
North Carolina Agricultural and Technical State University North Carolina Agricultural and Technical State University 

Aggie Digital Collections and Scholarship Aggie Digital Collections and Scholarship 

Dissertations Electronic Theses and Dissertations 

2014 

Direct And Evolutionary Approaches For Optimal Receiver Direct And Evolutionary Approaches For Optimal Receiver 

Function Inversion Function Inversion 

Mulugeta Tuji Dugda 
North Carolina Agricultural and Technical State University 

Follow this and additional works at: https://digital.library.ncat.edu/dissertations 

Recommended Citation Recommended Citation 
Dugda, Mulugeta Tuji, "Direct And Evolutionary Approaches For Optimal Receiver Function Inversion" 
(2014). Dissertations. 69. 
https://digital.library.ncat.edu/dissertations/69 

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Aggie 
Digital Collections and Scholarship. It has been accepted for inclusion in Dissertations by an authorized 
administrator of Aggie Digital Collections and Scholarship. For more information, please contact iyanna@ncat.edu. 

https://digital.library.ncat.edu/
https://digital.library.ncat.edu/dissertations
https://digital.library.ncat.edu/etds
https://digital.library.ncat.edu/dissertations?utm_source=digital.library.ncat.edu%2Fdissertations%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digital.library.ncat.edu/dissertations/69?utm_source=digital.library.ncat.edu%2Fdissertations%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:iyanna@ncat.edu


Direct and Evolutionary Approaches for Optimal Receiver Function Inversion  

Mulugeta Tuji Dugda 

North Carolina A&T State University 

 

 

 

A dissertation submitted to the graduate faculty 

in partial fulfillment of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

Department: Electrical and Computer Engineering 

Major: Electrical Engineering 

Major Professor: Dr. Jung H. Kim  

Co-advisor Professor: Dr. Abdollah Homaifar 

Greensboro, North Carolina  

2014 

 



i 

 

 

The Graduate School 

North Carolina Agricultural and Technical State University 

This is to certify that the Doctoral Dissertation of 

 

Mulugeta Tuji Dugda 

 

has met the dissertation requirements of 

North Carolina Agricultural and Technical State University 

 

Greensboro, North Carolina 

2014 

 

Approved by: 

 

  
 

Dr. Jung Hyoun Kim  

Major Professor 

 

Dr. Abdollah Homaifar  
Academic Co-Advisor 

 

Dr. John Kelly  
Committee Member 

 

 

Dr. Sanjiv Sarin 

Dean, The Graduate School 

 

Dr. John Kelly  
Department Chair 

 

Dr. Robert Y. Li  
Committee Member 

 

Dr. Jung Hee Kim 
Committee Member 



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by 

Mulugeta Tuji Dugda 

2014 



iii 

 

Biographical Sketch 

Mulugeta Tuji Dugda was born in Butajira, South Shoa, Ethiopia. He received his 

bachelor’s degree with distinction and his master’s degree with the highest honor in Electrical 

Engineering from Addis Ababa University (Ethiopia) in 1990 and 1998, respectively. He later 

received a master’s and PhD degrees in Geosciences from Pennsylvania State University in 2003 

and 2007, respectively. Mulugeta joined the PhD program of Electrical and Computer 

Engineering Department at North Carolina Agricultural & Technical State University in the Fall 

of 2009.    

 

 

  



iv 

 

Acknowledgements 

My first and foremost gratitude goes to the almighty God who gave me the PhD 

opportunity and the people to help as well as the health and strength to do my PhD.      

I am very thankful to my advisor Dr. Jung Hyoun Kim and my co-advisor Dr. Abdollah 

Homaifar for their invaluable advice, unwavering support and encouragement. The professional 

and technical guidance of both of my advisors has helped shape this research work and ended up 

in great success. I would like to express my deepest gratitude to my doctoral committee members 

Dr. John Kelly, Dr. Robert Li and Dr. Jung Hee Kim for their advice, critics and important 

suggestions at different stages of this research work as well as for their editing of this 

dissertation. My thanks also go to the graduate school representative Dr. Cameron Seay for his 

helpful suggestions and critics.    

I have no words to express my appreciations to my family, especially my wife Aster 

Habtewold and my daughter Rebekah Mulugeta. They have endured a lot of hardship and burden 

throughout my study periods at NCA&T and at Penn State. I would like to say thank you to 

Astuka and Beckye for understanding and paying a price for the long periods of my studies. 

I am extremely grateful to my friends at NCA&T and Greensboro, especially Dr. Abebe 

Kebede.  I am deeply indebted to Dr. Abebe Kebede who has been a great help to me and my 

family throughout this journey of the PhD study. Dr. Ademe Mekonnen has also been very 

helpful during my study and I would like to say thank you. I would like to express my heartfelt 

appreciation to all friends in the two labs where I have been working.  

Thank God for all the brothers and sisters He has prepared for me and my family when 

we moved to Greensboro, NC.  I am very grateful to all the brothers and sisters at the Ethiopian 

Christian Fellowship Church at Greensboro for their fervent prayers and tremendous support. 



v 

 

Table of Contents 

List of Figures ................................................................................................................................ ix 

List of Tables ................................................................................................................................. xi 

Abstract ........................................................................................................................................... 2 

CHAPTER 1 Introduction............................................................................................................... 4 

1.1 Motivation .......................................................................................................................... 4 

1.2 Problem Statement ............................................................................................................. 7 

1.3 Contribution ..................................................................................................................... 10 

1.4 Objectives and Goals ....................................................................................................... 13 

1.5 Dissertation Outline ......................................................................................................... 14 

CHAPTER 2 Background and Literature Review ........................................................................ 17 

2.1 Seismic Wave Propagation .............................................................................................. 18 

2.2 Rotating Seismic Data ..................................................................................................... 20 

2.3 Receiver Function ............................................................................................................ 22 

2.3.1 H- stacking of receiver functions. ....................................................................... 26 

2.4 Inverse Versus Forward Problems ................................................................................... 29 

2.4.1 Inverse problem theory. ......................................................................................... 29 

2.4.2 The inverse problem. ............................................................................................. 29 

2.5 Models of the Earth Structure .......................................................................................... 30 

2.6 Crustal Structure Studies ................................................................................................. 33 

2.7 Receiver Functions for Crustal Structure Parameters ...................................................... 35 

2.7.1 Simple stack of receiver functions. ....................................................................... 35 

2.7.2 H-κ stacking of receiver functions and state-of-the-art in solving it. .................... 35 

2.8 Pattern Search Techniques ............................................................................................... 36 



vi 

 

2.8.1 Pattern search methods for linearly constrained minimization problems. ............ 38 

2.8.1.1 The pattern. .................................................................................................. 40 

2.8.1.2 The linearly constrained exploratory moves. .............................................. 41 

2.8.1.3 The generalized pattern search (GPS) method. ........................................... 42 

2.8.1.4 The updates. ................................................................................................ 42 

2.9 Genetic Algorithms .......................................................................................................... 43 

2.9.1 Genetic algorithms in seismology. ........................................................................ 45 

2.10 Fitness Proportionate Niching (FPN) ............................................................................ 46 

CHAPTER 3 Proposed Methodology ........................................................................................... 51 

3.1 H- Stacking of Receiver Functions ................................................................................ 51 

3.1.1 Fixed weights vs variable weights. ........................................................................ 52 

3.1.1.1 Fixed weights. ............................................................................................. 52 

3.1.1.2 Variable weights. ......................................................................................... 53 

3.1.2 The inverse problem of finding model parameters with best fitting data. ............. 55 

3.1.3 Inversion of H- stacked receiver function. .......................................................... 55 

3.2 Genetic Algorithms for Optimal H-κ Inversion............................................................... 57 

3.2.1 Implementation of GA ........................................................................................... 58 

3.2.1.1 String lengths for the GA implementation. ................................................. 58 

3.2.1.2 Inclusion of the constraint in the objective function. .................................. 59 

3.3 Generalized Pattern Search Technique for Optimal H-κ Inversion ................................. 62 

3.3.1 Advantages of the GPS technique for H-κ inversion. ........................................... 62 

3.3.2 A drawback of GPS and its FPN solution. ............................................................ 63 

3.3.3 The proposed minimization problem for GPS implementation and modified 

bounds of weights. .......................................................................................................... 64 



vii 

 

3.3.4 Algorithm 1: The general pattern search (GPS) for linearly constrained problems

 ........................................................................................................................................ 66 

3.3.5 Generalized pattern search (GPS) algorithm using pseudo code. ......................... 67 

3.3.6 How the GPS implementation works. ................................................................... 68 

3.3.7 The GPS strides for the H-κ stacking inverse problem. ........................................ 69 

3.3.8 Algorithm 2:  testing the inversion with GPS. ...................................................... 71 

3.4 Fitness Proportionate Niching (FPN) .............................................................................. 72 

