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ABSTRACT 

 

Konadu, Kwabena A. DESIGN OF ROBUST FEEDBACK CONTROLLERS FOR A 

LASER BEAM STABILIZER. (Major Advisor: Sun Yi), North Carolina Agricultural 

and Technical State University. 

 

High-precision positioning of laser beams has been one of the greatest challenges 

in industry due to inevitable existence of disturbance and noise. This work addresses this 

challenge by employing two different control strategies, namely, Proportional Integral 

Derivative (PID) and State Feedback with an observer for control. Control strategies are 

intended to stabilize the position of a laser beam on a Position Sensing Device (PSD) 

located on a Laser Beam Stabilization (laser beam system) equipment. The laser beam 

system consist of a laser source, a fast steering mirror (FSM), a position sensing device, 

and a vibrating platform which generates active disturbances. The traditional proportional 

integral derivative controller is widely used in industry, due to its satisfactory 

performance, various available tuning methods and relatively straightforward design 

processes. However, design of filters to obtain the derivative signal is challenging and the 

filtering can unexpectedly distort the dynamics of the system being controlled. As an 

alternative, an observer-based state feedback (OBSF) method is proposed and 

implemented. This method uses the state-space model of the laser beam system, where all 

the state variables cannot be measured directly. Therefore, an observer is applied to 

estimate the state of the system. For observer design, eigenvalue assignment and optimal 

design methods are used and compared in terms of system performance. Also, 

comparison between the proportional integral derivative and observer-based state 
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feedback controllers for laser beam stabilization are provided. Simulations and 

experimental results of the two controllers show that the observer-based state feedback 

controller has a faster response, rejects disturbance better and has a straight forward 

design procedure.   
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CHAPTER 1   

INTRODUCTION 

 

1.1 Applications and Motivation 

A laser is a device that works on the principle of quantum mechanics to create a 

beam of light through optical amplification where all the photons are in a coherent state, 

usually with the same frequency and phase. The light from the laser is often tightly 

focused and should not diverge much resulting in the typical laser beam. The term “laser” 

originated from an acronym for Light Amplification by Simulated Emission of Radiation. 

The operation of the laser is based on the work by Albert Einstein, Alfred Kastler and 

Theodore Maiman (Duarte 2009; Jones 2012). 

Laser beams are used these days for many purposes, such as communication, 

transmitting data, surgical purposes, printing, weapon systems, recording and various 

industrial purposes. Because laser beams have to aim at a target with accuracy and high 

light intensity level through a transmissible media which it travels while exposed to many 

forms of disturbances, high precision is required in the applications of laser beams. It is 

not possible to eliminate such sources of disturbance completely from the medium 

through which the laser beam travels; therefore, it is important to develop control 

measures to ensure that the beam aims at the intended target even in the presence of 

multiple disturbances (Giallorenzi and Limb 2009).  

Importance of the control of laser beams and potential industries that will benefit 

from this research work.  
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Figure 1.1 show representative examples of industries that utilize laser beams (Duarte 

2009; Quanser 2010);  

 

  

(a) (b) 

 
 

 
 

(c) (d) 

Figure 1.1. Applications of Laser Beams, (a) Medical, (b) Military, (c) Industrial 

Commercial, (d) Electronics & Data Communication (Mead 2009; 

Escuti 2011) 

  

 

 

1. Medical: a variety of surgeries are performed by using laser beam systems,  

2. Military: most firearms applications use laser beam systems as a tool to enhance 

the targeting of weapon systems and a target designator in aircraft,  
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3. Industrial and commercial: cutting, preening, welding, marking of metals and 

other materials are done by using laser beam systems,  

4. Electronics and data communications: laser beam systems are used for optical 

communications over optical fiber and free space as well as storage of data in 

optical discs. Also, applications include nuclear fusion, microscopy, laser 

cooling, material processing, photochemistry, etc.  

Some advantages of laser optical systems over other systems in free space are (Arnon and 

Kopeika 1997): 

i. smaller size and weight,  

ii. less transmitter power, 

iii. larger bandwidth, and  

iv. higher resistance to interference. 

The accurate pointing of the laser beam is a big and complicated challenge for 

successful operation of these systems due to difficulty in aiming the laser beam on the 

intended target, narrow beam divergence angle and vibration of the pointing system. Such 

vibrations of the transmitted beam are caused by auxiliary devices such as fans, external 

light sources from fluorescents, computers, pumps and any device that introduces high-

frequency signals to the system. These vibrations introduce error into the system and 

have the effect of deviating the laser beam from its accurate intended target. The aim of 

this thesis work is to design controllers that will correct or minimize dynamic laser beam 

pointing errors in analytical ways. The controllers are validated through simulations and 

experiments. 
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1.2 Operating Principle of a Laser Beam Control System 

In most laser beam control systems, deviations between the beam position and the 

intended target is corrected or stabilized using an actuator in a form of fast acting mirrors. 

This error information fed to the controller in the form of feedback by sensors such as 

Position Sensing Devices (PSD), quadrant-photo detectors and photodiode sensors. These 

sensors are used to determine the beam position and light intensity (Arancibia, Gibson et 

al. 2004). 

A traditional control system operation of a laser beam is demonstrated in Figure 

1.2. The effect of the disturbance appears to have magnified on the target. When the 

system is in operation, the laser beam comes from the source to the Fast Acting Mirror 

(FAM) which is reflected through a glass splitter to the target.  

 

 
Figure 1.2. Operating Principle of the Control System of a Laser Beam 

 

 

 

This glass splitter refracts a small percentage of the beam to a position sensing 

device. The position sensing device measures how far the beam has been displaced from 

PSD 
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the target and sends feedback to the control system. The control system then sends signal 

to steer the FAM / actuator such that the beam remains stable on the target (Arancibia, 

Gibson et al. 2004; Ying, Hanqi et al. 2005; Quanser 2010). 

 

1.3 Beam Stabilization: Theoretical Background 

Applications normally require high accuracy of the beam positioning. The laser 

systems require precision control in tracking and pointing of the target. Furthermore, this 

precision must be maintained over sustained periods of time. Further research work has 

been done on the subject to note the extent of work that has been done by other 

researchers on the matter.  

