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Abstract 

Various modeling approaches have been developed and applied to predict the heat 

and mass transfer phenomena within buildings. In consideration of the complexity 

of the phenomena observed, the results expected, the parameters investigated, and 

the degree of accuracy required, these modeling approaches can be categorized into 

three groups: Single-zone (and multi-zone) models, Zonal models, and 

Computational Fluid Dynamics (CFD) models.  Zonal models, which combine the 

simplicity of single/multi-zone models with the comprehensiveness of CFD models, 

become better substitutes to predict detailed  indoor thermal and airflow behaviors. 

Based on a geometrical partition of a room into a number of subzones, zonal models 

can provide more accurate and detailed results than single/multi-zone models and 

use less computer resources than CFD models. In this work, firstly, a 

comprehensive building thermal modeling approach has been developed by 

integrating the zonal model, Pressurized zOnal Model with the Air diffuser (POMA), 

with a building multi-zone thermal model, in order to improve the prediction 

aptitudes of the model used in building environment , in terms of accuracy and 

comprehensiveness. Secondly, this developed integrated thermal model has been 

used for various building systems and applications, such as the estimation of 

building load and/or energy saving, the determination of the appropriate set point 

and position of room thermostat, and the prediction of indoor thermal comfort 

levels. In these applications, two systems have been considered, the UnderFloor Air 

Distribution (UFAD) system and the general heating system. Distinct advantages of 
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this developed model over the conventional single/multi-zone thermal modeling 

approach have been demonstrated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



4 

 

 

 

CHAPTER 1 

Introduction 

A building is a complex system where different heat and mass transfer phenomena take 

place. Energy conservation in a building cannot be fulfilled without an accurate predictive tool. 

Although conventional single-zone (one-zone) and multi-zone models do a good job for building 

load calculation and energy modeling, with the fast development of computer techniques, 

building designers are not satisfied with the relatively low accuracy and the limited information 

from the single-zone or multi-zone modeling approach. Also, these models are overwhelmed by 

the detailed data of Computational Fluid Dynamics (CFD) models. CFD models, as a well-

developed technique, have been applied in many areas such as aerospace, industry 

manufacturing, and architecture. Lots of commercial CFD software packages have been 

developed to meet the need of these applications, such as Phoenics (2010), Star-CD (2005), 

COMSOL (2010), FLUENT (2001), and FLOVENT (2011). Zonal models, as another substitute 

for single-zone models in building load calculations and energy modeling, are not as popular and 

well-known as CFD models. In fact, these models not only can solve many complex problems 

like CFD models do, but require less computer resources. Besides, more detailed and accurate 

information can be obtained with zonal models than the single-zone modeling approach. Hence, 

more researchers are interested in using these models for several case studies in different 

building applications. Unfortunately, there is no available commercial software based on the 

zonal modeling approach, and the research on applying zonal models into building load and 

energy prediction is also limited. Therefore, optimization and improvement of zonal models for a 

wide number of application and commercialization are some of the goals of this promising model 

(Megri, 2007).  

http://www.cfd-online.com/Wiki/Architecture
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Typically, there are three types of models used in building environment for building load 

calculation, energy modeling, and indoor air quality analysis. They are single-zone (one-zone) or 

multi-zone models, zonal models, and CFD models. Different models have different 

assumptions, principals, solvers, and results.  Basically, it is difficult to distinguish which model 

is the best among these three because of the various requirements of modeling and simulations, 

such as the degree of required accuracy, the speed of calculations, the definition of problems, and 

the results expected.  However, general advantages and disadvantages of these three models are 

not difficult to generalize. 

       

 

1.1 Single-zone or Multi-zone Modeling Approach (Figure 1.1) 

This method usually regards an entire structure or system as a single zone, in which the 

parameters are perfectly homogenous, such as the pressure, temperature, and density. This 

structure or system usually is an entire house or building for single-zone models or is a room in a 

building for multi-zone models. Many software, systems and techniques for building load 

calculations and energy simulations are based on this single-zone or multi-zone modeling 

approach (Megri, 2007), such as Type 19 and Type 56 of TRNSYS (2000), eQUEST (2010), 

EnergyPlus (2011), COMIS (Feustel, 1998), CONTAMW (Dols & Walton, 2002), and ESP-r 

(2002). In fact, the advantages of this modeling approach are obvious, such as the fast 

calculations and the simple definition of problems. Therefore, up to now, this modeling approach 

Figure 1.1 Single-zone model  Figure 1.2 CFD model  Figure 1.3 Zonal model  
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is still considered as an interesting research topic in the building engineering. In 1993, Diasty et 

al. developed a multi-zone model for air humidity behavior predictions in a multi-room building. 

Haghighat and Li (2004) performed a comprehensive comparison and validation of these three 

multi-zone models, COMIS, CONTAM, and ESP-r. An analytical computer tool was developed 

by Majali et al. in 2005 to simulate a transient periodic heat transfer analysis of non-air-

conditioned multi-zone buildings. After the validation of this tool, a comparison of the results 

between a single zone model and a multi-zone model was conducted, and more accurate results 

were obtained when the multi-zone model was used.  In 2006, Yang et al. analyzed the nonlinear 

dynamic behaviors of airflow and natural ventilation in multi-zone buildings. They found that the 

multi-zone model gave good prediction results in a steady state, while failed in unsteady state 

situations. Grundwald and Kikkawa, in 2011, applied a new multi-zone simulation model 

prototype to investigate heat, air, moisture, and pollutants transport in a library building. They 

demonstrated the enhanced ability of this new multi-zone model to predict and deal with mold 

risk issues.  Generally, most of the research and publications, regarding room or building thermal 

behaviors and heat transfer, are about the single-zone or multi-zone modeling approach, if the 

other detailed models, such as zonal models or CFD models, are not specified. Although this 

single-zone (multi-zone) approach has its benefits, its disadvantages cannot be ignored, such as 

poor accuracy, limited results, and a narrow scope of applications (Megri & Haghighat, 2007). 

Hence, sooner or later, this simplified method will be substituted by other detailed modeling 

approaches such as zonal and CFD models. 

1.2 CFD Modeling Approach (Figure 1.2) 

Unlike single-zone or multi-zone models, this approach subdivides a structure or system 

into thousands of cells, and in each cell, momentum and energy equations are applied.  
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Therefore, adequate results and information are provided by this modeling approach. Also, the 

accuracy of the results is enhanced using this approach compared to single-zone or multi-zone 

models. Because of these reasons, this approach has been one of the most popular methods used 

in buildings, especially for predicting airflow and temperature distribution within buildings, and 

sometimes for building energy modeling. Many researchers have been dedicating themselves in 

this research area. In 2002, Zhai et al. proposed several efficient mathematical approaches  to 

integrate energy simulations with CFD models in order to avoid the errors created by the 

separate applications of energy simulation and CFD. Later on, based on this research, Zhai and 

Chen (2003) found that a unique solution of this coupled energy simulation and CFD simulation 

exists, using theoretical analysis and numerical experimentation. Then, they published the 

advantages of the integration of building energy simulation and CFD programs over the 

separated energy simulation and CFD applications. Among the advantages, this integrated model 

produced more accurate results. The results of this integrated building simulation were compared 

with experimental data, and good agreements were achieved (Zhai & Chen, 2005). The results of 

the sensitivity analysis and the application guides of this integrated building energy and CFD 

simulation program were displayed, as well, by the same authors in 2006 (Zhai & Chen, 2006). 

In their works, they investigated if a coupled program is needed and which coupling approach 

needs to be used, according to the building and environmental characteristics and the solution 

accuracy requirement (Zhai & Chen, 2006).  Hiyama et al. (2005) coupled computational fluid 

dynamics (CFD) program with flow network model, to give a more accurate prediction 

considering the building characteristics. Natural ventilation was used at the design stage and the 

performance of this natural ventilation was investigated using the integrated CFD and flow 

network model analysis. In the same year, Tan and Glicksman (2005) integrated a multi-zone 
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model with CFD simulation to enhance the prediction capability for natural ventilation cases in 

buildings. A new modeling approach to optimize building energy efficiency in a tropical climate 

was developed by Bastide et al. (2006). They proposed a term named the well-ventilated 

percentage of a living space, which allows a time analysis of the air motion behavior of the 

building in its environment with the assistance of the CFD model. This approach is useful for 

designers to design the rooms according to their use and environment. One year later, Zhang et 

al. (2007) applied the computational fluid dynamics model, FLUENT, for building energy 

calculations in order to improve the prediction quality and accuracy of the building energy 

consumption. Results of energy consumption were compared with the measured data, and good 

agreements were achieved. Axley and Chung (2007) integrated a multi-zone model with a CFD 

model. The mathematical problems regarding this integration were proposed and analyzed. In 

2010, Pan et al. coupled CFD into the energy simulation method, EnergyPlus, to predict atrium 

building cooling load. The results of this coupled model were compared with those from the 

simplified method. Suggestions about the usage of appropriate simulation methods based on 

different types of atrium buildings were proposed. More recently, Hiyama and Kato, in 2011, 

developed a calculation method, in which the three-dimensional CFD results were integrated into 

building energy simulation program to achieve more accurate time-series analysis of building 

energy than conventional energy simulation programs, which are based on the assumption of 

well-mixed room space. In their works, they introduced a term called advection-diffusion 

response factor, which was calculated using a CFD approach and then integrated into the energy 

simulation program. However, despite the richness of the results in terms of detailed information 

regarding the flow and temperature fields within a building structure, the huge calculation work 

makes CFD techniques unlike to be used in the applications of system designs under industrial 
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requirements of accuracy, in which rapid computational time is a more significant issue than 

perfectly accurate results.  Furthermore, CFD models suffer due to a need for significant problem 

definition by the user. Thus, in building environment, CFD models are difficult to apply to 

situations involving a number of rooms over long periods of time (Clarke et al., 1995).  

1.3 Zonal Modeling Approach (Figure 1.3) 

This method is considered as an intermediate approach between single-zone (multi-zone) 

and CFD models because it requires fewer zone divisions than CFD models and provides enough 

detailed results compared to single-zone or multi-zone models. It combines the simplicity of 

single zone (multi-zone) models with the comprehensiveness of CFD models, and becomes a 

better substitute to predict detailed thermal and flow behaviors in buildings. Besides, in each 

zone, simplified mass and energy balance equations are utilized, which significantly reduces the 

computational time. This approach allows defining the physical parameters accurately within 

each zone in order to provide a tool that could be applied to a detailed investigation of thermal 

comfort, indoor air quality, and energy analysis in building systems. The zonal modeling 

approach is a promising way to predict air movement in a room with respect to comfort 

conditions and the gradient of temperature because these models require extremely little 

computer time and could easily be integrated with multi-zone thermal models (Jiru & Haghighat, 

2004; Megri et al., 2005; Megri & Haghighat, 2007). 

In this dissertation, one of the popular zonal models, Pressurized zOnal Model with the 

Air diffuser (POMA) (Lin et al., 1999; Haghighat et al., 2001; Megri & Yu, 2010; Yu & Megri, 

2011; Yu, 2012; Megri et al., 2011) has been introduced and utilized to develop a comprehensive 

numerical building thermal model by integrating POMA with a multi-zone thermal model. The 

application of this integrated thermal model have been also accomplished in building 
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environment considering distinct systems, such as the general heating system and UnderFloor 

Air Distribution (UFAD) system, in terms of building load/energy, thermostat set point, as well 

as indoor thermal comfort. The objective of this research is not only to quantify the advantages 

of the zonal modeling approach over single-zone or multi-zone models, but also to provide a 

simple but accurate simulation tool for building applications. 

In particular, the objectives of this dissertation are as follows, 

 Investigate the feasibility of the development of a comprehensive building thermal 

model by integrating a zonal model into a multi-zone thermal model; 

 Evaluate and verify the developed integrated thermal model using CFD approach in 

terms of indoor air thermal behavior; 

 Demonstrate the applications of this integrated thermal model for different air 

conditioning systems; 

 Provide direct comparisons between the zonal and single-zone (multi-zone) 

predictions in terms of building energy/load, indoor thermal comfort, and so on; 

 Demonstrate the improvement of the predictability of building load and energy 

simulations, when a zonal model is applied. 
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CHAPTER 2 

Literature Review of Zonal Model Development  

Zonal model approach has existed for more than four decades, since the first zonal model 

scheme was developed during the 1970s (Lebrun, 1970) from experimental observations realized 

in a test cell. The development of zonal model was very slow and only in 1980, Laret (1980) 

proposed a new scheme, slightly different from the configuration developed by Lebrun. This 

model followed the same general flow with assumptions that allowed the analytical 

determination of the air temperature within the volume. Later, Ngendakumana (1988) applied a 

five-zone scheme to determine the temperature distribution within the same volume. In his 

scheme, he suggested seven airflow paths between the five zones (total of 12 unknowns). Inard 

and Buty (1991) authenticated Lebrun‘s model using an extensive experimental study measuring 

the distribution of temperature within a controlled environment, a Minibat cell (Megri & 

Haghighat, 2007).  

Later on, Bouia (1993) initiated the development of a new generation of zonal models. 

He solved the pressure fields to predict the airflow and thermal behaviors in large indoor spaces. 

Togari et al. in 1993 developed a temperature-based zonal model without the pressure drop and 

power law, i.e., the BLOCK model. This model uses correlations on the basis of vertical 

temperature gradient in combination with special laws for jets and plumes. The temperature-

based zonal model has less unknowns than the pressure based one, and simpler in calculaltions. 

In 1995, Wurtz developed a new zonal model where mass and energy balances were applied in 

each subzone, while the mass flow rates at the interfaces were calculated using the power-

pressure law. Musy (1999) showed that it was possible to establish zonal models automatically 

that have the ability to predict the air movement, temperature distribution, and indoor air quality 
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parameters not only in a specific zone, but in the entire building. Haghighat et al. (2001) put 

forth a zonal model named Pressurized zOnal Model with the Air diffuser (POMA) in the 

framework of Annex 35 of the International Energy Agency (IEA). They provided a 

comprehensive background and validation of this model, which is based on both mass and 

energy conservations and, as a simplified numerical model, uses pressure-driven power laws to 

estimate the mass flow rate between two subzones or cells instead of momentum equations in 

CFD models. POMA is able to predict the airflow patterns and thermal distributions within a 

space. Jet characteristic equations were also introduced in the model in order to generalize its 

application to mechanically ventilated rooms or buildings. Axley (2001) developed an alternative 

formulation to model airflow resistance in zonal models, known as surface-drag flow relations 

for zonal modeling. He pointed out that ―the power-law relation is physically inconsistent and 

grossly overestimates viscous losses in room airflow‖. An alternative approach based on a 

surface-drag viscous loss mechanism more accurately reflected the physical mechanisms of the 

airflow in natural convection situations. A modified version of COMIS (Conjunction Of 

Multizone Infiltration Specialists) (Allard et al., 1990; Megri, 1993) was proposed in order to 

simulate  airflow, temperature (Ren & Stewart, 2003), and concentration (Stewart & Ren, 2003) 

distributions inside buildings. The authors applied zonal model processes to the COMIS 

computer program to produce COMIS with subzones (CWSZ) (Stewart & Ren, 2006). In 2010, 

Gao et al. improved the performance of the temperature-based zonal model (BLOCK model) that 

was proposed by Togari et al., by the determination of a heat transfer factor between air layers. 

Norrefeldt et al. (2012) developed a new zonal model, named VEPZO, to estimate the airflow 

pattern and temperature distributin in a confined space. In this model, a derived equation 
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considering the forces acting on a flow path was used to simulate the airflow between two zones 

instead of using the power law model. 

Many efforts have also been made in order to imporve the prediction of zonal models 

using CFD or other models. Mora (2003) and Mora et al. (2003a, 2003b) developed an approach, 

in which the zonal model uses the airflow structure from CFD simulation results in the same 

volume. Bellivier (2004) defined the conditions, under which a CFD model can be simplified 

with enlarging meshes to reach the zonal model‘s level. Griffith and Chen (2003) simplified the 

Navier-stocks equations with the assumption of inviscid flow (Euler equations), reduced the grid 

cell number, and then proposed a monentum-zonal model to predict zone airflow and temprature 

distributons.  

Over the years, zonal models were  coupled with many systems to simulate the vairous  

thermal behaviors of a room or building, such as hydronic radiator system (or baseboard heating 

system) (Howarth, 1985; Lebrun & Ngendakumana, 1987; Inard & Molle, 1989; Inard & Buty, 

1991; Musy et al., 2001; During, 1994); electric convector system (During, 1994; Inard et al., 

1997a & 1997b; Musy et al., 2001); radiant panel system (During, 1994); heating ceiling system 

(During, 1994); floor heating system (Inard & Buty, 1991; During, 1994); heat pump system 

(Gschwind et al., 1995); and displacement ventilation system (Mundt, 1996; Rees, 1998; Rees & 

Haves, 1999). 

Up to now, zonal models have been still applied in various research areas. In 2003, 

Riederer and Dexter demonstrated the effects of room model and the position of the sensor on 

the performance of Variable Air Volume (VAV) control systems. In their works, a zonal model 

was applied, and they concluded that ―the room model and the position of the sensor affect the 

performance in different ways depending on the diffuser type and the operating mode. And there 
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are only small differences in terms of thermal comfort but significant different in terms of overall 

energy consumption‖. Huang and Haghighat (2005) investigated contaminant distributions with 

the assist of zonal model. Bozonnet et al. (2005) solved some indoor and outdoor design 

problems using a zonal modeling approach. In 2006b, Wurtz et al. integrated a zonal model with 

a building material moisture transfer model to predict the transent-state indoor humidity 

distribution within a building. Blandin et al. (2007) displayed the application of a pressure zonal 

model approach in a stratified solar tank simulation. They investigated the potential and 

feasibility of the pressure zonal model utilized for water instead of air and mentioned that the 

flow coefficient in power law model is 10
-4

 (          ) for water. Later, Jiru and Haghighat 

(2008) applied a zonal modeling approach for estimating the airflow and temperature in 

ventilated double skin facades (DSF) in a transient state. A 3-D zonal model was utilized by 

Daoud et al. (2008) to calculate the transient-state refrigeration loads in ice rinks. In 2009, 

Boukhris et al. used a zonal model (Zonal AERial model) to assess the winter thermal comfort in 

a partitioned building. Moore and Ouzts (2012) established a model to simulate thermally 

stratified atria by using zonal modeling approach. MacCarty (2013) applied the concept of zonal 

model in the household biomass cookstoves design. Other recent applications of zonal models 

include Gastelurrutia et al., 2011; Megri & Yu, 2011; Yu & Megri, 2011; Yu, 2012; Song et al., 

2013; Steskens et al., 2013; Beiza et al., 2014; Megri & Yu, 2014. 

Therefore, this dissertation not only demonstrates the continuous development of zonal 

models, but also provides some useful references for the sake of approaching the final goals, 

which are the wide application and commercialization of zonal models. 
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CHAPTER 3 

Description of the Zonal Model POMA and its Validation  

Pressurized zOnal Model with the Air diffuser (POMA) is based on the fundamental 

conservation equations (both mass and energy balances) and the power law model to predict 

temperature and airflow distributions within a room. In this work, POMA program was rewritten 

in Matlab (2011) and then integrated with a multi-zone thermal model.  The necessary 

mathematical description of this integrated model will be shown in Chapter 4. 

3.1 Power Law Model 

Zonal models divide a room into several zones, and each zone has a homogenous 

temperature. The Power Law Model (PLM) (Equation 3.1) plays a key role in the zonal model 

POMA. PLM defines the mass flow rate from one zone to another as, 

 ̇            [kg/s or lbm/s].          (3.1) 

In fact, this power law model could also be written as, 

          [m/s or ft/s] because   ̇       [kg/s or lbm/s],         (3.2) 

where   (kg/m
3
 or lbm/ft

3
)
 
is the fluid density; A (m

2
 or ft

2
) is the cross-sectional area between 

two zones;    (Pa or lbf/ft
2
) is the pressure difference between two zones; k 

(                                ) is the flow coefficient, which is assumed to be 0.83 

           or 18.85                    for all zones; n is called flow exponent, which is 0.5; 

and   (m/s or ft/s) is cross-sectional velocity between two zones. 