3.4.1 H-κ receiver function stacking as a multimodal optimization problem. ............... 72 

3.4.2 How FPN works for multimodal H- stacking surfaces. ...................................... 73 

3.4.3 Implementation of FPN. ........................................................................................ 74 

3.4.4 Algorithm 3: determining best initial models with FPN for rerunning GPS. ........ 75 

CHAPTER 4 Experimental Implementation and Results ............................................................. 78 

4.1 Genetic Algorithm Implementation and Test Results ..................................................... 78 

4.1.1 Location of seismic stations for testing the hypotheses. ....................................... 78 

4.1.2 Receiver functions from ARBA and GA results. .................................................. 80 

4.2 GPS Test Results ............................................................................................................. 84 

4.2.1 Flow chart of the GPS implementation. ................................................................ 84 

4.2.2 GPS results - convergence of final values and objective function ........................ 87 

4.2.3 Graphical user interface (GUI) implementation for the GPS algorithm. .............. 88 

4.2.4 GPS convergence test algorithm. .......................................................................... 88 

4.2.5 GPS convergence test for station ARBA. .............................................................. 88 

4.2.6 Complete polling of GPS for global optimization. ................................................ 90 

4.2.6.1 Partial (non-complete) polling .................................................................... 91 

4.2.6.2 Complete polling ......................................................................................... 93 

4.3 FPN Results ..................................................................................................................... 97 



viii 

 

CHAPTER 5 Discussion and Performance Evaluation ................................................................ 99 

5.1 Discussion on GA Implementation and Results .............................................................. 99 

5.2 Discussion on GPS Results and Implementation ........................................................... 101 

5.2.1 GPS convergence test. ......................................................................................... 101 

5.2.2 On complete polling of GPS for global optimization. ......................................... 108 

5.3 Comparison of Optimal Crustal Parameters and Weights with Previous Studies ......... 109 

5.3.1 Crustal thickness (H) values comparison for 27 seismic stations. ...................... 110 

5.3.2  (Vp/Vs) values comparison for 27 seismic stations in Ethiopia. ..................... 111 

5.4 Comparison of the GA and GPS Techniques ................................................................ 112 

5.5 On FPN Technique ........................................................................................................ 112 

CHAPTER 6 Conclusions and Future Research Directions ....................................................... 114 

6.1 Conclusions.................................................................................................................... 114 

6.2 Future Directions ........................................................................................................... 119 

References ................................................................................................................................... 122 

Appendix A ................................................................................................................................. 135 

  



ix 

 

List of Figures 

Figure 2.1 A typical seismogram showing the Primary (P) and Secondary (S) body waves and 

surface waves generated as a result of an earthquake (Tarbuck et al., 2013). .............................. 19 

Figure 2.2 An example of three-component seismograms recording in a single seismic station 

(Braile, 2010). ............................................................................................................................... 20 

Figure 2.3 The transformation from ZNE system to ZRT system. EQ means Earthquake. ......... 21 

Figure 2.4 (a) A three component seismic station, a simplified one layer crustal Earth model of 

thickness H, and different seismic phases; (b) receiver function corresponding to the given crust 

and impinging P-wave (Modified from Ammon et al, 1990). ...................................................... 23 

Figure 2.5 The different layers of the earth .................................................................................. 32 

Figure 2.6 Interaction of plates at (a) subduction zones, (b) rift valleys, (c) transform plate faults

....................................................................................................................................................... 33 

Figure 3.1 An example of a receiver function with two distinct and one indistinguishable phases

....................................................................................................................................................... 53 

Figure 3.2 An example of H- receiver functions inversion process with station ARBA data .... 57 

Figure 3.3 Flow diagram for the implementation of GA for H-κ stacking ................................... 61 

Figure 3.4 A contour plot of an H-κ Receiver Function stacks demonstrating that the problem has 

multiple peaks and troughs. .......................................................................................................... 73 

Figure 4.1 Figure showing location of 27 Seismic stations in Ethiopia (East Africa) for testing 

our Hypotheses.............................................................................................................................. 79 

Figure 4.2 The receiver functions used for testing the GA, GPS and FPN techniques. ............... 82 

Figure 4.3 One instance of running the GA with very wide H-κ parameter space. Note that the 

parameter space used here is wider than that of Dugda et al. (2012). .......................................... 83 



x 

 

Figure 4.4 A graph showing the values of the three weights stabilized after about 60 epochs. ... 84 

Figure 4.5 This figure shows the flow chart of the GPS Implementation. MS denotes Mesh Size.

....................................................................................................................................................... 86 

Figure 4.6 This figure displays a GUI developed for GPS implementation. ................................ 87 

Figure 4.7 Figure displaying two extreme initial values for the region of investigation. (a) 

Smallest and (b) highest initial parameter values. ........................................................................ 90 

Figure 4.8 Objective function and total number of objective function evaluations versus number 

of iterations for a non-complete polling........................................................................................ 92 

Figure 4.9 Objective function and total number of objective function evaluations versus number 

of iterations for a non-complete polling........................................................................................ 94 

Figure 4.10 A 2-D view of the locations of the two optimal values when the GPS is applied with 

complete polling (blue circle) and partial polling (brown star with white inside)........................ 95 

Figure 5.1 GPS convergence test using five different combinations of initial parameters and 

weights. ....................................................................................................................................... 107 

Figure 5.2 Comparison of Crustal Thickness Values from this study (GPS technique) versus 

results from the Monte Carlo technique (Dugda et al., 2005). ................................................... 111 

Figure 5.3 Comparison of Crustal Vp/Vs Values from this study (GPS technique) versus results 

from Monte Carlo (Dugda et al., 2005). ..................................................................................... 112 

  



xi 

 

 List of Tables 

Table 3.1  String lengths used in this paper for representing crustal thickness, Vp-to-Vs ratio (κ), 

and weights w1, w2, w3 in the GA implementation. ...................................................................... 59 

Table 3.2  Table of Some FPN Implementation Results for Seismic Station ARBA .................. 76 

Table 4.1 Initial and Final values for partial polling .................................................................... 91 

Table 4.2  parameters of partial polling of GPS on ARBA receiver function inversion ............. 92 

Table 4.3 Initial and Final values for partial polling. ................................................................... 93 

Table 4.4  complete polling of GPS on ARBA receiver function inversion ................................ 93 

Table 4.5  Solutions of crustal parameters (H and κ) and weights (w1, w2, w3) using the current 

study applying the GPS-FPN technique for seismic stations shown on the map of Figure 4.5.... 96 

Table 4.6  Table of Some FPN-Hκ stacking Implementation Results. Niche Masters (Cluster 

Centers) identified for station ARBA are tabulated. ..................................................................... 97 

Table 4.7  Table of Some FPN-Hκ stacking Implementation Results. Niche Masters (Cluster 

Centers) identified for station BUTA are tabulated. ..................................................................... 98 

Table 5.1  Sample computed GA weights, number of generations and elapsed times for different 

GA runs. ...................................................................................................................................... 100 

Table 5.2  Comparison of weights obtained in this study with the study by Dugda et al. (2005) 

for the three phases in the receiver functions.............................................................................. 100 

Table 5.3  The final values of parameters, weights and objective function. FVAL is the Final 

Objective Function Value. .......................................................................................................... 108 

Table 5.4  Comparison of complete polling and partial polling of GPS on ARBA receiver 

function inversion ....................................................................................................................... 109 

Table 5.5  Comparing Crustal Parameters for Station ARBA from four different approaches . 110 



xii 

 

Table 5.6  Comparing Optimal Weights for seismic ARBA from three different approaches .. 110 



2 

 

Abstract 

Receiver functions are time series obtained by deconvolving vertical component seismograms 

from radial component seismograms.  Receiver functions represent the impulse response of the 

earth structure beneath a seismic station. Generally, receiver functions consist of a number of 

seismic phases related to discontinuities in the crust and upper mantle.  The relative arrival times 

of these phases are correlated with the locations of discontinuities as well as the media of seismic 

wave propagation.  The Moho (Mohorovicic discontinuity) is a major interface or discontinuity 

that separates the crust and the mantle.  In this research, automatic techniques to determine the 

depth of the Moho from the earth’s surface (the crustal thickness H) and the ratio of crustal 

seismic P-wave velocity (Vp) to S-wave velocity (Vs) (= Vp/Vs) were developed.  

In this dissertation, an optimization problem of inverting receiver functions has been developed 

to determine crustal parameters and the three associated weights using evolutionary and direct 

optimization techniques.  The first technique developed makes use of the evolutionary Genetic 

Algorithms (GA) optimization technique.  The second technique developed combines the direct 

Generalized Pattern Search (GPS) and evolutionary Fitness Proportionate Niching (FPN) 

techniques by employing their strengths.  In a previous study, Monte Carlo technique has been 

utilized for determining variable weights in the H- stacking of receiver functions. Compared to 

that previously introduced variable weights approach, the current GA and GPS-FPN techniques 

have tremendous advantages of saving time and these new techniques are suitable for automatic 

and simultaneous determination of crustal parameters and appropriate weights. 

