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  Abstract 

Sweet sorghum (Sorghum bicolor (L.) Moenich) is a promising alternative energy crop. 

Biophysical crop models are advanced agronomic tools designed to predict crop growth for 

given conditions and to supplement field experiments. No crop model has been developed for 

sweet sorghum. Adapting the existing grain sorghum model is a good approach to develop a 

dedicated sweet sorghum model. Our experiment was conducted at the NC A&T research farm 

in 2010 and 2011, designed with a split plot and strip plot method, respectively. These 

experiments included two varieties (Dale and M81-E) and four fertilizer rates (0,168-56-168, 84-

28-84-soysoap, 168-56-168-soysoap of N-P2O5-K2O kg ha-1) in each year. In 2010, sweet 

sorghum variety M81-E had greater yields of tops fresh weight and cane fresh weight than 

variety Dale. In 2011, biweekly observations of growth parameters were recorded to provide data 

for modification of existing grain sorghum model. In 2011, all fertilizer treatments produced 

greater yields of tops fresh weight and cane fresh weight than the zero fertilizer control (α=0.05). 

Sweet sorghum observed growth rates were greater in all fertilized treatments compared with the 

zero fertilizer control. The grain sorghum model simulation data did not accurately reflect 

observed sweet sorghum data at estimated genetic coefficients.  More specific output parameter 

strings, such as sugar yield, need to be create in model growth subroutines. Additional 

experimental data is needed from multiple locations and for more than 2 years data for model 

development. 
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CHAPTER 1 

Introduction 

 Energy is critical component for all activities on the planet. Currently nonrenewable 

fossil fuels are major source for human activities. A continuous rise in fossil fuel demand is 

leading to depletion of fuel resources, excessive gas prices, and energy insecurities in the world. 

Considering the present fuel supply and demand situation, renewable bio-fuels are a viable and 

achievable supplement to fossil fuel energy consumption (Heinimö & Junginger, 2009).  

 The predominant feedstock currently used for ethanol production in the United States is 

corn (Zea mays L.). However, most of this corn comes from the food supply chain. One 

promising alternative to corn for ethanol production is sweet sorghum (Sorghum bicolor (L.) 

Moench). The stalks of sweet sorghum contain abundant fermentable sugar juice that can be 

relatively easy to convert into ethanol. Further, sorghum bagasse remaining after juice extraction 

is a cellulosic source for additional ethanol production. Sweet sorghum production uses less 

nitrogen and water than corn (Geng, Hills, Johnson, & Sah, 1989), and can yield more ethanol 

per acre with fewer inputs than corn (Keeney & DeLuca, 1992).  

Sorghum may be especially helpful to the farmers of North Carolina, where the tobacco 

acreage has decreased substantially in recent years. Currently North Carolina tobacco farmers are 

looking for alternative crops to replace tobacco in their fields. Sweet sorghum has good potential 

for production of ethanol but specific production systems for this crop have not yet been 

developed in North Carolina. Ethanol production from sweet sorghum involves a series of steps 

including biomass production, extraction of juice from stalks, and conversion to ethanol. It is 

important to evaluate sweet sorghum cultivars for biomass and juice production.  
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Traditional in-field agronomic experiments are time consuming, laborious, and 

expensive. Crop simulation models are useful tools to make timely and appropriate decisions in 

crop production and management, including input parameters, yield predictions, and determining 

the agronomic operations required. Crop simulation models are quick and useful in determining 

the impacts of certain production practices (Jones et al., 1998). Crop modeling techniques were 

helpful in the past for researchers and farmers in optimizing their crop production. Considering 

the advantages of using models for crop production, development of a sweet sorghum crop 

model will help determine production practices that can attain bio-fuel production goals and thus, 

potentially benefit farmers both regionally and nationally. 

1.1 Hypothesis 

 Hypothesis 1: Sweet sorghum can be successfully grown as an alternative bio-energy 

crop in Piedmont Region of North Carolina. Hypothesis 2: In development of a sweet sorghum 

model, adapting a similar crop model will be an effective approach. The objectives listed below 

were developed to test these hypotheses. 

1.2 Objectives 

• Evaluate the biomass and juice production for two sweet sorghum varieties across 

fertilizer rate and source in the Piedmont Region of North Carolina. 

• Evaluate the DSSAT grain sorghum model and determine if it can be used for sweet 

sorghum growth prediction by comparing DSSAT simulated data with sweet sorghum 

observed data. 

• Develop sweet sorghum crop parameters to improve the relationship between simulated 

data and observed data. 
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CHAPTER 2 

  Literature Review 

2.1 Bio-ethanol 

 There is an increasing interest in using ethanol produced from various plant species as a 

renewable substitute for fossil fuels in the U.S. and other regions of the world. The production of 

bio-ethanol in the U.S. has increased from 175 million gallons in 1980 to 13.5 billion gallons in 

2011 (RFA, 2011). The U.S. Energy Independence and Security Act in 2007 set a standard 

renewable fuel consumption of 36 billion gallons, of which 21 billion gallons should be from 

cellulosic ethanol and other advanced bio-fuels by 2022 (Fred, 2007). Currently in North 

Carolina 9.6 billion gallons of petroleum-based liquid fuels are consumed each year. The North 

Carolina Strategic Plan for Bio-fuels Leadership set a goal that by 2017, 10% of North Carolina's 

liquid fuels or about 600 million gallons a year will be produced in state from locally grown 

biomass (Steven, Billy, Ghasem, Norris, & Johnny, 2007). 

Corn grain is currently the major source of bio-ethanol production in United States 

(Perlack, 2005). To achieve the projected ethanol production, energy crops other than corn must 

be considered. According to the US Department of Agriculture and USDOE, the US has 

potential resources to produce 194 million dry tons of bio-energy and bio-products equaling 16 

percent of 1.2 billion dry tons of biomass production annually (Perlack, 2005). Various feed 

stocks are available for ethanol production including crop residues, wood and wood waste 

products, municipal solids and other dedicated bio-energy crops.  

2.2 Sweet Sorghum for Bio-ethanol Production 

Sweet sorghum is a promising crop for production of bio-ethanol and has relatively low 

input requirements for growth, efficient water usage, wide adoptability to environmental 
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conditions and high yields of readily convertible sugars (Bennett & Anex, 2009). Sweet sorghum 

is a C4 annual grass, with relatively greater nitrogen use efficiency and biomass yield potential 

(Gardner, Maranville, & Paparozzi, 1994). Sweet sorghum and sugar-cane (Saccharum 

officinarum) are advantageous energy crops compared with other crops since they have readily 

available sugars in their stalks, and produce bagasse (solid residue) after sugars are extracted 

(Monti & Venturi, 2003).  

Bagasse can be used as an animal feed (Ratnavathi et al., 2010) and as a soil amendment 

after composting with other wastes (Negro, Solano, Ciria, & Carrasco, 1999). The bagasse is also 

a good source for cellulosic ethanol production and residual solids can be burned for heating 

(Sipos et al., 2009). An advantage of sweet sorghum over sugar-cane  is that sweet sorghum 

grain can be used as food or feed (Ratnavathi, et al., 2010). Previous studies indicate that sweet 

sorghum has potential to produce 8000 L ha-1 ethanol, which is twice of corn ethanol yield 

potential and 30% greater than sugarcane productivity (6000 L ha-1 in Brazil) (Bennett & Anex, 

2009; David & Geraldo, 2006; Guigou et al., 2011). 

The growth and production characteristics of sweet sorghum are favorable for 

commercial ethanol production. There are approximately 4000 sweet sorghum cultivars 

distributed throughout the world, providing a diverse genetic pool for development of specific 

and high yielding varieties for each region (Grassi, Tondi, & Helm, 2004). Ethanol production 

from sweet sorghum involves some limitations such as laborious harvesting methods and 

expensive storage of harvested product, conversion must initiate soon as after harvest. Delay in 

conversion will lead to souring of juices and lower ethanol productivity by sugar transformation 

to organic acids (Parrish & Cundiff, 1985).  
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Feedstock from sweet sorghum is an inexpensive source for integrated bio-refineries to 

produce high value products from the hexose feed stream and  ethanol from cellulose derived 

sugars  (Bennett & Anex, 2009; Bohlmann, 2005). The bagasse from sweet sorghum is a 

potential raw material for the production of paper pulp (Andreuccetti, Bacchiet, Barbucci, 

Belletto, & Frati, 1991) and energy source for combustion, gasification and pyrolysis process 

(Venturi & Venturi, 2003). Sweet sorghum is a good source of ethyl tert-butyl ether (ETBE) 

production which can be added to gasoline to increase the octane index and reduce amount of 

non-combusted compounds (Amaducci, Monti, & Venturi, 2004). 

2.3 Sweet Sorghum Crop Characteristics  

 Sweet sorghum is a subspecies of the sorghum family and has similar characteristics as 

other sorghum species with sugar rich stalks. There are two major types of sorghum. One is the 

grain, or non saccharine type, which is cultivated for grain production and to a lesser extent for 

forage. The second type of sorghum is the sweet or saccharine type, which is used for forage 

production and for making syrup and sugar. Crop production requirements including climate, soil 

conditions, and planting seasons are similar for both grain sorghum and sweet sorghum. Sweet 

sorghum has a rapid growth rate as well as high sugar and biomass accumulation, drought and 

water logging tolerance, and wide adaptability (Buxton, Anderson, & Hallam, 1999; Hunter & 

Anderson, 2010; Reddy, 2003).  The water requirement for sweet sorghum production is 8000 

m3 ha-1, which is half that of sugar-beet (Beta vulgaris) and one quarter that of sugar-cane, due to 

the extensive root system and relatively short growing season for sweet sorghum (Soltani & 

Almodares, 1994).   

 Sweet sorghum grain yield ranges from 1.5 to 7.5 t ha-1, brix index  ranges from 13 to 

24%, juice sugar content varies from 7.2 to 15.5%, stalk fresh yield ranges from 24 to 120 t ha-1, 

http://www.google.com/url?sa=t&source=web&cd=2&sqi=2&ved=0CDEQFjAB&url=http%3A%2F%2Fwww.hort.purdue.edu%2Fnewcrop%2Fduke_energy%2FBeta_vulgaris.html&ei=VcSUTuaOHqrv0gHbgrTABw&usg=AFQjCNHpoahJlgsC13ms2oK6OMXx4u3-jA&sig2=-xWHau2Oczt4TJNtUSq7Gw
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and biomass yield ranges from 36 to 140 t ha-1 (Almodares, Sepahi, & M., 1997). Sweet sorghum 

has greater potential to produce higher biomass yield than a sugarcane crop in tropics (Monk, 

Miller, & McBee, 1984). The bagasse produced from sweet sorghum has higher biological value 

than sugarcane as animal feed (Sumantri & Edi, 1997), and greater micronutrient and mineral 

value (Seetharama et al., 2002). 

2.4 Sweet Sorghum Nutrient Management 

An ideal dedicated energy crop for commercial ethanol production should provide 

positive production economics, should have high energy efficiency, and should fit into the 

ecosystem with minimal negative environmental consequences. Nitrogen fertilization consumes 

50% of the total energy inputs of crop production (Barbanti, Grandi, Vecchi, & Venturi, 2006; 

Kuesters & Lammel, 1999). Excessive application of nitrogen will lead to leaching of nitrate into 

subsurface soils and atmospheric releases as NH3, N2O, and NOX forms (Bouwman et al., 1997). 

The forms of nitrogen loss from soil can be environmentally damaging and toxic (Hornung, 

Dyke, Hall, & Metcalfe, 1997). In addition to nitrogen, management of other major nutrients 

including phosphorous (P) potassium (K) and other secondary nutrients is important to maximize 

profitability and minimize environmental loss. Thus optimum fertilization has a major role in 

sweet sorghum production.  

