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Abstract
As the demand for direct petroleum substitutes increases, biorefineries are poised to become
centers for conversion of biomass into fuels, energy, and biomaterials. A distributed model
offers reduced transportation, tailored process technology to available feedstock, and increased
local resilience. Oilseeds are capable of producing a wide variety of useful products additive to
food, feed, and fuel needs. Biodiesel manufacturing technology lends itself to smaller-scale
distributed facilities able to process diverse feedstocks and meet demand of critical diesel fuel for
basic municipal services, safety, sanitation, infrastructure repair, and food production.
Integrating biodiesel refining facilities as tenants of eco-industrial parks presents a novel
approach for synergistic energy and material exchanges whereby environmental and economic
metrics can be significantly improved upon compared to stand alone models.
This research is based on the Catawba County NC EcoComplex and the oilseed crushing and
biodiesel processing facilities (capacity-433 tons biodiesel per year) located within. Technical
and environmental analyses of the biorefinery components as well as agronomic and economic
models are presented. The life cycle assessment for the two optimal biodiesel feedstocks,
soybeans and used cooking oil, resulted in fossil energy ratios of 7.19 and 12.1 with carbon
intensity values of 12.51 gCO»-eq/MJ and 7.93 gCO,-eq/MJ, respectively within the industrial
ecology system. Economic modeling resulted in a biodiesel conversion cost of $1.43 per liter of
fuel produced with used cooking oil, requiring a subsidy of $0.58 per liter to reach the break-
even point. As subsidies continue significant fluctuation, metrics other than operating costs are

required to justify small-scale biofuel projects.



CHAPTER 1
Introduction

Fossil fuels have given rise to modern industry, industrialized nations, and are the driver
of today’s society characterized by mobility, high material consumption, and high quality of life.
They account for 82% of total energy use in the United States and 86% of global energy use
(EIA, 2013; IEA, 2011). This resource powering the modern age is inherently non-renewable
and subject to increasing scarcity and depleting reserves exacerbated by insatiable demand. The
extraction and use of fossil fuels have resulted in the unprecedented and unevenly distributed
accumulation of wealth and technological advancement. This achievement has compromised
political, societal, economic systems, and the biosphere through pollution and emissions to air,
water, and soil that threaten the planet’s ability to provide essential ecosystem services for our
very own species. This makes Amory Lovins (2011), a leader in sustainable energy, ponder,
“What if we could make energy do our work without working our undoing?” (p. 232).
Rethinking energy and navigating the impending transition to a new energy matrix that includes
smart utilization, efficiency, and renewables to dramatically reduce fossil fuel usage is one of the
concurrent unparalleled challenges of the 21st century. Adapting to a changing global climate
and providing resources for a growing human population are inextricably linked with energy use,
availability, and demand.

Of the energy sectors, transportation is particularly reliant on fossil fuels whereby 95% of
the US demand is met by petroleum based liquid fuels (EIA, 2013). Petroleum derived liquids
exemplify desirable fuel attributes such as high energy density and ease of transport and storage.
Virtually all infrastructure related to the end use of liquid fuels is based on three petroleum

derived fuels: gasoline, kerosene, and diesel. Therefore any competitive alternative must have



the ability to “drop-in” to current infrastructure. According to the Energy Information
Administration, in 2013 the United States consumed 18.7 million barrels per day of petroleum
fuels and 0.95 MMbd of renewable biofuels (0.87 ethanol and 0.083 biodiesel). Additionally,
petroleum is the platform upon which the polymer chemical industry was founded and
responsible for the plastics industry, the third largest industry in the United States with over
16,200 manufacturing facilities employing over 800,000 workers (Plastics-Industry-Trade-
Association, 2014). Global plastics consumption is on the order of 170 million tons annually
with economic value of $560 billion (Biron, 2007). The myriad of commaodity products used in
everyday life, from bottles to packaging to product moldings, makes one realize the ubiquitous
yet precious value of this resource.