The GA implementation provides optimal or near optimal weights necessary in stacking receiver 

functions as well as optimal H and κ values simultaneously. Generally, the objective function of 

the H-κ stacking problem displays multimodal surfaces with multiple local and global optima.  
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Niching mechanism permits standard GAs to identify different subpopulations representing 

various peaks.  In multimodal optimization, fitness sharing has been commonly used to generate 

stable subpopulations of individuals around multiple optimum points in the search space.  In this 

study the newly developed FPN is implemented to identify the different local and global optima 

regions (niches).   

“Survival of the fittest” from evolutionary concepts is the basis for GA and the approximate 

location of the highest fitness individual (global optima) is quickly identifiable from the FPN 

niche masters (cluster centers).  Using the approximate global optima location from the FPN as 

an initial point, the GPS technique provides quicker and optimal solutions for the five variables 

under investigation – the crustal thickness, Vp/Vs ratio and the three associated weights.  

Applications of GA and GPS-FPN using seismic data from seismic stations within Ethiopia and 

surrounding the East Africa Rift System provided results which are consistent with previously 

published studies. The GPS technique is among the very few provably convergent, derivative-

free search methods for linearly constrained optimization problems. GPS is shown in this study 

to be a powerful optimization tool that provides consistent results as if it searches the parameter 

space exhaustively.  However, GPS searches the parameter space only in a given pattern and 

computes objective function values at few points. Key features of GPS technique reported in this 

study also include repeatability of its results, unlike heuristic search approaches, repeatability of 

the number of iterations as well as the number of objective function evaluations as long as initial 

values, the lower and upper bounds, and the processing machine stay the same. GPS even 

produces consistently similar results irrespective of initial values. The limitation of GPS being 

sometimes trapped at a local optimum is solved in this study by combining it with FPN.  
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 CHAPTER 1 

Introduction 

1.1 Motivation 

Direct and evolutionary techniques have advanced since their original inception and have 

since been implemented to solve challenging problems in different areas of studies and 

applications. In this dissertation, a technique that combines and uses both direct and evolutionary 

approaches is introduced to solve a seismic optimization problem. A direct search method of 

generalized pattern search (GPS) and evolutionary algorithms based on  genetic algorithm (GA) 

and fitness proportionate niching (FPN) have been effectively implemented to solve the given 

seismic optimization problem.  A trade-off study has been performed to illustrate the 

effectiveness of the two methods in solving the seismic problem.   

The direct method of GPS has been developed between the 1990s and early 2000 (Kolda, 

Lewis and Torczon, 2003; Lewis and Torczon, 2001; Lewis, Torczon and Trosset, 2000; Lewis 

and Torczon, 1997, 1999a, b), but has not been applied in many disciplines yet. To the best of 

our knowledge, the GPS technique is applied here for the first time for solving such a seismic 

problem. Since the seismic optimization problem introduced in this dissertation can have both 

global as well as local optima, finding the global solution is a challenge at times because the 

search technique can be trapped in local optima. In order to address this problem, one has to be 

able to identify the appropriate starting/initial values that would lead to obtaining the correct 

solution. To accomplish the identification of the best starting values, the fitness proportionate 

niching (FPN) algorithm is proposed in this research 

The FPN algorithm is a new technique that has been developed at North Carolina 
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Agricultural & Technical State University in 2012 as a dynamic clustering algorithm (Workineh 

and Homaifar, 2012). The FPN algorithm has been implemented for finding the correct initial 

values in the seismic optimization problem because no a priori knowledge about the distribution 

of the surface is available. The techniques introduced here are used to solve a seismic inverse 

problem. Inverse problems are inherently difficult problems, especially when they are compared 

to their counterpart forward problems.  

There are many incentives for developing techniques to solve seismic problems. Some of 

these motivations are discussed in the following paragraphs. Seismic waves are generated by 

earthquakes or ground vibrations. Seismic waves or seismic signals are investigated primarily to 

mitigate earthquake hazards, as earthquakes could cause many deaths and enormous property 

losses due mainly to soil failure (liquefaction) and tsunamis. China has been hit especially hard 

in historic earthquakes. The Shensi earthquake in China is estimated to have killed more than 

800,000 on January 23, 1531. Another devastating earthquake in Tangshan, China, killed almost 

250,000 people on July 28, 1976. Among the most devastating earthquakes in the last decade 

include the 2004 Sumatra, Indonesia, earthquake which killed more than 283,000 people. The 

1990 Manjil-Rudbar Iran earthquake, which killed more than 40,000 people, is among the most 

devastating earthquakes in the middle-east and the Persian Gulf. Among the most overwhelming 

recent earthquakes in our memories are the 2010 Haiti earthquake, which killed more than 

220,000 people, and the 2011 Tohoku Japan earthquake that became a cause for the death of 

more than 18,000 people and a nuclear meltdown. 

Besides the loss of life, earthquakes could cause huge amount of destruction, and 

cleaning up and repairing the damages of earthquakes are very expensive. Hence, study related to 

seismic waves has an incentive in this regard too. The October 1989 San Francisco, California, 
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earthquake cost was about $5.6 billion while the January 1994 Northridge, California, 

earthquake cost was $15 billion. The January 1995 Hyogoken-Nanbu (Kobe) Japan, earthquake 

cost was $150 billion, whereas the March 2011 Japan Earthquake (Fukushima Dai-ichi) and 

related nuclear disaster cost was more than $235 billion.  

Seismic signals provide information about the internal structure and composition of the 

earth and this provides another motivation for seismic studies. Based on such information, 

seismic studies could be used for economic purposes such as exploration of oil, gas, and 

minerals. Seismic techniques are arguably the most powerful geophysical techniques for 

prospecting oil, gas and minerals.  

Seismic signals have been very useful means for studying the amount of thinning and 

thickening of the crust at different parts of the world, in verifying the different hypotheses in the 

plate tectonics theory. One reason for studying crustal structure is to try to verify the thinning of 

crust at the rift valleys and thickening of the crust at plate collision zones, as implied by plate 

tectonics theory. Understanding the composition of the earth in different parts of the earth and 

determining changes that have occurred there is an active area of research.  This is one of the 

motivations for our research and some details related to crustal structure studies will be covered 

in section 2.6. 

Another reason for investigating seismic signals is because seismic signals have been 

useful tools for discriminating nuclear explosions from earthquakes. Since a nuclear explosion, 

for that matter any explosion or implosion, produces seismic waves just like an earthquake, 

techniques have been developed and still being improved to correctly identify whether a seismic 

event is an earthquake or an explosion. Hence, monitoring and verifying the implementation of 
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the Comprehensive Nuclear-Test-Ban Treaty has been made easier due to techniques utilizing 

seismic signals. Some of these seismic techniques involve a closer examination of the following 

parameters: seismic source depth, polarity of the first arriving (primary or P-) wave, and the 

strength of seismic surface waves.  

1.2 Problem Statement 

In this dissertation, both direct and evolutionary techniques have been introduced to solve 

a global optimization problem of inverting receiver functions based on H- stacking. First, some 

of the seismic data and seismic approaches used in this dissertation are discussed. Receiver 

functions are a time series obtained by de-convolving vertical component seismograms from 

radial component seismograms (Langston, 1979).  Receiver functions consist of a number of 

phases, the arrival times of which are correlated with discontinuities in the crust and upper 

mantle. In fact, receiver functions represent the impulse response of the receiver structure 

beneath the seismic station (Rondenay, 2009). H- stacking of receiver functions (where H 

represents the crustal thickness and  designates the ratio of crustal P-wave velocity to crustal S-

wave (secondary wave) velocity) is a technique useful for estimating crustal thickness H and 

crustal Vp/Vs ratio  (Zhu and Kanamori, 2000). The  is interrelated to the crustal Poisson’s 

ratio, which is a very commonly used elastic parameter that indicates the composition and nature 

of the crust beneath a seismic station.  

In the implementation of the H- stacking, the arrival times for three important converted 

phases in the receiver functions, the P-to-S converted phase (Ps) and the first two reverberations 

of P-to-S converted phases (PpPs and PsPs+PpSs) in the crust, need to be determined. Ammon 

(1991) has shown that a receiver function is just a scaled version of the radial component 
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seismogram with the exclusion of P multiples. In other words, receiver functions consist of P-to-

S converted phases and reverberations of converted phases. The arrival times of these converted 

phases and their multiples are related to the crustal thickness (H) and  (Zandt et al., 1995).  The 

main goal of this research is to investigate the application of GPS and GA along with FPN 

techniques to determine optimal values of H, , and weights which are important parts to 

compute the H- stacking. 

