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Abstract 

A biologically inspired method, involving the design of an energy manager, for coordinating the 

operation of a hybrid renewable residential micro-grid is presented.  Flexible optimization 

procedures that minimize the cost of renewable distribution generators based upon the climate 

and location of the load profile have been developed and modeled in simulation.  A novel design 

of a dual channel converter system and its control system forms the distributed energy storage 

(DES) system that features the capability of balancing the power flow in the micro-grid (even in 

the grid-off mode).  The proposed energy management system utilizes a back propagation neural 

network in order to predict the state of charge (SOC) of the DES, yielding the reference value of 

control variables, which allows the micro-grid to respond to the desired operation conditions 

rapidly fast with acceptable controller error.  Preliminary results indicate that the DES system 

allows for the implementation of energy management strategies in a technically viable manner. 
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CHAPTER 1 

Introduction 

1.1 Problem Statement and Dissertation Objectives   

Environmental, economic, technical and government incentives make it essential to 

promote deregulation of the current power system structure.  Traditional centralized power 

systems are merging to a new revolutionary network concept, smart grid, which represents the 

people’s best wishes of the next generation of the robust electricity grid.  The emergence of 

distributed generation systems (DGs), including wind turbines, photovoltaics, fuel cells, internal 

combustion engines, and others, has opened new opportunities for electricity end users to 

generate power on site [1].  This fact introduces the microgrid concept, a fuzzy but constructive 

distribution network topic, which leads the direction for rethinking how to accomplish the 

desired distribution network restructuring and improvement.  Furthermore, the microgrid brings 

various desired benefits, which include: increasing the reliability of power supplement; a high 

share of renewables which improves the environmental profile; high power quality decided by 

the local control system; low cost or no cost of the fossil fuel and its transportation [1-4].  

In 2000, Baker and De Mello defined the microgrid as “the portion of an electric power 

distribution system located at the downstream of the distribution substation includes a variety of 

DGs and different types of end users of electricity” [5].  In this research, the microgrid only uses 

renewable energy technologies, including wind and solar power conversion systems, as the 

power generation methods to meet the general purpose of the Green Renewable Energy and 

Technology Transfer (GREATT).  

In a given location where a renewable microgrid project is being considered, renewable 

energy resource assessment, residential load profile modeling, optimal sizing and control of the 
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DGs, DESs and energy management strategy developing are significantly different from those 

applied to the conventional power systems.  The main reasons are: (1) “non-dispatchable” 

generation of the DGs, (2) fast dynamical controller design of the electronic interfaces, (3) 

different energy management concentration. 

The implications of the above challenges on planning, control, and energy management 

strategy development and implementation of a renewable microgrid have never been 

comprehensively investigated.  

The objectives of this dissertation are: 

1. To develop a schematic to assess the natural resources and optimize the size of the 

renewable distributed generators at any given location based on historical climate 

measurements and load profile. 

2. To develop a dynamic model of electronically-interfaced distributed generators and 

energy storages. 

3. To develop the algorithm and controllers that ensure the microgrid is stable and meets the 

operational requirements by adjusting the related system parameters based on Objective 1 

and 2. 

4. To develop an energy management strategy that ensures microgrid stability in 

autonomous operation without shading the residential loads based on Objective 3. 

5. To develop an artificial neural network based energy manager for learning and 

implementing the energy management strategy developed in Objective 4. 

1.2 Dissertation Layout 

The rest of this dissertation is organized as follows: 



5 

 

Chapter 2 introduces the probability modeling of the climate measurements, including the 

wind speed, the global solar radiation, and the air temperature.  The residential load modeling 

applies the Fourier decomposition and regression method.  The procedure of optimal sizing of 

the renewable DGs by the non-uniform simulated annealing is presented in the last section of this 

chapter. 

Chapter 3 covers the dynamically modeling and controller design of the electronically 

interfaced DGs, including the solar and wind energy conversion systems, distributed energy 

storage system, and their associated power electronic interface systems. 

Chapter 4 discusses the microgrid operation modes, and the challenge of microgrid power 

flow analysis in autonomous operation mode.  The procedure of microgrid planning combined 

with system stable operation algorithm in autonomous mode is proposed in the last section of 

this chapter. 

Chapter 5 introduces the back propagation neural network (BPN) and proposes the BPN 

based energy manager design.  The co-operation procedure between the BPN based energy 

manager and the microgrid is concluded in the last section of this chapter. 

Chapter 6 conducts an experimental case study of the biologically inspired energy 

manager design.  The desired microgrid aims to support 1000 households in the study area 

located in Phoenix, Arizona.  The experimental results demonstrate that the proposed methods 

can realize the desired functions fast and precisely.  Compared with other methodologies, the 

predicted state of charge of the distributed energy storage by using the back-propagation neural 

network based energy manager is more accurate.   

Chapter 7 provides the comprehensive summary and conclusions of the work undertaken 

in this dissertation and also suggests potential research topics for future studies. 
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CHAPTER 2 

Optimal Sizing of Renewable Distributed Generators in a Residential Microgrid 

2.1 Introduction 

Compared with other distributed renewable energy generation technologies, photovoltaic 

(PV) systems and wind turbine (WT) generation systems are less limited by the geographical 

features and conditions for continuous power production.  Considering the PV and WT are 

excited by different climate conditions, a hybrid PV and WT distributed generation system is a 

desired clean energy option for the microgrid autonomous operation.  However, the main 

challenge to promote such a significant system is the cost of system installation, maintenance 

and operation.  As a result, the optimally distributed generator sizing for reliable power 

supplement is extremely necessary for cost reduction.  

2.2 Probability Modeling of Wind Speed 

Different methods were applied to wind speed modeling.  Soman presented a review of 

Wind Power and wind speed modeling methods with different time horizons [6].  All of the 

reviewed technologies, including numeric weather predictors (NWP), artificial neural networks 

(ANN), time-series models, and so on, focused on relative short-term forecasting in the time 

domain, compared with long-term micro grid planning.  The main reason is that the wind speed 

is uncertain and stochastic in nature. Since the wind speed is a random variable, the long-term 

historical data is required for the probability model for the wind energy potential evaluation at 

any given location.  Various probability models have been used to describe wind speed 

distribution.  The histogram of the frequency versus wind speed shows that the two-parameter 

Weibull distribution function is the best model for representing common wind behavior, and it is 
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the most widely used model as well [7-9].  In this research, the Weibull distribution is applied to 

model the wind speed profile at a given location. 

The two-parameter cumulative Weibull distribution function  F u  is defined as [8-10]: 

    1 exp /
k

F u u c   
 

 (2.1) 

where k  is the Weibull shape parameter; c  is the Weibull scale parameter, 1ms ; u  is the 

sampled observations of wind speed, 1ms .   

The two-parameter probability density function  f u  is defined as [8-10]: 

   1

( ) exp

k k
F u k u u

f u
u c c c

       
              

 (2.2) 

Before the two-parameter Weibull distribution function model is applied to model the 

wind speed profile, the measured wind speeds that were not calm were stored into 25 classes as 

shown in Table 1, which are defined by National Climatic Data Center (NCDC) for the Wind 

Energy Resource Information System [10].  The upper wind speed limit is inclusive.  The central 

wind speed of the 25
th

 class is chosen as 43 1ms , as if the upper limit is 45.5 1ms .  In reality, 

the upper limit of the last class is infinity. 

The normalization equation for eliminating the calm frequency in each wind speed class 

is given as:  

  
  0

,

0

1 25
1

i

i n

F u F
F u i

F


 


 (2.3) 

where  iF u  is the cumulative distribution probability for the thi  wind speed class;  ,i nF u  is the 

normalized cumulative distribution probability for the thi  wind speed class without the calm 
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periods, and 
0F  is the probability of the calm periods.  By emerging Equations 2.1 and 2.3, we 

can obtain the normalized non-calm cumulative probability for the 
thi  wind speed class.  

    , 1 exp /
k

i nF u u c   
 

 (2.4) 

Table 1 

25 Classes Used for Sorting the Non-Calm Wind Speeds. 

Class 
Wind Speed (m/s) 

Lower Upper Central 

1 0.5 1.5 1 

2 1.5 2.5 2 

3 2.5 3.5 3 

. . . . 

. . . . 

19 18.5 19.5 19 

20 19.5 20.5 20 

21 20.5 25.5 23 

22 25.5 30.5 28 

23 30.5 35.5 33 

24 35.5 40.5 38 

25 40.5 inf. 43 

 

Many methods can estimate the two parameters of the Weibull distribution, including 

Weibull probability plotting, hazard plotting technique, maximum likelihood estimator (MLE), 

and so on [11].  In this research, the least squares (LS) method is applied.  

By taking the logarithm twice at both side of Equation 2.4, it transfers to: 

        ,ln 1 ln lni nF u k c k u      (2.5) 

If we let    ,ln 1 i ny F u   ,  lna k c   , b k , and  lnx u , Equation 2.5 can 

be rewritten as: 
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 y a bx   (2.6) 

or in matrix form: 

 Y W X   (2.7) 

where  ln ,1iX u    ;    ,ln 1 i n iY F u   ; 1 25i  .  By using the least squares method, 

the weight matrix W  would be obtained by: 

  
1

T T
b

W X X X Y
a

 
  
 

 (2.8) 

By using the method described above, the Weibull shape parameter k and scale parameter 

c can be estimated.  Figure 1 shows the comparison between the probability density functions of 

the measured samples and the modeled results in May. The blue curve is the measured hourly 

wind speed probabilities, and the red curve is the simulated probabilities by using the Weibull 

distribution probability model.  Figure 2 displays the comparison between the cumulative 

distribution functions of the measured samples and the modeled results in May.  The blue curve 

is the measured hourly wind speed cumulative probabilities, and the red curve is the simulated 

cumulative probabilities by using the Weibull distribution probability model.  Once the two 

parameters are estimated, the simulated Weibull distribution based wind speed model is 

constructed.  The average wind speed jv  of the thj  month is defined as: 

  
25

1

1 12j i i

i

v u p u j


    (2.9) 

where i  is the index of the wind speed classes, iu  is the central speed of the thi  wind speed class 

in the thj  month , and  ip u  is the probability of the thi  wind speed class.  Usually, the wind 
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speeds are measured at anemometer height due to the wind shear, and it is significantly lower 

than the wind speeds at hub height.   
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Figure 1. Comparison between the measured hourly wind speeds probability density function 

and the simulated Weibull distribution probability density function. 

The power law equation is applied to calculate the average wind speed at hub height [8]. 

 

0 0

V H

V H


 

  
 

 (2.10) 

where V  is the average wind speed at hub height H , 0V  is the wind speed at anemometer height 

0H , and   is the wind shear exponent. In the low altitude, the wind shear exponent is 

approximately equal to 1. 
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Figure 2. Comparison between the measured hourly wind speed cumulative probability function 

and the simulated Weibull distribution cumulative probability function. 

2.3 Probability Modeling of Global Solar Radiation and Cell Temperature 

The solar energy conversion at a specific site is decided by the global solar radiation 

received by the PV cells and the PV cell temperature [12].   

Many previous studies have been made to model the behavior of global solar radiation 

directly or indirectly, and the most commonly used methods are based on the probability models.  

Assuncao proposed an hourly index frequency model of the solar radiation by using the Beta 

probability function [13].  Yaramoglu improved Assuncao’s model that the solar radiation index 

was replaced by the cloud cover index [14].    
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In recent years, researchers focus on modeling the clearness indices or cloud cover 

indices by using different distribution functions, such as Weibull, Normal, Log-normal, Log-

sigmoid, and so on.  However, none of them are proved that it is generalized for any given 

location, and the physically based model is insufficient because of lack of measurements of all 

variables it needs. According to these difficulties, the average global solar radiation calculation 

in this section is only based on expected value  E x  of measured samples without considering 

any pre-defined distribution functions.  

Similarly, the global solar radiation is distributed to 25 pre-defined classes.  Each class 

has equal step size based on the maximum and minimum observations during the research period.  

If X  is a discrete random variable with probability mass function  p x , the expected 

value becomes: 

    
1

n

i i

i

E X x p x


  (2.11) 

Assume G  contains n  measured global solar radiation samples over a range of time, the 

mean global solar radiation over this range of time is: 

    
1

n

i i

i

E G g p g


  (2.12) 

where  E G  is the discrete expected value of a vector contains n  classes.  In practical, random 

variables are classified into a number of classes, and replaced by the mean value ig  of samples 

in the thi  class.  p g  is the probability density function of the vector G .  

The cell temperature cT  is obtained by using the Normal Operating Cell Temperature 

(NOCT), listed on the PV module manufacturer datasheet [15]:   
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800

c a

G
T T NOCT C

 
     

 
 (2.13) 

Equation 2.12 can be revised and applied to calculate the average air temperature as: 

    , ,

1

n

a a i a i

i

E T t p t


  (2.14) 

and the average cell temperature is calculated as: 

  
( )

( ) ( ) 20
800

c a

E G
E T E T NOCT C

 
     

 
 (2.15) 

Once the average global solar radiation and air temperature are obtained, the average cell 

temperature is obtained.  

2.4 Average Solar and Wind Power Calculation 

The average monthly wind power converted 
,avg iWTP  for a particular wind energy 

conversion system can be calculated as: 

  
,

3

, ,

1
,

2avg iWT p opt w avg iP C Av  
 

  
 

 (2.16) 

where pC  is the wind power extraction fraction; opt  is the optimal tip speed ratio;   is the 

blade pitch angle;   is air density; A  is the blade swept area; , ,w avg iv  is the average wind speed 

in the thi  month obtained from the wind speed probability model. The detailed information of 

Equation 2.16 will be discussed in the next chapter.  

The average hourly solar power converted 
,avg isolarP  for a particular solar energy 

conversion system in the thi  month can be calculated as:  

 
, , ,avg isolar avg i opt iP I V   (2.17) 
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where ,avg iI  is the average hourly terminal current outputs under the maximum power point 

tracking in the thi  month; ,opt iV  is the optimal terminal voltage, which yields to the maximum 

power output in the thi  month.   The detailed information of Equation 2.17 will be discussed in 

the next chapter.  

2.5 Residential Load Modeling 

This section concentrates on the modeling of residential power loads using the Fourier 

series decomposition of historical loads.  A general residential power load model can be divided 

in to three components shown in Figure 3.  Compared with the wind speed model and global 

solar radiation model, the residential power load can be modeled based on its periodical features. 

As shown in Figure 4, the hourly average residential load curve over 2 years has an obvious 

character of seasonal effects, which are summer cooling and winter heating. This fact can be 

written as: 

 
Base Growth SeasonalLoad Load Load Load     (2.18) 

By using the Fourier series decomposition, Equation 2.18 can be rewritten as: 

      

     

0 1 2 0 3 0 4 0

5 0 2 0 2 1 0

cos sin cos 2

sin 2 cos sin

i i i i i

i n i n i

RL b b m b m b m b m

b m b n m b n m

  

  

    

   
  (2.19) 

where 0b  is the base load, 1b  is the linear growth rate, 2b  to 2 1nb   are the coefficients of  Fourier 

fundamental and the harmonics, im  represents the thi  month, 
0

2

12 6

 
     is the fundamental 

frequency, which means there are two peaks in a year if using the monthly data, and 
0

6
n n


     

represents the frequency of the thn  order harmonic.  
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Figure 3. Average hourly residential load curve. 