Crop evapo-transpiration restrains soil nutrients from downward movement via soil 

solution pathways, thus reducing fertilizer loses into the soil environment (Barbanti, et al., 2006). 

Nutrient budgets are important tools to estimate the risk of imbalances in nutrient input and 

output systems (Oenema, Kros, & de Vries, 2003). Considering environmental impacts with 

commercial fertilizers, recent bio-fertilizers may reduce the nutrient loses into environment. The 
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bio-product SoySoap is foliar surfactant, which helps in nutrient and water uptake and achieving 

greater crop yields (Michela, Alessia, & Denis, 2011).  

2.5 Crop Simulation Modeling 

Crop simulation models are potential tools for advancement of agriculture. Crop models  

integrate information from various crop subsystems across disciplines and improve our 

understanding of how the system is performing at different levels of crop management, cultivars  

and environmental conditions and further help identify critical limiting factors of production 

(Connor, 1990; Hoogenboom, 1991; Penning de Vries, Jansen, Ten Berge, & Bakema, 1989). 

Development of crop simulation models is essential to adjust land use patterns from natural bio-

systems to agro-ecosystems and vice versa (Ewers, Scharlemann, Balmford, & Green, 2009). 

The crop simulation modeling concept was initiated in the early 20th century by 

simplifying Liebig's 'Law of Minimum' and Blackman's (1905) 'Law of Single Factor Limitation' 

and 'The Compound Interest Law'. British scholars initiated a classic plant growth analysis 

method using these principles by describing the dynamics of multi-factor controlled biological 

processes including plant photosynthesis and plant growth (Watson, 1952). Several concepts 

were then developed to compute plant growth such as the classic model of plant canopy light 

interception and transmission based on the 'Beer-Lambert' Optic Law by Monsi and Saeki in 

Japan (1953); the aerodynamics principles for estimating canopy photosynthesis by Inoue et al 

(1958); and the concepts of analogy model for gas diffusion resistance (H2O & CO2) around 

plant leaves in Netherlands (M. El-Sharkawy & Hesketh, 1965).  

The first computer modeling efforts initiated on leaf canopy architecture, light 

distribution in canopy, CO2 flux, and leaf photosynthesis were compiled by de Wit in the 

Netherlands (1965) and, Duncan et al. in United States (1967). These efforts laid a solid 
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foundation for further mechanistic and sophisticated crop simulation models in green house and 

field conditions (Loomis, Rabbinge, & Ng, 1979). In the late 1960's, Mississippi State University 

and USDA-ARS together started building a crop growth model for cotton which led to the 

development of the GOSSYM cotton simulation model. After numerous research efforts, a 

number of crop simulation models have since been developed (M. A. El-Sharkawy, 2011).  

2.6 DSSAT Crop Simulation Models 

 Advancement in computer programming have led to more efficient crop simulation 

models, such as DSSAT (Decision Support System for Agro-technology transfer), and APSIM 

(Agricultural Production Systems Simulator). These packages incorporate models of different 

crops in single program that facilitates the evaluation and application of the crop models for 

various purposes. The DSSAT was built by an international network of cooperative scientists 

work in the IBSNAT (International Benchmark Sites Network for Agro-technology Transfer) 

project with a goal of in advancing agronomic research by modeling using a systems approach 

(Jones, et al., 1998).  

The DSSAT development was driven by the interest of transferring crop production 

technology to wider locations seeking better decisions by integrating knowledge of soils, climate, 

crop, and management (Uehara & Tsuji, 1998).  The systems approach facilitated an improved 

platform to research and understand how cropping systems and its components function. The 

information obtained through the systems approach was integrated into models and allows one to 

predict the performance of the system for specified conditions. Once the models simulate the real 

performance adequately, field experiments can be replaced by computer simulation experiments 

under specified environmental conditions to determine better management decisions in crop 

production. DSSAT is a tool developed to execute this approach for global applications and to 
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aid decision makers on efficiency of time and resources in analyzing complex alternative 

decisions (Uehara & Tsuji, 1998).  

Before the development of DSSAT, crop models were used mostly in the labs where they 

were developed. The pilot version of DSSAT was built based on originally developed crop 

models including the CERES (Crop Environmental Resource Synthesis) models for maize and 

wheat, SOYGRO for soybean, and PNUTGRO for peanut. The original crop models had 

different file and data structure, and modes of operation. The IBSNAT project provided a 

framework for cropping system analysis, where the original models were revised to make them 

compatible for data inputs and execution (Jones et al., 2003). DSSAT was first released (v2.1) in 

1989; additional releases were made in 1994 (v3.0) and 1998 (v3.5) (Hoogenboom et al., 1999; 

Tsuji, Uehara, & Balas, 1994).  

Revisions to the original DSSAT eventually led to a new cropping system model 

(DSSAT CSM) developed as version 4, which incorporates all crops as modules using a single 

soil model, and single weather module.  The DSSAT v4 cropping system model incorporates 

changes to both the structure of the crop models and the interface to the models and associated 

analysis and utility programs. The DSSAT package incorporates models of more than 27 

different crops, including the CERES grain sorghum model with new tools that facilitate the 

creation and management of experimental, soil, and weather data (Jones et al., 2003).  

DSSAT v4 includes improved application programs for seasonal and sequence analyses 

that asses the economic risks and environmental impacts associated with irrigation, fertilizer and 

nutrient management, climate change, soil carbon sequestration, climate variability and precision 

management. DSSAT is built with many modules and sub-modules to accommodate ease of 

analysis and use. The DSSAT CSM is designed to simulate the mono-crop production system 
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based on weather, genetics, soil water, soil carbon and nitrogen, and management across seasons. 

The program can simulate the effect of other significant abiotic and biotic factors such as soil 

phosphorous and plant diseases by incorporating separate modules. Recent modifications were 

developed in DSSAT to improve the soil module components, crop rotation effects, and further 

fixed potential bugs in sets of code. The DSSAT program was written in FORTRAN 

programming (Jones et al., 2003).  

The DSSAT was designed using a systems approach, where the weather, soil, genetics, 

pests, experiments, and economics are a function input window for the crop model to run with 

multiple applications such as sensitivity analysis, seasonal analysis, sequence analysis, and 

spatial analysis linked in main interface (Figure 1).  

 

Figure 1. DSSAT v3.5 software database, applications, and supporting components used with 

crop models for applications. 

The DSSAT is a package of independent programs that operate together to make 

complete crop simulation model. Subroutines and databases are set up with weather, soil and 
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experimental conditions and measurements, and genotype coefficients for the models to run 

under specified conditions. The software is developed in such a way that the user can prepare a 

database specific for their environment and compare simulated results with observed results to 

determine modifications needed in model coefficients to adapt for local conditions (Jones, et al., 

1998). The DSSAT program allows users to simulate crop management options over a number of 

years to analyze the risks associated with each option. 

2.7 CERES Model 

Initially, the CERES (Crop Environment Resource Synthesis) crop model was developed 

by Ritchie (USDA-ARS, 1970s) for wheat and maize crops. Godwin (CSIRO, 1980) developed 

models for sorghum, millet, rice, and barley. CERES is a user-oriented, daily-incrementing 

simulation model of crop growth, development, and yield. This model simulates the effects of 

genotype, weather, and soil properties on crop growth and yield (Castrignano, Di Bari, & 

Stelluti, 1996).  

 The CERES crop model  was developed to simulate grain sorghum production(Jones, et 

al., 2003). However, no crop models have yet been developed or modified for sweet sorghum 

production. Since there is an increasing interest in using sweet sorghum for bio-ethanol 

production, it will be valuable to have a mechanistic, process level simulation model for sweet 

sorghum which can help further improve the crop productivity, optimize inputs, and increase net 

profits to growers while increasing yields. Simulations using crop modeling tools can be run to 

evaluate the response of sweet sorghum to various input parameters (Birch, Carberry, Muchow, 

McCown, & Hargreaves, 1990). 

In CERES model plant growth and development processes are simulated based on growth 

factor responses (Table 1). Plant growth mass accumulation process depends on solar radiation 
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and photo-synthetically active radiation (PAR) factors; plant expansion process depends on 

temperature factor. Plant growth process accumulated necessary biomass for plant development 

process. Plant development has phasic and morphological developmental process. Phasic 

development involves major changes in growth stages based on biomass partitioning patterns. 

Morphological development includes the number of leaves, tillers, and grain. Both 

developmental rates are affected by environmental factors such as temperature, sunlight, 

precipitation and cultivar characteristics. These processes are categorized to  determine the effect 

individual plant growth factors on crop production (J.T. Ritchie, U. Singh, Godwin., & Bowen, 

1998). 

Table 1 

Factors of plant growth and development processes 

Factor Growth Development 
Mass Expansion Phasic Morphological 

Principal 
environmental 
factor 

Solar radiation Temperature Temperature 
photoperiod 

Temperature 

Degree of 
variation among 
cultivars 

low low high Low 

Sensitivity to plant 
water deficit 

Low - stomata 
Moderate - leaf 
wilting and rolling 

High - vegetative 
stage 
Low- grain filling 
stage 

Low - delaying 
vegetative stage 

Low 

Sensitivity to 
nitrogen 
deficiency 

Low High Low Low - main stem 
High - tillers and 
branches 

  
According to J.J. Ritchie et al (1998) the basic principle involved in a CERES crop 

simulation model is total biomass of a crop is the product of the average growth rate and the 

growth duration. The model simulates growth and partitions the growth into organs (root, leaf, 

stem, ear, grain) according to each growth stage duration and accumulation of biomass. In each 
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stage the partition ratio of total growth and degree days to complete each stage are different 

among plants (Table 2). 

Table 2    

Growth stages in CERES sorghum model and the organs growing during those stages 

Growth Stage Duration Organs Growing 

7 Fallow  

8 Sowing to germination  

9 Germination to emergence Root 

1 Emergence - end juvenile  Leaf, root 

2 End juvenile - panicle initiation Leaf, stem, root 

3 Panicle initiation - end leaf growth Leaf, stem, root, ear 

4 End leaf growth - begin grain filling Stem, ear, root 

5 Begin grain fill - physiological maturity Grain, root 

6 Physiological maturity - harvest  

 
2.8 Sweet Sorghum Modeling 

 Sweet sorghum crop growth modeling was initiated in 1981 and was independent of the 

CERES family of models. Leaf area, stalk length, and dry leaf biomass of sweet sorghum were 

measured periodically to develop a series of appropriate equations for growth simulation studies 

(Shih, Gascho, & Rahi, 1981). They developed a series of equations and estimated sweet 

sorghum biomass for that experiment, however further testing was needed to evaluate the 

response patterns under wide growing conditions and varieties (Shih, et al., 1981). There was no 

significant development after initial efforts by Shih et al in continuation of modeling for sweet 

sorghum. 
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2.9 CERES Model Adoptions and Grain Sorghum Model Development 

 The initial CERES grain sorghum model was developed by adapting the CERES - Maize 

model. The modification of CERES- Maize model in phenology, leaf growth, leaf senescence, 

assimilation and grain growth were based on a small set of sorghum data and later validated 

against large scale field data. After the modification, model predicted sorghum grain yield 

accurately with 0.97 root mean square deviation to the observed data collected over a range of 

sowing dates and water regimes. However, the grain sorghum model simulation was close to that 

of the CERES- Maize parent model simulated yields (Birch, et al., 1990). 

 The grain sorghum root growth model was developed based on the CERES crop growth 

models, which simulates the depth of rooting and root length density in each soil layer. The 

developed model simulated the root growth and analyzed the root length and distributions in sub-

humid subtropics of Australia, on oxisol and vertisol soils. Later the model was validated using 

other independent data to determine the precision of root growth predictions. The model 

simulated root distribution reasonably accurate but the accumulated root length was less reliable 

(Robertson, Fukai, Hammer, & Ludlow, 1993). 

