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Abstract 

Agriculture workers inhale a variety of dusts, gases, microbes and compounds on a daily basis.  

Several respiratory diseases display inflammation and oxidative stress as key factors of 

pathogenesis.  To better understand the effects of agricultural dusts on the airway there first 

needs to be characterization of dust components.  Thus, we hypothesized that confinement 

facilities contain high levels of respirable particles, bacteria, and elements of respiratory 

importance. We further hypothesized that SCF dust alone or in combination with diepoxybutane 

(DEB) will result in oxidative stress and phytonutrients from the sorrel plant will reduce these 

effects. Several bacterial species were identified via amplification of the 16S ribosomal DNA 

gene and or biochemical selection, and include Escherichia coli, Listeria sp., Bacillus sp., 

Staphylococcus and Clostridium species.  Each dust extract showed pH altering effects (p-value 

< 0.05) and resulted in acidic changes with the exception of small ruminant dust (alkaline).  

Respirable particles (< 10 µm) were found in dairy and poultry dusts.  More inhalable particles 

were found in swine, small ruminant and equine dust samples.  Exposure to swine dust extract 

increased intracellular hydrogen peroxide, 8-isoprostane and nitric oxide levels in NHBE cells in 

vitro and pretreatment with sorrel prevented such increases (p-value<0.001, p-value<0.001 and 

p-value<0.05 respectively). Elucidating the mechanism of agricultural dust mediated oxidative 

stress, ‘dust+DEB’ mediated oxidative stress and agriculture-related inflammatory airway 

diseases will provide insight for better understanding of respiratory diseases caused by chronic 

exposure to CAFO-like facilities and development of improved animal management practices to 

ultimately decrease the incidences of respiratory disease. 
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CHAPTER 1 

Introduction 

  Agriculture workers are prone to develop respiratory illnesses associated with acute and 

or chronic inhalation of dusts and are similar to chronic obstructive pulmonary diseases (COPD).  

However, many of the symptoms do not easily fit within a particular disease category.  Example 

respiratory diseases include asthma-like syndrome, chronic bronchitis and farmer’s lung.  These 

diseases are associated with a high concentration of free radicals in tissues such as asthma.  Our 

lab has established that oxidative stress occurs in airway cells exposed to swine confinement 

facility dust in vitro (Gerald et al, 2010).  In addition to dust exposures, a high prevalence of 

agricultural workers smoke, (do Pico, 1996) and tobacco smoke increases the free radical 

concentration within the airway (Borgerding & Klus, 2005). Butadiene is a byproduct of 

petroleum factories and is present in tobacco smoke (Yadavilli & Muganda, 2004; Brunneman, 

Kagan, Cox & Hoffman, 1990).  Published reports state that there is oxidative stress and DNA 

damage in lymphocytes exposed to a butadiene metabolite, diepoxybutane (DEB) (Yadavilli et 

al, 2007).  However, to our knowledge no studies have examined the impact of DEB on the 

airway epithelia in combination with dusts.  Many plants have been said to have increased 

antioxidants and thus have the ability to protect against free radicals and reduce the effects of 

oxidative damage.  Antioxidants bind to free radicals preventing them from causing damage by 

binding to cellular components.  Hibiscus sabdariffa (sorrel) is a plant that exhibits the ability to 

ward off oxidative stress.  Recent studies in our lab have supported this claim (Gerald et al, 

2013).  Agriculture workers are exposed to many variants of dusts which can potentiate airway 

inflammation.  These symptoms are similar to common airway diseases such as asthma and 

chronic bronchitis but also vary.  Smoking is also a key contributor to respiratory diseases by the 



4 

 

 

addition of free radicals leading to oxidative stress.  The goal of this study is to fill in gaps in the 

knowledge base/published literature on oxidative stress mediated respiratory disease and to 

evaluate novel approaches for preventing agriculture-related respiratory diseases. 

The central hypothesis is that agricultural workers exhibit respiratory complications due 

to oxidative damage mediated by environmental factors (i.e. agricultural dusts and cigarette 

smoke chemicals) and that sorrel extracts can relieve these symptoms.  The rationale for this 

study is based on preliminary studies in our lab that show environmental factors may mediate 

oxidative stress in airway epithelia and sorrel plant extract can decrease oxidative stress in this 

tissue. Through in vitro studies with respiratory cells (and lymphocytes) we have shown that 

exposure to agricultural dusts from animal husbandry units modulate genes and proteins 

responsible for controlling oxidative stress responses and pretreatment with sorrel extracts 

reduce these effects. While the significance of these changes in respiratory cell dynamics is not 

know at this time, the work summarized here is expected to provide insight for understanding the 

exposures experienced by agricultural workers and the mechanisms governing associated cellular 

and molecular processes.   
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CHAPTER 2 

Literature Review 

Various agricultural rearing strategies are dependent on type of production and animal 

species, but are usually broken up into three main categories: confinement, semi-confinement 

and pasture based.  The dust that accumulates over time in each type of facility is complex due to 

the rearing strategy, animal species and many other various factors.  The prevalence of 

respiratory illness is in part due to the variations between management systems.  However, there 

is difficulty in distinguishing between symptoms, which make the disease harder to treat.  To 

further complicate the respiratory nature of agriculture workers is the fact that more than half are 

reported as cigarette smokers (do Pico, 1996).  Cigarette smoke’s complexity can also exacerbate 

previous conditions which can perplex medical professionals on how to diagnose and treat 

respiratory complications.  Our interest is in investigating a more holistic approach to prevention, 

that includes natural ways to combat oxidative stress which is common to both agriculture dust 

mediated airway disease and cigarette smoke laden airways. 

2.1 Animal Housing and Rearing Strategies  

Agriculture is a main staple to the world.  Meat production (beef and veal, pork, and 

chicken) for the world was 236,537 (thousands of metric tons) and meat consumption was 

234,624 in 2010 (Census, 2012).  North Carolina is the second largest hog producer with 25% 

(of gross farm receipts) and poultry producing state in America with 36.9 % (turkeys and 

broilers) of US value respectively (United States Department of Agriculture Census of 

Agricultural, 2007).  Rearing styles vary depending on species and production (small-scale or 

grand-scale).  Due to the demand of swine and poultry, a confinement system is usually more 

efficient.  Confinement systems allow animals to be grown faster, stocked densely and protected 
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from many environmental factors such as diseases and weather extremes.  Semi-confinement 

facilities that house ovine and caprine species (small ruminant), cattle (dairy), and horses are less 

constrained compared to the confinement practices.  Semi-confinement animals have the option 

of having an inside and outside component.  The air quality is less concentrated compared to the 

confinement facilities which are often faced with poor ventilation and an accumulation of dust.  

However, many outside factors can influence prevalence of disease (parasite infection) and 

weight gain.  

Despite successes garnered from concentrated animal feeding operations (CAFOs) they 

typically have a bad reputation and may have a negative impact on the environment because the 

waste can be a burden on surrounding neighborhoods.  CAFOs are operations where animals are 

kept and raised in confinement facilities on a relatively small amount of land.  In CAFOs, feed is 

brought to animals as opposed to eating on free range pastures.  These types of operations are 

mostly utilized in food-animal companies in order to produce more animals and associated 

commodities in a relatively short amount of time. The limited amount of space aids in higher 

production and higher weight gain in CAFO-maintained animals.  In the U.S., the most common 

food animals maintained CAFOs are swine and poultry.  Methane and ammonia are common 

gases that plague both indoor and outdoor animal rearing environments; however, the levels of 

such gases are often intensified by confinement housing approaches.  For Swine, manure pits sit 

underneath animals and the waste the animals produced is collected there.  Gases that are formed 

in the pits include hydrogen sulfide, ammonia, methane and carbon dioxide (Spurzem, 

Romberger,Von Essen, 2002).  In the U.S. the amount of animal waste (i.e., urine, manure and 

carcasses) produced by CAFOs is 130 times more than human waste (United States Senate 

1997). 
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The environmental impact exerted by animals reared in pasture-based operations is not 

much better.  Pasture raised dairy and beef cattle are fed high fiber diets which leads to an 

increase of methane emissions compared to feed practices in confinement facilities which results 

in less methane generation (Siegford, Power & Grimes-Casey, 2008).  Pasture-based rearing 

strategies are known to support the normal behavior of the animals but animals can be exposed to 

pathogens and the environment can take harsh assaults.  However, disadvantages to this 

management practice include increase of parasitic infections (Roepstorff and Murrell, 1997), soil 

erosion due to animal behaviors such as rooting and little to no control over environmental 

conditions (e.g. temperature and weather).  

In the study conducted by Gustafsson (1999), three piggeries for growing and finishing 

pigs were accessed for the settling rate of dust, ventilation rate and dust suppression.  From this 

work, it was noted pig number and weight have an impact on dust generation and dust 

concentrations are usually higher in the daytime than at night as expected.  However, it was 

stated that ventilation rates were highly limited because the concentration of the dust affects the 

settling rate.  The dust levels were decreased dramatically in the piggery defined as cold climate, 

uninsulated, with straw bedding and natural ventilation when compared to the climate control 

insulated piggery.  Also noted from this study, was the ability to reduce dust loads by spraying 

water or a water-oil combination. There are so many varying factors that can influence the dust 

accumulation in a livestock or poultry facility.  In conjunction, there are several practices animal 

husbandry facilities can utilize to reduce the risks of dust inhalation.    

2.2 Agricultural Dusts  

Agricultural dusts tend to be a very complex mixture of grain/feed particles, microbial 

products (endotoxins), hair and skin cells (animals and humans), feces, a variety of gases, metals 
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and other components.  Odorous emissions from agriculture waste have raised concerns 

regarding CAFOs for many years (Esteban, 1997).  In a study done by Schiffman and colleagues 

(2001) the gaseous compounds from swine facilities were analyzed via GC/MS, and they found 

167 different compounds including but not excluding alcohols, acids, aromatics, ethers, nitrogen-

related compounds and phenols.  It was also reported that odors can be smelled past 1000 ft of 

swine houses.  During a typical day’s work, farmers that work  in animal confinement facilities 

may be exposed to inorganic substances, food grains, organic dusts (containing bioaerosols such 

as fungi, bacteria or their components) as well as gases (e.g. ammonia) and chemicals (e.g. 

pesticides, disinfectants).   Many airborne pathogenic microorganisms, including viruses and 

bacteria, can be transmitted great distances through the airflow (Jones & Harrison, 2004; Brown 

& Hovmoller, 2002; Shinn, Bing-Canar, Cailas, Peneff & Binns, 2000). 

In Roy and colleagues (2003), bacterial DNA was found more in farm barns and farm houses 

than urban houses.  Bacteria can potentiate respiratory symptoms and illnesses in human 

workers.  Bacillus anthracis is a gram positive rod-shaped bacterium that is also a spore former.  

When the conditions are not favorable to the bacteria to grow they become dormant and 

commence into a spore.  These spores can be inhaled, ingested and absorbed through lesions in 

the skin.  Most of the time, anthrax infections will resolve themselves, however there have been 

occasions where anthrax can be fatal.  One study has shown that the endospore of B. anthracis 

interacts with some free radicals to maintain in hostile environments in its normal environment.  

In Baillie et al, 2005, it is reported the B. anthracis endospore possesses its own antioxidants 

SOD and catalase, to combat free radicals such as hydrogen peroxide and superoxide.  

Furthermore, this study also states that the endospore shows no negative side effects once 

exposed to superoxide.  These key factors also contribute to virulence that can target 
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macrophages because endospores need to be phagocytized before they can germinate (Ireland & 

Hanna, 2002; Weiner & Hanna, 2003).  The gram positive bacteria Listeria monocytogenes can 

thrive in a variety of environmental conditions (Gandhi & Chikindas, 2007).  Listeriosis is a rare 

food borne illness but can be quite severe causing central nervous systems problems such as 

meningitis, septicemia and abortion (Carpentier & Cerf, 2011).  It is usually found in dairy 

products like soft cheeses, in meat, poultry and in raw milk (CDC, 2013).  Salmonella is of 

importance to the pork industry because it is the second leading foodborne illness. Salmonellosis 

costs 80.3 million dollars worldwide annually.  It is also the leading cause of hospitalization and 

death (Majowicz et al, 2010; Scallan et al, 2011).  Swine (and other mammals) and avian sources 

are known carriers of Salmonella.  Escherichia coli are common gram negative bacteria found in 

the intestines of mammals.  Cattle are reservoirs of the strain E. coli O157:H7 (Pruimboom-

Brees, Morgan et al, 2000).  This particular strain is known to have been the causative agent in 

sporadic cases and outbreaks since the 1980s, with the source of the bacterium linked back to 

cattle (Laegreid, Hoffman et al, 1998).  Clostridium species such as C.  botulinum have the 

potential to create foodborne illness as well.  These gram positive bacteria normally dwell in soil 

and are spore-formers similar to the bacillus group.  Interestingly, Clostridium botulinum 

possesses the deadliest toxin in the world (Schantz and Sugiyama, 1974).   

In addition to the bacteria themselves, toxic bacterial components can also be found in 

agriculture dusts.  Commonly found components are endotoxins, which are part of the outer 

membrane of gram negative bacteria (Schierl et al, 2007).  Lipopolysaccharide is the infectious 

portion or endotoxin of the membrane that induces a cellular response or causes disease.  In 

animal houses, the major contributors to endotoxin-contaminated organic dusts are animal feces 

and bacteria-contaminated plant materials (Schierl et al, 2007).  Endotoxins are potent inducers 
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of neutrophilic airway inflammation and are thought to be a major risk factor for adverse health 

effects of the airways among farmers (Mathiesen, Von Essen, Wyatt & Romberger, 2004; Schierl 

et al, 2007).  In particular, microorganisms, or their fragments, can be passively or actively 

released into the air in response to the changes of the hygienic situation of animal houses and 

meteorological conditions (Charavaryamath & Singh, 2006).  The majority of dust-borne fungi in 

agricultural settings are of the Aspergillus species.  Typical amounts of aerosols inhaled are 10
4 

to 10
7
 CFU/

 
m

3
 of bacteria and 10

3 
to 10

6
 CFU/m

3 
of fungi (Kirkhorn, 2002).   

Although there are numerous epidemiological reports summarizing the respiratory effects 

associated with inhalation of agricultural dusts by farmers, fewer, if any, reports explore the 

molecular effects on the airway epithelium.  Thus, it is intriguing to characterize agricultural 

dusts from animal husbandry units and evaluate which components have a negative impact on 

the airway epithelium. 

2.3 Respiratory Pathophysiology 

The respiratory system consists of two parts: the conducting portion and respiratory 

portion.  The conducting portion is comprised of nasal cavities, nasopharynx/oropharynx, larynx, 

trachea and two primary bronchi.  The above mentioned passages lead to the gas exchange 

region within the lung.  Inside the lung space, the primary bronchi are divided into smaller 

branches called bronchioles.  This is also known as the bronchial tree. The bronchioles are at the 

last remnants of the conducting portion.  The respiratory portion is the location of gas exchange 

and is one of the respiratory system’s main functions, along with air conduction and air filtration.  

The respiratory portion consists of respiratory bronchioles, alveolar ducts, alveolar sacs, and 

alveoli.   
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Conditioning must occur before air reaches the gas exchange region.   This happens in the 

conducting areas via warming, moistening and removal of debris.  Any particulates not stopped 

by the nasal cavity will be trapped in mucous in the conducting portion of the airway.  The 

mucous blanket that covers the trachea, bronchi and other parts of the conducting passages also 

serves as a protectant against dehydration from the inhaled air.  Cilia are specialized hair-like 

projections that undulate to coordinate a sweeping motion known as mucociliary clearance. This 

allows for expelling the mucus by moving up the respiratory tract or expelling the mucus by 

moving it down the esophagus so that it can be neutralized by the acids in the stomach.  

