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Abstract 

Haemophilus ducreyi is a gram negative, sexually transmitted bacterial pathogen. This strict 

human pathogen causes the genital ulcer disease chancroid, which results in the formation of 

deep, painful ulcers. Chancroid infection has also been associated with high transmission rates of 

the Human Immunodeficiency Virus. H. ducreyi virulence has been attributed, in part, to the 

extracellular virulence factors large supernatant protein A (LspA) and large supernatant protein 

B (LspB). Recently, H. ducreyi strains were assigned to two classes, Class I (CI) and Class II 

(CII). Strains were grouped based on common DNA sequences, expression of several known 

virulence factors, and differences in lipooligosaccharide production.  In 2007, four novel strains 

of H. ducreyi, BE3145, SB5755, SB5756, SB5757, were detected on the lower limbs of children 

visiting the island chain of Samoa.  

In this study, we examined lspA and lspB in these strains to determine whether the DNA 

sequences were more similar to those found in CI or CII strains. We hypothesized that the novel 

strains would contain lspA and lspB DNA sequences identical to those in CI strains. Therefore, 

Polymerase Chain Reaction was used to amplify lspA and lspB, and the PCR products were 

sequenced and compared to the CI parent strain, 35000HP and CII parent strain, HMC112. Both 

lspA and lspB were detected in all four novel strains. In addition, lspA was amplified in 

HMC112; while lspB could not be amplified in this strain. It was determined that SB5755, 

SB5757, and BE3145 contained lspA that were 100% identical to 35000HP, while SB5756 

possessed 99% identity. However, none of the lspA sequences were similar to HMC112.  

SB5755 and SB5756 contained lspB that were 100% identical to 35000HP, while SB5757 lspB 

was 99% identical to 35000HP. Interestingly, BE3415 showed very little identity to 35000HP. 

Based on these data, strains BE3145, SB5755, SB5756, SB5757 are more similar to CI strains. 
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CHAPTER 1 

Introduction 

1.1 Haemophilus ducreyi  

There are five classical venereal diseases that are responsible for genital ulcerations; 

gonorrhea, syphilis, lymphogranuloma venereum, donovanosis, and chancroid. These diseases 

have the ability to facilitate transmission of Human Immunodeficiency Virus (HIV), and are 

prevalent in many HIV endemic countries such as; Africa, Asia, and South America (Labandeira, 

Mock, Hansen, 2009). These diseases generate different variations of genital ulceration which 

appear as sores on the genitalia. Chancroid differs from other genital infections in that chancroid 

lesions are very deep ulcers that bleed easily and are very painful. 

The bacterium responsible for the causing chancroid ulcers is Haemophilus ducreyi, a 

gram negative cocobacillus (Sullivan, 1940). Several virulence factors have been associated with 

the development of chancroid.  These factors have various functions such as resistance to 

phagocytosis, resistance of killing by antimicrobial peptides, acquisition of nutrients from the 

host, survival in the presence of innate and adaptive immunity, and attachment to host tissue and 

proteins (Sullivan, 1940). 

A recent study by Ussher (2007) demonstrated the occurrence of novel H. ducreyi strains 

in the Western Pacific island of Samoa. The strains were isolated from young children located on 

non-genital areas of the body, specifically their lower limbs. These strains were contracted in an 

uncommon manner, leading to a series of investigations to better understand the characteristics 

of these strains.  

This study focused on two lipoprotein molecules, the large supernatant lipoprotein A 

(LspA) and the large supernatant lipoprotein B (LspB). Previous studies have shown that the 
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LspA and LspB molecules work together to contribute to the infectious mechanism of H. ducreyi 

(Labandeira, Mock, Hansen, 2009). LspA and LspB have been found to inhibit phagocytosis by 

immune cells in the host. 

1.1.1 Statement of Problem. Two major goals of infectious disease research are to detect 

and prevent the acquisition and spread of infectious organisms. Furthermore, the identification of 

specific factors that contribute to the development of disease may aid in the discovery of 

promising vaccines. The research presented in this study aims to determine whether novel strains 

of H. ducreyi possess virulence factors identical to those found in the Class I or Class II parent 

strains. In 2007, a novel acquisition of chancroid was detected on the non-genital skin of New 

Zealand children visiting the island chain of Samoa (Ussher, 2007). The causative agent of the 

disease was confirmed to be H. ducreyi via gram staining and colony isolation analysis. 

Investigations were conducted which ruled out the spread of H. ducryi to the children by sexual 

abuse or mal-treatment. Three bacteria isolates were cultured from the children and the 16S 

rDNA genes sequenced. To verify that these strains were indeed H. ducreyi, a DNA sequence 

comparison against known H. ducreyi strains was performed. All isolates were determined to 

possess a 16 S rDNA sequence that was 100% identical to the Class II H. ducreyi strain 33921 

(Ussher, 2007).   