The CERES-sorghum nitrogen model was tested using Kansas state climatic conditions. 

The response of sorghum phenology and leaf area development was determined under conditions 

of nitrogen stress. The resulting information was used to develop N stress leaf growth and 

development functions and integrated the relationships in the sorghum model (Zewdie, 1999). 
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CHAPTER 3 

Methodology 

3.1 Experimental Site 

 A sweet sorghum field experiments were conducted at the research farm of North 

Carolina A & T State University, Guilford County, North Carolina in 2010 and 2011 years. The 

research plots were located at longitude 36.06, latitude -79.73, and 241.4 m above sea level. The 

soils at the experimental location were Mecklenburg Sandy Clay Loam, 2 to 6 percent slopes, 

moderately eroded and classified as fine, mixed, active, thermic Ultic Hapludal-fs (J. Fortner, K. 

Harward, D. Lytle, & Williamson, 2006).  

3.2 Treatments 

The experiment included two varieties of sweet sorghum and four fertilizer rates. The 

varieties Dale and M81-E (produced at Mississippi Foundation Seed Stocks) were used as main 

plots. The fertilizer rates (N-P2O5-K2O in kg ha-1, 2 foliar SoySoap sprays at 0.6 L ha-1) 0 

fertilizer control, 168-56-168, 84-28-84 plus SoySoap, and 168-56-168 plus SoySoap were used 

as sub-plot treatment. The fertilizers N-P2O5-K2O (14-14-14), triple super phosphate (0-45-0) 

and muriate of potash (0-0-60) at planting and NH4NO3 (34-0-0) for nitrogen side-dressing were 

used to complete the recommended fertilizer rates. SoySoap was applied as a foliar surfactant. 

3.3 Experimental Design and Statistical Analysis 

 In 2010, experiment design was 2×4 factorial split plot with 4 replications. After 2010 

sweet sorghum harvest, the field plots were leveled to improve the topography of the 

experimental area. In 2011, a 2×4 strip plot with 4 replications was used to improve homogeneity 

in the plots; the same treatments were used in both 2010 and 2011 experiments. Individual 
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subplots measured 6×10m each year. The variety treatment was randomized to main plots and 

fertilizer rates were randomized to sub-plots.  

 Sweet sorghum yield response to treatments was tested using analysis of variance by the 

PROC ANOVA model (SAS Inc., Cary, NC). Regression analysis was conducted on the grain 

sorghum model simulated data and sweet sorghum field observed data to determine coefficients 

of determination. All statistical results were considered significant at 95% confidence level (p ≤ 

0.05). 

3.4 Soil Sampling 

 In both years six random soil cores to 15 cm were collected and composited from each 

plot at planting and harvest. The composite soil samples were air dried for 48 hours, ground to 

pass a 2 mm sieve, and was then used for soil physical and chemical analysis. Soil pH, CEC, 

organic matter, particle size, and bulk density were determined. For chemical analysis (P, K, Ca, 

Mg, Cu, Mn), the soil samples were extracted using Mehlich-III reagent and analyzed on ICP 

(Inductively coupled plasma spectrometer). Soil total nitrogen was determined using Perkin 

Elmer 2400 Series II CHNS/O Elemental Analyzer.   

3.5 Plant Sampling  

 In 2010, 3 randomly selected plants were selected in each plot for measurement of plant 

height. Height was determined from soil surface to the uppermost position of each plant, and 

height was measured and recorded 3 times (54, 71, 99 days after planting) during the growing 

season. Additionally, 15 randomly selected leaf samples from each plot were collected 3 times 

(43, 71, 86 days after planting) to analyze leaf nitrogen concentration, and 3 randomly selected 

plants per plot were used to determine leaf number 2 times during the growing season (54 and 71 

days after planting) considering all greens leaves including top tip opened leaf. 
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In 2011, a specific set of parameter data was measured from a randomly selected 0.5 m2 

area of each plot, in two week intervals after planting. These parameters included: number of 

plants, number of leaves per plant, plant height, fresh biomass weight (including roots, cane, 

leaves and panicles), dry biomass weights of tops, root fresh weights, roots dry weights, from 4th 

sampling onwards cane fresh weight, cane dry weights, leaves fresh weight, leaves dry weights. 

Dry weights were determined by collecting a sub-sample from each fresh sample and drying at 

70o C until dry weights were constant. Sweet sorghum juice was extracted in both seasons at 

harvest and analyzed for total sugar (sucrose, fructose, and glucose) content using HPLC (High 

performance liquid chromatography). The juice samples were oven dried at 105o C for 48 hours 

to determine water content. 

3.6 Sweet Sorghum Field Production 

  In both years the soil was disked to 30 cm prior to planting and designating plot 

establishment. One-third of N and all of the P2O5 and K2O were applied at planting and the 

remaining two-thirds of the N requirement was side-dress incorporated in a band 5cm deep and 

10 cm from the row 30 days after planting. 

 Sweet sorghum varieties Dale and M81-E were planted on June 28, 2010, then again on 

May 23, 2011. The spacing between rows was 75 cm with 25 cm in-row spacing. The crop was 

irrigated using overhead sprinkler system supplementing rainfall in both years. The crop was 

thinned 3 weeks after planting to maintain 25 cm spacing within the row. During first 30 days 

after planting, weed infestation was severe including crab grass, johnson grass, blue grass, other 

grasses and some broad leaf weeds. In 2010, weed control was done only through manual 

methods. In 2011, in addition to manual weeding, post emergence (atrazine) and pre-emergence 

herbicides (Dual Magnum, Syngenta Corp, Greensboro, NC) were applied three weeks after 
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planting at label rates. Shoot borer (Chilo patillus) infestation was severe from 40 days after 

planting and anthracnose stalk rot disease was severe after cane formation. An insecticide (Sevin, 

Bayer Crop Scicence, US) and a fungicide (Dithane M45, Dow AgroScicences) were applied at 

label rates to control the pest infestation. The M81-E variety was tall and strong in 100%RRF 

plus soysoap treated plot compared to zero fertilizer control plot (Figure 2). 

 

Figure 2.  Sweet sorghum variety M81-E at harvest stage in 2011. 

 The sweet sorghum was harvested using machete manually at dough (grain filling) stage 

and juice was extracted using a cane crusher (sugarcane juice extractor SC300).  In 2010, the 

Dale variety was harvested the first week of October, followed by M81-E in the second week of 

October. At harvest, the parameter: tops fresh weight (including cane, leaves and panicles), fresh 

cane weight (without leaves and panicles), and total juice were recorded. In 2011, Dale variety 

was harvested on September 6, followed by variety M-81-E on September 12, 2011.  At harvest, 

tops fresh weight (including cane, leaves and panicles), fresh cane weight (without leaves and 



21 
 

 

panicles), and total juice extracted were recorded. At the same time, a sub-sample of cane and 

leaves were collected, and then oven dried at 70o C until constant dry weight. 

3.7 Cover Crops 

 In the first week of November, 2010, sweet sorghum plots were disked to 30 cm and 

planted with crimson clover and rye as cover crops. In late spring of 2011, the cover crops were 

disked into soil at flowering stage. Before sweet sorghum planting in 2011, the field plots were 

tilled and leveled to get more even topography in the plots. 

3.8 Soil Data for Model 

 The grain sorghum model requires soil data for at-least the upper 100 cm of the soil 

profile. Since we only sampled to 15, soil data from 15 to 150 cm were retrieved from the Web 

Soil Survey v.2.3 developed by Natural Resources Conservation Service (J. Fortner, et al., 2006). 

The soil data includes soil type, soil slope, soil texture (sand, clay, and silt percentages), soil pH, 

cation exchange capacity (CEC), bulk density, and organic matter (OM) (Table 3). 

Table 3 

Soil profile data collected through soil sampling and NRCS soil survey 

Depth Sand Clay Silt Soil pH BD CEC OM 
(cm) (%) (%) (%)  (g/cm3) (meq/100 cm3) (%) 

15 55.1 27.5 17.4 6.5 1.48 5.2 0.75 
30 22.1 50 27.9 6.5 1.36 5.1 0.25 
45 22.1 50 27.9 6.5 1.36 5.1 0.25 
60 22.1 50 27.9 6.5 1.36 5.1 0.25 
90 23.8 47.3 28.9 6.5 1.37 5.1 0.25 

120 37 27 36 6.5 1.43 5.1     0.25 
150 38.5 25 36.5 6.5 1.44 5.1 0.25 

 
3.9 Weather Data for Model  

Weather data were recorded using an automatic weather station (ECONET station) 

located approximately 50 m from the experimental plots. The recorded data were retrieved from 
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NC CRONOS Database v.2.7.2 of the State Climate Office of North Carolina website. Daily 

weather data included maximum (Avg. TMAX) and minimum (Avg. TMIN) temperatures, 

relative humidity (Avg. R HUM), average wind speed (Avg. WIND), total solar radiation, photo-

synthetically active radiation (PAR), precipitation (Total RAIN), and open pan evaporation 

(Total EVAP). The retrieved data was used as weather input for grain sorghum model 

simulation. Daily data were then averaged for individual months (Table 4). In 2011, the PAR 

was greater than 2010 and may have affected crop growth. 

Table 4 

Monthly weather data during 2010 and 2011 

Month-
Year 

 

Avg. 
TMAX 

 

Avg. 
TMIN 

 

Avg. R 
HUM 

 

Avg. 
WIND 

 

Total 
RAIN 

 

Total 
EVAP 

 

Total Solar 
Radiation 

 

PAR 
 

 (0F) (0F) (%) (mph) (in) (in) (W/m2) (mol/m2) 
Jan-10 45.9 26.6 61.5 4.84 4.08 2.56 6027 284.1 
Feb-10 44.0 28.8 62.0 4.63 3.81 3.35 7054 328.6 
Mar-10 61.6 40.4 58.5 4.80 3.35 6.41 10186 469.2 
Apr-10 74.9 48.6 56.1 3.60 1.95 10.31 13968 634.3 
May-10 79.0 60.1 70.9 3.93 6.69 11.57 14025 613.4 
Jun-10 88.4 68.9 69.7 2.94 2.96 14.55 16184 703.0 
Jul-10 89.3 69.4 68.2 2.70 7.53 14.77 16294 717.6 
Aug-10 87.8 69.2 74.4 2.58 3.9 12.30 13928 607.6 
Sep-10 84.7 61.7 65.0 3.16 6.53 9.97 12061 534.4 
Oct-10 73.2 48.6 65.3 3.35 2.69 7.23 10516 474.8 
Nov-10 60.9 37.6 64.4 3.19 0.93 1.85 2325 326.6 
Dec-10 41.3 25.5 59.8 3.77 2.42 0.9 1116 263.1 
Jan-11 44.6 27.0 61.5 3.90 1.35 1.1 1928 334.7 
Feb-11 56.9 33.8 56.5 4.19 2.69 2.16 3904 610.9 
Mar-11 59.4 40.0 61.4 5.17 4.97 3.18 4816 780.3 
Apr-11 72.9 49.8 61.5 4.54 4.19 5.05 6766 1084.9 
May-11 77.8 57.3 72.6 2.40 3.59 5.92 7607 1240.0 
Jun-11 88.2 66.0 64.5 2.72 8.85 7.39 8699 1467.7 
Jul-11 90.4 70.4 70.6 2.26 5.01 7.26 8232 1396.4 
Aug-11 88.7 68.0 66.0 2.96 2.43 6.34 7369 1254.1 
Sep-11 80.4 61.6 74.2 2.74 10.11 4.92 6110 737.3 
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3.10 DSSAT Grain Sorghum Model   

The DSSAT v.4.5 crop simulation model is a program designed to simulate crop growth, 

development and yields under wide environmental conditions. The software was written in 

FORTRAN middle level mathematical programming language and graphically interfaced with 

Microsoft Visual Basic .NET programming language. The DSSAT program is a group of 

individual independent modules to simulate the growth of different crops linked in a main 

program. Each module runs through specific sub-routines. DSSAT has the following modules: 

XBuild - input crop management information in standard format, SBuild – create and edit soil 

profiles, GBuild – display graphs of simulated and observed data, compute statistics, ATCreate – 

create and edit observations from experiments, formatted correctly, WeatherMan - assist users in 

cleaning, formatting, generating weather data, ICSim – introductory tool to demonstrate potential 

yield concepts, and GLUE – generalized likelihood uncertainty estimation (Hoogenboom et al., 

2010). 