From the equation 3.2, the power law model is a simplified version of the momentum 

equation, since it uses a constant flow coefficient k to correlate the velocity with the pressure 

term together; while, in the momentum equation, the correlation between velocity and pressure 
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becomes a complex differential equation. It is the main reason that makes the zonal models, in 

particular POMA, faster than CFD models in terms of computational time.  

In POMA, pressures in each zone are assumed to be horizontally homogenous and 

vertically affected only by the gravity, and the pressure losses due to frictions are only 

considered on the cross-sectional boundary between two zones. Thus, to determine the    that is 

in the equation 3.1, the pressure differentials between two zones have to be computed differently. 

The horizontal pressure difference    (Figure 3.1) in the power law model can be defined as, 

         (          )  (          ) 

                             [Pa or lbf/ft
2
],      (3.3) 

where       (Pa or lbf/ft
2
) is the reference pressure at the bottom of zone 1;       (Pa or lbf/ft

2
) 

is the reference pressure at the bottom of zone 2;    (Pa or lbf/ft
2
) is the pressure in zone 1 at a 

certain height level  ;    (Pa or lbf/ft
2
) is the pressure in zone 2 at a certain height level  ;   (m 

or ft) is the height level from the bottom of the zone;    (kg/m
3
 or lbm/ft

3
) is the density of the 

fluid in zone 1;    (kg/m
3
 or lbm/ft

3
) is the density of the fluid in zone 2;    (Pa or lbf/ft

2
) is the 

pressure difference at the same height level;       (Pa or lbf/ft
2
) is the reference pressure 

difference, which equals to            ;    (kg/m
3
 or lbm/ft

3
) is the fluid density difference 

between the zone 1 and zone 2, which equals to      ;   (m/s² or ft/s
2
) is the gravitational 

acceleration; and    (m or ft) is the height of neutral plane at which height, the pressure 

difference between two zones is equal to zero, which is defined as, 

   
     

   
   [m or ft];           (3.4) 

H (m or ft) is the height of the zone (Figure 3.1). 

 

http://en.wikipedia.org/wiki/Gravitational_acceleration
http://en.wikipedia.org/wiki/Gravitational_acceleration
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The vertical pressure difference    (Figure 3.2) used in the power law model can be 

defined as, 

                     [Pa or lbf/ft
2
],       (3.5) 

where       (Pa or lbf/ft
2
) is the reference pressure at the 

bottom of zone 1;       (Pa or lbf/ft
2
) is the reference 

pressure at the bottom of zone 2;    (Pa or lbf/ft
2
) is the 

pressure difference at the cross-section boundary between 

two zones;    (kg/m
3
 or lbm/ft

3
) is the density of the fluid 

in zone 2; H (m or ft) is the height of the zone; and   (m/s² 

or ft/s
2
) is the gravitational acceleration. 

 

Then the horizontal mass flow rate   ̇ (kg/s) is defined as follows, 

 

where  ,   and     are the same as those of the equations 3.1 and 3.3;  ̇     (kg/s or lbm/s) is 

the mass flow rate from the height zero to   ;  ̇    
 (kg/s or lbm/s) is the mass flow rate from 

H  

𝑃𝑟𝑒𝑓  

Zone 1 

Zone 1 Zone 2 

H 

𝑃𝑟𝑒𝑓  𝑃𝑟𝑒𝑓  

𝑃  𝑃  

𝑃𝑟𝑒𝑓  𝜌 𝑔𝐻 𝑃𝑟𝑒𝑓  𝜌 𝑔𝐻 

z  

�̇�  �̇�  𝑧𝑛 + �̇�𝑧𝑛 𝐻
  𝑘𝐴𝜌  𝑃 𝑛𝑑𝑧

𝑧𝑛

 
+  𝑘𝐴𝜌  𝑃 𝑛𝑑𝑧

𝐻

𝑧𝑛
 ,  [kg/s or lbm/s]  (3.6) Zone 2 

𝑃𝑟𝑒𝑓  

𝑃𝑟𝑒𝑓  

Zone 2 

Figure 3.1 Two horizontal zones 

Figure 3.2 Two vertical zones 

http://en.wikipedia.org/wiki/Gravitational_acceleration
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(i-1,j) (i+1,j) 

(i,j-1) 

mx(i-1,j) 

Δx 

Δy 
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  y 

my(i,j) 

my(i,j-1) 

mx(i,j) 

      

 

(i,j) 

(i,j+1) 

(i-1,j) (i+1,j) 

(i,j-1) 

qx(i-1,j) 

Δx 

Δy 

  x 

  y 

qy(i,j) 

qy(i,j-1) 

qx(i,j) 

the height    to H; and   (kg/m
3
 or lbm/ft

3
) is the fluid density of the zone from which the flow 

comes and can be calculated using ideal gas law. 

The vertical mass flow rate   ̇  (kg/s or lbm/s) is calculated from the equation 3.1 

directly. 

3.2 Mass and Energy Conservations 

Conservations of mass and energy are the main equations used by POMA,  which are 

defined below. 

Mass balance equation 

    

  
 ∑ ̇  +  ̇      +  ̇      [kg/s or lbm/s],  (3.7) 

where     (kg or lbm) is the fluid mass of zone ij;  ̇   

(kg/s or lbm/s) is the rate of mass from surrounding zone 

to zone ij, and is calculated using the power law model; 

 ̇       (kg/s or lbm/s) is the rate of mass supplied as a 

source in the zone, i.e. the airflow from a diffuser; and 

 ̇     (kg/s or lbm/s) is the rate of a mass removed from 

the zone. 

Energy balance equation 

    

  
 ∑  ̇  +  ̇      +  ̇      [W or Btu/hr],    (3.8) 

where     (J or Btu) is the heat energy in zone ij;  ̇   (W or 

Btu/hr) is the rate of heat energy from surrounding zones to zone ij, which is defined as  ̇   

 ̇         , cp (J/(kg 
o
C) or Btu/(lbm 

o
F)) is the specific heat;      (

o
C or 

o
F) is the temperature 

difference between two zones;  ̇   (kg/s or lbm/s) is the rate of mass from surrounding zone to 

𝑃𝑟𝑒𝑓  

𝑃𝑟𝑒𝑓  

Figure 3.3 Zones for 

mass flow balance 

Figure 3.4 Zones for energy 

balance 
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zone ij;  ̇       (W or Btu/hr) is the rate of heat energy supplied by a source in the zone; and 

 ̇     (W or Btu/hr) is the rate of heat energy removed from the zone.  

3.3 Boundary Conditions 

The boundary conditions can be represented by the 

convective heat transfer (Figure 3.5) that occurs between 

the wall surfaces and nearby fluid flow, which is defined as, 

   ̇ ,              ,            [W or Btu/hr],     (3.9) 

where hi (W/m
2 

°C or Btu/hr ft
2
 °F) is the convective heat 

transfer coefficient of surface i; Ai (m
2
 or ft

2
) is the cross-

sectional area between the zone and the boundary surface i; Ti,surface (
o
C or 

o
F) is the boundary 

temperature of the surface i; Tij (
o
C or 

o
F) is the nearby zone (i,j) flow temperature; and  ̇ ,     

(W or Btu/hr) is the rate of heat energy between the nearby zone (i,j) and the boundary surface i. 

3.4 Nonlinear Equation Solver  

In POMA, a room is mathematically subdivided into n zones. The total number of 

unknowns (represented using X) is 2n, i.e. the temperatures and pressures of these n zones. There 

is the same number of independent equations as the unknowns based on mass and energy balance 

equations of all the zones. The Newton global convergence method (Press et al., 2007) was used 

to solve this set of nonlinear conservation equations (Equations 3.7 and 3.8). This method needs 

reasonable initial trial guesses (temperatures and pressures of all the zones) and then calculates 

the final results simultaneously using an iteration approach. In this method, these unknowns will 

be initialized at the beginning and then substituted into these corresponding balance equations to 

compute residuals. After that, a matrix A representing the Jacobian matrix will be formed based 

on these unknowns and corresponding residuals. The linear matrix system Ax = b then can be 

Figure 3.5 Boundary convective 

heat transfer 
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solved by using the LU decomposition method (Watkins, 2010), and the results, x, represent the 

correction values for these unknowns. Consequently, a new set of unknowns, X + x, will be used 

for the next iteration. The brief description of this approach is shown below, and detailed 

descriptions can be found from Press et al., 2007.  

If the conservation equations are represented using F(X) with the unknowns X, then 

                 (3.10) 

      +            (3.11) 

                   (3.12) 

where x is the correction values of the unknowns for each iteration step ; Xnew  is the updated 

solutions for the next iteration step; and J represents the Jacobian matrix. The program converges 

when the Max residual   of all the zones is less than a very small value, as defined by the user 

(let say 1.0×10
-3

) i.e.                          . Figure 3.6 describes the computational 

process of the zonal model POMA.  
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3.5 Zonal Model Validation of Steady-State Natural Convection Cases (Haghighat et al., 

2001) 

The zonal model POMA had been validated by Haghighat et al. in 2001. Steady-state 

results of two natural convection cases of the zonal model POMA (6 × 1 × 10 zones) were 

compared with the experimental data that were collected in the MINIBAT test cell (Inard & Buty, 

1991). The MINIBAT test cell (Figure 3.7), located in CETHIL (Centre de Thermique de l‘INSA 

de Lyon) with the dimensions of L (3.1m or 10.2ft) × W (3.1m or 10.2ft) × H (2.5m or 8.2ft), 

was specially designed to measure temperature distributions in a controlled environment. 

Measured inside surface temperatures of this test cell (the necessary boundary conditions for 

POMA) for those two natural convection cases are listed in the table 3.1.  

ε=Max(Residuals)  

<1.0×10
-3

? 

Input boundary conditions, geometry of 

the room, and initialize the unknowns, X. 

Substitute these unknowns into the zonal 

model to compute the corresponding 

residuals 

Output the results 

Stop 

Yes 

No 

Form the Jacobian Matrix 

A, and solve the linear 

matrix system Ax = b using 

LU decomposition. 

Start 

Use the new set of 

unknowns, X + x, for 

the next iteration 

Figure 3.6 Flow chart of the zonal model POMA 
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Table 3.1 Measured surface temperatures [
o
C(

o
F)] of two natural convection cases   

  South North East West Ceiling  Floor 

Case 1 6.0 (42.8) 13.9 (57.0) 14.1 (57.4) 14.1 (57.4) 13.5 (56.3) 11.8 (53.2) 

Case 2 11.2 (52.2) 23.8 (74.8) 23.5 (74.3) 23.7 (74.7) 42.1(107.8) 21.1 (70.0) 

 

In these two cases, temperature stratifications were created by using a relatively low 

temperature on the south surface for the case 1 and high temperature on the ceiling surface for 

the case 2 in order to investigate the prediction ability of POMA in both cooling and heating 

applications. 

Since the temperature boundary conditions of the east and west surfaces are close (Table 

3.1), just one zone was applied in the east-west direction in POMA validations. 10 zones in the 

floor-ceiling direction were utilized because of the relatively large temperature difference and the 

effects of buoyancy and gravity. 

Figure 3.7 MINIBAT test cell (Haghighat et al., 2001) 
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Figure 3.8 and 3.9 show the comparisons of temperature distributions between the 

experimental data and the POMA result, respectively, for both the cases 1 and 2. From above 

comparisons (Case 1 and 2), good agreements are observed between the results of POMA and 

the experimentation due to the quite similar patterns of these two temperature distributions, 

which demonstrates the ability and potential of POMA to predict thermal behaviors of a room.   

POMA  Experiment 

Experiment POMA  

Figure 3.8 Temperature distributions of Case 1 

(Haghighat et al., 2001) 

Figure 3.9 Temperature distributions of Case 2 

(Haghighat et al., 2001) 
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CHAPTER 4 

Development of an Integrated Zonal / Multi-zone Thermal Model in a Building 

Environment 

Heating, Ventilating, and Air Conditioning (HVAC) systems are different in terms of 

cost, comfort, and performance, depending on the weather conditions, the envelope performance, 

and the fuel used. Each system is unique given that it interacts differently in each single room or 

building and depends on many factors, such as the system itself, the locations of diffusers and 

thermostats, the indoor design conditions, the outdoor weather conditions, and the control 

schemes associated with the HVAC system. Similarly, a building energy prediction approach is 

unique and associated with HVAC systems used, building envelop characteristics, and weather 

conditions. Although a single-zone (multi-zone) model has its own advantages, like simple and 

fast computations for design purposes, the accuracy of this model is questionable. The 

assumption of a uniform temperature in a room or building, obviously, reduces the accuracy of 

the final results; moreover, a single-zone (multi-zone) model, as a general thermal calculation 

method, could not differentiate various building thermal behaviors according to different HVAC 

systems, locations of diffusers and thermostats, inside design temperatures, and control schemes. 

Therefore, in this chapter, a comprehensive integrated thermal model has been developed by the 

integration of the zonal model POMA into a building multi-zone thermal model. This integrated 

thermal model is not only able to accurately predict detailed indoor thermal behaviors like the 

zonal model does, but also to provide a new simulation tool in the estimations and analysis of 

building load and energy consumption. In this chapter, the mathematical description of the multi-

zone thermal model has been demonstrated. In addition, the integration approach of this thermal 

model with the zonal model POMA has been introduced.  
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4.1 Description of the Multi-zone Thermal Model 

To describe the multi-zone thermal model, a one-room residential house is considered 

(Figure 4.1).  In these descriptions, three important energy balance equations are demonstrated. 

These balance equations include the room air heat balance equation, the room interior surface 

heat balance equation, and the room exterior surface heat balance equation. 

4.1.1 Heat energy balance of the room air (ASHRAE Fundamentals, 2005). In this 

room (Figure 4.1), the air temperature is affected by several factors, such as the heat transfer 

from the room surfaces ( ̇     ), the ventilation heat energy ( ̇     ), the infiltration ( ̇    ), and 

the internal heat source/sink ( ̇      ).  Therefore, the heat balance equation of the room air is 

defined as, 

 
     

  
   ̇     +  ̇    +  ̇     +  ̇        [W or Btu/hr].         (4.1) 

 

 

In the equation 4.1,  
     

  
 is the room air thermal storage effect, which is equal to zero 

for a steady-state situation, where      (
o
C or 

o
F) is the room air temperature; C (J/

o
C or Btu/°F) 

is the room air thermal capacitance; and t (second) is time.  ̇      (W or Btu/hr) is the convective 

and radiative heat transfer energy between the room surfaces and the room air, which can be 

solved using  ̇       
 

     
            , called the star network approach (Seem, 1987). In this 

Room 
�̇�𝒔𝒖𝒓𝒇  

�̇�𝒗𝒆𝒏𝒕  

�̇�𝒊𝒏𝒇  

�̇�𝒊𝒏𝒕𝒆𝒓  

Figure 4.1 Room air heat balance 
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star network approach, an artificial temperature       (
o
C or 

o
F) and the corresponding star 

resistance       ((m
2 

°C)/W or (hr ft
2 

°F)/Btu) are used, which combine the convection heat 

between the surfaces and the room air with the long wave radiation heat between the one surface 

and all of the other surfaces together and can be determined based on the room interior surface 

temperatures,          (
o
C or 

o
F).  Detailed descriptions of this approach can be found in Seem, 

1987.  ̇     (W or Btu/hr) is the convective heat transfer energy accounted for by infiltration, 

which is defined as,  ̇      ̇                       , where  ̇     (kg/s or lbm/s) is the 

mass flow rate of infiltration;    (J/(kg 
o
C) or Btu/(lbm °F)) is the specific heat of air;           

(
o
C or 

o
F) is the outdoor temperature or the temperature of the infiltration; and      (

o
C or 

o
F) is 

the room air temperature.  ̇      (W or Btu/hr) is the convective heat transfer energy accounted 

for by ventilation, which is defined as,  ̇       ̇                       , where  ̇      (kg/s 

or lbm/s) is the mass flow rate of ventilation;    (J/(kg 
o
C) or Btu/(lbm °F)) is the specific heat of 

air;          (
o
C or 

o
F) is the supply air temperature of ventilation; and      (

o
C or 

o
F) is the room 

air temperature.  ̇       (W or Btu/hr) is the convective heat transfer energy accounted for by 

internal gains, such as people, equipment, etc.  

In the equation 4.1, in order to compute the room air temperature     , the only unknowns 

are the room surface temperatures          , which can be solved using the room interior surface 

heat balance equation. 

4.1.2 Heat energy balance of the room interior surface (ASHRAE Fundamentals, 

2005). The room interior surface temperatures are determined by four heat transfer approaches. 

They are short wave radiation (solar radiation), long wave radiation, convection between 

surfaces and room air, and conduction (Figure 4.2). 

 



27 

 

 

 

 

 

 

Therefore, the heat energy balance of the room interior surface is represented by, 

 ̇        ̇     +  ̇       ̇       [W or Btu/hr],       (4.2) 

where,  ̇       (W or Btu/hr) is the conduction heat flux in the house construction;  ̇      (W or 

Btu/hr) is the net long-wave radiation of this surface;  ̇      (W or Btu/hr) is the solar radiation 

incident on this surface; and  ̇      (W or Btu/hr) is the convective heat transfer energy between 

this room surface and the room air. 

In the equation 4.2,  ̇      stands for the net long wave radiation, which is the result of 

radiation heat exchange between this surface and the other surfaces.  As mentioned, in order to 

estimate  ̇     , the star network approach is applied (Seem, 1987), in which the room convection 

heat  ̇       and the room long wave radiation heat  ̇      are coupled and solved together.  ̇      

is the solar radiation incident on this surface through glazing materials. The detailed descriptions 

about how to determine  ̇      can be found in ASHRAE Fundamentals, 2005. 

The room surface temperature,         , can be calculated in the equation 4.2 as long as 

 ̇       is known. 

�̇�𝒔𝒐𝒍𝒂𝒓 

�̇�𝒄𝒐𝒏𝒗  

�̇�𝒓𝒂𝒅𝒊  

�̇�𝒄𝒐𝒏𝒅𝒖  

Inside 

Figure 4.2 Room interior surface heat balance 
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To estimate the conduction heat flux  ̇      , a transient heat transfer model has to be 

established because of the thermal mass storage effects of constructions. In this work, the 

Transfer Function Method (TFM) is utilized to determine the transient thermal conduction heat 

transfer through the house constructions (ASHRAE Fundamentals, 2005). This model is able to 

describe the transient thermal behaviors of walls, roofs, and floor constructions. In this model, 

TFM coefficients have to be determined before the estimations of the conduction heat. These 

coefficients vary depending on different construction materials and can be determined using 

some commercial software, such as TRNSYS (2000). 

In the figure 4.3,  ̇        represents the conduction 

heat flux at the interior surface, and  ̇        represents the 

conduction heat flux at the exterior surface. In fact,  ̇        

and  ̇        are different because of the thermal storage 

effects of construction materials.  

 

 

4.1.3 Heat energy balance of the room exterior surface (ASHRAE Fundamentals, 

2005). At the exterior surfaces of the house, solar radiation, convection, and long wave radiation 

take place, which estableish a heat energy balance along with the conduction in the house 

construction (Figure 4.4).  

