy.
Edited by J. Outlaw, K.J. Collins, and J.A. Duffield, CABI Publishing, MA,
2005, pp. 218-231.

[5] J. Yong and S. M. Swinton, “Market interactions, farmers’ choices, and the
sustainability of growing advanced biofuels: a missing perspective?” in
International Journal of Sustainable Development & World Ecology, Vol. 16,
No. 6, December 2009, pp. 438-450.

[6] “Production Possibility Frontier”.
URL: http://en.wikipedia.org/wiki/Production- possibility_frontier

[7] J. C. Tyndall, E. J. Berg, J. P. Colletti, “Corn stover as a biofuel feedstock in
Iowa’s bio-economy: An Iowa farmer survey,” Biomass and Bioenergy (2010),
doi:10.1016/j.biombioe.2010.08.049, pp. 1.

[8] L. A. Kurkalova, S. Secchi, and P.W. Gassman, “Corn Stover Harvesting:
Potential Supply and Water Quality Implications,”in Handbook of Bioenergy
Economics and Policy, Springer: New York, 2010, vol. 33, pp. 307.

[9] M.E Porter and V.E Millar, “How Information gives you competitive
Advantage,” Harvard Business Review, July/August 1985,pp. 149-160.

[10] “Design & Development of a Database as a Part Data Management System”
URL: http://www.min.uc.edu/robotics/papers/theses2000/chirag.PDF.

[11] J. W. Satzinger, R. B. Jackson, and S. D. Burd, “Systems&Analysis Design In
a Changing World,” Course Technology, 2008, pp. 490.

[12] E. F. Codd's “12 rules for defining a fully relational database,” URL:
http://www.cse.ohio-state.edu/~sgomori/570/coddsrules.html.



59

[13] C. N. Prague, M. Irwin, R. and J. Reardon, “Access 2003 Bible,” Wiley: New
York, 2003, pp.4.

[14], [15] H. S. Sales and G. Mike, “Automation Microsoft Access with VBA,” Que
Publishing, 2004, pp.12.

[16] J.L. Viescas, “Building Microsoft Access Applications,” Pap/Cdr edition ed,
2005: Microsoft Press, pp. 21.

[17] D. M. Gosnell, “Beginning Access 2003 VBA,” Programmer to programmer,
Wiley: Indianapolis, c2004, pp. 1.

[18] J. Noel, “Microsoft Office Access 2003 Professional Results,” McGraw-Hill
Osborne Media, August 2003, pp. 316.

[19] “ADO Compared with RDO and DAO”.
URL: http://msdn.microsoft.com/en-us/library/aa261340%28v=vs.60%29.aspx

[20] Visual Basic & ADO Tutorial”.URL: http://www.vb6.us/tutorials/database-
access-ado-vb6-tutorial

[21] “Microsoft ActiveX Data Objects (ADO)”.
http://msdn.microsoft.com/en-us/library/ms675532%28v=vs.85%29.aspx

[22] D. M. Gosnell, “Beginning Access 2003 VBA,” Programmer to programmer,
Wiley: Indianapolis, c2004, pp. 4.



60

APPENDIX

This appendix contains a sample of the Visual Basic Application code used for

the database creation. Since all the five pages from the user interface hold the same

controls of information, we only show the VBA code behind the first page labeled

“UserFirstInputs”.

VBA code behind the click event of the Calculate Button.

VERSION 1.0 CLASS
BEGIN
MultiUse = -1  'True

END
Attribute VB_Name = "Form_UserInterface"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = True
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
Option Compare Database
Option Explicit

'**********************************************************
***********************************************************

' PROJECT: Impact of Biofuel
' AUTHOR: Mariama Oumarou Sidibe
' Student from North Carolina A & T State University
' Computational Science and Engineering Program
' DATE: 05/29/2010
' CONTACT: sidibemamy@hotmail.com, moumarou@ncat.edu
' DESCRIPTION: Implement  an access based computational
system that produces and plots 2D and 3D cPPF using VBA.

'**********************************************************
***********************************************************



61

Private Sub CmdCalculateOne_Click()

'Variable declaration
Dim db As Database
Dim rsInputOneFertilizer As DAO.Recordset
Dim rsInputOneParametersCost As DAO.Recordset
Dim rsInputOneParametersBudget As DAO.Recordset
Dim rsInputOneParametersBudgetb As DAO.Recordset
Dim rsInputOneParametersBudgetc As DAO.Recordset
Dim rsOutputOneCostOfCropProduction As DAO.Recordset
Dim rsOutputOneCostOfCropProductionb As DAO.Recordset
Dim rsOutputOneCostOfCropProductionc As DAO.Recordset
Dim rsOutputOneCostOfStover As DAO.Recordset
Dim rsOutputOneCostOfStoverb As DAO.Recordset
Dim rsOutputOneCsrYieldDrag As DAO.Recordset
Dim rsOutputOneYcYs As DAO.Recordset
Dim rsOutputOneMaxOptimumResult As DAO.Recordset

Dim sqlStrInputOneParametersCost As String
Dim sqlStrInputOneFertilizer As String
Dim sqlStrOutputOneCsrYieldDrag As String
Dim sqlStrOutputOneYcYs As String
Dim sqlStrOutputOneMaxOptimumResult As String
Dim sqlInputOneParametersBudget As String
Dim sqlInputOneParametersBudget_b As String
Dim sqlInputOneParametersBudget_c As String
Dim sqlOutputOneCostOfCropProduction As String
Dim sqlOutputOneCostOfCropProduction_b As String
Dim sqlOutputOneCostOfCropProduction_c As String
Dim sqlOutputOneCostOfStover As String
Dim sqlOutputOneCostOfStover_b As String

Dim InputOneNitrogenPrice As Double
Dim InputOnePhosphatePrice As Double
Dim InputOnePotashPrice As Double
Dim InputOneLPGasPrice As Double
Dim OutputOneCostOfCropProduction As Double
Dim OutputOneCostOfCollectingStover As Double
Dim OutputOneEYc As Double
Dim OutputOneEYs As Double
Dim OutputOneYc As Double
Dim OutputOneYs As Double
Dim C1C1ns As Double
Dim C2C2ns As Double



62

Dim C3C3ns As Double
Dim C1C1sr As Double
Dim C2C2sr As Double
Dim C3C3sr As Double
Dim C1S1ns As Double
Dim C2S2ns As Double
Dim C3S3ns As Double
Dim C1S1sr As Double
Dim C2S2sr As Double
Dim C3S3sr As Double
Dim C1C1S1ns As Double
Dim C2C2S2ns As Double
Dim C3C3S3ns As Double
Dim C1C1S1sr As Double
Dim C2C2S2sr As Double
Dim C3C3S3sr As Double

Dim C1C1 As Integer
Dim C2C2 As Integer
Dim C3C3 As Integer
Dim C1S1 As Integer
Dim C2S2 As Integer
Dim C3S3 As Integer
Dim C1C1S1 As Integer
Dim C2C2S2 As Integer
Dim C3C3S3 As Integer
Dim intCSROne As Integer
Dim OutputOnecsrEYcEYs As Integer
Dim csrOutputOneYcYs As Integer

'Open connection to current Access database
Set db = CurrentDb()

'delete old data from the
OutputOneCostOfCropProduction, OutputOneCostOfStover and
OutputOneBudgetTable tables

db.Execute "DELETE * FROM OutputOneCostOfCropProduction"
db.Execute "DELETE * FROM OutputOneCostOfStover"
db.Execute "DELETE * FROM OutputOneBudgetTable"

'Creating a record set for InputOneFertilizer table

sqlStrInputOneFertilizer = "select*from InputOneFertilizer"



63

Set rsInputOneFertilizer =
db.OpenRecordset(sqlStrInputOneFertilizer)

'Creating a record set for InputOneParametersCost table

sqlStrInputOneParametersCost = "select * from
InputOneParametersCost"

Set rsInputOneParametersCost =
db.OpenRecordset(sqlStrInputOneParametersCost)

'Getting data and do the calculation and write the
output

If rsInputOneFertilizer.EOF = False Then
If rsInputOneParametersCost.EOF = False Then

'Calculating the prices

InputOneNitrogenPrice =
rsInputOneFertilizer("InputOneNitrogenIntercept") +
(rsInputOneFertilizer("InputOneNitrogenSlope") *
TextDieselPriceOne.Value)

InputOnePhosphatePrice =
rsInputOneFertilizer("InputOnePhosphateIntercept") +
(rsInputOneFertilizer("InputOnePhosphateSlope") *
TextDieselPriceOne.Value)

InputOnePotashPrice =
rsInputOneFertilizer("InputOnePotashIntercept") +
(rsInputOneFertilizer("InputOnePotashSlope") *
TextDieselPriceOne.Value)

InputOneLPGasPrice =
rsInputOneFertilizer("InputOneLPGasIntercept") +
(rsInputOneFertilizer("InputOneLPGasSlope") *
TextDieselPriceOne.Value)