1.1.2 Statement of Purpose and Hypothesis. So far, four novel strains have been 

isolated from the children whom visited Samoa and were available for investigation. Previous 

studies in our laboratory have determined that although Ussher (2007) reported strains SB5755, 

SB5756, SB5757, and BE3145 to possess a 16 S rDNA sequence 100% identical to Class II 

strain 33921, the DNA and predicted protein sequences of as many as five virulence-associated 

factors are most similar to those in Class I strain 35000 HP. The purpose of this study is to 
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further explore other known virulence associated factors in the novel strains. Our ultimate goal is 

to use this data to characterize the Samoa strains as Class I or Class II. Therefore, lspA and lspB 

were examined in all four novel strains. We hypothesized that the strains would contain lspA and 

lspB sequences most similar to the genes in Class I strains. The specific aims of the study were 

as follows:  

Specific Aim 1: To amplify lspA and lspB in the novel strains by polymerase chain reaction. 

Specific Aim 2: To determine the percent identity of lspA and lspB in the novel strains compared 

to H. ducreyi CI and II parent strains through DNA sequence comparison. 
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CHAPTER 2 

Literature Review 

2.1 History of Haemophilus ducreyi 

Chancroid was first distinguished from syphilis by French scientists Bassereau and 

Ricord in 1852. They established that syphilis infections resulted in the production of a hard 

chancre, while chanroid infections resulted in a soft chancre (Bassereau, 1852). They 

demonstrated that only the soft chancre infected patients possessed the ability to be re-infected at 

other skin sites by autoinoculation of purulent, pus containing, ulcer material (Albritton, 1989; 

Trees & Morse, 1995). The causative agent of these soft chancres was determined to be a 

bacterium, and not a virus like some sexually transmitted diseases such as the Human 

Immunodeficiency Virus. 

Scientists felt that it was imperative to understand what pathogen was capable of 

separating chancroid infections from other genital ulcer diseases. At the University of Naples, a 

scientist named Ducreyi studied the cause of the soft chancre through serial inoculations of 

patients with ulcers present on their genitalia. There was a common single microorganism in the 

ulcer exudates observed in and outside the neutrophils of each patient. The organisms were 

incapable of growing in vitro. Therefore, cutaneous inoculations were used to determine the 

infectious agent. 

A gram negative coccibacillus was isolated from the patients and termed Haemophilus 

ducreyi. The organism was named Haemophilus for its blood loving quality and ducreyi for the 

discovering scientist (Sullivan, 1940).  
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2.2 Haemophilus ducreyi Characteristics 
 

 Haemophilus species are small gram negative bacilli that can be found as members of 

the normal flora of the upper respiratory, gastrointestinal, and genital tracts of humans and 

animals (Maza, Pezzlo, Shigei & Peterson, 2004). Interestingly, H. ducreyi is the only 

Haemophilus species that is a strict human pathogen transmitted through sexual contact.  

Haemophilus species are difficult to detect in direct patient material, such as tissues and 

topical skin, due to its small size and faint staining. This species is a facultative anaerobe; which 

requires an atmosphere of 5% CO2 at 35οC for optimal growth. Most of the Haemophilus species 

require either an X factor provided by hemin and/or a V factor provided by NAD. The bacterium 

normally acquires these factors from the host given that they are unable to make these critical 

factors on their own. H. ducreyi is unlike any bacterium in its genus. H. ducreyi only requires an 

X factor for ideal growth in vitro, which is provided in the chocolate agar culture medium. When 

visualized by Gram stain, H. ducreyi arranges in a common “school of fish” pattern and appears 

as small pinpoint yellowish tinted colonies, considerably the smallest of its genus (Maza et al., 

2004). As a facultative anaerobe, H. ducreyi grows below the surface of the broth in tight small 

clumps in broth medium, unlike other Haemophilus species which grow less agglutinated and at 

higher altitudes in broth medium (Maza et al., 2004). 

2.3 Haemophilus ducreyi Clinical Progression 

H. ducreyi infection may result in the production of very painful ulcers on the skin. 

Studies to better understand the production of these ulcers have revealed that the bacillus 

bacterium is restricted mainly to human species and, so far, only found to be obtained through 

sexual transmission. Transmission of H. ducreyi, from human to human, initiates with a break in 

the integrity of the epithelium. Once H. ducreyi enters a break in the skin, the first signs of 
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pathological changes in the host cells can be observed. These changes consist of edematous and 

swollen epithelium cells within an infiltration of polymorphonuclear leukocytes (Sullivan, 1940). 

At this stage of infection small papules are able to be visibly seen on the skin in a narrow 

inflamed zone. This step is followed by the pustule formation stage that occurs days later. During 

this phase an abscess-pimple-like small raised inflamed area can be observed. This feature 

shortly ruptures and results in a restricted ulcer with ragged damaged edges and without 

indurations or hardening (Sullivan, 1940).  