Mucociliary clearance is regulated by the free radical, nitric oxide (Jain, Rubinstein et al, 1993). 

The trachea is a short flexible extension of the larynx and its walls condition the inspired 

air.  There are four layers of the trachea: mucosa (ciliated pseudostratified epithelium and elastic 

fiber-rich laminia propia), submucosa (denser connective tissue than the lamnia propia), cartilage 

(C-shaped hyaline cartilages), and adventitia (connective tissue).  The morphology of the trachea 

is contributed largely to the C-shaped hyaline cartilages that are stacked on top of one another; 

providing support and protection against tracheal collapse. 

There are several types of cells in the ciliated pseudostratified columnar epithelium of the 

conducting system: goblet, ciliated, basal, brush and small granule cells.  The main cell types in 

tracheal epithelium are the first three types mentioned.  Goblet cells synthesize and secrete 

mucus and function as progenitor cells that can differentiate into simple columnar cells when 

exposed to external toxins.  Mucous cell numbers increase during chronic irritation of the airway.  

Increasing amounts of toxins over time can lead to a condition known as goblet cell metaplasia 

which is known to be a precursor to cancer.  Ciliated cells are the most prominent cell type in the 

trachea.  Cells are equipped with cilia, short hair-like structures on the apical surface.  Goblet 
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cells and ciliated cells work in concert to produce the mucociliary escalator that removes inhaled 

particles from reaching the lungs.  Basal cells are progenitors of other cell types.  These small 

rounded cells lie close to the basal lamina.  They do not possess many organelles, which is 

typical of stem cells.   

The two branches that follow the trachea are known as the main bronchi (right and left).  

Each bronchus enters the lung and separates out into lobar bronchi.  These branches support a 

lobe of the right (three lobes= three branches) and left lung (two lobes = two branches).  Further 

branching extends into eight bronchopulmonary segments (left lung) and ten bronchopulmonary 

segments (right lung). This branching continues, coinciding to the number of segments for each 

lung.  

 The bronchi and trachea share the same histological structure until the bronchi enter the 

lung.  The structure of the wall transforms from cartilage rings into an amorphic shape.  The 

shape of the bronchi began to look circular which is a distinct difference from the tracheal 

morphology.  The cartilage decreases as the bronchi are reduced in size.  Smooth muscle 

develops to form a layer around the wall as cartilage disappears.  Once the branches become 1 

mm in diameter, the branch is known as a bronchiole.  The bronchi can be divided into five 

layers: mucosa (pseudostratified epithelium), muscularis (continuous layer of smooth muscle), 

submucosa (relatively loose connective tissue), cartilage layer (discontinuous cartilage plates) 

and adventitia (moderately dense connective tissue).   

Bronchioles measure less than 1 mm in diameter and continue to branch from the 

segmented bronchi to the terminal bronchioles to the respiratory bronchioles.  Cartilage and 

glands are not absent in the bronchioles.  Larger bronchioles have ciliated, pseudostratified 

columnar epithelium as well as goblet cells, but as they narrow, the cell type slowly develops 
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into a simple ciliated columnar epithelium and goblet cells disappear.  A thick smooth muscle 

layer is found in the wall of the bronchioles.  The terminal bronchioles are the smallest 

conducting bronchioles and histologically are lined with cuboidal epithelium.  In the terminal 

bronchioles, clara cells are seen to increase in number as ciliated cells decrease.  Clara cells do 

not possess cilia and appear to be rounded on the apical surface.  These cells secrete proteins, 

clara cell secretory protein (CC16), and lipoproteins, however when lung injury is present the 

amount of proteins secreted decreases due to cell injury.  These proteins help to protect the 

bronchioles.  In a study by Elizur and colleagues (2007), the authors determined that clara cells 

(murine clara cell line, C22) impact macrophage recruiting cytokines TNF-α post-exposure to 

lipopolysaccharide (LPS) in vitro and in vivo.  Other cell types found in the bronchioles are 

brush cells and small granule cells.  Respiratory bronchioles are dual functioning, participating in 

air conducting and gas exchange (the first of the bronchioles).  They are lined by cuboidal 

epithelium (ciliated and clara cells) and have narrow diameters.   

Alveoli are the terminal sites of gas exchange between air and blood and are an 

expansion of the respiratory bronchioles.  Microscopically, the alveoli appear to be scattered and 

thin-walled outpocketings.  The alveoli are encompassed by capillaries that bring the blood close 

to the inhaled air inside the alveoli.  Alveolar ducts are elongated airways that have hardly any 

walls and their periphery is ringed of smooth muscle.  Alveolar sacs are usually found near the 

end of the alveolar duct.  The epithelium present in the alveolar region consists of Type I and 

Type II alveolar cells.  Type I cells are very thin squamous cells and line the majority of the 

alveoli.  Type II cells are cuboidal secretory cells and are as plentiful as Type I cells; however, 

due to their cell morphology they only cover 5% compared to 90% (Type I cells).  Type II cells 

can secrete an alveolar lining surface-active agent, surfactant.  Following lung injury, Type II 
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cells are known to proliferate and can be classified as hyperplasia of Type II cells marking 

alveolar lung injury and repair.  Surfactant can actively clear out foreign materials in the alveoli 

(Wright, 2003).  Another common cell type found in the alveoli is alveolar macrophages. These 

immune cells reside within connective tissue and the air space of the alveolus and can peruse the 

surface to remove any inhale particulate matter such as dust and pollen.  Autopsies performed on 

people dwelling in urban areas and on smokers manifest macrophages post-engulfment of carbon 

particles and silica particles.  Our lab has also conducted in vivo murine dust exposure studies 

and observations from those studies showed that chronic inhalation exposure to swine 

confinement facility dust for eight weeks enhanced phagocytosis and vacuolation by lung 

macrophages (Pender et al, 2011).  

Size of airborne particles can not only predict how many particles may enter into the 

respiratory system but also where it is deposited in the airway.  Upper airways can harbor micro-

sized particles and nanoparticles are transported via diffusion.  Recent studies show that ultra-

fine particles (<100 nm) can exhibit more severe inflammation than larger sized particles of the 

same material (Donaldson, Li,& MacNee, 1998; Frampton, 2001; Oberdörster, 

2001;Oberdörster, Ferin, & Lehnert, 1994).  Caveolae are found prominently on alveolar type I 

cells and pulmonary capillaries cell membranes.  These cave-like structures have a main function 

in endocytosis and can transport nanoparticles from the lungs and blood (Oberdoster et al, 2005; 

Rejman et al, 2004).  Deeper areas of the lung can also be targets for micro and nano-sized 

particles.  Due to low surface tension of surfactant secretions, micro and nano sized particles can 

easily transfer to the liquid wall layer (Gehr, Schurch, Berthiaume, Im Hof, & Geiser, 1990).   
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2.4 Agriculture-Related Respiratory Diseases 

 Agriculture work can potentiate illness and injury.  In Alterman et al (2008), it was 

reported that farm workers have high prevalence of the following symptoms: running 

nose/watery eyes (34.3%), hay fever and sinus problems (32.1%), shortness of breath (13.7%) 

and chronic bronchitis (3.8%).  There are millions of agricultural workers at risk for pulmonary 

diseases, including veterinarians, managers, inspection and processing workers and many others 

( do Pico, 1996).  They can work with a wide variety of chemicals and substances daily such as 

pesticides, grain, feces, bodily fluids (i.e. milk).  Some of these substances contribute to 

agriculture lung diseases, include grain particles, fungi, bacteria, viruses, silicates, pesticides, 

nitric oxide and ammonia (do Pico, 1996).     

As previously stated, agriculture workers manifest a complex overlapping group of 

respiratory disorders including acute bronchitis, chronic bronchitis, asthma, interstitial disease 

and acute lung injury (Spurzem et al, 2002). Wyatt and colleagues (2008) found that hog barn 

dust can impact the normal stimulation of cilia in bovine ciliated cells.  This can lead to defective 

mucociliary clearance and particulates not being excreted out of the airway efficiently.  In 

Mathisen et al (2004), it was observed that hog barn dust can facilitate lymphocyte adhesion to 

human airway epithelia in a time and concentration dependent manner in vitro.   This knowledge 

supports the fact that swine dust can mediate an immune response via ICAM-1 (intercellular 

adhesion molecule) and PKC-α (protein kinase C) expression.    Romberger et al, 2002 reported 

that hog barn dust stimulate cytokines IL-8 and IL-6 in human bronchial epithelial cells in vitro.  

This explains why some persons exposed to swine dust/agriculture dusts manifest neutrophilia 

(increased number of neutrophils), because IL-8 is a recruiter of neutrophils.  IL-6 is a pro-

inflammatory cytokine which has been shown to exacerbate blood and airway secretions (Wang 
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et al, 1997; Wang, Malmberg, ER, Larsson & Palmberg, 1999).  Pro-inflammatory mediator 

COX-2 is expressed in human bronchial epithelial airways that have been exposed to particulate 

matter (Zhao et al, 2009).  Zhao and colleagues also observed a release of IL-6 in this same 

study. 

Farmer’s lung disease (FLD) is a form of occupational respiratory disease that is common 

in agricultural workers due to chronic exposure to a high volume of grain particles, 

microorganisms and gaseous compounds (Gbaguidi-Haore, Roussel et al, 2009).  Some signs and 

symptoms manifested in farmer’s lung respiratory disease are dyspnea, fever/night sweats, 

tiredness, coughing, headaches and general sickness (Gbaguidi-Haore, Roussel et al, 2009).  This 

disease is dependent upon climate; especially in areas of heavy rainfall and colder temperatures 

because wet hay and feed will be stored inside, increasing the likelihood of growth and 

inhalation of mold (Spurzem et al, 2002).   

The most common occupational lung disorder is asthma in workers which spans a variety 

of industries and occupations (Chan-Yeung & Malo, 1995).    This disease manifests as airflow 

limitation and bronchial hyper-responsiveness due to certain work environments.  Occupational 

asthma may be caused by pollens and animal dander because they have high molecular weight 

antigens.  Storage mites and yeasts are commonly found in agriculture housing since the 

agricultural environment is a fertile ground for these types of organisms. There is an array of 

potential irritants that could mediate asthma in an agriculture environment such as endotoxin and 

ammonia.  Asthma-like syndrome does not necessarily need a predisposition to IgE-mediated 

inflammation.  Healthy people are known to undergo bronchial hyper-responsiveness without 

prior exposure to stimulants.  Vogelzang and colleagues (1998) conducted a study in which 171 

swine workers were followed for 3 yrs.  They noticed that an annual decline in FEV1 was 
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significantly associated with endotoxin exposure.  They also noted swine confinement workers 

have an increased risk of the bronchial hyper-responsiveness.  According to a meta-analysis on 

health associations between asthma and lung cancer (Santillan et al, 2003), asthma may increase 

the risk of lung cancer by reducing the clearance of toxins and carcinogens in the 

bronchoalveolar epithelium.   

Acute and chronic bronchitis are suggested to be high in prevalence in farmers, many of 

whom also have a decreased in lung function.  The most common respiratory disease is chronic 

bronchitis in grain elevator workers and grain and animal production workers (Frank, Mcknight, 

Kirkhorn, Gunderson, 2004).  About 3-30% of nonsmoking general farming population 

experience chronic bronchitis.  Alterman et al (2008) reports 3.8% of farm workers suffer from 

bronchitis.  Also from this study, workers exposed to grain dust, swine confinement facilities and 

poultry houses have a higher risk for developing chronic bronchitis.   Furthermore, non-smoking, 

swine confinement facility workers had a prevalence of 25% compared to 12% in other farm 

workers. Also noted, swine and poultry producers are more likely to exhibit a decrease in lung 

function.  Organic dusts have the ability to mediate bronchitis.  Endotoxins, plant particles, soil 

particles and inorganic dusts may have a role in disease manifestation.  Chronic bronchitis is also 

a risk factor for lung cancer among non-smokers (Santillan, Carmago & Colditz, 2003).  Thus it 

is important to understand which environmental factors such as cigarette smoke and dust from 

agricultural settings are contributing to respiratory illnesses and disease.   

2.5 Cigarette Smoke and Respiratory Disease 

do Pico, 1996 reported that 71% of farm workers who reported respiratory illnesses were 

also smokers. Tobacco smoking is a common habit worldwide and contributes greatly to indoor 

inhalable particulates (Paoletti De Berardis, Arrizza, Granato, 2006).  Tobacco smoke has three 
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distinct categories: mainstream, sidestream, and environment tobacco smoke (ETS).  Mainstream 

smoke is the smoke from the mouth end of the cigarette during a puff, while side stream smoke 

is smoke from the lit end of the cigarette (aka second hand smoke).  They both can diffuse into 

the air and become diluted via physical and chemical changes to create environmental tobacco 

smoke. 

Cigarette smoke is a complicated mixture which has particulate and gaseous phases and 

is comprised of over known 4000 constituents.  The particulate phase consists of carbonaceous 

particles, heavy metals and aromatic hydrocarbons.  The most abundant gas is carbon monoxide, 

along with others such as benzene and formaldehyde (Paoletti et al, 2006).  Butadiene, a 

byproduct of fossil fuel combustion, has also been found in tobacco smoke at 4 ng/puff (Thweatt, 

Harward Sr et al, 2007).  Many of these components are also free radicals which will to be 

discussed in detail later.   Thweatt and colleagues (2007) also noted 1 X10
16 

alky- and alkyoxy-

radicals have been found in the vapor phase of one cigarette, which is equivalent to 5 x10
14

 

radicals per puff.  Normally these radicals would have an extremely short halflife of only about a 

fraction of a second but, in cigarette smoke; free radicals have been known to have half-lives of 

five minutes (Borgerding & Klus 2005). 

Smoking can increase the risk of bronchitis six-fold and may result in potential 

synergistic effects with agriculture respiragen exposure (Melbostad & Eduard, Magnus, 1997).  

In the study conducted by Glader et al (2005), the authors noticed an increase of IL-8 and 

MUC5A in differentiated NHBE after being exposed to a cigarette smoke extract at 15 and 30%.  

IL-8 is a cytokine responsible for white blood cell recruitment.  Sadowska and colleagues (2007) 

demonstrated the activation of cytokines and transcription factors such as IL-8 and NF-ĸB post-

cigarette smoking and subsequent oxidative stress.  MUC5A is responsible for producing mucins 
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and is known to be implicated in respiratory diseases via mucus hypersecretion.  The cigarette 

smoke component, butadiene, can particularly contribute to toxicity.  

2.6 Butadiene’s Toxicity on Tissues 

 Butadiene (BD) is a known toxic chemical classified as a mutagen, a carcinogen and a 

major contributor to air pollution.  This chemical is produced directly, or as a byproduct, by 

many synthetic rubber-producing factories for automobile tires, plastics and polymers (Melnick 

and Sills 2001). The population of BD exposed persons typically is comprised of workers in 

these industrial factories.  However, BD can be found in automobile exhaust and cigarette smoke 

(Adam et al, 2006; Grant, Leopold et al, 2007).  The National Toxicology Program has 1, 3-

butadiene classified as a human carcinogen.  The toxic effects of this chemical are known. 