Equation 2.19 can be rewritten in the matrix form as Equations 2.20 and 2.21, and solved 

by the least square method as shown in Equation 2.22.  

 

           

           

           

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 1 sin cos sin 2 cos 2 sin cos

1 2 sin 2 cos 2 sin 2 2 cos 2 2 sin 2 cos 2

1 sin cos sin 2 cos 2 sin cos

n n

n n
X

N N N N N n N n N

     

     

     

 
 
 
 
 
  

 (2.20) 

 

1

2

N

RL

RL
Y

RL

 
 
 
 
 
 

   (2.21) 

then 
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  (2.22) 
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Figure 4. Residential loads decomposition. 

The simulated average hourly load curve can be obtained by: 

 
Ŷ W X    (2.23) 

Figure 5 depicts the comparison between the measured average hourly load curve and the 

simulated average hourly load curve.  By expanding the index of the month, this model is also 

able to predict the average hourly residential load in future months. 
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Figure 5. Average hourly residential load modeling.  

2.6 Objective Function Setup 

The objective of optimal sizing the distributed generators is to minimize the cost of 

installation, operation & management, subject to the different nature and demand profiles, within 

a certain time period. 

Many previous studies are completed to generalize the objective function for optimal 

sizing the DGs.  Some of these researches over simplified the residential power demands by 

treating the dynamic load as a constant one.  Some others used the controllable distributed 

generators like micro gas-burn turbines to compensate the disadvantages of the renewable 

generators, which makes the problem more flexible but less challenged.  Agalgaonkar, et al 
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presented an optimal sizing method to find the minimum cost of energy and optimal mix of 

dispatchable distributed energy resources with multiple sources and sinks over a year [16].  

Wang, et al proposed a life time optimal renewable micro grid design, but its demonstration is 

based on short-term climate and load data set, which may accumulate the prediction errors if 

using in long-term simulation [17]. 

To secure the long-term micro-grid demand and low renewable DG costs, the 

optimization strategy should consider:  

1. A long term planning project should be separated to several subjective short term projects 

for adjusting to the rapid changing of the cost of renewable DGs and the growth of load. 

2. The energy production calculation should only be based on the actual power generation 

derived from the climate information rather than the rate information listed on the device 

name plates. 

3. The power generated from the renewable generators should always meet the load 

demands, especially in the poor nature resource seasons, which ensure the power 

supplement. 

A fully functional microgrid can operate in both grid-connected and grid-off modes. 

However, it is prior to consider the optimal sizing problem under autonomous (grid-off) 

operation mode due to the energy supplement reliability, even grid-connected operation mode 

requiring less investment.  Also, the different financial options can generate different objective 

function.  In this research, a general objective function of the cost minimization is considered as 

following: 

    &: Installtion O M Salvage

ann totoal ann annObjective Min C Min C C C     (2.24) 

subject to: 
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min maxi i iDG DG DGP P P    (2.25) 

 
, ,

1

1 12
i

n

DG j load j

i

P P j


    (2.26) 

where annC  is the annual total cost of a DG combination; installation

annC , &O M

annC , and salvage

annC  are the 

capital installation, O&M (operation and management) cost, and salvage value after a year, 

respectively; ,iDG jP  is the power production of  the thi  distributed generator in the thj  month, and 

,load jP  is the load demanded in the thj month. 

If the average solar power and wind power output are known for particular solar panel 

and wind turbines, and the average residential load is known as well.  The constraints of the 

objective function can be replaced by: 

 Installtion installtion rated installtion rated

total WT WT solar solarC a C P b C P        (2.27) 

 & & &O M o m rated o m rated

ann WT WT solar solarC a C P b C P        (2.28) 

    1 1Salvage installtion rated installtion rated

ann WT WT WT solar solar solarC a C P D b C P D          (2.29) 

 
, , , 1 12

avg i avg iWT solar load ia P b P P i       (2.30) 

 

,

,
[0,max 1] 1 12

avg i

load i

WT

P
a i

P

 
   
 
 

  (2.31) 

 

,

,
[0,max 1] 1 12

avg i

load i

solar

P
b i

P

 
   
 
 

  (2.32) 

where a  and b   are numbers of the wind and solar power conversion systems planned; installation

WTC   

and installation

solarC  are the installation costs for the wind and solar power conversion systems in 

$ / kW ; rated

WTP  and rated

solarP  are the rated powers of the wind and solar power conversion systems in 
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kW ; WTD  and 
solarD  are the monthly depreciation ratio of the wind and solar power conversion 

systems. 

2.7 Non-uniform Simulated Annealing Algorithm 

Simulated annealing (SA) is a local search algorithm (meta-heuristic) capable of escaping 

from local minimum by applying the hill-climbing strategy as shown in Figure 6.  SA mimics the 

metaphor of the process of physical annealing with solids, in which a crystalline solid is heated 

and then allowed to cool very slowly until it achieves its most regular possible crystal lattice 

configuration (i.e., its minimum lattice energy state), and thus is free of crystal defects. 

If the cooling schedule is sufficiently slow, the final configuration results in a solid with 

such superior structural integrity.  Simulated annealing establishes the connection between this 

type of thermodynamic behavior and the search for global minima for a discrete optimization 

problem.  Furthermore, it provides an algorithmic means for exploiting such a connection. 

Theoretically, the convergence of simulated annealing for finding the globe minimum 

was proven based on both homogeneous and inhomogeneous Markov chain theories in [18-25].  

The proofs using homogeneous Markov chain requires that each temperature  kt  is held constant 

for a sufficient number of iterations m  such that a non-negative square stochastic matrix, defined 

by the transition probabilities of generating a candidate solution '  from the neighbors of 

solution   can reach its stationary distribution.  The proofs using inhomogeneous Markov 

chain need not to reach a stationary distribution, but an infinite sequence of iterations k  must 

still be examined with the condition that the temperature parameter kt  cool sufficiently slowly.  

In a word, the theoretical convergence proofs of simulated annealing require a very large number 

of new solutions to examine whether the state of energy is frozen or not, and it is very difficult or 

impossible in practice.  



21 

 

 

Figure 6. Simulated annealing cooling procedure and its hill climbing feature. 

In practical, the challenges of applying simulated annealing for optimization problems 

can be divided into two problem-specific aspects.  

1. Choice of a new solution generator. 

2. Choice of cooling schedule. 

The efficiency of simulated annealing is highly influenced by the neighborhood function 

used.  However, the neighborhood structure is decided by the nature of the problem, which is not 

easy to be captured in most cases.  In general, a uniformed mutation function is applied to 

generated new solutions as follow: 

   max min min' round U        (2.33) 
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where '  is a new solution, '  ,  U x  is a uniformed random number generator,  U x  

ranges from [0, 1], and min , and max  are the lower limit and upper limit of the   based on the 

hard constraints of the objective function, respectively.  If this uniformed mutation function is 

executed with enough times, all the possible solutions will be explored, which is similar to the 

greedy algorithm.  Hence, the genetic mutation function has to be modified to enhance the 

efficiency of searching the optimal solution in the space.  Ideally, a desired mutation function is 

capable of searching the space uniformly at early stages and locally at later stages.  For this 

reason, Michalewicz proposed a dynamical non-uniform mutation operator to reduce the 

disadvantage of random mutation in evolution algorithm, and it is also valid for the simulated 

annealing [26-28]. 

For each individual t

i  in a population of  the tht  generation, create an offspring 1t

i

  

through a non-uniform mutation as follows: if  1, , ,t

i k m     is a chromosome ( t  is the 

generation number) and the element k  is selected for this mutation, the result is a vector 

 1

1, ', ,t

i k m    , where 

  

 
max

1

min

, 1

, 1

n n

n

n n

n if

n if

   


   


  
 

   
  (2.34) 

where   is a random number, which has the equal probability of 1   or 1   ; n  is the 

number of the current epoch.  

The function  ,n y  returns a value in the range  0, y  such that  ,n y  approaches to 

zero as n  increases.  This property allows this operator to search the space uniformly at early 

stages (when n  is small), and locally at later stages.  The definition of  ,n y  is as follow: 
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  (2.35) 

where r  is a uniform random number between [0,1] , N  is the maximal generation number, n  is 

the current generation number, and b  is a system parameter determining the degree of non-

uniformity. 

The distance D  between the old solution x  and new solution 'x  in a neighborhood N  

will be: 

 

   
1 1

max min

1 1
1 1

2 2

b b
n n

N N

D x x

r r
x x r x x r

   
    

   

 

    
        
   
   

 (2.36) 

The expectation of the random radius of two adjacent neighborhoods is: 
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(2.37) 

when 0n  ,   max min

4

x x
E D


 , when n N ,   0E D  .  Neither likes the Gaussian 

mutation which only locally searches nor Cauchy mutation which makes large step size in the 

whole search process [29, 30].  Let    f n E D , which is a differentiable function, then we 

have that  f n  is a decreasing function of n  (supposing n  being a continuous variable though 

it is a discrete one), because 
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(2.38) 

Equation 2.38 provides the main property of non-uniform mutation operator.  That is, the 

expectation of the random radius of neighborhood monotonously decreases with the progress of 

the algorithm in the sense of probability.  Furthermore, this dynamic operator has the features of 

searching the space uniformly at early stages (when n is small), and locally at later stages.  

Once the choice of a new solution generator is made, the next step is to choose the proper 

cooling schedule.  The simulated annealing cooling schedule is fully defined by an initial 

temperature, a schedule for reducing/changing the temperature, and a stopping criterion. Romeo 

and Sangiovanni-Vincentelli noted that an effective cooling schedule is essential to reducing the 

amount of time required for finding an optimal solution [31].  Therefore, much of the literature 

on cooling schedules is devoted to this topic theoretically.  However, as same as the choice of a 

new solution generator, it is also very difficult to apply those theoretical cooling schedule in 

practice.  A common used cooling schedule is defined as follow: 

 
1n nt t    (2.39) 

Where   is a decreasing coefficient, 0.9 1  .  The temperature is decreasing, while the 

iteration number is increasing.  In theory, the initial temperature should be high enough to excite 

the inner particles.  However, in practice, if the initial temperature over heats the inner particles, 

the annealing process will be trapped in iterative uphill and downhill movements.  In this paper, 

the initial temperature will define by experience obtained in the experiments.  
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Based on the explanation above, the non-uniform simulated annealing algorithm is 

concluded as follows: 

1. Set the initial temperature to 0t ,  maximum iteration number N , the temperature 

decreasing coefficient   and the initial iteration index 0n  . 

2. Generate the initial neighborhood of k  solutions 1

n n

k  , n

i  , 1i k , each of 

which has m  independent components, ,1 ,2 ,3 ,, , , ,n n n n n

i i i i i mx x x x     .  Evaluate the initial 

solutions based on the energy function,  n

iE  . 

3. Choose the best solution n

b  as the current state c , 1n n  .   

4. For each parental individual, ,1 ,2 ,3 ,, , , ,n n n n n

i i i i i mx x x x     , randomly generate a m-length 

decimal sequence  1 2, , , mr r r .  For each component of n

i , ,

n

i jx , 1i k , 1j m  , 

construct , 'n

i jx  using the Equation 2.34 and new individual is denoted by 'n

i .  Evaluate 

the solutions based on the energy function,  'n

iE  .  

5. Choose the best solution 
'n

b  as the alternative state a .    

6.  If    a cE E  , a c  , t t  . 

7. If    a cf f   with a probability        exp /c aE E k t r     , then a c  , 

t t   where r  is a randomly generated decimal; k  is Boltzmann constant; t  is the 

current temperature. 

8.  Repeat steps from 3 to 7, until the stopping criteria until current epoch number n  is 

equal to the maximum epoch number N .  
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Figure 7 displayed the charts flow of the non-uniform simulated annealing optimization 

procedure.   

 

Figure 7. Non-uniform simulated annealing optimization procedure. 

In the condition block r   there is a bi-directional signal flow.  This block determines 

the non-uniform simulated annealing is capable of avoiding the local minimum, when it is 
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searching the global optimum solution.  Different selections of initial temperature, maximum 

iteration number, or degree of non-uniformity of the mutation function will yield to different 

performances of the non-uniform simulated annealing. 
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CHAPTER 3 

Dynamic Modeling of Residential Microgrid 

3.1 Introduction 

In the last chapter, the optimal sizing of renewable distributed generators is discussed 

based on the long-term probability models of variant types of nature recourses, including wind 

speed, global solar radiation, and cell temperature.  The generation capacities of different DGs at 

a given location over a specified period are available.  In this section, the dynamic models and 

their control systems will be presented. 

3.2 Photovoltaic (PV) Modeling  

The PV system produces power without harming the environment by transferring a free 

inexhaustible source of energy, solar irradiation, to the electricity.  This factor associated with 

continuously decrement of the cell cost and increment of the conversion efficiency promises a 

good future of PV generation. 

3.2.1 Mathematical model of PV arrays The fundamental unit of a PV array is the solar 

cell, which is basically a P-N semiconductor junction that directly converts the light energy into 

electricity [32].  Figure 8 displayed the equivalent circuit. The current source pvI  represents the 

cell photocurrent inspired by the global solar radiation and constrained by the cell temperature.  

The diode is used to mimic the non-linear performance of the P-N junction, and the Shockley 

diode current dI  varies with the terminal voltage V .  Based on the Kirchhoff current law, the 

terminal current output I  can be calculated.  Because the Shockley diode current dI  is 

constrained by the terminal voltage V , terminal current I  is also constrained by the terminal 
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voltage V .  As a result, this fact introduces the maximum power tracking problem, which will be 

covered in the next section.    

 

Figure 8. Equivalent Circuit Diagram of a PV Cell.    

The cell photocurrent pvI  is governed as: 

  ,pv s i c c ref

ref

G
I I k T T

G
   
   (3.1) 

where sI
 
is the short-circuit current at cell reference temperature ,c refT

 
 300k ; refG  is the 

reference radiation  21000 /w m ; ik  is the short circuit current temperature coefficient, which is 

decided by different types of cell materials; cT
 
and G  are the arbitrary cell temperature and 

radiation.  cT  is calculated by the equation as follow: 

  20
800

c a

S
T T NOCT C

 
     

 
  (3.2) 
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This method yields satisfying results if the PV modules are not roof integrated.  NOCT is 

calculated for a wind speed 11v ms , an ambient temperature 20aT C  and irradiance 

2800 /S W m  [33, 34].   