Techniques to address the problem using passive approaches are presented in (Zia 

1992; Bodson, Sacks et al. 1994; Glaese, Anderson et al. 2000), there; both feedback and 

adaptive feed-forward control techniques were implemented using two actuators (a fast 

steering mirror and a secondary acoustic speaker located near the precision mirror) for 

reducing an acoustically induced jitter. The actuator consists of a flexure-mounted mirror 

exposed to an acoustic field that generates disturbance to the beam. 

Another approach is the implementation of an adaptive controller that applies 

recursive least squares (RLS) algorithm to predict dominant output disturbance 

frequencies and dynamically computes control commands to minimize the output error. 

Such methods are presented in (Arancibia, Gibson et al. 2004; Chi-Ying, Yen-Cheng et 

al. 2008; Richard T. O'Brien and Watkins 2011; Tsu-Chin, Gibson et al. 2011). 
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The third method considers the implementation of passive and active vibration 

isolator which reduces the transmission of vibrations from the system to the target 

presented in (Arnon and Kopeika 1997). The passive isolator includes a mechanical low-

pass filter of a spring-mass system whiles the active isolator includes a vibration-control 

system, force actuators, and displacement sensors. The passive isolator reduces high 

frequency vibration disturbances in which the ability of disturbance rejection of the fine 

pointing mechanism is not sufficient. The active isolator dampens low-frequency, high 

amplitude vibrations (Jong-Shik, Chung Choo et al. 2006; Chang and Liu 2007). 

The problem has also been investigated in (Knibbe 1993; Perez-Arancibia, 

Gibson et al. 2009), by utilizing mechanical techniques for nutation. Known amount of 

tracking error is introduced into the system by introducing high frequency nutation 

signals. This is used to determine the position of the laser beam. This approach requires 

high sampling rates if it is being implemented in discretized form.  

The fifth technique is the self-tuning feed-forward jitter-rejection method, 

presented in (Arnon and Kopeika 1997; Horowitz, Li et al. 1998; Hara, Maeyama et al. 

2008; Busack, Morel et al. 2010). This method uses a minute accelerometer to observe 

the vibration characteristics. The propagating signal of the vibration and disturbance are 

monitored and electrically compensated for before they affect the communication system. 

Implementation of this model in a practical system is not straightforward because (Arnon 

and Kopeika 1997; Skormin, Tascillo et al. 1997):  

i. The disturbance should be monitored along three orthogonal axes.  
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ii. The complex mechanical configuration of the optical system causes the 

disturbance-compensation signal to be defined as a linear combination of all three 

orthogonal disturbance components. 

iii. The transfer function of the accelerometer must be stable at all times even when 

environmental conditions change. 

An alternate approach is demonstrated in (Ming-Yuan and Li 1995; Li, Chang et 

al. 2001; Ying, Hanqi et al. 2005; Kwabena A. Konadu and Yi 2011; Landolsi, Dhaouadi 

et al. 2011). A proportional-integral- derivative (PID) controller is implemented together 

with a beam-stabilized optical switch to stabilize a beam at a desired angle to maximize 

the optical power detected by a photodiode using a voice-coil motor actuator. Results 

prove the proportional integral derivative controller to be an effective method of 

stabilizing the laser beam with minimal switching time. proportional integral derivative  

controllers are still the most widely used in the application industry because it has 

alternative tuning methods (Precup and Hellendoorn 2011), It is affordable with simple 

structures, and offer satisfactory control system performance. 

A seventh method is the implementation of a kalman filter (Yokoyama, Nagasawa 

et al. 1994; Perez-Arancibia, Gibson et al. 2009; Kwabena A. Konadu and Yi 2011). In 

this approach, an extended kalman filter (EKF) is used to estimate the position of the 

laser beam center using the intensity measurement obtained from a single photodiode 

sensor. The estimated coordinates are used to generate a control signal by means of a pair 

of single-input/single-output (SISO) and linear time-invariant (LTI) controllers (Chang 

and Liu 2007). These controllers maximize the light intensity detected by the photodiode 
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sensor, which is equivalent to the particular location of the laser beam center. The EKF is 

not an exact solution, thus a heuristic solution, and there is no assurance of functionality 

or optimal control. Results presented in (Perez-Arancibia, Gibson et al. 2009) suggest 

that it is not possible to steer the system to the desired optimal operating point but an 

amount of disturbance is shown to be rejected from the system. 

Lastly, in order to reduce the effects of noise and disturbances, control strategies 

for a Laser Tracking System (LTS) that exhibit high precision tracking and measurement 

performances has been developed in (Leigh-Lancaster, Shirinzadeh et al. 1997; Li, Chang 

et al. 2001; Ying, Hanqi et al. 2005), using fuzzy logic controllers. This uses distance 

reading feedback from a laser interferometer and off-centered distance error feedback 

measured by a four-quadrant photo detector (Ming-Yuan and Li 1995). This controller 

minimizes target tracking error and suppress vibration disturbances and coupling effects 

from external sources mostly in both linear and non-linear systems. 

The method considered in this thesis work is the classical proportional integral 

derivative controller and an Observer-Based State Feedback (OBSF) controller. The 

design procedure for the proportional integral derivative controller is presented in 

(Quanser 2010). This method will be followed to design a specific proportional integral 

derivative controller and implemented on the laser beam system. An alternate control 

scheme will be designed using the observer-based state feedback method which is the 

main contribution of this work. This method considers the laser beam system as a plant 

which is a linear time-invariant (LTI) system with single-input single-output (SISO), and 

models the system into its state-space form. An observer which receives feedback signal 
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from the plant output is designed to estimate the location of the beam and stabilize it on a 

position sensing device. 

 

1.4 Laser Beam Stabilization Experiment 

Because a laser source produces a laser beam that is dynamically sensitive, the 

control of these laser beams in all areas of its application and industry is one of the 

biggest challenges (Arnon and Kopeika 1997). The laser beam stabilization equipment as 

shown in Figure 1.3 is an experiment designed to help solve the control issue in the areas 

of application and industries of laser beams. It is used to correct or minimize dynamic 

laser beam pointing errors in application systems by designing and implementing 

controllers. 