2.4   Chancroid Clinical Progression and Treatment  

Human and animal clinical trials have revealed that chancroid ulcers, caused by  

H. ducreyi infection, develop through a serious of stages. Following exposure to H. ducreyi, the 

initial stage of infection lasts approximately 3-10 days. During this stage a pimple like abrasion 

appears on the genitalia which progresses into a papule. At the end of this period, within 1-2 

days, the obstruction on the genitalia progresses from a papule to a pustule. A pustule is a pus 

filled abrasion that resembles a pimple in its final stages before eruption. Soon after the 

development of the pustule, an ulcer forms which resembles a ruptured pimple with ragged edges 

(Bassereau, 1852; Sullivan, 1940).  

Patients suffering from chancroid infections can be treated for pain and the infection 

managed with antibiotics such as azithromycin and penicillin derivatives (Sullivan, 1940). 

However studies have shown that H. ducreyi is considered inherently resistant to both 

tetracyclines and penicillin (Plourde, 2002). Therefore, the recommended treatment for 

chancroid is azithromycin or ceftriaxone (Ussher, 2007).   

2.4.1 Studies of Haemophilus ducreyi in the human model.  Given that H. ducreyi is a 

strict human pathogen in nature, the development of a human model was an important step 
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towards enhancing the understanding of chancroid infection. Laboratory studies have been 

conducted to observe the infection period in humans through exposure of non-genital skin in 

areas such as the deltoid. In one study, this human inoculation model was conducted by infecting 

patients with H. ducreyi at multiple sites on the backs and arms, and the progressions of the 

bacterium in different doses were observed (Janowicz & Ofner, 2009). According to a study 

performed at Indiana University, “the most important determinant of pustule formation [was] 

gender” (Janowicz & Ofner, 2009). The study was designed to test differential human 

susceptibility to the bacterium, in an effort to contribute insight on immunity to the pathogen or 

developing vaccination strategies.  

2.5 Virulence-Associated Factors of Haemophilus ducreyi 

Chancroid is attributed to extracellular and secreted virulence factors which are 

responsible for the ability of the bacterium to evade the host immune response (Janowicz et al., 

2004). In several studies, the mechanisms that H. ducreyi has developed to avoid killing was 

investigated using macrophage cell line U-937 (Wood, 2001; Deng, Mock, Greenberg, van Oers 

& Hansen, 2008).  It was observed through these studies that in the event of phagocytosis, H. 

ducreyi managed to survive and resist killing by the immune cells. Some of the virulence factors 

determined to contribute in the evasion of phagocytic killing are outer membrane proteins, such 

as DsrA and NcaA; H. ducreyi toxins such as, HdCDT; and lipoproteins, such as large 

supernatant lipoprotein A and B. Lipoproteins are secreted extracellular virulence factors 

produced by H. ducreyi, consisting of a lipid and protein complex. lspA and lspB encode for 

lipoproteins, large supernatant lipoprotein A and large supernatant lipoprotein B. These virulence 

factors are responsible for the inhibition of phagocytic activity. In vitro, they are required to 

work together to cause virulence in the host (Labandeira, Mock & Hansen, 2009). 



10 
 

2.5.1 Haemophilus ducreyi large supernatant lipoprotein A (LspA). The large 

supernatant lipoprotein, LspA, is cytoxic to immune cells and protects H. ducreyi from 

phagocytosis in a dual partner secretion system, discovered by Dr. Eric Hansen (Deng et al., 

2008: Wood, 2001). The proteins LspA1 and LspA2 make up the phagocytic inhibitory factor 

that prohibits macrophages’ cellular responsibility to the host (Deng et al., 2008). The lspA is 

486 nucleotide base pairs in size (Figure 1.1) and has a predicted protein size of 161 kDa. Aside 

from the two-party system of LspA1 and LspA2, LspA must also work in conjunction with LspB 

to create full virulence in the human and animal models of chancroid (Labandeira, Mock & 

Hansen, 2009). lspA is located significantly further upstream in the genome than lspB and the 

genes are controlled by different regulatory facts. 

 

 
 
Figure 1.1.  lspA Location in the 35000HP Strain (GeneBank) 

 

2.5.2 Haemophilus ducreyi large supernatant lipoprotein B (LspB). The large 

supernatant lipoprotein, LspB, is also cytoxic to immune cells and protects H. ducreyi from 

phagocytosis in a dual partner secretion system. LspB was discovered by Dr. Eric Hansen (Deng 

et al., 2008: Wood, 2001). lspB is located on the same operon as lspA; however it has its on 

regulatory control factor. Like LspA, this large supernatant lipoprotein is also secreated and 

assists in resistance to phagocytosis. However, LspB does not function when not in association 

with LspA. There is not much known about lspB, therefore there are ongoing studies to 

understand its nature and character (Labandeira, Mock, Hansen, 2009). lspB is 1770 nucleotide 

base pairs in size (Figure 1.2) and has a predicted protein of 589 amino acids.  
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Figure 1.2.  lspB Location in the 35000HP Strain (GeneBank) 
 