The Shockley diode current 
dI

 
is defined as: 

 exp 1d rs

c

qV
I I

kT A

  
   

  
 (3.3) 

where q  is the charge of an electron; k  is the Boltzmann’s constant; A  is the P-N junction 

ideality factor, which determines the cell deviation from the ideal P-N junction characteristics, 

normally 1 1.6A  .  The cell reverse saturation current 
rsI

 
varies with the cell temperature 

respect to the following [35-39]:   

 
3

, ,

1 1
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rs rr
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 (3.4) 

where GE
 
is the band-gap energy of the semiconductor used in the cell ( 1.12GE eV

 
for the 

polycrystalline Si at 20 oC  [36]); 
rrI

 
is the reverse saturation current at cell reference cell 

temperature calculated as: 

 

 
,
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V AV



 (3.5) 

By using the Kirchhoff current law, the current output I  will be obtained by: 

 exp 1pv rs

c

qV
I I I

kT A

  
    

  
    (3.6) 

As a result, the output power can be calculated as: 

 P I V      (3.7) 
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Figure 9 plots the I-V curve, which is modeling a practical PV array, KC200GT Solar 

Array, under the standard test condition. The terminal voltage is increasing from 0V to the open 

circuit voltage. The terminal current is decreasing from the short circuit current to 0A.  
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Figure 9. I–V curve of the KC200GT solar array in the standard test condition. 

Figure 10 plots the P-V curve in the standard test condition.  When the terminal voltage is 

increasing from 0V to the open circuit voltage, the power output is increasing at early stages 

rapidly.  After the power curve passes the maximum power point, it will begin to decrease at 

later stages.  This feature introduces the maximum power point tracking of the solar panels, 

which allows it produce the maximum power by varying the terminal voltage. 

Figure 11 plots the P-V curves under different solar irradiances and temperatures, the 

blue curves represented at 25oC ; the red curves represented at50oC ; the black curves 
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represented at 75oC .  The lower cell temperature yields to the higher power output.   The solar 

array parameters of KC200T are shown in Appendix. 
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Figure 10. P-V curve of the KC200GT solar array under standard test condition. 

3.2.2 Optimal power point tracking As shown in Figure 12, the power generated by the 

PV arrays at any pair of global radiation and cell temperature varies based on different terminal 

voltage applied.  For tracking the maximum power output, a variable DC voltage generator is 

required to be mounted at the terminal end of the PV array.  The voltage level should be adjusted 

to meet the optimal voltage which generates the maximum power output. The optimal terminal 

voltage mV  is determined as: 

when  
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 0
i

dP

dV
    (3.8) 

then 

 
m iV V    (3.9) 

where iV  is the terminal voltage, which ranges from 0 to ocV .   

As a conclusion of previous modeling steps, the equivalent circuit diagram of a PV array 

shown in Figure 8 has been further developed and displayed in Figure 12. The radiation inspired 

current pvI , the terminal voltage dependent current rsI , and the optimal terminal voltage mV  are 

the inputs of the diagram, and the output is the maximum power output maxP .    
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Figure 11. P-V curves of the KC200GT solar array under different test conditions. 
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Figure 12. Equivalent circuit diagram of a PV Cell with a controlled current source, equivalent 

resistors, and the equation of the model current 
mI . 

3.2.3 Power electronic interface of the PV As concluded in the last section, the terminal 

voltage of the PV circuit varies to generate the maximum power output.  In order to maintain a 

constant terminal DC voltage, an inductive DC/DC boost converter is required.  Another DC/AC 

three phase inverter is also required for inverting the DC power to three phase power. 

3.2.3.1 Inductive DC/DC boost converter The equivalent circuit of a general inductive 

DC/DC boost converter is shown in Figure 13(a).  For maintaining the continuous conduction 

mode (CCM), the current through the inductor ( )Li t
 
has a finite, positive value, which is not zero 

and the operation mode consists two phases [40]: 

1. The inductor charging phase: The equivalent circuit for this phase is shown in Figure 

13(b), which is achieved by closing switch 1 and opening switch 2 for a certain period ont . 
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During this phase, the inductor L  is charge by the voltage source 
inU , causing the 

inductor current  Li t
 
to increase from its minimum value ,minLi  

to its maximum value 

,maxLi . At the same time, the capacitor C  is discharged through the load resistor 
LR .  

2. The inductor discharging phase: The equivalent circuit for this phase is shown in Figure 

13(c), which is achieved by closing switch 2 and opening switch 1 for a certain period offt . 

During this phase, the inductor L  is discharged into the capacitor C  and the load resistor 

LR , causing the inductor current  Li t
 
to decrease from its maximum value ,maxLi  to its 

minimum value ,minLi . As a result,  Li t
 
is divided over C  and 

LR , thereby charging C  

and supplying the power to 
LR .  

From Figure 13(b) and (c), Equation 3.10 can be concluded that the voltage over the 

inductor L  in an operating cycle.   

  

 

0 ,

,

on L in

on off L in out

t u t U

t t u t U U

 


    

  (3.10) 

In steady-state operation, the net energy change in the inductor per cycle is zero, thus the 

volt-second balance of the inductor is also zero.  This yields Equation 3.11: 

    
0

0

t

L in on in out offu t dt U t U U t   
 

  (3.12) 

Equation 3.11 can be rewritten as: 

 1

1

on offout

in off

t tU

U t 


 


   (3.12) 

where   is called the duty cycle, and defined as: 
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 on on

on off

t t

t t T
  


   (3.13) 

 

Figure 13. (a) Circuit of an inductive DC/DC boost converter, (b) equivalent circuit of the 

inductor charging phase, and (c) the inductor discharging phase. 
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When the converter is working in the inductor charging phase, the current though the 

inductor at T   is calculated as: 

 
     0

0

1

1

T

L L L

in

I T I t u t dt
L

U T
L









  

  


   (3.14) 

    0

1
L in LI T U T I t

L
         (3.15) 

The current though the capacitor at T   is calculated as: 

   out
C

L out

U P
I T

R U
         (3.16) 

When the converter is working in the inductor discharging phase, the current though the 

inductor at T  is calculated as: 

 
     

   

1

1

T

L L L

T

out in

I T I T u t dt
L

U U T T
L









  

    


   (3.17) 

        
1

L out in LI T U U T T I T
L

           (3.18) 

The current though the capacitor at T  is calculated as: 

      out
C L L

L out

U P
I T I T I T

R U
       (3.19) 

During the phase one, the output voltage is decreasing because the capacity is discharging.  

During the phase two, the output voltage is increasing because the capacity is charging.  

In the phase one, the discharge current ( )Ci t  of C  can be approximated to have a 

constant value as: 
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( )

out out
C

L out

dU t U P
i t C

dt R U
        (3.20) 

Thus, the net change of  outU t
 
can be calculated by: 

 

0

1
( )

T

out C

out

P
U i t dt T

C U C



       (3.21) 

3.2.3.2 Pulse width modulation (PWM) based three phase DC/AC inverter The three 

phases DC/AC converting is achieved by the PWM inspired three phase DC/AC full-wave 

bridge converter as shown in Figure 14 [41]. 

 

Figure 14. Three phase full bridge DC/AC inverter. 

The switching mechanism is controlled by the PWM technology.  The three phase full 

bridge inverter requires three reference signals, aV , bV , cV
 
and one carrier signal, carrierV , which 

is commonly using the triangular signal synchronized with the grid voltage vector.  The 

frequency modulation ratio mf  is defined as the ratio of the frequencies of the carrier and 

reference signals: 

 

sin

carrier tri

reference

f f
mf

f f
     (3.22) 



39 

 

The amplitude modulation ratio ma  is defined as the ratio of the amplitude of the carrier 

and reference signals: 

 , ,sin

, ,

m reference m

m carrier m tri

V V
ma

V V
     (3.23) 

According to Figure 14, it states the nature of the two switches in the same leg is 

complementary and the detailed switching schedule is as follows: 

1S  is on when 
a triV V . 

2S  is on when 
b triV V . 

3S  is on when 
c triV V . 

4S  is on when 
a triV V . 

5S  is on when 
b triV V . 

6S  is on when 
c triV V . 

An experimental demonstration is performed.  The carrier signal is synchronized with the 

grid voltage vector with 10mf  .  The reference signals are mimic the phase to ground voltages, 

which are 120o  apart with the amplitude 400 / 3  V.  Figure 15 shows the reference and carrier 

signals of a full-bridge converter for the unipolar PWM.  Figure 16 displayed the reference Phase 

A to Phase B voltage curve and the PWM based three phase DC/AC inverter output voltage 

waveform.  The voltage waveform generated by the PWM based three phase DC/AC inverter is 

in square wave form.  If only count the fundamental of the square waveform, the output wave 

form can be looked as the pure sin curve.  However, in some circuits, the terminal reactance is 

not large enough to filter the high order harmonics.  As a result, the total harmonic distortion 

(THD) is large enough to damage the end user appliance.  
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Figure 15. Reference and carrier signals for a unipolar PWM generator. 
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Figure 16. Phase A to phase B reference voltage curve and inverter output waveform. 
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3.3 Wind Power Conversion System Modeling 

3.3.1 Fundamentals of wind energy extraction The wind energy conversion system is a 

multi-type energy transformation mechanism, and it transforms the air kinetic energy presented 

in the blowing wind to electrical energy with two phase stages.  The kinetic energy in a parcel of 

air mass m  flowing at speed 
wv  in the horizontal direction is:   

  2 21 1

2 2
air w wE mv Ax v     (3.24) 

where, 
airE  is the kinetic energy in joule, A  is the cross-sectional area in 2m ,   is the air 

density in 3/kg m , and x  is the thickness of the parcel in m .  If time derivative is taken at both 

side of Equation 3.24 on both side, then the wind kinetic power 
wP  can be obtained. 

 2 31 1

2 2

air
w w w

dE dx
P Av Av

dt dt
       (3.25) 

Ideally, the power absorbed by the wind turbine is the wind energy difference between 

before and after the wind passes the turbine blades.  It can be shown that under the optimal 

condition, the following relationships exist, when the maximum wind power is absorbed by the 

wind turbine [42]. 

 
2 3 1

2

3
u u u     (3.26) 

 
4 1

1

3
u u    (3.27) 

 
2 3 1

3

2
A A A     (3.28) 

 
4 13A A    (3.29) 
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where 
1u , 

2u , 
3u , and 

4u  are the wind speeds corresponding to four positions listed in Figure 17; 

1A , 
2A , 

3A , and 
4A are the cross-section areas corresponding to four positions, which are yielded 

from the pressures, 
1p , 

2p , and 
3p . 

 

Figure 17. Circular tube of air flowing through an ideal wind turbine [42]. 

The mechanical power extracted from the wind under ideal condition is given as: 

  3 3 3

, 1 4 1 1 4 4 1 1

1 1 8

2 2 9
m idealP P P Au A u Au 

 
      

 
   (3.30) 

Equation 3.30 can be rewritten in terms of the undistributed wind speed 1u
 
and the 

turbine blades swapping area 2A
 
as Equation 3.31.  

 3 3

, 2 1 2 1

1 8 2 1 16

2 9 3 2 27
m idealP A u A u 

    
     

    
   (3.31) 
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 It can be concluded that the maximum fraction of mechanical power extracted from the 

wind energy is 59.3%.  In practice, this coefficient will be lower, because of mechanical 

imperfections, and it is replaced by a non-constant fraction pC  standing for the coefficient of 

performance, which varies with the tip speed ratio   and blade pitch angle  .  The tip speed 

ratio is defined as: 

 R

w

R

v


     (3.32) 

where R  is the radius of blade; 
wv  is the wind speed in /m s ; 

R  is the angular speed of turbine 

blades in /rad s . 

If consider the affection of changing of the blade pitch angle  , the tip speed ratio   is 

modified as [43]:  

 

3

1
'

1 0.03

0.02 1



  




 

 
  (3.33) 

and the power extraction fraction pC
 
is also given as: 

  
18.4

2.14 '
151

, 0.73 0.58 0.002 13.2
'

pC e    



 

    
 

   (3.34) 

Figure 18 displayed the relationship between the wind power coefficient pC
 
and the pitch 

angles  .  It shows that the wind power coefficient pC  depends on the blade pitch angle  . 

When the blade pitch angle is increased, the maximum power coefficient is increased.  Since all 

the wind turbines are desired working under their maximum power generation conditions, most 

pitch angle controller is only applied to limit the wind power extraction when the induction 

generator reaches the rated power output.  As in the standalone micro grid operation mode, the 



44 

 

pitch angle control is also applied in reducing the wind power extraction for avoiding the power 

over production in the microgrid. 
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Figure 18.
PC   curves for different pitch angles  . 

If the pitch angle   is fixed, the maximum ,maxpC  is only decided by the optimal tip 

speed ratio opt .  When the wind speed wv
 
changes, wind turbine will tune the blade rotating 

speed R  
to the optimal blade rotating speed ,R opt , which is decided by the maximum tip speed 

ratio opt
 
 as shown in Figure 19.  The maximum wind power extracted from the wind yields: 

   3

,max

1
,

2
m p opt wP C Av  

 
  

 
   (3.35) 

And the optimal wind turbine angular speed at a given wind speed yields to:  
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,

opt w

R opt

v

R


     (3.36) 

The optimal tip speed ratio opt  is determined as: 

when  

 0P

i

dC

d
    (3.37) 

then 

 
opt i     (3.38) 

where i  is the arbitrary tip speed ratio, which ranges from 0 to 8. 
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Figure 19. Wind turbine characteristic with the maximum power point tracking at fixed blade 

pitch angle 0  . 
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3.3.2 Drive train modeling The fixed-speed wind turbine requires the detailed drive train 

model, like six mass drive train model, three mass drive train model, and two mass shaft model, 

to analyze the rotor rotational frequency oscillation caused by drive train self or mature damping.  

However, for a vary speed wind turbine with doubly fed induction generator (DFIG), the drive 

train properties have almost no effect on the grid side characteristics, because the decoupling 

effect of the power electronic converter [44].  Therefore, a one mass lumped model is applied in 

this study, as shown in Figure 20.   In the one mass lumped model, the drive train components 

are lumped together as one rotating mass. The dynamic is given as: 

 WT EMR

RM

T Td

dt J

 
    (3.39) 

where 
R  is the rotor speed, 

WTT  is the input mechanical torque applied to the wind turbine, 
EMT  

is the electromagnetic torque of the DFIG, and 
RMJ  is the inertia of the rotating mass.  Then the 

electromagnetic torque 
EMT

 
can be obtained by: 

 R
EM WT RM

d
T T J

dt


     (3.40) 

 

Figure 20. One-mass lumped mode of the drive train. 
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3.3.3 Doubly-fed induction generator (DFIG) modeling DFIG is the most widely-used 

induction generator for the variable speed wind energy conversion systems, as shown in Figure 

21.  The stator side is directly connected to the grid, and the rotor side is indirectly connected to 

the grid via a back to back converter, which consists of the rotor side converter and grid side 

converter.  The rotor winding is fed by the rotor side converter to magnetize the induction 

generator, and the stator side converter is aim to maintain the constant DC-Link voltage.   