The daily weather data was entered into Weatherman module for 2010 and 2011 with the 

profile name NCAB station. Soil data were entered into the SBuild with profile name 

Mecklenburg sandy clay loam. The XBuild tool is the main module to run the model under 

provided weather, soil and treatment conditions. The treatments were defined in XBuild were the 

same as the treatments used in our sweet sorghum experiment. In XBuild, the conditions were 

provided by linking weather, soil, and cultivar profiles. After the XBuild was defined, a viable 

file was created to run the simulation using defined conditions. To develop a dedicated sweet 

sorghum model, the coefficients determined for grain production need to be modified to 

determine stalk juice and sugar content.  



24 
 

 

The genetic parameter coefficients were defined (Table 5) based on growing degree days 

(GDD) for each growth period. Generally GDD is calculated by taking the average of the daily 

maximum and minimum temperatures compared to a base temperature (Tbase is the minimum 

temperature for plant growth). 

𝐺𝐷𝐷 = �
Tmax +  Tmin

2
� −  Tbase  

Table 5   

Definitions of sorghum genetic parameters in cultivar file of DSSAT model 

Parameter Definition 
P1 Thermal time from seedling emergence to the end of the juvenile phase (expressed in 

degree days above TBASE during which the plant is not responsive to changes in 

photoperiod 

P2O Critical photoperiod or the longest day length (in hours) at which development occurs at a 

maximum rate. At values higher than P2O, the rate of development is reduced 

P2R Extent to which phasic development leading to panicle initiation (expressed in degree 

days) is delayed for each hour increase in photoperiod above P2O 

P5 Thermal time from beginning of grain filling to physiological maturity (degree days above 

TBASE) 

G1 Scaler for relative leaf size 

G2 Scaler for partitioning of assimilates to the panicle (head) 

PHINT Phylochron interval; the interval in thermal time between successive leaf tip appearances 

(degree days) 

P3 Thermal time from to end of flag leaf expansion to anthesis (degree days above TBASE) 

P4 Thermal time from anthesis to beginning grain filling (degree days above TBASE) 

P2 Thermal time from the end of the juvenile stage to tassel initiation under short days 

(degree days above TBASE) 

PANTH Thermal time from the end of tassel initiation to anthesis (degree days above TBASE) 

PSAT Critical photoperiod below which development is not delayed 

PBASE Ceiling photoperiod above which development is delayed indefinitely 
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The genetic coefficients were calculated using GLUE input parameter data of each 

variety in 2011. The GLUE uses ATCreate module as input. The ATCreate has two file types: A 

file and T file. The A-file is inputted with final yield parameter values including number of days 

to anthesis, number of days to harvest, maximum leaf number per stem, tops dry weights (Table 

6). The T-file is a time course file, which needs growth data including tops dry weight, root dry 

weight, number of leaves, and leaf dry weight during different stages of crop growth (Appendix 

C).  

Table 6   

Input parameters used in the model to estimate genetic coefficients 

Treatment Days to anthesis Days to Dough 
stage 

Maximum number 
of leaves per stem 

Tops dry weight at 
Harvest 
(kg/ha) 

2010 2011 2010 2011 2010 2011 2010 2011 
V1T1 72 70 108 105 14.5 11.7 7884 5717 
V1T2 72 70 108 105 13.3 12.6 6657 14129 
V1T3 72 70 108 105 14.9 13.2 7883 14369 
V1T4 72 70 108 105 13.5 11.9 8440 10437 
V2T1 82 79 114 112 15.7 16.2 9684 9043 
V2T2 82 79 114 112 16.0 16.5 10709 13757 
V2T3 82 79 114 112 13.7 17 10129 17880 
V2T4 82 79 114 112 16.8 16.7 11276 13410 

 
GLUE estimated the genetic coefficients with 10000 iterations in a loop for closer 

simulated data to observed data in ATCreate. Final estimated genetic coefficients are given in 

Table 7. New cultivars were created in the cultivar file located in the data genetics option of the 

main program. These newly defined cultivars were available in XBuild program for creating 

treatments. Estimated coefficients based on sweet sorghum growth data were comparatively 

greater than grain sorghum varieties, because of the higher growth rate in sweet sorghum. 

However, these genetic coefficients need to validate with experimental data of multiple locations 

for more than two years. 
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Table 7   

Estimated genetic coefficients for varieties Dale and M81-E 

Parameter Dale M81-E 
P1    313.0 316.1 
P2O 14.39 13.89 
P2R     129.1 135.9 
P5 485.3 503.1 
G1 12.56 12.29 
G2 5.590 5.805 
PHINT     49.00 49.00 
P3     218.4 236.1 
P4 95.19 119.0 
P2 102.0 102.0 
PANTH 617.5 617.5 
PBASE 0 0 
PSAT 0 0 
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CHAPTER 4 

Results and Discussion 

4.1 Sweet Sorghum Yields  

 In 2010, the mean sweet sorghum tops fresh weights (including cane, leaves, and panicle) 

across fertilizer treatments was significantly different between the varieties. Variety M-81-E 

yielded significantly greater (38.4 ton ha-1) than variety Dale (27.6 ton ha-1). Fertilizer main 

treatment effect was not significant, nor was the interaction between variety and fertilizer 

treatment. In contrast, tops fresh yield was not affected by variety in 2011, but was affected by 

fertilizer across varieties. All plots receiving any level of fertilizer had greater yields (50.6 ton 

ha-1) than zero fertilizer control (26.8 ton ha-1). Similar to 2010, there was not a significant 

interaction between variety and fertilizer treatment in 2011 (Table 8). 

Table 8   

Sweet sorghum final tops fresh yield at harvest in 2010 and 2011 

Treatment tops fresh weight tons/ha 
 

Fertilizer 2010 2011 
N-P-K (kg ha-1) Dale M-81-E Mean Dale M-81-E Mean 

0-0-0 29.6 34.4 32.0 21.5 32.1 26.8 b 
168-56-168 27.6 36.6 32.1 50.8 52.1 51.5 a 
84-28-84-soysoap 23.9 40.6 32.3 50.3 64.5 57.4 a 
168-56-168-soysoap 29.1 42.1 35.6 36.0 50.0 43.0 a 
Mean 27.6B 38.4A  39.6 49.7  
 
*The mean tops fresh weight with letter A was significantly greater than letter B at p = 0.0175 in 

2010 and the mean tops fresh weight with letter “a” was significantly greater than letter “b” at p 

= 0.0076 in 2011. 

  Cane fresh weights (without leaves, panicle) showed a similar treatment response to that 

found for tops fresh weight in both 2010 and 2011. In 2010, variety M-81-E yielded significantly 
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greater (28.6 ton ha-1) than variety Dale (22.5 ton ha-1). Fertilizer main treatment effect was not 

significant, nor was the interaction between variety and fertilizer treatment. In 2011, tops fresh 

yield was not affected by variety, but was affected by fertilizer across varieties. All plots 

receiving any level of fertilizer had greater yields (37.1 ton ha-1) than the zero fertilizer control 

(18.1 ton ha-1). Similar to 2010, there was not a significant interaction between variety and 

fertilizer treatment in 2011 (Table 9). The fresh tops weights of sweet sorghum was lower and or 

equal to the general yield range 40 – 110 ton ha-1 in European region (Michela, et al., 2011). 

Table 9   

Sweet sorghum final fresh cane yield at harvest in 2010 and 2011 

Cane fresh weight tons/ha  
Fertilizer 2010 2011 

N-P-K (kg ha-1) Dale M-81-E Mean Dale M-81-E Mean 
0-0-0 24.1 24.8 24.5 15.5 20.6 18.1 b 
168-56-168 22.6 26.0 24.3 38.1 38.1 38.1 a 
84-28-84-soysoap 19.7 31.0 25.4 37.5 46.3 41.9 a 
168-56-168-soysoap 23.7 32.5 28.1 26.1 36.3 31.2 a 
Mean 22.5 B 28.6 A  29.3 35.3  
 
*The mean fresh cane weight with letter A was significantly greater than letter B at p = 0.0500 in 

2010 and the mean fresh cane weight with letter “a” was significantly greater than letter “b” at p 

= 0.0073 in 2011. 

 In 2010, final juice yield extracted from harvested canes was not affected by variety or 

fertilizer treatment. In 2011, final juice yield was not affected by varieties, but was affected by 

fertilizer treatment. All fertilizer received plots resulted in significantly greater juice yield 

(11504 L ha-1) compared with the zero fertilizer control yield (4304 L ha-1) (Table 10). This 

result is consistent with results observed for tops and cane yields. There was not a significant 

interaction between variety and fertilizer in either year.  
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 Table 10 

Sweet sorghum final juice yield at harvest in 2010 and 2011 

Total Juice liters/ha 
Fertilizer 2010 2011 

N-P-K (kg ha-1) Dale M-81-E Mean Dale M-81-E Mean 
0-0-0 7942 7666 7804 4277 4331 4304 b 

168-56-168 6414 8733 7573 12887 10273 11580 a 
84-28-84-soysoap 6762 9133 7948 13411 13950 13681 a 

168-56-168-soysoap 6995 10357 8676 8348 10154 9251 a 
Mean 7028 8972  9731 9677  

 
* The mean juice yield with letter “a” was significantly greater than letter “b” at p = 0.0042 in 

2011. 

 Total sugar (including sucrose, fructose, and glucose) concentration in juice extracted 

from harvested cane was significantly greater for fertilized plots (9.6%) compared with the 

control (7.06%) in 2010. Sugar concentration was similar for each variety tested. Total sugar 

concentration in juice was not affected by variety or fertilizer treatment in 2011 (Table 11). The 

interaction affect of variety and fertilizer treatments was not significant in either year.  

Table 11  

Sweet sorghum total sugar level of sucrose, fructose, and glucose in juice at harvest in 2010 and 

2011 

Total Sugar level in % 
Fertilizer 2010 2011 

N-P-K (kg ha-1) Dale M-81-E Mean Dale M-81-E Mean 
0-0-0 11.2 8.0 9.6 A 10.4 11.74 10.89 

168-56-168 6.3 7.0 6.6 B 11.81 11.31 11.56 
84-28-84-soysoap 6.7 8.5 7.6 B 10.07 10.77 10.42 

168-56-168-soysoap 7.2 6.8 7.0 B 13.10 10.19 11.64 
Mean 7.8 7.6  11.25 11.00  
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* The mean total sugar level with letter “A” was significantly greater than letter “B” at p = 

0.0204 in 2010. 

In 2010, BRIX was significantly greater for the zero fertilizer control (13.5%) compared 

with all fertilizer rates (11.3%), but was not affected by variety. BRIX in 2011 was significantly 

greater for variety Dale (14%) compared with variety M-81-E (13%), but was not affected by 

fertilizer rate. There was not a significant interaction between variety and fertilizer treatments for 

BRIX, which is consistent with the pattern observed for sugar concentration (Table 12). The 

sweet sorghum stress for the fertilizer in control plot resulted greater sugar concentration in 

2010. Total sugar and BRIX should have a similar response pattern, since BRIX is a measure of 

solid sugars in juice samples. However, the values of sugar content and BRIX are different based 

on the fact that total sugar level is measure of sucrose, fructose, and glucose detected in HPLC 

which was not able to detect all types of sugars in the juice.  