However, the underlying molecular mechanisms are not fully understood and metabolites of this 

chemical are known to be the main contributors to butadiene’s toxicity.  Metabolites include 1,2-

epoxy-3-butene (EB), 1,2-3,4 diepoxybutane (DEB) and 1,2-dihydroxy-3,4 epoxybutane (EBD) 

(Yadavilli, Martinez-Ceballos et al, 2007),  with the most potent being DEB (Kligerman and Hu 

2007).  DEB has been shown to produce forms of reactive oxygen and nitrogen species (RONS), 

such as hydrogen peroxide, and to damage DNA (Erexson & Tindall, 2000).  DEB is known to 

be cytotoxic but all the mechanisms in this pathway have yet to be uncovered. 

 The metabolite DEB has been shown to cause cellular death in TK6 lymphoblasts by 

means of apoptosis and not necrosis (Yadavilli and Muganda, 2004).  Apoptosis, also known as 

programmed cell death, is the body’s way of cleaning up nonfunctional cells without creating a 

disturbance.  Studies have shown that oxidative damage can play a vital role in apoptosis (Curtin, 

Donovan et al, 2002).  The mediators of the apoptosis pathway upon exposure to DEB in 

lymphoblasts were defined as being oxidative stress (Yadavilli, Martinez-Ceballos et al, 2007).   
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 DNA damage/oxidative stress occur in lymphoblasts exposed to the butadiene metabolite 

DEB (Yadavilli, Martinez-Ceballos et al, 2007).  Also noted was the ability of antioxidants Tiron 

and N-acetyl cysteine (NAC) to prevent DEB-induced apoptosis.  This indicates that oxidative 

stress is involved in apoptosis because antioxidants have the ability to bind free radicals and 

therefore relieve the cells of those stressors.  These findings show that DEB induced apoptosis 

was significantly reduced as compared to cells that were not exposed to the antioxidants, Tiron 

and NAC.  These reports propose a correlation between oxidative stress and DEB-induced 

apoptosis.  In the present study, DEB will be used at levels similar to those who smoke.  We are 

linking the DEB exposure to similar effects as it would occur in agriculture workers who smoke.  

This could elucidate some of the mechanisms of respiratory diseases that occur in agricultural 

workers as determining if there are common disease elements such as oxidative stress.  This 

work may provide a means to further characterize oxidative stress that occurs in lymphocytes as 

well as other cell types such as airway tissue like normal human bronchial epithelium and A549 

lung cancer cell lines. 

As stated previously, cigarette smoke is a habit worldwide and a large population of 

agricultural workers smokes cigarettes.  Cigarette smoke can mediate lung diseases and lung 

cancer.  Tobacco smoke can lead to chronic obstructive pulmonary disease (COPD) (Haswell, 

Hewitt et al, 2010).  According to Ohta and colleagues (1998), IL-8 was decreased in alveolar 

macrophages exposed to cigarette smoke.  IL-8 is a cytokine usually expressed in inflammation 

and functions to recruit other inflammatory cells.  Without IL-8, negative conditions can be 

prolonged and increase the risk of disease.  Cigarette smoke can also activate transcription factor 

NF-ĸB (Hasnis, Bar-Shai, Burbea & Reznick, 2007).  do Pico and colleagues (1996) reported 

that 71% of farm workers who reported respiratory illnesses were also smokers.  Chronic 
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bronchitis is not only common in farm workers but in cigarette smokers as well.  Cigarette 

smoking has been noted as a major risk factor for lung cancer, with approximately 80% of lung 

cancer deaths being due to tobacco smoke (Cancer Facts & Figures 2012). Smoking also can 

contribute to the exacerbation of current respiratory diseases.  With the vast collection of 

literature on the deleterious effects of cigarette smoke on the lungs available, we would like to 

investigate the impact of combinatorial effects of exposure to chemicals and or biological factors 

present in agricultural dust and cigarettes on the respiratory system, particularly the airway 

epithelium. 

2.7 Oxidative Stress and Tissue Damage  

Radicals of oxygen have important roles in physiological processes including cell 

signaling and pathogen killing as part of the immune system.  RONS can have beneficial effects 

especially in low/moderate concentrations against infectious agents (Valko, Rhodes, Moncol, 

Izakovic, & Mazur, 2006; Sugiura & Ichinose, 2008; Bowler & Crapo, 2002).   Excessive levels 

of free radicals can exert pathological effects in the body at the molecular, cellular and 

tissue/organ levels.  To protect against damage, the body must maintain a balance between 

oxidants and antioxidants.  However, once the level of free radicals is higher than antioxidants, 

oxidant stress occurs.  Oxygen- nitrogen derived free radicals are reactive molecules with well-

established roles in cell injury.  They are responsible for airway inflammation in asthma, airway 

hyper-responsiveness, and airway remodeling in animals and humans.  These unstable chemicals 

cause damage by binding to nucleic acids, proteins and lipid membranes.  These radicals are 

normally produced in cells during mitochondrial respiration, energy generation and apoptosis in 

phagocytes (endogenous).  However, there are external sources that can contribute to free radical 

inside of the body (exogenously) such as particulate matter, microbes and tobacco smoke.  Free 
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radicals are chemicals that do not have a full outer valence orbital.  The presence of unpaired 

electrons gives the molecule the ability to readily bind to other substances so that they overcome 

their electron deficiency.  Oxygen (O2)
-
 derived free radicals include: superoxide (O2

-
), hydrogen 

peroxide (H2O2), and the hydroxyl radical (OH
-
).  By losing electrons, these three species are 

ready for optimal binding (Day & Suzuki, 2005).   

 Nitrogen-derived reactive species are produced enzymatically from the oxidation of L-

arginine into nitric oxide (NO) by nitrogen oxide synthases (NOS).  Nitrogen species are also 

known to bind with oxygen free radicals to produce other free radicals.  An example includes 

peroxynitrite (ONOO
-
).  This unstable anion is known to permeate cell membranes (Waterman & 

Adler, 2008).  An important reactive nitrogen species studied in this work is inducible nitric 

oxide synthase (iNOS).  It is one of three NOS isoforms (nNOS, eNOS and iNOS) found in 

mammalian systems and is the only inducible form.  Nitric oxide has a dual role in oxidant stress 

and as a pro- and anti-inflammatory mediator.  Inducible NOS is stimulated by inflammatory 

cytokines such as tumor necrosis factor alpha (TNF-α), interleukin (IL-1) and interferon (IFN)-

γ, all of which are regulated by the transcription factor NF-κB.  Further, the promoter region of 

iNOS contains binding sites for NF-κB.  In asthmatics, iNOS has been shown to be important in 

airway inflammation and remodeling (Prado et al, 2006).  Physical loss of epithelial lining cells 

is considered one proximate cause of the airway hyper-responsiveness to inhaled mediators 

(Comhair et al, 2005).  Post-stimulation iNOS generates NO for long periods of time in large 

quantities.  However, normally these free radicals are removed rapidly before they cause 

dysfunction and necrosis (Comhair, Erzurum, & Serpil, 2002).  

 In the airways of animals and humans, antioxidants counterbalance the free radical 

concentration, preventing oxidant stress.  Antioxidants are molecules that can prevent oxidant 
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stress by binding to free radicals and precluding them from interacting with lipids, proteins or 

DNA molecules.  They degrade the free radicals down to less harmful compounds such as 

hydrogen peroxide, water and diatomic oxygen.  Some of the major enzymatic antioxidants are 

superoxide dismutase (SOD), glutathione peroxidase and catalase (Suguira & Ichinose, 2008; 

Bowler & Crapo, 2002).  There are also non-enzymatic sources of antioxidants, such as vitamin 

C, vitamin E and glutathione which may be present in dietary supplements.  When tissues have 

been depleted of antioxidants, or the individual is experiencing an infection (i.e., respiratory 

diseases), the levels of oxidants rise over the levels of antioxidants and can result in RONS 

damage to the tissues. There is evidence that shows that after exposure to inhaled toxins 

mammalian airways can alter antioxidant/oxidant homeostasis (Stringer, Freed et al, 2004).  

The impact of RONS on airway tissue includes contraction (and relaxation) of airway 

smooth muscle, fibroblast activation, hypersecretion of mucus glands, cell injury and pro-

inflammatory mediators production in epithelial cells (Sugiura & Ichinose, 2008). There are two 

main types of oxidants: endogenous and exogenous.  Endogenous sources are from inside the 

individual and include phagocytic apoptosis which would be high in swine already infected with 

diseases such as PRRSV and PRCV.  Exogenous sources come from the individual’s external 

environment, for example LPS from excreted feces in swine confinement facilities.  Evidence 

suggests airway inflammation in asthmatics is due to RONS levels that exceed antioxidants 

(Sugiura & Ichinose, 2008). Oxidative and nitrative stress leads to a loss of superoxide dismutase 

activity and to downstream events that are characteristic of asthma, including apoptosis, 

shedding of the airway epithelium and hyper responsiveness (Comhair et al, 2005).   Studies in 

animal models have shown that an increase of oxidant levels correlates with an increase in the 

production of mucins (Adler & Li, 2001), the protein component of mucus.  Airway epithelial 



24 

 

 

cells can undergo aberrations in membrane permeability and lead to malformations in DNA and 

protein.    

 Other key oxidant stress pathway members in this study include Heme oxygenase 

decycling 1 (Hmox1 gene or HO-1 protein) and Cyclooxygenase (COX; also called 

prostaglandin g/h synthase).  These enzymes have two distinct functions in oxidant stress.  

Hmox1 is the gene responsible for encoding heme oxygenase (HO-1), a potent anti-inflammatory 

and anti-oxidant stress enzyme that facilitates heme catabolism (Rahman, Biswas, & Kode, 

2006).  There are three isoforms of heme oxygenase (HO-1, HO-2 and HO-3); the inducible 

isoform, HO-1, is investigated in this project because it has been shown to be induced in studies 

using in vitro and in vivo models of airway oxidant stress (Lim et al, 2000 ;Hisada, Salmon, 

Nasuhara & Chung, 2000; Almoiki et al, 2008).  Cyclooxygenase is an enzyme responsible for 

converting arachidonic acid into several types of inflammatory mediators including 

prostaglandins and leukotrienes (Szczeklik & Sanak, 2002; Gylifors, 2007).  Both of these 

classes of molecules have been associated with upper and lower respiratory diseases.  There are 

two isoforms of COX: COX1 which is constitutively expressed and COX-2, an inducible type.  It 

is active in promoting inflammatory reactions and is associated with various inflammatory 

diseases such as arthritis and asthma in humans (Waterman & Adler, 2008). Therefore these 

genes make good candidates for studying similar effects in porcine airway cells in vitro.  These 

pathways may provide insight for understanding porcine airway diseases such as PRRS and 

PRCV. 

It is well-established that oxidants are associated with airway diseases such as COPD, 

asthma and chronic bronchitis; we propose that free radicals mediate airway inflammation and 

stress which contribute to onset and exacerbation of such diseases. Certain respiratory diseases, 
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such as asthma, are associated with a high concentration of free radicals in tissues.  Previous 

studies in our lab have shown that swine confinement facility dust activates NF-kB and up-

regulates proinflammatory genes, such as iNOS and COX-2, in porcine airway cells (Gerald et 

al, 2010). Thus the impetus to explore the present work is to investigate oxidative stress in 

airway cells that have been exposed to dusts from various husbandry units and examine a 

possible holistic approach to prevent oxidative stress in respiratory disease.      

2.8 Phytonutrients 

 Phytonutrients are active compounds from plant sources that can provide immune-

boosting, and well as other health-promoting benefits.  Research has been conducted on various 

foods and the efficacy in preventing cancer (Greenwald, Clifford et al, 2001). Some 

phytonutrients can function as precursors to antioxidants.  Diets enriched with antioxidants can 

be beneficial in providing a protagonist effect to the free radicals.  Sorrel (Hibiscus sabdariffa) is 

a plant that naturally grows in India, China, and the West Indies.  The calyces of the plant have a 

plethora of phytonutrients, and, in this study, we will further investigate their properties.  

Phytonutrients include phenolic acids, flavonoids and lignans along with many others.  

According to Valerio (2001), flavonoids can increase the activity of endogenous antioxidant 

glutathione and other antioxidants as well as detoxifying agents.  Sorrel use has been implicated 

in studies using in vitro models as well as in animal models to deter carcinogenic effects.  Rats 

pre-exposed to sorrel and then exposed to carcinogens were protected against harmful effects 

(Essa, 2006).  There is also evidence that sorrel can provide hepatoprotection (Amin, 2006), 

cardioprotection (Olaleye, 2007) and has antibacterial properties (Fullerton & Williams, 2010).  

Previous studies in our laboratory have shown that sorrel possesses antioxidant properties 

(unpublished results; personal communication with Dr. Christa Watson, Harvard University), 
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potentially through free radical scavenging and enhancement of endogenous antioxidant levels 

(i.e., glutathione, catalase and superoxide dismutase). Sorrel components may also provide anti-

inflammatory effects.  In Christian et al, 2006, red sorrel effectively decreased in COX-2 (pro-

inflammatory protein) production. 

 The commercially available antioxidant, NAC, is known to have anti-apoptotic and 

growth-promoting properties. This thiol compound contains mucolytic properties and is a direct 

pre-cursor to reduced glutathione (Sadowska, Manuel-y-Keenoy, De Backer, 2007).  This 

antioxidant can also be as efficient in neutralizing H2O2 as glutathione; however, it lacks in 

carrying capacity (Benrahmoune, Therand & Abedinzadeh, 2000; Gillissen, 1997).  It has the 

potential to also inhibit respiratory bursts via post-engulfment neutrophils in vitro (Stolarek, 

Bialasiewicz, Nowark 2002) which could indicate anti-inflammatory roles of sorrel as well.  In 

bronchial epithelia that were exposed to silica, NAC was able to inhibit activities of transcription 

factor NF-ĸB.   

2.9 Specific Aims and Hypothesis 

 Natural antioxidants hold promise for reducing inflammation and oxidative stress, thus it 

is of interest to investigate the ability of plants such as sorrel to alleviate of symptoms caused by 

dusts and cigarette smoke.  Therefore, the overall goal of this project is to characterize animal 

husbandry dusts, determine the potential impact of agricultural dusts on the respiratory epithelia 

and potential combinatorial effects of cigarette smoke components; and investigate how 

phytochemicals from sorrel attenuate these effects. The central hypothesis is that agricultural 

workers exhibit respiratory complications due to oxidative damage mediated by environmental 

factors (i.e., agricultural dusts and cigarette smoke chemicals) and that sorrel extracts can relieve 
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these symptoms.  The central hypothesis was investigated by exploring the objectives listed 

below. 

The objectives are: 

1) Characterize physical and biochemical composition of agriculture dusts from the various 

husbandry units at NC A&T SU farm. 

Working Hypothesis: Confinement facilities will harbor smaller particles, bacteria, and 

chemicals compared to semi-confinement facilities. 

2) Identify DEB induced oxidative stress mechanisms associated with early stages of apoptosis 

in human airway epithelial cells and lymphoblasts. 

Working Hypothesis: Oxidative stress and apoptosis levels will be higher in cells that are 

exposed to DEB. 

3) Identify the mechanism of oxidative stress in airway cells that have been exposed to 

agricultural dusts and analyze oxidative stress reduction capacity of sorrel in respiratory 

cells and lymphocytes exposed to dusts. 

Working Hypothesis: Pretreatment with sorrel-derived antioxidants will lower the oxidative 

effects in cells exposed to dusts. 
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CHAPTER 3  

A Biophysiochemical Analysis of Settled Livestock and Poultry Housing Dusts 

3.1 Introduction 

Animal agriculture is a multi-billion dollar global industry and meat products supply an 

ever increasing demand; the No. 1 consumed meat in the world is pork (36%), followed by 

poultry (33%) and beef (24%)  (FAO, 2012). Due to the high demand for meat, some livestock 

production operations shifted to efficient confinement systems that allow faster production in 

environmentally controlled buildings that safeguard against temperature extremes, predators and 

disease incidence. However, a consequence of confinement production is reduction in air quality 

associated with accumulation of dust and gases.  Semi-confinement production facilities usually 

have indoor and outdoor components and thus, dust is typically less concentrated compared to 

the confinement facilities. 