'Calculating the cost + the loopining 100 times
for each

Do While Not rsInputOneParametersCost.EOF
For intCSROne = 1 To 100



64

'The equation for the cost of crop production for the 9
types

OutputOneCostOfCropProduction = 0

OutputOneCostOfCropProduction =
rsInputOneParametersCost("InputOnea0") +
(rsInputOneParametersCost("InputOnea1") * 2.25 * intCSROne
* rsInputOneParametersCost("InputOneYieldDrag")) +
(rsInputOneParametersCost("InputOnea2") *
TextDieselPriceOne.Value) +
(rsInputOneParametersCost("InputOnea3") *
InputOneLPGasPrice * 2.25 * intCSROne *
rsInputOneParametersCost("InputOneYieldDrag")) +
(rsInputOneParametersCost("InputOnea4") *
InputOneNitrogenPrice *
rsInputOneParametersCost("InputOneNitrogenRate")) +
(rsInputOneParametersCost("InputOnea5") *
InputOnePhosphatePrice *
rsInputOneParametersCost("InputOnePhosphateRate")) +
(rsInputOneParametersCost("InputOnea6") *
InputOnePotashPrice *
rsInputOneParametersCost("InputOnePotashRate"))

db.Execute "INSERT INTO
OutputOneCostOfCropProduction (OutputOneCSR, OutputOneType,
OutputOneCost) VALUES (" & intCSROne & ",'" &
rsInputOneParametersCost("InputOneCropTillage") & "'," &
OutputOneCostOfCropProduction & ");"

Next
rsInputOneParametersCost.MoveNext

Loop
rsInputOneParametersCost.MoveFirst

Do While Not rsInputOneParametersCost.EOF
If rsInputOneParametersCost("InputOneID") < 7

Then
For intCSROne = 1 To 100

'The equation for the cost of stover
for the 6 types

OutputOneCostOfCollectingStover =
12.125 + (1.1 * TextDieselPriceOne.Value) + (2.25 *



65

intCSROne * rsInputOneParametersCost("InputOneYieldDrag") *
(0.01020851 + (0.00891947 * InputOneNitrogenPrice) +
(0.00263124 * InputOnePhosphatePrice) + (0.01114933 *
InputOnePotashPrice)))

db.Execute "insert into
OutputOneCostOfStover values (" & intCSROne & ",'" &
rsInputOneParametersCost("InputOneCropTillage") & "'," &
OutputOneCostOfCollectingStover & ");"

Next
End If

rsInputOneParametersCost.MoveNext
Loop

'********************** BUDGET NO STOVER START
HERE *****************************************************

' ****** FIRST THREE EQUATIONS from the 9 ARE
THE SAME -- START ****************************************

'1/9 ************ C1C1 equation

sqlInputOneParametersBudget = "select * from
InputOneParametersBudget where InputOneTillageCrop='C1C1'"

Set rsInputOneParametersBudget =
db.OpenRecordset(sqlInputOneParametersBudget)

If rsInputOneParametersBudget.EOF = False Then
sqlOutputOneCostOfCropProduction = "select

* from OutputOneCostOfCropProduction where
OutputOneType='C1C1'"

Set rsOutputOneCostOfCropProduction =
db.OpenRecordset(sqlOutputOneCostOfCropProduction)

If rsOutputOneCostOfCropProduction.EOF =
False Then

intCSROne = 0
Do While Not

rsOutputOneCostOfCropProduction.EOF
intCSROne = intCSROne + 1

C1C1ns = (2.25 * intCSROne *
rsInputOneParametersBudget("InputOneYieldDrag") *



66

TextCornPriceOne.Value) -
rsOutputOneCostOfCropProduction("OutputOneCost")

db.Execute "INSERT INTO
OutputOneBudgetTable (OutputOneCSR, OutputOneType,
OutputOneBudget, OutputOneBudgetType) VALUES (" & intCSROne
& ",'C1C1ns'," & C1C1ns & ",'NoStover');"

rsOutputOneCostOfCropProduction.MoveNext

Loop
rsOutputOneCostOfCropProduction.Close

Else
MsgBox "No Record for C1C1 is found"

End If

rsInputOneParametersBudget.Close

Else
MsgBox "No data are found in the Budget

Parameter table"

End If

'2/9 ************ C2C2 equation

sqlInputOneParametersBudget = "select * from
InputOneParametersBudget where InputOneTillageCrop='C2C2'"

Set rsInputOneParametersBudget =
db.OpenRecordset(sqlInputOneParametersBudget)

If rsInputOneParametersBudget.EOF = False Then

sqlOutputOneCostOfCropProduction = "select
* from OutputOneCostOfCropProduction where
OutputOneType='C2C2'"

Set rsOutputOneCostOfCropProduction =
db.OpenRecordset(sqlOutputOneCostOfCropProduction)

If rsOutputOneCostOfCropProduction.EOF =
False Then

intCSROne = 0
Do While Not

rsOutputOneCostOfCropProduction.EOF



67

intCSROne = intCSROne + 1

C2C2ns = (2.25 * intCSROne *
rsInputOneParametersBudget("InputOneYieldDrag") *
TextCornPriceOne.Value) -
rsOutputOneCostOfCropProduction("OutputOneCost")

db.Execute "INSERT INTO
OutputOneBudgetTable (OutputOneCSR, OutputOneType,
OutputOneBudget, OutputOneBudgetType) VALUES (" & intCSROne
& ",'C2C2ns'," & C2C2ns & ",'NoStover');"

rsOutputOneCostOfCropProduction.MoveNext

Loop
rsOutputOneCostOfCropProduction.Close

Else
MsgBox "No Record for C2C2 is found"

End If

rsInputOneParametersBudget.Close

Else
MsgBox "No data are found in the Budget

Parameter table"

End If

'3/9 ************ C3C3 equation

sqlInputOneParametersBudget = "select * from
InputOneParametersBudget where InputOneTillageCrop='C3C3'"

Set rsInputOneParametersBudget =
db.OpenRecordset(sqlInputOneParametersBudget)

If rsInputOneParametersBudget.EOF = False Then
sqlOutputOneCostOfCropProduction = "select

* from OutputOneCostOfCropProduction where
OutputOneType='C3C3'"

Set rsOutputOneCostOfCropProduction =
db.OpenRecordset(sqlOutputOneCostOfCropProduction)

If rsOutputOneCostOfCropProduction.EOF =
False Then



68

intCSROne = 0
Do While Not

rsOutputOneCostOfCropProduction.EOF

intCSROne = intCSROne + 1

C3C3ns = (2.25 * intCSROne *
rsInputOneParametersBudget("InputOneYieldDrag") *
TextCornPriceOne.Value) -
rsOutputOneCostOfCropProduction("OutputOneCost")

db.Execute "INSERT INTO
OutputOneBudgetTable (OutputOneCSR, OutputOneType,
OutputOneBudget, OutputOneBudgetType) VALUES (" & intCSROne
& ",'C3C3ns'," & C3C3ns & ",'NoStover');"

rsOutputOneCostOfCropProduction.MoveNext
Loop
rsOutputOneCostOfCropProduction.Close

Else
MsgBox "No Record for C3C3 is found"

End If

rsInputOneParametersBudget.Close
Else

MsgBox "No data are found in the Budget
Parameter table"

End If

'******FIRST THREE EQUATIONS ARE THE SAME  END

'*********** OTHER EQUATIONS from the 9 ARE THE
SAME -- START *********************************************

'4/9 ************ C1S1 equation

sqlInputOneParametersBudget = "select * from
InputOneParametersBudget where InputOneTillageCrop='C1S1'"

Set rsInputOneParametersBudget =
db.OpenRecordset(sqlInputOneParametersBudget)

sqlInputOneParametersBudget_b = "select * from
InputOneParametersBudget where InputOneTillageCrop='S1C1'"



69

Set rsInputOneParametersBudgetb =
db.OpenRecordset(sqlInputOneParametersBudget_b)

If rsInputOneParametersBudget.EOF = False Then

sqlOutputOneCostOfCropProduction = "select
* from OutputOneCostOfCropProduction where
OutputOneType='C1S1'"

Set rsOutputOneCostOfCropProduction =
db.OpenRecordset(sqlOutputOneCostOfCropProduction)

sqlOutputOneCostOfCropProduction_b =
"select * from OutputOneCostOfCropProduction where
OutputOneType='S1C1'"

Set rsOutputOneCostOfCropProductionb =
db.OpenRecordset(sqlOutputOneCostOfCropProduction_b)

If rsOutputOneCostOfCropProduction.EOF =
False And rsOutputOneCostOfCropProductionb.EOF = False Then

intCSROne = 0

Do While Not
rsOutputOneCostOfCropProduction.EOF And Not
rsOutputOneCostOfCropProductionb.EOF

intCSROne = intCSROne + 1

C1S1ns = 0.5 * ((2.25 *
intCSROne * rsInputOneParametersBudget("InputOneYieldDrag")
* TextCornPriceOne.Value) -
rsOutputOneCostOfCropProduction("OutputOneCost") + (0.67 *
intCSROne *
rsInputOneParametersBudgetb("InputOneYieldDrag") *
TextSoybeanPriceOne.Value) -
rsOutputOneCostOfCropProductionb("OutputOneCost"))

db.Execute "INSERT INTO
OutputOneBudgetTable (OutputOneCSR, OutputOneType,
OutputOneBudget, OutputOneBudgetType) VALUES (" & intCSROne
& ",'C1S1ns'," & C1S1ns & ",'NoStover');"
rsOutputOneCostOfCropProduction.MoveNext
rsOutputOneCostOfCropProductionb.MoveNext



70

Loop
rsOutputOneCostOfCropProduction.Close

Else
MsgBox "No Record for C1S1 is found"

End If

rsInputOneParametersBudget.Close

Else
MsgBox "No data are found in the Budget

Parameter table"

End If

'5/9 ************ C2S2 equation

sqlInputOneParametersBudget = "select * from
InputOneParametersBudget where InputOneTillageCrop='C2S2'"