Previous studies have utilized different approaches for solving the H- stacking of 

receiver functions to determine crustal thickness (H) and  parameters.  The optimization in the 

current study takes into account the previous studies for the employment of the H- stacking 

algorithm and the weights corresponding to different phases in the receiver functions. Besides 

optimality, automatic algorithm development is the aim of the current study. 

More receiver functions from different seismic stations have been utilized when the GPS 

technique was applied as compared to the one used with the GA technique. The GPS technique is 

among the very few provably convergent and derivative-free methods applicable to linearly 

constrained optimization (minimization) problems like the H-κ stacking problem in this 

dissertation. The GPS method amounts to finding the steepest descent path without computing 

the derivative of the objective function. In the last decade, the GPS technique has emerged as an 

important derivative free technique, developed mainly with the support of NASA, yet has not 

been widely applied in many areas, including seismic studies. In order to apply the GPS 

technique, first the maximization problem of H- stacking is converted to a minimization 

problem.  For such a minimization problem, GPS searches for the optimal solution by 

determining the point that provides the minimum objective function value among a sequence of 
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points in a chosen matrix pattern.  Almost, the outputs and results from the GPS implementation 

can be repeated unlike other heuristic search approaches.  Not only the outputs, but also the 

number of iterations as well as the number of objective function evaluations remain the same as 

long as initial values, the lower and upper bounds, as well as the processing machine stay the 

same. It is observed that optimal values will be almost identical irrespective of the initial values, 

as long as those initial values are within a plausible range.  

 The optimization problem emanating from the work of Zhu and Kanamori (2000) has 

given rise to the idea of implementing the GA, GPS and FPN techniques in this research. The 

original problem setup is a maximization problem known as H- stacking technique.  Since its 

inception, the H-κ stacking has been applied in many crustal structure studies to determine 

crustal thickness and  or the Poisson’s ratio (e.g., Julia and Mejia, 2004; Dugda and Nyblade, 

2006; Buffoni et al., 2012).  In the previous studies published so far, values of weights, which are 

necessary components for the H-κ stacking, have been assigned through assumptions or using 

Monte Carlo Simulation technique (e.g., Zhu and Kanamori, 2000; Dugda et al, 2005) or by 

using Genetic Algorithms (GA) (Dugda et al., 2012).  One of the objectives of this dissertation is 

to implement the GPS technique and evaluate its performance for H-κ stacking of receiver 

functions. The GPS technique will enable to determine the optimal parameters using a 

minimization of an objective function value.  One may like to compare the optimal weights 

resulting from the GPS employment with previously published works (e.g., Dugda et al., 2005; 

Dugda et al., 2012) for the determination of the weights as well as H and κ parameters.  The GPS 

technique realized here has the potential to be used as an automatic crustal parameters 

determination tool along with important weights for the receiver function phases. In this 

research, the GPS technique, when allowed to go through complete polling, would be able to 
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escape local optima to provide global optima. In the event when the GPS is trapped in a local 

optimum, the proposed FPN technique would enable to identify the right initial values necessary 

to arrive at the global optimum point.  

1.3 Contribution 

The contributions of this study include developing tools by implementing Genetic 

Algorithms (GA), Generalized Pattern Search (GPS) and Fitness Proportionate Niching (FPN) as 

automatic techniques to solve the problem of inverting receiver functions for a number of 

seismic stations at the same time. The inversion in this study will solve for both crustal 

parameters and the weights simultaneously. So far, techniques introduced have been 

implemented to solve for one seismic station at a time and the weight assignment has been either 

fixed by assumption or variable. The variable weights approach introduced in 2005 uses a Monte 

Carlo technique to find the variable weights for receiver functions from one seismic station 

(Dugda et al., 2005). Besides, verification of the picking of the phases was required to determine 

the correctness of the phase picking. The search method used to determine the best parameters 

was an exhaustive search technique but focused on the unimodal portions of the objective 

function at a time. Because of all these factors, the technique introduced in 2005 was time-

consuming, applicable to one station at a time, and it was not suitable for automatic 

implementation. In fact the 2005 study has focused on the accuracy of the then newly introduced 

variable weights approach, on the revelation of the crustal structure of the region and most 

importantly on the implication of the crustal structure discovered by that study. Enhancement of 

the technique introduced at that time was not within the scope of that study, as there was no 

enough time to do that. The research and techniques developed in this dissertation take the 

variable weights approach to a whole new higher level by introducing new optimization 
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techniques.  

In this dissertation, the receiver function inversion problem is shown to be a multimodal 

problem and two different techniques have been developed to solve this problem. The techniques 

developed here involve evolutionary and direct optimization approaches and they are used to 

invert the receiver functions to determine crustal parameters and the three associated weights 

simultaneously. The first technique developed here makes use of the evolutionary Genetic 

Algorithms (GA) optimization technique. The second technique introduced in this research 

combines the direct Generalized Pattern Search (GPS) and evolutionary Fitness Proportionate 

Niching (FPN) techniques by employing their strengths. Compared to the previous Monte Carlo 

variable weights approach introduced about a decade ago (Dugda et al., 2005), the current GA 

and GPS-FPN techniques have tremendous advantages of saving time and these new techniques 

are suitable for automatic and simultaneous determination of the crustal parameters along with 

appropriate weights. 

The GPS technique is among the very few provably convergent, derivative-free search 

techniques for linearly constrained optimization problems. The study in this dissertation has 

shown clearly that GPS technique offers repeatable results, especially compared to heuristic 

search approaches. Moreover, the number of iterations as well as the number of objective 

function evaluations will remain the same as long as initial values, the lower and upper bounds, 

and the processing machine remain the same. Thus, GPS is shown in the current study to be a 

very powerful optimization tool that provides consistent results as if it searches the parameter 

space exhaustively. The GPS, on the other hand, searches the parameter space in a given matrix 

pattern and computes objective function values only at those points in the pattern. Our study also 

shows the limitations of the GPS technique when it is applied to optimize multimodal problems. 
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Most real-life problems are multimodal in nature and in such cases this research has extended the 

power of GPS by using FPN technique to identify an initial search point for the GPS 

optimization search to start with. We call this combined technique GPS-FPN. 

In the GPS-FPN implementation, as a first step, after the GPS inversion is complete for a 

set of stations, the GPS has been utilized again to test the final model to check for any initial 

model dependence. If the inversion is found to be sensitive to initial values for some specific 

seismic stations (i.e., if the objective function has different local and global optima in the given 

H-κ parameter space), then we invoke the FPN to identify the appropriate initial parameters. So 

far this seismic inversion problem has not been considered a multimodal problem to be solved by 

a multimodal optimization approaches. Finding the best initial values is a new approach 

introduced in this study and it is also a new application area for the FPN or for any other 

multimodal optimization approach. Thus, implementation of FPN for identifying the right initial 

values is another significant contribution of this research work. The tools developed and being 

developed can be instrumental in geological and geophysical surveys and investigations. 

Moreover, the technique can be used to solve similar exploration inverse problems for the 

petroleum/oil industry. In fact the technique can be extended to similar multimodal optimization 

problems. 

The different parts of this research work have been published in peer-reviewed journal 

and conference papers:  

 Dugda, Mulugeta, Abrham T. Workineh, Abdollah Homaifar and Jung Hyoun Kim 

(2012). “Receiver Function Inversion Using Genetic Algorithms,” Bulletin of the 

Seismological Society of America (BSSA), Vol. 102, No. 5, pp. 2245–2251, October 2012, 

doi: 10.1785/0120120001. 
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 Dugda, Mulugeta, Abdollah Homaifar and Jung Hyoun Kim (2013). “Receiver Function 

Inversion Using Generalized Pattern Search Technique,” the Geological Society of 

America (GSA) 125
th

 year celebration and meeting in Denver Colorado, GSA Abstracts 

with Programs Vol. 45, No. 7, October 27-30, 2013.  

 Dugda, Mulugeta, Abrham T. Workineh, Jung H. Kim, Abdollah Homaifar, “Optimal 

Receiver Function Inversion Using Generalized Pattern Search and Fitness 

Proportionate Niching (FPN) of Genetic Algorithms Approach,” American Geophysical 

Union (AGU) Fall meeting, San Francisco, CA, Eos Trans. AGU, 94(52), Fall Meet. 

Suppl. Dec. 9-13, 2013.  

 Dugda, Mulugeta, Jung H. Kim, Abdollah Homaifar (2014). Generalized Pattern Search 

(GPS) and Fitness Proportionate Niching (FPN) for Optimal Multimodal Receiver 

Function Inversion, Institute of Electrical and Electronic Engineers for Geosciences and 

Remote Sensing Society (IEEE-GRSS) Transactions (In Preparation). 