2.6 Haemophilus ducreyi Class Divisions  

H. ducreyi strains are classified according to differences in nucleotide and protein 

sequences of several virulence-associated factors (White, Leduc, Olsen, Jeter, Harris & Elkins, 

2005). Strains have been classified into two categories, Class I (CI) and Class II (CII). Thus far, 

most genes encoding virulence-associated factors located in CI               

H. ducreyi strains differ from genes in CII strains mainly at the N- terminus of the nucleotide 

sequences. The C- terminus is highly conserved in both classes, possibly due to a lack of 

selective pressure imposed upon the gene. Thus far, the only strain to have its entire genome 

sequenced and published is the common laboratory strain 35000HP.  35000HP is considered the 

CI “parent strain”. Thus far, several CII strains have been identified; however their entire 

genome sequences have not been determined and published.  Some of the CII strains include CIP 

542 ATCC, DMC111, and HMC112, a CII parent strain (White et al., 2005). 

2.7 Novel Haemophilus ducreyi Strains  

 Recently, studies have been formed around unknown strains of H. ducreyi that have detected 

in the Western Pacific. Thus far, there has been no published data of these strains being 

sequenced or characterized. These strains originated specifically from the Samoan islands, and 

were isolated from children that did not obtain the bacterium through sexual transmission 

(Ussher, 2007). Novel strains of H. ducreyi were detected on the non-genital lower limbs of 
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children visiting the island chain of Samoa. Due to the unusual acquisition of chancroid in these 

young children, we felt that it was important to characterize these diverse strains. There were 

four strains isolated from the youth for investigative purposes; SB5755, SB5756, SB5756, and 

BE3145. 

There were three case studies performed with the children to treat and resolve the 

ulcerations. The first and second patients were treated with flucloxacillin and had ineffective 

results. They were later referred to a hospital that treated them with zithromax antibiotics 

resulting in a resolution of the ulcerations. This lead to a rapid treatment of the third patient with 

zithromax initially, and which resulted in positive recovery (Ussher, 2007). Previous studies 

showed that penicillin worked as an effective drug against          H. ducreyi; however this was not 

the case for the novel strains. 

This study was proposed to determine whether Samoan strains BE3145, SB5755, SB5756, 

and SB5757 from the children contained DNA of virulence factors lspA and lspB similar to CI or 

CII strains of H. ducreyi. The process of determining the class of these strains consisted of 

sequencing and comparing the DNA of the four strains with known virulence genes from the 

35000HP parent strain. If the strains were determined to be Class I, they would be expected to 

have complementary sequences to the Class I genes. Five Class II strains have been identified 

thus far. If the sequences of the four novel strains were not significantly similar to the Class I 

genes, then further sequencing could be done with the Class II genes for comparison. With this 

information, a possible role for virulence and transmission of the novel strains may be 

deciphered. 

 It has been further hypothesized that the Samoan strains are neither Class I nor II, but that 

they belong to a novel class. The purpose of this research is to determine the characteristics of 
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the Samoan strains BE3145, SB5755, SB5756, and SB5757 and the virulence of their gene 

products. Ultimately the goal of this research is to assist in the development of a preventative 

drug for chancroid caused by H. ducreyi. This work will help to determine if the virulence-

associated factors lspA and lspB are present in the four Samoa Strains. This work will also 

establish which class the genes belong to in each strain. 
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CHAPTER 3  

Materials and Methods 

 
3.1 Evaluation of lspA in Haemophilus ducreyi Strains in 35000HP, SB5755, SB5756, 

SB5757, BE3145, and HMC112  

 In an effort to determine whether lspA was present in four novel strains of H. ducreyi, 

Polymerase Chain Reaction (PCR) was used. This method would allow lspA to be amplified in 

these strains, followed by visualization through agarose gel electrophoresis. The H. ducreyi 

strains used in this research are listed in Table 1. 

Table 1 

Haemophilus ducreyi Experimental Strains  

Strain Name Strain Class Location/ Year of 
Isolation 

Source 
(Reference) 

35000HP Class I Winnipeg (1975) S. Spinola 

HMC112 Class II CDC (1984) P. Totten (Totten and Stamm, 
1994) 

SB5755 Unknown Samoa Island, South 
Pacific (2007) 

Ussher (Ussher,2007) 

SB5756 Unknown Samoa Island, South 
Pacific (2007) 

Ussher (Ussher,2007) 

SB5757 Unknown Samoa Island, South 
Pacific (2007) 

Ussher (Ussher,2007) 

BE3145 Unknown Samoa Island, South 
Pacific (2007) 

Ussher (Ussher,2007) 

 

 3.1.1 Amplification of lspA by PCR. Primers were designed to lspA based on the     H. 

ducreyi 35000HP lspA sequence (accession number AE017143). Primers were intended to flank 

the ends of lspA in order to amplify and sequence the entire gene. The additional DNA for the 

primers was located 30 nucleotides up stream and downstream of lspA. The viability of the 

primers was verified using the free, online program Amplifx 
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(http://www.softpedia.com/get/Others/Home-Education/AmplifX.shtml). The forward and 

reverse primer sequences, 5’-cgg tgg tta att tta ata ata agg tac att- 3’, and 5’-tcc tct tgg att agc taa 

taa aat att cat- 3’, respectively, were submitted to Eurofins MWG Operon 

(http://www.operon.com/products/custom-oligos/order-custom-oligos.aspx?id=custom).  