Set rsInputOneParametersBudget =
db.OpenRecordset(sqlInputOneParametersBudget)

sqlInputOneParametersBudget_b = "select * from
InputOneParametersBudget where InputOneTillageCrop='S2C2'"

Set rsInputOneParametersBudgetb =
db.OpenRecordset(sqlInputOneParametersBudget_b)

If rsInputOneParametersBudget.EOF = False Then
sqlOutputOneCostOfCropProduction = "select * from

OutputOneCostOfCropProduction where OutputOneType='C2S2'"
Set rsOutputOneCostOfCropProduction =

db.OpenRecordset(sqlOutputOneCostOfCropProduction)
sqlOutputOneCostOfCropProduction_b =

"select * from OutputOneCostOfCropProduction where
OutputOneType='S2C2'"

Set rsOutputOneCostOfCropProductionb =
db.OpenRecordset(sqlOutputOneCostOfCropProduction_b)

If rsOutputOneCostOfCropProduction.EOF =
False And rsOutputOneCostOfCropProductionb.EOF = False Then

intCSROne = 0
Do While Not

rsOutputOneCostOfCropProduction.EOF And Not
rsOutputOneCostOfCropProductionb.EOF



71

intCSROne = intCSROne + 1

C2S2ns = 0.5 * ((2.25 *
intCSROne * rsInputOneParametersBudget("InputOneYieldDrag")
* TextCornPriceOne.Value) -
rsOutputOneCostOfCropProduction("OutputOneCost") + (0.67 *
intCSROne *
rsInputOneParametersBudgetb("InputOneYieldDrag") *
TextSoybeanPriceOne.Value) -
rsOutputOneCostOfCropProductionb("OutputOneCost"))

db.Execute "INSERT INTO
OutputOneBudgetTable (OutputOneCSR, OutputOneType,
OutputOneBudget, OutputOneBudgetType) VALUES (" & intCSROne
& ",'C2S2ns'," & C2S2ns & ",'NoStover');"

rsOutputOneCostOfCropProduction.MoveNext
rsOutputOneCostOfCropProductionb.MoveNext

Loop

rsOutputOneCostOfCropProduction.Close
rsOutputOneCostOfCropProductionb.Close

Else
MsgBox "No Record for C2S2 is found"

End If

rsInputOneParametersBudget.Close

Else
MsgBox "No data are found in the Budget

Parameter table"
End If

'6/9 ************ C3S3 equation

sqlInputOneParametersBudget = "select * from
InputOneParametersBudget where InputOneTillageCrop='C3S3'"

Set rsInputOneParametersBudget =
db.OpenRecordset(sqlInputOneParametersBudget)

sqlInputOneParametersBudget_b = "select * from
InputOneParametersBudget where InputOneTillageCrop='S3C3'"



72

Set rsInputOneParametersBudgetb =
db.OpenRecordset(sqlInputOneParametersBudget_b)

If rsInputOneParametersBudget.EOF = False Then

sqlOutputOneCostOfCropProduction = "select
* from OutputOneCostOfCropProduction where
OutputOneType='C3S3'"

Set rsOutputOneCostOfCropProduction =
db.OpenRecordset(sqlOutputOneCostOfCropProduction)

sqlOutputOneCostOfCropProduction_b =
"select * from OutputOneCostOfCropProduction where
OutputOneType='S3C3'"

Set rsOutputOneCostOfCropProductionb =
db.OpenRecordset(sqlOutputOneCostOfCropProduction_b)

If rsOutputOneCostOfCropProduction.EOF =
False And rsOutputOneCostOfCropProductionb.EOF = False Then

intCSROne = 0

Do While Not
rsOutputOneCostOfCropProduction.EOF And Not
rsOutputOneCostOfCropProductionb.EOF

intCSROne = intCSROne + 1

C3S3ns = 0.5 * ((2.25 *
intCSROne * rsInputOneParametersBudget("InputOneYieldDrag")
* TextCornPriceOne.Value) -
rsOutputOneCostOfCropProduction("OutputOneCost") + (0.67 *
intCSROne *
rsInputOneParametersBudgetb("InputOneYieldDrag") *
TextSoybeanPriceOne.Value) -
rsOutputOneCostOfCropProductionb("OutputOneCost"))

db.Execute "INSERT INTO
OutputOneBudgetTable (OutputOneCSR, OutputOneType,
OutputOneBudget, OutputOneBudgetType) VALUES (" & intCSROne
& ",'C3S3ns'," & C3S3ns & ",'NoStover');"

rsOutputOneCostOfCropProduction.MoveNext
rsOutputOneCostOfCropProductionb.MoveNext



73

Loop

rsOutputOneCostOfCropProduction.Close
rsOutputOneCostOfCropProductionb.Close

Else
MsgBox "No Record for C3S3 is found"

End If

rsInputOneParametersBudget.Close

Else
MsgBox "No data are found in the Budget

Parameter table"
End If

'7/9 ************ C1C1S1 equation

sqlInputOneParametersBudget = "select * from
InputOneParametersBudget where InputOneTillageCrop='C1S1'"

Set rsInputOneParametersBudget =
db.OpenRecordset(sqlInputOneParametersBudget)

sqlInputOneParametersBudget_b = "select * from
InputOneParametersBudget where InputOneTillageCrop='S1C1'"

Set rsInputOneParametersBudgetb =
db.OpenRecordset(sqlInputOneParametersBudget_b)

sqlInputOneParametersBudget_c = "select * from
InputOneParametersBudget where InputOneTillageCrop='C1C1'"

Set rsInputOneParametersBudgetc =
db.OpenRecordset(sqlInputOneParametersBudget_c)

If rsInputOneParametersBudget.EOF = False Then

sqlOutputOneCostOfCropProduction = "select
* from OutputOneCostOfCropProduction where
OutputOneType='C1S1'"

Set rsOutputOneCostOfCropProduction =
db.OpenRecordset(sqlOutputOneCostOfCropProduction)

sqlOutputOneCostOfCropProduction_b =
"select * from OutputOneCostOfCropProduction where
OutputOneType='S1C1'"



74

Set rsOutputOneCostOfCropProductionb =
db.OpenRecordset(sqlOutputOneCostOfCropProduction_b)

sqlOutputOneCostOfCropProduction_c = "select
* from OutputOneCostOfCropProduction where
OutputOneType='C1C1'"

Set rsOutputOneCostOfCropProductionc =
db.OpenRecordset(sqlOutputOneCostOfCropProduction_c)

If rsOutputOneCostOfCropProduction.EOF =
False And rsOutputOneCostOfCropProductionb.EOF = False And
rsOutputOneCostOfCropProductionc.EOF = False Then

intCSROne = 0

Do While Not
rsOutputOneCostOfCropProduction.EOF And Not
rsOutputOneCostOfCropProductionb.EOF And Not
rsOutputOneCostOfCropProductionc.EOF

intCSROne = intCSROne + 1

C1C1S1ns = (1 / 3) * ((2.25 *
intCSROne * rsInputOneParametersBudget("InputOneYieldDrag")
* TextCornPriceOne.Value) -
rsOutputOneCostOfCropProduction("OutputOneCost") + (0.67 *
intCSROne *
rsInputOneParametersBudgetb("InputOneYieldDrag") *
TextSoybeanPriceOne.Value) -
rsOutputOneCostOfCropProductionb("OutputOneCost") + (2.25 *
intCSROne *
rsInputOneParametersBudgetc("InputOneYieldDrag") *
TextCornPriceOne.Value) -
rsOutputOneCostOfCropProductionc("OutputOneCost"))

db.Execute "INSERT INTO
OutputOneBudgetTable (OutputOneCSR, OutputOneType,
OutputOneBudget, OutputOneBudgetType) VALUES (" & intCSROne
& ",'C1C1S1ns'," & C1C1S1ns & ",'NoStover');"
rsOutputOneCostOfCropProduction.MoveNext
rsOutputOneCostOfCropProductionb.MoveNext
rsOutputOneCostOfCropProductionc.MoveNext

Loop



75

rsOutputOneCostOfCropProduction.Close
rsOutputOneCostOfCropProductionb.Close
rsOutputOneCostOfCropProductionc.Close

Else

MsgBox "No Record for C1S1 or C1C1 or
S1C1 is found"

End If

rsInputOneParametersBudget.Close
rsInputOneParametersBudgetb.Close
rsInputOneParametersBudgetc.Close

Else
MsgBox "No data are found in the Budget

Parameter table"
End If

'8/9 ************ C2C2S2 equation

sqlInputOneParametersBudget = "select * from
InputOneParametersBudget where InputOneTillageCrop='C2S2'"

Set rsInputOneParametersBudget =
db.OpenRecordset(sqlInputOneParametersBudget)

sqlInputOneParametersBudget_b = "select * from
InputOneParametersBudget where InputOneTillageCrop='S2C2'"

Set rsInputOneParametersBudgetb =
db.OpenRecordset(sqlInputOneParametersBudget_b)

sqlInputOneParametersBudget_c = "select * from
InputOneParametersBudget where InputOneTillageCrop='C2C2'"

Set rsInputOneParametersBudgetc =
db.OpenRecordset(sqlInputOneParametersBudget_c)

If rsInputOneParametersBudget.EOF = False Then

sqlOutputOneCostOfCropProduction = "select
* from OutputOneCostOfCropProduction where
OutputOneType='C2S2'"

Set rsOutputOneCostOfCropProduction =
db.OpenRecordset(sqlOutputOneCostOfCropProduction)



76

sqlOutputOneCostOfCropProduction_b =
"select * from OutputOneCostOfCropProduction where
OutputOneType='S2C2'"