�̇�𝒄𝒐𝒏𝒅𝒖 𝟏 

In
d

o
o
r 

O
u

td
o
o
r 

Thermal 

storage 

�̇�𝒄𝒐𝒏𝒅𝒖 𝟐 

Figure 4.3 Heat balance in 

constructions 
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The heat energy balance of the room exterior surface is represented by, 

 ̇        ̇     +  ̇       ̇       [W or Btu/hr],       (4.3) 

where,  ̇       (W or Btu/hr) is the conduction heat flux in the house construction;  ̇      (W or 

Btu/hr) is the net long-wave radiation between this exterior surface and surrounding radiation 

sources, such as other buildings and the sky;  ̇      (W or Btu/hr) is the solar radiation incident 

on this surface; and  ̇      (W or Btu/hr) is the convective heat transfer energy between this 

exterior surface and the outdoor air. 

Based on pre-defined boundary conditions, such as outdoor air temperatures, solar 

radiation, and the sky temperatures, this equation system including the equations 4.1, 4.2, and 4.3 

can be solved. Then, the indoor thermal behaviors, such as the room air temperature, room 

interior surface temperatures, as well as the room heat loads can be obtained. 

4.2 Description of the Model Integration 

Once the multi-zone thermal model has been numerically established, the integration 

between POMA and the thermal model can be accomplished based on the fact that in the multi-

zone thermal model, there are the parameters that can be regarded as the inputs or boundary 

conditions of the zonal model POMA. These parameters include interior surface temperature, 

�̇�𝒔𝒐𝒍𝒂𝒓 

�̇�𝒄𝒐𝒏𝒗  

�̇�𝒓𝒂𝒅𝒊  

�̇�𝒄𝒐𝒏𝒅𝒖  Outside 

Figure 4.4 House exterior surface heat balance 
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supply air temperature and volume of supply diffuser, etc. Although these parameters vary 

depending on the associated mechanical system used in buildings, there are some parameters that 

are commonly used in each system, such as interior surface temperature (as shown in the figure 

4.5). Therefore, in the model integration, these two models (POMA and the multi-zone thermal 

model) are able to be coupled together by using these inter-parameters. This integration allows 

the zonal model to estimate the indoor room temperature distribution based on the calculated 

results of the multi-zone thermal model. Once the inter-parameters are determined in the multi-

zone thermal model, they can be used by the zonal model as the inputs or boundary condition to 

predict the current room airflow and thermal behaviors, including temperature distribution and 

airflow pattern. Therefore, this integrated thermal model is able to provide corresponding indoor 

thermal responds with various outdoor weather conditions. Additionally, unlike the original 

multi-zone thermal model, a detailed description regarding the indoor thermal behavior and 

airflow pattern can be obtained using this integrated model. Consequently, an accurate energy 

simulation can be established based on this detailed room thermal description, in which more 

factors that is able to impact the building energy consumption can be considered, such as the 

different thermostat set points and locations which are difficult to simulate in the original multi-

zone thermal model.  Although the integration procedures are different depending on mechanical 

systems, a general integration approach is displayed in the figure 4.6. As shown in this figure, an 

energy-effect parameter is adjusted numerically in order to meet the room requirement, such as 

the requirement of local room air temperature or specified thermal comfort level. This energy-

effect parameter represents the sensitive factor that can directly or indirectly affect the change of 

the room requirement. Therefore, this energy-effect parameter can be the supply air temperature 

or supply air volume for a forced air distribution system, or the electrical energy input for an 
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electric floor radiation system. Once the room requirement is met, the energy consumption of the 

Air Conditioning (AC) system can be determined based on the current value of the energy-effect 

parameter. 

 

 
Figure 4.5 Integration of POMA and the thermal model 
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4.3 Description of the Application of the Integrated Thermal Model 

In order to apply the integrated thermal model into building environment, several 

considerations need to be taken into account, such as the determination of the number of zone 

divisions, the applicability analysis of the integrated model used in the situations for different air 

conditioning systems and for the rooms characterized with complicated geometry, and the 

Meet room 

requirement? 

Inputs for the multi-zone thermal model, 

including the building conditions, energy-

effect parameters, such as the energy 

output of AC system 

Multi-zone thermal model 

Output the results, for example the 

current energy consumption of the 

AC system 

Stop 

Yes 

No 

Evolve a new energy-effect 

parameter   

Start 

Zonal model 

Inter-parameters 

Figure 4.6 Flow chart of a general integration procedure 
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investigation of the potential for year-around energy simulation using the integrated thermal 

model.  

4.3.1 Determination of the number of zone divisions.  Theoretically, to determine the 

number of zone divisions in the integrated thermal model, an independent analysis is commonly 

used, in which the number of zone divisions will keep increased (usually doubled) from 

simulation to simulation, until the difference of the results between the current simulation and 

the previous one is not significant. Consequently, the number of zone divisions is determined. 

Actually, the number of zone divisions is dependent on the complexity of the problem that needs 

to be solved. The number of zone divisions for a room filled with furnishings is much greater 

than that for an empty room. In addition, the more number of zone divisions is involved, the 

more time is needed for computations. In the integrated thermal model, the Newton global 

convergence method with LU decomposition technique is used, and thus theoretically when the 

number of zone divisions increased, for example from n to 2n, the computational time would be 

approximately raised by 2
3
 = 8 times, since the time complexity of LU decomposition is O(2/3 n

3
) 

(Watkins, 2010). As a matter of fact, a small number of zone divisions would cause unreliable 

results and sometimes the failure to converge for the Newton method; whereas a large number of 

zone divisions would result in an unnecessary long computational time. Therefore, the 

reasonable selection of the number of zone divisions plays a significant role in the application of 

the integrated thermal model applied in building environment.  

4.3.2 Situations for different air conditioning systems. The zonal model POMA 

described in Chapter 3 is especially suitable for natural convection problems, in which the indoor 

airflow and thermal behaviors are dominated by the impacts of buoyancy and gravity. 

Nevertheless, for the forced air distribution problems, corresponding sub-models have to be 
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accordingly included and numerically interconnected in the zonal model (Haghighat et al., 2001), 

in order to describe the different physical phenomena. Generally, these sub-models include jet 

flow models, thermal plume models, and so on.  Jet flow models are used to distribute cool or 

warm air into an indoor room space for both cooling or heating applications and are various 

depending on the different jet characteristics (thermal/isothermal jet, free/wall jet, 

circular/plane/radial jet, and horizontal/vertical jet). Thermal plume models are caused by indoor 

heat sources, such as people, convection heater, equipment, etc. (Heiselberg et al., 1998), and are 

various depending on the different plume characteristics (circular/plane plume, 

wall/corner/multiple plume). In these sub-models, important parameters, including centerline 

flow velocity and temperature and trajectory/penetration length/throw, are represented by using 

empirical equations that were usually obtained from both conservation equations and 

experiments. The centerline flow velocity and temperature represent the central velocity and 

temperature of the jet flow or thermal plume; and the trajectory/penetration length/throw 

represent the effective length of the jet flow or thermal plume. Table 4.1 shows several jet and 

thermal plume models.  
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Table 4.1 Selected sub-models  

Isothermal Free linear jet model (Haghighat et 

al., 2001) 

Centerline velocity: 

     √
   

 
 

Isothermal Free compact and radial jet model 

(Haghighat et al., 2001) 

Centerline velocity: 

      
√  

 
 

Thermal Free circular jet model (Heiselberg et 

al., 1998) 

Trajectory: 

  
    

  

     

  
 (

 

√  

)

 

 

Thermal plume (convector with horizontal air 

outlet) (Riederer et al., 2002) 

Plume flow rate: 

    ̇                       

Thermal plume (convector with vertical air 

outlet) (Riederer et al., 2002) 

Plume flow rate: 

    ̇                        
Thermal plume (Radiator) (Riederer et al., 

2002) 

Plume flow rate: 

    ̇                        
Free thermal plume (Heat Gain) (Riederer et 

al., 2002) 

Plume flow rate: 

    ̇                            

 

 

 

 

 

ROOM 

Jet flow zones 

Natural flow zones 

Thermal plume 

zones 

Figure 4.7 Demonstration of different sub-model zones 
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Figure 4.7 shows the usages of the different sub-models in a room. The corresponding jet 

flow models and thermal plume models may be used in the specified zones. In the natural flow 

zones, the original zonal model POMA is applied. Table 4.2 provides a reference for the different 

sub-models. 

Table 4.2 References for different sub-models  

 

 

Jet models: 

Grimithin, 1970; Jackman, 1970; Holmes & 

Sachariewicz, 1973; Beltaos, 1976; Skåret, 

1976; Rajaratnam, 1976; Hestad, 1976; 

Nielsen, 1976, 1980, 1983; Nielsen et al., 

1987; Nielsen & Moller, 1985, 1987, 1988; 

Murakami et al., 1991; Guthrie et al., 1992; 

Guthrie, 1996; Mundt, 1996;  Vialle & Blay, 

1996; Inard et al., 1996a, 1996b; Rees, 1998; 

Rees & Haves, 1999; Wurtz et al., 1999b; 

Haghighat et al., 2001; Gagneau & Allard, 

2001; Musy et al., 2002; Riederer et al., 2002; 

Huang et al., 2002; Mora et al. 2003b; Huang, 

2003; Stewart & Ren, 2003; Gharbi et al., 

2004; Ren & Stewart, 2005. 

 

 

Thermal plume models: 

Howarth, 1985; Skåret, 1986; Lebrun & 

Ngendakumana, 1987; Nielsen et al., 1988; 

Inard & Molle, 1989; Kofoed & Nielsen, 1990; 

Inard & Buty, 1991; Mundt, 1992; During, 

1994; Milke & Mowrer, 1995; Popiolek, 1996; 

Inard et al., 1996a, 1996b; Inard et al., 1997a, 

1997b; Wurtz et al., 1999b; Musy et al., 2001; 

Gagneau and Allard, 2001; Musy et al., 2002; 

Riederer et al., 2002; Stewart & Ren, 2003; 

Ren & Stewart, 2003;  

 

4.3.3 Situations for rooms characterized with complicated geometry.  The integrated 

thermal model has the characteristics of both the zonal model POMA and the multi-zone thermal 

model. For the situations involving complex room shape, the sizes of the zone divisions can be 

defined differently in the integrated thermal model. For example, using fine grid meshes near 

boundary-surface regions where the air is characterized with turbulent flow and coarse grid 
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meshes in the others would allow the zonal model to effectively capture the physical 

characteristic of the airflow of the entire room. Additionally, different coordinate systems may 

be used in the zonal model depending on the different problems to be solved. Megri and Yu 

(2011) predicted the water thermal behavior of a cylindrical mantle tank using a zonal model. In 

this study, the traditional rectangular coordinate cannot be used because of the cylindrical shape 

of the mantle tank. Instead, a cylindrical coordinate (Figure 4.8) was used in the zonal model 

whose results were compared with the experimental data, and a good agreement was achieved.  

 

 

4.3.4 Potential for year-around energy simulation. As a matter of fact, the simplified 

mathematical model and the reduced computational time make this integrated thermal model 

possible to perform the year-around building energy simulation, in which the indoor thermal 

behavior of each room would be predicted hour by hour, minute by minute, or even second by 

second over a year, as long as the corresponding weather conditions are available. In addition, 

the impacts of building control system can be included in the simulation, such as the controls of 

the thermostat, supply air temperature or volume, etc. Megri and Yu (2014) investigated the 

Figure 4.8 Computational grid mesh of cylindrical mantle tank 
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possibility of improving the heating energy calculation of a building equipped with an electric 

floor radiation system. In this study, three thermostat setpoint strategies (room air, mean radiant 

and operative temperatures) along with night/daytime setback control were considered in the 

simulation where the integrated thermal model was used.  

Although the theoretical practicability of the integrated thermal model in various 

situations has been described above, a comprehensive evaluation of this model is needed, in 

which numerical and experimental validation should be conducted in the future.   
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CHAPTER 5 

Applications of the Integrated Zonal / Multi-zone Thermal Model  

In the U.S., buildings consume approximately 41% of primary energy and are responsible 

for approximately 40% of U.S. carbon dioxide emissions, and HVAC energy consumption is one 

of the major parts (U.S. DOE, 2012). In order to reduce primary energy consumption and 

greenhouse gas emissions, building energy conservation has to bear the brunt. In order to 

accomplish energy savings within buildings, various advanced techniques, such as active/passive 

usage of solar energy, geothermal heat pump, wind power, integrated designs, intelligent 

Building Management System (BMS), and so on, have been developed and applied. 

Additionally, the simulation of building energy consumption has been carried out by using 

computers with various commercial software packages, such as TRNSYS (2000), EnergyPlus 

(2011), Trace 700 (2010), eQUEST (2010), CODYBA (1992) and so on. In these building 

energy simulation tools, several air conditioning systems can be modeled and used in a 

comparative study in order to select the most appropriate and energy-efficient system, based on 

cost effectiveness. Therefore, with the assistance of these tools and techniques, designers are 

capable of having various design solutions, based on several criteria, system characteristics, 

building locations, and other requirements imposed by the owner. In fact, at the design stage, 

besides an appropriate mechanical system selection, there are other crucial parameters that have 

to be considered carefully, such as indoor room design temperature. This parameter determines 

not only the capacities of cooling/heating units, but also the sizes of air/water distribution 

systems (Lam, 2000). Fortunately, plenty of researches have been performed with respect to the 

correct selection of indoor room design temperatures (ASHRAE Standard 55, 2004). Nicol and 

Roaf (1996) replaced the existing inappropriate indoor temperature requirements of thermal 
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comfort standards by using field surveys involving summer and winter seasons of five climatic 

regions of Pakistan. Lam (2000) investigated 146 commercial buildings in order to find the 

prevailing architectural design and construction practices in Hong Kong, including indoor design 

conditions and other parameters. Wan et al. (2009) proposed a new method to determine the 

indoor temperature and relative humidity based on a parameter variation study, in which the 

parameter sensitivities of the indoor temperature and relative humidity were investigated based 

on human thermal sensation. Huang et al. (2012) developed a physical-rules-based adaptive 

neuro-fuzzy inferential sensor (ANFIS) model which was used into space heating systems and 

demonstrated the obvious improvement of accuracy in the perdition of indoor temperatures 

compared to unphysical-rules-based ANFIS model. Although the concepts between indoor 

design temperature and thermostat set point are different, the indoor design temperature should 

be selected properly to be able to reflect the actual room set temperature when the building is in 

operation. In other words, the temperature set point of a room thermostat should be close to the 

value of the indoor room design temperature. Otherwise, the air conditioning system will not 

operate efficiently and under stable condition.  

Like the indoor design temperature, the magnitude of the thermostat set point affects not 

only the thermal comfort levels of the indoor occupants but also the energy consumption of a 

HVAC system (Moon & Han, 2011). Unfortunately, the thermostat feedback temperature value 

cannot reflect the actual air temperature of the occupied space in a room, since the thermostat is 

always attached to a wall rather than to the center of the room. Consequently, although the 

thermostat feedback temperature value receives a certain level, at which the requirement of 

indoor thermal comfort can be met, the temperature of the occupied space may be higher or 

lower than this value. It follows that the people in the occupied space do not feel as comfortable 
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as reflected by the thermostat feedback temperature. A temperature difference exists between the 

occupied space and the position where a thermostat is located. Therefore, how to determine this 

temperature difference and how it affects the energy consumption become essential in the 

processes of the HVAC system design and operation.  

Additionally, besides indoor design temperature, there is another parameter that also 

plays a significant role in building load calculation, energy prediction, as well as system‘s 

selection and sizing. This parameter is the design location of the thermostat, which is usually 

ignored by designers and needs to have more attention at the building design stage. Like the 

indoor design temperature, the thermostat location is not only able to affect the capacities of 

mechanical systems at the design stage, but also to determine the indoor air quality and people‘s 

thermal comfort levels (Madsen et al., 1990). For instance, locating a thermostat near a heat 

source such as a computer in summer and near a cold wall in winter will not only increase the 

unnecessary energy consumption significantly, but also lower people‘s thermal comfort levels 

because of the overcooling and overheating in summer and winter respectively. Therefore, at the 

design stage, thermostat locations should be optimized and selected properly in consideration of 

reducing building energy consumption and/or improving human thermal comfort. 

The current commercial software packages used for building load calculation and energy 

prediction are based on single/multi-zone models and thus need to be integrated with more 

advanced numerical models such as zonal models. The single/multi-zone models, also known as 

well-mixed models, are not able to predict the temperature difference between two locations 

within a space, since they usually regard an entire volume or room as a single zone, in which the 

physical properties of the indoor air parameters are perfectly uniform and homogenous, such as 

pressure, temperature, and density (Yu, 2012). Based on this assumption, the concept of 
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thermostat becomes meaningless, since wherever the thermostat is located, the results in terms of 

load and energy will be the same because of the assumed uniform temperature distribution. 

Hence, in order to solve this problem, advanced numerical models, like zonal models, which 

have the ability to predict the actual air temperature gradient, should be applied.  

In this chapter, several applications of this integrated thermal model involving forced air 

distribution system and general heating system have been included. In the application of the 

forced air distribution system, the integrated thermal model has been used not only to predict the 

appropriate thermostat set point, corresponding to less energy consumption of an UnderFloor Air 

Distribution (UFAD) system and/or to a comfortable environment, but also to improve the 

computational quality and accuracy of the required energy of the UFAD system. Similarly, in the 

application of the general heating system, the integrated thermal model has been used to predict 

the appropriate thermoset set point as well as the heating load corresponding to different 

thermostat locations. Instead of using an UFAD system, in this application, a general heating 

system is considered, which stands for the non-specified air-conditioning system in load 

calculations. Like the general method and principle regarding building load prediction in most 

HVAC handbooks (ASHRAE fundamentals, 2005), with this system, the building loads are 

determined through using the heat loss equations from building structures and thus the room 

thermal behavior associated with this system are dominated by natural convection, i.e. the 

impacts of buoyancy and gravity.  

These applications are intended to demonstrate the practicability of this integrated 

thermal model for different air conditioning systems and the improvement of the prediction of 

building load and energy consumption using this integrated model. Additionally, direct 
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comparisons are performed between the integrated thermal model and the conventional 

single/multi-zone thermal model in terms of building energy/load and indoor thermal comfort. 

5.1 Predictions of Thermostat Set Point and Design Heating Load for Energy Saving 

and/or Better Indoor Thermal Comfort of an UFAD System – Forced Air Distribution 

Cases 

5.1.1 Introduction. Although the single/multi-zone models have been proved to be 

acceptable for traditional overhead air distribution systems, they are not appropriate to be used in 

a non-uniform environment created by other HVAC systems, i.e. UFAD systems (Schiavon et al., 

2011). In the UFAD systems, a room is separated by a raised floor into two spaces, the occupied 

room space and the floor plenum space. Conditioned airflow from a terminal Air Conditioning 

(AC) unit is delivered to the floor plenum and then supplied to the occupied space above through 

floor diffusers (Figure 5.1). Consequently, new energy prediction approaches based on the 

characteristics of these air distribution systems should be developed, in consideration of the 

limited applications of the existing single/multi-zone models in the building energy prediction 

for these systems.   

 

 

Figure 5.1 Demonstration of UFAD system used in a room 
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Griffith and Chen (Griffith & Chen, 2004) stated that ―the assumption that room air is 

well mixed may lead to significant errors in HVAC system sizing‖ and developed a coupled 

momentum-zonal model with building energy and load calculations to accurately predict hourly 

building loads of a single thermal zone. Zhai et al. (2002) demonstrated several efficient methods 

to integrate energy simulations into CFD models in order to improve the accuracy and quality of 

building energy prediction. Additionally, several approaches (Bauman et al., 2006; Schiavon et 

al., 2011) regarding UFAD systems have been developed in order to improve the prediction 

capacity of energy simulation programs. Bauman et al. (2006) investigated the primary pathways 

of UFAD systems for heat to be removed from a room in a cooling application. They found that, 

under cooling operation, a stratification produced by UFAD systems changes the dynamic 

characteristics of heat transfer and mentioned that ―Up to 40% of the total room cooling load is 

transferred into the supply plenum and only about 60% is accounted for by the return air 

extraction rate‖. Skchiavon et al. (2011) proposed a simplified method to design building room 

cooling loads for UFAD systems, based on numerous EnergyPlus simulations and regression 

models. They demonstrated the differences in design cooling load calculations between UFAD 

and conventional well-mixed overhead systems and found that a peak cooling load of UFAD 

systems is 19% higher than an overhead cooling load. 