 Table 12 

BRIX index in sweet sorghum juice samples at harvest in 2010 and 2011 

BRIX reading of juice  at Harvest in % 
Fertilizer 2010 2011 

N-P-K (kg ha-1) Dale M-81-E Mean Dale M-81-E Mean 
0-0-0 14.0 13.0 13.5 A 11.6 12.4 12.0 

168-56-168 9.9 11.5 10.7 B 14.9 14.4 14.7 
84-28-84-soysoap 11.8 12.4 12.1 B 14.9 12.8 13.9 

168-56-168-soysoap 11.5 10.8 11.2 B 14.5 12.5 13.5 
Mean 11.8 11.9  14.0 a 13.0 b  

 
* The mean BRIX index of juice with letter “A” was significantly greater than letter “B” at p = 

0.0039 in 2010. 

The tops fresh weights, cane fresh weights, extracted juice, and total sugar levels in each 

year were similar to the sweet sorghum yields reported in previous research (Almodares, et al., 
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1997). Tops, cane, and juice yields tended to be greater in 2011 than in 2010. Greater photo-

synthetically active radiation was recorded in 2011 compared with 2010 during crop period 

(Table 4), which may have influenced the crop yield measured in 2011. 

Sugar yield from the juice harvested was calculated based on the sugar concentration of 

juice in Table 13. There was not an effect of variety or fertilizer on sugar yield in either year. 

However, differences in sugar yield among fertilizer treatments were significant at p = 0.07 in 

2011, when all fertilized treatments produced greater sugar yield (1290 L ha-1) than the zero 

fertilizer control (501 L ha-1).  

Table 13 

Sweet sorghum sugar yield in 2010 and 2011 

Sugar yield in L ha-1 

Fertilizer 2010 2011 
N-P-K (kg ha-1) Dale M-81-E Mean Dale M-81-E Mean 

0-0-0 889 613 751 448 553 501 
168-56-168 454 763 608 1567 1146 1356 

84-28-84-soysoap 410 592 501 1424 1506 1465 
168-56-168-soysoap 500 700 600 1090 1026 1058 

Mean 563 667 
 

1132 1058  
 
4.2 DSSAT Grain Sorghum Model Output  

 The DSSAT grain sorghum model was used to simulate the growth parameters for given 

weather data, soil data, fertilizer treatments, and at estimated genetic coefficients. The observed 

data of 2011 growing season was entered into ATCreate module of model. The model simulated 

grain sorghum output parameters. Sweet sorghum output parameters are different from grain 

sorghum. However, tops dry weight, root dry weight, leaf dry weights of interest for both crops. 

The selected simulate data was compared with observed data for model performance at estimated 

sweet sorghum genetic coefficients.  
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 Tops dry weights of sweet sorghum observed data and grain sorghum simulated datat at 2 

weeks interval were plotted in Figure 3. The coefficients of determination (R2) were calculated 

seven times during the crop period. The R2 values for 14 days after planting (DAP), 28 DAP, 43 

DAP, 56 DAP, and 86 DAP were negligible (below 0.01). The R2 values were relatively greater 

at 70 DAP (R2 = 0.25) and at harvest (R2 = 0.47). However, overall the model simulation of the 

tops dry weights was not close to observed data.  

 

Figure 3.  Comparison of sweet sorghum observed tops dry weight with model simulated tops 

dry weight at a two weeks interval during 2011 cropping season. Note: simulated versus 

observed at 14 days after planting (1), 28 DAP (2), 43 DAP (3), 56 DAP (4), 70 DAP (5), 86 

DAP (6), and at harvest (7). 
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 In grain sorghum tops weights have more biomass partition towards the panicle, whereas 

in sweet sorghum the biomass partition is primarily into cane. Sweet sorghum total tops dry 

weights were greater than grain sorghum simulated data for all treatments. Based on the output 

pattern between simulations and observed data, partitioning and photosynthesis rate 

modifications in SG_GROSUB subroutines are necessary to get a closer comparison. 

The root dry weights of sweet sorghum observed and grain sorghum model simulation 

were not significantly correlated during any two week interval of the 2011 growing season. Root 

growth patterns are completely different in these two crops. The grain sorghum model simulated 

relatively greater root growth compared with sweet sorghum except for the first 15 days after 

planting (Figure 4). The pattern between simulated and observed data suggests that root growth 

factor modifications in the SG_ROOTGR subroutine will be necessary to develop a dedicated 

sweet sorghum model. 

 

Figure 4.  Comparison of sweet sorghum observed root dry weight with model simulated root 

dry weight at a two weeks interval during 2011 cropping season. Note: simulation versus 
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observed root dry weight at 14 days after planting (1), 28 DAP (2), 43 DAP (3), 56 DAP (4), 70 

DAP (5), 86 DAP (6). 

 Compared with tops dry weight and root dry weight, model simulated leaf dry weight 

was more similar to the observed data with relatively greater R2 values, respectively. Simulated 

leaf dry weights were closer to the observed data at 70 days after planting (R2 = 0.49) (Figure 5). 

Grain sorghum typically has more leaf number per plant than sweet sorghum. Since sweet 

sorghum grows taller than grain sorghum, the internodes are expanded between each leaf and 

facilitate more solar radiation for biomass capture compared with grain sorghum.   

 

Figure 5.  Comparison of sweet sorghum observed leaf dry weight with model simulated leaf dry 

weight at a two weeks interval during 2011 cropping season. Note: simulation versus observed 

dry weights at 56 days after planting (1), 70 DAP (2), 86 DAP (3), and at harvest (4). 

 The model output parameters including grain yield, root dry weight, leaf dry weight, and 

days for physiological maturity, are specific to grain sorghum production. However, some of the 

model output parameters share commonality to sweet sorghum observed yield parameters. While 
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grain sorghum varieties genetic coefficients were used, the simulation dry weights (tops, root, 

and leaf) were very low compared with observed sweet sorghum dry weights. While estimated 

sweet sorghum varieties genetic coefficients were used, simulated tops and leaf dry weight were 

increased to an extent, but still lower than observed dry weights. The root dry weights were 

increased to greater than that of observed sweet sorghum root dry weights. To develop a sweet 

sorghum model, specific output parameters need to be written in the program. These parameters 

include cane fresh weight, number of days to dough stage (harvest), juice yield, and sugar 

content. The new output parameters can be written in the SG_CERES main subroutine.  

4.3 Sweet Sorghum Observed Growth Patterns in 2011 

 Sweet sorghum plants generally grow taller than grain sorghum. The sweet sorghum 

plant heights were recorded every other week until final harvest and daily height increment was 

calculated using the slopes of plant height recorded against days after planting. Plant height 

growth was not affected by variety or by the interaction between variety and fertilizer, but was 

affected by fertilizer treatments. All fertilizer treated plots had greater plant height growth rate 

(3.12 cm day-1) than the zero fertilizer control (2.34 cm day-1) (Table 14).  

Table 14   

Growth rate of plant heights 

Parameter Plant height growth rate per day (cm day-1) 
Fertilizer 

N-P-K (kg ha-1) 
Dale M81-E Mean 

0-0-0 2.34 2.34 2.34b 

168-56-168 3.00 3.02 3.01a 

84-28-84-soysoap 3.30 3.38 3.34a 

168-56-168-soysoap 2.97 3.07 3.02a 

Mean 2.90 2.95  
 
*The mean plant height growth per day with letter “a” was significantly greater than letter “b” at 

p = 0.0040 in 2011. 
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  In 2011, sweet sorghum tops dry weight, root dry weight, leaf dry weights were recorded 

in 2 weeks intervals. The growth rate of each of these variables was calculated to per day 

biomass accumulation (Appendix C).  Sweet sorghum cane dry weight was recorded 56 days 

after planting. Growth rates were calculated based on the slopes of growth curve plotted between 

cane dry weights against days after planting. The cane dry weight per day was not affected by 

any treatment. However, the biomass dry weight (including root, cane, leaf, and panicle) growth 

rate was affected by fertilizer treatments, but not by variety or interaction between the variety 

and fertilizer treatments. All fertilized treatments had greater growth rate per day (72.3 kg ha-1 

day-1) than the zero fertilizer control (37.5 kg ha-1 day-1) (Table 15). The growth rate of cane was 

greater compared to the rate of total biomass, likely because the biomass growth rates indicative 

of the rate of growth from planting to harvest where the initial growth rate was lower, whereas 

the cane growth rate indicates from 56 days after planting. The greater growth rate in a short 

period is indicative of greater slopes in growth curves against days after planting. 

Table 15 

Growth rate of sweet sorghum cane and total biomass dry weights 

Parameter Cane dry weight growth 
 (kg ha-1 day-1) 

Biomass dry weights growth  
(kg ha-1 day-1) 

Fertilizer Dale M-81-E Mean Dale M-81-E Mean 
N-P-K (kg ha-1)     

0-0-0 46.6 64.8 55.7 41.2 33.7 37.5 b 
168-56-168 81 78.3 79.6 64.2 65.8 65 a 
84-28-84-soysoap 81.6 100.7 91.2 90.4 77 83.7 a 
168-56-168-soysoap 54.5 75.3 64.9 69.4 69.6 69.5 a 
Mean 65.9 79.8  66.4 61.5  
 
* The mean biomass growth per day with letter “a” was significantly greater than letter “b” at p = 

0.0003 in 2011. 
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The growth rate of tops dry weight was not affected by variety, but was affected by 

fertilizer treatments. The 50% RRF treated plots had greater growth rates than 100% RRF plus 

SoySoap and the zero fertilizer control plots, but was similar to that observed for the 100 % RRF 

treated plots. The growth rate of root dry weight had similar pattern as biomass dry weight. The 

affect of variety and the interaction between variety and fertilizer was not significant on root dry 

weight growth rate. However, there was an affect of fertilizer rate, where all fertilized plots had 

greater root dry weight growth rate (52. 13 kg ha-1 day-1) than the zero fertilizer control (23.7 kg 

ha-1 day-1) (Table 16). 

Table 16 

Growth rates of tops and root dry weights 

Parameter Tops dry weights growth  
(kg ha-1 day-1) 

Root dry weight growth 
 (kg ha-1 day-1) 

Fertilizer Dale M-81-E Mean Dale M-81-E Mean 
N-P-K (kg ha-1)     

0-0-0 32.6 39.1 35.9C 23.6 23.8 23.7b 

168-56-168 65.3 60.8 63.0AB 36.6 57.4 47.0a 

84-28-84-soysoap 74.3 77.8 76.0A 60.7 61.1 60.9a 

168-56-168-soysoap 54.6 61.0 57.8B 47.9 49.1 48.5a 

Mean 56.7 59.6  42.2 47.9  
 
*The mean dry tops growth per day with letter “A” was significantly greater than letter “B” at p 

= 0.0039 and the mean dry root growth per day with letter “a” was significantly greater than 

letter “b” at p = 0.0216 in 2011. 
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CHAPTER 5 

Conclusion 

 In 2010, sweet sorghum variety M81-E had greater yields of tops fresh weight and cane 

fresh weight than variety Dale with no affect of fertilizer rate. In 2011, all fertilizer treatments 

produced greater tops fresh weight and cane fresh weight than the zero fertilizer control. The 

juice extracted from cane was greater for all fertilized treatments compared with the zero 

fertilizer control in 2011 but was not affected by variety. Total sugar levels and BRIX had a 

similar trend in both years, in that all fertilized treatments had greater sugar percentage than the 

control in 2010, but no difference was observed in 2011. Overall, yields tended to be greater in 

2011 than 2010. In all measured variables in 2011, the 50% RRF resulted in greater yields than 

the control but was equal that of other higher fertilizer rates. Thus, the optimum fertilizer rate is 

between zero and 50% RRF for sweet sorghum production Piedmont region of North Carolina, 

and inclusion of SoySoap did not improve yield nor any measured growth variables. 