Compared with other induction generator structures, DFIG has a larger acceptance of 

variable wind speeds.  The back to back converter regulates a small percentage of the active 

power, which is able to reduce the power conversion loss. 

 

Figure 21. Diagram of variable speed wind turbine with DFIG. 

3.3.3.1 Power flow in DFIG Compared with the conventional induction generator 

operation, the DFIG can produce the power when the slip ratio is positive (sub-synchronization 

operation), as shown in Figure 22.  If ignore the stator and rotor resistances, the total active 

power contributed by DFIG is equal to the mechanical power extracted from the wind mechP .  The 

power rotorP  absorbed from the grid is use to offset the slip angular speed to make the DFIG work 

under equivalent synchronization condition.   
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Figure 22. Power flow of DFIG under sub-synchronization operation. 

Figure 23 displays the power flow of DFIG under super-synchronization condition.  

Because the rotor angular speed is higher than the synchronization speed, the direction of the 

rotor current will be changed from the rotor side to the grid side with the slip frequency for 

counteracting the exceeded rotor angular speed.  As a result, the active power will delivered from 

the rotor side.   

 

Figure 23. Power flow of DFIG under super-synchronization operation. 
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The total DFIG active power contribution is equal to the summation of the power from 

the rotor and stator.  Under the steady state analysis, the power flow in DFIG can be described as 

following equations if ignore the stator and rotor resistances.  

 
mech stator rotor r sP P P        (3.41) 

 
mech stator rotor r sP P P        (3.42) 

where  1stator mechP s P   , 
rotor mechP s P  , and s  is the slip ratio. 

3.3.3.2 Dynamic DFIG modeling The dynamic DFIG model can be introduced from a 

wound rotor induction machine model [45-50].  The stator and rotor KVL equations can be 

written as: 

 sabc
sabc s sabc

d
v R i

dt


     (3.43) 

 rabc
rabc r sabc

d
v R i

dt


     (3.44) 

where 
rabcv , 

sabcv , 
sabci , 

rabci , 
sabc , 

rabc are the three phase stator and rotor voltages, currents, 

and flux linkages, and 
sR , 

rR  are the stator and rotor resistances, respectively.  Applying the 

synchronously rotating reference frame transformation (from 3  to the direct and quadrature 

axes) to Equations 3.43 and 3.44, the voltage equations become:  

 ds
ds s ds s qs

d
V R I

dt


       (3.45) 

 qs

qs s qs s ds

d
V R I

dt


       (3.46) 

  dr
dr r dr s r qr

d
V R I

dt


         (3.47) 
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  qr

qr r qr s r dr

d
V R I

dt


         (3.48) 

where 
s  is the rotational speed of the synchronous reference frame, 

r  is the rotor speed, and 

the stator and rotor flux linkages in the direct and quadrature axes are given by: 

  ds ls ds m ds dr s ds m drL i L i i L i L i         (3.49) 

  qs ls qs m qs qr s qs m qrL i L i i L i L i         (3.50) 

  dr lr dr m ds dr r dr m dsL i L i i L i L i         (3.51) 

  qr lr qr m qs qr r qr m qsL i L i i L i L i         (3.52) 

where 
s ls mL L L  , 

r lr mL L L  ; 
lsL , 

lrL  and 
mL  are the stator, rotor self-leakage, and mutual 

inductances, respectively.     

The electromagnetic torque equation is given by: 

  
3

4
e ds qs qs dsT P i i       (3.53) 

where P is number of pair of poles. 

The stator active and reactive powers are given by: 

  
3

2
s ds ds qs qsP v i v i     (3.54) 

  
3

2
s qs ds ds qsQ v i v i     (3.55) 

and the rotor active and reactive powers are given by: 

  
3

2
r dr dr qr qrP v i v i     (3.56) 
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3

2
r qr dr dr qrQ v i v i     (3.57) 

3.3.3.3 Stator flux oriented DFIG modeling Applying the stator flux oriented frame 

transformation, the direct axis of stationary frame is aligned with the stator flux linkage vector 

s , or 
ds s  , and 0qs 

 
[47, 49].  This transformation offers a convenience for modeling 

simplification by given the following relationships. 

 /qs m qr si L i L     (3.58) 

 qs

ms

s m

V
i

L
    (3.59) 

 ( ) /ds m ms dr si L i i L     (3.60) 

 23
/

2
s s m ms qr sP L i i L     (3.61) 

  23
/

2
s s m ms ms dr sQ L i i i L     (3.62) 

 dr
dr r dr r s r qr

di
V R i L s L i

dt
        (3.63) 

  2 /
qr

qr r qr r s r dr m ms s

di
V R i L s L i L i L

dt
         (3.64) 

where 

2

1 m

s r

L

L L
    is defined as the leakage factor of the induction machine . 

Therefore, Equations 3.61 and 3.62 state that the active and reactive powers of stator can 

be controlled independently by the rotor current in the direct and quadrature axes, qri  and dri .  

The detailed derivation of Equations 3.61 and 3.62 can be found in [47]. The reference values of 

qri  and dri , qri 
 and dri  , are introduced by the desired active power and reactive power demands.  
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Therefore it is possible to design the close loop error feedback PI controllers to make  qr qri i  , 

and  dr dri i  . 

3.3.3.4 Rotor side converter control system design Let equations 3.63 and 3.64 become: 

 '

dr dr s r qrV V s L i      (3.65) 

  ' 2 /qr qr s r dr m ms sV V s L i L i L       (3.66) 

where 

 ' dr
dr r dr r

di
V R i L

dt
     (3.67) 

 ' qr

qr r qr r

di
V R i L

dt
     (3.68) 

 Equations 3.67 and 3.68 indicate that qri
 
and dri  respond to 

'

qrV  and '

drV  respectively.  

The errors between ( qri 
, qri ) and ( dri  , dri ) are processed by the PI controller to give 

'

qrV  and 

'

drV , respectively.  As a result, the PI controllers for eliminating the rotor current errors are 

available.  By using Equations 3.67 and 3.68, linear models (plants) for the rotor current control 

loops (a first order system) can be described by the transfer function listed below: 

 
' '

( )( ) 1
( )

( ) ( )

qrdr

dr qr r r

i si s
P s

V s V s R s L
  


   (3.69) 

The integral action must be embedded in the controller design for eliminating the steady 

state error.  It is therefore natural to use a PI controller, which can be formulated as: 

   i
p

K
C s K

s
     (3.70) 

where pK  is the proportional gain and iK  is the integral gain.  The open loop transfer functions 

of the systems are: 
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       2

p i

r r

K s K
L s P s C s

R s s L


 


   (3.71) 

The transfer functions of the close loop systems from references qri 
 and dri   to outputs  

qri  and 
dri  are given by: 

    

     2

( )( )

( ) ( ) 1

qr p idr

dr qr r r p i

i s K s KP s C si s

i s i s P s C s s L R K s K
 


  

   
   (3.72) 

and Equation 3.72 can be written as: 

  
 2

/( )( )

( ) ( ) / /

p i rqrdr

dr qr r p r i r

K s K Li si s

i s i s s R K s L K L



 
 


 

  
   (3.73) 

The closed loop systems are of second order and their characteristic polynomials will be: 

  2 / /r p r i rs R K s L K L       (3.74) 

and Equation 3.74 can be re-parameterized as: 

 2 22s s      (3.75) 

Instead of choosing controller parameters pK  and 
iK , we now select   and  .  The 

parameter   determines the speed of response and   determines the shape of response.  If a 

model can be represented by a first order model, it is very convenient to have   and   as 

controller parameters, also called the performance related parameters.  Identifying the 

coefficients of the polynomials in Equation 3.74, the PI controller parameters are given by: 

 2

i rK L     (3.76) 

 2p r r rK L L R     (3.77) 
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The system responses of system with different values of iK  and PK  are shown in Figure 

24, which shows that parameter iK  essentially gives a time scaling, and the shape of the 

response is determined by PK . 
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Figure 24. PI controlled rotor currents in direct and quadrature axes with different integral and 

proportional gains.  

Based on the PI controllers developed above, Equations 3.63 and 3.64 can be revised as: 

 ( )
( ) ( ) ( )dr

dr r dr r s r qr

di t
V t R i t L s L i t

dt
        (3.78) 

  2
( )

( ) ( ) ( ) /
qr

qr r qr r s r dr m ms s

di t
V t R i t L s L i t L i L

dt
         (3.79) 
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where ( )dri t
 
and ( )qri t

 
is the step responses using the close loop PI control method; ( )drV t

 
and 

( )qrV t
 
is the reference signal for rotor side PWM converter.  Figures 25 and 26 displayed the 

block diagrams of the rotor current close loop PI control systems.   

 

Figure 25. Close loop PI control scheme of rotor side current in direct axis. 

 

Figure 26. Close loop PI control scheme of rotor side current in quadrature axis. 

  3.3.3.5 Grid side converter control system design The grid side converter control scheme 

has two stages.  The first stage is aim to regulate the grid side current components in the direct 

and quadrature axes, dgi  and rgi , under the synchronous rotating frame.  The second stage is to 

regulate the DC-link voltage and eliminate the reactive power exchanged between the grid side 

converter and the grid. The grid side circuit equation can be written as: 
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  , ,

1gabc
abc g abc s abc

g g

Rdi
i V V

dt L L
       (3.80) 

By applying the synchronously rotating frame transformation to Equation 3.80, with 

direct axis align to the grid voltage vector 
sV  (

ds sV V , 0qsV  ) [48], the converter side voltage 

components in the direct and quadrature axes, dgV  and qgV
 
can be obtained as: 

 dg

dg g dg g s g qg ds

di
V R i L L i V

dt
       (3.81) 

 qg

qg g qg g s g dg

di
V R i L L i

dt
      (3.82) 

Following the similar procedure as Equations 3.65 to 3.68, dgV  and qgV
 
can be revised as: 

 '

dg dg s g qg dsV V L i V      (3.83) 

 '

qg qg s g dgV V L i     (3.84) 

where 

 ' dg

dg g dg g

di
V R i L

dt
     (3.85) 

 ' qg

qg g qg g

di
V R i L

dt
     (3.86) 

Equations 3.85 and 3.86 indicate that qgi
 
and dgi  respond to 

'

qgV  and 
'

dgV , respectively.  

The errors between ( qgi 
, qgi ) and ( dgi 

, dgi ) are processed by the PI controller to give 
'

qgV  and 

'

dgV , respectively.  The reference grid current qgi 
 in quadrature axis is determined directly based 

on the reactive power exchanged between the grid side converter and the grid and the reference 

grid current dgi 
 in the direct axis determined based on the power balance of the DC link.  PI 

controllers are designed for eliminate the grid current errors.  Using Equations 3.85 and 3.86, 
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linear models (plants) for the grid current control loops (a first order system) can be described by 

the transfer function listed below: 

 
' '

( ) ( ) 1
( )

( ) ( )

dg qg

dg qg g g

i s i s
P s

V s V s R sL
  


   (3.87) 

The integral action must be embedded in the controller design for eliminating the steady 

state error.  It is therefore natural to use PI controllers, which can be formulated as: 

   i
p

K
C s K

s
     (3.88) 

where pK  is the proportional gain and 
iK  is the integral gain. The open loop transfer function of 

the system is: 

       2

p i

g g

K s K
L s P s C s

R s s L


 


   (3.89) 

The transfer functions of the closed systems from reference qgi 
 and dgi 

 to output qgi  and 

dgi  are given by: 

    

     2

( ) ( )

( ) ( ) 1

dg qg p i

dg qg g g p i

i s i s K s KP s C s

i s i s P s C s s L R K s K
 


  

   
   (3.90) 

and Equation 3.90 can be written as: 

  
 2

/( ) ( )

( ) ( ) / /

p i gdg qg

dg qg g p g i g

K s K Li s i s

i s i s s R K s L K L
 


 

  
   (3.91) 

The closed loop systems are of second order and their characteristic polynomials will be: 

  2 / /g p g i gs R K s L K L      (3.92) 

and Equation 3.92 can be re-parameterized as: 
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 2 22s s      (3.93) 

Similarly applied the approach described in the last section, the PI controller parameters 

are obtained as: 

 2

i gK L     (3.94) 

 2p g gK L R     (3.95) 

Figures 27 and 28 displayed the block diagram of the grid current close loop PI control 

system in the direct and quadrature axes.  

 

Figure 27. Close loop PI control scheme of grid side current in the quadrature axis. 

 

Figure 28. Close loop PI control scheme of grid side current in the direct axis. 

If neglect the switching loss, the power balance equation of the DC link is written as: 

 0r gP P     (3.96) 
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since 

 3

2
g ds dgP V i    (3.97) 

then the reference value dgi 

 
will be: 

 * 2
/

3
dg g dsi P V    (3.98) 

since 

 3

2
g ds qgQ V i     (3.99) 

then the reference value qgi 

 
will be: 

 * 2
/

3
qg g dsi Q V   (3.100) 

3.3.3.6 Power electronic interface of the DFIG The highlight of DFIG is the back to 

back converter system. Most of the researches used the two voltage source converters to 

represent the bi-directional power converter system [49].  In this section, a dual channel back to 

back converter system realized the back to back converter as shown in Figure 29. 

The three phase DC/AC inverter was discussed in section 3.2.3.2, and the three phase 

AC/DC converting is achieved by the three phase AC/DC full-wave bridge rectifier as shown in 

Figure 30.  Only one diode in the top half will conduct at one time.  It will have its anode 

connected to the highest phase to phase voltage at that instant.  Only one diode in the bottom half 

will conduct at one time.  It will have it cathode connected to the lowest phase to phase voltage 

at that instant. Because there are six combinations of phase to phase voltages, a transition of the 

highest phase to phase voltage will occur every 060 .  Figure 31(a) displayed the phase to neutral 
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voltage waveforms, and Figure 31(b) displayed phase to phase voltage waveforms and the output 

voltage waveform.  The average voltage of the output voltage is: 

    
2

,3
,

3

31
sin

/ 3

m P P

o m P P

V
V V t d t



  
 



   (3.101) 

where ,m P PV   
is the peak line to line voltage, which is ,2 P P rmsV  .  

If the power extracted from the microgrid is P , we have 

 
,

,3

ac
s rms

P P rms

P
I

V 

  (3.102) 

then 

 
, ,

3

2
o o rms s rmsI I I   (3.103) 

 

 

Figure 29. Dual channel back to back converter system. 
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Figure 30. Three phase full bridge rectifier.  
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Figure 31. (a) Source voltages of a three phase full bridge rectifier. (b) rectifier voltage output 

and reference phase to phase voltage waveforms. 
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The DC power is given by: 

 
dc o oP I V   (3.104) 

Since , ,2m P P P P rmsV V  , the efficiency of six pulse three phase AC/DC full-wave bridge 

rectifier is: 

 3
95.5%dc

ac dc

ac

P

P



     (3.105) 

3.4 Distributed Energy Storage Modeling 

3.4.1 Battery modeling The energy storage systems applied in the residential micro grid 

are commonly referred to the batteries.  A widely used battery model is described by the 

following equation [51]: 

 
0 intE E IR   (3.106) 

where E  is potential of a loaded battery (V), 
0E  is standard potential of a battery (V), and 

intR  is 

the internal resistance of a battery (Ohm).  This equation is assumed that the battery has a fixed 

open circuit potential and the loaded potential varies linearly with the applied current.  As a 

result, limited energy is available from a battery and it also can not reflect the fact that the open 

circuit potential of a battery changes with the state of charge (SOC).  According to these 

disadvantages, a developed model is presented in this research for avoiding the over 

simplification issues by using equation above. 