The laser beam system consist of four main components (Quanser 2010):  

1. The laser source, a Light Emission Diode (LED) light which produces the laser 

light during the experiment. 

2. A Fast Steering Mirror (FSM) which acts as the actuator. It receives control signal 

from the controller that will be designed to rotate about its pivot such that incident 

laser beam on it is reflected directly to the intended target.  

3. A Position Sensing Device (PSD) which detects the coordinated position of the 

laser beam. In this study, the intended target is the center of the position sensing 

device. 

4. A vibrating platform for subjecting the system to active disturbance artificially. 
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Figure 1.3. Laser Beam Stabilization Equipment 

 

 

  

1.5 Objectives 

Upon thorough literature review of the stabilization of laser beams by researchers, 

it has been identified that not much work has been done on stabilizing laser beams using 

observer-based state feedback (OBSF). Most researchers have looked at the control of 

laser beams with the other methods (Ying, Hanqi et al. 2005).  

The specific objectives of this work are: 

1. To design a controller to stabilize a laser beam on a laser beam stabilization 

equipment using the traditional proportional integral derivative method, 

2. To design an alternate controller using an observer-based state feedback method, 
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3. To compare the controllers in terms of design procedure and effectiveness 

performance through simulations and experiments, and 

4. To determine the most effective controller based on performance.  

 

1.6 Thesis Layout 

The rest of this thesis is organized on four main sections with Chapter 2 dedicated to 

the design of the proportional integral derivative  controller. Chapter 3 presents the 

design of the observer-based state feedback controller. Chapter 4 shows the experimental 

set-up, presents and discusses simulation and experimental results for the controllers, 

with the conclusion in Chapter 5.  
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CHAPTER 2  

PROPORTIONAL INTEGRAL DERIVATIVE CONTROLLER 

 

2.1 Design of Proportional Integral Derivative Controller 

 The purpose is to design a proportional-integral-derivative controller (Figure 2.1) 

that uses all these three terms to compensate for any error recorded by the position 

sensing device on the target. This controller will determine the right amount of voltage 

that will steer the actuator in a way that the beam is always reflected directly to the center 

of the position sensing device even in active disturbance. 

 The System will utilize an RMS estimator as shown in Figure 2.2 to determine 

the actual position of the laser on the position sensing device. It will record the deviation 

of the beam from the middle of the position sensing device (the reference center) and 

display the value digitally. The aim is to estimate signal values that are close to the 

theoretical values (Quanser 2010).  

 

 
Figure 2.1. Block Diagram of a PID Controller in Closed-loop 
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The performance of the estimator when tested showed that the effect of noise and 

disturbance alters the accuracy of its values. A second-order low-pass filter is then 

introduced in the estimator to reduce these errors. 

 

 
Figure 2.2. RMS Estimator Model with Low-Pass Filter 

 

 

 

It is assumed that there is no actuator saturation and amplifier offset,  

Thus, Vc,amp = Vc, 

where Vc(s) is the Laplace Transform of the voice-coil digital-to-Analog voltage and 

Vc,max is the maximum voltage that can be supplied to the voice-coil by the power.  

 

2.2 Determining the Transfer Function 

The transfer function (T.F.) of the closed loop disturbance-to-position of the 

system, Gx,d, is given as; (Quanser 2010) (Chen 1999; Ogata 2002) 
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where X(s) is the Laplace Transform of the position measured by the position sensing 

device, D(s) is the Laplace Transform of the disturbance. The laser beam system utilizes 

the unity negative feedback in the closed-loop system as;   

                        (2.2) 

the plant transfer function is;   

     
 

       
 

(2.3) 

the proportional integral derivative  controller, C, is given as;  

               
  

 
 

(2.4) 

where    is the proportional control gain,    is the derivative control gain and    is the 

integral control gain. Equations (2.2), (2.3) and (2.4) are substituted into equation (2.1) to 

obtain the closed loop transfer function,     , as; 

      
        

                       
 

(2.5) 

  

2.3 Determination of the Control Gains 

For the Ideal proportional integral derivative gains, the denominator of equation 

(2.5), (closed-loop transfer function) is compared with the third-order characteristic 

Equation below; 

            
          (2.6) 

where    is the zero location. Comparing the coefficients in Equations (2.6) to the 

denominator of equation (2.5) yields the control gains; 
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(2.7) 

   
  

    

 
 

(2.8) 

   
           

 
 

(2.9) 

2.3.1 Determination of the Natural Frequency 

The natural frequency of the laser beam system is obtained by substituting the 

gains and parameters of the proportional integral derivative specification into the closed-

loop transfer function equation to obtain the frequency response of the system. The 

natural frequency is found from the magnitude of the frequency response as (Quanser 

2010):  

   

√  |       |  (   |       |  √        )

 |       |
 

(2.10) 

Substituting the specified damped frequency, the system gain, and time constant into 

equation (2.10) yields the natural frequency,             563 rad/s. Hence, the 

natural frequency,    of the system is obtained as 563 rad/s.  

2.3.2 Specifications of Proportional Integral Derivative Controller 

1) The damping ratio of the ideal proportional integral derivative controller is set to 

1      . Thus, the controller is critically damped and does not add any 

oscillations to the system. 

2) The closed-loop gain should not exceed 0.05;  |        |      . The gain of 

the system, is the ratio of position measured on the position sensing device to the 
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disturbance given as; |        |  
 

 
. 

3) The disturbance frequency,       . 

4) The zero pole-location specification, the third pole,     is at -0.5. 

Substituting the closed-loop system specification parameters into the gain Equations, the 

ideal closed-loop proportional gain,   , is           , the derivative gain,   , is 

0.0021       , and the integral gain,   , is            /s 

2.3.3 Practical Proportional Integral Derivative Gains 

Because the laser beam system is prone to capturing noise, these noise turns to 

magnify after taking the derivative of the signal. It is important to include a filter in the 

design to remove this noise from the system. In this design of practical proportional 

integral derivative controller, a filter (Low-pass filter) is used to obtain the displacement 

of the PSD signal.  