 To prepare H. ducreyi samples for PCR, the bacteria were streaked for isolation on chocolate 

agar plates (CAP). The plates contained 1X GGC (0.1% glucose, 0.01% glutamine, and 0.026% 

cysteine) (Totten and Stamm, 1994), and 5% fetal bovine serum (Fetal Plex, Gemini Scientific, 

West Sacramento, CA). CI strains were incubated for 18-24 hours at 34.5οC in 5% CO2, and for 

36-48 hours for CII strains. The bacteria was transferred to H. ducreyi freeze media (3g 

Trypticase, 25ml glycerol, and 75ml of H2O) with 10% glycerol and stored at -80οC. 

 Initially a 30 cycle PCR reaction to amplify lspA in strains 35000HP, SB5755, SB5756, 

SB5757, and BE3145 was performed. PCR working stocks consisting of lspA primers (lspA 

forward and reverse primer [100pmol each]), 35000HP bacteria sample, HMC112 bacteria 

sample, SB5755 bacteria sample, SB5756 bacteria sample, SB5757 bacteria sample, and BE3145 

bacteria sample were created. The reactions contained LspAF (lspA forward primer) and LspAR 

(lspA reverse primer) at 100pmol each, Master Mix (1X Go-taq DNA polymerase, dNTPs 

[200μM each], 1.5 mM MgCl2; Promega, Madison, WI), H2O and whole H. ducreyi cells from 

isolation as previously stated. The following conditions were used: one cycle of 95°C for 5 

minutes; one denaturing cycles at 95°C for 30 seconds; one annealing cycle at 50°C for 30 

seconds; one elongation cycle at 72°C for 2 minutes; followed by a further extension cycle at 

72°C for 7 minutes; ending in a holding cycle of completion at 4°C for infinity. Electrophoresis 

was performed on the resulting products at the end of the PCR cycle. Unfortunately, lspA was 

not amplified from the Samoa strains under these conditions. 
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 Since original attempts to amplify lspA in the H. ducreyi novel strains were unsuccessful, a 

gradient PCR was performed. To perform gradient PCR, annealing temperatures that were 2°C – 

5°C higher than the predicted annealing temperature for the primer with the lowest annealing 

temperature were used. The bacteria samples were prepared as described above. 3 sets of 5 PCR 

gradient tubes were constructed as listed above, to account for each temperature reaction. The 

conditions were set as follows for 40 cycles; jumpstart temperature at 94οC for 2 minutes, 

denaturing temperature at 94οC for 1 minute, annealing temperatures for 2 minutes: 1 set in row 

E - 55.1οC, 1 set in row F - 53.7οC, and 1 set in row H - 52.0οC, elongation temperature at 72οC 

for 2 minutes, further extension at 72οC for 8 minutes, and held at 4οC for infinity at the 

completion of the protocol. Electrophoresis yielded DNA fragments that were 536-546bp for 

lspA from strains 35000HP, SB5755, SB5756, SB5757, and BE3145. 

Sample reactions for HMC112 were prepared and a PCR gradient was performed as 

stated above. The conditions were set as previously stated and electrophoresis yielded  DNA 

fragment of 536-546bp for lspA in the HMC112 strain  

3.1.2 Sequence analysis of lspA in Haemophilus ducreyi strains. Following PCR 

amplification of lspA, DNA sequencing was performed. To prepare the sequencing samples the 

PCR product was purified using a Qiagen Purification Kit (Qiagen, Valencia, CA). Sequencing 

of the purified amplified DNA would allow comparison of lspA to CI and CII parent strain 

sequences. Sequencing primer samples were created (2pmol/μl) from original primers, forward 

and reverse separately. Sequencing reactions were created with purified amplified DNA product 

(40ng/μl), sequencing primer (forward or reverse), and nuclease free water. The sequencing 

reactions were cataloged as follows: SB5755 forward sequence  Tube AE5835, SB5755 

reverse sequence  Tube AE5826, SB5756 forward sequence  Tube AE5836, SB5756 reverse 
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sequence  Tube AE5828, SB5757 forward sequence  Tube AE5837, SB5757 reverse 

sequence  Tube AE5830, BE3145 forward sequence  Tube AE5838, BE3145 reverse 

sequence  Tube AE5834, HMC112-lspA forward sequence  Tube AE5865, HMC112-lspA 

reverse sequence  Tube AE5873. These reactions were submitted to Eurofins MWG Operon 

(http://www.operon.com/products/sequencing/) for sequence determination. 