 The grain sorghum model did not simulate sweet sorghum growth reasonably, even at 

adjusted genetic coefficients. However, a pattern of difference between simulated and observed 

data was observed. When the model parameters were adjusted to simulate yields above that 

typical for grain sorghum, the output tended to simulate greater root growth than typical of sweet 

sorghum.  

5.1 Suggestions for Further Study 

 The rate of biomass accumulation is greater in sweet sorghum than grain sorghum. To 

make necessary modifications to the grain sorghum model to accurately reflect sweet sorghum 

growth characteristics, the model source script must be modified by creating new strings that 

represent sweet sorghum production related output parameters, such as sugar content in juice, 
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juice yield, sugar yield, and cane fresh weight. The observed growth rates of sweet sorghum are 

useful information to make the necessary modifications in the model growth subroutines. The 

identification of the correct parameters strings is the next step in developing a dedicated sweet 

sorghum model. However, to develop a dedicated sweet sorghum model, more detailed 

experimental data is needed from different multiple site-years across varying landscapes. 
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Appendix A 

Experimental Design 
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Appendix B 

Sweet Sorghum 2010 Data 

B.1 Sweet sorghum final yield components 

Plot  Tops 
Fresh 
Wt 
(kg/ha) 

Cane 
fresh Wt 
(kg/ha) 

Juice 
(lt/ha
) 

Leaf fresh 
Wt (kg/ha) 

Total 
Sugar 
(%) 

BRIX(%) BRIX 

09/09/2010 at harvest 

R2V1T1 32412 27414 9969 4998 9.6 11.7 14 
R1V1T1 35511 28289 8896 7222 13.2 13.4 15 
R4V1T1 28239 23316 7065 4923 10.7 15.0 13 
R3V1T1 22316 17518 5839 4798 11.4 15.1 14 
R2V1T2 20642 16493 4582 4148 7.4 13.4 14 
R1V1T2 26240 23990 9792 2249 7.1 11.5 12 
R3V1T2 25265 20342 6896 4923 6.3 11.7 10 
R4V1T2 23566 17918 5780 5648 6.0 10.7 11 
R1V1T3 27564 22366 5389 5198 8.1 12.9 11 
R2V1T3 30738 26190 8448 4548 4.9 14.1 11 
R4V1T3 28838 24315 7844 4523 8.1 13.1 8 
R3V1T3 23141 17493 3976 5648 3.9 13.6 10 
R1V1T4 44332 39484 9630 4848 5.9 15.4 11 
R2V1T4 27714 23541 7980 4173 9.6 11.7 13 
R3V1T4 24265 15669 4896 8597 9.8 12.4 13 
R4V1T4 20142 16144 5472 3998 3.3 10.9 9 
R1V2T1 44382 31887 10123 12495 8.8 9.7 11 
R2V2T1 35511 27539 8884 7972 6.2 13.3 15 
R4V2T1 38160 28164 8407 9996 9.0 10.6 14 
R3V2T1 19592 11545 3252 8047 8.0  12 
R1V2T2 46681 34086 8314 12595 7.2 9.7 12 
R2V2T2 52654 44182 14486 8472 7.5 9.6 11 
R3V2T2 28788 19967 5470 8821 7.7 10.4 12 
R4V2T2 34236 25865 8263 8372 11.4 9.1 15 
R2V2T3 31013 21666 6878 9346 6.2 10.3 13 
R1V2T3 52004 35086 13759 16918 6.1 7.9 11 
R4V2T3 33237 25815 8195 7422 7.2 9.6 11 
R3V2T3 29988 21341 6098 8647 8.5 9.6 11 
R2V2T4 55878 46531 16618 9346 7.2 7.5 11 
R1V2T4 43862 33886 11487 9976 6.7 9.8 10 
R3V2T4 40634 29788 9166 10846 5.3 8.9 12 
R4V2T4 27889 19742 4156 8147 8.2 9.4 10 
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B.2 Sweet sorghum 2010 measurements during production 

Plot Plant Height (in) Leaf Nitrogen (%) Leaf Number 

08/21/2
010 

09/07/2
010 

10/05/2
010 

08/10/2
010 

09/07/2
010 

09/23/2
010 

08/21/2
010 

09/07/2
010 

R2V1T1 81.0 101.9 109.3 3.2 2.4 2.4 10.7 14.7 
R1V1T1 84.2 103.5 104.3 3.1 2.4 2.3 11.0 14.3 
R4V1T1 81.0 101.9 109.3 3.2 2.4 2.1 10.7 14.7 
R3V1T1 84.2 103.5 104.3 3.1 2.4 2.0 11.0 14.3 
R2V1T2 79.4 95.8 102.6 3.1 2.2 2.0 11.7 13.3 
R1V1T2 79.4 95.8 102.6 3.1 2.2 2.2 11.7 13.3 
R3V1T2 79.4 95.8 102.6 3.1 2.2 1.9 11.7 13.3 
R4V1T2 79.4 95.8 102.6 3.1 2.2 1.9 11.7 13.3 
R1V1T3 73.6 89.9 100.9 3.0 2.3 2.2 12.3 16.0 
R2V1T3 79.3 90.7 97.3 3.1 2.4 2.3 11.7 14.0 
R4V1T3 85.5 99.8 102.6 3.0 2.5 2.2 11.3 14.7 
R3V1T3 79.5 93.4 100.3 3.0 2.4 2.2 11.8 14.9 
R1V1T4 65.6 63.3 63.7 2.8 2.4 2.3 10.7 11.7 
R2V1T4 81.5 111.4 109.6 3.2 2.8 2.6 12.7 15.3 
R3V1T4 65.6 63.3 63.7 2.8 2.4 2.0 10.7 11.7 
R4V1T4 81.5 111.4 109.6 3.2 2.8 2.0 12.7 15.3 
R1V2T1 78.9 90.1 105.8 3.0 2.1 1.9 10.0 15.7 
R2V2T1 71.0 87.2 110.3 3.1 1.8 1.9 11.3 15.3 
R4V2T1 77.7 91.6 102.8 2.8 1.8 1.6 11.7 16.0 
R3V2T1 75.8 89.6 106.3 3.0 1.9 1.6 11.0 15.7 
R1V2T2 61.8 64.7 71.1 2.9 2.3 2.1 10.3 14.3 
R2V2T2 80.7 95.2 120.8 3.0 2.5 2.3 11.7 17.7 
R3V2T2 61.8 64.7 71.1 2.9 2.3 2.1 10.3 14.3 
R4V2T2 80.7 95.2 120.8 3.0 2.5 2.1 11.7 17.7 
R2V2T3 73.1 78.1 78.2 3.5 2.4 2.1 9.7 13.7 
R1V2T3 73.1 78.1 78.2 3.5 2.4 2.2 9.7 13.7 
R4V2T3 73.1 78.1 78.2 3.5 2.4 2.1 9.7 13.7 
R3V2T3 73.1 78.1 78.2 3.5 2.4 2.2 9.7 13.7 
R2V2T4 83.2 89.9 97.3 3.4 2.6 2.4 12.3 17.0 
R1V2T4 81.2 98.6 113.4 3.2 2.5 2.2 10.3 16.7 
R3V2T4 83.2 89.9 97.3 3.4 2.6 2.3 12.3 17.0 
R4V2T4 81.2 98.6 113.4 3.2 2.5 2.2 10.3 16.7 
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Appendix C 

Sweet Sorghum Observed Data 2011 

C.1 Leaf number during production 

Plot 14 DAP 28 DAP 43 DAP 56 DAP 70 DAP 86 DAP 112 DAP 
R1V1T1 5.0 8.0 6.8 7.3 11.7 13.7 12.0 
R2V1T1 5.3 7.7 7.3 6.0 8.0 12.0 12.7 
R3V1T1 6.3 8.3 8.3 7.0 8.7 11.0 11.3 
R4V1T1 5.7 8.0 8.0 7.0 9.3 9.0 10.7 
R1V1T2 6.0 9.7 11.0 10.7 14.0 14.3 15.0 
R2V1T2 5.7 8.7 9.3 8.7 9.0 8.7 11.7 
R3V1T2 7.0 7.3 8.2 8.0 12.3 10.3 10.7 
R4V1T2 6.3 9.3 12.0 9.0 11.0 38.3 13.0 
R1V1T3 4.7 8.7 10.0 10.3 14.0 12.3 14.7 
R2V1T3 5.0 8.7 9.7 8.3 12.0 10.3 11.7 
R3V1T3 6.3 9.7 9.7 9.7 13.0 12.0 12.0 
R4V1T3 5.3 10.0 9.4 7.7 13.0 12.0 14.3 
R1V1T4 5.0 6.3 11.7 10.3 14.0 11.7 13.3 
R2V1T4 5.3 8.3 9.7 8.7 12.0 10.3 11.0 
R3V1T4 6.0 9.7 9.4 8.3 12.0 10.0 12.3 
R4V1T4 4.7 10.0 7.8 9.0 11.0 11.3 11.0 
R1V2T1 3.7 6.7 7.4 8.0 11.0 12.0 14.3 
R2V2T1 4.7 8.3 9.8 8.0 9.3 10.0 18.3 
R3V2T1 6.7 8.0 7.3 7.0 11.0 10.3 16.7 
R4V2T1 5.7 9.0 8.4 7.7 8.7 7.3 15.3 
R1V2T2 6.0 8.3 8.8 9.7 14.7 14.3 16.7 
R2V2T2 4.3 8.7 8.3 7.7 11.0 10.0 15.7 
R3V2T2 6.0 9.7 8.7 9.3 13.7 10.0 17.0 
R4V2T2 3.3 9.0 9.8 10.3 12.7 13.3 16.7 
R1V2T3 6.0 9.3 11.2 10.3 14.3 13.3 15.0 
R2V2T3 4.3 8.0 10.0 9.0 14.7 11.0 17.7 
R3V2T3 6.0 8.7 9.4 9.7 13.7 15.0 17.0 
R4V2T3 6.7 9.7 10.5 8.7 11.7 11.3 18.3 
R1V2T4 5.7 9.0 9.2 10.0 14.3 13.7 16.7 
R2V2T4 4.3 9.3 10.0 11.7 12.0 13.3 18.0 
R3V2T4 6.0 9.0 8.9 8.3 12.3 9.3 15.7 
R4V2T4 6.0 10.0 9.2 8.7 11.7 12.3 16.3 
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C.2  Plant Heights (in) 