2.3.4 Specifications of Filter  

The transfer function of the second-order band-pass filter is of the form (Ogata 

2002; Quanser 2010): 

          
  

 

            
  

(2.11) 

    is the cut-off frequency and    is the damping ratio of the filter. The bandwidth      

is obtained from equation (2.12)  

     √   
  √     

     
      

(2.12) 
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The cut-off frequency of the filter is chosen 10 times the natural frequency of the system 

to allow enough signal to pass through. 

The cross-over frequency    is the frequency at which the magnitude of the Transfer 

Function is 1 or 0 dB. The cross-over frequency,   , is obtained from the magnitude of 

frequency response as;   

    √     
      

(2.13) 

The phase margin (PM) is the amount of phase that exceeds -180 degree at the cross-over 

frequency, and it’s a measure of stability of the system. 

 

   Table 2.1. Filter Specification 

Filter parameter Specification 

Filter bandwith                                  

               

                        

Phase margin         [   ] 

Cut-off frequency          

 

 

 

2.3.5 Selected Filter Parameters  

Figure 2.3. shows a set of filter parameters for different damping ratios. The 

parameters are compared with the specifications to find the set that best meet the given 

requirement. The white markers show the parameters for corresponding damping ratios  

that are rejected and the black markers are filter parameters for corresponding damping 

ratios that meet the requirements. 
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From Figure 2.3., the damping ratio that results in a bandwidth greater than 6752 

rad/s and a phase margin greater than 75 degrees is determined as 0.5 and 0.6 but a 

damping ratio of 0.5 is selected as the choice for designing the filter because its phase 

margin is closer to the desired specification. 

 

 
Figure 2.3. Plot of Filter Specifications against Damping Ratio 

 

 

 

2.4 Building the Controller 

The filter with its desired parameters has been selected, now, the proportional 

integral derivative  controller is built in simulink and its performance is tested to 

determine if the specified design requirements are met. Figure 2.4. shows a block 

diagram of the designed laser beam controller. The proportional integral derivative  gains 

after applying the low-pass filter is:    = 0.722 V/mm;    = 0.002 V.s/mm;    = 0.360 

V/mm/s. 
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Figure 2.4. Block Diagram of the Proportional Integral Derivative Controller 

 

 

 

The gains,   ,   ,    are placed in the proportional gain block, integral gain 

block, and derivative gain block shown in Figure 2.4. The low-pass filter is placed in the 

filter block and simulations are performed to test if results are satisfactory, before 

experiments are performed. 
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CHAPTER 3  

OBSERVER-BASED STATE FEEDBACK CONTROLLER 

 

3.1 Design of State Observer 

Alternatively, Figure 3.1 shows a block diagram of the laser beam stabilization 

equipment that utilizes an observer-based state feedback for control. The laser beam 

stabilization equipment is assumed to be a plant and modeled in its state space form and 

as a linear time-invariant (LTI) system with single-input single output (SISO). It is 

assumed that; 

1) Not all the state variables, x, of the laser beam system are available for  

measurement. 

2) There is not enough sensors, and it is very expensive to obtain all the physical  

            initial conditions,     , for the laser beam system. 

3) There is an amount of error due to estimation. 

 

 

Figure 3.1. Block Diagram of Closed-loop State Feedback Observer 
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Because information about the dynamics of the system is limited, the design of an 

observer that computes an estimate of the entire state vector with limited information 

from the output of the plant for control is proposed.  

 

3.2 Modeling of Laser Beam System and Observer 

To obtain the dynamics of the system, the laser beam system is modeled in the 

state space form as (Franklin, Powell et al. 1995; Ogata 2002); 

 ̇        

     

(3.1) 

(3.2) 

where A and B are system and input matrices respectively,   and   are state vectors,   is 

the output matrix (Luenberger 1964; Krokavec and Filasová 2007). The observer is 

constructed from the state space model of the laser beam system dynamics as; 

 ̇̂    ̂     

    ̂ 

(3.3) 

(3.4) 

Where  ̂ is the estimate of the actual state,  . Since the exact initial condition,      of the 

laser beam system is not available, the observer will be used to provide that information. 

However, the observer gives estimated but not exact information about the system, 

therefore a continuous increase in error may occur if a poor estimate for      is made. 

This may result in the observer providing erroneous estimates about the true state of the 

laser beam system. Error introduced, e, is (Franklin, Powell et al. 1995; Zhou, Doyle et 

al. 1996);  
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     ̂ (3.5) 

This error in estimation can be eliminated very fast by controlling the estimator with error 

feedback. Thus, the difference between the actual laser beam system outputs and the 

estimated outputs, are taken and fed back into the observer to compensate for this error as 

shown in Figure 3.2. (Franklin, Powell et al. 1995; Ogata 2002) 

 

 
 

Figure 3.2. Block Diagram of Observer Using Error Feedback for Compensation 

 

 

 

The difference in actual output and estimated output can be written as;  

     ̂ (3.6) 

Adding the error to the observer gives; 

 ̇̂    ̂            ̂  

Where L, is the observer gain. The dynamics of the observer can be re-written to include 

the error to obtain; 

 ̇̂    ̂           ̂  (3.7) 

   

  

 ̂ 

Scope 
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3.3 Determining the State Space Model  

The plant transfer function for the laser beam is given in equation (2.3) where K, 

the open-loop steady state gain, is 2200mm/(V.s) and  , the open-loop time constant, is 

0.005s; 

    

     
 

    

           
 

(3.8) 

    , is the position measured by the position sensing device and      , is the amount of 

voltage that enters voice coil actuator.  Taking the Laplace inverse of equation (3.8), the 

equation of motion of laser beam system is obtained as;  

 ̈               ̇ (3.9) 

From the equation of motion, the System matrix A, and Input matrix B is derived as;  

System Matrix 

 

  [
     

  
] 

Input Matrix   [
 
 
] 

Output Matrix   [       ] 

Control Matrix   [ ] 

Writing the equation of motion in state space equation of the laser beam system can be 

written as: 

[
  ̇

  ̇
]  [

     
  

] [
  

  
]  [

 
 
]    

(3.10) 

where    is the displacement and    is the velocity of the beam 
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3.3.1 System Controllability  

The controllability of the system can be obtained from the laser beam system state 

space model and used to determine if it is possible for the system to be controlled. The 

model of the system will have to be changed or altered if the state space equation (23) 

tends to be uncontrollable.   