UFAD systems have been widely used for years, especially in the cooling of commercial 

buildings. The UFAD system supplies cold air from the raised-floor plenum through the floor 

diffuser. The cold air pushes the warm air up near the ceiling which maintains the cool air in the 

lower level of the room because of the density variation between the cold and warm airs. 

Researches regarding UFAD systems can be easily found, but most of them are focusing on the 

application of this system in commercial buildings and under cooling operation (Schiavon et al., 
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2010 & 2011; Alajmi & El-Amer, 2010). The researches regarding the applications of UFAD 

systems in residential houses and/or under heating operation are very limited. As a matter of fact, 

in commercial buildings, heating systems are usually separated from cooling systems, which 

makes the UFAD system exclusive for cooling purposes. However, in residential houses, two 

separated systems for both heating and cooling are not economically feasible, because of the 

high first cost. Therefore, in order to take advantage of the UFAD system in residential houses, 

especially considering the benefit of this system under cooling operation, the UFAD system has 

to operate under both cooling and heating cycles. Thus, the importance of how well the UFAD 

system will perform in a residential house under heating operation becomes significant.  

In this application, the zonal model POMA coupled with a vertical thermal jet model 

(Vialle & Blay, 1996) has been used to predict room air temperature distributions when an 

UFAD system is applied for heating purposes in a residential house. Additionally, the coupled 

zonal model has been integrated with a multi-zone thermal model, in order to quantify the 

temperature difference between the occupied space and the thermostat position, to determine the 

appropriate thermostat set point corresponding to less energy consumption of the UFAD system 

and/or to a comfortable environment for occupants, and to improve the heating energy 

predictions of the UFAD system. This integrated thermal model is not only able to investigate 

the factors that influence the magnitude of this temperature difference, but also to perform 

predictions related to building load and energy consumption according to different thermostat 

locations. Then, the optimization of thermostat location can be carried out at the design stage for 

the sake of the achievement of building energy savings and/or the improvement of people‘s 

thermal comfort levels.  
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5.1.2 Model description and validation. 

5.1.2.1 Numerical model for an UFAD system. In this application, the zonal model 

POMA coupled with a vertical thermal jet model has been used to simulate the indoor air 

behaviors of an UFAD system. 

The jet flow can be divided into three regions, shown in the figure 5.2, determined by the 

dimensionless distance Y (Vialle & Blay, 1996): 

  
 

√    
 ,                   (5.1)        

where    (m
2
 or ft

2
) is the supply diffuser area; y (m or ft) is a certain distance in the jet flow  

direction. 

 

As shown in the figure 5.2, in Region 1, Y<Y1=2, the flow is established; in Region 2, 

Y1=2<Y<Y2=7, the jet flow has a behavior similar to a plane jet; and in Region 3, Y>Y2=7, the 

Figure 5.2 Three regions of a positive buoyancy jet 

(Vialle & Blay, 1996) 
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flow behaves as an axisymmetrical jet. The decay laws of centerline velocity and temperature are 

given in the table 5.1, which are determined by the Archimedes number (Vialle & Blay, 1996): 

   
         √  

  
 ,   (5.2)        

where    (m/s or ft/s) is the initial supply air velocity from a diffuser;    (
o
C or 

o
F) is the initial 

supply air temperature;    (
o
C or 

o
F) is the surrounding temperature;    (m

2
 or ft

2
) is the supply 

diffuser area;   (m/s
2
 or ft/s

2
) is the acceleration of gravity; and   (1/K or 1/R) is the expansion 

coefficient.  

In this coupled model (the vertical thermal jet model with POMA), at the zones where the 

jet flows occur, the air mass flow rates are calculated based on the vertical thermal jet model 

using the jet flow rates which are defined as   ̇     , where   (m/s or ft/s) is the jet velocity 

defined in the table 5.1;   (kg/m
3
 or lbm/ft

3
)
 
is the air density; A (m

2
 or ft

2
) is the cross-sectional 

area between two zones; whereas at the other zones, POMA is utilized, as shown in the figure 5.3. 

Similarly, the centerline zone temperatures of the jet are computed by using the centerline 

temperature   defined in the table 5.1; and the temperatures of the other zones are still calculated 

using POMA. For the interactive zones that are affected by both the jet and zonal models as 

shown in the figure 5.3, the combined effect of these two models is considered in the calculation 

(Haghighat et al., 2001). 
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Table 5.1 Decay laws of centerline velocity and temperature (Vialle & Blay, 1996)  

Region Velocity Temperature 

Region 1 
          

0<Y<Y1 Y1=2 

Region 2  

  
 (

  
 
)
  

 

 

       
      +     

  +     
 

  

    
     

 (
  
 
)
  

 

 

       
     +     

  +     
 

Y1<Y<Y2 Y2=7 

Region 3  

  
 (

  
  

)
  

(
  
 
)
  

 

 

       
             

        
  

    
     

 (
  
  

)
  

(
  
 
)
  

 

 

       
           

       
  

Y>Y2 Y1=2;Y2=7 

 

5.1.2.2 Model validation and grid independence analysis. Before using the coupled 

model in case studies, a model validation needs to be accomplished. The size of the room used 

for the validation is 3.1 m × 3.1 m × 2.5 m (10.2 ft × 10.2 ft × 8.2 ft). Since the height of the 

floor plenum for the UFAD system is 0.254 m (10 inches), the actual height of the simulation 

POMA 

Jet model 

POMA POMA 

Figure 5.3 Demonstration of the model coupling 



49 

 

 

 

room is 2.246 m (7.37 ft). This room has a 3.1 m
2
 (3.1 m × 1.0 m) or 33.46 ft

2
 (10.2 ft × 3.28 ft) 

window on the west wall. A floor air diffuser with the size of 0.5334 m × 0.2286 m (1.75 ft × 

0.75 ft) is placed at the center of the room. One return grille (0.62 m × 0.23 m or 2.03 ft × 0.75 

ft) is located on the south wall (Figure 5.4). Boundary conditions including the surface 

temperatures of the room, as well as the supply air temperature and velocity of the diffuser, are 

given in the table 5.2. 

 

  

 

 

 

Figure 5.4 Shape and diffuser location of the simulation room 



50 

 

 

 

Table 5.2 Boundary conditions for this validation   

 

North 

[
o
C] 

([
o
F]) 

South 

[
o
C] 

([
o
F]) 

East 

[
o
C] 

([
o
F]) 

West 

[
o
C] 

([
o
F]) 

Ceiling 

[
o
C] 

([
o
F]) 

Floor 

[
o
C] 

([
o
F]) 

West 

Window 

[
o
C]([

o
F]) 

Supply Air 

[
o
C]([

o
F]) 

Temperature 20.7 

(69.3) 

21.1 

(70.0) 

21.1 

(70.0) 

20.6 

(69.1) 

21.1  

(70.0) 

21.2  

(70.2) 

17.4  

(63.3) 

32.2       

(90.0) 

Diffuser airflow velocity: 1.0 m/s (3.28 ft/s) 

 

Firstly, for the coupled zonal model, the grid independence is checked by using different 

grid resolutions, including 100 meshes (5×5×4), 200 meshes (5×5×8), 490 meshes (7×7×10), and 

810 meshes (9×9×10). The results in terms of temperature corresponding to these grid 

resolutions are compared with the results of the CFD model, FLOVENT (2011). Since the 

temperature boundary conditions of the north and south surfaces are close compared to the east 

and west surfaces (Table 5.2), the temperature gradient in the east-to-west direction is significant 

compared to that in the north-to-south direction. Therefore, the vertical temperature distributions 

of the three verticals (the three poles shown in the figure 5.4) are used in the comparison. The 

three verticals (poles) are located on the medium plane of the y direction. The center pole is 

located at the center point of the supply diffuser, and the east and west poles are located near the 

east and west wall surfaces respectively. The horizontal distances from the east and west poles to 

their nearby wall surfaces are 0.775 m (2.54 ft). The comparison results are displayed in the 

figure 5.5, where R100, R200, R490, and R810 correspond to the different gird resolutions; CFD 

and CFD200 represent the results of the CFD model with the grid resolutions, 18,009 (29×27×23) 

and 200 (5×5×4) meshes; T (
o
C or 

o
F) is the simulated air temperature; Tin (

o
C or 

o
F) is the supply 

air temperature which is 32.2 
o
C (90 

o
F); z (m or ft) is the elevation from the room bottom; and H 

(m or ft) is the height of the room space, which is 2.246 m (7.37 ft).  
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(a) 

(b) 

(c) 

Figure 5.5 Comparison of the different grid resolutions of POMA and CFD (FLOVENT) 

model with a gird of 29 × 27 × 23 (a) Center pole; (b) East pole; (c) West pole 
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Figure 5.6 shows the typical thermostat location which is on the south wall, below the 

return grill, approximately 1.5 m (4.9 ft) above the raised floor, and 2.2 m (7.2 ft) away from the 

west wall. 

As shown in the figure 5.5, the results of the east (b) 

and west (c) poles are very close, because the room is 

dominated by forced air distribution considering the size of 

the room and the supply airflow rate and temperature. 

Additionally, when the grid resolution is equal to or greater 

than 200, the coupled zonal model produces a reasonably 

good result compared with that of the CFD model with the 

18,009 grid resolutions. Also, the corresponding results of the grid resolution 200, 490, and 810 

are very close, due to the fact that the impact of the thermal jet model is significant compared to 

the zonal model POMA. In fact, when 200 grid resolutions are used in the CFD model, its result 

(the curve of CFD200 shown in the figure 5.5) is not as good as the result of the coupled zonal 

model with the grid resolution 200 (shown as R200 in the figure 5.5). On the one hand, the 

thermal jet model derived from experimentation is coupled with the zonal model, and thus this 

coupled zonal model is able to provide a reasonable and acceptable prediction result of indoor 

thermal behavior, even though the grid resolution used is low. On the other hand, the low grid 

resolution cannot allow the CFD model to capture the detailed description of the physical 

phenomena of this room because of the characteristics of CFD, and thus errors would be 

introduced by using this low-grid-resolution CFD model. Figure 5.7 displays the air temperatures 

of the typical thermostat location (Figure 5.6) of the coupled zonal model (considering different 

grid resolutions) against the CFD model with the grid resolution, 18,009 meshes (29×27×23). In 

South wall 

Typical thermostat location 

Return 

Plenum 

Figure 5.6 Thermostat location 
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this figure, CFD200 represents the result of the CFD model with the grid resolution, 200 (5×5×4).  

Similarly, the low-grid-resolution CFD model overestimates the air temperature of the typical 

thermostat location, and thus cannot be used in the application compared to the results of the 

coupled zonal model. In addition, when the grid resolution of the coupled zonal model is equal to 

or greater than 200, the air temperatures of the thermostat location are much closer to the CFD 

results. Therefore, the coupled zonal model with the grid resolution 200 (5×5×8) is decided to be 

used in the following case studies.  

 

  

 The time complexities of the coupled zonal model and CFD model are shown in the 

figure 5.8. These models were executed on a computer with the characteristics of CPU-1.83GHZ 

and RAM-3GB.  As shown in this figure, the model execution time increases as the growth of 

the grid resolution. Theoretically, in the coupled zonal model, the time complexity can be 

represented using   
 

 
    because of the usage of LU decomposition method (Watkins, 2010) in 

Figure 5.7 Temperatures of the typical thermostat location 

considering different grid resolutions 
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the computation, where n is the problem size, i.e. the grid resolution. Thus, the execution time 

would be increased by approximately   , as the growth of the grid resolutions from R100 to 

R810. However, in reality, the execution time is also affected by other factors, such as the 

memory access, the dynamic resource allocation of the CPU, etc. Therefore, as shown in the 

figure 5.8, the results are not exactly following the theoretical increasing rate. Also, although the 

execution times of R200 and CFD200 are very close to each other due to the same grid 

resolution used, the model CFD200 failed to produce a reasonable good result compared to the 

other models, as shown in the figure 5.5 and 5.7. Therefore, the CFD model at a low level of grid 

resolution for the sake of reducing the computational time cannot be regarded as the alternative 

to the low-grid-resolution zonal model, which demonstrates the superiority of the coupled zonal 

model.  

 

 

Figure 5.9 shows the comparison of the temperature distributions between the coupled 

zonal model and the CFD (FLOVENT) model, when the medium plane is specified in the y 

direction (Figure 5.4). Total 200 zones are applied in the zonal model and 18,009 cells for the 
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Figure 5.8 Time complexities of these coupled and CFD models 
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CFD model. As shown in the figure 5.9, an acceptable agreement is achieved, which 

demonstrates that with the relatively low grid resolution, the zonal model POMA coupled with 

the thermal jet model is able to predict the characteristics of the air temperature distribution of an 

UFAD system in a room.  

 

 

 

 

5.1.3 Comparison of steady-state heating energy calculation between conventional 

air distribution and UFAD systems. The existing single/multi-zone models are mostly used in 

energy and load simulations, especially for the conventional air distribution systems, such as the 

overhead air distribution system. These models consider a room or a structure as a whole and 

assume that the indoor air is well mixed. Therefore, the heat energy   ̇       is defined as 

(Figure 5.10), 

 ̇    ̇      +  ̇       [W or Btu/hr],    (5.3) 

and  ̇    ̇    +  ̇      [W or Btu/hr],    (5.4) 

So  ̇        ̇        [W or Btu/hr],    (5.5) 

(b) (a) 

Figure 5.9 Air temperature distributions (
o
C) of the UFAD system under heating 

operation (a) POMA model with a grid of 5 × 5 × 8; (b) CFD (FLOVENT) model 

with a gird of 29 × 27 × 23. 
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where  ̇   (W or Btu/hr) is the rate of the heat energy going into the room;  ̇    (W or Btu/hr) is 

the rate of the heat energy going out of the room;  ̇     (W or Btu/hr) is the rate of the heat loss 

from the room;  ̇       (W or Btu/hr) is the rate of the heat energy generated by an Air 

Conditioning (AC) unit.  

For the case of UFAD system, the entire room needs to be physically and structurally 

divided into two separated enclosures, a room space and a floor plenum space (Figure 5.11). In 

fact, the approach (described in the figure 5.10) which is for the conventional air distribution 

system is not able to accurately estimate the energy consumption of the UFAD system, since this 

approach treats the entire room as a whole and ignores the structural division of these two 

separated spaces.  

 

 
 

 

 

�̇�𝒊𝒏 

�̇�𝒍𝒐𝒔𝒔 

AC 

Room �̇�𝒔𝒚𝒔𝒕𝒆𝒎  

�̇�𝒐𝒖𝒕 

Figure 5.10 Energy balance demonstration of 

the conventional air distribution system 
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Therefore, for energy and load predictions of the UFAD system, these two spaces need to 

be treated separately, because of the presence of thermal stratification using UFAD system and 

the different thermal characteristics of these two spaces. Then the  ̇       is defined as, 

 ̇    ̇      +  ̇          [W or Btu/hr],   (5.6) 

 ̇    ̇     +  ̇ 
  

 and  ̇ 
  

   ̇     +  ̇    [W or Btu/hr],   (5.7) 

so   ̇        ̇     +  ̇         [W or Btu/hr],   (5.8) 

where  ̇   (W or Btu/hr) is the rate of the heat energy going into the room;  ̇    (W or Btu/hr) is 

the rate of the heat energy going out of the room;  ̇      (W or Btu/hr) is the rate of the heat loss 

from the plenum space;  ̇      (W or Btu/hr) is the rate of the heat loss from the room 

space;  ̇ 
  

 (W or Btu/hr) is the rate of the heat energy from the plenum to the room space 

through floor diffusers and the raised floor construction;  ̇       (W or Btu/hr) is the rate of the 

heat energy generated by the Air Conditioning (AC) unit. 

Plenum �̇�𝒊𝒏  �̇�𝒍𝒐𝒔𝒔𝟏  

AC 

�̇�′
𝒊𝒏  

�̇�𝒔𝒚𝒔𝒕𝒆𝒎  

�̇�𝒐𝒖𝒕  

�̇�𝒍𝒐𝒔𝒔𝟐 

Room 

Figure 5.11 Energy balance 

demonstration of the UFAD system 
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Theoretically,  ̇     in the equation 5.5 is not equal to  ̇     +  ̇      in the equation 5.8 

because of the different thermal characteristics between the conventional air distribution and 

UFAD systems. 

5.1.4 Basic simulation conditions for the applications. To demonstrate the capability of 

our developed computer program, the 26
th

 of December at Cheyenne, Wyoming, is selected for 

the winter season simulation. Figure 5.12 and 5.13 display the local outdoor temperatures and the 

horizontal solar radiation respectively on the simulation day. A single-room residential house is 

considered for the simulation. The size of this room is 3.1 m × 3.1 m × 2.5 m (10.2 ft × 10.2 ft × 

8.2 ft). Since a 0.254 m (10 inches) height floor plenum is used, the actual height of the room 

space is 2.246 m (7.37 ft) (Figure 5.4). The house has a 3.1 m
2
 (33.46 ft

2
) window (U-value 5.68 

W/m
2
K (1.0 Btu/hr ft

2 
°F); Solar heat gain coefficient (SHGC) 0.855; Internal shading device: 

Transmission: 30%, Absorption: 43.4% and Reflection: 26.6%) on the west wall. The thermal 

characteristics of the four external walls, the floor, and the roof are presented in the table 5.3 and 

5.4. An UFAD system is used in this house as the heating system in the winter season. Lighting 

and internal gains are not considered in this simulation. A seated man wearing trousers and a 

long-sleeved shirt is considered for the comfort Predicted Mean Vote (PMV) and Predicted 

Percent Dissatisfied (PPD) calculations. PMV (PPD) is the human thermal comfort index 

(percentage), usually used to predict people‘s steady-state comfort responses within a space 

(ASHRAE Fundamentals, 2005). The simulation is carried out without air leakage and air heat 

storage effects. Also, the thermal influences of the air jet flow on the room surfaces are ignored 

in the simulation.  
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Figure 5.13 Solar radiation on horizontal  

Figure 5.12 Outdoor temperatures  
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Table 5.3 Characteristics of the external walls 

External  

Walls 

Area  

m
2
 

(ft
2
) 

U-Value  

W/m
2
 K 

(Btu/hr ft
2 

°F) 

Solar 

Absorptance 

Convective Heat Transfer 

Coefficient W/m
2 

K (Btu/hr ft
2 

°F) 

Inside Outside Inside Outside 

North 

7.75 

(83.4) 0.339 (0.06) 0.75 0.3 4.2 (0.74) 17.8 (3.13) 

South 

7.75 

(83.4) 0.339 (0.06) 0.75 0.3 4.2 (0.74) 17.8 (3.13) 

East 

7.75 

(83.4) 0.588 (0.1) 0.75 0.3 4.2 (0.74) 17.8 (3.13) 

West 

7.75 

(83.4) 0.588 (0.1) 0.75 0.3 4.2 (0.74) 17.8 (3.13) 

 

Table 5.4 Characteristics of the floor and roof 

 

Area  

m
2
 

(ft
2
) 

U-Value  

W/m
2
 K 

(Btu/hr 

ft
2 

°F) 

Solar 

Absorptance 

Convective Heat Transfer Coefficient  

W/m
2 

K (Btu/hr ft
2 

°F) 

Inside Outside Inside Outside 

Raised 

Floor 

9.61 

(103) 

1.671 

(0.29) 0.8 0.4 

4.04 

 (0.71) 

5.0 (0.88) 

 (Plenum) 

Floor 

9.61 

(103) 

0.313 

(0.055) 0.8 - 

5.0 (0.88) 

(Plenum) - 

Roof 

9.61 

(103) 

0.233 

(0.041) 0.35 0.75 

4.04 

 (0.71) 

17.8 

 (3.13) 

 

5.1.5 The applications of the integrated thermal model in building environment. In 

this section, the integrated thermal model (the coupled zonal model and the multi-zone thermal 

model) has been used into two applications associated with the UFAD system. In the first 

application, the appropriate thermostat set points have been predicated corresponding to less 

energy consumption of the UFAD system and/or to a comfortable environment for occupants, 

when the thermostat is maintained at one location. In the second application, the integrated 

thermal model has been used to perform predictions related to building load and energy 

consumption according to different thermostat locations. Then, the optimization of thermostat 
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location has been accomplished for the achievement of building energy savings and/or the 

improvement of indoor thermal comfort.   