Set rsOutputOneCostOfCropProductionb =
db.OpenRecordset(sqlOutputOneCostOfCropProduction_b)

sqlOutputOneCostOfCropProduction_c =
"select * from OutputOneCostOfCropProduction where
OutputOneType='C2C2'"

Set rsOutputOneCostOfCropProductionc =
db.OpenRecordset(sqlOutputOneCostOfCropProduction_c)

If rsOutputOneCostOfCropProduction.EOF =
False And rsOutputOneCostOfCropProductionb.EOF = False And
rsOutputOneCostOfCropProductionc.EOF = False Then

intCSROne = 0

Do While Not
rsOutputOneCostOfCropProduction.EOF And Not
rsOutputOneCostOfCropProductionb.EOF And Not
rsOutputOneCostOfCropProductionc.EOF

intCSROne = intCSROne + 1

C2C2S2ns = (1 / 3) * ((2.25 *
intCSROne * rsInputOneParametersBudget("InputOneYieldDrag")
* TextCornPriceOne.Value) -
rsOutputOneCostOfCropProduction("OutputOneCost") + (0.67 *
intCSROne *
rsInputOneParametersBudgetb("InputOneYieldDrag") *
TextSoybeanPriceOne.Value) -
rsOutputOneCostOfCropProductionb("OutputOneCost") + (2.25 *
intCSROne *
rsInputOneParametersBudgetc("InputOneYieldDrag") *
TextCornPriceOne.Value) -
rsOutputOneCostOfCropProductionc("OutputOneCost"))

db.Execute "INSERT INTO
OutputOneBudgetTable (OutputOneCSR, OutputOneType,
OutputOneBudget, OutputOneBudgetType) VALUES (" & intCSROne
& ",'C2C2S2ns'," & C2C2S2ns & ",'NoStover');"
rsOutputOneCostOfCropProduction.MoveNext



77

rsOutputOneCostOfCropProductionb.MoveNext
rsOutputOneCostOfCropProductionc.MoveNext

Loop

rsOutputOneCostOfCropProduction.Close
rsOutputOneCostOfCropProductionb.Close
rsOutputOneCostOfCropProductionc.Close

Else
MsgBox "No Record for C2S2 or S2C2 or

C2C2 is found"
End If

rsInputOneParametersBudget.Close
rsInputOneParametersBudgetb.Close
rsInputOneParametersBudgetc.Close

Else
MsgBox "No data are found in the Budget

Parameter table"
End If

'9/9 ************ C3C3S3 equation

sqlInputOneParametersBudget = "select * from
InputOneParametersBudget where InputOneTillageCrop='C3S3'"

Set rsInputOneParametersBudget =
db.OpenRecordset(sqlInputOneParametersBudget)

sqlInputOneParametersBudget_b = "select * from
InputOneParametersBudget where InputOneTillageCrop='S3C3'"

Set rsInputOneParametersBudgetb =
db.OpenRecordset(sqlInputOneParametersBudget_b)

sqlInputOneParametersBudget_c = "select * from
InputOneParametersBudget where InputOneTillageCrop='C3C3'"

Set rsInputOneParametersBudgetc =
db.OpenRecordset(sqlInputOneParametersBudget_c)

If rsInputOneParametersBudget.EOF = False Then
sqlOutputOneCostOfCropProduction = "select

* from OutputOneCostOfCropProduction where
OutputOneType='C3S3'"



78

Set rsOutputOneCostOfCropProduction =
db.OpenRecordset(sqlOutputOneCostOfCropProduction)

sqlOutputOneCostOfCropProduction_b =
"select * from OutputOneCostOfCropProduction where
OutputOneType='S3C3'"

Set rsOutputOneCostOfCropProductionb =
db.OpenRecordset(sqlOutputOneCostOfCropProduction_b)

sqlOutputOneCostOfCropProduction_c =
"select * from OutputOneCostOfCropProduction where
OutputOneType='C3C3'"

Set rsOutputOneCostOfCropProductionc =
db.OpenRecordset(sqlOutputOneCostOfCropProduction_c)

If rsOutputOneCostOfCropProduction.EOF =
False And rsOutputOneCostOfCropProductionb.EOF = False And
rsOutputOneCostOfCropProductionc.EOF = False Then

intCSROne = 0

Do While Not
rsOutputOneCostOfCropProduction.EOF And Not
rsOutputOneCostOfCropProductionb.EOF And Not
rsOutputOneCostOfCropProductionc.EOF

intCSROne = intCSROne + 1

C3C3S3ns = (1 / 3) * ((2.25 *
intCSROne * rsInputOneParametersBudget("InputOneYieldDrag")
* TextCornPriceOne.Value) -
rsOutputOneCostOfCropProduction("OutputOneCost") + (0.67 *
intCSROne *
rsInputOneParametersBudgetb("InputOneYieldDrag") *
TextSoybeanPriceOne.Value) -
rsOutputOneCostOfCropProductionb("OutputOneCost") + (2.25 *
intCSROne *
rsInputOneParametersBudgetc("InputOneYieldDrag") *
TextCornPriceOne.Value) -
rsOutputOneCostOfCropProductionc("OutputOneCost"))

db.Execute "INSERT INTO
OutputOneBudgetTable (OutputOneCSR, OutputOneType,
OutputOneBudget, OutputOneBudgetType) VALUES (" & intCSROne
& ",'C3C3S3ns'," & C3C3S3ns & ",'NoStover');"



79

rsOutputOneCostOfCropProduction.MoveNext
rsOutputOneCostOfCropProductionb.MoveNext
rsOutputOneCostOfCropProductionc.MoveNext

Loop

rsOutputOneCostOfCropProduction.Close
rsOutputOneCostOfCropProductionb.Close
rsOutputOneCostOfCropProductionc.Close

Else
MsgBox "No Record for C3S3 or S3C3 or

C3C3 is found"
End If

rsInputOneParametersBudget.Close
rsInputOneParametersBudgetb.Close
rsInputOneParametersBudgetc.Close

Else
MsgBox "No data are found in the Budget

Parameter table"
End If

'********* OTHER EQUATIONS ARE THE SAME – END
***********************************************************

'***************** BUDGET NO STOVER END HERE
***********************************************************

'******************BUDGET STOVER start HERE
***********************************************************

'1/9 ************ C1C1 equation

sqlInputOneParametersBudget = "select * from
InputOneParametersBudget where InputOneTillageCrop='C1C1'"

Set rsInputOneParametersBudget =
db.OpenRecordset(sqlInputOneParametersBudget)

If rsInputOneParametersBudget.EOF = False Then

sqlOutputOneCostOfCropProduction = "select
* from OutputOneCostOfCropProduction where
OutputOneType='C1C1'"



80

Set rsOutputOneCostOfCropProduction =
db.OpenRecordset(sqlOutputOneCostOfCropProduction)

sqlOutputOneCostOfStover = "select * from
OutputOneCostOfStover where OutputOneType='C1C1'"

Set rsOutputOneCostOfStover =
db.OpenRecordset(sqlOutputOneCostOfStover)

If rsOutputOneCostOfCropProduction.EOF =
False And rsOutputOneCostOfStover.EOF = False Then

intCSROne = 0

Do While Not
rsOutputOneCostOfCropProduction.EOF And Not
rsOutputOneCostOfStover.EOF

intCSROne = intCSROne + 1

C1C1sr = (2.25 * intCSROne *
rsInputOneParametersBudget("InputOneYieldDrag") *
TextCornPriceOne.Value) +
(TextStoverShareCollectedOne.Value * 0.0215 *
TextStoverPriceOne.Value) -
rsOutputOneCostOfCropProduction("OutputOneCost") -
(TextStoverShareCollectedOne.Value *
rsOutputOneCostOfStover("OutputOnecost"))

db.Execute "INSERT INTO
OutputOneBudgetTable (OutputOneCSR, OutputOneType,
OutputOneBudget, OutputOneBudgetType) VALUES (" & intCSROne
& ",'C1C1sr'," & C1C1sr & ",'WithStover');"

rsOutputOneCostOfCropProduction.MoveNext
rsOutputOneCostOfStover.MoveNext

Loop

rsOutputOneCostOfCropProduction.Close
rsOutputOneCostOfStover.Close

Else
MsgBox "No Record for C1C1 is found"

End If
rsInputOneParametersBudget.Close



81

Else
MsgBox "No data are found in the Budget

Parameter table"
End If

'2/9 ************ C2C2 equation

sqlInputOneParametersBudget = "select * from
InputOneParametersBudget where InputOneTillageCrop='C2C2'"

Set rsInputOneParametersBudget =
db.OpenRecordset(sqlInputOneParametersBudget)

If rsInputOneParametersBudget.EOF = False Then

sqlOutputOneCostOfCropProduction = "select
* from OutputOneCostOfCropProduction where
OutputOneType='C2C2'"

Set rsOutputOneCostOfCropProduction =
db.OpenRecordset(sqlOutputOneCostOfCropProduction)

sqlOutputOneCostOfStover = "select * from
OutputOneCostOfStover where OutputOneType='C2C2'"

Set rsOutputOneCostOfStover =
db.OpenRecordset(sqlOutputOneCostOfStover)

If rsOutputOneCostOfCropProduction.EOF =
False And rsOutputOneCostOfStover.EOF = False Then

intCSROne = 0

Do While Not
rsOutputOneCostOfCropProduction.EOF And Not
rsOutputOneCostOfStover.EOF

intCSROne = intCSROne + 1

C2C2sr = (2.25 * intCSROne *
rsInputOneParametersBudget("InputOneYieldDrag") *
TextCornPriceOne.Value) +
(TextStoverShareCollectedOne.Value * 0.0215 *
TextStoverPriceOne.Value) -
rsOutputOneCostOfCropProduction("OutputOneCost") -
(TextStoverShareCollectedOne.Value *
rsOutputOneCostOfStover("OutputOnecost"))