1.4 Objectives and Goals 

A non-seismologist researcher, such as a geochemist, even a geophysicist with little or no 

experience in seismology, a geographer, or an engineer may be interested in knowing the 

estimate of some important parameters of the earth like the crustal thickness (H) and the 

Poisson’s ratio () or the Vp-to-Vs ratio (κ) beneath a certain place on Earth. One may have 

access to some seismic data from that specific region (available via online, or directly from a 

seismic station in the vicinity). How can the person come up with the solution to his problem of 

estimating those parameters without asking the help of a seismologist? The person may get an 

estimate of those parameters if an automatic crustal parameter computing system utilizing the 

seismic signals available at his/her disposal. Developing a programming tool that can be 
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integrated into an automatic system is the main objective of this work. This research has shown 

that automatic crustal parameter determination technique can be developed using GPS and FPN.  

This tools proposed here have been developed using Matlab for determining crustal 

parameters automatically or semi-automatically, and at some point in time the codes may be 

available to the public. The approach developed here will be an important step towards 

developing a fully automatic technique. The previous crustal parameter determination techniques 

using seismic signals and optimization tool need the expertise of a seismologist to endorse that 

the analysis algorithm and technique has properly picked the correct receiver function phases. 

One stimulus for the automatic crustal parameter determination system could come from 

the fact that a non-seismologist may be interested in some of the crustal parameters. For instance, 

geochemists are usually interested in the Poisson’s ratio of the crust in order to determine how 

much partial melt exists inside some particular crust. The automatic crustal parameter 

determination system planned in this study would be a friendly tool to the non-seismologist and 

does not need the approval of the seismologist.   

1.5 Dissertation Outline  

This dissertation is organized in six chapters. Chapter 1 states the problem we are 

attempting to address and discusses the motivation behind the research. The contributions of this 

study as well as the main objectives and goal of the research work are also deliberated in chapter 

1.  

Chapter 2 provides background and literature survey for both techniques developed in 

this study, the processed seismic data and the algorithm involved for processing it. A background 

study has been devoted to receiver functions, H- stacking of receiver functions, genetic 

algorithms (GA), pattern search methods for linearly constrained minimization problems, and 
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fitness proportionate niching (FPN). Moreover, a section is dedicated to discuss the difference 

between inverse and forward problems.  

Chapter 3 describes the proposed methodology – genetic algorithms (GA), generalized 

pattern search (GPS), and fitness proportionate niching (FPN) techniques. Implementation of H-

 stacking of receiver functions, fixed weights vs. variable weights in H- stacking; also, the 

inverse problem of finding model parameters with best fitting data are discussed in this chapter . 

The H-κ stacking of receiver functions is also demonstrated to be a multimodal optimization 

problem.  

Chapter 4 considers the experimental implementation of the techniques introduced in this 

dissertation and displays the results of this research. Genetic algorithm implementation and test 

results, the GPS test results as well as the FPN results are presented here. The location of the 

seismic stations for testing the working of the proposed techniques is provided in this chapter. 

The flow chart of the GPS implementation, the GPS results, the convergence of final values and 

objective function are also presented here. A graphical user interface (GUI) implementation for 

the GPS algorithm and the implementation of the GPS convergence test algorithm is presented in 

here. A complete polling with the GPS is considered for global optimization; also, a partial 

polling versus complete polling is demonstrated too.  

Chapter 5 provides discussions on the observed results and deals with performance 

evaluation. A discussion on the GA and the GPS implementation and results is given here. More 

results for GPS convergence test and a discussion has been included in this chapter. Results and 

a discussion on complete polling of GPS for global optimization have been incorporated here. A 

comparison of crustal parameters and weights obtained in this research and some previous 

studies, for both crustal thickness and Vp/Vs values for the same seismic stations are conveyed 
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in chapter 5. Finally, a comparison of the GA and the GPS techniques based on speed and 

computational cost has been offered. A discussion is also given on the FPN technique 

performance speed.  

Chapter 6 offers some concluding remarks and future research directions.  It provides 

conclusions on the GA and the GPS implementations. It gives concluding remarks regarding 

FPN implementations too. It also describes the contributions of this particular study. Further 

research on a class of optimization of weighted sum problems and further research on a 

multimodal optimization and dynamic clustering techniques is proposed here. Further studies on 

optimization and data analytics (data mining techniques, like clustering and machine learning) 

techniques applied to both earthquake generated seismic data and other seismic data from 

exploration field studies.  At the end, Appendix A is added into this dissertation. The Appendix 

lists some of my recent publications. 
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 CHAPTER 2 

Background and Literature Review 

Seismic waves are created by earthquakes or ground vibrations. Seismic signals recorded 

in seismic stations contain information about the seismic source as well as the media through 

which the seismic wave has propagated. In addition to being essential tools for reducing 

earthquake dangers, seismic signals have been helpful to learn the internal structure and 

composition of the earth. The two important internal structure and composition model 

parameters that are commonly determined using different seismic methods are layer thickness 

and layer velocity. Besides, seismic phase arrival times are the regularly observed and measured 

data parameter exploited in different seismic techniques. In this dissertation, the crustal layer 

thickness and the ratio of crustal velocities are the model parameters of interest and seismic 

phase arrival times and amplitudes are utilized for determining those crustal model parameters. 

The process of discovering such earth model parameters from observed data requires an 

inversion process. Seismic velocity variations with depth, as one glances deeper into crust and 

mantle structure, are known as crustal and mantle velocity structures. 

The focus of this research is developing techniques suitable for inverting processed 

seismic data called receiver functions and retrieve optimal crustal model parameters with 

appropriate weights. Initially, concepts on seismic wave propagation, seismic signals, receiver 

functions, and stacking of receiver functions are presented. This chapter also contains literature 

survey on inverse and forward problems, models of the earth structure, and the importance of 

crustal structure investigation. Furthermore, different ways of stacking receiver functions and 

state-of-the-art techniques for solving H-κ stack of receiver functions are discussed in this 

chapter. The rest of the literature review will embrace the techniques implemented in this 
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dissertation. These techniques include pattern search methods for linearly constrained 

minimization problems, specifically the generalized pattern search (GPS) technique, genetic 

algorithms (GA), and fitness proportionate niching (FPN) technique. 

2.1 Seismic Wave Propagation 

There are two types of body waves that arise as a result of an earthquake: P-waves and S-

waves. P-waves (Primary waves) are the first seismic waves to arrive at the seismic station. S-

waves (Secondary waves) are the seismic waves that arrive at the seismic station after the P-

wave arrival. P- and S-waves are called seismic body waves because they propagate throughout 

the body of the Earth. After the Secondary waves arrive at the seismic station, there is another 

group of waves called surface waves (Love and Rayleigh waves) which arrive at the seismic 

station. As their name indicates, surface waves are seismic waves that are propagating close to 

the surface of the earth. An earthquake basically radiates P- and S-waves in all directions and the 

interaction of those P- and S-waves with the Earth's surface and shallow structures produces 

surface waves. 

A typical seismogram in Figure 2.1 shows the basic kinds of seismic waves originating 

from an earthquake event. The first arriving seismic wave called the Primary (P-) wave is a 

longitudinal wave which is similar to a sound wave. The second arriving seismic wave is called 

the Secondary (S-) wave which is a shear or transverse wave.  P-waves are compressional waves 

that cause the medium through which they propagate to deform such that the particle motion in 

the medium is parallel to the direction of the wave propagation.  On the other hand, the S-waves 

are shear waves that cause particles in the medium of propagation to move perpendicular to the 

direction of wave propagation. In both the P-wave and S-wave propagation, the material 

(medium of propagation) returns to its original shape after the waves pass. 
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Figure 2.1 A typical seismogram showing the Primary (P) and Secondary (S) body waves and 

surface waves generated as a result of an earthquake (Tarbuck et al., 2013). 

 

Generally three components of seismograms are recorded in a single seismic station (in a 

single seismometer). The recording of three components in three perpendicular Cartesian 

coordinates enables to capture the motion of the ground fully, and enables it to describe the 

motion of the ground completely. These three components include: two horizontal components 

of East-West (EW) motion and North-South (NS) motion, and a single vertical component of Z. 

An example of three component seismic recording by a seismic (seismographic) station called 

NNA (Nana, Peru) is displayed in Figure 2.2.  Seismic station data contain information on 

magnitude of earthquake (e.g., 6.5), where the earthquake happened (e.g., near central Chile), the 

country or city where the seismic data is recorded (e.g., Peru), the distance between the seismic 

station and the earthquake source  (e.g., 1993 km away), what depth the earthquake occurred 

from the earth surface, what time the earthquake originated, the arrival times of the P-, the S- and 

surface waves, and the exact locations of the seismic station (e.g., 11.9875
0
 S latitude, 76.8422

0
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W longitude) and the location of the earthquake (e.g., 29.2934
0
 S latitude, 71.5471

0
 W 

longitude). 

 

 

Figure 2.2 An example of three-component seismograms recording in a single seismic station 

(Braile, 2010).  