The chromatograph from the sequencing results were examined through FinchTV 

(www.finchtv.org). Through this program nucleotide sequences can be displayed and edited as 

determined by the user. In this study, the sequences were manually edited by examining the 

sequenced product and replacing the “n” values with the appropriate nucleotide that was 

determined based on the colored peaks which corresponded to A, T, G, or C. The sequences for 

each Samoa strain were submitted to NCBI BLAST and compared to the nucleotide blast results 

of H. ducreyi 35000HP to the results of the Samoa strains. They were then compared against the 

sequence results of HMC112. 

3.2 Evaluation of lspB in Haemophilus ducreyi Strains in 35000HP, SB5755, SB5756, 

SB5757, BE3145 

 In an effort to determine whether lspB was present in four novel strains of H. ducreyi, PCR 

was once again used. This method would allow lspB to be displayed in the strains through 

electrophoresis. The same H. ducreyi strains listed in Table 1 above were used. 

3.2.1 Amplification of lspB by PCR. Primers were designed to lspB based on the H. 

ducreyi 35000HP lspB sequence (accession number AE017143). Primers were intended to flank 

the edges of lspB in prospect of amplifying and sequencing the entire gene. The additional DNA 

for the primers were located 30 nucleotides up stream and downstream of lspB. The viability of 

the primers was verified using the free, online program Amplifx 
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(http://www.softpedia.com/get/Others/Home-Education/AmplifX.shtml). The forward and 

reverse primer sequences, 5’-ttg ttc atg gag cac ttt aac aaa tat gaa- 3’, and 5’-gat ttt ttt aaa ttt gta 

att ttg gtt aaa- 3’, respectively, were submitted to Eurofins MWG Operon 

(http://www.operon.com/products/custom-oligos/order-custom-oligos.aspx?id=custom).  

 The PCR bacteria samples that were created previously for the Samoa strains, 35000HP, and 

HMC112 were used. lspB PCR primer was additionally created. Previous knowledge from lspA 

prompted an immediate PCR gradient reaction attempt for lspB. To perform gradient PCR, 

annealing temperatures that were 2°C – 5°C higher than the predicted annealing temperature for 

the primer with the lowest annealing temperature were used. The bacteria samples were prepared 

as described above, with the exception of alternative primer usage (lspB PCR primer). Three sets 

of 5 PCR gradient tubes were constructed as listed above, to account for each temperature 

reaction. The conditions were set as previously stated for 40 cycles. Electrophoresis yield 1820-

1830bp DNA fragments for lspB from strains 35000HP, SB5755, SB5756, SB5757, and BE3145. 

There was no amplified product of lspB for HMC112. 

3.2.2 Sequence analysis of lspB in Haemophilus ducreyi strains. Following PCR 

amplification of lspB, DNA sequencing was performed. To prepare the sequencing samples the 

PCR product was purified using a Qiagen Purification Kit (Qiagen, Valencia, CA). Sequencing 

of the purified amplified DNA would allow comparison of lspB to CI sequences. Sequencing 

primer samples were created (2pmol/μl) from original lspB primers, forward and reverse 

separately. Sequencing reactions were created with purified amplified DNA product (60ng/μl), 

sequencing primer (forward or reverse), and nuclease free water. The sequencing reactions were 

cataloged as follows: SB5755 forward sequence  Tube AE5845, SB5755 reverse sequence  

Tube AE5846, SB5756 forward sequence  Tube AE5849, SB5756 reverse sequence  Tube 
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AE5850, SB5757 forward sequence  Tube AE5851, SB5757 reverse sequence  Tube 

AE5852, BE3145 forward sequence  Tube AE5853, BE3145 reverse sequence  Tube 

AE5854. These reactions were submitted to Eurofins MWG Operon 

(http://www.operon.com/products/sequencing/) for sequence determination. 

The chromatograph from the sequencing results were examined through FinchTV 

(www.finchtv.org). Through this program nucleotide sequences editing occurred. This included 

going through the sequenced product and replacing the “n” values with its appropriate nucleotide 

that its’ colored peaked corresponded to. The sequences for each Samoa strain were submitted to 

NCBI BLAST and compared to the nucleotide blast results of H. ducreyi 35000HP to the results 

of the Samoa strains.  
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CHAPTER 4 

 Results 

Previous studies have shown that lspA and lspB of H. ducreyi is present in the 35000HP 

CI strain (Vakevainen, Greenberg, Hansen, 2003). However, there have not been many reported 

cases of either gene in any CII strains. Furthermore, lspA and lspB has never been identified in 

the novel Samoa strains. In this study, to characterize strains SB5755, SB5756, SB5757, and 

BE3145 as CI or CII, the nucleotide sequences of lspA and lspB were examined. 