5.1.5.1 The first application – the prediction of appropriate thermostat set point.  In this 

application, several cases have been studied in order to quantify the temperature difference 

between the occupied space and the thermostat position and to determine the appropriate 

thermostat set point. In addition, the factors that influence the magnitude of this temperature 

difference have been investigated. This application is also intended to demonstrate the 

importance of this integrated thermal model not only at the building design stage but also during 

the operation of the building when this model is coupled with the BMS.  

5.1.5.1.1 Description of the simulation conditions. In the integrated thermal model, a 

room is mathematically subdivided into several zones. In this room, the occupied space is 

defined as the space where people‘s activities take place. More precisely, the occupied space is 

defined as the space beyond 1 foot of the walls and within about 6 feet from the floor. Therefore, 

in order to determine the temperature difference between the occupied space and the thermostat 

position, the temperature of the occupied space has to be represented using a single value which 

is defined as the Occupied Space Temperature (OST). In this work, three different definitions 

have been used to represent the OST including the ―Occupied-zones‖ scheme, the ―Uniform-

zones‖ scheme, and the ―Core-zones‖ scheme.  

 

(a)        (b)           (c) 

 
Figure 5.14 Three schemes (a) ―Occupied-zones‖; (b) ―Uniform-zones‖; (c) ―Core-zones‖ 
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In the ―Occupied-zones‖ scheme, the OST can be represented by the average temperature 

of the occupied space (the average of the M zones constituting the occupied space, as shown in 

the figure 5.14 (a)), which is defined as, 

                  ∑   , ,    ,  [
o
C or 

o
F]       (5.9) 

where,   , ,   (
o
C or 

o
F) is the temperature of the zone (i,j,k) constituting the entire occupied 

space; and                   (
o
C or 

o
F) is the average OST.  

In the ―Uniform-zones‖ scheme, the OST is calculated from the single or one-zone model 

(Equation 5.10), in which the homogenous and uniform temperature distribution of the entire 

room space is assumed, as shown in the figure 5.14 (b).  

∑  ,                       ,    , [W or Btu/hr]      (5.10) 

where,   ,  (W/m
2
 K or Btu/hr ft

2
 °F) is the convective heat transfer coefficient of surface i,    

(m
2
 or ft

2
) is the area of surface i;   ,  (

o
C or 

o
F) is the temperature of surface i; and 

                 (
o
C or 

o
F) is the OST of the ―Uniform-zones‖ scheme.  

In the ―Core-zones‖ scheme (Figure 5.14 (c)), the average temperature of the room core 

(central) zones is regarded as the OST which is defined as: 

 NTOST kjizonesCore /),,( ,  [
o
C or 

o
F]        (5.11) 

where,    , ,   (
o
C or 

o
F) is the temperature of the zone (i,j,k) located at the core (center) of the 

room; and               (
o
C or 

o
F) is the OST of the ―Core-zones‖ scheme. N is the number of 

the zones constituting the core (center) of the room. 

In order to estimate the appropriate thermostat set point as well as the corresponding 

energy consumption, the OST should be predefined, similarly as the predefined indoor design 

temperature in the single/multi-zone thermal models. This predefined OST represents the 
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intended temperature of the occupied space in consideration of the occupants‘ comfort and 

should be determined based on standards, such as ASHRAE Standard 55 (2004). Therefore, from 

this point of view, the predefined OST can be also called Objective Temperature (OT).  

This integrated thermal model is able to estimate the appropriate thermostat set point that 

makes the specified point or region (according to different schemes) meet the predefined OST, 

whereas, the thermal behaviors of the other points or regions in the room are not concerned.  

5.1.5.1.2 Description of the simulation procedures. The procedure to estimate the 

thermostat set points and the corresponding required heating energy for the room space,  ̇       , 

i.e.  ̇      (assuming that the heat loss of the floor plenum  ̇      is ignored in this application), 

are described as follows: 

 Step 1: Selections of the OT value and the thermostat position 

The values of OT considered in our cases are selected. The selection is based on criteria, 

such as economic, comfortable or other considerations. Usually, the OT value, for economic 

reasons, is 20
o
C (68 

o
F) (ASHRAE Standard 55, 2004). In this work, three values of OT are 

investigated, 18
o
C (64.4 

o
F), 20

o
C (68 

o
F), and 22

o
C (71.6 

o
F).  

Actually, any subdivision of the room in the coupled zonal model is a potential 

thermostat location. An accurate thermostat location that reflects the actual situation contributes 

to improving the reliability of prediction results. The thermostat location considered in this 

application is displayed in the figure 5.6. 

 Step 2: Determination of the thermostat set point 

The predefined values of the OST, which are the OT values in Step 1, will be approached 

by gradually adjusting the supply airflow rate (energy-effect parameter) of an UFAD system (the 

supply air temperature maintains a constant value shown in Step 3), when the integrated thermal 
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model is utilized to predict the temperature distributions corresponding to the different schemes, 

―Uniform-zones‖, ―Core-zones‖, and ―Occupied-zones‖. When the predefined OST value is 

reached, the current temperature value of the zone where the thermostat is located is regarded as 

the thermostat set point, and the temperature difference between the occupied space and the 

thermostat position may be determined as well.  

 Step 3: Computation of the required heating energy  

Once the thermostat set point was determined in Step 2, the required heating energy  ̇        

for the room space (Figure 5.11) will be calculated using the relation as follows: 

  ̇         ̇             , [W or Btu/hr]       (5.12) 

where  ̇  (kg/s or lbm/s) is the current supply airflow rate from the diffuser;    (J/kg K or 

Btu/lbm 
o
F) is the specific heat;     (

o
C or 

o
F) is the supply air temperature that is a constant 

(32.2
o
C or 90 

o
F); and      (

o
C or 

o
F) is the return temperature which is the air temperature of 

the zone that is close to the return opening.      is sensitive to many factors, such as thermostat 

locations, diffuser locations, house envelop and constructions, outdoor weather conditions, and 

so on.  

In a simulation, these three steps will be repeated at every time step to compute the 

hourly thermostat set point and required heating energy.  

5.1.5.1.3 Case studies. In this application, three cases have been studied, using the 

aforementioned integrated thermal model and simulation procedures, in order to estimate the 

appropriate thermostat set points and the corresponding heating energy, and also to investigate 

how the room thermostat set points affect the required heating energy and indoor thermal 

comfort.  
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In this simulation, the room is evenly subdivided into 200 zones (5×5×8) by using the 

integrated thermal model. Therefore,    , ,   represents the air temperature of the zone (i,j,k), 

where i =1~5, j = 1~5, and k = 1~8. 

For the ―Core-zones‖ scheme, the average temperature of the room core zones, (2,3,4), 

(2,3,5), (3,3,4), (3,3,5), (4,3,4), and (4,3,5), is regarded as the OST which is defined as: 

                  , ,  +    , ,  +    , ,  +    , ,  +    , ,  +    , ,     . [
o
C or 

o
F] (5.13) 

For the ―Occupied-zones‖ scheme, the average temperature of the occupied space (the 

average temperature of the M = 63 zones constituting the occupied space) is the OST which is 

defined as: 

                   ∑   , ,     ,  [
o
C or 

o
F]      (5.14) 

where i and j varies from 2 to 4, and k varies from 1 to 7.  

The three cases are studied considering a constant supply air temperature (32.2
o
C or 90 

o
F) of the UFAD system and three different OT values (18

o
C (64.4 

o
F) – Case 1, 20

o
C (68 

o
F) – 

Case 2, and 22
o
C (71.6 

o
F) – Case 3) corresponding to these three case studies. 

5.1.5.1.4 Simulation results. Figure 5.15, 5.21, and 5.27 display the thermostat set points 

of the different schemes (―Uniform-zones‖, ―Core-zones‖, and ―Occupied-zones‖) for the cases 

1, 2, and 3, respectively. Figure 5.16, 5.22, and 5.28 display the temperature differences between 

the OTs (various OST schemes) and the thermostat set points (the temperature at the thermostat 

location) of the cases 1, 2, and 3, respectively. Figure 5.17 (Case 1), 5.23 (Case 2), and 5.29 

(Case 3) show the corresponding required heating energy of these different schemes and the one-

zone model. Figure 5.18, 5.19, and 5.20 display the zonal and one-zone PMV profiles of these 

three schemes, ―Uniform-zones‖, ―Core-zones‖, and ―Occupied-zones‖, respectively, of the case 

1; Figure 5.24, 5.25, and 5.26 display the zonal and one-zone PMV profiles of these different 



66 

 

 

 

schemes of the case 2; and Figure 5.30, 5.31, and 5.32 display the zonal and one-zone PMV 

profiles of these different schemes of the case 3. In these figures of the cases 1, 2 and 3, the 

―One-zone‖ represents the results of the conventional single/multi-zone thermal model.  

 

 

 

 

   

 

Figure 5.16 Temperature differences 

between the thermostat set points 

and the OTs of Case 1 

Figure 5.15 Thermostat set points of 

Case 1  

Figure 5.17 Required heating energy of 

Case 1 
Figure 5.18 PMVs for the ―Uniform-

zones‖ scheme of Case 1 
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Figure 5.19 PMVs for the ―Core-

zones‖ scheme of Case 1 Figure 5.20 PMVs for the ―Occupied-

zones‖ scheme of Case 1 

Figure 5.21 Thermostat set points of 

Case 2  

  

Figure 5.22 Temperature differences 

between the thermostat set points and the 

OTs of Case 2  

Figure 5.23 Required heating energy of 

Case 2 

Figure 5.24 PMVs for the ―Uniform-

zones‖ scheme of Case 2 
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Figure 5.25  PMVs for the ―Core-

zones‖ scheme of Case 2  

Figure 5.26 PMVs for the ―Occupied-

zones‖  scheme of Case 2 

Figure 5.28  Temperature differences 

between the thermostat set points and 

the OTs of Case 3 

Figure 5.27 Thermostat set points of 

Case 3  

  

Figure 5.29 Required heating energy of 

Case 3  

Figure 5.30 PMVs for the ―Uniform-

zones‖ scheme of Case 3   
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As shown in the figures 5.15, 5.21, and 5.27, the different OST schemes and OT values 

account for the different thermostat set point profiles. These thermostat set points are higher or 

lower than the corresponding OT values, depending on the different OST schemes (―Uniform-

zones‖, ―Core-zones‖, and ―Occupied-zones‖). When the ―Core-zones‖ scheme is used, the 

thermostat set points have the lowest values, since this scheme considers only the central zones 

in the calculation of OST, thus a significant temperature difference between the center (OT) and 

the perimeter space (thermostat set point) of the room exists (Figure 5.16, 5.22, and 5.28). When 

the involved zone number for OST scheme calculations is increased, such as the ―Uniform-

zones‖ and ―Occupied-zones‖ schemes, the thermostat set points are approaching the result of 

the conventional single/multi-zone thermal models, especially for the ―Uniform-zones‖ scheme. 

In the conventional single/multi-zone thermal models, constant set point temperatures are 

utilized, and thus there is no difference between the thermostat set point and the OT, as shown in 

the figures 5.16, 5.22, and 5.28. In these figures, significant temperature differences are observed 

especially when the ―Core-zones‖ scheme is used. These figures also reflect the different levels 

of the uniformity of the room temperature distribution when diverse OST schemes applied. From 

Figure 5.32 PMVs for the ―Occupied-

zones‖ scheme of Case 3   
Figure 5.31 PMVs for the ―Core-zones‖ 

scheme of Case 3   
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the figures 5.16, 5.22, and 5.28, as the OT values increase from 18
o
C (64.4 

o
F) to 22

o
C (71.6 

o
F), 

the magnitudes of the temperature differences of these three schemes decrease. This implies that, 

in these cases, higher OT values may lead to more uniform room temperature distributions.  

As shown in the figures 5.17, 5.23, and 5.29, the conventional single/multi-zone thermal 

models always give the highest heating energy, even though its thermostat set point is not at its 

highest value. These significant differences of required heating energy between the conventional 

single/multi-zone models and the integrated model are caused by the simplified method used by 

the single/multi-zone models at the level of thermal and airflow modeling. In the conventional 

single/multi-zone thermal models, a uniform environment is assumed, in which air is perfectly 

mixed. The difference between these two models is even more important when significant 

temperature gradients exist in a space. Additionally, although, in these three cases, the ―Core-

zones‖ scheme always gives the lowest heating energy (Figure 5.17, 5.23, and 5.29), it causes an 

uncomfortable indoor environment, especially when the OT value is low (18
o
C or 64.4 

o
F). 

When a high OT value is used (22
o
C or 71.6 

o
F), an acceptable indoor environment is created by 

the ―Core-zones‖ scheme, and the corresponding heating energy are also lower than the other 

two schemes. 

The PMV index profiles of these three cases show that, in consideration of thermal 

comfort, the ―Uniform-zones‖ scheme is preferred for use (especially for a room characterized 

by a significantly non-uniform temperature distribution) when the OT value is low, like 18
o
C 

(64.4 
o
F). Higher OT values, i.e. 22

o
C (71.6 

o
F), are needed, when the ―Core-zones‖ scheme is 

used. The results of the ―Occupied-zones‖ scheme have intermediate values between the results 

of the other two schemes. The PMV results of the conventional single/multi-zone thermal models 

seem to be in between the PMV values of the ―Uniform-zones‖ scheme in these three cases. It is 
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difficult to conclude about the best scheme that needs to be used. In various circumstances, 

adjusting the design OT values and using different schemes is a suggested method to optimize 

the thermostat set points and then to achieve less HVAC system energy consumption or a 

comfortable environment, or both, as required by the designer. Therefore, for these three cases, 

the OT = 20
o
C (68

o
F) with the ―Uniform-zones‖ scheme is suggested if the indoor thermal 

comfort levels are critical; otherwise, the OT = 18
o
C (64.4

o
F) with the ―Uniform-zones‖ scheme, 

the OT = 20
o
C (68

o
F) with the ―Occupied-zones‖ scheme, or the OT = 22

o
C (71.6 

o
F) with the 

―Core-zones‖ scheme is suggested for energy saving consideration. 

The results and discussions mentioned above demonstrate the heating performance and 

feasibility of an UFAD system used in a residential house. Further investigations of the 

performance of an UFAD system under heating operation will be carried out in the following 

application where the comparison of this system with an overhead air distribution system in 

terms of required heating energy and thermal comfort will be performed. 

5.1.5.1.5 Summary. In this application, a temperature control strategy, along with three 

different schemes, ―Uniform-zones‖, ―Core-zones‖, and ―Occupied-zones‖, has been 

investigated through three case studies, in which different OTs have been considered, in order to 

determine the appropriate thermostat set points, room required heating energy, and thermal 

comfort indices (PMV) of an UFAD system applied in a one-room residential house.  

After the comparisons and analysis of the results, we conclude that at the building design 

stage: 

 If a room is characterized by a significantly non-uniform temperature distribution, 

the ―Uniform-zones‖ scheme is preferred for use, especially when the design OT 

value is low, like 18
o
C (64.4

o
F), for winter seasons. If the ―Core-zones‖ scheme is 
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applied in this situation, analysis and simulations are needed to determine the 

appropriate OT, instead of the common value 20
o
C (68

o
F). Otherwise, an 

uncomfortable environment would be created.  

 The existence of the difference between the OT and the thermostat-position 

temperature has been proved. This difference increases, when the temperature 

distribution becomes non-uniform.  

 The conventional well-mixed single/multi-zone model in building energy prediction 

is not appropriate to use for UFAD systems. Instead, a detailed air model, such as the 

zonal model POMA, should be applied. 

Besides, this integrated thermal model may be used when the building is under operation. 

For example, the information, such as the thermostat set points determined by using the approach 

mentioned in this section, can be obtained at the design stage through pre-simulations 

considering different factors that can affect the indoor air thermal behaviors, such as outdoor 

weather conditions, thermostat locations, the characteristics of HVAC system diffusers, or even 

people‘s activities. The results from these pre-simulations may be stored as a data base in the 

BMS of a building. When the building is under operation, the BMS may compute the appropriate 

set point for every room space, based on the current room thermostat feedback and the 

information included in the data base. This set point is not only able to maintain a desirable 

comfort level in the occupied space, but also to optimize the energy consumption, as designed at 

the design stage. The more factors considered in the pre-simulations, the more accurate results 

from the BMS are achieved. 
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Moreover, this integration approach may be utilized in existing buildings to correct the 

unreasonably high energy bills and/or to deal with occupants‘ complaints regarding discomfort 

by resetting the thermostat set points without making significant changes and retrofits.   

5.1.5.2 The second application – the prediction of required heating energy 

corresponding to different thermostat locations. In this application, two cases considering 

different slab-on-grade floor constructions have been studied. The thermal characteristics of the 

four external walls, the floor, as well as the roof used in the first case study are presented in the 

tables 5.3 and 5.4. In the second case study, the same thermal characteristics of the four external 

walls (Table 5.3), the raised floor, and the roof (Table 5.4) are utilized; while the U-value of the 

slab-on-grade floor construction is changed from 0.313 to 0.834 (W/m
2
 K) (0.055 to 0.15 Btu/hr 

ft
2
 
o
F) as a consequence of the absence of insulation materials. In these two cases, the thermostat 

set point is assumed as a constant, i.e. 20
o
C (68

 o
F), and 200 subdivisions are used in the 

integrated thermal model. 

5.1.5.2.1 Description of the simulation procedures. In this simulation, the developed 

integrated thermal model is used to estimate the hourly required heating energy of the residential 

building and to quantify the impact of the different thermostat locations on the building heating 

energy. The simulation procedure is described below: 

 Step 1: Selection of the supply air temperature for the room space (Figure 5.11) 

A supply air temperature for the residential house under heating operation needs to be 

selected. In consideration of the characteristics of UFAD systems and the thermal comfort of the 

occupants, a constant supply air temperature 29.4
o
C (85

o
F) from the floor diffuser is selected for 

this application. Although a higher temperature is acceptable, it may cause draft and discomfort 

of the occupants (ASHRAE Standard 55, 2004).   
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 Step 2: Selection of the location of thermostat  

Typically, the thermostat location in a space is defined using the mesh grid of the 

simulation model. Any zone or subdivision within the space may be used for the thermostat 

location. A typical thermostat location (shown in the figure 5.6) is considered in this application. 

Several zones vertically above the floor diffuser are not considered as the thermostat locations, 

since the heating energy results would be close to zero.  

 Step 3: Determination of the Design Temperature Distribution (DTD) 

In order to be able to use the integrated thermal model to predict the heating energy, a 

new concept needs to be introduced, which is equivalent to the concept of the Indoor Design 

Temperature (IDT) of the conventional single/multi-zone thermal model. Unlike the IDT of the 

single/multi-zone thermal model, this new concept uses an intended temperature distribution, 

instead of a single value, to represent the indoor design temperatures. This intended temperature 

distribution is called Design Temperature Distribution (DTD) that can be used to determine the 

hourly required heating energy of the house. In fact, DTD has the same meaning with the IDT of 

the single/multi-zone thermal model. The only difference between them is that, IDT is a single 

temperature value representing the average air temperature of the room, while DTD is a 

temperature distribution calculated by using the integrated thermal model.  