82

db.Execute "INSERT INTO
OutputOneBudgetTable (OutputOneCSR, OutputOneType,
OutputOneBudget, OutputOneBudgetType) VALUES (" & intCSROne
& ",'C2C2sr'," & C2C2sr & ",'WithStover');"

rsOutputOneCostOfCropProduction.MoveNext
rsOutputOneCostOfStover.MoveNext
Loop
rsOutputOneCostOfCropProduction.Close
rsOutputOneCostOfStover.Close

Else
MsgBox "No Record for C2C2 is found"

End If

rsInputOneParametersBudget.Close

Else
MsgBox "No data are found in the Budget

Parameter table"
End If

'3/9 ************ C3C3 equation

sqlInputOneParametersBudget = "select * from
InputOneParametersBudget where InputOneTillageCrop='C3C3'"

Set rsInputOneParametersBudget =
db.OpenRecordset(sqlInputOneParametersBudget)

If rsInputOneParametersBudget.EOF = False Then

sqlOutputOneCostOfCropProduction = "select
* from OutputOneCostOfCropProduction where
OutputOneType='C3C3'"

Set rsOutputOneCostOfCropProduction =
db.OpenRecordset(sqlOutputOneCostOfCropProduction)

sqlOutputOneCostOfStover = "select * from
OutputOneCostOfStover where OutputOneType='C3C3'"

Set rsOutputOneCostOfStover =
db.OpenRecordset(sqlOutputOneCostOfStover)

If rsOutputOneCostOfCropProduction.EOF =
False And rsOutputOneCostOfStover.EOF = False Then

intCSROne = 0



83

Do While Not
rsOutputOneCostOfCropProduction.EOF And Not
rsOutputOneCostOfStover.EOF

intCSROne = intCSROne + 1

C3C3sr = (2.25 * intCSROne *
rsInputOneParametersBudget("InputOneYieldDrag") *
TextCornPriceOne.Value) +
(TextStoverShareCollectedOne.Value * 0.0215 *
TextStoverPriceOne.Value) -
rsOutputOneCostOfCropProduction("OutputOneCost") -
(TextStoverShareCollectedOne.Value *
rsOutputOneCostOfStover("OutputOnecost"))

db.Execute "INSERT INTO
OutputOneBudgetTable (OutputOneCSR, OutputOneType,
OutputOneBudget, OutputOneBudgetType) VALUES (" & intCSROne
& ",'C3C3sr'," & C3C3sr & ",'WithStover');"

rsOutputOneCostOfCropProduction.MoveNext
rsOutputOneCostOfStover.MoveNext

Loop

rsOutputOneCostOfCropProduction.Close
rsOutputOneCostOfStover.Close

Else
MsgBox "No Record for C3C3 is found"

End If

rsInputOneParametersBudget.Close

Else
MsgBox "No data are found in the Budget

Parameter table"
End If

'4/9 ************ C1S1 equation

sqlInputOneParametersBudget = "select * from
InputOneParametersBudget where InputOneTillageCrop='C1S1'"

Set rsInputOneParametersBudget =
db.OpenRecordset(sqlInputOneParametersBudget)



84

sqlInputOneParametersBudget_b = "select * from
InputOneParametersBudget where InputOneTillageCrop='S1C1'"

Set rsInputOneParametersBudgetb =
db.OpenRecordset(sqlInputOneParametersBudget_b)

If rsInputOneParametersBudget.EOF = False And
rsInputOneParametersBudgetb.EOF = False Then

sqlOutputOneCostOfCropProduction = "select
* from OutputOneCostOfCropProduction where
OutputOneType='C1S1'"

Set rsOutputOneCostOfCropProduction =
db.OpenRecordset(sqlOutputOneCostOfCropProduction)

sqlOutputOneCostOfCropProduction_b =
"select * from OutputOneCostOfCropProduction where
OutputOneType='S1C1'"

Set rsOutputOneCostOfCropProductionb =
db.OpenRecordset(sqlOutputOneCostOfCropProduction_b)

sqlOutputOneCostOfStover = "select * from
OutputOneCostOfStover where OutputOneType='C1S1'"

Set rsOutputOneCostOfStover =
db.OpenRecordset(sqlOutputOneCostOfStover)

If rsOutputOneCostOfCropProduction.EOF =
False And rsOutputOneCostOfCropProductionb.EOF = False And
rsOutputOneCostOfStover.EOF = False Then

intCSROne = 0

Do While Not
rsOutputOneCostOfCropProduction.EOF And Not
rsOutputOneCostOfStover.EOF

intCSROne = intCSROne + 1

C1S1sr = 0.5 * ((2.25 *
intCSROne * rsInputOneParametersBudget("InputOneYieldDrag")
* TextCornPriceOne.Value) +
(TextStoverShareCollectedOne.Value * 0.0215 *
TextStoverPriceOne.Value) -
rsOutputOneCostOfCropProduction("OutputOneCost") -
(TextStoverShareCollectedOne.Value *
rsOutputOneCostOfStover("OutputOnecost")) + (0.67 *
intCSROne *



85

rsInputOneParametersBudgetb("InputOneYieldDrag") *
TextSoybeanPriceOne.Value) -
rsOutputOneCostOfCropProductionb("OutputOneCost"))

db.Execute "INSERT INTO
OutputOneBudgetTable (OutputOneCSR, OutputOneType,
OutputOneBudget, OutputOneBudgetType) VALUES (" & intCSROne
& ",'C1S1sr'," & C1S1sr & ",'WithStover');"

rsOutputOneCostOfCropProduction.MoveNext
rsOutputOneCostOfCropProductionb.MoveNext

rsOutputOneCostOfStover.MoveNext

Loop

rsOutputOneCostOfCropProduction.Close
rsOutputOneCostOfCropProductionb.Close
rsOutputOneCostOfStover.Close

Else
MsgBox "No Record for C1S1 or S1C1 is

found"
End If

rsInputOneParametersBudget.Close

Else
MsgBox "No data are found in the Budget

Parameter table"
End If

'5/9 ************ C2S2 equation

sqlInputOneParametersBudget = "select * from
InputOneParametersBudget where InputOneTillageCrop='C2S2'"

Set rsInputOneParametersBudget =
db.OpenRecordset(sqlInputOneParametersBudget)

sqlInputOneParametersBudget_b = "select * from
InputOneParametersBudget where InputOneTillageCrop='S2C2'"

Set rsInputOneParametersBudgetb =
db.OpenRecordset(sqlInputOneParametersBudget_b)

If rsInputOneParametersBudget.EOF = False And
rsInputOneParametersBudgetb.EOF = False Then



86

sqlOutputOneCostOfCropProduction = "select
* from OutputOneCostOfCropProduction where
OutputOneType='C2S2'"

Set rsOutputOneCostOfCropProduction =
db.OpenRecordset(sqlOutputOneCostOfCropProduction)

sqlOutputOneCostOfCropProduction_b =
"select * from OutputOneCostOfCropProduction where
OutputOneType='S2C2'"

Set rsOutputOneCostOfCropProductionb =
db.OpenRecordset(sqlOutputOneCostOfCropProduction_b)

sqlOutputOneCostOfStover = "select * from
OutputOneCostOfStover where OutputOneType='C2S2'"

Set rsOutputOneCostOfStover =
db.OpenRecordset(sqlOutputOneCostOfStover)

If rsOutputOneCostOfCropProduction.EOF =
False And rsOutputOneCostOfCropProductionb.EOF = False And
rsOutputOneCostOfStover.EOF = False Then

intCSROne = 0

Do While Not
rsOutputOneCostOfCropProduction.EOF And Not
rsOutputOneCostOfStover.EOF

intCSROne = intCSROne + 1

C2S2sr = 0.5 * ((2.25 *
intCSROne * rsInputOneParametersBudget("InputOneYieldDrag")
* TextCornPriceOne.Value) +
(TextStoverShareCollectedOne.Value * 0.0215 *
TextStoverPriceOne.Value) -
rsOutputOneCostOfCropProduction("OutputOneCost") -
(TextStoverShareCollectedOne.Value *
rsOutputOneCostOfStover("OutputOnecost")) + (0.67 *
intCSROne *
rsInputOneParametersBudgetb("InputOneYieldDrag") *
TextSoybeanPriceOne.Value) -
rsOutputOneCostOfCropProductionb("OutputOneCost"))

db.Execute "INSERT INTO
OutputOneBudgetTable (OutputOneCSR, OutputOneType,



87

OutputOneBudget, OutputOneBudgetType) VALUES (" & intCSROne
& ",'C2S2sr'," & C2S2sr & ",'WithStover');"

rsOutputOneCostOfCropProduction.MoveNext
rsOutputOneCostOfCropProductionb.MoveNext

rsOutputOneCostOfStover.MoveNext

Loop

rsOutputOneCostOfCropProduction.Close
rsOutputOneCostOfCropProductionb.Close
rsOutputOneCostOfStover.Close

Else
MsgBox "No Record for C2S2 or S2C2 is

found"
End If

rsInputOneParametersBudget.Close

Else
MsgBox "No data are found in the Budget

Parameter table"
End If

'6/9 ************ C3S3 equation

sqlInputOneParametersBudget = "select * from
InputOneParametersBudget where InputOneTillageCrop='C3S3'"