 

2.2 Rotating Seismic Data 

Generally, a seismometer records data along three directions: the vertical Z, North-South 

N (NS), and East-West E (EW) directions (the ZNE rotation system). For the purpose of 

computing receiver functions, the two horizontal components N and E are projected into the 

radial R and tangential T components in the following way to form ZRT system: 
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where   = 3π/2-ξ and ξ is the back azimuth (BAZ).  

 

Figure 2.3 The transformation from ZNE system to ZRT system. EQ means Earthquake. 

 

Figure 2.3 shows the transformation from ZNE system to ZRT system. The radial 

component R is along the direction connecting the seismometer location (Z) with the earthquake 

source (the seismic source) location (EQ source), while T is transverse to that direction. Equation 

(2.1) basically transforms the ZNE system to ZRT system.  
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2.3 Receiver Function 

Receiver functions are time series determined by the de-convolution of vertical 

component seismograms from radial component seismograms (Langston, 1979). The receiver 

function is an approximation of the crust/mantle transfer function for an incident teleseismic or 

deep-event regional P wave (Burdick and Langston, 1977; Langston, 1977, 1979; Zhang and 

Langston, 1995). The receiver functions actually characterize the impulse response of the earth 

structure at the receiving end of the seismic signal (Ammon et al, 1990; Rondenay, 2009).  

Receiver functions display a number of phases the arrival times of which are correlated 

with discontinuities in the crust and upper mantle. H- stacking of receiver functions (where H is 

the crustal thickness and  is the ratio of crustal P-wave velocity Vp to S-wave velocity Vs) is a 

technique useful for estimating crustal thickness H and crustal Poisson’s ratio which is 

interrelated to the crustal Vp-to-Vs ratio  (Zhu and Kanamori, 2000).  In the implementation of 

the H- stacking, the arrival times for three important converted phases in the receiver functions, 

the P-to-S converted phase (Ps) and the first two reverberations of P-to-S converted phases (PpPs 

and PsPs+PpSs), need to be determined.  These arrival times are determined from the H and  

(Zandt et al., 1995).  

In Figure 2.4(a), a crust with thickness H and seismic P- and S-waves are shown. Those 

P- and S-waves originate from an impinging plane P-wave at the crust-mantle boundary called 

the Moho, in honor of the seismologist Mohorovicic who discovered it. The direct P-wave and P-

to-S converted wave as well as some reverberated waves are also shown using red and blue lines 

there. As shown in Figure 2.4(b), a receiver function time series is presented which corresponds 

to the given crust with the arriving direct P wave, P-to-S converted phase (Ps), PpPs phase, 

PpSs+PsPs phase, PsSs phase. As shown, t1, t2, and t3 provide arrival times of the P-to-S 
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converted phase Ps (converted at the crust-mantle boundary), and the two seismic wave 

reverberations PpPs and PpSs+PsPs in the crust relative to the direct P wave arrival Pp.  

 

Figure 2.4 (a) A three component seismic station, a simplified one layer crustal Earth model of 

thickness H, and different seismic phases; (b) receiver function corresponding to the given crust 

and impinging P-wave (Modified from Ammon et al, 1990).  

 

Relationships of the crustal thickness H, crustal velocities Vp and Vs with the different 

phase arrival times in the receiver function are given by the following equations (Zandt et al., 

1995): 

          (2.2) 
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(2.4) 

 

where p is the ray parameter of the seismic signal commonly specified by: 

  
pV

sin 
=p


       (2.5) 

where  is the angle of incidence between the seismic ray and a normal, and Vp is the velocity of 

the P-wave seismic ray.   

Receiver functions are computed by the deconvolvolution of vertical component 

seismograms from radial component seismograms (Langston, 1979). However, in practice, an 

averaging function A(ω) and a Gaussian low-pass filter G(ω) are included when determining 

receiver functions.  

As stated earlier, receiver functions are determined by de-convolving vertical component 

seismograms from radial component seismograms. Instead of de-convolution in the time domain, 

it is a standard procedure to divide the spectrum of radial component seismograms by the 

spectrum of vertical component seismograms.  Under ideal conditions, receiver functions can be 

determined in the frequency domain using the ratio of radial component and vertical component 

motions (seismograms): 

)V(

)R(
=)RF(




       (2.6) 

where RF(ω) is frequency-domain receiver function, R(ω) and V(ω) are frequency-domain radial 

and vertical component seismograms, respectively (Cassidy, 1992).  Practically, because of noise 

in the data as well as the band-limited nature of the signal, the water-level technique is used to 
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stabilize this spectral division (Clayton and Wiggins, 1976), and therefore, the receiver function 

estimate )(RF  is given by: 

)(
)V(

)R(
=)(RF 




 A      

 (2.7)

 

where A(ω) is the averaging function obtained using the relationship 
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and    

}}))V(max{V( c. ,))V(max{V(=)( **    (2.10) 

 

with a being the width of the Gaussian filter used to remove high-frequency noise, and c being 

the water-level parameter expressed as a fraction of the maximum vertical component power 

spectra (Ammon, 1991; Cassidy, 1992).  Once the receiver functions are obtained in the 

frequency domain, the time-domain receiver function can be determined by applying inverse 

Fourier Transform as: 

  )(RFF=(t)rf -1 
      (2.11) 

This time domain receiver function is the one being employed in the GA implementation of H-κ 

analysis in this research. 
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Receiver functions encompass information about discontinuities in the crust and upper 

mantle, especially the crust-mantle discontinuity called the Moho.  Since the arrival times of 

different seismic phases in receiver functions are interrelated to the different discontinuities, 

including the crust-mantle discontinuity, receiver function analysis has been used to study crustal 

structure for decades (e.g., Langston, 1979) (Figure 2.4). 

Tangential receiver functions are also obtained by de-convolving vertical component 

seismograms from tangential component seismograms.  The tangential receiver functions are 

usually important to check for heterogeneity of the earth structure under investigation.  

2.3.1 H- stacking of receiver functions. The arrival time differences in the phases of 

the receiver functions have been utilized to determine crustal parameters (crustal thickness and 

crustal Poisson’s ratio) since their inception in late 1970s. The arrival time difference between 

the direct P-phase and the first P-to-S converted phase has been used for this purpose first.  Since 

the problem is not well constrained this approach is not a noble candidate technique. Since the 

mid-1990s, different efforts have been exerted to constrain the problem using more converted 

and reverberated phases in the receiver functions (e.g., Ammon and Zandt, 1995).  

H- stacking of receiver functions has been applied to get an estimate of the thickness 

and Poisson’s ratio of the crust (Zhu and Kanamori, 2000).  Important information for H- 

stacking of receiver functions are arrival times for three phases: the P-to-S converted phase (Ps) 

and the first two reverberations of P-to-S converted phases (PpPs and PsPs+PpSs).  These times 

are related to crustal thickness and Vp/Vs by the equations derived in Zandt et al. (1995). 

 H and  have a strong trade off (Ammon et al., 1990; Zandt et al., 1995).  In order to 

lessen the ambiguity brought about by this trade off, Zhu and Kanamori (2000) incorporated the 
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later arriving crustal reverberations PpPs and PpSs+PsPs in a stacking procedure whereby the 

stacking itself transforms the time-domain receiver functions directly to objective function 

values in H- parameter space.  

The relative times t1, t2, and t3 as well as H and κ are used in our objective function 

formulation. In addition, the objective function originally given by Zhu and Kanamori (2000) is 

used in this study too for the implementation of the GA, GPS and FPN techniques in H- 

stacking as: 

Maximize  

     )(H,trw)(H,tr w+)(H,trw=)S(H, 3j3

N

1=j

2j21j1      (2.12) 

subject to  

 1 w  w w 321         (2.13) 

where t1, t2 and t3 are obtained using the respective formulae given below (equations 2.14-2.16), 

and w1, w2, w3 are weights (with w3=1-w1-w2). The rj(ti), i=1, 2, 3, are the receiver function 

amplitude values at the predicted arrival times of the Ps, PpPs, and PsPs+PpSs phases, 

respectively, for the j
th

 receiver function, and N is the total number of receiver functions used.  

By performing a grid search through H and  parameter space, the H and  values corresponding 

to the maximum value of the objective function can be determined.  The main hypothesis behind 

H- stacking of receiver functions is that the weighted sum stack will attain its maximum value 

when H and  take their proper values (Zhu and Kanamori, 2000).  

In the objective function equation (2.12), t1, t2 and t3 can be related to H and  using the 

following formulae (Zandt et al., 1995):  



28 

 

 

 
p

22

p

22

p

2

1
V

H
pV-1 - V- =t p      (2.14) 

   
V

H
pV-1  V- =t

p

22

p

22

p

2

2 p      (2.15)   

 22

p

2

p

3 V- 
V

2H
=t p       (2.16)  

It is worth noting that t1, t2 and t3 are relative arrival times for Ps, PpPs, and PsPs+PpSs seismic 

phases, respectively, with respect to the direct P-wave arrival as it is shown in Figure 2.4(b).  