Biomass is the only piece of the renewables matrix that can directly replace petroleum by
producing energy and biobased products, such as bioplastics, and polymers. Biomass is
currently responsible for over half of U.S. renewable energy consumption, and represents 2.1%
of the total energy supply (EIA, 2013). The emerging biobased economy, whose three pillars
include bioenergy, biofuels, and biomaterials, is poised for substantial growth. Worldwide
consumption of biofuels in the transportation sector is forecasted to increase from a current level
of 6% of the liquid fuels market to roughly 8% by 2022 with a corresponding production
increase from 122 to 193 billion liters per year of drop-in fuels (Shepard & Gartner, 2014).

Interest in biofuels, first piqued by the oil embargos of the 1970s, then propelled by
policy and mandates in the name of energy security, environmental benefit, and economic
development, has evolved into a significant player in the energy sector. The past decade has
been a time of unprecedented funding and investment in research and development in the larger

biomass energy arena. Principal areas have been second generation feedstocks and technologies



that avoid the contentious issues of land-use change and competition with food. Advancements
in the associated biomaterials sector have also been developed during this period, built primarily
upon polylactic acid polymers from conversion of corn starch.

Trends in the transportation sector suggest that light duty personal transportation will
move towards increased fuel economy and electrification, while heavy-duty engines, the
workhorses of the industrial economy, will continue to rely on liquid fuels (IEA, 2013). Though
questions regarding long-term viability of the internal combustion engine persist, renewable
diesel fuel represents a promising bridge technology. Petroleum diesel is the energetic backbone
of industrial agriculture, transport, and heavy-duty applications. Diesel powered equipment is
fundamental to food production, construction of the built environment, infrastructure
maintenance, and transportation of goods in both short and long haul via truck, rail, and ship.
Securing this energy source is paramount for any nation’s security.

The amount of “critical” diesel fuel (i.e. fuel needs for basic municipal services,
sanitation, safety vehicles, infrastructure repair, and food production) can be achieved through
biorenewable feedstocks (Knothe, Krahl, & Gerpen, 2005). The development of second
generation technologies will ultimately increase the pathways to renewable diesel from cellulosic
materials, algae and genetically modified bacteria and yeast that convert sucrose to a diesel
compatible hydrocarbon (Lipp, 2008). Significant market penetration for these emerging
technologies remains in a nebulous time frame; however, the National Biodiesel Board has stated
its ambitious goal of supplying 10% of the US diesel fuel mix with biodiesel by 2022 (NBB,

2013a). Feedstocks to provide this fuel are expected to become increasingly diverse.



1.1 Proposed Solution: Distributed Biorefineries

As the demand for direct petroleum substitutes increases, biorefineries are poised to
become distributed centers for conversion of biomass into fuels, energy, and bioproducts. A
distributed model offers many advantages such as reducing transportation cost of raw materials,
tailoring process technology to available feedstock, and supplying local demand. This
decentralized approach is contrary to concentrated production, such as conventional petroleum
refineries, which offer incredible economies of scale but are costly to build, maintain, and offer
little resilience in a rapidly transforming energy economy. Biodiesel manufacturing in particular
lends itself to smaller-scale distributed facilities. Its technical process is simpler, reactions take
place at atmospheric pressures with low quality thermal energy input, and it has the ability to
handle diverse feedstocks including common wastes such as used cooking oils and trap grease.
Integrating biodiesel refining facilities as tenants of eco-industrial parks (EIPs) presents a novel
approach to realizing the potential for synergistic energy and material flows whereby
environmental and economic metrics can be optimized and significantly improved upon
compared to stand alone models.

Oilseed biorefining, integrated farm to fuel systems, and the biodiesel production chain
exemplify symbiotic relationships within an EIP. Oilseed crops are grown on non-traditional
agronomic buffer lands irrigated with re-use water and fertilizer produced on-site, then extracted
to produce vegetable oil and protein meal, a valuable feed commodity. Vegetable oil, raw, semi-
refined, or recycled as used cooking oil, is transesterified to produce biodiesel and glycerin while
utilizing non-fossil based electricity and waste process heat from a co-generation plant.
Biodiesel is consumed in heavy duty engines while the crude glycerin is refined into fertilizers,

technical grade glycerol, or burned in micro-turbines for power generation. Waste is minimized



and the process is additive to food, feed, and energy systems while mitigating carbon emissions.
Producing biofuels is manufacturing that creates jobs throughout the supply chain from plant
operators to farmers. Municipal landfill sites offer many advantages for co-locating biorefineries
including: good infrastructure (roads, power, and water), fuel demand for heavy mobile
equipment, and biogas production that can be developed as an economical energy source for
process heat.