Set rsInputOneParametersBudget =
db.OpenRecordset(sqlInputOneParametersBudget)

sqlInputOneParametersBudget_b = "select * from
InputOneParametersBudget where InputOneTillageCrop='S3C3'"

Set rsInputOneParametersBudgetb =
db.OpenRecordset(sqlInputOneParametersBudget_b)

If rsInputOneParametersBudget.EOF = False And
rsInputOneParametersBudgetb.EOF = False Then

sqlOutputOneCostOfCropProduction = "select
* from OutputOneCostOfCropProduction where
OutputOneType='C3S3'"



88

Set rsOutputOneCostOfCropProduction =
db.OpenRecordset(sqlOutputOneCostOfCropProduction)

sqlOutputOneCostOfCropProduction_b =
"select * from OutputOneCostOfCropProduction where
OutputOneType='S3C3'"

Set rsOutputOneCostOfCropProductionb =
db.OpenRecordset(sqlOutputOneCostOfCropProduction_b)

sqlOutputOneCostOfStover = "select * from
OutputOneCostOfStover where OutputOneType='C3S3'"

Set rsOutputOneCostOfStover =
db.OpenRecordset(sqlOutputOneCostOfStover)

If rsOutputOneCostOfCropProduction.EOF =
False And rsOutputOneCostOfCropProductionb.EOF = False And
rsOutputOneCostOfStover.EOF = False Then

intCSROne = 0

Do While Not
rsOutputOneCostOfCropProduction.EOF And Not
rsOutputOneCostOfCropProductionb.EOF And Not
rsOutputOneCostOfStover.EOF

intCSROne = intCSROne + 1

C3S3sr = 0.5 * ((2.25 *
intCSROne * rsInputOneParametersBudget("InputOneYieldDrag")
* TextCornPriceOne.Value) +
(TextStoverShareCollectedOne.Value * 0.0215 *
TextStoverPriceOne.Value) -
rsOutputOneCostOfCropProduction("OutputOneCost") -
(TextStoverShareCollectedOne.Value *
rsOutputOneCostOfStover("OutputOnecost")) + (0.67 *
intCSROne *
rsInputOneParametersBudgetb("InputOneYieldDrag") *
TextSoybeanPriceOne.Value) -
rsOutputOneCostOfCropProductionb("OutputOneCost"))

db.Execute "INSERT INTO
OutputOneBudgetTable (OutputOneCSR, OutputOneType,
OutputOneBudget, OutputOneBudgetType) VALUES (" & intCSROne
& ",'C3S3sr'," & C3S3sr & ",'WithStover');"



89

rsOutputOneCostOfCropProduction.MoveNext
rsOutputOneCostOfCropProductionb.MoveNext

rsOutputOneCostOfStover.MoveNext

Loop

rsOutputOneCostOfCropProduction.Close
rsOutputOneCostOfCropProductionb.Close
rsOutputOneCostOfStover.Close

Else
MsgBox "No Record for C3S3 or S3C3 is

found"
End If

rsInputOneParametersBudget.Close

Else
MsgBox "No data are found in the Budget

Parameter table"
End If

'7/9 ************ C1C1S1 equation

sqlInputOneParametersBudget = "select * from
InputOneParametersBudget where InputOneTillageCrop='C1S1'"

Set rsInputOneParametersBudget =
db.OpenRecordset(sqlInputOneParametersBudget)

sqlInputOneParametersBudget_b = "select * from
InputOneParametersBudget where InputOneTillageCrop='S1C1'"

Set rsInputOneParametersBudgetb =
db.OpenRecordset(sqlInputOneParametersBudget_b)

sqlInputOneParametersBudget_c = "select * from
InputOneParametersBudget where InputOneTillageCrop='C1C1'"

Set rsInputOneParametersBudgetc =
db.OpenRecordset(sqlInputOneParametersBudget_c)

If rsInputOneParametersBudget.EOF = False And
rsInputOneParametersBudgetb.EOF = False And
rsInputOneParametersBudgetc.EOF = False Then

sqlOutputOneCostOfCropProduction = "select * from
OutputOneCostOfCropProduction where OutputOneType='C1S1'"



90

Set rsOutputOneCostOfCropProduction =
db.OpenRecordset(sqlOutputOneCostOfCropProduction)

sqlOutputOneCostOfCropProduction_b =
"select * from OutputOneCostOfCropProduction where
OutputOneType='S1C1'"

Set rsOutputOneCostOfCropProductionb =
db.OpenRecordset(sqlOutputOneCostOfCropProduction_b)

sqlOutputOneCostOfCropProduction_c =
"select * from OutputOneCostOfCropProduction where
OutputOneType='C1C1'"

Set rsOutputOneCostOfCropProductionc =
db.OpenRecordset(sqlOutputOneCostOfCropProduction_c)

sqlOutputOneCostOfStover = "select * from
OutputOneCostOfStover where OutputOneType='C1S1'"

Set rsOutputOneCostOfStover =
db.OpenRecordset(sqlOutputOneCostOfStover)

sqlOutputOneCostOfStover_b = "select * from
OutputOneCostOfStover where OutputOneType='C1C1'"

Set rsOutputOneCostOfStoverb =
db.OpenRecordset(sqlOutputOneCostOfStover_b)

If rsOutputOneCostOfCropProduction.EOF =
False And rsOutputOneCostOfCropProductionb.EOF = False And
rsOutputOneCostOfCropProductionc.EOF = False And
rsOutputOneCostOfStover.EOF = False And
rsOutputOneCostOfStoverb.EOF = False Then

intCSROne = 0

Do While Not
rsOutputOneCostOfCropProduction.EOF And Not
rsOutputOneCostOfCropProductionb.EOF And Not
rsOutputOneCostOfCropProductionc.EOF And Not
rsOutputOneCostOfStover.EOF And Not
rsOutputOneCostOfStoverb.EOF

intCSROne = intCSROne + 1

C1C1S1sr = (1 / 3) * ((2.25 *
intCSROne * rsInputOneParametersBudget("InputOneYieldDrag")



91

* TextCornPriceOne.Value) +
(TextStoverShareCollectedOne.Value * 0.0215 *
TextStoverPriceOne.Value) -
rsOutputOneCostOfCropProduction("OutputOneCost") -
(TextStoverShareCollectedOne.Value *
rsOutputOneCostOfStover("OutputOnecost")) + (0.67 *
intCSROne *
rsInputOneParametersBudgetb("InputOneYieldDrag") *
TextSoybeanPriceOne.Value) -
rsOutputOneCostOfCropProductionb("OutputOneCost") + (2.25 *
intCSROne *
rsInputOneParametersBudgetc("InputOneYieldDrag") *
TextCornPriceOne.Value) +
(TextStoverShareCollectedOne.Value * 0.0215 *
TextStoverPriceOne.Value) -
rsOutputOneCostOfCropProductionc("OutputOneCost") -
(TextStoverShareCollectedOne.Value *
rsOutputOneCostOfStoverb("OutputOneCost")))

db.Execute "INSERT INTO
OutputOneBudgetTable (OutputOneCSR, OutputOneType,
OutputOneBudget, OutputOneBudgetType) VALUES (" & intCSROne
& ",'C1C1S1sr'," & C1C1S1sr & ",'WithStover');"

rsOutputOneCostOfCropProduction.MoveNext
rsOutputOneCostOfCropProductionb.MoveNext
rsOutputOneCostOfCropProductionc.MoveNext

rsOutputOneCostOfStover.MoveNext
rsOutputOneCostOfStoverb.MoveNext

Loop

rsOutputOneCostOfCropProduction.Close
rsOutputOneCostOfCropProductionb.Close
rsOutputOneCostOfCropProductionc.Close
rsOutputOneCostOfStover.Close

rsOutputOneCostOfStoverb.Close

Else
MsgBox "No Record for C1S1 or C1C1 or

S1C1 is found"
End If

rsInputOneParametersBudget.Close



92

Else
MsgBox "No data are found in the Budget

Parameter table"
End If

'8/9 ************ C2C2S2 equation

sqlInputOneParametersBudget = "select * from
InputOneParametersBudget where InputOneTillageCrop='C2S2'"

Set rsInputOneParametersBudget =
db.OpenRecordset(sqlInputOneParametersBudget)

sqlInputOneParametersBudget_b = "select * from
InputOneParametersBudget where InputOneTillageCrop='S2C2'"

Set rsInputOneParametersBudgetb =
db.OpenRecordset(sqlInputOneParametersBudget_b)

sqlInputOneParametersBudget_c = "select * from
InputOneParametersBudget where InputOneTillageCrop='C2C2'"

Set rsInputOneParametersBudgetc =
db.OpenRecordset(sqlInputOneParametersBudget_c)

If rsInputOneParametersBudget.EOF = False And
rsInputOneParametersBudgetb.EOF = False And
rsInputOneParametersBudgetc.EOF = False Then

sqlOutputOneCostOfCropProduction = "select
* from OutputOneCostOfCropProduction where
OutputOneType='C2S2'"

Set rsOutputOneCostOfCropProduction =
db.OpenRecordset(sqlOutputOneCostOfCropProduction)

sqlOutputOneCostOfCropProduction_b =
"select * from OutputOneCostOfCropProduction where
OutputOneType='S2C2'"

Set rsOutputOneCostOfCropProductionb =
db.OpenRecordset(sqlOutputOneCostOfCropProduction_b)

sqlOutputOneCostOfCropProduction_c =
"select * from OutputOneCostOfCropProduction where
OutputOneType='C2C2'"