Poisson’s ratio is one of the very important elastic parameters of the Earth that 

seismologists and other geologists use to study the composition of the Earth. Poisson’s ratios are 

directly related to Vp/Vs ratios. The mathematical relationships for Vp/Vs ratio and Poisson’s 

ratio (σ), respectively, are as follows (Christensen, 1996; Zandt et al., 1995): 

 

          (2.17) 

 

          (2.18) 

 

Some studies have indicated a pattern between Moho depth and Poisson’s ratio where 

Poisson’s ratio decreases with increasing crustal thickness for Moho depths of 20 to 45 km 

(Egorkin, 1998; Chevrot and van der Hilst, 2000; Dugda et al., 2005). The highest Poisson’s 

ratios are found for the thinnest crust and this is believed to reflect the mafic composition of the 

rifted crust. On the other hand, lower Poisson’s ratios found for thicker crust may reflect an 

unmodified crust.  
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2.4 Inverse Versus Forward Problems 

The seismic problem is an inverse problem. In an inverse problem, there will be an 

observed data and the model parameters that are responsible for creating those data are to be 

determined. Generating synthetic data for a given set of model parameters is the opposite process 

of performing inverse modeling and it is known as a forward problem. In a forward problem, the 

model and model parameters are known to generate data based on the model. 

2.4.1 Inverse problem theory. The majority of physics and engineering problems 

involve solving forward problems. A common example of forward problem would be a 

calculation of the electromagnetic field at a given distance from a conducting rod. If every 

impurity was mapped and the current was known everywhere inside the rod, the electromagnetic 

field could be calculated uniquely for every point outside the rod. One related inverse problem to 

this would be to determine the structure of the rod by measuring the electromagnetic field 

outside the rod. The inverse problem is harder than the forward problem because several 

different rod structures can produce the same electromagnetic field, which is a result of the non-

uniqueness behavior of inverse problems. 

2.4.2 The inverse problem. Consider the relationship between an observed data  and 

the model parameters m as given by:  

(2.19)   

where  is forward operator describing the relationship and it is known as observation operator, 

or observation function. Generally G denotes the governing equations that relate the model 

parameters to the observed data but usually it is difficult to find explicit relationships between d 

)(mGd 
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and m.  The goal of an inverse problem is to find the best model parameters m from an observed 

data d (Torantola, 2004; Menke, 2012; Richardson et al., 2012). 

There is an inherently more difficult family of inverse problems collectively known as 

non-linear inverse problems. Non-linear inverse problems have a more complex relationship 

between data and model (Khosrow and Sabatier, 1977; Borchers and Thurber, 2012; Press et al., 

2007). Another important application is constructing computational models of oil reservoirs, and 

it is widely practiced in geophysics overall. 

For a given condition, a theoretical forward model can be used to calculate synthetic 

receiver function. On the other hand, the purpose of research in this dissertation is to find the 

earth’s crustal velocity structure that generates the observed receiver function. The inverse 

problem is able to find a model m that corresponds to some observed data dobs by: 

          (2.20) 

In general, for most inverse problems it is not possible to determine G
-1

. In particular, 

inversion of receiver functions is highly non-linear problem, and G
-1

 cannot be constructed 

(Ammon et al., 1990; Chadan and Sabatier, 1977; Borchers, Brian, and Thurber, Clifford, 2012; 

Press et al., 2007). 

2.5 Models of the Earth Structure  

Seismic waves, specially the P- and S-waves, could show the internal structure of the 

earth. Seismic signals are used to make seismic tomographic images of the earth. For making the 

tomographic images of the earth, the seismic signals are used just like x-ray signals which are 

used for human body tomography. The main difference between seismic tomography and x-ray 

)(1
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tomography is the fact that there is no control over the source of the seismic signal, which is the 

earthquake, whereas we have the control over the sources of x-ray. The earthquake can happen 

anywhere on the globe. Only big earthquakes are useful for tomographic imaging of the deep 

structure of the earth, because those earthquakes are the ones having the capability of generating 

seismic waves that can crisscross the whole earth.  

Crust is a very thin structure of the earth. Crustal thickness ranges between about 0 km 

and up to 70 km, with an average of approximately 42 km for continental crust. Two places on 

earth where one can find thickest crust are beneath Tibetan Plateau in Asia and under Andes 

mountains in Latin America. A very simplified Earth model is given on Figure 2.5. It shows the 

different layers of the earth and their approximate relative sizes except the crust which is 

exaggerated. The real size of the crust is too small (less than 1%) compared to the other layers of 

the earth. Out of the 6371 km radius of the earth, the crust makes up on average only the top 40 

km thickness. The mantle forms more than 80% of the earth’s volume and it is more than 2800 

km thick. The outer core is liquid iron and nickel and it is about 1400 km thick. The analysis of 

seismic waves, especially the absence of the S-waves, has led scientist to conclude that the outer 

core is liquid. The inner core is more than 1100 km thick and is a solid iron. Most of the weight 

of the earth is concentrated in the core. 
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Figure 2.5 The different layers of the earth 

 

In Figure 2.6, three kinds of plate interaction are shown. The interaction of plates is the 

major cause of earthquakes, and so most earthquakes occur at the plate boundaries. There are 

three different kinds of plate boundaries as shown in the figure. Figure 2.6(a) displays 

convergent plate boundary where a submerging plate going beneath another plate called 

overriding plate at the subduction zone, like in Japan and Philippines. Subduction zones are the 

origins of big earthquakes that can be classified as great (> magnitude 8) earthquakes, like that of 

the 2011 Japan earthquake and the 1960 largest recorded earthquake of Chile. The plates are 

formed from the crust and the uppermost mantle and they are rigid and brittle hard rocks. 

Thickness of plates vary from pace to place and can reach up to 100 km or more. Plates are 

sitting and ridding on top of the part of the mantle called asthenosphere which is less rigid, 

ductile, hotter, and more mobile. Plates are moving due to mantle convection. In Figure 2.6(b) 

shows a divergent plate boundary where we can observe another kind of plate interaction at the 

rift valley. This is the case at mid-ocean ridges and rift valley regions like the East African Rift 
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Valley which includes the Ethiopian Rift Valley. The seismic stations in which seismic data has 

been collected and used for our study here are sitting inside and around the Ethiopian Rift 

Valley. Figure 2.6(c) shows Transform plate boundaries with transform faults similar to the San 

Andreas Fault in California. Major earthquakes (with a magnitude of 7 to 7.9) can occur at 

transform faults. Compared to Transform Faults (Transform plate boundaries) and Subduction 

zones (Convergent plate boundaries), the sizes of earthquakes at Divergent plate boundaries, like 

the mid-ocean ridges or rift valleys, are not that big.  

  

                      

(a)                (b)    (c) 

Figure 2.6 Interaction of plates at (a) subduction zones, (b) rift valleys, (c) transform plate faults 

 

2.6 Crustal Structure Studies 

Within the geoscientific community crustal structures are studied with various drives. 

Some of these stimuli include determining the amount of thinning and thickening of the crust in a 

certain region, especially related to plate tectonics theory. One incentive for studying crustal 

structure is to try to verify the thinning of crust at the rift valleys and thickening of the crust at 

plate collision zones, as implied by plate tectonics theory. This is one of the motivations for our 

research. 



34 

 

 

Another reason for crustal studying is to learn the composition of the earth in different 

parts of the earth and determining changes that has occurred in the crust. Determining how much 

change has occurred to the crust in a region of study is an active area of research. Ground truth 

development for different geophysical investigations, including Comprehensive Nuclear Test 

Ban Treaty monitoring & verification is one important reason for studying the crust. In fact 

ground truth is developed for various reasons.  

There are several advantages mentioned in literature by different authors who studied 

crust and mantle structure in different parts of the world. Some of the specific and general 

advantages include: knowledge of crust and mantle structure across the Basin and Range-

Colorado Plateau in the US has implications for Cenozoic extensional mechanism (Zandt et al., 

1995). Another study of crustal structure of northeastern Iceland (Staples et al., 1997) placed a 

constraint on the flow within the Iceland mantle plume. A different study showed that 

continental crust composition is constrained by measurements of crustal Poisson’s ratio (Zandt 

and Ammon, 1995). Several studies on Ethiopia and Kenya crust have shown implications for 

rift development in eastern Africa (Dugda et al., 2005), and an opening of a new ocean floor in 

the region in few millions of years’ time (Yirgu et al., 2006). Since 2005 the Afar Triangle (Afar 

Depression) in Ethiopia is experiencing many earthquakes, tremors, fissure formations, and 

numerous volcanic activities from the dormant volcano of Erta Ale. Many geological and 

geophysical studies in the Afar region indicate that new ocean floor is in the process of 

development; and geologists state that the new crack is an indication of the birth of a significant 

body of water which will effectively “cut- off” the horn of Africa from the mainland in about ten 

million years’ time (Yang and Chen, 2010). 
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2.7 Receiver Functions for Crustal Structure Parameters  

The crustal structure parameters investigated in this dissertation are crustal thickness (H) 

and crustal Vp/Vs ratio (κ). In most seismic studies, the available data parameters are arrival 

times of seismic phases while the model parameters to be determined are usually layer thickness 

and layer velocities. We are more interested in finding the ratio of Vp and Vs as the second 

parameter. 