The first step to determine if the system is controllable is to compute the 

controllability matrix (Haddad and Bernstein 1992; Chen 1999). The controllability 

matrix,    is derived from Matlab using the command “ctrb (A, B)”. The controllability 

matrix is obtained as (Zhou, Doyle et al. 1996): 

    [
     
  

]  

Let           be vectors of columns 1 and 2 of matrix    respectively.  If           are 

scalar, then (Chen 1999), (Franklin, Powell et al. 1995), (Ogata 2002) 

              

            

Then           are linearly independent of each other, therefore columns 1 and 2 of the 

controllability matrix are linearly independent. Thus the rank of the controllability matrix 

is 2. Since the size of the state vector is 2 and the rank of the controllability matrix is 2, 

then the system is controllable. 

3.3.2 System Observability  

The Observability of the system can be obtained from the laser beam system state 

space model and used to determine if the state of the system can be observed if an 
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estimator is designed. Observability matrix,    is derived from Matlab using the 

command “obsv (A, C)”. The observability matrix is obtained as:  

   [
       

       
] 

Columns 1 and 2 of matrix    are linearly independent. Thus the rank of the observability 

matrix is 2. Since the number of rows of the state matrix is 2, and the rank of the 

observability matrix is 2, then the system is observable.  

  

3.4 Feedback Control Design   

For the system to achieve desired response, poles are selected so that the system 

response to disturbance is dominated by the dynamic characteristics of the observer and 

not the control law. 

Pole placements are locations in the closed-loop system where desired response is 

achieved when control effort is applied. The location of the poles correspond directly to 

the eigenvalues of the system, thus, the eigenvalues control the characteristics of the 

response (Franklin, Powell et al. 1995; Ogata 2002). If the selected poles are not 

desirable it will require a larger effort to control the system making the design expensive 

(Franklin, Powell et al. 1995).  

The pole locations of the system are obtained from the denominator of the closed-

loop response equation by finding the characteristic roots or eigenvalues of the 

characteristic equation. The equation for the closed loop response is given as (Quanser 

2010): 
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(3.11) 

Substituting the time constant and natural frequency into the denominator of equation 

(3.11) gives: 

                             

                    

Thus the desired poles are obtained as 

                                     

 

3.5 Pole Placement Design of Observer 

The control gain K, is derived from Matlab using Ackermann command in 

equation (3.12) : 

                            K=acker(A,B,p) (3.12) 

A is the system matrix, B is the input matrix, and    is desired pole location 

The observer is designed to regulate the laser beam by estimating the state of the 

laser beam system. Two techniques are considered in designing the observer; the 

Ackermann method which designs the observer without considering uncertainties from 

the process and sensors. Alternatively, the Kalman method considers the uncertainty and 

optimally designs a Robust Observer (RO) the laser beam. Simulations and experiments 

are used to compare these methods.  

The Estimator Gain, L, is obtained from the Ackermann formula using the Matlab 

command in equation (3.13):   
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L’=acker(A',C', ) ' (3.13) 

Where ' denotes the transpose of system matrix and the output matrix respectively.   is 

desired observer pole location. For a faster decay of the estimator error, the desired 

estimator Pole location  , is chosen by a factor of 5 (Franklin, Powell et al. 1995; Zhou, 

Doyle et al. 1996; Ogata 2002): 

                                       

The observer gain, L is: 

  [
      
      

]   

 

3.6 Optimal Design of Robust Observer  

The design of the observer using the Ackerman formula does not provide robust 

estimation in the presence of noise in the system. Observer design through the Ackerman 

formula can make the estimator unstable and inaccurate because this system does not 

recognize the disturbance from the process and noise from the position sensing device. 

Thus, the estimated state will diverge from the real state if disturbance and noise is 

introduced into the system  (Franklin, Powell et al. 1995; Zhou, Doyle et al. 1996; Ogata 

2002). 

The Kalman technique is used to design a robust state estimator to generate 

optimal estimates of the state of the system. The Kalman takes the state-space model of 

the system where not all outputs are available for measurement and considers all other 

inputs (noise) as stochastic as shown in Figure 3.3. The method uses known input  , and 
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covariance matrices Qn, Nn and Rn from the process disturbance w, and measurement 

noise v to compute the optimal estimator gain L. The covariance matrix are;  

Qn = E{ww'}, Rn = E{vv'}, Nn = E{wv'} 

Where; w and w' are the process disturbance vectors and its transpose respectively, while 

v and v' denote the position sensing device noise vector and its transpose. 

 

 
 

 

 

 

The laser beam system is assumed to be corrupted by noise (Postlethwaite 1996; 

Zhou, Doyle et al. 1996). Thus; 

 ̇          

       

(3.14) 

(3.15) 

where, w is process disturbance and v is measurement noise from the position sensing 

device. Rewriting the dynamics of the observer, from equation (3.5), the error in 

estimation gives; 

 ̇            ̂              ̂  

 

 
 

A 

output, y 
LBS 

input 

 ̇ 

LBS plant 

    

y, to estimator 

Figure 3.3. Diagram Showing Introduction of Noise and Disturbance on LBS 
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 ̇               (3.16) 

Due to the introduction of process and measurement noise into the system, the 

difference between the real state variable and the estimated state variable will not go to 

zero. Thus, the error will not approach zero asymptotically, x grows further apart from  ̂. 

To ensure that the effect of this error and disturbance on the target remains minimized as 

possible, the optimal linear quadratic estimator LQE technique using the kalman is used 

to choose the optimal estimator gain, L.  

The optimal observer gain which minimizes this error caused by the process 

disturbance and measurement noise is: 

         (3.17) 

where   is the solution of the Algebraic Ricatti Equation (ARE) : 

                    (3.18) 

 , should be a unique positive semi-definite solution of ARE.  