Set rsOutputOneCostOfCropProductionc =
db.OpenRecordset(sqlOutputOneCostOfCropProduction_c)



93

sqlOutputOneCostOfStover = "select * from
OutputOneCostOfStover where OutputOneType='C2S2'"

Set rsOutputOneCostOfStover =
db.OpenRecordset(sqlOutputOneCostOfStover)

sqlOutputOneCostOfStover_b = "select * from
OutputOneCostOfStover where OutputOneType='C2C2'"

Set rsOutputOneCostOfStoverb =
db.OpenRecordset(sqlOutputOneCostOfStover_b)

If rsOutputOneCostOfCropProduction.EOF =
False And rsOutputOneCostOfCropProductionb.EOF = False And
rsOutputOneCostOfCropProductionc.EOF = False And
rsOutputOneCostOfStover.EOF = False And
rsOutputOneCostOfStoverb.EOF = False Then

intCSROne = 0

Do While Not
rsOutputOneCostOfCropProduction.EOF And Not
rsOutputOneCostOfCropProductionb.EOF And Not
rsOutputOneCostOfCropProductionc.EOF And Not
rsOutputOneCostOfStover.EOF And Not
rsOutputOneCostOfStoverb.EOF

intCSROne = intCSROne + 1

C2C2S2sr = (1 / 3) * ((2.25 *
intCSROne * rsInputOneParametersBudget("InputOneYieldDrag")
* TextCornPriceOne.Value) +
(TextStoverShareCollectedOne.Value * 0.0215 *
TextStoverPriceOne.Value) -
rsOutputOneCostOfCropProduction("OutputOneCost") -
(TextStoverShareCollectedOne.Value *
rsOutputOneCostOfStover("OutputOnecost")) + (0.67 *
intCSROne *
rsInputOneParametersBudgetb("InputOneYieldDrag") *
TextSoybeanPriceOne.Value) -
rsOutputOneCostOfCropProductionb("OutputOneCost") + (2.25 *
intCSROne *
rsInputOneParametersBudgetc("InputOneYieldDrag") *
TextCornPriceOne.Value) +
(TextStoverShareCollectedOne.Value * 0.0215 *
TextStoverPriceOne.Value) -
rsOutputOneCostOfCropProductionc("OutputOneCost") -



94

(TextStoverShareCollectedOne.Value *
rsOutputOneCostOfStoverb("OutputOneCost")))

db.Execute "INSERT INTO
OutputOneBudgetTable (OutputOneCSR, OutputOneType,
OutputOneBudget, OutputOneBudgetType) VALUES (" & intCSROne
& ",'C2C2S2sr'," & C2C2S2sr & ",'WithStover');"

rsOutputOneCostOfCropProduction.MoveNext
rsOutputOneCostOfCropProductionb.MoveNext
rsOutputOneCostOfCropProductionc.MoveNext

rsOutputOneCostOfStover.MoveNext
rsOutputOneCostOfStoverb.MoveNext

Loop

rsOutputOneCostOfCropProduction.Close
rsOutputOneCostOfCropProductionb.Close
rsOutputOneCostOfCropProductionc.Close
rsOutputOneCostOfStover.Close
rsOutputOneCostOfStoverb.Close

Else
MsgBox "No Record for C2S2 or C2C2 or

S2C2 is found"
End If

rsInputOneParametersBudget.Close

Else
MsgBox "No data are found in the Budget

Parameter table"
End If

'9/9 ************ C3C3S3 equation

sqlInputOneParametersBudget = "select * from
InputOneParametersBudget where InputOneTillageCrop='C3S3'"

Set rsInputOneParametersBudget =
db.OpenRecordset(sqlInputOneParametersBudget)

sqlInputOneParametersBudget_b = "select * from
InputOneParametersBudget where InputOneTillageCrop='S3C3'"



95

Set rsInputOneParametersBudgetb =
db.OpenRecordset(sqlInputOneParametersBudget_b)

sqlInputOneParametersBudget_c = "select * from
InputOneParametersBudget where InputOneTillageCrop='C3C3'"

Set rsInputOneParametersBudgetc =
db.OpenRecordset(sqlInputOneParametersBudget_c)

If rsInputOneParametersBudget.EOF = False And
rsInputOneParametersBudgetb.EOF = False And
rsInputOneParametersBudgetc.EOF = False Then

sqlOutputOneCostOfCropProduction = "select
* from OutputOneCostOfCropProduction where
OutputOneType='C3S3'"

Set rsOutputOneCostOfCropProduction =
db.OpenRecordset(sqlOutputOneCostOfCropProduction)

sqlOutputOneCostOfCropProduction_b =
"select * from OutputOneCostOfCropProduction where
OutputOneType='S3C3'"

Set rsOutputOneCostOfCropProductionb =
db.OpenRecordset(sqlOutputOneCostOfCropProduction_b)

sqlOutputOneCostOfCropProduction_c =
"select * from OutputOneCostOfCropProduction where
OutputOneType='C3C3'"

Set rsOutputOneCostOfCropProductionc =
db.OpenRecordset(sqlOutputOneCostOfCropProduction_c)

sqlOutputOneCostOfStover = "select * from
OutputOneCostOfStover where OutputOneType='C3S3'"

Set rsOutputOneCostOfStover =
db.OpenRecordset(sqlOutputOneCostOfStover)

sqlOutputOneCostOfStover_b = "select * from
OutputOneCostOfStover where OutputOneType='C3C3'"

Set rsOutputOneCostOfStoverb =
db.OpenRecordset(sqlOutputOneCostOfStover_b)

If rsOutputOneCostOfCropProduction.EOF =
False And rsOutputOneCostOfCropProductionb.EOF = False And
rsOutputOneCostOfCropProductionc.EOF = False And
rsOutputOneCostOfStover.EOF = False And
rsOutputOneCostOfStoverb.EOF = False Then



96

intCSROne = 0

Do While Not
rsOutputOneCostOfCropProduction.EOF And Not
rsOutputOneCostOfCropProductionb.EOF And Not
rsOutputOneCostOfCropProductionc.EOF And Not
rsOutputOneCostOfStover.EOF And Not
rsOutputOneCostOfStoverb.EOF

intCSROne = intCSROne + 1

C3C3S3sr = (1 / 3) * ((2.25 *
intCSROne * rsInputOneParametersBudget("InputOneYieldDrag")
* TextCornPriceOne.Value) +
(TextStoverShareCollectedOne.Value * 0.0215 *
TextStoverPriceOne.Value) -
rsOutputOneCostOfCropProduction("OutputOneCost") -
(TextStoverShareCollectedOne.Value *
rsOutputOneCostOfStover("OutputOnecost")) + (0.67 *
intCSROne *
rsInputOneParametersBudgetb("InputOneYieldDrag") *
TextSoybeanPriceOne.Value) -
rsOutputOneCostOfCropProductionb("OutputOneCost") + (2.25 *
intCSROne *
rsInputOneParametersBudgetc("InputOneYieldDrag") *
TextCornPriceOne.Value) +
(TextStoverShareCollectedOne.Value * 0.0215 *
TextStoverPriceOne.Value) -
rsOutputOneCostOfCropProductionc("OutputOneCost") -
(TextStoverShareCollectedOne.Value *
rsOutputOneCostOfStoverb("OutputOneCost")))

db.Execute "INSERT INTO
OutputOneBudgetTable (OutputOneCSR, OutputOneType,
OutputOneBudget, OutputOneBudgetType) VALUES (" & intCSROne
& ",'C3C3S3sr'," & C3C3S3sr & ",'WithStover');"

rsOutputOneCostOfCropProduction.MoveNext
rsOutputOneCostOfCropProductionb.MoveNext
rsOutputOneCostOfCropProductionc.MoveNext

rsOutputOneCostOfStover.MoveNext
rsOutputOneCostOfStoverb.MoveNext

Loop



97

rsOutputOneCostOfCropProduction.Close
rsOutputOneCostOfCropProductionb.Close
rsOutputOneCostOfCropProductionc.Close
rsOutputOneCostOfStover.Close
rsOutputOneCostOfStoverb.Close

Else
MsgBox "No Record for C3S3 or C3C3 or

S3C3 is found"
End If

rsInputOneParametersBudget.Close

Else
MsgBox "No data are found in the Budget

Parameter table"
End If

'********************** BUDGET STOVER End HERE
***********************************************************

'********************** OutputOneCsrYieldDrag
start HERE ************************************************

'delete old data from the OutputOneYcYs table
db.Execute "DELETE * FROM OutputOneYcYs"

'Creating a record set for OutputOneCsrYieldDrag table

sqlStrOutputOneCsrYieldDrag = "select * from
OutputOneCsrYieldDrag"

Set rsOutputOneCsrYieldDrag =
db.OpenRecordset(sqlStrOutputOneCsrYieldDrag)

'Getting data and do the calculation and write
the output

Do While Not rsOutputOneCsrYieldDrag.EOF

'Calculating the prices

OutputOneYc = 2.25 *
rsOutputOneCsrYieldDrag("InputOneYieldDrag") *
rsOutputOneCsrYieldDrag("OutputOneCSR")



98

OutputOneYs = 0.67 *
rsOutputOneCsrYieldDrag("InputOneYieldDrag") *
rsOutputOneCsrYieldDrag("OutputOneCSR")

csrOutputOneYcYs =
rsOutputOneCsrYieldDrag("OutputOneCSR")

db.Execute "INSERT INTO OutputOneYcYs
(OutputOneYc, OutputOneYs, OutputOneCSR) VALUES (" &
OutputOneYc & "," & OutputOneYs & "," & csrOutputOneYcYs &
");"

rsOutputOneCsrYieldDrag.MoveNext

Loop

rsOutputOneCsrYieldDrag.Close

'After using the record set, free the memory it
was using by assigning Noting to it.