For the IDT of the single/multi-zone thermal model, it is easy to be determined, for 

example 20
o
C (68

o
F) (ASHRAE Fundamentals, 2005; ASHRAE Standard 55, 2004). However, 

the pre-determination of DTD is not as simple as the determination of IDT. DTD is sensitive to 

many factors, such as the location of thermostat, the type of HVAC system, etc. Different HVAC 

systems or various thermostat locations would have distinct DTDs. The approach to determine 

the DTD of an UFAD system is shown below.  
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The supply airflow rate (energy-effect parameter) of the UFAD system (the supply air 

temperature maintains a constant value shown in Step 1) is adjusted (increased or decreased) 

gradually. When the supply airflow rate changed, the room thermal behaviors, i.e. the room air 

temperature distributions, would be changed as well. Therefore, for each airflow rate, there is a 

corresponding room air temperature distribution profile predicted using the integrated thermal 

model. In particular, the air temperature of the zone where the thermostat is located is observed. 

As soon as this zone air temperature is equal to the thermostat set temperature, for example 20
o
C 

(68
o
F), the current air temperature distribution profile is used as the DTD for this time step, and 

the corresponding supply airflow rate is regarded as the room supply airflow requirement.  

 Step 4: Calculation of the hourly required heating energy of the room space (i.e. 

 ̇      shown in Figure 5.11) 

Once the DTD was obtained in Step 3, the required heating energy  ̇        can be 

calculated using the equation, 

 ̇         ̇               [W or Btu/hr] ,    (5.15) 

where  ̇  (kg/s or lbm/s) is the supply airflow rate from the diffuser, which was determined in 

Step 3; cp (J/kg K or Btu/lbm 
o
F) is the specific heat;     (

o
C or 

o
F) is the supply air temperature 

that is a constant and equal to 29.4
o
C (85

o
F) determined in Step 1; and      (

o
C or 

o
F) is the 

return air temperature based on the current DTD, which is the air temperature of the zone that is 

close to the return opening and is obtained from the integrated thermal model.  

 Step 5: Calculation of the total required heating energy  ̇        of the house (i.e. the 

room space  ̇        + floor plenum space  ̇      (Figure 5.11)) 

To determine the required heating energy of the floor plenum space, a similar procedure 

as mentioned in Step 3 and 4 can be applied. In this procedure, instead of the supply airflow rate, 

the supply air temperature (energy-effect parameter) of the floor plenum from the outlet of the 
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air conditioning unit is adjusted gradually and needs to be determined. The supply airflow rate, 

which was determined in Step 3 and the leaving air temperature of the floor plenum, which was 

determined in Step 1 and regarded as the supply air temperature of the room space, i.e. 29.4
o
C 

(85
o
F), are known. Therefore, for each supply air temperature of the floor plenum space, a 

corresponding leaving air temperature of this space can be predicted by using the multi-zone 

thermal model. As soon as the predicted leaving air temperature is equal to 29.4
o
C (85

o
F), the 

current supply air temperature will be determined for this floor plenum space. Then, using the 

equation 5.15, the required heating energy of the floor plenum space can be calculated. Finally, 

the total heating energy  ̇      of the entire house can be computed by the summation of the 

required heating energy for both the room space and the floor plenum.  

These steps for various thermostat locations and different time steps can be repeated, if 

needed. The flowchart in the figure 5.33 demonstrates this procedure. 
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Figure 5.33 Flow chart of the simulation procedure 



78 

 

 

 

5.1.5.2.2 Results and discussions. The results of the cases 1 and 2 are shown below. In 

the figures 5.34 and 5.35, ―Single Zone‖ represents the required heating energy result of the 

conventional single/multi-zone thermal model, which is equivalent to   ̇     in the figure 5.10; 

―Single Zone Rm+Plnm‖ represents the result of the total required heating energy of the room 

and plenum, which is equivalent to  ̇      + ̇      in the figure 5.11 and is calculated by applying 

the conventional single/multi-zone thermal model to the room space and the floor plenum 

respectively; ―Typical thermostat location Rm+Plnm‖ represents the required heating energy 

summation of the room and plenum when the thermostat is located at the typical position (Figure 

5.6) and applying the integrated thermal model to the room space and the single/multi-zone 

thermal model to the plenum; and ―Different thermostat locations Rm+Plnm‖ represents the 

different required heating energy summations of the room and plenum according to different 

thermostat positions, applying the integrated thermal model to the room space and the 

single/multi-zone thermal model to the plenum. In the figures from 5.34 to 5.41, if they are not 

specified, these above-mentioned terminologies keep the similar meanings in terms of the use of 

the corresponding simulation model, i.e. ―Single Zone‖ represents the use of the single/multi-

zone thermal model to the entire house; ―Single Zone Rm+Plnm‖ represents the use of the 

single/multi-zone thermal model to the room space and the floor plenum respectively; ―Typical 

thermostat location Rm+Plnm‖ represents the use of the integrated thermal model to the room 

space and the single/multi-zone thermal model to the plenum, when the thermostat is located at 

the typical position (Figure 5.6); and ―Different thermostat locations Rm+Plnm‖ represents the 

use of the integrated thermal model to the room space and the single/multi-zone thermal model 

to the plenum considering different thermostat positions.  
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The required heating energy of the cases 1 and 2 are displayed in the figures 5.34 and 

5.35, respectively. Different thermostat locations account for various heating energy behaviors. 

Additionally, the results of ―Single zone‖ (  ̇    ) and ―Single zone Rm+Plnm‖ (  ̇      + ̇     ) 

are different, demonstrating that the conventional single/multi-zone thermal model is not able to 

accurately predict the required heating energy of the UFAD system if considering the entire 

room as a whole (Figure 5.10). In these two figures, the results of ―Single zone‖ show that the 

conventional method that is suitable for overhead air distribution systems can significantly 

overestimate the heating energy for the UFAD system, which can lead to a wrong HVAC system 

sizing. Although the ―Single zone Rm+Plnm‖ model that treats the entire room into two 

separated spaces (the room space and the plenum) gives relatively reasonable results, it still 

overestimates the required heating energy in comparison with the results of ―Typical thermostat 

location Rm+Plnm‖. Compared to the results of the case 1 (Figure 5.34), higher heating energy 

are observed for the case 2 (Figure 5.35) because of the poor slab-on-grade floor construction 

and the absence of insulation materials in the case 2. Moreover, in comparison of the figure 5.34 

with 5.35, the results of either ―Single Zone Rm+Plnm‖ or ―Typical thermostat location 

Rm+Plnm‖ between these two figures demonstrate an 15% difference in terms of heating energy, 

and an 8% difference for the ―Single Zone‖ results. Therefore, it is concluded that about 15% 

heating energy is able to be saved in the UFAD system under heating operation if the slab-on-

grade floor construction of the residential house is well thermally protected. This implies that, for 

UFAD systems used in residential houses, the slab-on-grade floor construction plays a 

significant role in energy saving, and designers should pay more attention to the thermal 

protection of the floor construction, especially considering the possibility of condensation issues. 



80 

 

 

 

Figure 5.36 and 5.37 demonstrate the calculated supply airflow requirements for the cases 

1 and 2, respectively. In these two figures, compared to the ―Single Zone‖ airflow rates, only 

about a half of the supply airflow rates are needed for the UFAD system when the room space 

and the plenum are treated separately in the calculations. This implies that about a half of supply 

airflow requirements could be reduced, if UFAD systems are applied compared to the 

conventional overhead air distribution method. The airflow rate differences of the ―Single zone‖ 

results between the figures 5.36 and 5.37 are caused by the different slab-on-grade floor 

constructions. The similarity of the airflow rate results of ―Single zone Rm+Plnm‖, ―Typical 

thermostat location Rm+Plnm‖, and ―Different thermostat locations Rm+Plnm‖ between these 

two figures are due to the fact that, when the entire room is separated into two spaces (the room 

space and the plenum), only the plenum is significantly thermally influenced by the slab-on-

grade floor construction, while the thermal behaviors of the above room space are not evidently 

disturbed. Therefore, even though the slab-on-grade floor construction is changed in the case 2, 

the supply airflow requirement for the above room space is not affected significantly between 

these two cases.  

The ―Single zone Rm+Plnm‖ in the figures 5.38 (Case 1) and 5.39 (Case 2) represents the 

required heating energy ratio of the ―Single zone‖ to the ―Single zone Rm+Plnm‖ results shown 

in the figures 5.34 and 5.35; and ―Typical thermostat location Rm+Plnm‖ represents the required 

heating energy ratio of the ―Single zone‖ to the ―Typical thermostat location Rm+Plnm‖ results 

shown in the figures 5.34 and 5.35. The figures 5.38 and 5.39 indicate that the required heating 

energy for the UFAD system can be approximately 25% less than that for the conventional 

overhead air distribution system in the well-insulated house (Case 1), and 17% less if the house 

is poorly insulated (Case 2), when the ―Typical thermostat location Rm+Plnm‖ results are 
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considered. These values become 20% less for the well-insulated house (Case 1) and 13% less 

for the poorly insulated house (Case 2), when the ―Single Zone Rm+Plnm‖ results are 

considered. The less heating energy demonstrates the potential energy savings using UFAD 

systems instead of overhead air distribution systems in residential houses.  

The figures 5.40 and 5.41 show the zonal PMV and PPD profiles of the room space 

respectively, when the thermostat is located at the typical location (Figure 5.6). These two 

figures are for either the case 1 or 2, because, as mentioned above, the thermal behaviors of the 

room space are not significantly thermally influenced by the slab-on-grade floor construction, 

and thus the room-space PMV/PPD profiles for both the cases 1 and 2 are very close. In these 

two figures, these PMV and PPD profiles display that, for several zones, the PMV values are 

high and reach up to 1.2 (PPD: 35%), due to the fact that these zones are close to the floor 

diffuser. In addition, the majority of the PMV index values of the other zones are near the neutral 

point (around zero), demonstrating a comfortable environment within the room space when the 

UFAD system is applied. However, the ―Single zone‖ PMV/PPD results in both the figures 5.40 

and 5.41 indicate a slightly uncomfortable environment (-0.4 for PMV) within the entire room 

space when the conventional overhead system is used.  

 



82 

 

 

 

 

 

 

Figure 5.35 Required heating 

energy of the case 2 

Figure 5.34 Required heating 

energy of the case 1 

Figure 5.37 Supply airflow rate 

requirements of the case 2 

Figure 5.36 Supply airflow rate 

requirements of the case 1 

Figure 5.39 Required heating 

energy ratio of the case 2 
Figure 5.38 Required heating energy 

ratio of the case 1 
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 5.1.5.2.3 Summary. The case studies using the integrated thermal model have revealed 

the importance of detailed room air models for predicting building heating energy and have 

demonstrated the needs of substituting the use of conventional single/multi-zone models. The 

heating energy calculations for UFAD systems have been optimized by geometrically 

subdividing a room into several zones in the integrated thermal model and then by investigating 

the appropriate thermostat locations for either energy savings or better people‘s comfort levels.  

The analysis performed show that, 

- The conventional well-mixed single/multi-zone thermal method is not appropriate to 

use for UFAD systems in building heating energy predictions. Otherwise, as shown in the case 

study of this application, the overestimations in terms of heating energy (about 25% for the case 

1 and 17% for the case 2) may occur. Therefore, advanced airflow models, such as zonal models, 

need to be used.  

- When an UFAD system is applied in a residential house for heating purposes in winter, 

the house slab-on-grade floor construction needs to be well insulated in order to avoid excessive 

Figure 5.41 Room-space PPD profiles of 

the typical thermostat location 

Figure 5.40 Room-space PMV profiles of 

the typical thermostat location 
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heat losses. Otherwise, as shown in the case study, approximately 15% higher heating energy is 

required for the poorly insulated floor construction case.    

- Compared to a conventional overhead air distribution system, an UFAD system has the 

potential to reduce the room supply airflow requirements, when it is applied under heating 

operation in a residential house, regardless of the ventilation requirements of codes and 

standards. The reduction of the room airflow requirement for the UFAD system may be around 

50%, as shown in the figures 5.36 and 5.37. Furthermore, these potential savings in terms of 

room supply airflow requirement account for the significant savings in terms of heating energy, 

i.e. about 25% for the well thermally protected house and about 17% for the poorly insulated 

house, as shown in the figures 5.38 and 5.39, respectively.  

- The predictions of PMV and PPD have shown that a more comfortable environment 

(around 0 for PMV) may be created using an UFAD system than a conventional overhead air 

distribution system (-0.4 for PMV) under heating operation in the residential house. 

- The different thermostat locations indeed affect the building energy consumption/load, 

as shown in the figures 5.34 and 5.35. As a matter of fact, thermostat location is an important 

factor, which influences building energy/load, room ventilation requirements, human thermal 

comfort, and even the effectiveness of HVAC systems. Therefore, designers or researchers 

should pay more attention to the impacts of thermostat location in building energy 

design/simulation.  
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5.2 Predictions of Thermostat Set Point and Design Heating Load for Energy Saving 

and/or Better Indoor Thermal Comfort of a General Heating System – Natural Convection 

Cases  

In this section, the integrated thermal model that has the ability to simulate a general 

heating system has been developed, described, validated, and then used to quantify the 

temperature difference between the occupied space and the thermostat position, under several 

building construction situations. The factors that influence the magnitude of this temperature 

difference have been also investigated. Additionally, the characteristics of this integrated thermal 

model to perform calculations related to building load and energy consumption according to 

different thermostat locations have been demonstrated, which make the optimization of 

thermostat location, i.e. the determination of the thermostat locations associated with the highest 

or lowest energy consumption, possible at the design stage for the sake of the achievement of 

building energy savings and/or the improvement of people‘s thermal comfort levels. Several case 

studies considering different types of building constructions of a residential house have been 

included. 

5.2.1 Model description and validation. Unlike the forced air distribution system, a 

general heating system stands for a natural convection air conditioning system. Therefore, in the 

integrated thermal model, the thermal jet flow model is not needed, since the original zonal 

model POMA is able to predict the thermal behavior of a room with the general heating system.  

Before the usage of this integrated thermal model, the reliability of the original zonal model 

POMA has to be verified.  

The validation of the zonal model POMA is performed in terms of temperature behavior, 

considering three different cases. A one-room residential house with the size 3.1 m × 3.1 m × 2.5 
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m (10.2 ft × 10.2 ft × 8.2 ft), is considered in the validation. Table 5.5 displays the boundary 

conditions (surface temperatures) for these validation cases, in which the one-room residential 

house is subdivided into 60 zones (6×1×10) as shown in the figure 5.42, in consideration of the 

fact that the inside surface temperatures of the north and south walls of this house are very close, 

as shown in the table 5.5, and thus only one zone is used in the north-to-south direction. In the 

validation, no window is considered except for the case 3, in which a window with the area of 

3.1 m
2
 (3.1 m × 1.0 m) or 33.46 ft

2
 (10.2 ft × 3.28 ft) is installed on the west wall. 

Table 5.5 Conditions used in the validations  

 
North 

[
o
C] 

([
o
F]) 

South 

[
o
C] 

([
o
F]) 

East 

[
o
C] 

([
o
F]) 

West 

[
o
C] 

([
o
F]) 

Ceiling 

[
o
C] 

([
o
F]) 

Floor 

[
o
C] 

([
o
F]) 

West 

Window 

[
o
C] ([

o
F]) 

Case 1  
20.60 

(69.1) 

20.58 

(69.0) 

20.01 

(68.0) 

15.97 

(60.8) 

20.88 

(69.6) 

20.90 

(69.6) 
No window 

Case 2 
20.23 

(68.4) 

20.20 

(68.4) 

19.65 

(67.4) 

19.65 

(67.4) 

20.51 

(68.9) 

20.54 

(69.0) 
No window 

Case 3 
21.02 

(69.8) 

21.00 

(69.8) 

20.41 

(68.7) 

16.20 

(61.2) 

21.29 

(70.3) 

21.31 

(70.4) 
8.01 (46.4) 

 

 

 
 

 

Roof 

West East 

Floor 

Figure 5.42 Zone divisions 
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These validation results corresponding to different cases are shown below, demonstrating 

the comparisons of temperature distribution between the zonal model and the CFD model 

PHOENICS (2010). The figures 5.43 and 5.44 display the temperature comparison for the case 1. 

The figures 5.45 and 5.46 are for the case 2; and the figures 5.47 and 5.48 are for the case 3. As 

shown in these figures, good agreements can be observed due to the similar patterns of the 

temperatures between the zonal and CFD models. This similarity verifies the ability of the zonal 

model to predict indoor thermal behavior of a building.  

 

 

 

 

 

Figure 5.44 Temperature distribution [
°
C] of 

Case 1 using CFD model PHOENICS 

(31×20×25)  

Figure 5.43 Temperature distribution [
°
C] 

of Case 1 using zonal model (6×1×10)  

Figure 5.45 Temperature distribution [
°
C] of 

Case 2 using zonal model (6×1×10)   
Figure 5.46 Temperature distribution [

°
C] 

of Case 2 using CFD model PHOENICS 

(27×27×25)   
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5.2.2 Basic simulation conditions for the applications. The January 1st at Geneva, 

Switzerland, is selected in the simulation. The figure 5.49 shows the local outdoor temperatures 

as well as the horizontal solar radiation on the simulation day during a typical winter season. The 

one-room residential house shown in the figure 5.42 is considered in the simulation with the size 

3.1 m × 3.1 m × 2.5 m (10.2 ft × 10.2 ft × 8.2 ft). The preliminary simulations show that the 

inside surface temperatures of the north and south walls of the building are very close, and thus 

only one zone is applied in the north-south direction. Then, in the zonal model, this room is 

subdivided into 60 zones (6×1×10). Theoretically, each zone in the subdivisions can be a 

potential thermostat location. Thus, the location of thermostat can be any of the 60 zones shown 

in the figure 5.42. Also, in the figure 5.42, the location (5,6) is regarded as the typical thermostat 

position that is about 1.5 m (4.9 ft) above the floor and is a conventional thermostat position 

generally considered by HVAC designers. The infiltration and the internal gains are not 

considered in this simulation. A seated man with trousers and a long-sleeved shirt is assumed in 

the thermal comfort PMV and PPD predictions.  

Figure 5.48 Temperature distribution [
°
C] of 

Case 3 using CFD model PHOENICS (31×

20×30)  

Figure 5.47 Temperature distribution [
°
C] 

of Case 3 using zonal model (6×1×10)  
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In the applications, four cases are studied, considering different house structures and 

constructions, in order to demonstrate the prediction ability of this integrated thermal model in 

terms of hourly heating load. 

In the cases 1 and 2, two different thermal mass constructions (light-Case 1 and heavy-

Case 2) are simulated. The thermal mass characteristics of these two building constructions are 

shown in the table 5.6. For these two situations (light and heavy), the overall heat transfer 

coefficients (U-value) of the house structures, i.e. the walls, roof, and floor, are assumed to 

remain constant. The thermal characteristics of the house structures are presented in the tables 

5.7 and 5.8.  

In the case 3, the same walls, floor, and roof of the light thermal mass construction 

situation (case 1) are used, except the overall heat transfer coefficient of the west wall 

construction which is reduced from 2.218 W/m
2 

K (0.39 Btu/hr ft
2
 

o
F) to 0.588 W/m

2 
K (0.1 

Btu/hr ft
2
 
o
F), as a consequence of the addition of insulation materials on the west wall.  