 , is the output matrix of the laser beam system,   and   are the disturbance and noise 

matrix respectively. The optimal choice of L is called the Kalman filter gain and is 

obtained from Matlab by the command;  

       [kest,L,P]= kalman(sys,Qn,Rn,Nn) (3.19) 

The optimal observer gain, L is: 

  [
      
      

] 

The solution to the ARE is: 

       [
            
             

] 
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3.7 Building the Controller 

Figure 3.4 shows a block diagram of the laser beam system and observer in 

simulink. Simulations are performed to determine the response of the system when using 

an observer-based feedback for controlling the laser beam system. 

 

 
Figure 3.4. Block Diagram of the OBSF Controller 

 

 

 

 The observer gain, L, and control gains obtained are placed in the observer gain 

block and control block to test the controller through simulations before experiments are 

performed.   
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CHAPTER 4  

SIMULATION AND EXPERIMENTAL RESULTS 

 

4.1 Experimental Set-up 

The laser beam system experiment shown in Figure 4.1 and Figure 4.2 consist of 

four main components: PC, laser beam system component, Quanser Personality 

Intelligent Data (QPID) acquisition board and a Peripheral Component Interconnect 

(PCI) express board. These are inter-connected and act as a hardware-in-the-Loop (HIL). 

The PCI board is inserted into the CPU and connected to the QPID terminal board 

through analog cables. The terminal board is then connected to the laser beam system 

component through analog and encoder cables before the system is powered. 

Experiments are run on this system by generating real-time codes from models that runs 

on a real-time kernel of the processor of the PC. After designing the appropriate 

controller, the design is built and tested through simulations on the computer. 

  

Fast steering 
mirror

DC motor 
for active 
disturbance

Laser 
Source PSD

QPIDAmplifier

Laser beam

 
Figure 4.1. Schematic Diagram of a Laser Beam Stabilization Experimental Set-up  
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The laser beam system platform shown in Figure 4.2 consist of a laser beam from 

a stationary laser source, an actuator or a FSM which is mounted on a vibrating platform 

to subject the laser beam to disturbance, a DC motor for subjecting the platform to 

artificial active disturbance. The amplifier makes sure that the voltage or maximum 

power that is being supplied to the actuator by the Digital-to-Analog convertor (D/A) is 

not exceeded and it also magnifies the signal from the position sensing device to the 

Analog-to-Digital converter. The QPID acts as a data acquisition board and also acts as a 

digital-to-analog-to-digital convertor (D-A-D), thus it converts the analog position of the 

laser beam measured by the position sensing device into digital signal for the computer 

and also converts digitized signal from the designed controller on the computer to analog 

form for the actuator (FSM). Therefore by using feedback from the position sensing 

device, controllers are designed to stabilize the vibrations using the FSM as an actuator.  

 

 
Figure 4.2. Experimental Set-up of the Laser Beam System  
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The laser beam system is subjected to active disturbance by increasing the 

disturbance voltage which causes the motor to slide back and forth, thereby displacing the 

beam from the middle of the position sensing device. The controller intended to stabilize 

the system is switched on and the response is analyzed.  

 

4.2 Experimental Set-up for Simulations 

Before the controller is implemented on the laser beam system, simulations are 

performed on a virtual laser beam system with specifications and transfer function similar 

to the real laser beam system to determine if results are satisfactory before replacing the 

plant with the real laser beam system. This is done to validate the design and prevent any 

damages to the laser beam stabilization equipment. Figure 4.3 shows a block diagram of 

the experimental set-up to test the controllers through simulation (Chua, Rainsford et al. 

2008). 

 

 
Figure 4.3. Block Diagram of Experimental Setup 
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This block diagram consist of four main blocks; (1) the Control System Block, 

which contains the controller, (2) the Signal Generator Block which acts as the motor for 

subjecting the laser beam system to active disturbance by regulating the frequency and 

amplitude of the input signal, (3) Plant which acts as the laser beam system shown in 

Figure 4.4 and (4) the Scope which acts as the position sensing device for detecting the 

position of the laser beam (x) and the disturbance. 

 

 
Figure 4.4. Block Diagram of Laser Beam System 

 

 

 

This block is designed to have similar specifications to the real laser beam system. 

The first input port of the laser beam system, U_c recieves signal from the contol system 

block’s output in the form of voltage to control the voice coil actuator. The second input, 

U_d is the active disturbance from the signal generator’s output for subjecting the laser 

beam to motion. The transfer function and limits are obtained from the real laser beam 

system, the saturation limits ensures that the amount of voltage that is supplied to the 

system does not exceed specified or desired limits in order to prevent any form of 

damage to the equipment. 
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A block diagram of the observer-based state feedback controller is shown in 

Figure 4.5. It is assumed that not all the output state variables of the laser beam system 

can be measured therefore the available output, displacement, is measured by the position 

sensing device as X(mm). The observer continuously estimates the state of the system 

based on the output (X) from the laser beam system.  

 

 
Figure 4.5. Simulation Block Diagram of the OBSF Controller 

 

 

 

This estimatator output is U_c, in the form of voltage. The diagram shows the 

observer gain L, control gain U. System matrix (A), input matrix (B) and output matrix 

(C) are obtained from the state-space form of the laser beam system. 
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simulations are peformed on the laser beam system(plant) and the response is compared 

to that using the proportional integral derivative controller to determine whether the 

results are satisfactory. This is achieved by replacing the control system block in Figure 

4.3 with the observer-based state feedback and proportional integral derivative controller 

shown in Figure 4.5 and Figure 4.6 respectively. The signal generator is set to input a 

disturbance in a form of a sine wave with a frequency of 12 Hz and an amplitude of 1 

mm. Figure 4.7 and Figure 4.8 show the response of the system  in using the proportional 

integral derivative and observer-based state feedback controllers respectively. The 

response shows that the laser beam vibrates sinusoidally with an amplitude of 

approximately 350 mm in open loop using the proportional integral derivative controller, 

however this vibration stabilizes in closed-loop. For the observer-based state feedback 

controller, the laser beam vibrates with an amplitude of about 350 mm in open-loop and 

stabilizes about the reference point in closed-loop. 

 

 
Figure 4.6. Simulation Block Diagram of PID Controller 
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A comparison of simulation response of the controllers in closed-loop is shown in 

Figure 4.9. In closed-loop, the response of the observer-based state feedback controller 

shows that the vibration of the laser beam stabilizes to an amplitude of 2 mm whiles for 

the proportional integral derivative controller, the amplitude of the laser beam decreases 

to 1.7 mm.  