Set rsOutputOneCsrYieldDrag = Nothing

'********************** OutputOneCsrYieldDrag
End HERE **************************************************

'********************** OutputOneEYcEYs start
HERE ******************************************************

'delete old data from the OutputOneEYcEYs table
db.Execute "DELETE * FROM OutputOneEYcEYs"

'Creating a record set for OutputOneYcYs table
sqlStrOutputOneYcYs = "select * from

OutputOneYcYs"
Set rsOutputOneYcYs =

db.OpenRecordset(sqlStrOutputOneYcYs)

sqlStrOutputOneMaxOptimumResult = "select *
from OutputOneMaxOptimumResult"

Set rsOutputOneMaxOptimumResult =
db.OpenRecordset(sqlStrOutputOneMaxOptimumResult)

'Getting data and do the calculation and write
the output

Do While Not rsOutputOneMaxOptimumResult.EOF



99

If
rsOutputOneMaxOptimumResult("OutputOneOPTIMUM") = "C1C1ns"
Or rsOutputOneMaxOptimumResult("OutputOneOPTIMUM") =
"C1C1sr" Then

C1C1 = 1
C2C2 = 0
C3C3 = 0
C1S1 = 0
C2S2 = 0
C3S3 = 0
C1C1S1 = 0
C2C2S2 = 0
C3C3S3 = 0

End If

If
rsOutputOneMaxOptimumResult("OutputOneOPTIMUM") = "C2C2ns"
Or rsOutputOneMaxOptimumResult("OutputOneOPTIMUM") =
"C2C2sr" Then

C1C1 = 0
C2C2 = 1
C3C3 = 0
C1S1 = 0
C2S2 = 0
C3S3 = 0
C1C1S1 = 0
C2C2S2 = 0
C3C3S3 = 0

End If

If
rsOutputOneMaxOptimumResult("OutputOneOPTIMUM") = "C3C3ns"
Or rsOutputOneMaxOptimumResult("OutputOneOPTIMUM") =
"C3C3sr" Then

C1C1 = 0
C2C2 = 0
C3C3 = 1
C1S1 = 0
C2S2 = 0
C3S3 = 0
C1C1S1 = 0
C2C2S2 = 0
C3C3S3 = 0

End If



100

If
rsOutputOneMaxOptimumResult("OutputOneOPTIMUM") = "C1S1ns"
Or rsOutputOneMaxOptimumResult("OutputOneOPTIMUM") =
"C1S1sr" Then

C1C1 = 0
C2C2 = 0
C3C3 = 0
C1S1 = 1
C2S2 = 0
C3S3 = 0
C1C1S1 = 0
C2C2S2 = 0
C3C3S3 = 0

End If

If
rsOutputOneMaxOptimumResult("OutputOneOPTIMUM") = "C2S2ns"
Or rsOutputOneMaxOptimumResult("OutputOneOPTIMUM") =
"C2S2sr" Then

C1C1 = 0
C2C2 = 0
C3C3 = 0
C1S1 = 0
C2S2 = 1
C3S3 = 0
C1C1S1 = 0
C2C2S2 = 0
C3C3S3 = 0

End If

If
rsOutputOneMaxOptimumResult("OutputOneOPTIMUM") = "C3S3ns"
Or rsOutputOneMaxOptimumResult("OutputOneOPTIMUM") =
"C3S3sr" Then

C1C1 = 0
C2C2 = 0
C3C3 = 0
C1S1 = 0
C2S2 = 0
C3S3 = 1
C1C1S1 = 0
C2C2S2 = 0
C3C3S3 = 0

End If



101

If
rsOutputOneMaxOptimumResult("OutputOneOPTIMUM") =
"C1C1S1ns" Or
rsOutputOneMaxOptimumResult("OutputOneOPTIMUM") =
"C1C1S1sr" Then

C1C1 = 0
C2C2 = 0
C3C3 = 0
C1S1 = 0
C2S2 = 0
C3S3 = 0
C1C1S1 = 1
C2C2S2 = 0
C3C3S3 = 0

End If

If
rsOutputOneMaxOptimumResult("OutputOneOPTIMUM") =
"C2C2S2ns" Or
rsOutputOneMaxOptimumResult("OutputOneOPTIMUM") =
"C2C2S2sr" Then

C1C1 = 0
C2C2 = 0
C3C3 = 0
C1S1 = 0
C2S2 = 0
C3S3 = 0
C1C1S1 = 0
C2C2S2 = 1
C3C3S3 = 0

End If

If
rsOutputOneMaxOptimumResult("OutputOneOPTIMUM") =
"C3C3S3ns" Or
rsOutputOneMaxOptimumResult("OutputOneOPTIMUM") =
"C3C3S3ns" Then

C1C1 = 0
C2C2 = 0
C3C3 = 0
C1S1 = 0
C2S2 = 0
C3S3 = 0
C1C1S1 = 0
C2C2S2 = 0



102

C3C3S3 = 1
End If

Do While Not rsOutputOneYcYs.EOF

OutputOneEYc =
rsOutputOneYcYs("OutputOneYC") * 0.5 ^ (C1S1 + C2S2 + C3S3)
* (1 / 3) ^ (C1C1S1 + C2C2S2 + C3C3S3)

OutputOneEYs =
rsOutputOneYcYs("OutputOneYS") * (1 - C1C1 - C2C2 - C3C3) *
0.5 ^ (C1S1 + C2S2 + C3S3) * (1 / 3) ^ (C1C1S1 + C2C2S2 +
C3C3S3)

OutputOnecsrEYcEYs =
rsOutputOneYcYs("OutputOneCSR")

db.Execute "INSERT INTO OutputOneEYcEYs
(OutputOneEYc, OutputOneEYs, OutputOneCSR) VALUES (" &
OutputOneEYc & "," & OutputOneEYs & "," &
OutputOnecsrEYcEYs & ");"

rsOutputOneYcYs.MoveNext
Loop
rsOutputOneMaxOptimumResult.MoveNext

Loop

rsOutputOneYcYs.Close
rsOutputOneMaxOptimumResult.Close

'After using the record set, free the memory it
was using by assigning Noting to it.

Set rsOutputOneYcYs = Nothing
Set rsOutputOneMaxOptimumResult = Nothing

'********************** OutputOneEYcEYs End
HERE *****************************************************

MsgBox "The operation has been done
successfully"

Else
MsgBox "No data are found in Parameter table"

End If
Else



103

MsgBox "No data are found in InputOneFertilizer
table"

End If

rsInputOneFertilizer.Close
rsInputOneParametersCost.Close

'After using the record set, free the memory it was
using by assigning Noting to it.

Set rsInputOneFertilizer = Nothing
Set rsInputOneParametersCost = Nothing
Set rsInputOneParametersBudget = Nothing
Set rsInputOneParametersBudgetb = Nothing
Set rsInputOneParametersBudgetc = Nothing
Set rsOutputOneCostOfCropProduction = Nothing
Set rsOutputOneCostOfCropProductionb = Nothing
Set rsOutputOneCostOfCropProductionc = Nothing
Set db = Nothing

End Sub

VBA code behind the click event of the reset Button.

Private Sub CmdResetThree_Click()
TextDieselPriceThree = ""
TextCornPriceThree = ""
TextSoybeanPriceThree = ""
TextStoverPriceThree = ""
TextStoverShareCollectedThree = ""

End Sub

VBA code behind the click event of the close Button.

Private Sub CmdCloseOne_Click()
DoCmd.Close acForm, "UserInterface", acSavePrompt
Beep

End Sub

VBA code behind the click event of the diesel price text box.

Private Sub TextDieselPriceOne_Exit(Cancel As Integer)
If IsNull(TextDieselPriceOne) Then

MsgBox "You must enter the diesel price."
TextDieselPriceOne.SetFocus
Cancel = True



104

End If
End Sub

VBA code behind the click event of the soybean price text box.

Private Sub TextSoybeanPriceOne_Exit(Cancel As Integer)
If IsNull(TextSoybeanPriceOne) Then

MsgBox "You must enter the soybean price."
TextSoybeanPriceOne.SetFocus
Cancel = True

End If
End Sub

VBA code behind the click event of the stover price text box.

Private Sub TextStoverPriceOne_Exit(Cancel As Integer)
If IsNull(TextStoverPriceOne) Then

MsgBox "You must enter the stover price."
TextStoverPriceOne.SetFocus
Cancel = True

End If
End Sub

VBA code behind the click event of the stover share collected price text box.

Private Sub TextStoverShareCollectedOne_Exit(Cancel As
Integer)

If IsNull(TextStoverShareCollectedOne) Then
MsgBox "You must enter the stover share
collected price."

TextStoverShareCollectedOne.SetFocus
Cancel = True

End If
End Sub

VBA code behind the click event of the corn price text box.

Private Sub TextCornPriceOne_Exit(Cancel As Integer)
If IsNull(TextCornPriceOne) Then

MsgBox "You must enter the corn price."
TextCornPriceOne.SetFocus
Cancel = True

End If
End Sub



105


	Building And Implementing An Accessbased Computational System That Produces And Plots Conditional Production Possibilities Frontier For Corn And Soybean Production Using Vba Programming Language
	Recommended Citation

	Access based computational system