Animals, farmers and workers within animal confinement facilities may be exposed to 

higher levels of inorganic substances, feed grains, organic dusts, microbes and their products, 

gases and chemicals (e.g. pesticides, disinfectants) compared to outdoor operations.  Grain dusts 

contribute heavily to agricultural dust composition among swine, dairy and poultry farms 

(Donham et al, 1986; Lee et al, 2007).  For example, pioneering studies by Donham and 

coworkers reported respiratory dysfunction in swine facility workers chronically exposed to dust 

consisting of feed particles, bacterial endotoxin, gases and other components (Donham et al, 

1986; 1995). Gaseous compounds from swine facilities contain at least 167 different compounds 

including alcohols, aromatics, and nitrogen-related compounds (Schiffman et al, 2001).  

Simultaneous exposure to poultry production dust particulates and ammonia resulted in a 

synergistic decline in pulmonary function in workers (Donham et al, 2002).  
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Although it is well accepted that exposure to animal housing dust is associated with 

respiratory symptoms in workers (Linaker & Smedley, 2002), reports summarizing the 

respiratory effects associated with inhalation of agricultural dusts linked to specific dust 

components are limited.  Thus, it is intriguing to characterize dusts from animal husbandry units 

to gain a better understanding of inhalation exposures and risks.  To begin assessing exposures, 

settled dust samples were collected from raised surfaces at the swine and poultry confinement 

units, and the dairy, small ruminant, and equine semi-confinement buildings at the North 

Carolina A&T State University (NCA&T) Farm, and five other farms across the state of North 

Carolina.  The purposes for collecting the samples were to determine the chemical, physical and 

microbial composition of settled dusts that could affect respiratory health by inhalation. 

3.2 Materials and Methods 

Approach. The analyses were primarily conducted on dusts collected from the 

livestock units at the NCA&T Farm (Table 1).  Samples were also collected from two 

small ruminant, two horse and one beef cattle farms across the state.  Qualitative and 

quantitative evaluations were conducted to identify physical, chemical and microbial 

constituents of the dust. 
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Table 1.  

North Carolina A&T State University Farm animal husbandry facilities. 

 

Facility 

Type Year Built 

Cleaning 

regimen
a
 Animals 

Animal 

No. 

Feed 

Type Bedding 

Poultry C 2004 PW Broilers, 

Layers, 

Heritage birds 

4000, 

400, 50 

Pellet Wood 

shavings 

Swine C 1983/2006 PW, SF Yorkshire, 

Landrace 

150 Pellet Slatted 

floors 

Equine SC 2005 GPB Arabian
c 

Quarter 

Horse
c2 

3 Pasture, 

Alfalfa 

hay 

Wood 

shavings 

Sm. Rum. SC 1998 GPB, 

broom 

Boer goats, 

Sr. Croix 

sheep 

50,20 Pasture, 

Pellet 

Wood 

shavings 

Dairy SC 2006 PW
b
 Holstein, 

Jersey 

45
d 

Pasture 

(80%), 

Pellet, 

Corn 

silage 

Canvas 

mat & 

wood 

shavings 

a
Cleaning practices, generally on a monthly basis or as needed when changing animal groups. 

b
Twice daily, especially after milking. 

c 
1Mare, 

c2
2 geldings 

d
Milking, dry, heifers, calves 

C, Confinement 

SC, Semi-confinement 

PW, pressure washed 

SF, slated floor 

GPB, gas powered blower 
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The first analyses were designed to characterize physical components of the dust.  This 

was accomplished by using scanning electron microscopy (SEM) and simple gravimetric 

analysis to ascertain particle size and morphology.  The second set of analyses included the 

chemical analyses including element levels and pH determinations.  Finally, microbiological 

characterization was performed utilizing endotoxin quantification, identification via selective 

media and DNA quantitation and gene analysis by polymerase chain reaction (PCR). 

The aforementioned characterization strategy for dust samples was selected based 

on housing and species type, biological components of the dust (i.e., bacteria important to      

respiratory disease or foodborne illness) and chemicals used in the upkeep of the 

facilities.  Therefore, it was imperative to observe the various dimensions of the dust to 

determine the size of the particles in relation to where they may deposit along the 

respiratory tract.  Chemical analyses were conducted to characterize dust from different 

species/unit settings.  Animals housed in semi-confinement facilities can track soil from 

the pasture inside and elements from soil can become aerosolized and contribute to dust 

composition.  Finally, we conducted microbiological analyses to provide bacterial 

profiles for dust samples. 

3.2.1 Dust sampling and mixture preparation. Settled dust was obtained from raised 

surfaces at the North Carolina Agricultural and Technical State University swine, poultry, 

equine, dairy and small ruminant (caprine and ovine) units.  Samples were also collected from 

five other farms across North Carolina: 1-Equine, 2-Caprine, 3-Bovine (beef cattle) & Equine, 4-

Bovine (beef cattle), 5-Caprine & Ovine.  For sampling, approximately 10-15 grams of settled 

dust on fixtures was brushed into a ziptop plastic bag using a cosmetic brush and transported 

immediately to the laboratory for further processing as previously described with a few 
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modifications (Mathisen et al. 2004).  Briefly, a 1:10 (w/v) dust mixture (DM) was prepared by 

combining 0.5 grams of dust with 5 mL of Hank’s buffered saline solution (HBSS).  The 

mixture was vortexed for one minute and left to stand at room temperature for one hour.  The 

DM was used for pH readings and gravimetric analysis as detailed below.  Dust samples were 

collected from the same locations within each building several times over a two year period (for 

NCA&T units only). 

3.2.2 pH altering capacity. To analyze the pH of animal housing DM, pH meter 

readings were measured.  Prior to reading pH, the DM samples were inverted and vortexed to 

mix particles. 

3.2.3 Gravimetric analysis. To investigate dust particle size, gravimetric analysis was 

performed using a modified method of Lioy and colleagues (2002).  The P2 and P5 filter papers 

(Thermo Fisher Scientific, Rockford, IL) were selected to study thoracic and respirable particles; 

P2 has particle retention of 1-5 µm and P5 has particle retention of 5-10 µm.  Briefly, the DM 

samples were separately passed through P2 and P5 filters. Particle retention was estimated from 

average pre- and post-filter weights.  Each dust sample was analyzed at least three times for all 

units.   

3.2.4 Scaninng electron microscopy (SEM) and energy dispersive X-ray 

spectroscopy (EDS). To analyze dust particulate size, procedures similar to Lioy and coworkers 

(2002) were used.  For SEM analysis, portions of the dust were placed on conductive carbon tape 

and a Hitachi SU8000 Field Emission Scanning Electron Microscope (Hitachi High 

Technologies America, Dallas, TX) was used to capture images. Particle size estimation was 

completed using the Quartz X-One software. X-ray imaging was performed for elemental 



33 

 

 

analysis (energy dispersive technology) on each dust sample.  Two or three SEM images were 

captured for each sample. 

3.2.5 Trace element analysis.  Samples underwent a nitric acid digestion prior to 

analysis via inductively coupled plasma-optical emission spectrometry (ICP-OES).  

Nitric acid (5 ml) was added to 0.25 grams of dust from each agricultural unit in a beaker 

(250 ml).  To obtain a consistent reflux, a watch glass was used to cover the mouth of the 

beaker.  Nitric acid (5 ml) was added continuously until the solid substance was 

dissolved; totaling approximately 20-30 ml of nitric acid depending on dust consistency. 

This continued until the liquid was a clear yellow color.  Sample volumes were brought 

to 50 ml final volume with distilled water and filtered using #42 Whatman filter paper.  

For ICP-OES analysis, standards containing the following elements were used: 

aluminum, calcium, chromium, iron, potassium, manganese, magnesium, sodium, 

phosphorus, silicon, zinc, cadmium, copper, nickel and lead.  Varian 710-ES ICP-OES 

was used to analyze samples using a procedure adapted from EPA Method 3050B Acid 

digestion of sediments, sludges and soils. 

3.2.6 Endotoxin assay.  To quantitate endotoxin levels in dust samples, the Pierce 

LAL Chromogenic Endotoxin Quantitation assay (Thermo Fisher Scientific, Rockford, 

IL) was used according to manufacturer’s instructions.  Readings were performed three 

times using a microplate reader at 410 nm.  

3.2.7 Biochemical identification of dust microbiomes. Animal units at the 

NCA&T Farm were swabbed using a sterile cotton swab, and placed in 1% peptone water 

for transport. Swabs were streaked onto various selective agar plates (see Table 2) and 

cultured at 37°C overnight. 
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Table 2 

Selective media for bacterial identification.  

Medium Symbol Medium Name Bacterial Selection 

Centrimide Centrimide Pseudomonas 

MYP Mannitol egg yolk polymixin Bacillus 

TSI Triple Sugar Iron E.coli,  Pseudomonas,  Salmonella 

Oxford Oxford Listeria 

SMAC Sorbitol MacConkey E. coli 

XLD Xylose Lactone Deoxycholate Salmonella 

RC Reinforced Clostridial Clostridium 

BP Baird Parker Staphylococcus 

TSA Tryptic Soy agar 

 

Most grow (universal) 

 

3.2.8 Microbial DNA isolation and 16S ribosomal gene analysis. Evaluation of the 16S 

ribosomal DNA gene, the genomic sequence that encodes the 16S portion of prokaryotic 

ribosomes and is thus present in all bacterial species, is an established approach for detection and 

identification of bacterial species (Wilson et al. 1990). For bacterial detection and identification, 

DNA was isolated from dust samples (0.1-0.5 grams) using the PowerSoil DNA isolation kit 

(Mo Bio, Carlsbad, CA) according to manufacturer instructions.  Following DNA quantitation, 

16S rDNA gene amplification was performed via polymerase chain reaction (PCR) with primer 

sets obtained from published reports (Table 2).  DNA (100 ng) was combined with forward and 

reverse primers (0.2 μM each), 2X GoTaq Green (Promega, Madison, WI) and nuclease-free 
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water was added to bring the reaction up to 25 µl.  Samples were amplified using an 

iCycler thermal cycler (Bio-Rad, Hercules, CA) using a hot start (94°C, 1 minute), 

followed by 35 cycles of denaturation (94°C, 30 seconds), annealing (see Table 2 for 

annealing temperatures, Tm; 30 seconds) and elongation (72°C, 7 minutes). PCR 

products were visualized by agarose gel electrophoresis, ethidium bromide staining and 

photodocumentation.  

3.2.9 Statistical analysis.  Analyses were performed using Prism version 5.0. 

(GraphPad Software, Inc., San Diego, CA) using analysis of variance (ANOVA). 

Differences between means were considered statistically significant when P values were 

less than 0.05.  Bonferroni or Dunnett’s posttest corrections were utilized to evaluate 

differences among means.  All experiments were performed at least three times unless 

otherwise noted and values are reported as means ± standard error (SE) or standard 

deviation (SD). 

3.3 Results 

Physically, all dusts were variations of brown in color.  The poultry unit dust was 

fluffy and the lightest in color.  NCA&T dairy dust was grainy/pebbled and darkest of the 

dusts.  Swine dust was fine in consistency.  Equine dusts were hard in texture and light in 

color.  Small ruminant dusts are less fluffy than poultry unit dust. Overall, the cattle dusts 

are coarser than all other dusts. 

3.3.1 Animal husbandry dust particle sizes. Through gravimetric analysis, smaller 

particles in the size range of 1-5 µm were detected for each NCA&T unit based on five-fold 

(p<0.001) higher retention levels on P2 filters compared to P5 filters (Figure 1).  This indicates 

more particles ≤ 5 µm passed through the P5 filter. These data were consistent with particles 
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measurements determined via SEM (Figure 2).   The largest particle sizes were detected in dairy 

building dust, for which the average particle size was 37.86 µm.  The NCA&T dairy unit also 

had the greatest particle size range, 5.11 µm - 154.5 µm, while the poultry unit had the some of 

the smallest particles with an average size of 12.5 µm and a narrow particle size range of 5.23 - 

26.93 µm (Figure 3, Table 3).  By way of simple gravimetric analysis and SEM analysis it was 

determined that animal housing buildings contained higher levels of respirable and thoracic 

particles (1-5 µm) than large inhalable particles (<30 µm) based on the American Conference of 

Industrial Hygienists (ACGIH) classification (WHO 1999). Table 3 provides a summary of 

particle size averages and ranges for dusts collected from NCA&T Farm. 

 

 

Figure 1. Gravimetric analysis of DM from agricultural units.  Statistical analysis of agricultural 

units DM particles weights on P2(1-5 µm) and P5(5-10 µm) papers when filter types and 

agricultural unites were compared using a two way ANOVA (conducted at the 95% confidence 

interval) and a bonferroni posttest.  Data are presented as Means ±SEM. 
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Figure 2. SEM analysis for classification of particles from dusts from husbandry units at NC 

A&T SU farm.   A-Swine, B- dairy, C- equine  D- poultry, E- small ruminant.  All images are at 

400X. 

 

 

Figure 3. Particle sizes of the agriculture dusts by SEM.  Particle sizes were quantified using the 

quartz program via SEM analysis.  Data are presented as Means ±SEM, n=5. 
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Table 3.  

Animal husbandry unit dust particle size estimation by SEM. 

 

Agriculture Unit 

Average 

Particle 

Size 

Particle 

Size 

Range 

(μm) 

Standard 

Deviation 

Mean Standard 

Error 

Dairy 76.10 5.11-

154.50 

66.77 76.08 29.86 

Equine 44.20 27.29-

55.71 

10.68 44.21 4.79 

Poultry 12.50 5.23-26.93 8.63 12.45 3.86 

Small Ruminant 30.27 16.38-

45.19 

13.96 30.27 6.24 

Swine 26.30 13.36-

40.65 

10.90 26.31 4.87 

 

3.3.2 Dust particles have an acidic pH. With the exception of the alkaline small 

ruminant dust suspension (pH of 7.9), the pH of aqueous suspensions of all dust samples were 

acidic (Dairy = 6.67, Swine = 6.84, Poultry = 6.78, Equine = 6.93) compared to the basic HBSS 

control (Figure 4).  
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A. 

 

 

 

 

B. 

 

 

 

 

 

Figure 4. Analysis of agricultural dust-mediated pH changes from agricultural units.  A, Dairy, 

Swine, Poultry, Small Ruminant and Equine dusts’ from NC A&T SU farm were tested for pH 

changes.  B, 1-Equine, 2-goat, 3-beef cattle & horses, 4-beef cattle, 5-sheep & goats farm dusts 

were tested for pH changes. Data are presented as Means ±SEM, n=3.  *** p-value<0.001 when 

compared to HBSS. 

 

3.3.3 Element concentrations determined by SEM/EDS and ICP-OES.  As showed in 

tables located in the Appendix, most of the elements detected were in the ppm (μg/g) 

concentration range.  Phosphorus and sulfur levels were 5-10 fold higher in swine unit dust 

compared to other units this is likely due to low ventilation and higher levels of feces.  