Figure 5.49 Outdoor temperatures and solar radiation 
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In the case 4, the same walls, floor, and roof of the light thermal mass construction 

situation (case 1) are used. Besides, a window, with the area of 3.1 m
2
 (3.1 m × 1.0 m) or 33.46 

ft
2
 (10.2 ft × 3.28 ft), the heat transfer coefficient (U-value) of 5.68 W/m

2
K (1.0 Btu/hr ft

2
 
o
F), 

and the solar heat gain coefficient (SHGC) of 0.855, is assumed to be installed on the west wall 

(Figure 5.42). An ideal internal shading device is assumed to be used as well, which is capable of 

blocking 100% solar radiation. In other words, no solar radiation can go into the room through 

this window. In these four cases, no window is considered except for the case 4.  

Table 5.6 Thermal mass characteristics of building materials (ASHRAE Fundamentals, 2005)  

  Heavy Light 

 

Conductivity  

kJ/h m K  

(Btu/hr ft 
o
F) 

Specific Heat  

kJ/kg K  

(Btu/lbm 
o
F) 

Density  

kg/m
3 

 (lbm/ft
3
) 

Specific Heat  

kJ/kg K  

(Btu/lbm 
o
F) 

Density  

kg/m
3
  

(lbm/ft
3
) 

Brick 

3.2  

(0.51) 

1  

(239) 

2000 

(125) 

0.8  

(191) 

1600  

(100) 

Insulation 

0.144  

(0.023) 

0.8  

(191) 

240  

(15) 

0.8  

(191) 

40  

(2.5) 

Concrete 

7.56  

(1.21) 

0.92  

(220) 

3000 

(187) 

0.8  

(191) 

1360  

(85) 

 

 

Table 5.7 Characteristics of the external walls  

External  

Walls 

Area  

m
2
 

(ft
2
) 

U-Value  

W/m
2
 K 

(Btu/hr ft
2 

°F) 

Solar 

Absorptance 

Convective Heat Transfer 

Coefficient W/m
2 

K (Btu/hr ft
2 

°F) 

Inside Outside Inside Outside 

North 

7.75 

(83.4) 0.339 (0.06) 0.75 0.3 4.2 (0.74) 17.8 (3.13) 

South 

7.75 

(83.4) 0.339 (0.06) 0.75 0.3 4.2 (0.74) 17.8 (3.13) 

East 

7.75 

(83.4) 0.588 (0.1) 0.75 0.3 4.2 (0.74) 17.8 (3.13) 

West 

7.75 

(83.4) 2.218 (0.39) 0.75 0.3 4.2 (0.74) 17.8 (3.13) 
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Table 5.8 Characteristics of the floor and roof  

 

Area  

m
2
 

(ft
2
) 

U-Value  

W/m
2
 K 

(Btu/hr ft
2 

°F) 

Solar 

Absorptance 

Convective Heat Transfer Coefficient  

W/m
2 

K (Btu/hr ft
2 

°F) 

Inside Outside Inside Outside 

Floor 

9.61 

(103) 0.313 (0.055) 0.8 - 2.1 (0.37)  - 

Roof 

9.61 

(103) 0.233 (0.041) 0.35 0.75 5.2 (0.92) 17.8 (3.13) 

 

5.2.3 The applications of the integrated thermal model in building environment. In 

this section, this integrated thermal model has been used into two applications associated with a 

general heating system, with which the heating loads are determined using the heat loss 

equations from building structures, and thus the room thermal behavior associated with this 

system are dominated by natural convection.  In the first application, the appropriate thermostat 

set points have been predicated corresponding to less heating load of the general heating system 

and/or to a comfortable environment for occupants, when the thermostat is maintained at one 

location. In the second application, the integrated thermal model has been used to perform 

predictions related to building load and energy consumption according to different thermostat 

locations.  

5.2.3.1 The first application – the prediction of appropriate thermostat set point. In this 

application, the integrated thermal model has been applied to predict thermostat set point for 

energy savings and/or better indoor thermal comfort. A temperature control strategy along with 

three different schemes has been investigated through the four case studies, in which several 

construction types of a one-room residential house have been considered as described in the 

section 5.2.2, in order to determine the thermostat set points, room heating loads, and thermal 

comfort indices (PMV).  
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The three schemes used in the application, including ―Occupied-zones‖ ―Uniform-zones‖, 

and ―Core-zones‖, have been defined in the equation 5.9, 5.10, and 5.11 respectively in the 

section 5.1.5.1.1.  

5.2.3.1.1 Description of the simulation procedures. The procedure to estimate the 

thermostat set points (temperature values of the zone where the thermostat is located) and their 

corresponding room heating loads are described below: 

 Step 1: Selection of the OT value, and the thermostat position 

The value of OT in this application is selected, which is 20
o
C (68

o
F), for economic 

consideration. The position (5,6), shown in the figure 5.42, is specified as the typical thermostat 

position used in this application. 

 Step 2: Determination of the thermostat set point 

The predefined values of the OST, which are the OT values in Step 1, will be approached 

by gradually adjusting the IDT (energy-effect parameter) of the integrated thermal model which 

is utilized to predict the temperature distributions corresponding to the different schemes, 

―Uniform-zones‖, ―Core-zones‖, and ―Occupied-zones‖ (the discussion about the relationship 

between IDT and the integrated thermal model can be found in the section 5.2.3.2.1.). When the 

predefined value of the OT is reached, the current temperature value of the zone, i.e. Location 

(5,6) (Figure 5.42), is regarded as the thermostat set point, and the temperature difference 

between the occupied space and the thermostat position may be determined as well.  

 Step 3: Computation of the heating loads of the house 

Once the thermostat set point was determined, its corresponding room surface 

temperatures that were used by the integrated thermal model to compute the indoor thermal 
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behaviors and to approach the OT in Step 2 are also known. Using these surface temperatures 

and the energy balance equation 

∑  ,                               ,    ,   [W or Btu/hr]   (5.16) 

the new indoor design temperature,                         , can be calculated, where,   ,  

(W/m
2
 K or Btu/hr ft

2
 
o
F) is the convective heat transfer coefficient of surface i,    (m

2
 or ft

2
) is 

the area of surface i;   ,  (
o
C or 

o
F) is the temperature of surface i; and 

                        (
o
C or 

o
F) is the corrected indoor design temperature for the integrated 

thermal model to predict the heating loads. The detailed description regarding 

                        can be found in the section 5.2.3.2.1.  

In a simulation, these three steps may be repeated at every time step to compute the 

hourly thermostat set point and heating load.  

5.2.3.1.2 Case studies. Since the room is mathematically subdivided into 60 zones 

represented by (i,j) as shown in the figure 5.50, where i varies from 1 to 10 and j varies from 1 to 

6.  For the ―Core-zones‖ scheme, the average temperature of the room core zones, (5,3), (5,4), 

(6,3), and (6,4), as shown in the figure 5.50, is regarded as the OST which is defined as: 

                  ,  +    ,  +    ,  +    ,     , [
o
C or 

o
F]  (5.17) 

For the ―Occupied-zones‖ scheme, the average temperature of the occupied space (the 

average temperature of the 32 zones constituting the occupied space (Figure 5.50)) is the OST 

which is defined as: 

                  
∑   ,  

  
 ,   [

o
C or 

o
F]     (5.18) 

where i varies from 3 to 10, and j varies from 2 to 5.  
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5.2.3.1.3 Simulation results. The thermostat set points of different schemes (―Uniform-

zones‖, ―Core-zones‖, and ―Occupied-zones‖) for the cases 1, 2, 3, and 4 are displayed in the 

figures 5.51, 5.57, 5.63, 5.69, respectively. The room heating loads of these different schemes for 

the cases 1, 2, 3, and 4 are displayed in the figures 5.52, 5.58, 5.64, 5.70, respectively. The 

corresponding corrected indoor design temperatures that are used to predict the heating loads for 

the cases 1, 2, 3, and 4 are displayed in the figure 5.53, 5.59, 5.65, 5.71, respectively. Figure 5.54, 

5.60, 5.66, 5.72 show the zonal PMV profiles of the ―Uniform-zones‖ scheme for the cases 1, 2, 3, 

and 4, respectively. Figure 5.55, 5.61, 5.67, 5.73 show the zonal PMV profiles of the ―Core-zones‖ 

scheme for the cases 1, 2, 3, and 4, respectively. Figure 5.56, 5.62, 5.68, 5.74 show the zonal PMV 

profiles of the ―Occupied-zones‖ scheme for the cases 1, 2, 3, and 4, respectively. Table 5.9 provides 

a guide of figures corresponding to the different cases. In these figures, the ―One-zone‖ 

represents the results of the conventional single/multi-zone thermal model.  

 

 

West East 

Ceiling 

Floor 

Occupied 

Figure 5.50 Zone divisions of a room 

(The occupied zone: the regions marked in grey) 
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Table 5.9 Result figures for the different cases  

 Thermostat 

set points 

Heating 

loads 

Corresponding 

corrected 

indoor design 

temperatures 

Zonal PMV 

profiles of 

―Uniform-

zones‖ scheme 

Zonal PMV 

profiles of 

―Core-zones‖ 

scheme 

Zonal PMV 

profiles of 

―Occupied-

zones‖ scheme 

Case 1 Figure5.51 Figure5.52 Figure5.53 Figure5.54 Figure5.55 Figure5.56 

Case 2 Figure5.57 Figure5.58 Figure5.59 Figure5.60 Figure5.61 Figure5.62 

Case 3 Figure5.63 Figure5.64 Figure5.65 Figure5.66 Figure5.67 Figure5.68 

Case 4 Figure5.69 Figure5.70 Figure5.71 Figure5.72 Figure5.73 Figure5.74 

 

 

 

 

Figure 5.51 Thermostat set points of 

Case 1   

Figure 5.52 Heating loads of Case 1  

Figure 5.54 PMVs for ―Uniform-

zones‖ scheme of Case 1  
Figure 5.53 Corrected design temperatures of 

Case 1  
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Figure 5.55 PMVs for ―Core-zones‖ 

scheme of Case 1  
Figure 5.56 PMVs for ―Occupied-

zones‖ scheme of Case 1 

Figure 5.57 Thermostat set points of Case 2 Figure 5.58 Heating loads of Case 2  

Figure 5.59 Corrected design 

temperatures of Case 2 
Figure 5.60 PMVs for ―Uniform-zones‖ 

scheme of Case 2 
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Figure 5.62 PMVs for ―Occupied-

zones‖ scheme of Case 2  

Figure 5.61 PMVs for ―Core-zones‖ 

scheme of Case 2  

Figure 5.64 Heating loads of Case 3  
Figure 5.63 Thermostat set points of 

Case 3  

Figure 5.66 PMVs for ―Uniform-zones‖ 

scheme of Case 3  

Figure 5.65 Corrected design 

temperatures of Case 3  



98 

 

 

 

 

 

 

 

 

 

Figure 5.68 PMVs for ―Occupied-zones‖ 

scheme of Case 3  

Figure 5.67 PMVs for ―Core-zones‖ scheme 

of Case 3  

Figure 5.69 Thermostat set points of Case 4   Figure 5.70 Heating loads of Case 4 

Figure 5.72 PMVs for ―Uniform-

zones‖ scheme of Case 4 

Figure 5.71 Corrected design 

temperatures of Case 4 
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As shown in the figures 5.51, 5.57, 5.63, 5.69, the different OST schemes and OT values 

account for different thermostat set point profiles. In the conventional single/multi-zone thermal 

model, constant set point temperatures are utilized, and thus there is no difference between the 

thermostat set point and the OT, as shown in the figures 5.75, 5.76, 5.77, and 5.78, which display 

the temperature differences between the OTs (various OST schemes) and the thermostat set 

points (the temperature at the location (5,6)) of the cases 1, 2, 3, and 4, respectively. In these 

figures, there is no significant difference observed between the results of the ―Uniform-zones‖ 

and ―Core-zones‖ schemes, except for the case 4, in which a relatively non-uniform temperature 

distribution is observed due to the presence of a window on the west wall. A more uniform 

temperature distribution exists in the case 3, which causes the insignificant temperature 

differences when the ―Uniform-zones‖, ―Core-zones‖, and ―Occupied-zones‖ schemes are 

applied, as shown in the figure 5.77. The degree of the non-uniformity of the room temperature 

distribution determines the magnitude of the temperature difference between the thermostat set 

point and the OT. A non-uniform temperature distribution may result in significant temperature 

difference. No evident discrepancy is noticed between the figures 5.75 and 5.76. Consequently, 

whether the thermal mass of the building construction is light or heavy does not significantly 

Figure 5.73 PMVs for ―Core-zones‖ 

scheme of Case 4   

Figure 5.74 PMVs for ―Occupied-zones‖ 

scheme of Case 4  
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affect the thermostat design temperature and the inside temperature distribution, as long as the 

heat transfer coefficients of the building constructions at the surface levels are the same. 

However, these two thermal masses indeed account for different heating loads, as shown in the 

figures 5.52 and 5.58. A lower energy is required when the heavy thermal mass of building 

construction is applied.  

 

 

 

 

 

Figure 5.76 Temperature differences 

between the thermostat set points and the 

OTs of Case 2  

Figure 5.75 Temperature differences 

between the thermostat set points and the 

OTs of Case 1  

Figure 5.77 Temperature differences 

between the thermostat set points and the 

OTs of Case 3 

Figure 5.78 Temperature differences 

between the thermostat set points and the 

OTs of Case 4 
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The ―Occupied-zones‖ scheme, as the strictest requirement for indoor thermal comfort 

among these three schemes, requires higher thermostat set point temperatures and more energy, 

as shown in the figures 5.51, 5.57, 5.63, 5.69, as well as the figures 5.52, 5.58, 5.64, 5.70. 

Nevertheless, noticeable improvements of indoor thermal comfort level are observed when the 

―Occupied-zones‖ scheme is used compared to the other two schemes, as shown from the figures 

5.54, 5.55, and 5.56 for the case 1, the figures 5.60, 15.61, and 5.62 for the case 2, and the 

figures 5.72, 5.73, and 5.74 for the case 4. No significant difference was found from the figures 

5.66, 5.67, and 5.68 for the case 3, owing to its nearly uniform temperature distribution within 

the room. After the comparison of the PMVs for both ―Uniform-zones‖ and ―Core-zones‖ 

schemes of these 4 cases, one may conclude that an improvement of the PMVs for the ―Core-

zones‖ scheme over the ―Uniform-zones‖ scheme is only observed in the case 4. Therefore, the 

difference between these two schemes in terms of thermal comfort and energy consumption can 

be only distinguished when a significantly non-uniform temperature distribution exists within a 

room.   

 In fact, whether the room air temperature distribution is uniform or not plays a key role 

in the predictions of room thermostat set point and heating load. For a room characterized by a 

nearly uniform temperature distribution, the default design parameters of the conventional 

single/multi-zone thermal model, such as the IDT (Indoor Design Temperature) with 20
o
C 

(68
o
F), are still good to use, because of the small discrepancy of the results between the three 

OST schemes and the conventional single/multi-zone thermal model in terms of the thermostat 

set point, heating load, and corrected indoor design temperature, as shown in the figures 5.63, 

5.64, and 5.65. Oppositely, for a room characterized by a significantly non-uniform temperature 

distribution, these default design parameters of the conventional single/multi-zone thermal 
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model, i.e. the IDT, are not acceptable; instead, a corrected design temperature, as shown in the 

figure 5.71, is needed, in order to improve the design accuracy of the conventional single/multi-

zone thermal model.  

5.2.3.1.4 Summary. In this application, a temperature control strategy, along with three 

different schemes, ―Uniform-zones‖, ―Core-zones‖, and ―Occupied-zones‖, has been 

investigated through four case studies, in which different construction types of a one-room 

building have been considered, in order to determine the thermostat set points, heating loads, and 

thermal comfort indices (PMV).  

After the comparisons and analysis, we conclude that: 

For a space with a nearly uniform temperature distribution, such as the interior space of a 

building, the default design parameters of the conventional single/multi-zone thermal model, i.e. 

20
o
C (68

o
F) for the indoor design temperature, are still acceptable to use in the energy/load 

estimations and even the determination of thermostat set points when the building is under 

operation. However, for a space with a significantly non-uniform temperature distribution, such 

as the space that has exterior walls within a building, the corrected indoor design temperatures 

for the single/multi-zone thermal model are needed in the estimation of energy/load. In addition, 

the thermostat set points, for operation purposes of the building, need to be updated by using the 

values that were obtained. 

The ―Occupied-zones‖ scheme gives a more comfortable environment, compared to the 

other two schemes, but requires more energy. This temperature control strategy gives the BMS 

more control options concerning either the energy saving or indoor thermal comfort, or even 

both.  
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5.2.3.2 The second application – the prediction of heating loads corresponding to 

different thermostat locations. In this application, the developed integrated thermal model has 

been used to estimate the hourly heating loads of the residential house and to quantify the impact 

of the different thermostat locations on the building heating load. The four cases described in the 

section 5.2.2 have been studied. The simulation procedure is described below. 

5.2.3.2.1 Description of the simulation procedures 

 Step 1: Selection of the set point temperature and position of the thermostat 

Theoretically, the thermostat set point temperature is a temperature value at which the thermostat 

will transmit a signal to turn on/off the heating/cooling device (the differential or dead band is 

ignored). Unlike the IDT of the single/multi-zone thermal model, this set point temperature 

represents the local thermostat-position air temperature, rather than the average air temperature 

of this entire room. Therefore, even though there are standards (ASHRAE Standard 55, 2004) 

that provide the recommended IDT values based on thermal comfort considerations, these 

standards cannot be used directly to determine the thermostat set point temperature considering 

that this set point temperature is not able to reflect the temperature of the occupied space. 

Consequently, at the building design stage, investigating different thermostat set points is 

necessary in order to find the most appropriate value in consideration of energy saving and/or 

better thermal comfort. In this application, the thermostat set point is selected to be a constant, 

i.e. 20 
o
C (68 

o
F), for the following case studies, and different thermostat locations are 

considered depending on the mesh grid used in the zonal model. 

 Step 2: Determination of the Design Temperature Distribution (DTD)  

For the general heating system, the DTD is determined using room interior surface 

temperatures because of the characteristic of natural convection of this system. The first step is to 
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determine the interior surface temperatures that will be used to predict the room temperature 

distribution using the integrated thermal model. In fact, IDT is a special form of DTD, and it 

represents the uniform design temperature distribution. Using IDT in the integrated thermal 

model is equivalent to the direct usage of the conventional single-multi-zone thermal model.  

Therefore, the concept of IDT is needed in the determination of required interior surface 

temperatures. In the integrated thermal model, the change of IDT corresponds to a change of the 

room interior surface temperatures (T1, T2, T3, and T4 shown in the figure 5.79 a). In the 

integrated thermal model, the room air temperature distributions can be predicted using the room 

interior surface temperatures (Figure 5.79 b). Consequently, for each IDT, there is a 

corresponding room air temperature distribution profile. Then, the air temperature of the zone 

where the thermostat is located can be observed particularly. When this zone air temperature is 

equal to the thermostat set point temperature defined in Step 1, the current air temperature 

distribution profile can be regarded as the DTD for this time step (Figure 5.79 c). In fact, this 

DTD includes the effects of several factors, including the shape of the space in the house, the 

constructions, the outdoor weather conditions, etc., and thus this DTD is unique and exclusive to 

this space for this specified time step.  