Figure 32 displayed a simple RC model for a general battery, and the governing equation 

given by [51, 52]: 

 
inteqE E IR   (3.107) 
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where eqE  is the open-circuit potential of a battery at a particular state of charge (V), which can 

be fitted in by the experimental data: 

  eqE f SOC  (3.108) 

 

Figure 32. Equivalent RC model of a general battery. 

If the following assumptions are valid: If the following assumptions are valid:  the Nernst 

equation is a valid description of the equilibrium potential of the relevant electrochemical 

reactions; the main electrochemical reactions on positive and negative electrodes have fast 

kinetics; the capacity of the positive electrode roughly matches that of the negative electrode, the 

open-circuit potential of a battery at a particular state of charge will be [51, 52]: 

 
0 ln

1
eq

RT SOC
E E

nF SOC

 
   

 
 (3.109) 

where R  is the ideal gas constant (8.3143 J/mole/K), T  is the temperature in K, n is the electron 

transfer number of the whole battery electro-chemical reaction, 0E  is the standard potential of a 

battery (V), and F  is the Faradic constant (98467 C/eq).  Assuming that there are no side 

reactions, then the relationship between SOC and charge/discharge rate is as follow: 
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3600 battery

dSOC I

dt C
  (3.110) 

where batteryC  is the capacity of the battery (Ah).  If the battery is absorbing or contributing the 

power P  from or to the grid, the DC current I  and the terminal voltage V  has the relationship 

as following: 

 P V I   (3.111) 

and 

 0

int int

ln
1eq

RT SOC
E V

E V nF SOC
I

R R

 
       

(3.112) 

By solving the Equations 3.111 and 3.112, the terminal voltage V  and the current I  are 

obtained.  By using Equation 3.110, the battery charging or discharging rate is able to be 

determined at a particular power output.  

3.4.2 Distributed energy storage design The distributed energy storage is a key 

component in the proposed microgrid in this research.  In the grid-tied operation, the distribution 

substation acts the swing bus for power flow balancing.  However, when the microgrid is in 

autonomous operation mode, there is no connection to the distribution substation.  As a result, it 

is mandatory to find the other bus to replace the role of the substation for balancing the power 

flow in the microgrid.  According to the nature of renewable distributed generators, they are not 

qualified for this function.  The only choice left is the distributed energy storage. It is necessary 

to properly design the electronic interface of the DES for realizing the desired function, which 

are required for delivering the power in bi-direction.  When the energy storage is absorbing the 

power, an AC/DC/DC inverter system is needed.  When the energy storage is contributing the 

power, a DC/DC/AC inverter system is needed.  Figure 33 displays the proposed DES diagram. 
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Figure 33. Proposed distributed energy storage system. 

According to Figure 33, the power electronic interface of the distributed energy storage is 

consisting of two inverting channels, which is similar with the back to back converter.  An 

AC/DC three phase full bridge rectifier is needed for inverting the bus voltage and current from 

sinuous waveform to DC waveform.   An inductive DC/DC buck converter are added for 

stepping down the voltage level to the battery group terminal voltage level at the DC terminal of 

the AC/DC three phase full bridge converter.  When the DES is absorbing the power from 

microgrid, an inductive DC/DC boost converter is required to step up the battery group terminal 

voltage to the DC terminal voltage level at the DC end of the three phase full bridge DC/AC 

inverter. The three phase full bridge DC/AC inverter transfers the DC waveform to the AC 

waveform, when the distributed energy storage is contributing the power to the microgrid.  
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By using the active and reactive power decoupling control, the AC voltage waveforms 

inverted by the DC/AC three phase full bridge rectifier are synchronized with the bus voltage 

waveforms.  The angle between output voltage and current is under control, which allows the 

distributed energy storage generate the desired active power and reactive power.   

The inductive DC/DC buck converter equivalent circuit is shown in Figure 34 (a).  The 

operation mode consists two phases [40]:  

1. The inductor charge phasing: The equivalent circuit for this phase is shown in Figure 

34(b), which is achieved by opening switch 1 and closing switch 2 for a certain period 

ont . During this phase, the inductor L  is charge by the voltage source highU , causing the 

inductor current  Li t
 
to increase from its minimum value ,minLi  

to its maximum value 

,maxLi . The voltage cross the inductor is: 

 L
L high low

di
U U U L

dt
    (3.113) 

after rearranging, 

 high lowL
U Udi

dt L


  (3.114) 

Since the derivative of the inductor current is a positive constant, the current increases 

linearly.  The current change over the inductor while switch 2 is closed is given by: 

 high lowL L L
U Udi i i

dt L t DT

  
  


 (3.115) 

 
, 1

high low

L

U U
i DT

L


 
   

 
 (3.116) 

where T  is the switch period; DT  is the time when switch is closed. 
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2. The inductor discharging phase: The equivalent circuit for this phase is shown in Figure 

34(c), which is achieved by opening switch 2 and closing switch 1 for a certain period 

offt . The voltage cross the inductor is: 

 L
L low

di
U U L

dt
    (3.117) 

after rearranging, 

 lowL
Udi

dt L


  (3.118) 

Since the derivative of the current is a negative constant, the current decreases linearly. 

The current change over the inductor while switch 2 is open is given by: 

 
(1 )

lowL L L
Udi i i

dt L t D T

  
  

 
 (3.119) 

 
, 2 (1 )low

L

U
i D T

L


 
   

 
 (3.120) 

The steady state operation requires the inductor current at the beginning of the switching 

cycle is equal to that at the end of the switching cycle. This requires: 

 
, 1 , 2L Li i     (3.121) 

Using Equations 3.116 and 3.120, we get: 

 (1 ) 0
high low low

U U U
DT D T

L L

   
     
  

 (3.122) 

It yields: 

 
low highU U D   (3.123) 
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Figure 34. (a) Circuit of the DC/DC buck converter, (b) equivalent circuit of the inductor charge 

phase, and (c) equivalent circuit of the inductor discharge phase.  

3.4.3 Distributed energy storage P, Q decoupling control system design The reference 

three phase voltage signals sent to the PWM of the three phase DC/AC full bridge rectifier can 
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also be controlled by using the active power and reactive power decoupling control.  Figure 35 

displays the equivalent circuit diagram when the converter connects to the microgrid.  The 

subscript s  denotes the system side, and c  denotes the converter side. R  and L  are the 

connection resistance and reactance, and 
ai  is the phase a to ground current.  The three phase 

Kirchhoff voltage law equations of the diagram are: 

 a
ca sa a

t

di
V V Ri L

d
    (3.124) 

 b
cb sb b

t

di
V V Ri L

d
    (3.125) 

 c
cc sc c

t

di
V V Ri L

d
    (3.126) 

 

Figure 35. Equivalent circuit of the three phase DC/AC full bridge rectifier connected to the 

microgrid. 

By using the Park transformation and align to the system voltage direct axis reference 

framework, the direct and quadrature axes KVL equations will be: 
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 d
cd sd d q

di
V V Ri L wLi

dt
     (3.127) 

 q

cq sq q d

di
V V Ri L wLi

dt
     (3.128) 

where w  is the system frequency. 

Since 0sdV  , sq sV V , 

then 

 3

2
sq qP V I  (3.129) 

 3

2
sq dQ V I  (3.130) 

 The above equations state that active power and reactive power are controlled by qI  and 

dI  respectively.  After adding the two compensation terms 'cdV  and 'cqV , Equations 3.127 and 

3.128 can be rewritten as: 

 '

cd cd q sdV V wLi V    (3.131) 

 '

cq cq d sqV V wLi V    (3.132) 

where 
' d

cd d

dI
V RI L

dt
   and ' q

cq q

dI
V RI L

dt
  .  If we denote the 

*

qI  and *

dI  as the target values 

of the qI  and dI , the required rectifier AC terminal voltages in the direct and quadrature axes 

will be obtained by applying two PI controllers.  The entire feed forward decoupling control 

diagram based on Equations 3.133 and 3.134 is shown in Figure 36. 

  *P
cd I d d q sd

K
V K i i wLi V

s

 
     
 

 (3.133) 
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  *P
cq I q q d sq

K
V K i i wLi V

s

 
     
 

 (3.134) 

where pK  is the proportional gain and 
IK  is the integral gain.  

 

Figure 36. P, Q decoupling control diagram of the three phase full bridge DC/AC rectifier.   
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CHAPTER 4 

Residential Microgrid Power Flow Analysis 

4.1 Introduction 

Power flow calculation is a cluster of numerical analysis methods to evaluate the steady 

or transient performance of the power flow in the AC power system.  The classic approaches 

include the Gauss-Seidel Method, the Newton-Raphson method, and the fast decoupled method, 

which are capable of solving the nonlinear equations.  In the power flow analysis, the bus in a 

grid can be divided into three classes, the generation bus (PV bus), the load bus (PQ bus), and 

the balance bus (the swing bus or the slack bus).  Each type of the bus has four parameters, the 

voltage magnitude, the voltage phase angle, the active power injection, and the reactive power 

injection. According to the abbreviations in the brackets, each bus has two known parameters 

and two unknowns as listed in the following table, where P is the active power, Q is the reactive 

power, V is the line to ground voltage magnitude, and   is the line to ground voltage phase 

angle. 

Table 2 

Bus Type Classification in the Power Flow Calculation 

Bus Types Knowns Unknows 

PV P V Q δ 

PQ P Q V δ 

Swing V δ P Q 

  

The purpose of the power flow calculation is to acquire the converged voltage vectors of 

the buses with the specified active power and reactive power injections [53].  The bus injection 
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current iI  in terms of the bus apparent power injection 
iS  and the bus voltage 

iV  in a n  buses 

system can be described as: 

 
1 1 2 2

i
i i i in n

i

S
I Y V Y V Y V

V




      (4.1) 

where 
inY  is the admittance between the 

thi  bus and the 
thn  bus, and   is the symbol of 

conjunction.  Equation 4.1 can be rewritten as: 

 
1 1 2 2i i i i i in nP jQ V Y V Y V Y V

  
      

 
 (4.2) 

If the real and the imaginary portions of Equation 4.2 are separated, two real number 

equations will be obtained for each bus as follows: 

 
1 1 2 2i i i i in nP real V Y V Y V Y V  

      
  

 (4.3) 

 
1 1 2 2i i i i in nQ imag V Y V Y V Y V  

       
  

 (4.4) 

With at least two known parameters, the other unknown parameters will be solved by 

using the power flow calculation methods.  The Gauss-Seidel method is chosen to solve the 

power flow equations and will be introduced in the next section. 

4.2 Research System Power Flow Analysis Using the Gauss-Seidel Method 

The operation of a microgrid can be divided into two modes, the grid-tied mode and the 

grid-off mode.  In the grid-tied mode, the load bus is connected to the bulk grid and the 

microgrid.  Figure 37 displays the one-line diagram of the system in the grid-tied mode.  Once 

the distributed energy storage is fully charged, the power flow from the distributed generators 
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will bypass the distributed energy storage and feed the residential load directly.  If the power 

flow from the distributed generators is sufficient, the microgrid will deliver the extra energy back 

to the bulk grid.  In this particular system topology, the bulk grid can be looked as an infinity bus, 

and the distribution substation will be considered as the slack bus.  The power output from the 

distributed generators will be always at their maximums.   

 

Figure 37. One-line diagram of the research system in grid-tied mode. 

Once the faults happened in the bulk grid side or the microgrid is designed for the grid-

off operation only, the grid-tied mode will transfer to the grid-off mode, which means the 

microgrid is disconnected to the bulk grid.  Figure 38 shows the one-line diagram of the research 

system in the grid-off mode.  The main issue for the microgrid in the grid-off mode is the lack of 

sufficient power resource, which is able to act as the slack bus for balancing the system power 

flow.  In this research, the distributed energy storage system is designed for realizing the slack 

bus function.  The PV bus is the generation bus, which summarizes the wind power energy 

systems and the solar energy systems.  The PQ bus is the residential load bus.   
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Figure 38. One-line diagram of the research system in grid-off mode. 

If we denote the slack bus is bus 1, PQ bus is bus 2, and PV bus is bus 3, the admittance 

matrix will be: 

 

12 13 12 13

12 12

13 13

1 1 1 1

1 1
0

1 1
0

z z z z

Y
z z

z z

 
   

 
 

  
 
 

 
 

 (4.5) 

Equation 4.2 can be rewritten as: 

 
1 1 2 2*

1 i i
i i i in n

ii i

P Q
V Y V Y V Y V

Y V

 
     

 
 (4.6) 

By using the Gauss-Seidel method [53], the voltage vector of a PQ bus will be: 

 (1) (1) (0)2 2
2 21 1 23 3*(0)

22 2

1 P Q
V Y V Y V

Y V

 
   

 
 (4.7) 



76 

 

Because the voltage magnitude and the active power injection of a PV bus are fixed, the 

voltage angle updating is based on the updating of the reactive power injection of that bus. 

Equation 4.4 will be revised as: 

 (1) (0) (1) (1) (0)

3 3 31 1 32 2 33 3Q imag V Y V Y V Y V  
      

  
 (4.8) 

The update voltage vector of a PV bus will be: 

 
(1)

(1) (1) (1)3 3
3 31 1 32 2*(0)

33 3

1 P jQ
V Y V Y V

Y V

 
   

 
 (4.9) 

Sometimes Equation 4.9 will change the voltage magnitude of a PV bus, therefore the 

magnitude of a PV bus should be forced to the pre-specified value, which is accomplished by: 

 
(1)

(1) 3
3 3, (1)

3

spec

V
V V

V
   (4.10) 

Keep updating the voltage vectors at each bus until Equations 4.11 and 4.12 are met. 

 ( ) ( 1)n n

i iV V    (4.11) 

 ( ) ( 1)n n

i i     (4.12) 

Equations 4.11 and 4.12 are aim to check whether the voltage vector of each bus is 

converged both in magnitude and angle, and   is a preset threshold, 0  .  Once all the bus 

voltage vectors are converged, the updated power injection at each bus can be obtained by using 

Equations 4.3 and 4.4. 
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4.3 Autonomous Microgrid Topology Finalization and Operation Procedure 

In Chapter 2, the optimal sizing of the distributed renewable generators is discussed.  In 

this section, the selection of other microgrid parameters will be presented.  All of these 

parameters and operation procedure are designed under the microgrid autonomous operation 

mode.  