3.3.4 Endotoxin levels and bacterial presence.  Dust endotoxin levels were 

quantified for all livestock units sampled. The levels ranged between 2.39 Endotoxin 

Units (EU/ml) (dairy) and 1.64 EU/ml (swine) for NCA&T animal units, and between 

2.37 EU/ml (5-Caprine and Ovine) and 2.84 EU/ml (1-Equine) for other farms (see 

Figure 5).  There were no differences in endotoxin levels among dusts tested. 

*** 

*** 
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To identify bacterial species present in NCA&T Farm animal housing dusts, selective 

growth media and PCR analysis were performed.  Bacteria of interest included species common 

to agricultural settings known to be clinically important to food borne and respiratory illnesses.  

Most of the selective agars were effective at growing bacteria from the various dusts collected 

from animal husbandry units.  As summarized in Table 2, positive bacterial growth corresponds 

to the detection of Bacillus (MYP); E. coli, Pseudomonas, Salmonella (TSI); Listeria (Oxford); 

Clostridium (RC); and Staphylococcus (BP).  E. coli was also detected on Sorbitol MacConkey 

media from the swine unit only. Tryptic soy agar, a permissive growth medium, showed growth 

for all units. 

Figure 5 depicts successful bacterial growth and amplification of the 16S ribosomal gene 

from NCA&T Farm dust DNA samples.  Bacterial growth was observed for each of the selective 

agars with the exception of Centrimide, which exclusively detects Pseudomonas species and 

XLD, a selective medium for Salmonella species (see Table 2).  Notably, 16S rDNA from more 

bacterial species were detected in the swine unit dust compared other units and include Listeria, 

Clostridium, Bacillus, Pseudomonas, Salmonella, E. coli, Staphylococcus, and Actinomycetes 

(Figure 5).  However, Listeria 16S rDNA had the highest levels (p<0.01) was detected in dusts 

from all five of the NCA&T Farm animal housing buildings (Figure 5). 
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A. 

 

B. 

 

 

Figure 5. Endotoxin levels in the agriculture units.  There were no differences between the 

endotoxin levels in the various units.  Data is presented as endotoxin units per ml.  Data are 

represented as Means ±SEM, n=3. 

 

Figure 5 depict successful bacterial growth and amplification of the 16S ribosomal gene 

from dust DNA samples, respectively.  Bacterial growth was observed for each of the selective 

agars with the exception of Centrimide, which exclusively detect Pseudomonas species and 

XLD, a selective medium for Salmonella species (Table 4).  Notably, 16S rDNA from more 
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bacterial species were detected in the swine unit dust compared other units and include Listeria, 

Clostridium, Bacillus, Pseudomonas, Salmonella, E. coli, Staphylococcus, and Actinomycetes 

(Figure 5).  However, Listeria 16S rDNA had the highest levels (p<0.01) was detected in dusts 

from all five of the NCA&T farm animal housing buildings (Figure 5). 

 

Table 4.  

Bacterial identification via media selection. 

 

Species Centrimide MYP TSI Oxford SMAC XLD RC BP TSA 

Swine - + + + - - + + + 

Sm. Rum. - + + + - - + + + 

Dairy  - + + + - - + + + 

Poultry - + + + + - + + + 

Equine - + + + - - + + + 

 +, bacterial colony/lawn growth observed.  

-, no bacterial colony/lawn growth observed. 
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Figure 6. Detection of bacterial 16S ribosomal DNA gene in dust samples. Soil DNA extractions 

were prepared and primes specific for species specific bacterial 16S ribosomal DNA gene were 

used to amplify targets. A, Bacterial presence of DNA isolated from Agricultural Dusts via 

Polymerase Chain Reaction quantified by densitometry.  √, 16S rDNA gene detected, ND, not 

detected.  Data are presented as Means ±SEM, n=3. 
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3.4 Discussion 

Dust collected from animal production facilities is extremely complex due to the nature 

of the facilities, species, feed, and cleaning practices.  Cleaning regimens coupled with 

ventilation are key factors in controlling air quality and dust accumulation.  Dusts from animal 

husbandry units tended to contain higher levels of respirable particles (<5 μm) regardless of 

housing or animal type. Inhalable dust particles are small enough to stay airborne.  According to 

the International Organization for Standardization (ISO) and ACGIH, the single most important 

factor influencing deposition along the respiratory tract is the “aerodynamic diameter” of a 

particle (ISO, 1995; ACGIH, 1999).  Larger particles (i.e., 30-100 μm) are inhalable and may 

deposit anywhere along the respiratory tract. Thoracic particles are smaller (<10 μm in diameter) 

and deposit with in tracheobronchial region, while respirable particles (<2-5 μm; very small < 

0.5 μm) can travel to the gas exchange/alveolar region of the lungs (ACGIH, 1999).  Respirable 

and inhalable dust levels within poultry houses can range from 0.02 to 81.33 mg/m3 and 0.01 to 

6.5 mg/m3, respectively (Ellen et al, 2000).  This study reports higher levels of respirable and 

thoracic particles than inhalable particles among all units tested. 

Trace elements detected in this study were consistent with published reports for metals 

such as zinc, manganese and iron (Demmers et al, 2003).   Higher levels of phosphorus and 

sulfur in the NCA&T swine unit compared to other units is likely due to presence of feces; swine 

manure contains phosphorus and sulfur. 

Respirable particles can enter systemic circulation, distribute throughout the body and 

elicit an immunological response owing to the increased number of sites nanoparticles have to 

react on cell membranes and a greater capacity to absorb and transport toxic substances (Garnett 

& Kallinteri, 2006).  Ultra-fine particles (< 100 nm) can elicit more severe inflammation than 
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larger sized particles of the same material (Oberdörster, 2001; 2005).  Animal husbandry units 

can release a variety of particulates into the atmosphere. Airborne microorganisms, including 

viruses and bacteria, can be transmitted great distances through the airflow (Jones & Harrison, 

2004).   This study reported presumptive positives for bacteria based on PCR and growth 

detection.  Roy (2003) reported that bacterial DNA was found more in farm barns and farm 

houses than urban houses. Bacteria and their components can potentiate respiratory symptoms 

and illnesses in agriculture workers.  Listeria monocytogenes can cause foodborne illness in 

humans and disease in cattle, sheep and goats (Nightingale et al, 2004).  Typical amounts of 

aerosols inhaled are 104 to 107/ m3 of bacterial CFUs and 103 to 106 fungal CFUs/m3 

(Kirkhorn, 2002).  The presence of select bacteria observed in the present study is consistent 

with reported levels.  Endotoxins are potent inducers of neutrophilic airway inflammation and 

are a major risk factor for asthma among farmers (Charavaryamath and Singh, 2006), horses 

(Pirie et al, 2003) and sheep (Purdy et al, 2002).  There were no differences in the endotoxin 

levels among farm dust samples tested in this study.  However, levels were relatively low 

compared to other published works (Romberger, 2002).  Variation in endotoxin levels is likely 

due to differences in animal species and numbers, feed types and production styles.  For 

example, higher dust, bacterial diversity and endotoxin levels were detected in cage-housed than 

floor-housed poultry operations (Just et al, 2011). 

In a study utilizing an environmentally controlled swine confinement facility 

designed or controlled dust exposure, researchers reported endotoxin levels at 32.5 µg g-

1 as well as 7.0 x10
7
 CFU and recurrent cases of PRRS, swine influenza, Actinobacillus 

pleuropneumonia, atrophic rhinitis and enzootic pneumonia in piglets (Demmers et al, 
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2003).    Thus, inhalation of endotoxin-laden dust promotes susceptibility to respiratory 

dysfunction in animals and humans.  

Reduced air quality in production facilities may contribute to respiratory dysfunction in 

farmers/farm workers, animals and perhaps farm visitors.  Donham and Gustafson (1982) 

estimated 700,000 people in the United States are exposed to animal confinement units through 

their occupations.  They also reported over 60% (survey of 2459 Iowa livestock workers) 

reported adverse effects such as cough, sore throat, runny nose and tightness of chest among 

others.   On the molecular side, studies have shown that agriculture dusts can also alter normal 

physiological balances.  Agriculture workers manifest a complex overlapping group of disorders 

including acute bronchitis, chronic bronchitis, asthma, interstitial disease and acute lung injury 

(Spurzem et al, 2002). Wyatt and colleagues (2008) showed that hog barn dust can impact the 

normal stimulation of cilia in bovine ciliated cells.  This can lead to defective mucociliary 

clearance and particulates not being excreted out of the airway efficiently. Mathisen et al (2004), 

showed hog barn dust can facilitate lymphocyte adhesion to human airway epithelia in a time 

and dose dependent manner in vitro.   Hog barn dust stimulates secretion of cytokines interleukin 

(IL) -8 and IL-6 by human bronchial epithelial cells in vitro (Romberger et al, 2002).  This 

potentially explains why some persons exposed to agriculture dusts manifest neutrophilia; IL-8 is 

a recruiter of neutrophils. 

Two important limitations of the present study are that analysis was performed on settled 

dust and a modest number of farms were sampled.  It is possible that the results would differ for 

dusts collected using a different sampling method.  Reports summarizing results of samples 

collected using air sampling devices tend to yield higher levels of ultrafine particles in the 

respirable or nanometer range (Demmers et al, 2003; Donham et al, 1986).  However, an 
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understanding of settled dust particles would provide insight into the nature and 

interactions of larger dust constituents which are more likely to accumulate and persist 

within animal production housing.  It is important to understand both dust categories, that 

is, larger and smaller dust particles. 

With regard to the number of units sampled, husbandry dust characterization studies 

depend heavily on access to animal production facilities.  With the exception of swine and 

poultry, two-three husbandry units per species were analyzed in the present study. Ultimately, 

there is a need for more studies of this nature to fully understand agricultural dust exposures. 

3.5 Conclusions 

 Agricultural dust in animal production buildings consists of a complex mixture of 

grain/feed particles, microbial products (endotoxin), a variety of gases, metals and other 

components.  Chronic inhalation of such animal production dust has been associated with 

occupational respiratory symptoms in farmers and workers; lesser is known about potential 

effects on animals.  The present study found more respirable versus inhalable particles in all 

livestock unit dust samples and provides some preliminary evidence in possible differences for 

dust particle sizes and bacterial species among livestock units that need to be more fully 

explored. 
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CHAPTER 4 

Apoptotic and Oxidative Effects of Diepoxybutane on Airway Cells and Lymphoblasts 

4.1 Introduction 

The environmental pollutant, 1,3-butadiene (BD) is important in the industrial world 

particularly in the manufacturing of synthetic rubbers and plastic products.  It is also a 

component of cigarette smoke and automobile exhaust, thereby exposing not only factory 

workers but the general population as well.  BD is classified as a carcinogen by the International 

Agency for the Research on Cancer (IARC) and is a known toxicant.  Metabolically, BD is 

broken down into three primary active metabolites, 1,2-epoxy-3-butene (EB), 1,2:3,4-

diepoxybutane (DEB) and 3,4-epoxy-1,2-butanediol (EBD).  These three metabolites have the 

ability to be carcinogenic, mutagenic and genotoxic, inducing chromosomal aberrations, 

micronucleus formation and sister chromatids (Bond, 2001; Kligerman, 2007;Murg, 1999).  Of 

these three metabolites 1,2:3,4-diepoxybutane (DEB) is the most potent metabolite and causes 

the highest amount of genotoxicity.  The incurring of high levels of genotoxicity contributes to 

the induction of crosslinking DNA (inter-strand and intra-strand) (IARC, 2007) (Millaird et al, 

2006).  A study by Yadavilli et al (2009), DEB induced elevated cellular levels of tumor 

suppressor p53 in human B lymphoblastic TK6 cells.  Diepoxybutane mediates DNA damage 

through generating free radicals and contributing to oxidative stress which mediates apoptosis in 

human lymphoblasts (Erexson & Tindall, 2000) (Yadavilli et al, 2007).   

Because butadiene is normally inhaled we investigated the effect of DEB on normal 

human bronchial epithelial cells.  There are a relatively small number of published studies on the 

oxidative stress in DEB- exposed airway cells.  To examine the levels of oxidative stress, we 

quantified levels of 8-isoprostane, a biomarker for lipid peroxidation.               
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Apoptosis is a form of programmed cell death with physiologic and pathologic actions.  

For example, the cells between the digits in human embryos undergo apoptosis.  Another 

purpose of apoptosis is to eliminate damaged, infected or possible cancerous cells.  In some 

cases, such as cancer, there is too little apoptosis and far too much apoptosis in conditions such 

as Alzheimer’s disease (Nagata, 1996).  Characteristics of apoptosis are cell shrinkage, nuclear 

shrinkage and apoptotic bodies.  It also occurs usually within single cells or small groups of 

cells. 

Free radicals are chemically unstable molecules which have a high affinity for binding to 

DNA, protein and nucleic acids due to their’ unfilled outer electron valence shell.  Free radicals 

are produced as a result of mitochondrial respiration as well as other normal physiological 

processes.  Free radicals can also be a result from environmental factors such as cigarette smoke.  

In most circumstances, antioxidants can bind free radicals, preventing the build up of high levels 

of free radicals which can cause tissue damage. However, the system can be overwhelmed and 

free radicals can cause tissue damage in a condition known as oxidative stress. We hypothesized 

that DEB will increase apoptosis and reactive oxygen species (ROS) production in human B 

lymphoblasts and decrease proliferation and increase oxidative stress in NHBE cells.  Our 

objectives for this study were to analyze DEB-mediated reactive oxygen species production and 

apoptosis at acute time points in lymphoblasts and identify DEB-mediated oxidative stress in 

NHBE cells. 

4.2 Materials and Methods  

4.2.1 Chemicals. Diepoxybutane (11.267) and a antioxidant, N-acetyl-L-cysteine (NAC) 

were purchased from Sigma-Aldrich Chemical Company.  Acridine-orange (AO, 10 mg/ml) used 

for apoptosis staining and CM-H2DCFDA (5-(and-6)-chloromethyl-2`,7-
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dichlorodihyrofluorescein diacetate) stain for free radical detection were purchased from 

Molecular Probes.  Psiva, another stain for apoptosis, was purchased from IMGENEX.   

4.2.2 Exposure of cells to diepoxybutane.  The human B lymphoblastic cell line TK6 

(American Type Culture Collection) were cultured at 2 x 10
5 
cells/ml in RPMI 1640 media, 

supplemented with 10% fetal bovine serum (FBS, Invitrogen Life Technologies) and 2 mM l-

glutamine.  Cells were passaged into fresh media at 24 hours prior to each experiment.  Cells 

were washed and seeded into fresh media.  For DEB exposures, DEB stock [11.27 M] was made 

in media to obtain a 1M solution and a 1:1 dilution of 1M DEB was added to the media of each 

individual treatment group for a final concentration of 10 mM.  NAC (20 mM) treatments 

occurred one hour prior to DEB exposures.  For NHBE exposures, cells were allowed to reach 

90-95% confluency for cytotoxicity, nitric oxide and 8-isoprostane assays.  For proliferation 

studies in NHBE cells, confluency of cells were no more than ~75%.  Exposures times ranged 

from 7 to 24 hours for TK6 and NHBE cells.  Concurrent experiments of dust extract (5% and 

10%) and sorrel treatments (0.1% and 1%) were conducted in triplicate. 

4.2.3 Assessing cell viability.  Viability was determined via the trypan blue exclusion 

assay and was quantified on Beckman Coulter ViCell Cell counter prior to further 

experimentation.  Cells were counted on 50 different planes; the viability and viable cells/ml 

were gleaned.  This assessed the health of cells before conducting assays.  For non-DEB exposed 

viabilities had to be at least above 95% and for DEB exposed cells viability had to be ~84-89%.   