Both controllers proved to be stable and effective in eliminating the 12 Hz 

disturbance and significantly stabilizing the vibration of the laser beam. However, the 

proportional integral derivative controller sustains a relatively smaller amplitude. The 

results for both controllers are considered satisfactory as shown in Figure 4.9, therefore 

the peformance of the controllers can be tested on the real laser beam system.   

 

 
Figure 4.7. Simulation Response of PID Controller 
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Figure 4.8. Simulation Response of OBSF Controller 

 

 

 

 
Figure 4.9. Comparison of Closed-loop Simulation Response  
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disturbance frequencies when the system is switched from open-loop to closed-loop. 

Hence, the gain requirement is met for this design. 

 

   Table 4.1. Disturbance Frequency and System Gain of PID 

Disturbance 

Frequency(Hz) RMS: d(mm) RMS: x (mm) lGx,dl = X/ D 

8 0.1468 0.006654 0.045327 

9 0.1311 0.005886 0.044897 

10 0.1913 0.007179 0.037527 

11 0.2865 0.014480 0.050541 

12 0.1829 0.007776 0.042515 

 

 

 

 Figure 4.11 is a plot of the laser beam system in open-loop that is switched to 

closed-loop after 11.5 seconds. Observation shows that the beam is displaced from the 

reference point immediately when the controller is switched to closed-loop. This offset 

however decreases linearly over time and gradually approaches steady state at zero.  

 

 
Figure 4.10. Plot of Closed-Loop System Gain against Disturbance Frequency  
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Figure 4.11. Plot of Response for PID Controller 
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Figure 4.12. Margin Plot for PID Controller  
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bode diagram shows the PM for the transfer function of the loop. The introduction of 

filters and sampling has an effect of delay and shift in the stability of the system. A 

sampling interval is selected such that the stability of the system is not affected.  

Although the phase margin is not close to 90 degrees (ideal), the system is still 

considered to be stable because it is greater than the desired PM of 60 degrees. The 

reduction in phase margin can be accounted for as the effect of the filter. Figure 4.13 

shows that after sampling, the phase margin has reduced to 67.5 degrees meaning the 

stability of the system has reduced. Even though there is a reduction in phase margin, the 

system is considered to be satisfactory since it’s greater than 60 degrees. 

  

 
Figure 4.13. Margin Plot for PID Controller after Sampling 
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The gain of the closed loop system as compared to the specified gain requirement 

showed that the gain specification has been met for this controller. Table 4.2 and Figure 

4.14 show that the system maintains a gain below 0.05 for a range of disturbance 

frequencies when the system is in closed-loop.  

 

   Table 4.2. Disturbance Frequency and System Gain of OBSF 

Disturbance 

Frequency (Hz) RMS: d(mm) RMS: x (mm) lGx,dl = X/ D 

8 0.2615 0.01242 0.047495 

9 0.4588 0.01510 0.032912 

10 0.3385 0.01279 0.037784 

11 0.4390 0.01450 0.033030 

12 0.4651 0.01874 0.040292 

 

 

 

 
Figure 4.14. System Performance of OBSF Controller 
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device after switching from open-loop to closed-loop. In open-loop the laser beam 

vibrates with an amplitude of approximately 0.7 mm, however this vibration minimizes to 

an amplitude of approximately 0.01 mm at steady-state after switching to closed-loop.  

  

 
Figure 4.15. Response of Real Laser Beam System with OBSF Controller 
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The response of the robust observer when implemented on the real laser beam 

system is shown in Figure 4.17. Results show that after an input of 12 Hz disturbance 

frequency, the laser beam movement stabilizes on the position sensing device after 

switching from open-loop to closed-loop.  

 
Figure 4.16. System Performance of Robust Observer  

 

 

 

 
Figure 4.17. Response of Real System with Robust Observer 
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In open-loop the laser beam vibrates with an amplitude of approximately 0.7 mm, 

however this vibration minimizes to an amplitude of approximately 0.01 mm at steady-

state after switching to closed-loop. The response of the robust observer is similar to the 

observer-based state feedback controller in Figure 4.15 because the experiment was 

peformed under very good conditions, and the amount of lighting in the room was 

regulated.  

Comparisons between the controllers are made to investigate the method that best 

regulates the laser beam, in terms of stabilizing the laser beam. Figure 4.18 is a 

comparison of the experimental response of the controllers. Figure 4.19 shows a 

comparison of the controller performance and Table 4.4 describes the differences in the 

controllers. 

 

 
Figure 4.18. Comparison of Experimental Response of Controllers 
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Figure 4.19. Comparison of System Performance for Controllers  

 

 

 

Table 4.4. Observed Comparison of Controllers  
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action in proportional 

integral derivative 

controller 

A filter is required when 

taking the derivative of 

the signal to be 

multiplied with k
d
.  

Design procedure Compact form. since the 

model is expressed in 

matrix-vector form, the 

calculation is friendly  

Design of control 

requires a relatively 

complicated process. It 

handles scalar multi-

variable models, and 

requires designing extra 

filters for tuning.  

Robustness Handles uncertainty like 

process disturbance and 

measurement noise in  a 

simple way  

A bit cumbersome in 

handling noise  
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After testing all controllers on the real laser beam system, the gains of the closed 

loop system are compared. The closed-loop gain is observed for a series of different 

disturbance frequencies. Figure 4.19 shows that in all three controllers, the system 

maintains a gain below 0.05 for a range of disturbance frequencies.  
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CHAPTER 5  

CONCLUSION  

 

This work presented the design of a proportional integral derivative controller that 

uses the feedback signal from a position sensing device to rotate the voice-coil actuator. 

The controller has been designed to stabilize a laser beam such that the incident laser 

beam on the mirror is reflected to the middle of the position sensor even in the presence 

of noise and active disturbance. An alternate observer-based state feedback scheme for 

controlling the laser beam system has been proposed. This controller models the laser 

beam system as a linear time-invariant plant and estimates the state of the plant by 

stabilizing the beam at all conditions.  