Plot 14 DAP 28 DAP 43 DAP 56 DAP 70 DAP 86 DAP 112 DAP 
R1V1T1 2.4 7.1 13.3 40.4 53.0 93.7 102.0 
R2V1T1 3.8 8.3 21.0 18.0 28.0 19.7 70.7 
R3V1T1 5.8 10.0 24.3 39.0 43.3 75.0 97.3 
R4V1T1 4.3 10.3 25.3 28.7 39.7 49.3 87.7 
R1V1T2 5.4 14.7 44.3 61.0 72.3 110.7 119.0 
R2V1T2 4.7 11.3 36.0 39.7 61.3 64.0 109.3 
R3V1T2 6.0 13.9 31.0 42.0 73.0 83.7 107.0 
R4V1T2 5.0 12.3 30.0 46.3 66.3 72.3 109.0 
R1V1T3 2.8 10.7 26.3 65.3 73.7 94.0 120.7 
R2V1T3 3.8 13.7 28.7 41.0 67.0 91.0 110.7 
R3V1T3 7.9 17.0 37.3 49.3 80.7 71.7 118.7 
R4V1T3 4.3 9.6 26.3 44.0 73.7 103.3 125.3 
R1V1T4 5.1 4.0 32.7 59.0 84.0 82.7 114.0 
R2V1T4 3.5 14.0 25.0 49.3 72.0 64.0 109.7 
R3V1T4 3.9 11.7 30.7 47.3 68.7 75.3 114.7 
R4V1T4 2.8 8.7 16.3 28.7 61.7 65.0 99.0 
R1V2T1 2.6 5.9 18.7 33.7 51.0 71.3 106.0 
R2V2T1 3.9 9.0 15.0 22.3 27.3 49.7 90.0 
R3V2T1 8.4 10.3 19.0 28.3 49.3 61.3 117.0 
R4V2T1 5.0 10.0 13.0 28.7 30.7 29.7 78.0 
R1V2T2 6.4 17.3 31.0 51.3 78.0 102.0 140.3 
R2V2T2 2.6 15.0 17.0 32.3 45.3 50.7 111.0 
R3V2T2 4.2 16.3 27.0 47.0 64.0 67.3 120.0 
R4V2T2 4.8 18.0 31.0 38.0 62.0 81.3 126.3 
R1V2T3 6.7 13.7 41.0 52.7 78.0 103.0 135.7 
R2V2T3 2.9 6.6 27.3 40.0 62.3 56.0 127.0 
R3V2T3 6.7 17.0 31.3 46.3 80.3 92.0 133.7 
R4V2T3 5.5 15.0 31.3 53.0 69.7 80.7 148.3 
R1V2T4 4.1 16.7 31.3 49.0 77.3 84.0 136.0 
R2V2T4 2.9 20.7 29.0 48.0 59.3 86.3 126.0 
R3V2T4 5.9 17.7 35.7 38.7 68.3 69.3 121.7 
R4V2T4 3.7 12.7 24.7 43.0 52.0 73.7 116.3 
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C.3 Biomass fresh weight (kg ha-1) 

Plot 14 DAP 28 DAP 43 DAP 56 DAP 70 DAP 86 DAP 
R1V1T1 20 83 320 7258 20866 68040 
R2V1T1 40 71 1300 688 6350 13608 
R3V1T1 140 206 2220 5443 14515 30845 
R4V1T1 100 417 3000 4536 9072 20866 
R1V1T2 140 1370 9320 34474 90720 58061 
R2V1T2 120 494 6940 9072 47174 17237 
R3V1T2 100 1290 10760 14515 61690 44453 
R4V1T2 100 646 6820 18144 48082 26309 
R1V1T3 10 360 4680 29030 67133 71669 
R2V1T3 100 533 2420 11794 45360 51710 
R3V1T3 260 1688 16420 23587 84370 37195 
R4V1T3 80 549 4760 17237 76205 69984 
R1V1T4 60 63 7140 23587 86184 100699 
R2V1T4 100 515 4380 19051 55339 21773 
R3V1T4 80 564 12620 15422 57154 29030 
R4V1T4 80 447 1780 9072 28123 30845 
R1V2T1 16 83 1180 7258 8165 49896 
R2V2T1 60 89 700 2722 9979 27216 
R3V2T1 180 325 1580 3629 29030 24494 
R4V2T1 80 285 720 5443 29030 4536 
R1V2T2 120 2022 7520 34474 85277 101606 
R2V2T2 20 623 820 9072 34474 26309 
R3V2T2 60 1471 11560 23587 48082 18144 
R4V2T2 120 1151 7720 16330 38102 40824 
R1V2T3 120 933 11380 29030 72576 70762 
R2V2T3 20 172 5000 15422 50803 39010 
R3V2T3 120 1121 7720 22680 43546 58968 
R4V2T3 60 731 7800 30845 86184 45360 
R1V2T4 60 889 10360 23587 19051 78019 
R2V2T4 20 1995 5320 23587 62597 43546 
R3V2T4 80 2323 14300 9979 72576 22680 
R4V2T4 40 505 7180 14515 36288 52618 
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C.4 Biomass dry weights (kg ha-1) 

Plot 14 DAP 28 DAP 43 DAP 56 DAP 70 DAP 86 DAP 
R1V1T1 6 22 75 1552 4045 17393 
R2V1T1 14 17 230 271 1725 2701 
R3V1T1 37 50 407 1256 2392 6724 
R4V1T1 28 93 584 1320 1845 4807 
R1V1T2 39 211 3222 5917 17923 10448 
R2V1T2 33 97 1700 1840 8603 4129 
R3V1T2 29 197 2420 2507 11301 10842 
R4V1T2 36 120 1931 4468 10024 5729 
R1V1T3 5 65 1013 5179 13469 16344 
R2V1T3 41 104 457 2896 8371 12198 
R3V1T3 55 268 4300 4640 17348 8218 
R4V1T3 27 98 940 3165 13316 14872 
R1V1T4 16 16 1993 3203 17122 19172 
R2V1T4 29 95 861 3897 11880 4494 
R3V1T4 24 99 3340 2958 11412 7761 
R4V1T4 26 99 388 2063 4724 5675 
R1V2T1 5 19 218 2388 2103 10216 
R2V2T1 19 26 148 833 2202 5648 
R3V2T1 48 71 275 1048 5131 4544 
R4V2T1 24 61 111 1907 5240 1239 
R1V2T2 29 365 1691 6887 13948 18987 
R2V2T2 8 108 191 2607 7179 4871 
R3V2T2 16 235 3080 5448 9062 4002 
R4V2T2 27 190 1873 3450 8121 9018 
R1V2T3 30 141 3440 5725 12050 15656 
R2V2T3 6 33 1074 3225 8384 7086 
R3V2T3 27 195 2060 4885 8462 12812 
R4V2T3 14 128 2194 6905 14322 8481 
R1V2T4 20 146 3191 4997 3412 15933 
R2V2T4 8 295 1784 5239 11930 9885 
R3V2T4 26 341 4775 2090 13843 5099 
R4V2T4 14 93 1786 3949 6908 11856 
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C.5 Tops fresh weights (kg ha-1) 

Plot 14 
DAP 

28 
DAP 

43 
DAP 

56 
DAP 

70 
DAP 

86 
DAP 

105 (V1) & 112 (V2) 
DAP 

R1V1T1 13 68 280 6578 17912 57622 27095 
R2V1T1 26 60 1120 0 5080 11569 11642 
R3V1T1 92 178 1980 4619 13171 27478 21198 
R4V1T1 66 338 2760 0 8386 18797 26006 
R1V1T2 92 1101 7880 30932 80452 51538 63504 
R2V1T2 79 405 6100 7622 41575 15045 45360 
R3V1T2 66 1080 8320 12430 53350 39333 53222 
R4V1T2 66 534 5600 15265 42985 23410 41126 
R1V1T3 7 272 4120 25064 55830 64879 46570 
R2V1T3 66 443 2140 10698 37661 46831 43848 
R3V1T3 171 1398 13480 21299 70861 30064 48082 
R4V1T3 53 464 4300 15534 63583 59264 62597 
R1V1T4 40 52 5960 20826 75021 86502 30240 
R2V1T4 66 433 3820 15043 47564 19268 49291 
R3V1T4 53 484 10020 13316 48895 25278 36711 
R4V1T4 53 365 1580 7663 24522 25782 27821 
R1V2T1 11 63 1060 0 7051 42013 35078 
R2V2T1 40 80 620 0 8678 22437 21168 
R3V2T1 119 277 1340 0 25208 21345 62597 
R4V2T1 53 251 660 0 25837 4164 9737 
R1V2T2 79 1542 6300 28472 69630 81080 82253 
R2V2T2 13 501 720 7024 28899 23119 30240 
R3V2T2 40 1170 9160 19083 43141 15932 41126 
R4V2T2 79 977 6500 13564 31210 34189 55037 
R1V2T3 79 775 9440 24771 62803 61572 79229 
R2V2T3 13 136 4160 13548 42700 31733 57154 
R3V2T3 79 940 6500 18475 35731 47725 63504 
R4V2T3 40 587 6540 24678 74693 39969 58363 
R1V2T4 40 748 8240 21182 16758 68810 64109 
R2V2T4 13 1662 4460 18111 54373 35905 52013 
R3V2T4 53 1826 12480 8531 58116 19120 39917 
R4V2T4 26 417 6040 11472 30582 46020 44150 
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C.6  Tops dry weight (kg ha-1) 

Plot 14 
DAP 

28 
DAP 

43 
DAP 

56 
DAP 

70 
DAP 

86 
DAP 

105 (V1) & 112 (V2) 
DAP  

R1V1T1 5 18 57 1250 2928 13623 7301 
R2V1T1 9 14 154 219 974 2157 2951 
R3V1T1 29 42 300 988 2034 5756 6372 
R4V1T1 17 76 500 1031 1548 4138 6254 
R1V1T2 28 170 2740 4740 14830 8887 18261 
R2V1T2 21 78 1420 1326 6974 3176 14046 
R3V1T2 17 161 1620 1912 9045 8905 13446 
R4V1T2 21 98 1660 3243 8393 4892 10785 
R1V1T3 4 51 820 3689 10455 13005 13738 
R2V1T3 29 88 360 2418 6339 10404 14396 
R3V1T3 43 222 3320 3818 12253 6081 13661 
R4V1T3 17 80 800 2634 10192 11896 15702 
R1V1T4 12 14 1580 2352 13740 14158 7178 
R2V1T4 19 82 680 2494 9650 3716 14331 
R3V1T4 13 86 2600 2344 9160 6392 12793 
R4V1T4 17 81 320 1587 3849 4271 7462 
R1V2T1 3 14 167 1961 1645 8228 10318 
R2V2T1 15 22 120 638 1660 4379 5337 
R3V2T1 33 57 200 848 4066 3559 17808 
R4V2T1 18 52 89 1525 4166 1078 2723 
R1V2T2 22 265 1280 4849 9958 13995 22951 
R2V2T2 6 86 140 1714 5302 3920 7972 
R3V2T2 10 181 2200 3841 7495 3291 11478 
R4V2T2 18 161 1500 2634 5663 6905 12649 
R1V2T3 24 121 2900 4419 9672 13038 20255 
R2V2T3 4 25 880 2592 6389 5099 15271 
R3V2T3 17 158 1680 3479 6285 9542 20472 
R4V2T3 8 98 1840 4796 11253 7059 15550 
R1V2T4 16 123 2600 4174 2748 13179 16736 
R2V2T4 5 244 1560 3567 8604 7771 13881 
R3V2T4 19 276 4140 1667 9413 4029 10433 
R4V2T4 10 78 1440 2794 5196 9900 12611 
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C.7  Roots fresh weight (kg ha-1) 

 
 

 

 

 