4.2.4 Quantitation of diepoxybutane-induced apoptosis.  In order to characterize the 

cell death we  analyzed the levels of apoptosis in Tk6 cells acridine orange and pSiva staining 

occurred.  Acridine orange (AO) and pSIVA staining were used to analyze the levels of 

apoptosis in Tk6 cells.  Samples were counted in five fields of brightfield and fluorescence 
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microscopy.  Cells that produced green on the cell membrane (pSiva) and orange nuclei (acridine 

orange) were recorded as apoptosis positive.  The percent of apoptotic cells was calculated by 

dividing the number of  apoptotic cells divided by the total number of cells in brightfield 

(multiplied by 100).  This was performed using acridine orange as previously described in 

Yadavilli and Muganda (2004) to identify late apoptosis. Cells (1 x 10
5
)
 
were used for both 

staining.         

4.2.5 Measurement of reactive oxygen species. Lymphoblasts (TK6) cells were pre-

incubated with 20mM NAC for 1 hour prior to DEB treatment of cells (0, 10 µM) for the 3, 8 

and 19.5 hours.  Cells were washed with PBS once and were then incubated with PBS/DCF (5 

µM) for 20 minutes on ice.  Cells were then washed again in PBS and resuspended in PBS and 

subjected to analysis via microplate reader format.  To evaluate the total number of cells by 

nuclear staining and to distinguish apoptotic cells via nuclear morphology, Hoecsht 33342 (4 

µg/ml final concentrations) was added after cells were read via microplate reader.  For statistical 

purposes, ROS (green) positive cells were counted from five different fields and the percentage 

of ROS positive was obtained.   

4.2.6 Measurement of proliferation.  Cells (NHBE) were cultured in a tissue cultured 

treated clear 96 well plate using NHBE complete media.  Subconfluent cell cultures (75%) were 

evaluated using the BrdU proliferation kit. Labeling and treatments were done simultaneously 

and the kit was used per manufacturer’s instructions.   

4.2.7 Measurement of 8-isoprostane.  The 8-isoprostane EIA kit was obtained from 

Cayman Chemical Company.  Supernatants were collected post-exposure and diluted either 1:10 

or undiluted.  Standards used were 500, 200, 80, 32, 12.8, 5.1, 2.0, 0.8 pg/ml in duplicate for 

each plate.  The plate was loaded with appropriate samples, read at 405 nm using the 
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SpectroMax M5 microplate reader and analyzed with Softmax 5.0.  The concentrations were 

quantified with the kit similar to Van Hoydonck et al (2004).   

4.2.8 Lactate dehydrogenase release.  To determine the cytotoxic effect of the 

agricultural dusts on the NHBE cells, the lactate dehydrogenase release (LDH) assay was 

utilized.  After treating the cells, supernatant was collected and centrifuged at 4,000- 5,000 RPM.  

The resulting cell pellet which formed was not disturbed, and the supernatant was transferred to a 

new clean tube.  The supernatant was subjected to the cytotoxicity kit obtained from Roche 

Diagnostics and used per manufacturer’s instructions. 

4.2.9 Nitric oxide production.  Supernatants from NHBE cell cultures exposed to DEB 

were collected and analyzed using Griess reagent kits (Promega) to analyze levels of NO. 

Supernatants were collected and centrifuged for 5 minutes at 4,000-5,000 RPM.  Without 

disturbing the cell pellet, the supernatant was collected in a new microfuge tube.  Kit was used 

per manufacturer’s instructions. Nitrite standards were used at the various concentrations: 100, 

50, 25, 12.5, 6.25, 3.13, 1.56 and 0 µM. Samples (50 µl) were mixed with sulfanialamide 

solution and kept at room temperature protected from light for 10 minutes in a clear 96 well 

plate.  NED solution was added after the first 10 minute incubation and 10 minute incubation 

followed.  The samples were subjected to the versamaxx plate reader and read at 520 nm. 

4.2.10 Statistical analysis.  All results were expressed as means of ±SEM of at least 

three experimental replicates.  Statistical differences between the means were determined with a 

one way analysis of variance (ANOVA) using Graphpad Prism software was utilized 

significance reported as P value of ≤ 0.05 was considered significant.  
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4.3 Results 

4.3.1 DEB impairs viability in human lymphoblasts.  We utilized a dye exclusion 

method, trypan blue, to assess cell viability.  Trypan blue is a dye that is taken up 5.2by cells 

whose cell membrane is compromised.  Cell membranes are selectively permeable and only 

allow certain molecules to cross in and out.  Therefore, dead cells, which have taken up the dye, 

will appear blue under the microscope, whereas live cells will be clear.  This also allows us 

examine cellular health of the lymphocytes that have been exposed to DEB.  As expected we 

observed a trend that suggests a decrease in viability over time in the lymphocytes exposed to 

DEB (Figure 7).  This is similar to the findings of Yadavilli and Muganda 2004. 

 

Figure 7. Viabilities of DEB exposed and non-DEB exposed TK6 lymphoblasts.  Cells were 

counted on the Beckman Coulter ViCell cell counter; viabilities were calculated and recorded for 

the following times: 0, 7, 12, 16 and 24 hours.   

 

4.3.2 Early apoptosis in lymphoblasts exposed to DEB.  Acridine orange is a cell 

permeable dye which binds to nucleic acids and, when combined with ethidium bromide, can 

identify apoptotic cells via fluorescent microscopy.  As previously stated,  human lymphoblasts 

exposed to DEB undergo apoptosis.  In Figure 8A we see a significant increase in the percent of 
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apoptotic cells exposed DEB for 12 hour via the Psiva fluorescent microscopy staining.  As 

shown in figure 8B, the ROS scavenger NAC decreased apoptosis in lymphocytes after a 16 hour 

DEB exposure.  One-way ANOVA evaluation of results revealed  higher levels of apoptotic cells 

in DEB exposed cells at the 12 hour exposure (A) and that NAC significantly decreased the 

levels of apoptotic cells after a 16 hour DEB exposure (value<0.05) compared to control. 

A. 

 

 

B. 

 

Figure 8. DEB mediated apoptosis in lymphocytes.  Cells were exposed to DEB (10 mM) for 12 

and 16 hours.  A. Increase of apoptotic lymphocytes after 12 hour DEB exposure. AO staining 

occurred and cells were counted via fluorescent microscopy.  B. Apoptosis was increased in 

lymphocytes post 16 hour DEB exposure. Cells were pretreated with NAC (20 mM) before the 

DEB exposure.  pSiva staining was conducted and cells were counted via fluorescent 

microscopy.    Data presented as mean ± SEM, n=4   *p-value<0.05, DEB+ compared to DEB+ 

pretreated with NAC. 

 

* 

* 
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4.3.3 DEB increased ROS production in human lymphocytes at 19.5 hours.  Free 

radicals in large and uncontrolled levels may be responsible for tissue damage.  Figure 9 depicts 

higher levels of ROS as determined by microplate reader (figure 9A) and the microscopy (figure 

9B) methods.  There was a significant increase in the fluorescence emitted which is indicative of 

hydrogen peroxide levels in DEB exposed lymphoblasts (p-value<0.05) when a t-test was 

conducted.  The percent of ROS positive cells were increased significantly after a 19.5 hour DEB 

exposure under a one-way ANOVA (p-value<0.01) in B.   

 

A.      B. 

 

Figure 9. ROS production in TK6 lymphoblasts following 19.5 hour DEB exposure.  

Lymphoblasts were subjected to DCF staining after DEB exposure and two methods of 

characterizing ROS production: microplate reader (A) and fluorescent microscopy (B).  Higher 

levels of ROS where present in cells exposed to the DEB after 19.5 hours.  Data are presented as 

mean ±SEM, n=4.  *-p-value<0.05,  **-p-value<0.01.   

 

 4.3.4 ROS production in human lymphoblasts unaltered after acute DEB exposures.  

To investigate if the ROS are produced at earlier time points than 24 hours, TK6 lymphoblasts 

were exposed to DEB for 3 hours and incubated with DCF to determine oxidant levels.  We also 

pretreated one group of cells with the antioxidant NAC to determine if it could potentially lower 

amounts of oxidants.  Figure 10 represents the levels of oxidants at 3 hours post-treatment.  

** 
* 
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There was no increase in the amount oxidants between the non-exposed versus DEB groups and 

there were no differences between the NAC pretreated groups.  No significant differences were 

found among the NAC pretreatmented cell cultures.  

 

 

Figure 10.  Acute exposure of DEB, 3 hours on TK6 human lymphocytes.  Reactive oxygen 

species production in cells exposed to DEB for 3 hours, microscopy. Pretreatment of NAC 

(20mM) occurred one hour prior to DEB treatment.  Levels measured via microscopic analysis.  

Data are presented as mean ±SEM. 

 

4.3.5 Proliferation of NHBE cells exposed to DEB.  Proliferation of lymphoblasts 

exposed to DEB did change.  We expected to see the same results in the NHBE cells however, 

the proliferation was similar in the DEB exposed NHBE cells compared to the control (figure 

11).   
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Figure 11. Proliferation of NHBE cells post 24 hour DEB exposure.  Cells were exposed to 10 

mM DEB for 24 hours.  Data presented as mean ±SEM, n=12.  

 

4.3.6 8-isoprostane levels were unaltered after DEB exposure.  A common biomarker 

of lipid peroxidation and oxidative stress, especially in airway epithelium is 8-isoprostane.  In 

this study we analyzed the effects of 8-isoprostane on NHBE cells that have been exposed to 

DEB for 8 hours and cells that were pretreated with NAC followed by a DEB exposure (also 8 

hours).  There were no significant differences between the treatments for levels of 8-isoprostane 

in this study. 
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A. 

 

 

B. 

 

Figure 12.  Levels of 8-isoprostane after DEB exposure in NHBE cells. A. NAC pretreated 

NHBE cells.  B. Sorrel pretreated NHBE cells.  Cells were exposed to 20 mM NAC (1 hour), 

sorrel (1%) 10mM DEB (8 hours) and DE (10%).  Data are presented as mean ± SEM, n=3.  

 

 4.3.7 NHBE cells exhibited no cytotoxicity post-DEB exposure.  Lactate 

dehydrogenase leakage is an indicator of cell membrane damage.  Therefore, the more LDH 

released corresponds to the level of the cell membrane damage and to the level of cytotoxicity.  

We expected to see the DEB cause high levels of cytotoxicity due to the nature of the DEB in the 

lymphocytes.  However there was no cytotoxicity found via the LDH release assay.  These data 

may be invalid due to the low levels of cytotoxicity found in all treatments.   

 

 



59 

 

 

 

Figure 13. Cytotoxicity levels in NHBE cells pretreated to antioxidants and exposed to DEB for 

7 hours.  NAC (20 mM) and sorrel (1%) pretreatments for one hour prior to DEB (10mM) 

exposure (7 hours).  Data are presented as mean ±SEM, n=6. 

 

 4.3.8 NO levels in NHBE after exposure to DEB.  Nitric oxide is a well known free 

radical and functions in the regulation of pulmonary disease (Jorens PG 1993; Gaston B 1994).   

DEB did not cause an increase in nitric oxide levels; in fact, the levels of NO decreased in 

comparison to the control (figure 14).  The decrease in NO levels could be due to the depletion 

of this signaling molecule.  NO is known to have a role in pro-inflammatory signaling and DEB 

could have caused NO to increase but after seven hours, levels could have decreased   NAC and 

sorrel were significantly different from the control as expected, and the pretreatment of NAC did 

not alter the nitric oxide levels before the 7 hour DEB exposure.  However the sorrel 

pretreatment and corresponding DEB exposure did decrease NO levels significantly when 

compared to the control.   
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Figure 14.  NO production post-DEB exposure in NHBE.  Cells were exposed to pretreatments 

for one hour, DEB exposures occurred for 7 hours.  Data are presented as mean ±SEM, n=3.  

 

4.4 Discussion 

 Apoptosis can occur as a result of maintaining homeostasis, but can also be induced via 

environmental factors.  Oxidative stress, a condition of imbalanced levels of oxidants compared 

to antioxidants, can also be induced by environmental factors and may play a role in the 

pathogenesis of apoptosis.  Examples of some environmental factors that can cause apoptosis and 

oxidative stress are cigarette smoke and automobile exhaust.  DEB, the most potent metabolite of 

the carcinogen BD (Yadavilli et al, 2007), has been shown to induce apoptosis, via oxidative 

stress in human B lymphoblasts.  

 In this study we investigated the apoptotic and oxidative stress inducing effects of DEB 

in lymphoblasts following exposures of less than 24 hours.  As hypothesized, lymphoblast 

viability decreased and there were higher levels of apoptosis at 12 and 16 hours exposures in 

DEB exposed cells.  The health of lymphoblasts were compromised post-DEB exposures.  L-

cysteine is a precursor to glutathione, a known antioxidant and known as NAC is commercially 
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available and currently used for a host of diseases.  NAC effectively reduced apoptosis in 

lymphocytes at 16 hours but did not alter levels of ROS at 3 hours.  These are confounding 

results due to studies stating NAC is known to function by increasing glutathione levels and 

DEB causes glutathione conjugates (mechanism of toxicity) (Boogaard et al, 1996).  NAC was 

also shown to reduce ROS in lymphoblasts exposed to DEB at 24 hours in the study conducted 

by Yadavilli et al, 2007.  We do observe higher levels of ROS in lymphoblasts exposed to DEB 

for 19.5 hours.  It is anticipated that more in depth studies on acute versus chronic DEB 

exposures of lymphoblasts will illuminate more information on the DEB toxicity mechanisms in 

regards to apoptosis and oxidative stress.   

 We expected to observe decreased NHBE cell proliferation following DEB exposure in 

vitro; however, proliferation remained unaltered.  When 8-isoprostane levels were quantified, 

there was no difference between control and DEB exposed cells. It is plausible that the dose of 

DEB administered to NHBE cells was not effective in eliciting a response in airway cells.  In this 

study, lymphocytes had a tendency to undergo apoptosis more readily, while airway cells were 

less likely to possibly due to the fact that they encounter so many various pollutants on a daily 

basis.  Similar findings were observed with NO evaluation compared to 8-isoprostane studies.   

NO levels of the experimental groups were lower than the control groups.  From this data 

it seems as if DEB decreases NO production. This observation needs to be further investigated.  

Due to NO’s many origins it can be difficult to pinpoint what physiological activity it might have 

in the airway (Ricciardolo, 2003).  

According to the LDH release results, none of the treatments were deemed cytotoxic and 

a dose response could not be established.  Perhaps there was some interference with the reagents 

which resulted in low levels of “LDH release.”  Further investigations using additional 
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cytotoxicity detection assays should be considered to analyze the cytotoxicity of DEB in airway 

cells.   The concentration of DEB (10mM) is optimal for lymphocytes which are known to 

undergo apoptosis rapidly however, potentially too low for airway cells which encounter 

onslaughts frequently.       

4.5 Conclusion 

 In conclusion we observed a trend of decreasing viability in DEB exposed lymphoblasts 

over time.  As expected, we also detected higher levels of apoptotic cells at 12 and 16 hours. 

NAC was able to decrease levels of apoptosis in DEB exposed lymphoblasts.  We believe this is 

a result of NAC scavenging free radicals and therefore reducing apoptosis.  ROS production was 

higher in DEB exposed cells compared to control cells.  However, we did not detect a decrease 

in ROS at shorter DEB exposures, and NAC was not effective in reducing ROS levels.    This 

could be due to a short exposure time which did not give enough time for ROS to build up.  

More studies should be conducted to monitor the apoptosis and ROS in lymphoblasts that are 

exposed to DEB in an acute manner.   