The first unknown parameter is the impedance or admittance of the transmission lines in 

the microgrid.  When using the Gauss-Seidel method for calculating the power flows in the 

microgrid, it is possible that one or more bus voltage vectors are not converged.  The reason is 

that the Gauss-Seidel method cannot find the voltage magnitudes or angles in the real number 

space.  In practice, the causations is that the admittance of the conductor between the PV bus and 

PQ bus is lower than the minimum required admittance or the overall microgrid voltage level is 

lower than the minimum required voltage level that ensures the power transmission stability.  To 

fix the non-convergence problem of the Gauss-Seidel method, the admittance between the PV 

bus and PQ bus will be increased, which means the length of the transmission line should be 

reduced or the conduct of transmission lines should be replaced by others with higher admittance.  

In this research, this is the only solution considered, because the microgrid is directly coupled 

with the residential distribution network.  Increasing the overall microgrid voltage level may cost 

additional investments.   

The second unknown parameter is the minimum size of the distributed energy storage.  In 

some season, the wind and solar energy are in their annul valleys and the residential load still 

remains at a high level.  If the capacity of the distributed energy storage is low, it cannot deliver 

sufficient power required from the end users.  As a result, the reliability of power supplement 

will be critically threatened, and the end users will face the power outages frequently during that 
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season.  The state of charge (SOC) represents the amount of energy saved in the distributed 

energy storage.  If the SOC is less than 0, which means the energy saved in the battery bank is 

over drawn.  The capacity of the battery system is not large enough to save the sufficient energy 

for compensating the power shortages.  Another battery cell should connect to the distributed 

energy storage in parallel for increasing the capacity of the battery system.  Keep increasing the 

capacity of the battery bank until the SOC remains positive during the planned project life time. 

 After the impedance of transmission lines and the minimum size of the distributed energy 

storage are determined, the residential microgrid topology is finalized. 

The optimal sizes of the distributed generators are decided for supplying the maximum 

residential load at the month, when the solar and wind energy are at the annual valleys.  In most 

scenarios, the power generated from the distributed generators is larger than the residential load. 

When the microgrid is operated in the grid-tied mode, the over-produced energy will be 

delivered to the bulk grid.  However, when the microgrid is in the autonomous operation mode, 

the over-produced energy will begin to accumulate in the distributed energy storage, and if the 

overproduction lasts for a long period, the distributed energy storage will be overcharged and the 

SOC will exceed 1.  The predicted SOC will be applied to check whether it is necessary to 

reduce the energy production from the generation bus.  If the predicted SOC is larger than 1, the 

generation will be mandatorily decreased until the amount of energy absorbed by the distributed 

energy storage will not cause the over-charging problem.  Firstly, the energy production from the 

wind turbines will be reduced. If necessary, the energy production from the solar panels will be 

reduced as well.  Figure 39 displays a chart-flow for implementing the microgrid topology 

finalization and operation procedure in the autonomous mode.  Once the microgrid topology is 

finalized, this chart-flow directs the operation procedure in time domain. 
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Figure 39. Microgrid topology finalization and autonomous operation scheme in time domain. 
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CHAPTER 5 

Back Propagation Neural Network Based Energy Manager Design 

5.1 Back-propagation Neural Network (BPN)  

Paul Werbos established the back-propagation algorithm and proposed the concept of 

hidden layers in his dissertation [54].   This work did not collect the attention in 1970s, but it was 

revived in the late 1980s. In the mid-1980s, David Rumelhart presented his report about the 

development of back-propagation algorithm [55].  The proposed bi-directional artificial learning 

mechanism becomes the most popular learning algorithm for the multilayer perceptron network, 

and the generalized delta rule becomes the most widely used method to update the weights [56]. 

5.1.1 Back-propagation network structure BPN stands for the back propagation neural 

network, which is a type of multi-layer perceptron that applies the back-propagation algorithm 

for the network training.  Figure 40 displays the network structure of a multi-layer perceptron 

network, which consists of the input layer, the hidden layer, and the output layer.  Each layer has 

its own neurons, or called the process elements.  The neurons in the hidden layer and the output 

layer are fully connected to the neurons in the previous layers.  The features of an input sample 

are mapped into the neurons in the input layer.  The outputs of the input neurons associated with 

the connection weights are activated in the hidden neurons, and yield to the outputs of the hidden 

neurons.  The outputs of the hidden neurons associated with the connection weights are activated 

in the output neuron, and finally emerged to the output of the network.  The number of the 

hidden neurons is determined based on the testing performances, which means the optimal 

number of the hidden neurons yields to the minimum testing error. 
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Figure 40. The network structure of a multi-layer perceptron with one hidden layer. 

5.1.2 Back-propagation learning algorithm The back-propagation learning algorithm 

has the bi-directional signal flows, the function signal forward pass and the error signal reverse 

pass.  

5.1.2.1 Function signal forward pass The function signal forward pass is that the input 

signal passes through the network and emerge to the output signal.  For a one hidden layer and 

one output layer BPN, the n  features of a sample are mapped into the input neurons.  The output 

signal vector of the input neurons is: 

 
0 1 2[ , , , , ]T

nX x x x x   (5.1) 

where 0x  is the bias, and 0 1x  . 
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 The output signal vector X  associated with the weight matrix W  of the connections 

between the input layer and hidden layer becomes the input signal vector I of the hidden neurons. 

 

0,1 0,2 0,

1,1 1,2 1,

,1 ,2 ,

m

m

n n n m

w w w

w w w
W

w w w

 
 
 
 
 
 

 (5.2) 

where m  is the number of hidden neurons. 

 
1 2[ , , ]T T

mI W X I I I   (5.3) 

 The input signal vector I  of the hidden neurons passes through the hidden neurons via 

the activation function  T I , and becomes the output signal vector H  of the hidden layer. 

 
1 2( ) [ , , ]T

mH T I h h h   (5.4) 

 The graph of activation function  T I
 
is “S-shaped”, so it is also call the sigmoid 

function.  In this research, the log-sigmoid transfer function is applied as the activation function: 

 1
( )

1 I
T I

e  



 (5.5) 

where   is the momentum, which decides the shape of the log-sigmoid transfer function.  Figure 

41 displays the graph of the log-sigmoid transfer function with 1  . 

After add the hidden layer bias 0 1h 
 
into the hidden neuron output  H , the signal vector 

H  becomes: 

 
0 1 2[ , , , ]T

mH h h h h  (5.6) 

The output signal vector H  associated with the weight vector V  of the connections 

between the hidden layer and the output layer becomes the input signal vector J  of the output 

neuron. 
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Figure 41. Graph of the log-sigmoid transfer function with 1  . 

The input signal vector J  of the output neuron passes through the output neuron via the 

activation function  T J , and becomes the output signal ŷ  of the network.  

 ˆ ( )y T J  (5.9) 

5.1.2.2 Error signal reverse pass The network output ŷ  will compare with the desired 

output dy
 
and generate the error signal e  as: 

 ˆ
de y y   (5.10) 
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 The error signal e  back-propagates through the network for adjusting the weight vector 

V  and the weight matrix W .   

The error signal energy is defined as: 

 21

2
e    (5.11) 

 The partial derivative of error signal energy respect to the weight vector V  is as follows 

[56]: 

  
ˆ

d d de dH dJ

dV de dy dJ dV

 
     (5.12) 

After cancel the same terms in the right side of Equation 5.12, the partial derivative of error 

signal energy respect to the weight vector V  is: 

  
d

e T J H
dV


     (5.13) 

The adjustment of the weight vector V  will be: 

 
o

d
V H

dV


         (5.14) 

where   is the learning rate, which is a positive number and less than 1, and o  is called the 

local gradient of the output layer and defined by: 

    'o e T J    (5.15) 

then 

 
new oldV V V   (5.16) 

To update the weight matrix W , the local gradient of the hidden layer h  is identified as: 
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 (5.17) 

The adjustment of the weight matrix W  is: 

 
hW X      (5.18) 

then 

 
new oldW W W   (5.19) 

5.1.3 Training stopping criteria The back-propagation algorithm was not guaranteed to 

be converged after the iterative training.  To prevent the network over-learning, and improve the 

generalization ability, the training stopping criteria are formulated as follows: 

1. The back-propagation algorithm is considered to have converged when the mean square 

error of network testing outputs per epoch is sufficiently small. 

2. The back-propagation algorithm is considered to have converged when the maximum 

training epoch is reached. 

 5.2 Back-propagation Neural Network based Energy Manager Design 

In the last chapter, the autonomous operation procedure of the residential microgrid is 

concluded.  Once the system topology is finalized, the predicted state of charge of the distributed 

energy storage in time domain will be a variable, which depends on the current state of the wind 

speed, global solar radiation, air temperature, residential load, and the previous state of the state 

of charge, which can be summarized as: 

  1 1 1 1 , 1, , , ,n n n n n L nSOC f V G T SOC P       (5.20) 
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where V  is the wind speed; G  is the global solar radiation; T  is the air temperature; 
LP

 
is the 

residential active power demand.  The BPN structure based on Equation 5.20 is shown in Figure 

42. 

 

Figure 42. The BPN structure for the SOC prediction. 

Before the samples are fed to the input layer, a normalization method is applied to scale 

the values of inputs and output from 0 to 1 by using Equation 5.21. 

  

   
,

min

max min

i

i normlized

data data
data

data data





 

 (5.21) 
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After the network is trained, the value of network output should be returned to its original 

scale by: 

       , max min mini i normalizeddata data data data data      (5.22) 

In Figure 42, the number of hidden neurons is not specified.  When the network is 

training, the different number of the hidden neurons will yield to the different network 

performances.  The number of the hidden neurons is finalized according to the network which 

yields the best testing performance. 

Once the predicted SOC is obtained, the distributed generation systems are expected to 

self-adapt to the predicted SOC by reducing the power output from the generators.  The whole 

procedure is as followings and concluded in Figure 43 as well: 

1. Use the wind speed, the globe solar radiation, the air temperature, the real power demand 

in the current state and the SOC of the energy storage in the previous state to predict the 

SOC in the current state. 

2. Use the wind speed, the globe solar radiation, the air temperature in the current state to 

calculate the maximum power output at the PV bus. 

3. Perform the power flow calculation based on the Gaussian-Seidel method, and obtain the 

power injection or ejection at the swing bus.  Based on the power injection or ejection at 

the swing bus, the current state SOC is obtained. 

4. If the current state SOC is larger than the BPN predicted SOC, the power output from the 

generation bus should be reduced.  First, the power generated by the wind turbines will 

be reduced. If the power outputs of wind turbines are zero, the power outputs of the solar 

panels should be reduced as well. 
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5. Repeat the steps 3 and 4 until the difference of the calculated SOC and the predicted SOC 

in the current state is sufficiently small. 

6. Record the adjusted wind turbines outputs and the solar panels power outputs, and 

calculate the blade pitch angle and the solar panel terminal voltage based on the adjust 

power outputs.  

 

Figure 43. The BPN based energy manager operation scheme. 
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CHAPTER 6 

Experimental Case Study 

6.1 Introduction 

The research residential microgrid is assumed to support 1000 households in the East 

Arizona.  The original residential load data is the hourly load data in the far west area of Texas, 

which is downloaded from the Electric Reliability Council of Texas. The data ranges from April 

20
th

 2011 to April 20
th

 2013 [57].  According to the records from the U.S. Energy Information 

Administration, the average hourly power demand for a household in Arizona is 1.486 kW in 

2011 [58].  The load data will be rescaled to an average hourly load demand 1486 kW with a 

power factor 0.85 and the linear growth will be neglected.  The climate data is downloaded from 

the measurement and instrumentation date center, National Renewable Energy Laboratory.  The 

station is located in the southwest solar research park, Phoenix, Arizona, and the data set is 

composed of the hourly global solar radiation, the wind speed, and the air temperature, which 

range from April 20
th

 2011 to April 20
th

 2013 [59]. 

6.2 Optimal Sizing of Renewable Distributed Generators at Study Area  

 Figure 44 displays the average hourly wind speeds at 11 meter high in 12 months at the 

case study area by using the Weibull probability model.  The measured hourly no-calm wind 

speed samples in 12 months are classified into 25 classes, and represented by the central value of 

each class.  After calculate the cumulative probabilities of the different hourly non-calm wind 

speed classes in a month, the shape parameter c  and the scale parameter k  of the hourly wind 

speed Weibull probability model in a particular month are solved.  Table 3 lists the shape 

parameter c  and scale parameter k of the Weibull probability model of each month.  
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Figure 44. Average hourly wind speed at 11meter high in 12 months. 

Table 3 

Shape Parameter c and Scale Parameter k of the Weibull Probability Models in 12 Months 

  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

c 2.1 2.5 2.65 3.31 3.31 3.05 3.31 2.86 2.82 2.31 2.13 2.19 

k 1.92 1.85 1.94 1.93 2.12 2.27 2.37 2.47 2.21 1.95 1.84 1.93 

 

Figure 45 displayed the average hourly wind power extracted from a wind turbine with 

6.5 meter long blades.  The air density   used in this research is a constant, which is equal to 

1.2 3kg m .  When the blade pitch angle   is fixed, an optimal tip speed ratio opt  will yield to 

the maximum wind power extraction fraction ,maxpC .  When the blade pitch angle   is 
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increasing, the equivalent swept area A  is decreasing. As a result, wind power extraction 

fraction pC  is decreasing.  In Figure 45, the blade pitch angle 0   and the optimal tip speed 

ratio opt  is 7.05. The maximum power factor ,maxpC  is 0.4412.  Because the maximum average 

hourly power extracted by a wind turbine is 1.8 kW ,  a rated 2 kW  induction generator is 

capable of  transferring the mechanical energy to the electrical energy.  
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Figure 45. Average hourly wind power extracted by the wind turbine with 6.5 meter long blades 

in 12 months. 

Figure 46 displayed the average hourly global solar radiation in twelve months.  The 

measured hourly global solar radiation samples in 12 months are classified into 25 classes, and 

represented by the central value of each class.  After calculate the probabilities of the different 
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hourly global solar radiation classes in a month, the expect value will represent the average 

hourly global solar radiation of that month. 
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Figure 46. Average hourly global solar radiations in 12 months. 

 Figure 47 displayed the average hourly air temperature and the cell temperature in twelve 

months.  The measured hourly air temperature samples in 12 months are classified into 25 

classes, and represented by the central value of each class.  After calculate the probabilities of the 

different hourly air temperature classes in a month, the expect value will represent the average 

hourly air temperature of that month.  The average hourly cell temperatures in 12 months are 

calculated based on Equation 2.15.  The Normal Operating Cell Temperature (NOCT) used in 
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this equation is 47.5
oC , which is found in the manufacture data sheet of the rated 200W solar 

panel (KC200GT).   
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Figure 47. Average hourly air temperatures and cell temperatures in 12 months. 

Figure 48 displayed the average hourly power converted by the rated 200W solar panel 

(KC200GT) in twelve months.  The average hourly power converted by the solar panel is 

calculated by using Equation 2.17.  The parameters can be found in the solar panel manufacture 

data sheet available in the Appendix.  The seasonal features are obviously displayed in the figure. 