Though biodiesel manufacturing has become established and economically viable as an
independent entity, it has not been sufficiently developed in regard to producing high-value low-
volume products in addition to low-value high-volume fuels. Additionally, biodiesel
manufacturing has not been proven at a smaller-scale (less than 500,000 liters per year) or
incorporated into eco-industrial parks to lower operating costs and gain environmental
advantage. This is in part due to the nature of the endeavor. There are still a relatively small
number of biodiesel facilities, and an even smaller number of eco-industrial parks. Finally,
economics as the preeminent metric of evaluation may likely preclude the concept of regional
biorefineries from taking root.

1.2 Study Site: The NC EcoComplex

The EcoComplex and Resource Recovery Facility of Catawba County, North Carolina is
developing an eco-industrial park that synergistically co-locates private and public partners to
employ industrial symbiosis by combining industry, waste management, energy production, and
university research. The EcoComplex is a 326 hectare site centered on the Blackburn Landfill
with 2.4 million metric tons of waste in place that serves the 156,000 county residents, receiving
484 tons/day of MSW and 80 tons of construction wastes per day. Anchoring the EIP are three

GE-Jenbacher co-generation units each with 1IMWe capacity that convert landfill gas into



electricity and heat. Existing components include a municipal solid waste (MSW) landfill, a
construction and demolition (C&D) landfill, a recycling center, a landfill gas fueled electrical
generation facility, the Catawba County-Appalachian State University Biodiesel Research,
Development, and Production Facility with capacity of 490,000 liters per year, a 4-ton per day
Crop Processing and Oilseed Crush Facility, a high tech dimensional lumber facility, and a pallet
recycling facility.

The biodiesel facility and crush facility are collectively considered the oilseed biorefinery
system. The biorefinery was conceptualized as an integral component of the EIP for three
principal reasons: 1) utilize buffer lands to grow biodiesel feedstock, 2) use waste thermal input
from the co-gen facility for process heat, and 3) provide fuel for the landfill operations.

1.3 Dissertation Objectives

The overarching goal of this dissertation research is quantify, analyze, and interpret the
components of oilseed biorefining using tools and methods offered by the multidisciplinary
approach of industrial ecology. The context for conducting this research is the backdrop of
industrial ecology exchanges, primarily heat and material flows through the integrated system.
Economic systems (capital, investment, and business studies) as well as policy, engineering, and
legal elements will be presented to develop a holistic systems approach as they pertain to the
core disciplines of Industrial Ecology. The following questions address the technical,
environmental, and economic feasibility of the proposed system.

1. What are the technical bottlenecks and their pathways to optimization within biodiesel

production from a mixed feedstock?



2. What improvements are made in Life Cycle Assessment (LCA) through this integrated
model compared to conventional means (quantified in GHG emissions, Net Energy Ratio,
and Fossil Energy Ratio)?
3. After developing an economic model for biomass utilization at the EcoComplex
Biodiesel facility, what are the key variables, and their pathways to optimization based on
economic sensitivity analysis?
1.4 Organization of the Dissertation

This dissertation consists of eight chapters. Chapter two is the review of literature
presenting background of key components of the interdisciplinary research area. Chapter three
introduces the Catawba County NC EcoComplex, the study site, source of data, and inspiration
for this dissertation. Background and a historical perspective are presented as well as future
endeavors for this developing EIP. Chapter four outlines the material and energy balance of the
oilseed biorefinery within the given system boundary. A life cycle inventory (LCI) is created for
the biorefinery system. These flows are analyzed for technical bottlenecks and incongruities of
the system. Key recommendations are listed for improvements of the system. Chapter five
presents the life cycle assessment (LCA) of the system defined both in ter