 More analysis should be conducted to validate DEB toxicity in NHBE cells.  Perhaps an 

increase in the concentration of DEB for this cell type could result in an observable response.  

The effect of antioxidant pretreatments in decreasing oxidative stress could not be validated with 

NHBE cells under the conditions reported here.  Future studies should established an effective 

doses of DEB and NAC to evaluated oxidative stress and antioxidative effects in NHBE cells. 
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CHAPTER 5  

Pretreatment with Sorrel Reduces Biomarkers of Oxidative Stress in Airway Epithelial 

Cells Exposed to Agricultural Dusts in vitro 

5.1 Introduction 

Veterinarians, managers, inspection and processing workers and many others in the 

agriculture profession may be susceptible to illness and injury following agricultural 

environment exposures (do Pico, 1996).  Acute bronchitis, chronic bronchitis, asthma, interstitial 

disease and acute lung injury are examples of pulmonary diseases that affect agriculture workers 

(Spurzem et al, 2002).    Exposure to animal husbandry dusts, including dusts from barns that 

house sheep goats, horses, cattle, swine and poultry, is the leading cause of these manifestations.  

Many of the aforementioned respiratory diseases are mediated by cytokines including 

interleukin-6 (IL-6) and IL-8; pro-inflammatory cytokines whose levels are known to increase 

after dust exposure in airway cells following swine dust exposure (Romberger et al, 2002).  IL-8 

is also a potent chemokine and recruiter of neutrophils.  It is well known that neutrophils, and 

other phagocytic cells, contribute to an increase of oxidative stress by releasing free radicals as a 

tool to control bacteria and other harmful substances as well as being released from neutrophils 

that have undergone a respiratory burst.  We believe oxidants, whether from endogenous or 

exogenous sources, contribute to respiratory complications.  Oxidants mediate injury by binding 

to important macromolecules such as proteins, lipids and DNA and inhibit their normal function.  

However, more studies are needed to fully understand the molecular events modulated by 

oxidants.  

Recently, phytonutrients including flavonoids, stillbenes and lignans from functional 

foods (e.g., fruits and vegetables) have become of interest because these natural, active 



64 

 

 

compounds from plants have been studied for their antioxidant, disease prevention actions.  

Phytonutrients are known to strengthen immunity as well as other health-promoting benefits.   

Some phytonutrients can function as precursors to antioxidants (Fullerton et al, 2008).  The 

commercially available antioxidant acetylcysteine, also known as N-acetylcysteine or N-acetyl-

L-cysteine (NAC), is a thiol compound that has mucolytic potential and is a direct pre-cursor to 

reduced glutathione (Sadowska, Manuel-y-Keenoy, De Backer, 2007).  NAC is also known to 

decrease respiratory bursts caused by neutrophils which can lead to a decrease in free radicals 

and ultimately oxidative stress (Stolarek, Bialasiewicz, Nowark 2002) and Nordgren and 

colleagues (2013) provided evidence that maresin-1 can decrease levels of IL-8 and IL-6 in 

bronchial epithelial cells.  Maresin-1 can function as a lipid mediator which can be a form of 

oxidative stress.  An antioxidant enriched diet can provide benefits such as decreasing free 

radical levels and supplying the body with free radical eliminators.  Hibiscus sabdariffa (sorrel) 

is a plant native to the West Indies and China which has been studied recently for it antimicrobial 

and anti-imflammation capacity (Fullerton et al, 2008; 2011).  Sorrel calyces contain potent 

phytonutrients that are rich in antioxidants including vitamin C (Fullerton et al, 2008).  In Essa 

(2006), rats pre-exposed to sorrel were protected against the harmful effects of carcinogens.  In 

our lab, there have been ongoing studies that suggest sorrel may have protective effects against 

dust mediated inflammation.  It is believed that this occurs through free radical scavenging and 

enhancement of endogenous antioxidant levels (i.e., glutathione, catalase and superoxide 

dismutase).   

In the present study we investigated the hypothesis that pretreatment with sorrel will 

reduce animal husbandry dust mediated oxidative stress through reduction of oxidative stress 

biomarkers (e.g., nitric oxide and 8-isoprostane) in airway epithelial cells.  Respiratory cells that 
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were pretreated with sorrel and stimulated with extracts of husbandry dust showed a significant 

decrease in oxidative stress compared to control cells that were not pretreated with sorrel. 

5.2 Materials and Methods 

5.2.1 Cell culture.  Normal human bronchial epithelium (NHBE; Lonza, Walkersville, 

MD) cells were maintained in incubators at 37°C and 5% CO2 and cultured in NHBE complete 

media (1:1 mixture of BEBM /DMEM, and Lonza SingleQuots® and Nystatin.  Cells were used 

at passage 2 and were seeded on rat tail collagen-coated tissue culture plates at a density of 1 x 

10
4
 cells/cm

2
 or as noted until confluent.  Prior to experimental investigations, cells were 

switched to a medium that did not contain epidermal growth factor (EGF) or bovine pituitary 

extract (BPE) overnight. 

5.2.2 Sorrel extraction and isolation.  Dried sorrel calyces were purchased from a local 

grocery store and freeze-dried. The freeze-dried calyces were grounded to powder and then 

stored at -20 °C until use.  The phenolics in powdered freeze-dried calyces were extracted by the 

ultrasound-assisted method.  Phenolics of the calyces were extracted from 10 g of ground, 

freeze-dried samples using 100mL of 80% aqueous methanol. The mixture of freeze-dried 

powder and 80% aqueous methanol was sonicated for 20 minutes with continual nitrogen gas 

purging. The mixture was filtered through Whatman (Maidstone, United Kingdom) #2 filter 

paper using a Buchner funnel and rinsed with 50mL of 100% methanol. Extraction of the residue 

was repeated using similar conditions. The two filtrates were combined and transferred into a 1-

L evaporating flask with an additional 50 mL of 80% aqueous methanol. The solvent was 

evaporated using a rotary evaporator at 40°C. The remaining phenolic concentrate was dissolved 

in 50mL of 100% methanol and diluted to a final volume of 100 mL using distilled deionized 

water obtained with a NANOpure water system (Barnstead, Dubuque, IA, USA). The mixture 
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was centrifuged at refrigerated temperatures using a Sorvall (DuPont, Wilmington, DE, USA) 

RC-5B refrigerated superspeed centrifuge, at 10,000 g for 20 minutes and then stored at -4°C for 

future use. 

5.2.3 Lactate dehydrogenase release.  To determine the cytotoxic effect of the 

agricultural dusts on the NHBE cell, the lactate dehydrogenase (LDH) assay was used by Roche.  

The enzyme resides in the cytoplasm of mammalian cells.  When the plasma membrane is 

damaged, LDH can be released and can be marker of cell viability.  Post-treatment, 1.5 ml of 

supernatant was collected and centrifuged for 5 minutes at 4,000-5,000 RPM.  The resulting cell 

pellet, which was formed, was not disturbed and the supernatant was transferred to a new clean 

tube.  The supernatant was subjected to the cytotoxicity kit obtained from Roche Diagnostics and 

used per manufacturer’s instructions. 

5.2.4 Nitric oxide production.  Supernatants from exposed cells were used to measure 

NO levels using Greiss reagent kit obtained from Promega. Supernatant was collected and 

centrifuged for 5 minutes at 4,000-5,000 RPM.  Without disturbing the cell pellet, the 

supernatant was collected in a new microfuge tube.  The kit was used per manufacturer’s 

instructions. 

5.2.5 DCF staining.  Cells were grown in a 96-well black, clear bottom tissue culture 

plate format.  Cultures (90-95% confluency) were washed with PBS and loaded with 10 µM 

dichlorofluroscein (DCF; Invitrogen) at 37°C for 50 minutes while wrapped loosely in foil to 

protect form light.  DCF was aspirated off, surfaces were washed twice with PBS and cultures 

were either pre-treated or not with an antioxidant (NAC or Sorrel) and stimulated with dust 

extracts. Plates were read on a SpecrtoMax M5microplate reader according to manufacturer’s 

instructions for 3.5 hours. 
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5.2.6 Proliferation assay.  Cells were cultured in a clear 96 well plates until they reached 

75% confluency.  Cells were then pretreated with antioxidant, stimulated with dust extract and 

analyzed using the BrdU cell proliferation assay (Roche Diagnostics) as per manufacturer’s 

instructions.   

5.2.7 Prostaglandin production.  To evaluate the levels of prostaglandin or PGE2, an 

EIA Kit (Enzo Life Sciences, Plymouth Meeting, PA) was utilized according to manufacturer’s 

instruction.  Briefly, appropriate components were brought to room temperature before use. 

Standards were made from 2500 pg/ml to 39.1 pg/ml. 100 ml of standards or samples were added 

to each well, except for controls. (Several different controls were made, in accordance to 

instructions, for the blank, Bo, NSB and total activity. Control wells received different 

treatments, depending on desired end point.) Next, 50 ml of PGE2 conjugate and then 50 ml of 

PGE2 antibody was added to standard and sample wells. The plate was then incubated for two 

hours, at room temperature, while being shaken. All wells were then aspirated and washed three 

times in wash buffer. Next, 200 ml of pNpp substrate was added to all wells for 45 minutes. 

Finally, 50 ml of stop solution was added to all wells. The plate was read at 405 nm. 

5.2.8 Measurement of 8-isoprostane.  Following cell exposure to antioxidant 

pretreatment and dust extract stimulation, the 8-isoprostane EIA kit (Cayman Chemical, Ann 

Arbor, MI) was used according to manufacturer’s instructions to evaluate oxidative stress.  

Supernatants were collected post-exposure and diluted either 1:10 or left undiluted.  The 

concentrations were quantified as previously reported (Van Hoydonck et al. 2004). 

5.3 Results 

 5.3.1 Cytotoxicity levels of NHBE cells exposed to the various agriculture dusts.  

Lactate Dehydrogenase (LDH) is an enzyme that normally resides in the cytoplasm of the cell.  
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When it is released and leaks into the surrounding environment, suggesting cell membrane 

damage.  The level of LDH in culture media is directly proportional to the level of cytotoxicity.  

In this study, we evaluated the cytotoxicity of the various semi-confinement facilities agriculture 

dusts: dairy, equine and small ruminant, as well as the swine and poultry confinement facilities 

shown in figure 15.  The exposure to the equine and swine dust increased in a toxicity 

concentration dependent manner.  The poultry dust toxicity levels were very similar across the 

concentrations.  The small ruminant and dairy dust toxicity were inverted.  In the dairy dust, 

extract exposed cells 1% and 10% showed low levels of toxicity while the 5 and 8% showed 

higher levels.  Small ruminant dust extracts caused higher levels of toxicity in 5 and 10% 

whereas 1 and 8% were lower.   

 

 

Figure 15. Cytotoxicity analysis of agricultural dusts on NHBE cells for 6 hours.  Lactate 

dehydrogenase assessment was utilized to identify plasma membrane damage of NHBE cells 

exposed to swine, small ruminant, poultry, dairy, and equine husbandry dusts.  Data are 

presented as mean ± SEM, n=3.     
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5.3.2 Proliferation of airway cells following agricultural dust exposure.  Along with 

cytotoxicity data to show the health of the cells exposed to the different agricultural dusts, we 

also examined the proliferation in three different cell types.  In figure 16A , NHBE cells were 

exposed to the various agricultural dusts at 5 and 12%, with one group of cells receiving a 

pretreatment of antioxidant scavenger, NAC,  for one hour prior to dust exposure.  Higher levels 

of proliferation in cells not exposed to NAC.  In figure 16B, A549 cells were exposed to the 

various dusts (12%) for 24 hours.  A similar affect was observed in the NAC treated cells, a 

marked decrease in proliferation in cells exposed to the antioxidant NAC.  In figure 16C,  PTBE 

cells were exposed to swine dust at 5% and pretreated with sorrel (0.1 and1%) for one hour 

before dust exposure.  No differences were present in between treatments for proliferation 

conducted in the porcine cells.  We expected to see a decrease in proliferation in cells exposed to 

dust extract.   The proliferation of cells should be kept normal at a steady rate.  Cells that 

increase or decrease proliferation can indicate a signaling problem.  In this study, the 

proliferation was measured by staining the DNA (in particular thymidine) and the resulting color 

produced indicates how much DNA synthesis occurred.     
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A.       

 

B.       

 

C. 

 

Figure 16.  Proliferation of airway cells exposed to various agricultural dusts.  A. Proliferation of 

NHBE cells exposed to the various agricultural dusts at 5% and 12% (swine, small ruminant, 

dairy, equine, and poultry) and NAC (10 mM) for 24 hours.  B. Proliferation of A549 cell line 

exposed to the same dusts (12%) for 24 hours and pretreated with NAC (10mM). C. PTBE cells 

exposed to swine dust extract (5%) for 24 hours and pretreated with sorrel (1%) for one hour.  

Data represents the mean ± SEM, n=8. *-p-value < 0.05. 

* *
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5.3.3 Effects of Sorrel pretreatment on prostaglandin production.  Prostaglandin is a 

member of arachidonic pathway and is known to modulate inflammation.  In this study, we 

analyzed the levels of prostaglandin via an ELISA assay on NHBE cell supernatant that had been 

exposed to the various agriculture dusts at 5% and also pretreated a group of cells prior to dust 

exposure with sorrel extract (1%).  We did not see differences between the various treatments on 

the dust only treated cells (figure 17A).  We also observed no differences when sorrel was 

utilized as an antioxidant pretreatment (figure 17B).   

A. 

 

 

B. 

 

Figure 17. Prostaglandin production of NHBE after dust exposure and Sorrel pretreatment.  A.  

NHBE cells exposed to the various agricultural dusts.  B.  NHBE cells were pretreated with 

sorrel (1%) for 1 hour before dust treatment (5%).  Data represents the mean ± SEM, n= 3.  
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5.3.4 Oxidant levels in airway cells exposed to swine dusts.  We examined the levels of 

free radicals that airway cells produce following antioxidant/dust exposure.  In figure 18A, 

PTBE cells were exposed to 5% swine DE, a pretreatment of sorrel (.1%) and hydrogen peroxide 

(300 µm) for a positive control.  Cells were exposed to the various treatments for 3.5 hours (210 

minutes) and readings were taken every thirty minutes.  The hydrogen peroxide significantly 

increased the oxidant levels when compared to the control.  The cells treated with a sorrel 

pretreatment prior to dust exposure had significantly lower levels of oxidants compared to the 

sorrel only , control and dust only treatments.  We expected to see higher levels of oxidants in 

cells exposed to dust only; however, it did not differ from the control.  We also conducted a 

concentration gradient of swine confinement unit dust on NHBE cells over one hour (figure 

18B).  We observed an increase of hydrogen peroxide production in a time and dose-dependent 

manner the various dust treatments (p<0.001).  The hydrogen peroxide as the high control did 

not increase the levels of oxidants as expected. 
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A. 

 

 

B. 

 

Figure 18.  Hydrogen peroxide production in airway cells post swine dust extract exposure.  A.  

Oxidant levels of PTBE cells exposed to 5% swine dust.  PTBE cells were exposed to media 

(control), hydrogen peroxide (300 µM), NAC (10mM), and pretreated with 1% sorrel for one 

hour.  Data represented as the mean ± SEM, n=8.  B. Oxidant levels of NHBE cells exposed to 

various concentrations of swine dust over 60 minutes. Measurement of oxidants in NHBE cells 

exposed to Swine Dust (1,3,5,8,10 and 12 %) for 0, 20, 40, & 60 minutes.  Oxidant production 

increased in time and concentration dependent manner.  Data presented as mean ±SEM, n=16.   