4.1 Amplification of lspA in Haemophilus ducreyi Strains 35000HP, SB5755, SB5756, 

SB5757, BE3145, HMC112  

Previous studies by Hansen et al. (2003) demonstrated that lspA is prominent virulence 

factor in known H. ducreyi strains. Investigation of lspA in the novel Samoa strains included 

successful amplification resulting in 536-546bp fragments. The optimum temperatures for 

analyzing lspA in the Samoa strains were 52.0οC for SB5755, SB5756, SB5757, and BE3145 

(Figure 2.1 a, b, and c). The optimal temperatures for analyzing lspA in the Class II HMC112 

were 55.1οC. (Figure 2.2). Following purification of the PCR product, the concentrations of the 

products were collected as follows: approximately 39ng/μl for SB5755, 150ng/μl for SB5756, 

125ng/μl for SB5757, 62ng/μl for BE3145, and 28.5ng/μl for HMC112. 40ng/μl sequence 

reactions were created for each sample in their own catalog vials.   

 4.2 Sequence Analysis of lspA in Haemophilus ducreyi Strains 

The lspA sequences, retrieved from Eurofins MWG Operon, in the SB5755, SB5757, and 

BE3145 strain were most similar to the Class I, 35000HP parent strain holding a 99% confidence 

level of similarity. The SB5756 had a 95% identity comparison to 35000HP however; it was the 

only Samoa strain that varied in nucleotide sequence to 35000HP (Figure 2.3). 
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a. Annealing 
temp 52.0οC 

b. Annealing 
temp 53.7οC 

c. Annealing 
temp 55.1οC 

Figure 2.1.  lspA in the Four Samoa Strains at Various PCR Annealing Temperatures 

Sequence analysis shows at approximately two nucleotide parings there is a switch in 

complementary nucleotides between the SB5756 and 35000HP, indicated by the yellow color 

within the body of the sequence data. The beginning and the end of the data also is displayed in 

yellow, attributed to where the primers actually began annealing and elongating. 
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Figure 2.2.  lspA in the 35000HP strain, the Four Samoa Strains, and the HMC112 Strain 

None of the Samoa strains held sequences identical to HMC112. There were many purine and 

pyrimidine switches in the HMC112 sequence when compared to the Samoa strains, indicated by 

the blue colored nucleotide (Figure 2.4). 

4.3 Amplification of lspB in Haemophilus ducreyi Strains 35000HP, SB5755, SB5756, 

SB5757, BE3145, HMC112  

Previous studies by Hansen et al. (2009) demonstrated that lspB is not only a prominent 

virulence factor in known H. ducreyi strains, but is required on the same operon as lspA to emit 

full virulence. Investigation of lspB in the novel Samoa strains included successful amplification 

resulting in 1820-1830bp fragments. The optimal temperatures for analyzing lspB in the Samoa 

strains were 52.0οC for SB5755. The optimum temperatures for analyzing lspB in SB5756, 

SB5757, and BE3145 were 55.1οC (Figure 2.5 a, b, and c). Following purification of the PCR 

product, the concentrations of the products were collected as follows: approximately 84ng/μl for 
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SB5755, 59ng/μl for SB5756, 37ng/μl for SB5757, and 17ng/μl for BE3145. 60ng/μl sequence 

reactions were created for each sample in their own catalog vials. 

 

Figure 2.3.  lspA Consensus Sequence between 35000HP and the Samoa Strains 
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4.4 Sequence Analysis of lspB in Haemophilus ducreyi Strains 
  
 The lspB sequences, retrieved from Eurofins MWG Operon, in the SB5755, and SB5756 

strains were most similar to the Class I, 35000HP parent strain holding a 99% confidence level 

of similarity. The lspB sequences in the SB5757 strain were 97% identical to the 35000HP strain,  

 

Figure 2.4.  lspA Consensus Sequences between HMC112 and the Samoa Strains 
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a. Annealing 
temp 52.0οC 

b. Annealing 
temp 53.7οC 
 

 

 

c. Annealing 
temp 55.1οC 
 

Figure 2.5.  lspB in the Four Samoa Strains at Various PCR Annealing Temperatures 

35000HP strain was the BE3145 strain, showing that even though there were some instances of 

like sequences between the two it was not directly identical to the CI strain (Figure 2.6). 
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Figure 2.6.  lspB Consensus Sequence between 35000HP and the Samoa Strains 

4.5 Phylogeny Analysis 
 
 In order to prove an identity comparison of lspA and lspB in the novel strains, the Class I 

parent strain, and the Class II parent Strain a phylogenic tree was constructed. This assisted in 
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determining which strain had like sequences to either parent strain. According to the analysis 

SB5755, SB5757, and BE3145 contained like nucleotide sequences of lspA identical to those in 

35000HP (Figure 2.7). The lspA sequences in SB5756 was not as identical to 35000HP as its 

peers, however it was not identical to HMC112 either (Figure 2.8). 