The power output from the solar panel reaches its annul peak in the summer, and the power 

output from the solar panel reaches its annul valley in the winter.  This fact exactly describes the 

globe solar radiation changing in the northern hemisphere.  



94 

 

1 2 3 4 5 6 7 8 9 10 11 12
20

25

30

35

40

45

50

55

60

65

70

Month (Jan to Dec)

A
v

e
ra

g
e
 H

o
u

rl
y

 P
o

w
e
r 

G
e
n

e
ra

te
d

 b
y

 a
 2

0
0

W
 S

o
la

r 
P

a
n

e
l 

(W
)

 

Figure 48. Average hourly power converted by a 200W solar panel (KC200GT). 

Figure 49 displays the average hourly residential active power demand from April 2011 

to April 2013.   The recorded hourly load data is rescaled to meet the actual hourly 1000 

household load demands in 2011 in the research area.  Assume that the population in the area is 

fixed, and then the linear load growth component is extracted from the load model.  It can be 

achieved by setting the coefficient of the linear growth equal to 1, 1 1b  .  The highest order of 

harmonic is the fourth harmonic, which is decided by whether the additional harmonics will 

improve the model performance significantly.  Table 4 lists the coefficients of the residential 

load components.  0b  is the coefficient of the base load, 1b  is the linear growth rate, 2b  and 3b  
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are the coefficients of the fundamental components, 4b  and 5b  are the coefficients of the second 

order harmonic components, 6b  and 7b  are the coefficients of the third order harmonic 

components, and 8b  and 9b  are the coefficients of the fourth order harmonic components.  
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Figure 49. Average hourly residential load from April 2011 to April 2013. 

Table 4 

Coefficients of the Residential Load Components by using the Fourier Series Decomposition  

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

1436.8 4.86 -65.38 98.1 -45.23 -86.75 -5.37 19.91 14.3 -6.46 

 

After the average hourly wind speeds, the global solar radiations, the cell temperatures, 

and the residential active loads in 12 months are obtained, the non-uniform simulated annealing 
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is applied to find the optimal combination of the distributed renewable generators.  The costs of 

each distributed generator are shown in Table 5 [58].  The optimal combination of the renewable 

distributed generators and the first year cost are shown in Table 6. 

Table 5 

Installation Cost, O&M Cost of Wind and Solar Power Conversion Systems 

  Installation Cost ($/kW) O&M ($/kW/Yr) 

Wind 1938-3468 12-32 

Solar 1750-2475 10-25 

 

Table 6 

Optimal Combination of Distributed Renewable Generators and the First Year Cost 

# of 2kW Wind Power System # of 200W Solar Panel System First Year Cost 

172 2355 $101,648  

 

Figure 50 displays the cooling schedule of the non-uniform simulated annealing applied 

for the optimal sizing.  At early stages, the high temperature excites the particles with the high 

energy states, and a worse solution has higher probability to be accepted.  When the temperature 

is lower, the particles trend to cool down and transfer to the relatively frozen stages.  Table 7 

listed the parameters and the initial state of the non-uniform simulated annealing. 

Table 7 

Parameters and Initial States of the Non-uniform Simulated Annealing 

Initial Temperature (K) 
710  

Temperature Cooling Down Factor 0.99 

Maximum Number of Epochs 10000 

Parameter of the Degree of Non-uniformity 1 

Boltzmann Constant (J/K) 
231.38 10   
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When the temperature dropped to 
77.857 10 K, the algorithm accepted a worse solution, 

and the energy (cost) increased to
51.042 10 .  This fact represented the hill-climbing feature, 

which allow the global minimum searching avoid being trapped in the local minimum.  When the 

temperature reached 
75.472 10 K, the maximum epoch number is reached and the iterative 

procedure stopped, which yields the minimum energy (cost) =$101,648.  
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Figure 50. The cooling schedule of the non-uniform simulated annealing. 

Figure 51 displays the distances between two adjacent solutions.  The new solutions are 

uniform-randomly generated at the early stages and non-uniform-randomly generated at later 

stages.  It is clear that the distances trend to decrease, which indicates the new solutions are 

generated near the previous solutions at the later stages.  It is the advantage of using the non-
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uniform mutation function to generate the new solutions, which denies the long jumps between 

two adjacent solutions at the later stages. 
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Figure 51. Distances between two adjacent solutions in the optimization process by using non-

uniform simulated annealing. 

6.3 Microgrid Finalization and BPN Based Energy Manager Operation in Grid-off Mode 

6.3.1 Microgrid parameters finalization The optimal combination of distributed 

renewable generators obtained in the last section.  The other two microgrid parameters will be 

finalized in this section.  The first unknown parameter is the impedance of the transmission lines 

in the microgrid.  In order to ensure the power flow converged under various microgrid operation 

conditions, it is mandatory to identify the maximum impedance of the transmission lines by 
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applying the procedure displayed in Figure 39.  During the power flow calculation, if the voltage 

vector of any bus is not converged, it is required to reduce the impedance of the transmission line 

until the power flow calculation converges again.  The second unknown parameter is the 

minimum size of the distributed energy storage.  In some season, the wind and solar energy are 

in their annul valleys and the residential load remains high (winter).  If the capacity of the 

distributed energy storage is low, it cannot deliver the sufficient power to the end users.  As a 

result, the reliability of the power supplement will be critically threatened, and the end users will 

face the power outages frequently during that season.  The state of charge (SOC) represents the 

amount of energy saved in the distributed energy storage.  If the SOC is negative, which means 

the energy saved in the battery bank is over drawn.  Another battery cell connected in parallel is 

needed to increase the capacity of the battery system.  Keep increasing the capacity of the battery 

bank until the SOC returns to a positive value.  Table 8 listed the initial impedance of 

transmission line, the initial capacity of distributed energy storage, the finalized impedance of 

transmission line, and the finalized capacity of distributed energy storage.  

Table 8 

Initial Impedance of Transmission Line, Initial Capacity of Distributed Energy Storage, 

Finalized Impedance of Transmission Line, and Finalized Capacity of Distributed Energy 

Storage 

  Impedance of Transmission Line Capacity of the Energy Storage 

Initial Value 0.103+0.525j Ω 1562.5 Ah 

Finalized Value 0.0103+0.0525jΩ 1250000 Ah 

 

Once the microgrid topology is determined, the procedure listed in Figure 39 is able to 

implement without the system reset.  The time series simulation of the microgrid in the 
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autonomous mode will be performed based on the meteorological data and the residential load, 

and the state of charge will be recorded. 

Figure 52 displayed the average hourly state of charge of the distributed energy storage 

system in the weekly time domain.  The State of Charge is always between 0 and 1, which means 

the energy storage system is never over charged or over drawn in the autonomous mode. 
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Figure 52. Average hourly state of charge of the distributed energy storage system in the weekly 

time domain from April 2011 to April 2013. 

6.3.2 BPN based energy manager implementation in the autonomous mode The BPN 

based energy manager is constructed based on Equation 5.20.  It is aim to learn the underlying 

relationship between the previous state of the SOC, the current state of the meteorological 

information, the current residential active load (inputs) and the current state of the SOC (output). 
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There are 17088 samples available from April 20th 2011 to April 20th 2013.  The first 8327 

samples are used to identify the BPN weights.  First of all, these 8327 samples are randomized 

for avoiding the BPN learning the information related to the order of samples.  Then the first 

75% of the randomized samples are selected as the training samples and the rest 25% are 

selected as the testing samples.  

After each training epoch, the testing samples pass through the network for checking the 

testing performance evaluated by the mean square error.  If the testing mean square error is 

sufficient small, or the maximum number of the training epoch is reached, the BPN training 

procedure is finished.  For verifying the best network structure, 10 networks with the different 

numbers of the hidden neurons are tested.  Figure 53 displayed the testing performances of the 

different networks.   
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Figure 53. Testing performances of the BPNs with different number of hidden neurons. 
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The BPN with 10 hidden neurons returns the best testing performance, whose normalized 

testing mean square error is 75.457 10 .  All the initial weights are randomly selected from 0 to 

1, and the other BPN parameters are identical and listed in Table 9.  

Table 9 

BPN Parameters 

Learning Rate 0.25 

Maximum number of Epochs 1000 

Activation Function Log-sig  

 

Figure 54 displays the testing elbow curve of the BPN with 10 hidden neurons, which is 

decreasing fast in the early stages of the iterative learning process.   
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Figure 54. Testing elbow curve of the BPN with 10 hidden neurons. 
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The upper graph displays the elbow curve in 1000 epochs.  The minimum normalized 

testing MSE occurs at the 1000
th

 training epoch, which is equal to
75.457 10 .  The lower graph 

displays the elbow curve in the first 10 epochs.  At the 10
th

 training epoch, the normalized testing 

mean square error has already dropped to
62.902 10 . 

Figure 55 displayed the predicted and the desired state of charge of the energy storage 

system.  
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Figure 55. Predicted and desired state of charge of the energy storage system. 

The upper graph shows the predicted and the desired hourly SOCs of all the testing 

samples, and the largest error occurs at the 2060
th

 sample, which is equal to 0.0166.  The lower 

graph shows the predicted and the desired SOCs of the first 50testing samples.     
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Figure 56 displays the prediction performance of the BPN with 10 hidden neurons. The 

red curve is the predicted values of the hourly SOC from the 8328
th

 hour to the 17077
th

 hour, the 

blue curve is the target values of the hourly SOC from the 8328
th

 hour to the 17077
th

 hour, and 

the black curve is the differences between the predicted values and the target values of the hourly 

SOC from the 8328
th

 hour to the 17077
th

 hour.  The largest error occurs at the 14610
th

 hour, 

which is equal to 0.0113. The MSE of the testing performance is
75.563 10 .   
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Figure 56. Next year SOC prediction performance of the BPN with 10 hidden neurons using 

6245 training samples. 

 Figure 6.57 displays the testing performance of the BPN with 10 hidden neurons. 

Compared with the previous BPN with 10 hidden neurons, the new BPN with 10 hidden neurons 

used all of the first 8327 samples for network training, and other parameters remains.  The red 
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curve is the predicted values of the hourly SOC from the 8328
th

 hour to the 17077
th

 hour, the 

blue curve is the target values of the hourly SOC from the 8328
th

 hour to the 17077
th

 hour, and 

the black curve is the differences between the predicted values and the target values of the hourly 

SOC from the 8328
th

 hour to the 17077
th

 hour.  The largest error occurs at the 10550
th

 hour, 

which is equal to 0.006815. The MSE of the testing performance is
74.882 10 .  It is essentially 

that the online training scheme can effectively improve the BPN predicting performance.    
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Figure 57. Next year SOC prediction performance of the BPN with 10 hidden neurons using 

8327 training samples.   

Figure 58 displays the response of the distributed energy storage, when the BPN based 

energy manager predicted the next stage of the SOC.  Due to the system nature and the 

prediction error, the distributed energy storage did not response as same as the BPN based 
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energy manager predicted.  Once the BPN based energy manager predicts the next stage SOC, 

the renewable distributed generators should self-adjust the power outputs to ensure the SOC of 

the energy storage will be leaded by the predicted SOC based on the procedure described in 

Figure 43. The maximum error occurs at the 11520
th

 hour, which is equal to 0.021. The mean 

square error of the energy manager predicted SOC is
67.65 10 .               
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Figure 58. Real-time distributed energy storage SOC response. 

Figure 59 displayed the power outputs from the solar panels.  The blue curve is the 

maximum power outputs that the solar panels are able to generate under the real time 

metrological condition.  The red curve is the adjusted power outputs that allow the real time SOC 

of the distributed energy storage follow the energy manager predicted SOC.  There is a valley 
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occurred from the 13000
th

 hour to the 16000
th

 hour approximately, which is the winter season of 

the second year. 
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Figure 59. Real-time PV maximum power output and adjusted power output. 

Figure 60 displays the terminal voltages applied to the 200W solar panels, which yields 

to the adjusted solar panel power outputs as shown in Figure 59.  The upper sub figure displays 

the adjusted terminal voltages from the 8328
th

 hour to the 17077
th

 hour, and the lower sub figure 

is a snap shot of the upper figure, which is from the 8328
th

 hour to the 8375
th

 hour (48 hours, 2 

days). In the night time, the terminal voltages drop to zero, because the global solar radiations 

are zero, and no photon current can be inspired in the solar cells.  In the day time, the terminal 

voltages raise up with the increasing of the global solar radiation based on the desired adjusted 

power outputs.  



108 

 

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

x 10
4

0

5

10

15

20

25

30

35

Hour (from the 8328th hour to the 17077th hour )

A
d

ju
st

e
d

 S
o

la
r 

P
a
n

e
l 

T
e
rm

in
a
l 

V
o

lt
a
g

e
 (

V
)

8330 8335 8340 8345 8350 8355 8360 8365 8370 8375
0

5

10

15

20

25

30

35

Hour (from the 8328th hour to the 8375th hour )

A
d

ju
st

e
d

 S
o

la
r 

P
a
n

e
l 

T
e
rm

in
a
l 

V
o

lt
a
g

e
 (

V
)

 

Figure 60. Real-time adjusted solar panel terminal voltages. 

Similarly, the power outputs from the wind energy system will be adjusted to meet the 

revised power outputs, which yields to the SOC of the distributed energy storage following the 

SOC predicted by the BPN based energy manager. 

Figure 61 displays the power outputs from the wind energy systems from the 8328
th

 hour 

to the 17077
th

 hour.  The blue curve is the maximum power outputs that the wind power 

conversion systems are able to generate under the real time metrological conditions, and the red 

curve is the adjusted power outputs that allow the real time SOC of distributed energy storage 

follow the energy manager predicted SOC.  In some hours, the values of blue curve are larger 

than that of the red curve, which avoids the distributed energy storage be overcharged by the 

power outputs from the generation bus. 
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Figure 61. Real-time maximum wind power outputs and adjusted wind power outputs. 

Figure 62 displays the blade pitch angles, the tip speed ratios, and the wind power 

efficiencies of the rated 2kW  wind turbine with doubly-fed induction generator, which yields to 

the adjusted wind power outputs as shown in Figure 61.  The upper sub figure displays the 

adjusted blade pitch angles   from the 8328
th

 hour to the 8735
th

 hour; the middle sub figure 

displays the adjusted tip speed ratios   ; the lower sub figure displays the wind power extraction 

fractions based on the adjusted blade pitch angles   and the adjusted tip speed ratios   by using 

Equations 3.33 and 3.34.  Initially, the blade pitch angles   are set to zero for the maximum 

wind power extraction at a certain wind speed.  However, the blade pitch angles are increased at   
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some hours.  These changes reduced the wind power extraction fraction and resulted in lower       

wind power outputs.      
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Figure 62. Real-time adjusted pitch angle, tip speed ratio and power efficiency. 