 

 

(a)     (b)     (c) 

 

 

Thermostat-position air temperature 

= Thermostat set point 

Figure 5.79 Demonstration of the procedure to determine the DTD 
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 Step 3: Calculation of the hourly heating load of this house 

Once the DTD was obtained in Step 2, its corresponding room interior surface temperatures, i.e 

the surface temperatures that were used by the integrated thermal model to calculate the DTD in 

Step 2, are also known. Using these interior surface temperatures and the energy balance 

equation 5.16 (section 5.2.3.1.1), where                         (°C or 
o
F) is the corrected IDT 

for the integrated thermal model to predict the room heating loads. After the substitution of the 

corrected IDT into the integrated thermal model, the heating loads can be calculated. As a matter 

of fact, in the integrated thermal model, the introduction of the zonal model is for the sake of the 

determination of the                          which can be regarded as the correction of IDT for 

the integrated thermal model. Although                          is also a single average 

temperature value for the entire space, it is different from the original IDT that can be pre-

determined by using standards (ASHRAE Standard 55, 2004), because the corrected IDT takes 

the thermostat position into account, but the original IDT does not. Consequently, for different 

thermostat positions, the                          is distinct, and thus there will be different 

corresponding heating loads.  

These steps for various thermostat locations and different time steps may be repeated, if 

necessary. The difference in the determination of energy/load between the single/multi-zone 

thermal model (Figure 5.80 a) and the integrated thermal model (Figure 5.80 b) is displayed. A 

complete flow chart demonstrating this simulation procedure is also provided in the figure 5.81.  
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(a) 

 

 

 

(b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Original IDT 
Original 

thermal model 
Energy/load 

Thermostat 

set point & 

position 

Integrated 

thermal model 

 

 POMA  DTD 

𝑻𝑵𝒆𝒘 𝒅𝒆𝒔𝒊𝒈𝒏 𝑻𝒆𝒎𝒑   

 
(Corrected IDT) 

Integrated 

thermal 

model 

 

Energy/ 

load 

Figure 5.80 Different approaches in the determination of the energy/load 

(a) Conventional approach; (b) Integration approach 
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Start 

Select the thermostat set point temperature (for example 20
o
C) 

Locate the thermostat based on the zoning of zonal model 

 

If the thermostat-zone 

temperature = 20 
o
C? 

Output the DTD for this current hour and its 

corresponding room interior surface temperatures 

 

A new IDT  

Another hour? 

Another thermostat 

location? 

End 

Yes 

No 

Yes 

No 

Yes 

No 

Input an IDT Integrated 

thermal model 

Output interior 

surface Ts 

POMA Output a temperature distribution 

 
   𝐴  (𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒  𝑇𝑁 𝐷 𝑇 )    

T NewDesignTemp. 
Integrated thermal 

model 

 

Heating load for this 

hour 

Corresponding surface Ts 

Figure 5.81 Structure of the integration simulation 
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5.2.3.2.2 Results and discussions. The figures 5.82, 5.87, 5.92, and 5.97 respectively 

display the heating load results corresponding to all the potential thermostat positions 

considering the different cases, i.e. the case 1 (Figure 5.82), the case 2 (Figure 5.87), the case 3 

(Figure 5.92), and the case 4 (Figure 5.97). In these figures, each curve represents the heating 

loads associated with one thermostat position. The figures 5.83, 5.88, 5.93, and 5.98 respectively 

display the heating load comparison between the ―one-zone‖ (single/multi-zone) thermal model 

and the integrated thermal model when the thermostat is located at the typical position (5,6) 

(Figure 5.42), considering the different cases, i.e. the case 1 (Figure 5.83), the case 2 (Figure 

5.88), the case 3 (Figure 5.93), and the case 4 (Figure 5.98).  

 The figures 5.84, 5.85, and 5.86 display the zonal PMV and PPD profiles of the case 1, 

when the thermostat is located at (9,1), (1,4), and (5,6), respectively (see the figure 5.42). 

Similarly, the figures 5.89, 5.90, and 5.91 display the zonal PMV and PPD profiles of the case 2, 

when the thermostat is located at (9,1), (1,4), and (5,6), respectively. The zonal PMV and PPD 

profiles of the cases 3 and 4 are shown in the figures 5.94, 5.95, and 5.96 (Case 3) and in the 

figures 5.99, 5.100, and 5.101 (Case 4), respectively. In these PMV/PPD figures, each curve 

represents the PMV/PPD profile of each zone corresponding to the zone division of the zonal 

model. The 60 zones are used in the zonal model, and thus there are 60 curves in each PMV/PPD 

figure. For the cases 1, 2, and 3, when the thermostat is at the location (9,1), the house heating 

loads nearly reach the maximum values, and when the thermostat is at the location (1,4), the 

house heating loads mostly have the minimum values; whereas for the case 4, the maximum 

values of the house heating loads occur when the thermostat is located around the position (9,1), 

and the minimum values happen when the thermostat is around the position (1,3).  
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PMVs with the thermostat location (9,1) PPDs with the thermostat location (9,1) 

 

PMVs with the thermostat location (1,4) PPDs with the thermostat location (1,4) 

 

Figure 5.83 Heating loads of the original 

and integrated thermal models with the 

thermostat location (5,6) (Case 1)  

Figure 5.82 Heating loads with different 

thermostat locations (Case 1)  

 

Figure 5.84 Zonal PMV and PPD profiles with the 

thermostat location (9,1) (Case 1) 

Figure 5.85 Zonal PMV and PPD profiles with the 

thermostat location (1,4) (Case 1) 
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PMVs with the thermostat location (5,6) PPDs with the thermostat location (5,6) 

PMVs with the thermostat location (9,1) 
PPDs with the thermostat location (9,1) 

Figure 5.86 Zonal PMV and PPD profiles with the 

thermostat location (5,6) (Case 1) 

Figure 5.88 Heating loads of the original 

and integrated thermal models with the 

thermostat location (5,6) (Case 2)   

  

Figure 5.87 Heating loads with different 

thermostat locations (Case 2)   

Figure 5.89 Zonal PMV and PPD profiles with the 

thermostat location (9,1) (Case 2) 
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PMVs with the thermostat location (1,4) PPDs with the thermostat location (1,4) 

PMVs with the thermostat location (5,6) PPDs with the thermostat location (5,6) 

 

Figure 5.90 Zonal PMV and PPD profiles with the 

thermostat location (1,4) (Case 2) 

Figure 5.91 Zonal PMV and PPD profiles with the 

thermostat location (5,6) (Case 2) 

Figure 5.93 Heating loads of the original 

and integrated thermal models with the 

thermostat location (5,6) (Case 3)   

  

Figure 5.92 Heating loads with 

different thermostat locations (Case 3)  
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PMVs with the thermostat location (9,1) PPDs with the thermostat location (9,1) 

PMVs with the thermostat location (1,4) PPDs with the thermostat location (1,4) 

PMVs with the thermostat location (5,6) PPDs with the thermostat location (5,6) 

Figure 5.94 Zonal PMV and PPD profiles with the 

thermostat location (9,1) (Case 3) 

Figure 5.95 Zonal PMV and PPD profiles 

with the thermostat location (1,4) (Case 3) 

Figure 5.96 Zonal PMV and PPD profiles with the 

thermostat location (5,6) (Case 3) 
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PMVs with the thermostat location (9,1) PPDs with the thermostat location (9,1) 

PMVs with the thermostat location (1,3) PPDs with the thermostat location (1,3) 

Figure 5.97 Heating loads with different 

thermostat locations (Case 4) 
Figure 5.98 Heating loads of the 

original and integrated thermal models 

with the thermostat location (5,6) 

(Case 4)  

Figure 5.99 Zonal PMV and PPD profiles with the 

thermostat location (9,1) (Case 4) 

Figure 5.100 Zonal PMV and PPD profiles with the 

thermostat location (1,3) (Case 4) 
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As shown in the results of the cases 1 and 2, different thermostat locations account for 

different heating load behaviors. Also, as the heating energy requirements go down (the declines 

of the heating load curves), the differences between the maximum and minimum values of the 

heating loads in both of the figures 5.82 and 5.87 diminish. This phenomenon can be also 

observed from the figures 5.83 and 5.88. In the figures 5.83 and 5.88, as the heating energy 

curves decline, the heating load values of the ―one-zone‖ model (single/multi-zone thermal 

model) and the integrated thermal model are approaching to each other. This conclusion 

indicates that for the cases 1 and 2, the potential inaccuracies generated by the ―one-zone‖ 

(single/multi-zone) model in building load calculations can be reduced, as the heating energy 

requirements are decreasing. In the PMV and PPD analysis of the cases 1 and 2, it is found that 

better indoor thermal comfort levels require higher heating energy. Moreover, compared to the 

light construction situation (case 1), no significant improvements are noticed in terms of human 

thermal comfort in the heavy construction situation (case 2), even though the structures of the 

heating loads of these two situations are distinct, as shown in the figures 5.82 and 5.87.  

As shown in the results of the case 3, compared to the case 1 (Figure 5.82), when the 

west wall overall heat transfer coefficient U-value is reduced, the heating load decreases 

PMVs with the thermostat location (5,6) PPDs with the thermostat location (5,6) 

Figure 5.101 Zonal PMV and PPD profiles with the 

thermostat location (5,6) (Case 4) 



115 

 

 

 

significantly (around 45%), as shown in the figure 5.92. In the thermal comfort analysis, the 

lower U-value of the west wall accounts for a more uniform room temperature distribution. 

Consequently, compared to the case 1, a more comfortable environment is created in this room in 

the case 3, as displayed in the figures 5.94, 5.95, and 5.96. 

As shown in the results of the case 4, higher heating loads (more than 25%) are observed 

(Figure 5.97) compared to the other cases, because of the addition of the high heat-transfer-

coefficient window on the west wall. As displayed in the thermal comfort PMV/PPD figures 

5.99, 5.100, and 5.101, better indoor thermal comfort levels require higher heating energy. 

Additionally, as shown in the figure 5.101, the PMV values are as low as -0.9 (PPD values are up 

to 24%) in some zones. Therefore, in comparison of the figure 5.101 with the figures 5.91 and 

5.96, it is found that for the case 4, a slightly uncomfortable indoor environment for occupants 

would be created owing to the addition of the window on the west wall, when the thermostat is 

located at the typical position (5,6). Hence, for this case, in order to improve indoor comfort, a 

higher thermostat set point temperature should be applied instead of 20°C (68
o
F), if the 

thermostat is located at (5,6). Alternatively, a new thermostat location can be investigated, if the 

thermostat set point temperature remains unchanged, i.e. 20°C (68
o
F). In fact, this analysis 

procedure should be included at the building design stage in order to determine the appropriate 

selections for both the set point temperature and position of thermostat within a space.  
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Figure 5.102 Heating load differences 

between the maximum and minimum values 

of these four cases 

Figure 5.103 Heating load differences between the 

original and integrated thermal models with the 

thermostat location (5,6) 
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The figure 5.102 shows the differences between the maximum and minimum values of 

the heating load results that are displayed in the figures 5.82, 5.87, 5.92, and 5.97. As the room 

temperature distribution tends to be uniform, the heating load differences decline, and thus the 

corresponding potential inaccuracies the single/multi-zone thermal model generates can be 

reduced. In other words, the single/multi-zone thermal model is acceptable for use in building 

energy/load calculations, if a relatively uniform temperature distribution can be created in a room 

or building.  

The figure 5.103 demonstrates the heating load differences between the single/multi-zone 

thermal model and the integrated thermal model with the thermostat location (5,6), 

corresponding to the heating load results shown in the figures 5.83, 5.88, 5.93, and 5.98. In 

consideration of the small discrepancy values shown in this figure, the performance of the 

single/multi-zone thermal model in the building energy/load predictions is desirable. Therefore, 

for this one-room residential house, if the thermostat would be placed at the typical position 

(5,6), the conventional thermal model is acceptable for use in the energy estimations. 

5.2.3.2.3 Summary. In this application, the case studies using the integrated thermal 

model have not only revealed the importance of detailed room air models, such as zonal models, 

for predicting building energy/loads, but also demonstrated the optional analysis procedures at 

the building design stage in consideration of different thermostat set points and positions. Some 

suggestions regarding building energy prediction are given below.  

- The different thermostat locations indeed affect the building energy 

consumption/load. As shown in these cases, the building heating load difference caused by the 

different thermostat locations may be as high as almost 150 W (511.8 Btu/hr) (the case 4 in the 
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figure 5.102), which is about 15% of the total heating energy. Therefore, an appropriate design 

of the thermostat location within a space is indispensable.  

- The thermostat set point, 20°C (68
o
F), is an appropriate value for the cases 1, 2 

and 3, when the thermostat is located at the typical position. However, for the case 4, a slightly 

uncomfortable indoor environment would be created with 20°C (68
o
F) as the thermostat set 

point, and thus a higher value, such as 21°C (69.8
o
F) or 22°C (71.6

o
F), is preferred.  

- Although the construction thermal mass does not significantly impact the indoor 

thermal comfort behavior in an air-conditioned building, it indeed changes the structure of room 

heating load, according to the results shown in the cases 1 and 2. A large amount of thermal 

mass, such as the heavy construction situation of the case 2, contributes to the decrease of the 

building energy consumption and the shift of the peak loads.  
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CHAPTER 6 

Conclusions and Recommendations 

In modern buildings, HVAC systems control the indoor conditions, such as temperature 

and humidity. Besides the judicious design of HVAC systems and the appropriate selection of air 

conditioning equipment, the efficient control and operation of a BMS are essential to avoid waste 

of energy. As a part of the BMS, a room thermostat measures the local air temperature and then 

transmits it to a controller to take the appropriate decision regarding room temperature control.  

Very often, the room thermostat is located outside the occupied space and usually on the 

wall near a front door or in a hallway that is subject to warm and cold drafts. These drafts can 

cause the HVAC system to cycle on or off at improper times, when the actual room temperature 

is still different from the set point temperature. Actually, the thermostat feedback temperature 

cannot reflect the actual room temperature, since a thermostat is always attached to a wall rather 

than to the center of the room. Consequently, the temperature of the thermostat is usually not 

representative of the room temperature and a discrepancy exists between the temperature at the 

thermostat location and the occupied space.  

Most of the current available commercial software packages, such as eQUEST, 

EnergyPlus, Trace700, etc., which were developed for the prediction and simulation of energy 

consumption of residential and commercial buildings, are based on the simple single/multi-zone 

modeling approach, in which a room or even an entire building is treated as a whole with the 

assumption that the air in this room or building is well mixed and the indoor air temperature is 

uniformly distributed. In reality, indoor air temperature distribution is usually not uniform, and 

temperature differences exist which affect not only the energy consumption of the building, but 

also the occupants‘ thermal comfort levels and indoor air quality, especially in large room spaces, 
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such as ballroom, theater, auditorium, conference room, and so on. Therefore, the usage of the 

simple single/multi-zone model in these energy simulation software packages may cause 

pronounced flaws in building energy simulation and prediction. In order to avoid the flaws and 

improve the accuracy and applicability of the energy simulation models, the single/multi-zone 

model needs to be substituted with an advanced detailed model, such as zonal model.  

In this dissertation, a new comprehensive energy simulation model has been developed, 

which consists of the zonal model POMA and a multi-zone thermal model, both of which are 

integrated together in order to estimate the energy consumption of various air conditioning 

systems and to optimize the appropriate set point and location of a room thermostat in 

consideration of maximizing the energy saving and/or improving the indoor thermal comfort. 

Several applications of this integrated thermal model have been carried out, in which two air 

conditioning systems have been considered, including an UFAD system and a general heating 

system. For the general heating system that stands for the non-specified air-conditioning system, 

the zonal model POMA has been validated with the assistance of a reliable CFD model prior to 

being integrated with the multi-zone thermal model. For the UFAD system, a new zonal model 

has been developed by coupling the zonal model POMA with a vertical thermal jet model in 

order to simulate the thermal characteristics of the UFAD system. After the evaluation by 

comparing its results with those obtained from a CFD model in terms of indoor air temperature 

distribution, this coupled zonal model has been integrated with a multi-zone thermal model.  

In the first application, an UFAD system has been considered as the heating system in a 

one-zone residential house. The developed thermal model has been used to predict the 

appropriate thermostat set point subject to improving indoor thermal comfort and/or increasing 

energy savings. A temperature control strategy, along with three different schemes, ―Uniform-
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zones‖, ―Core-zones‖, and Occupied-zones‖, has been investigated through three case studies 

considering the different OT values. The results have quantitatively proved the existence of the 

temperature difference between the occupied space and the thermostat position, and have 

demonstrated the characteristics of these three control schemes in improving indoor thermal 

comfort and/or optimizing building energy consumption.  

In the second application, two cases associated with the UFAD system used under 

heating operation have been studied considering the different slab-on-grade floor constructions. 

The results show that the conventional well-mixed single-zone (multi-zone) method in building 

energy predictions is not appropriate to use for UFAD systems. Instead, a zonal model is more 

preferred. In addition, an UFAD system applied under heating operation in a residential house is 

not only able to save energy but also to provide a more comfortable environment, compared to a 

traditional overhead air distribution system. The importance of thermostat location in building 

energy design/simulation has been demonstrated, as well.  

In the third application, the general heating system has been applied to a one-room 

residential house in winter with the three control schemes, ―Uniform-zones‖, ―Core-zones‖, and 

Occupied-zones‖. Four cases have been studied considering different construction thermal 

characteristics. The results of this application include the determined appropriate thermostat set 

points, corresponding heating loads and thermal comfort indices (PMV). From these results, it is 

concluded that, for a space with a nearly uniform temperature distribution, such as the interior 

space of a building, the conventional single/multi-zone thermal model are still acceptable to use 

in the energy estimations. Nevertheless, for a space with a significantly non-uniform temperature 

distribution, such as the exterior space of a building, the integrated thermal model is needed in 

the estimation of energy. In addition, these determined appropriate thermostat set points provide 
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the BMS more control options concerning either energy savings or indoor thermal comfort, or 

even both.  

In the last application, the general heating system has been still used in the four cases 

considering different constructions thermal characteristics. The thermostat locations accounting 

for the maximum and minimum heating loads have been investigated, as well. Some suggestions 

for building energy calculations at the design stage have been proposed. For example, a large 

amount of thermal mass in building construction contributes to the decrease of the building 

energy consumption and the shift of the peak loads.  

In general, the results and discussions of these four applications show the interest of 

integrating the zonal model POMA into the multi-zone thermal model in order to improve its 

prediction of building energy consumption. Additionally, unlike the traditional energy simulation 

model, this integrated thermal model can provide a detailed description regarding the indoor 

thermal behavior and airflow pattern. As a result, an accurate energy simulation can be 

established based on this detailed room thermal description, in which more factors that are able 

to impact the building energy consumption can be considered, such as the dynamic thermostat 

location, which is difficult to simulate in the traditional energy simulation model. The parameter, 

thermostat location, is of significance in building load and energy prediction. This parameter not 

only affects the building energy consumption, but also determines the indoor thermal comfort. 

Therefore, studying the thermostat location is necessary in the building energy/load prediction. 

The final goal of my research involves the commercialization and wide application of this 

new energy simulation model in industry. Therefore, the perspective of my future work includes 

more experimental studies and further analysis of this new simulation model for diverse building 

types as well as mechanical systems. Additionally, in order to further improve the performance 
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of this model in yearly hour-by-hour energy simulation and to reduce the computational time, the 

optimization of the algorithm and the usage of parallel computing technique (MPI, OpenMP, 

GPU) contribute to the achievement of the goal of this research. Specifically, the 

recommendations for the future work include: 

 The further development of this integrated thermal model for various HVAC systems 

in the applications of energy saving/indoor air quality in buildings; 

 The experimental studies and validations of this integrated thermal model in terms of 

temperature distribution and energy/load for different building types and air 

conditioning systems, such as chilled beam system, displacement ventilation system, 

etc.; 

 The detailed practicability analysis of this integrated thermal model in terms of 

computational time, complexity, and accuracy for yearly energy simulation in 

building environment; 

 The development of an optimization model based on this integration approach in 

order to optimize building energy consumption;  

 The application of parallel computing technique at the programming level in order to 

reduce the computational time of simulations involving complicated geometrical 

structures of buildings. 
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