 

5.3.5 Levels of nitric oxide in airway cells pretreated with antioxidants and exposed   

swine dust.  Nitric oxide is a free radical that is normally found as a signaling molecule and is 
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predominant in the respiratory tract.  In this study, we analyzed the levels of the nitric oxide in 

cells exposed to swine dusts as well as an antioxidant pretreatment of NAC or sorrel.  In figure 

19A, PTBE cells were pretreated with sorrel (0.1%) or NAC (10 mM) for one hour prior to a 

four hour 5% DE exposure.  We expected to see increased levels of nitric oxide in the DE 

exposed cells, however we did not.  In fact, we did not see any differences in the various 

treatment groups.  In figure 19B, we exposed NHBE cells to 10% swine DE for 7 hours as well 

as a one hour pretreatment prior to the DE exposure.  The NAC and sorrel were increased to 20 

mM and 1% respectively.  The 10%  DE increased the nitric oxide levels when compared to the 

control group.  The antioxidant pretreatments had low levels of NO similar to the control.  We 

expected to see a more dramatic decrease in NO levels in the combined treatments, NAC and 

sorrel (pretreatments) and the 7 hour DE exposed cells;however, the sorrel significantly 

decreased the NO levels when compared to the DE exposed group whereas NAC did not 

decrease the levels.  NAC may be as efficient in neutralizing H2O2 as glutathione; however, it 

lacks in carrying capacity (Benrahmoune, Therand & Abedinzadeh, 2000; Gillissen, 1997).   
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A. 

 

B. 

 

Figure 19.  NO levels in airway cells post swine dust exposure. A. PTBE cells were pre-exposed 

to NAC (10 mM) or Sorrel (0.1%) for a one hour pretreatment then exposed to 5% DE for 4 

hours.  B. NHBE cells exposed to pretreatment of NAC (20mM) or sorrel (1%) following a 

swine dust extract (10%) exposure for 7 hours.  Data are presented as mean ±SEM, n=3. *-p-

value<0.05 when compared to DE.  ***-p-value<0.001 when compared to the control.   

 

5.3.6 Levels of 8-isoprostane in NHBE cells post-dust extract exposure and 

pretreatment of antioxidants.  8-isoprostane is a member of the arachidonic acid pathway 

which is known to cause inflammation.  Inflammation can be known to increase oxidative stress.  

8-isoprostane is commonly found in the airway and is a biomarker for oxidative stress.  In this 

study, we tested the levels of 8-isoprostane in NHBE cells that had been exposed to 20 mM NAC 

(figure 20A) or 1% sorrel (figure 20B) for one hour and DE (10%) for 7 hours.  The levels of 8-

isoprostane were significantly higher in the DE only treated cells as depicted in figure 20A and 

*** 

* 
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20B.  The antioxidant pretreatment NAC significantly lowered 8-isoprostane in DE exposed cells 

however sorrel was able to decrease levels even lower than NAC.      

A. 

.  

B. 

 

Figure 20.  Levels of 8-isoprostane in NHBE cells exposed to DE for 7 hours.  NHBE cells were 

exposed to a pretreatment of 20 mM NAC (A) or 1% sorrel (B) followed by a swine dust (10%) 

for 7 hours.  Data presented as mean ±SEM, n=3. **-p-value<0.01 compared to DE, ***-p-

value<0.001 when DE is compared to the control and when sorrel+DE is compared to DE. 

 

5.4 Discussion 

 It is well established that agriculture dusts cause respiratory diseases.  In this study, we 

evaluated the capacity of sorrel to reduce oxidative stress in airway cells caused by animal 

husbandry dusts from the NC A&T SU farm.  We report here that airway cells exhibit signs of 

cytotoxicity and oxidative stress following exposure to animal husbandry dusts in vitro in a dose-

dependent manner.  In the NHBE and A549 cells, we observed a decrease in cells that were 

pretreated to 10 mM NAC.  This result was unexpected.  NAC is a known antioxidant scavenger 

and it should not alter the proliferation.  Perhaps at this concentration, the NAC is not effective.  

*** 

** 

*** 

*** 
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In the PTBE cells, we see a significant decrease in cells pretreated with sorrel, which is our novel 

antioxidant approach.  This finding is interesting due to the fact, the NAC behaved in a similar 

manner.  In the NHBE cells, we noticed decreases in proliferation 5% swine and equine dusts.  

On the other hand, the other dusts at 5% did not alter the proliferation.  The equine and poultry 

12 % dust extracts decreased the proliferation in comparison to the control.  Overall, cytotoxicity 

and proliferation do not seem to be compromised under an agriculture dust exposure.  We also 

did not observe any differences in prostaglandin levels between cells that were treated with 

agriculture dusts for 4 hours.  In Sandulache at al, (2009), they noted that airway injury activates 

prostanglandin E2 in airway epithelium.  We expected to see an increase of prostaglandin, which 

is a member of the arachidonic acid pathway and is prominent in inflammation.  Perhaps to 

examine the actual levels of inflammation in these cells exposed to the various agricultural dusts, 

we need to consider a different means of testing as well as identify another biomarker.  To look 

at oxidative stress more closely, we looked at the levels of free radicals being produced when the 

airway cells were exposed to swine dust.  When we tested the levels of oxidants in NHBE cells 

exposed to 5% swine dust, we did not see an increase of oxidants when compared to the control.  

However, the pretreatment of sorrel reduced antioxidants dramatically in the sorrel and dust 

treated cultures.  When we conducted an analysis to examine the levels of free radicals in PTBE 

exposed to various dust concentrations over time, we observed an increase of oxidants over time.   

We also evaluated modulation of the free radical nitric oxide or NO, which has a 

functioning role in the airways as signaling molecule and is the precursor to nitric oxide synthase 

(NOS).  iNOS is an inducible enzyme of NOS that is known to be prominent in airway disease 

and induced by a variety of airway pollutants.  We did not observe any differences in PTBE cells 

pretreated with antioxidant and exposed to SCF DE; however, in companion studies with NHBE 
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cells, we observed a marked increase in NO in cells exposed to 10% DE.  NAC pretreatment did 

not significantly decrease the levels of NO; however, sorrel attenuated these effects, suggesting 

that sorrel may be more efficient at preventing oxidative stress than the commercially available 

NAC under the conditions described herein.  Nitric oxide is a known regulator of ciliary beating.  

In Wyatt et al. (2008), exposure to hog barn dust extract altered epithelial beating in bovine 

ciliated cells in vitro.  In our studies, swine dust extract did not have an effect or porcine airway 

cells, but NHBE cells showed a response evidenced by increased NO production.  However, 

more studies are warranted to fully understand the significance of oxidants such as NO in airway 

cells because NO is a potent signaling molecule.  For example, it is responsible for mediating 

relaxation of airway smooth cells by modulating calcium (Perez-Zoghbi, Bai et al, 2010), an 

important signaling molecular and cofactor for numerous enzymatic reactions.  Thus, it is 

plausible that the increased levels of NO released by agricultural dust stimulated airway 

epithelial cells in our study may have a beneficial effect in promoting relaxation of airway 

smooth muscle cells; however, this was not investigated. 

Lastly, we examined the levels of 8-isoprostane, a common biomarker for lipid 

peroxidation, which is a form of oxidative stress.  8-isoprostane is known to regulate human 

airway smooth muscle function and can be upregulated in airway diseases such as asthma as well 

as environmental exposure (Voynow et al, 2011).  In the present study, the levels of 8-

isoprostane were significantly higher in DE exposed NHBE cell cultures after a 7 hour exposure 

compared to control cultures.  Antioxidant pretreatment with NAC decreased the levels of 8-

isoprostane; however, sorrel decreased the levels with better efficiency as evidenced by a 

complete prevention of NO induction observed by baseline (control) levels in cultures pretreated 

with sorrel and stimulated with SCF DE.  We also note that the NAC and sorrel pretreatments 
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did not affect the cells adversely which corresponds with the aforementioned thought that the 

concentrations used are most likely optimal.  In Montuschi et al, (2000), smokers who suffered 

from COPD had higher levels of 8-isoprostane compared to healthy non-smokers. This leads us 

to believe oxidative events occurring in NHBE cells in vitro.   

Differences observed in the experiments concerning the PTBE cells, higher 

concentrations of dust and longer exposures should be taken into consideration.  This could be 

phenomenon due to adaptive measures that might occur in pigs which can provide these types of 

cells of protection.        

5.5 Conclusion 

 In conclusion, exposure to agriculture dusts can induce oxidative stress in respiratory 

cells which may help to explain the mechanism of respiratory diseases in farmers, agricultural 

workers and farm visitors.  This study provides insight for understanding cellular and molecular 

events governing agriculture related respiratory diseases and a possible antioxidant preventative 

mechanism.  While numerous studies report inflammation following exposure of bronchial cells 

to swine dust, our finding suggest oxidative stress as a possible mechanism for changes in airway 

cell viability and response.  However, impact of these finding is not altogether clear at this time 

since it is well known that free radicals are important signaling molecules.  Phytonutrients from 

sorrel have antioxidant properties and more studies are warranted to fully understand the 

antioxidant mechanism. 
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CHAPTER 6  

Conclusions 

The respiratory tract encounters many types of pollutants continuously.  In this study we 

analyzed two environmental pollutants, agricultural dusts from animnal husbandry buildings and 

diepoxybutane, a known carcinogen found in cigarette smoke, on induction of oxidative stress in 

respiratory cells and lymphoblasts.  The dusts are extremely complex and can contain various 

particle sizes, bacteria and other factors that could cause airway dysfunction.  Animal husbandry 

facilities which are confinement in nature have proven to contribute to asthma, chronic bronchitis 

and other COPD like diseases.  In this application we took a look at the variations between the 

confinement and semi-confinement dusts.   

 In this study, we determined that confinement facility dusts from North Carolina A and T 

State University farm contain inhalable, respiraable and thoracic particles; sizes that are well 

known for their ability to cause respiratory disease.  Confinement dusts harbored more bacteria 

and smaller particles than the semi-confinement dusts.  All dusts altered pH and contained levels 

of silicon, calcium, potassium, and phosphorus which are of respiratory importance.   

 We also evaluated DEB associated toxicity in lymphoblasts as well as airway cells.  DEB 

is a known carcinogen and toxicant and is known to cause aberrant effects in vivo and in vitro.  

We validated that oxidative stress and apoptosis occurs in acute DEB exposures in lymphoblasts 

similar to the long-term exposures.  On the other hand, we did not see any cellular differences 

(growth rate, cell integrity, free radical production) in NHBE cells that were exposed to DEB and 

those studies are inconclusive at this time. 

 Finally, we analyzed the effects of various animal hysbandry dusts on airway epithelial 

cells.  Cellular health was compromised (proliferation, membrane integrity) and oxidative stress 
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occurred (hydrogen peroxide, nitric oxide, and 8-isoprostane production/release) in NHBE cells.  

PTBE cells and A549 cells, however, were more resistant to changes occurring after dust 

exposures. We also proved sorrel could be a potential natural antioxidant treatment for oxidative 

stress for respiratory diseases.     

In conclusion, our hypothesis that confinement dusts cause more oxidative stress and 

inflammation and sorrel was able to prevent aspects of oxidative stress was validated.  While 

these findings are important for understanding the molecular events governing respiratory 

symptoms associated with inhalation exposure to agricultural dusts, the full significance of these 

findings in not known.  It is expected that the work summarized here would provide insight for 

understanding the exposures experienced by farmers, workers and farm visitors.  It is hope that 

holistic preventatives such as sorrel may be considered as supplements to reduce the burden of 

agriculture-related respiratory diseases. 
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Appendix 

 

                   Primers used for identification of bacteria via PCR. 

Organism 

Primer 

Name Sequence Tm 

Product 

Size, bp Reference 

E. coli Ecoli670-F 

Ecoli670-R 

5’-ACCTGCGTTGCGTAAATA-3’ 

3’-GGGCGGGAGAAGTTGATG-5’ 

58°C 670 McDaniels et 

al (1996) 

Listeria LM404-F 

LM404-R 

5’-ATCATCGACGGCAACCTCGGAGAC-3’ 

3’-CACCATTCCCAAGCTAAACCAGTGC-5’ 

68°C 404 Wu et al others 

(2004) 

Salmonella spp. Sal284-F 

Sal284-R 

5’-GTGAAATTATCGCCACGTTCGGGCAA-3’ 

3’-TCATCGCACCGTCAAAGGAACC-5’ 

64°C 284 Rahn et al 

(1992) 

Bacillus 8F 

1429R 

5’-AGTTGATCCTGGCTCAG-3’ 

3’-ACCTTGTTACGACTT-5’ 

52°C 1554 Sacchi et al 

2002 

Clostridium 16SUNI-L 

UNI16S-R 

5’-AGAGTTTGATCATGGCTCAG-3’ 

3’-AAGGAGGTGATCCAGCCGCA-5’ 

54°C 1500 Sasaki et al 

2001 

Actinomycetes F243 

R1378 

5’-GGA TGA GCC CGC GGC CTA-3’ 

3’-CGG TGT ACA AGG CCC GGG AAC G-5’ 

72°C 1176 Heur et al 

1997 

Staphylococcus Seb-1(fwd) 

Seb-4(rev) 

5’-TCG CAT CAA ACT GAC AAA CG-3’ 

3’GCA GGT ACT CTA TAA GTG CCT GC-5’ 

55°C 477 Becker et al 

1998 

Pseudomonas Ps-for 

Ps-rev 

5’-GGTCTGAGAGGATGATCAGT-3’ 

3’-TTAGCTCCACCTCGCGGC-5’ 

55°C 1007 Widmer et al 

1998 
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                                   Energy Dispersive X-ray Spectroscopy on agriculture dusts collected from the animal housing units  

                                  at the NC A&T SU farm.  

Element 

(C%) O Na Al Si P S Cl K Ca Mg Fe 

Poultry 79.52 0.83 1.33 1.96   3.06 1.18 0.50 3.08 5.91 2.63 ND 

Swine 77.96 2.52 0.62 0.91 4.35 1.63 1.69 5.11 2.57 2.55 0.09 

Equine 69.01 1.23 5.62 16.32 0.25 0.36 0.31 1.13 2.01 1.35 2.42 

Sm. Rum.  74.13 1.09 2.87 11.47 1.01 0.60 0.80 1.96 3.33 1.56 1.19 

Dairy 87.58 1.57 0.88 2.59 1.41 0.52 0.45 1.86 1.36 1.51 0.27 

ND, not detected. 

                                 C%, percent carbon atom. 
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               ICP-OES analysis of agriculture dusts collected from the NC A&T SU animal houses.  

ELEMENT 

conc./ppm AL Ca Cr Fe K Mg Mn Na P S Si Zn 

Agriculture 

Unit 

 

Poultry 3.37 184.66 BDL 4.50 90.20 41.87 0.60 12.39 28.98 19.77 215.04 1.49 

Swine 9.67 280.76 BDL 89.52 227.94 140.92 3.59 50.10 216.10 101.00 104.33 17.51 

Equine 108.77 169.83 BDL 103.95 140.78 96.53 2.73 36.36 20.37 33.83 89.24 16.95 

Sm. Rum. 90.11 244.38 BDL 95.69 153.32 110.22 3.47 24.08 43.07 37.03 259.91 16.30 

Dairy 180.78 210.76 0.08 223.90 111.37 170.31 4.15 25.65 24.61 28.41 221.63 5.28 

              BDL, below detection limit.  Elements that were tested, however below detection limit in all dusts were cadmium,  

              copper, nickel, and lead. Sm. Rum., small ruminant.  
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