6.4 Transient Performances of the DRGs and DES  

In this section, the snapshots of the microgrid transient performance will be presented, 

including the wind power conversion system, the solar power conversion system, and the 

distributed energy storage.  

6.4.1 Wind power conversion system transient performance analysis The initial 

values and the target values of the wind power systems for the transient performance analysis are 

shown in Table 10. 
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Table 10 

Initial and Target Values of the Wind Power Systems for Transient Performance Analysis 

  Initial Value Target Value 

Active Power (W) 500 1000 

Reactive Power (Var) -94.2733 -180.936 

Pitch Angle (degree)  0.1 25.6 

Tip Speed Ratio 2.5 2 

Wind Speed (m/s) 4.4719 7.432 

 

Figure 63 displays the changings of the wind speed and the rotor angular speed.   
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Figure 63. Wind speed and rotor angular speed acceleration.  

The wind speed is increasing from 4.47 /m s  to 7.43 /m s  in 83.3 milliseconds.  As a 

result, the rotor angular speed responses to the changings of the wind speed, and is increasing 



112 

 

from 206.39 /rads s  to 342.96 /rads s .  However, it is still below the system synchronous 

speed 376.99 /rads s , and the doubly-fed induction generator will operate in the sub-

synchronous mode.   

Figure 64 displays the PI controlled rotor currents in the direct and quadrature axes.  

When the DFIG is in the sub-synchronous mode, the rotor absorbs the power from the grid, and 

the rotor side converter manipulates the voltage frequency for compositing the difference 

between the synchronous angular speed and the rotor rotating speed.  The above procedure is 

accomplished by the rotor side converter and its PI controllers.   
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Figure 64. PI controlled rotor currents in direct and quadrature axes.  

The stator active and reactive powers are only controlled by the rotor side currents in the 

direct and quadrature axes. The integral gain and the proportional gain of the PI controllers for 



113 

 

rotor side currents are 100p iK K  .  As shown in Figure 64, the rotor currents in the direct 

axis approached the target value in 0.4ms , and the rotor currents in the quadrature axis 

approached the target value in 0.5ms .  

Figure 65 displays the rotor voltages in the direct and quadrature axes.  

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

20

40

60

80

100

120

t(s)

R
o

to
r 

V
o

lt
a
g

e
 i

n
 D

ir
e
c
t 

A
x

is
 a

n
d

 Q
u

a
d

ra
tu

re
 A

x
is

 (
V

)

 

 

Vd

Vq

 

Figure 65. Rotor voltages in the direct and quadrature axes. 

The rotor side voltages partially depend on the rotor currents in the direct and quadrature 

axes.  The other parameter decides the rotor voltages is the slip frequency, which is equal to the 

difference between the synchronous speed and the rotor angular speed, s r  , as shown in 

Equations 3.65 and 3.66.  The rotor currents in the direct and quadrature axes are settled down in 
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0.5ms , but the rotor voltages in the direct and quadrature axes are still changing, because the 

rotor rotating angular speed is keeping changing. 

Figure 66 displays the Phase A rotor current and voltage.  The rotor voltages in the direct 

and quadrature axes are the mathematical variables.  In practice, they should return to the three 

phase forms as the reference signals for the converter switching control.   
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Figure 66. Rotor current phase A and voltage phase A. 

As shown in Figure 66, the magnitude of the rotor voltage is decreasing and the 

magnitude of the rotor current changes slightly.  Because the wind speed is increasing and more 

wind energy is extracted by the wind turbines, the rotor will absorb less power from the 

microgrid, which is the main reason that the rotor voltage magnitude drops.  Because both the 
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wind speed and the rotor angular rotating speed are increasing, the slip frequency is reducing.  

As a result, the frequencies of the rotor voltage and the rotor current are dropping. 

Figure 67 displays the rotor and stator side active and reactive power outputs.   
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Figure 67. Rotor and stator active and reactive power. 

Initially, the rotor side reactive power is used to establish the electromagnetic field, 

which bridges the stator side and the rotor side as an energy transfer channel.  However, if the 

stator side voltage remains or approaches a high level.  The rotor side reactive power only builds 

the potential on the rotor side leakage reactance, which introduces the leakage flux.  In Figure 66, 

the magnitude of the rotor voltage is decreasing, so the rotor reactive power is decreasing as well. 

The stator side reactive power is decided by the rotor current in the direct axis only.  When the 

rotor current in the direct axis approached to its target value, the stator reactive power will not 
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change anymore.  The rotor side active power absorbed from the grid is decreasing due to more 

and more energy is extracted by the wind turbine and fed to the DFIG.  The stator side active 

power is decided by the rotor current in the quadrature axis only.  When the rotor current in the 

quadrature axis approached to its target value, the stator active power will not change anymore.   

6.4.2 Solar power conversion system transient performance analysis The initial 

values and the target values of the solar power systems for the transient performance analysis are 

shown in Table 11. 

Table 11 

Initial and Target Values of the Solar Power Systems for Transient Performance Analysis 

  Initial Value Target Value 

Active Power (W) 6.0563 42.4997 

Terminal DC Voltage (V) 22.4 24.9 

Global Solar Radiation (W/m2) 36.3008 227.2871 

Air  emperature        18.1448 18.3977 

 

The upper graph in Figure 68 displays PI controlled DC/AC inverter currents in the direct 

and quadrature axes.  The DC/AC inverter is the last electronic interface mounted at the terminal 

of the solar power conversion system, which is aim to transfer the DC power to AC power from 

the solar panel side to the generation bus.  The above procedure is accomplished by the DC/AC 

inverter and its PI controllers.  The integral gain and the proportional gain of the PI controllers 

are 3p iK K  . As shown in Figure 68, the current in the quadrature axis approached the target 

value in 0.25ms .  The current in the direct axis is zero, because the solar power systems are not 

responsible for generating the reactive power.  The lower graph in Figure 68 displays the 

currents in AC waveforms, and the waveform modulation is completed in 0.3ms . 
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Figure 68. PV DC/AC inverter current output in direct and quadrature axes and three phase form.  

The upper graph in Figure 69 displays the DC/AC inverter voltage in the direct axis.  The 

middle graph in Figure 69 displays the DC/AC inverter voltage in the quadrature axis.  The 

DC/AC inverter voltages in the direct and quadrature axes depend on the PI controlled currents 

in direct and quadrature axes.  As shown in Figure 69, the voltage in direct axis approached the 

target value in 0.2ms , and the voltage in quadrature axis approached the target value in 0.2ms  as 

well.  The reason that the voltage in the direct axis did not remain zero is that the voltage will 

drop through the impendence of connection conduct between the solar power conversion systems 

and the generation bus.  The lower graph in Figure 69 displays the DC/AC inverter voltage in 

AC waveforms.  Because of the changing of voltages in the direct and quadrature axes are small, 

the change of voltage in AC waveform is small as well.  
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Figure 69. PV DC/AC inverter voltage output in direct and quadrature axes and three phase form.  

Figure 70 displays the active power and the reactive power outputs from the DC/AC 

inverter.  It is obviously that the initial active power output approaches the target value in 5ms . 

The solar panel system is not proposed to generate the reactive power in the microgrid. Recall 

the upper graph in Figure 69, the small amount decrement in the direct axis is the voltage drop 

over the conduct, which connects the DC/AC inverter to the generation bus.  In the viewpoint of 

the generation bus, there is no reactive power delivered from the solar power conversion. The 

reactive power output displayed in Figure 70 also demonstrates this fact.     

6.4.3 Distributed energy storage transient performance analysis The initial, the 

intermediate, and the final active and reactive power injections or ejections of the distributed 

energy storage for the transient performance analysis are shown in Table 12.  
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Figure 70. Active and reactive power outputs from the DC/AC inverter at the terminal of the 

solar power system. 

The upper graph in Figure 71 displays PI controlled DC/AC inverter currents in the direct 

and quadrature axes.  The DC/AC inverter is the last electronic interface mounted on the 

distributed energy storage,  which is aim to transfer the DC power to the AC power required for 

balancing the power flow in the microgrid, and synchronize the output voltage vector to the 

swing bus voltage vector.  The above procedure is accomplished by the DC/AC inverter and its 

PI controllers.  The integral gain and the proportional gain of the PI controllers for the currents in 

the direct and quadrature axes are 100p iK K  . The lower graph in Figure 71 displays the 

currents in AC forms, and the phase angles of the phase to ground currents are shifted twice in 

0.25 second.  
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Table 12 

Initial, Intermediate and Final Values of Active and Reactive Power Outputs from the 

Distributed Energy Storage for Transient Performance Analysis 

  Initial State Intermediate State Final State 

Active Power (W) -2000 2000 -2000 

Reactive Power (Var) -5000 -5000 5000 
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Figure 71. PI controlled ES DC/AC inverter current output in d, q axes and three phase form. 

The upper graph in Figure 72 displays the DC/AC inverter voltages in the direct and 

quadrature axes.  The lower graph in Figure 72 displays the DC/AC inverter voltage outputs in 

the AC waveforms.  The DC/AC inverter voltages in the direct and quadrature axes depend on 

the PI controlled currents in direct and quadrature axes.  As shown in Figure 72, the voltages in 
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the direct and quadrature axes approached the target value instantly.  The reason that the voltage 

ripples occur is that the voltages are proportion to the derivations of the currents.  If the currents 

in the direct and quadrature axes change a large amount rapidly, the voltage pulses occur.  The 

lower graph displays the DC/AC inverter voltages in the AC waveform.  Because of the reactive 

power output is increasing, the magnitudes of the voltages are increasing as well.  
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Figure 72. DES DC/AC inverter voltage output in direct and quadrature axes and in three phase 

form. 

Figure 73 displayed the active power and the reactive power outputs from the DC/AC 

inverter.  It is obviously that the transitions between different states are instant.  The distributed 

energy storage responded to the required active and reactive power from the swing bus fast and 

accurately. 
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Figure 73. Active power and reactive power outputs from the distributed energy storage. 

6.5 Comparison with Other Energy Storage State of Charge Estimation Method 

The core of the energy manager is the method applied to predict the state of charge of the 

distributed energy storage.  

 In 2005, Bhangu et al. proposed an extended Kalman filter (EFK) based technique for the 

real time prediction of state of charge of the lead-acid cells [60].  They stated their EKF based 

method consistently provides estimates of the measured values within 2% average error in their 

1300 second battery discharging simulation.  

 In 2012, Mishra et al. presented their smart charge study on energy storage state of 

charge prediction by using the support vector machine technology after they experimented with 

different linear regression models, including the least squares method and different regularized 
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models: LASSO, Elastic-Net, and Ridge Regression [61].  Table 13 listed the performances of 

these models for predicting the hourly SOC over 40days.  

Table 13 

Average Prediction Error (%) over 40 Days Sample Period for SVM with Different Kernel 

Functions, and the Best Linear Regression Model Elastic-Net 

Prediction Model Average Error 

Elastic-Net 37% 

SVM-Linear 29.50% 

SVM-RBF 42.51% 

SVM-Polynomial 5.75% 

 

  Compared with their results [61], the average testing predicted error (%) by using the 

BPN based energy manager in this research over 365 days sample period for the hourly state of 

charge of the distributed energy storage is 0.0704%, which is much better than the results 

presented in [61].   
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CHAPTER 7 

Conclusion and Future Work 

7.1 Conclusion and Contribution  

 This research proposed a biologically inspired method to design the energy manager, 

which is able to coordinate the standalone operation of the hybrid renewable residential 

microgrid.   

In the first phase of this dissertation, a novel optimization procedure is presented to 

minimize the overall cost of the different types of renewable distribution generators based on the 

metrological features of the given location and its residential load profile.  The non-uniform 

simulated annealing algorithm applied is capable of searching the space uniformly at the early 

stages and locally at the later stages, which improves the efficiency of optimal solution searching.  

In the second phase of this research, the dynamic microgrid modeling allows the system 

performance analysis both in the steady and the transient states. The wind turbine with DFIG can 

operate in either the sub synchronization or the super synchronization model, which allows it 

generate energy in a wide range of the wind speeds.  The dual channel converter system, which 

is mounted at the terminal end of the battery bank, allows the distributed energy storage sending 

or absorbing the real power and the reactive power from or to the microgrid bi-directionally.  

This advantage makes the distributed energy storage system be capable of balancing the power 

flows in the microgrid as a swing bus.   The P, Q decoupling control based PI controllers adjust 

the current components in the direct and quadrature axes to the target values fast and accurately, 

which yields to the reliable reference signals sending to the power electronic interfaces.    

In the third phase of this research, the energy management strategy is proposed and learnt 

by the back propagation neural network perfectly.  According to the qualitative comparison with 
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other linear regression models and the support vector machine models with different kernel 

functions [61], the BPN based energy manager prediction performance is much better than those 

mentioned above.  The BPN based energy manager predicts the state of charge (SOC) of the 

distributed energy storage system, and it yields to the reference values of the control variables of 

the power electronic interfaces.  The system responds the desired operation conditions rapidly 

with the acceptable error.  This result presents a fact that the biologically inspired energy 

manager can implement the proposed energy management strategy after the self-learning 

procedure, which will effectively promote the microgrid to the end users who are lack of the 

essential knowledge of the power system engineering.  

7.2 Future Work 

 In this research, the micro grid is designed for the residential end users.  It is interesting 

to apply the proposed methodologies to other types of the demands, such as military base in the 

remote area, outer space center, and other fields, which are out of the range of the conventional 

power systems.  

 The following technical topics are also suggested for future studies:  

1. Impact of unbalanced load on the control and behavior of the microgrid in the 

autonomous mode. 

2. The effective strategy development of the energy storage system in the grid-connected 

mode. 

3. Impact of shadow on the surface of the PV panels on the control and behavior of the 

microgrid. 

4. Impact of voltage dip on the stator of the DFIG. 

5. End user load control and battery size optimization in the grid autonomous mode. 



126 

 

6. The generalization ability for the bio-inspired energy manager for the multiple microgrids 

coupling. 
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Appendix 

Table A-1 

Manufacture Data Sheet of KC200GT Solar Cell 

mpI  (A) 76.1 

mpV  (V) 26.3 

maxP  (W) 200.0863 

scI  (A) 8.21 

ocV  (V) 32.9 

,o nI  (A) 89.8254 10  

pvI  (A) 8.2117 

A 1.3 

pR  ( ) 1165.6 

sR  ( ) 0.2382 

NOCT (
oC )  47.5 

 

Table A-2 

Parameters of Wind Turbine with Rate 2kW Doubly Fed Induction Generator 

Blade Length (m) 6.5 

Moment of Inertia of One Mass Drive Train (
2kg m )  0.002 

Gear Ratio 150 

Rotor Self Reactance (H) 0.1568 

Rotor Resistance ( ) 0.001 

Rotor Leakage Reactance (H) 0.0156 

Stator Self Reactance (H) 0.1554 

Stator Resistance ( ) 0.001 

Stator Leakage Reactance (H) 0.0155 

Mutual Reactance (H) 0.15 

Pair of Poles 2 
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