The lspB sequences in SB5756, SB5757 were identical to those in 35000HP. SB5755 

contained a slight variation in nucleotide identity than the previous two strains, however it 

remained closely comparable to 35000HP. BE3145 was the least identical to 35000HP and we 

were unable to compare it to HMC112 due to failed attempts during PCR amplification (Figure 

2.9). 

         

 

Figure 2.7 lspA Phylogenic Tree Sequence Comparison with 35000HP and the Samoa Strains 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 

Figure 2.8.  lspA Phylogenic Tree Sequence Comparison with 35000HP, the Samoa Strains, and 

HMC112 Strain 
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Figure 2.9.  lspB Phylogenic Tree Sequence Comparison with 35000HP and the Samoa Strains 
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CHAPTER 5 

Discussion 

Haemophilus ducreyi is a gram negative, sexually transmitted bacterial pathogen. This 

strict human pathogen causes the genital ulcer disease chancroid, which results in the formation 

of deep, painful ulcers. This study examined the presence of two virulence factors, LspA and 

LspB, in four novel strains of H. ducreyi. Initial experimentation led us to investigate the 

possibility of the Samoa strains needing specialized temperature conditions for the annealing of 

primers. We determined that these strains were very temperature sensitive, and detection of 

virulence factors by PCR was challenging. Therefore, we decided to manipulate the annealing 

temperature via a PCR gradient of reactions to accommodate this observation. The optimal 

temperature for detecting lspA in the Samoa strains was determined to be 52.0οC. The gene was 

able to be successfully amplified and identified within the strains at this temperature. The 

amplification of lspA was the only gene able to be amplified in the Class II strains. This could be 

due to lspB requiring more specific conditions in order to be detected in Class II strains. The 

amplification of lspA was not temperature specific for HMC112. Analysis via FinchTV proved 

that there were abundant DNA sequence similarities in the SB5755, SB5757, and BE3145 to the 

35000HP parent strain. Majority of the sequenced product was identical to the parent strain, after 

blasting the Samoa strain against 35000HP (Table1). More of the reverse sequences were able to 

be identified in the parent strain than the forward. This displays the orientation in which the gene 

runs in the strains. There were no similarities between any of the Samoa strains and HMC112 

strains containing lspA. 

The optimal temperature for detecting lspB in the Samoa strains was determined to be 

55.1οC. lspB was able to be successfully amplified and identified within the strains at this 
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temperature. lspB produced strong amplified DNA possibly due to its large size. However, 

amplification of lspB in the CII HMC112 strain was unsuccessful. This could be due to the fact 

that CII strains need special requirements of cofactors to amplify genes at times, for example 

magnesium concentration variations. Analysis via FinchTV proved that all four Samoa strains 

contained a portion of similar sequences to the parent strain. Due to the inability to obtain any 

sequence data for lspB in the Class II strains, this leads us to further investigate the remaining 

sequences of the gene. It is possible that this gene contains a hypothesized novel class sequence. 

Even though the lspB Samoa sequences were approximately 97% identical to the parent strain 

(Table 2), according to the BLAST data, lspB was not entirely covered by the outside flanking 

primers for the Samoa strains. Inner primers must be made to receive full sequencing of the 

entire gene.  

 A phylogenic tree was composed to observe the overall sequence comparison and family 

relation between 35000HP, the Samoa strains, and the HMC112 strain. According to the analysis 

of lspA and the parent strain all Samoa strains except SB5756 were similar to the Parent strain. 

SB5756 was considered an outlier. When compared to HMC112 none of the Samoa strains were 

similar. BE3145 and SB5757 contained lspA sequences most similar to the parent strain. SB5755 

contained lspA sequences less similar to the parent strain in comparison to its peers, however not 

outstandingly different. SB5756 was displayed as an outlier to the parent strain and but did not 

resemble sequences close to HMC112 either. Even though all of the Samoa strains appeared to 

posses actual lspB sequences similar to the parent strain, BE3145 was displayed as an outlier in 

comparison to its associates in regards to the parent strain. SB5755 was seen as vaguely diverse 

to the parent strain, leaving SB5756 and SB5757 the most closely similar strains to the Parent 

strains containing lspB sequences. 
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Table 2 

Identity Comparison of Samoa Strains Containing lspA and lspB 
 
 

Strain Gene Identity  

SB5755 lspA 100% to CI 35000HP 

lspB 100% to CI 35000HP 

SB5756 lspA 99% to CI 35000HP 

lspB 100% to CI 35000HP 

SB5757 lspA 100% to CI 35000HP 

lspB 99% to CI 35000HP 

BE3145 lspA 100% to CI 35000HP 
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