Plot 14  DAP 28  DAP 43  DAP 56  DAP 70  DAP 86  DAP 
R1V1T1 7 15 40 680 2953 10418 
R2V1T1 14 11 180 115 1270 2039 
R3V1T1 48 28 240 824 1344 3367 
R4V1T1 34 79 240 594 686 2069 
R1V1T2 48 269 1440 3542 10268 6523 
R2V1T2 41 89 840 1450 5600 2192 
R3V1T2 34 210 2440 2085 8339 5120 
R4V1T2 34 111 1220 2879 5097 2899 
R1V1T3 3 88 560 3966 11303 6790 
R2V1T3 34 90 280 1096 7699 4879 
R3V1T3 89 290 2940 2288 13509 7132 
R4V1T3 27 85 460 1703 12622 10720 
R1V1T4 20 11 1180 2761 11163 14197 
R2V1T4 34 83 560 4008 7775 2505 
R3V1T4 27 80 2600 2106 8259 3753 
R4V1T4 27 82 200 1409 3601 5063 
R1V2T1 5 20 120 1194 1113 7883 
R2V2T1 20 9 80 443 1302 4779 
R3V2T1 61 48 240 438 3822 3149 
R4V2T1 27 34 60 537 3193 372 
R1V2T2 41 480 1220 6001 15647 20527 
R2V2T2 7 121 100 2048 5575 3189 
R3V2T2 20 301 2400 4504 4941 2212 
R4V2T2 41 174 1220 2765 6892 6635 
R1V2T3 41 158 1940 4259 9773 9190 
R2V2T3 7 36 840 1874 8104 7277 
R3V2T3 41 181 1220 4205 7814 11243 
R4V2T3 20 145 1260 6167 11491 5391 
R1V2T4 20 141 2120 2405 2294 9209 
R2V2T4 7 332 860 5476 8224 7641 
R3V2T4 27 497 1820 1448 14460 3560 
R4V2T4 14 87 1140 3044 5706 6597 
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C.8 Roots dry weight (kg ha-1) 

Plot 14 DAP 28 DAP 43 DAP 56 DAP 70 DAP 86 DAP 
R1V1T1 1 5 19 301 1117 3770 
R2V1T1 4 3 75 52 751 544 
R3V1T1 7 8 107 269 358 969 
R4V1T1 10 17 84 288 297 668 
R1V1T2 10 41 482 1177 3093 1560 
R2V1T2 12 18 280 515 1629 953 
R3V1T2 12 36 800 596 2256 1938 
R4V1T2 14 22 271 1224 1631 837 
R1V1T3 1 14 193 1490 3014 3339 
R2V1T3 11 16 97 478 2032 1795 
R3V1T3 11 46 980 823 5095 2136 
R4V1T3 10 18 140 531 3124 2976 
R1V1T4 4 2 413 851 3382 5014 
R2V1T4 10 13 181 1404 2230 778 
R3V1T4 11 13 740 614 2252 1370 
R4V1T4 9 19 68 476 875 1404 
R1V2T1 1 5 50 426 458 1988 
R2V2T1 4 4 28 195 542 1269 
R3V2T1 12 13 75 200 1065 986 
R4V2T1 5 9 22 381 1074 161 
R1V2T2 7 100 411 2039 3990 4992 
R2V2T2 1 22 51 893 1877 951 
R3V2T2 6 54 880 1607 1567 712 
R4V2T2 9 29 373 816 2458 2113 
R1V2T3 6 20 540 1306 2378 2617 
R2V2T3 2 8 194 633 1995 1987 
R3V2T3 10 36 380 1406 2177 3271 
R4V2T3 6 30 354 2108 3069 1423 
R1V2T4 4 23 591 822 665 2755 
R2V2T4 2 51 224 1672 3326 2114 
R3V2T4 7 65 635 423 4430 1070 
R4V2T4 4 15 346 1155 1712 1956 
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C.9 Cane fresh weight (kg ha-1) 

Plot 56 DAP 70 DAP 86 DAP 105 (V1) & 112 (V2) DAP 
R1V1T1 2270 9438 44452 19983 
R2V1T1 0 1693 7041 7020 
R3V1T1 2226 7078 18070 14963 
R4V1T1 0 4117 9438 19938 
R1V1T2 19066 61606 40761 49054 
R2V1T2 3800 27660 9804 32344 
R3V1T2 6629 39131 29726 40276 
R4V1T2 8597 29563 16900 30845 
R1V1T3 15512 36649 48855 33228 
R2V1T3 3740 25801 35614 30728 
R3V1T3 11800 49769 21840 36752 
R4V1T3 8263 40390 46112 49158 
R1V1T4 11985 55486 56593 22105 
R2V1T4 8723 31786 12794 33888 
R3V1T4 7272 35287 19387 26994 
R4V1T4 2933 15583 17284 21608 
R1V2T1 0 2474 27962 21298 
R2V2T1 0 1844 12770 14024 
R3V2T1 0 13743 11540 41568 
R4V2T1 0 8999 1153 5715 
R1V2T2 14527 46159 65393 63331 
R2V2T2 1786 12515 13363 20160 
R3V2T2 10672 25547 10346 29376 
R4V2T2 5531 19116 22230 39475 
R1V2T3 14648 44264 45604 57239 
R2V2T3 4887 27116 19613 40104 
R3V2T3 7778 21973 33450 44177 
R4V2T3 12492 45544 26368 43893 
R1V2T4 6393 10532 45369 47223 
R2V2T4 9238 31298 25493 38409 
R3V2T4 3422 39880 13955 28556 
R4V2T4 4058 18410 29417 31126 
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C.10  Cane dry weights (kg ha-1) 

Plot 56 DAP 70 DAP 86 DAP 105 (V1) & 112 (V2) DAP 
R1V1T1 301 1194 10035 6387 
R2V1T1 0 254 1092 2184 
R3V1T1 332 788 3210 4033 
R4V1T1 0 557 1496 5265 
R1V1T2 1605 9397 6064 15878 
R2V1T2 452 3835 1715 10629 
R3V1T2 712 5485 6264 11509 
R4V1T2 1316 4723 2918 8821 
R1V1T3 1751 5737 8515 11785 
R2V1T3 661 3683 6604 7836 
R3V1T3 1530 7240 4040 11540 
R4V1T3 1032 5207 8104 13529 
R1V1T4 1416 8224 7354 6255 
R2V1T4 1130 5603 1863 11059 
R3V1T4 934 5575 4154 10286 
R4V1T4 425 2043 2377 5854 
R1V2T1 0 433 4679 7940 
R2V2T1 0 304 1865 4068 
R3V2T1 0 1594 1421 14069 
R4V2T1 0 1002 248 1985 
R1V2T2 1648 5119 9855 19668 
R2V2T2 274 1832 1736 6739 
R3V2T2 1561 3471 1653 9063 
R4V2T2 711 2828 3735 10728 
R1V2T3 1780 5576 8583 16672 
R2V2T3 640 3185 2527 12941 
R3V2T3 920 3092 5519 17210 
R4V2T3 1708 5479 3715 12664 
R1V2T4 853 1311 7359 13585 
R2V2T4 1279 3940 4592 10940 
R3V2T4 451 5434 2432 8079 
R4V2T4 718 2442 5315 10821 
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C.11 Leaves fresh weight (kg ha-1) 

Plot 56 DAP 70 DAP 86 DAP 105 (V1) & 112 (V2) DAP 
R1V1T1 4308 8475 13170 3726 
R2V1T1 573 3387 4529 2568 
R3V1T1 2394 6093 9408 4988 
R4V1T1 3942 4269 9358 4768 
R1V1T2 11866 18846 10777 10267 
R2V1T2 3821 13915 5241 7889 
R3V1T2 5801 14220 9607 9110 
R4V1T2 6669 13422 6510 10282 
R1V1T3 9553 19181 16024 7804 
R2V1T3 6958 11860 11217 9322 
R3V1T3 9499 21092 8224 8566 
R4V1T3 7271 23193 13152 7073 
R1V1T4 8841 19535 29909 5659 
R2V1T4 6320 15779 6474 9756 
R3V1T4 6044 13608 5891 6478 
R4V1T4 4730 8940 8498 4592 
R1V2T1 6064 4577 14051 7517 
R2V2T1 2279 6834 9667 5557 
R3V2T1 3191 11466 9805 12715 
R4V2T1 4906 16838 3012 2540 
R1V2T2 13946 23471 15686 13130 
R2V2T2 5238 16383 9757 4271 
R3V2T2 8411 17594 5586 7834 
R4V2T2 8033 12094 11959 10248 
R1V2T3 10124 18539 15967 13905 
R2V2T3 8661 15584 12119 9846 
R3V2T3 10697 13758 14276 11833 
R4V2T3 12186 29148 13601 7476 
R1V2T4 14789 6226 23441 9158 
R2V2T4 8873 23075 10412 9202 
R3V2T4 5109 18236 5165 8597 
R4V2T4 7414 12172 16603 7947 
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C.12  Leaves dry weight (kg ha-1) 

Plot 56 DAP 70 DAP 86 DAP 105 (V1) & 112 (V2) DAP 
R1V1T1 949 1733 3589 914 
R2V1T1 219 720 1064 767 
R3V1T1 655 1245 2546 2340 
R4V1T1 1031 991 2642 989 
R1V1T2 3135 5433 2823 2383 
R2V1T2 873 3139 1461 3417 
R3V1T2 1200 3560 2640 1937 
R4V1T2 1928 3670 1974 1964 
R1V1T3 1938 4718 4489 1953 
R2V1T3 1757 2656 3800 6560 
R3V1T3 2288 5012 2041 2121 
R4V1T3 1602 4986 3792 2173 
R1V1T4 935 5516 6804 923 
R2V1T4 1364 4048 1854 3273 
R3V1T4 1410 3585 2238 2507 
R4V1T4 1162 1807 1894 1608 
R1V2T1 1961 1212 3549 2378 
R2V2T1 638 1356 2515 1269 
R3V2T1 848 2472 2138 3739 
R4V2T1 1525 3164 830 738 
R1V2T2 3201 4839 4140 3282 
R2V2T2 1441 3470 2184 1233 
R3V2T2 2280 4025 1638 2415 
R4V2T2 1923 2835 3170 1920 
R1V2T3 2639 4096 4455 3583 
R2V2T3 1952 3204 2573 2330 
R3V2T3 2559 3192 4023 3262 
R4V2T3 3089 5774 3344 2886 
R1V2T4 3321 1437 5820 3151 
R2V2T4 2288 4664 3179 2941 
R3V2T4 1216 3979 1597 2355 
R4V2T4 2076 2754 4585 1790 
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C.13  BRIX (%) & Juice (lt ha-1) 

Plot BRIX on 08/17/2011 BRIX on 9/6 (V1) &  9/11/2011(V2) Juice 
lt/ha 

R1V1T1 8.5 13.8 36 
R2V1T1 8.1 10 12 
R3V1T1 7.8 11.6 20 
R4V1T1 6.1 11 35 
R1V1T2 5.0 14.1 115 
R2V1T2 7.4 15.2 60 
R3V1T2 10.0 16.2 75 
R4V1T2 9.9 14.2 60 
R1V1T3 8.5 15.1 80 
R2V1T3 12.5 15 62 
R3V1T3 9.8 14.5 70 
R4V1T3 8.0 14.8 110 
R1V1T4 6.0 14.2 45 
R2V1T4 10.5 14.4 61 
R3V1T4 11.5 15.2 47 
R4V1T4 7.0 14 48 
R1V2T1 7.0 13.5 40 
R2V2T1 6.0 11.3 22 
R3V2T1 6.0 15 36 
R4V2T1 7.5 9.6 6 
R1V2T2 6.7 11.2 108 
R2V2T2 4.9 15 28 
R3V2T2 7.2 16 44 
R4V2T2 6.1 15.2 66 
R1V2T3 6.0 14 110 
R2V2T3 5.0 11.2 76 
R3V2T3 7.9 15 55 
R4V2T3 6.2 11 94 
R1V2T4 6.9 12.5 94 
R2V2T4 7.4 13 73 
R3V2T4 8.0 10.4 45 
R4V2T4 7.0 14 31 
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Appendix D 

 DSSAT, Web Soil Survey, and State Climate Office 

 

D.1. Database website of climate data of State climate office of North Carolina. 

 

D.2. Soil database on Web soil survey by Natural Resources Conservation Service. 
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D.3. DSSAT version 4.5 software package home interface. 

 

D.4. Main module XBuild of DSSAT v4.5 home interface. 
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D.5. SBuild main interface. 

 

D. 6. Weather man module of DSSAT v4.5 software. 
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