A comparison has been made to investigate the more appropriate and effective 

control method based on design procedure and performance. Simulation results 

demonstrate that both controllers are effective and suitable for eliminating vibrations and 

stabilizing the laser beam on the position sensing device. However, experimental results 

show that the observer-based state feedback controller is 6 seconds faster, stable because 

of the absence of filters, and rejects disturbance better by maintaining a lower system 

gain as compared to the proportional integral derivative controller. The observer-based 

state feedback controller is relatively simple and the design is straight forward if the 

model and state of the system can be obtained while the process for the proportional 

integral derivative controller design is relatively complicated due to the design of filters 

which alters the stability of the system.  
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APPENDIX A 

 

MATLAB CODE FOR PID 

 

% Load the model parameters, encoder calibrations, and amp 

saturation. 

format long 

 

[ K, tau, K_EC_D, K_EC_C, K_PSD, VMAX_D, VMAX_C ] = 

setup_lbs_configuration( ); 

  

% ************ IDEAL PID DESIGN ************ 

% ************************************************* 

% Spec #1: Damping ratio 

zeta = 1; 

% Spec #2: |X(wd)|/|D(wd)| gain specification (mm/mm) 

Ad = 0.05; 

% Disturbance frequency: wd = 2*pi*fd (Hz) 

fd = 12; 

% Spec #3: Zero location. 

p0 = 0.5; 

% Design the PID controller to meet these specifications 

[w0_plot,G_w0,w0,kp,kd,ki] = 

d_lbs_pid_studentresult(K,tau,zeta,Ad,fd,p0); 

  

% ************ PRACTICAL PID DESIGN ************ 

% Spec #1: Damping ratio of high-pass filter. 

zeta_f = 0.5; 

% Spec #2: Natural frequency of high-pass filter (rad/s) 

w0 = 563; 

wf = 10*w0; 

% Frequency that results in the desired disturbance rejection 

(rad/s) 

p0 = 0.5; 

K = 2200; 

% Corresponding proportional gain (V/mm) 

tau = 0.005; 

zeta = 1; 

fd = 12; 

% Disturbance frequency (rad/s) 

wd = 2*pi*fd; 

% Set Laplace operator to s = j*w 

s = sqrt(-1)*wd;  
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G_w0 = abs( (tau*s^2+s) ./ (tau*s^2 + 2*zeta*w0*tau*s + w0.^2*tau) 

); 

ind = find( G_w0 < Ad ); 

% Frequency that results in the desired disturbance rejection 

(rad/s) 

w0_des = w0(ind(1)) ; 

% Build second-order high pass filter (i.e. derivative with low-pass 

filter) 

[hpf_tf] = d_hpf(zeta_f,wf); 

% Calculate ideal and practical loop transfer functions: L1 and L2 

[P,L1,L2] = d_calc_loop_tf(K,tau,kp,kd,hpf_tf); 

  

% ************ FIND REQUIRED SAMPLING TIME ************ 

% Spec: Desired phase margin (deg). 

PM_des = 60; 

% Calculate sampling rate needed to achieve desired phase margin. 

[fs] = d_lbs_pm_sampling(L2,PM_des); 

% Desired sampling time (s) 

Ts = 1e-4; 

% Add delay from sampling to loop transfer function. 

L3 = L2 * tf(1,1,'inputdelay',Ts); 

% ************ DISTURBANCE REJECTION  ************ 

% Spec #1: Center frequency of band-pass filter. 

wc = 2*pi*fd; 

% Spec #2: Gain of band-pass filter at wd (dB) 

A_bpf = 20; 

% Build second-order band-pass filter 

[bpf_tf,zeta_bpf] = d_bpf(A_bpf,wc); 

% Add band-pass filter to loop transfer function. 

L4 = bpf_tf * L3;  

% ************ OTHER PARAMETERS ************ 

%[zeta_f_r,wf_r,kp_theta,kd_theta,ki_theta,kp_seek,kd_seek,ki_seek,I

NT_MAX,            

%seek threshold,seek_limit,reset_enc,THETA_INT_DZ] = 

setup_lbs_other_param( ); 

% ************ DISPLAY RESULTS ************ 

disp(' '); 

disp(' ************************************************ '); 

fprintf('PID gains for w0 = %5.2f rad/s and tau = %4.2f s: \n', 

w0_des, p0) 

fprintf('   kp = %5.3f V/mm \n', kp) 

fprintf('   kd = %5.3f V.s/mm \n', kd) 

   fprintf('   ki = %5.3f V/mm/s \n', ki)  
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APPENDIX B 

 

MATLAB CODE FOR STATE FEEDBACK OBSERVER  

 

% Load the model parameters, encoder calibrations, and amp 

saturation. 

% [ K, tau, K_EC_D, K_EC_C, K_PSD, VMAX_D, VMAX_C ] = 

setup_lbs_configuration( ); format long 

%PL=tf([2200],[0.005 1 0]); 

[A,B,C,D]=tf2ss([2200],[0.005 1 0]) 

%size(sys) 

%A=[0 1;0 -200]; 

%B=[0;440000]; 

%C=[1 0]; 

%D=[0];  

%sys_ss=ss(A,B,C,D) 

VMAX_D=100;VMAX_C=100;  

ctrb(A,B) 

obsv(A,C) 

p=[-254.7+441.153i -254.7-441.153i]; 

K=acker(A,B,p) 

t=[-1273.5-2205.8i -1273.5+2205.8i] 

%p=[-254.7+441.153i -254.7-441.153i]; 

L=acker(A',C',t)'  
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APPENDIX C 

 

MATLAB CODE FOR ROBUST OBSERVER 

 

A=[-200 0;1 0]; 

B=[1;0]; 

C=[0 440000]; 

D=[0]; 

n=2; 

sys=ss(A,B,C,D); 

p=[-254.7+441.153i -254.7-441.153i]; 

Qn=2; 

Nn=0; 

Rn=0.0225; 

[kest,L,P]=kalman(sys,Qn,Rn,Nn) 

obsv(A,C); 

%L=lqe(A,eye(n),C,W,V); 

eig(A-(L*C)) 
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