Receiver functions have been widely used tools for studying the crustal and upper mantle 

structures since its inception in 1979 by Charles Langston. Figure 2.4 shows the crustal thickness 

H(h) and Vp/Vs ratio or the crustal Poisson’s ratio (σ) parameters and the mathematical 

relationship to the arrival times of the different phases in the receiver functions are given by 

Equations (2.14-2.18). 

Receiver functions have been applied using different approaches for determining the H 

and Poisson’s ratio (σ) or κ. The two procedures that are commonly used so far include a simple 

receiver function stacking and an H-κ stacking of receiver functions. 

2.7.1 Simple stack of receiver functions. Simple stacking of receiver function has been 

among the very common approaches and still a useful technique when the available data are very 

scarce. The simple stacking improves the signal-to-noise ratio (SNR) in the receiver functions 

which enhances the estimation of the crustal parameters... Simple stacking is just averaging of 

receiver functions. Usually only one phase in the simple stack of receiver functions is used to 

determine the crustal parameters. 

2.7.2 H-κ stacking of receiver functions and state-of-the-art in solving it. H-κ 

stacking of receiver function has been introduced in 2000 by Zhu and Kanamori (2000) in order 

to address the very common trade off problem between H and κ.  The H-κ stacking of receiver 
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functions reduces the tradeoff ambiguity by bringing in more (a total of three) seismic phases for 

the determination of the crustal parameters. There has been a need to determine weights 

associated with the different phases involved in the stacking. Compared to the single phase used 

to determine the crustal parameters in the case of simple stack of receiver functions, the H-κ 

stacking combines three phases of receiver functions in estimating the H and κ parameters.  

For the three phases involved in the H-κ stacking, values for the weights could be 

assigned using two different ways. In one of those approaches, fixed weights are assigned to all 

receiver functions from one seismic stations... For example, equal weights have been assigned in 

many cases (e.g., Julia et al, 2005; Crotwell and Owens, 2005). In the second method, variable 

weights have been assigned (e.g., Dugda et al., 2005; Jeon et al., 2013), but, it has been time-

consuming because the weight assignment needs to be done on a station-by-station basis and 

human intervention is necessary. Therefore, an optimization method that can be automated looks 

a natural choice. In the first part of this research, Genetic Algorithms (GA) was used to solve all 

five parameters simultaneously. This work was published in 2012 (Dugda et al., 2012) and is 

found to be suitable for automation. Moreover, the Generalized Pattern Search (GPS) and Fitness 

Proportionate Niching (FPN) techniques that have been developed in this study are also applied 

to solve all the five parameters simultaneously and they are appropriate for automation too.  

2.8 Pattern Search Techniques 

Dennis and Torczon introduced a multidirectional search algorithm in 1989 in Torczon’s 

PhD work (Torczon, 1989).  That multidirectional search algorithm was considered a first step 

headed to a general purpose optimization algorithm with promising characteristics for parallel 

computation. Succeeding work based on the multidirectional search algorithm was then bound 

for a class of algorithms that allow more flexible computation (Torczon, 2001). One great 
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unexpected accomplishment of that research was a global convergence theorem for the original 

multidirectional search algorithm (Lewis and Torczon, 2001). Subsequent to the multidirectional 

search algorithm, the generalized pattern search (GPS) has been developed between the 1990s 

and early 2000 (Lewis and Torczon, 2001; Lewis, Torczon and Trosset, 2000; Lewis and 

Torczon, 1997, 1999a, b). The GPS is a direct search optimization technique which does not 

require the gradient or higher derivative of the objective function to solve the optimization 

problem. Traditional optimization methods, on the other hand, utilize the gradient or higher 

derivatives information in their search for an optimal solution. Direct search methods search a set 

of points around the current point to find a point where the value of the objective function is 

lower than the value at the current point. The direct methods of pattern search are useful tools 

when the problem at hand has an objective function that is not differentiable and/or not 

continuous (Kolda, Lewis and Torczon, 2003; Lewis, Torczon and Trosset, 2000; Conn, Gould 

and Toint, 1991; Hooke and Jeeves, 1961). 

The GPS technique has been applied in this research for solving a seismic optimization 

problem, especially employing receiver function inversion. The kind of problem attempted to 

solve here has the potential of having multiple peaks or troughs. Thus, occasionally application 

of GPS alone may not provide the best or global optimum point as the optimization problem can 

be trapped in a local optimum point rather than the global optimum point. Thus, it is necessary to 

have the right starting values in order to find the right solution. The fitness proportionate niching 

(FPN), a clustering algorithm developed at North Carolina Agricultural & Technical State 

University (Workineh, 2013), has been implemented in this research work for pinpointing the 

right initial model in the seismic optimization problem. The optimization problem setup here 
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actually resolves a receiver function inversion problem. Inverse problems are generally difficult, 

especially when they are compared to their forward counterparts. 

2.8.1 Pattern search methods for linearly constrained minimization problems.   

Lewis and Torczon (1999a, b) proposed to extend pattern search methods for linearly constrained 

minimization problems. As a result, a general class of feasible point pattern search algorithms 

was developed and global convergence to a Karush-Kuhn-Tucker point has been proven to hold 

for such an approach (Lewis and Torczon, 1997). For the case of minimization with general 

constraints and simple bounds, similar pattern search methods employ augmented Lagrangian 

(Conn et al., 1999; Lewis and Torczon, 2001). The pattern search methods for linearly 

constrained cases, just like in the case of unconstrained problems, achieve the searching 

objective without explicit resort to gradient or directional derivative.  

In our particular study, pattern search algorithms are implemented for the following kind 

of optimization problem with linear constraints: 

Minimize  

f(x)     (2.21) 

subject to  

ℓ ≤ Ax ≤ u,      

where f(x) is an objective function and f: R
n 

→ R, x ∈ R
n
, matrix A ∈ Q

m×n
, ℓ, u ∈ R

m
, and upper 

and lower bounds ℓ ≤ u. Here, the sets of real, rational, integer, and natural numbers are 

represented by R, Q, Z, and N, respectively. In general, we may allow the possibility that some 

of the variables can be unbounded either above or below by permitting ℓi, ui = ±∞, i ∈ {1, ・ ・ 

・, m}. In this approach, we also admit equality constraints by allowing ℓi = ui. If the objective 



39 

 

 

function f is continuously differentiable, then a subsequence of the iterate produced by a pattern 

search method for linearly constrained minimization converges to a Karush-Kuhn-Tucker point 

of problem (Equation 2.21). We do not attempt to estimate Lagrange multipliers for this 

implementation. , The pattern of points over which we must search in the worst case scenario 

will, when we are close to the boundary, conform to the geometry of the boundary (Lewis and 

Torczon, 1996). The general idea is that the pattern must contain search directions that comprise 

a set of generators for the cone of feasible directions. We must also take into account the 

constraints that are almost binding in order to be able to take sufficiently long steps. Though in 

the bound constrained case it turns out to be simple to ensure, in the case of general linear 

constraints the situation is more complicated. In practice, pattern search methods are most 

applicable in cases where there are relatively few linear constraints besides simple bounds on the 

variables.  

Jerrold May (1974) expanded the then existing derivative-free algorithm for 

unconstrained minimization problems into linearly constrained problems. May proves global 

convergence and superlinear local convergence for his method. Lewis and Toczon (1998) claim 

that May’s method is the only other provably convergent derivative-free method for linearly 

constrained minimization problems introduced before their method. Both May’s approach and 

the methods described here use only values of the objective function at feasible points to conduct 

their searches.  

We must place additional algebraic restrictions on the search directions since pattern 

search methods require their iterates to lie on a rational lattice. This requires that the matrix of 

constraints A in Equation (2.21) be rational. The mild restriction is a price paid for not enforcing 
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a sufficient decrease condition. The i
th

 standard basis vector will be denoted by ei. Unless 

otherwise noted, norms are assumed to be the Euclidean norm.  

Ω denotes the feasible region for problem given by Equation (2.21) and defined by: 

Ω = {x ∈ R
n
 | ℓ ≤ Ax ≤ u}    (2.22) 

2.8.1.1 The pattern. Basically two matrices are required to define a pattern: a basis 

matrix and a generating matrix. The basis matrix can be any nonsingular matrix B ∈ Rn×n, 

whereas the generating matrix is a matrix Gk ∈ Zn×p, where p > 2n. We partition the generating 

matrix into components 

Gi = [Mi   −Mi   Li] = [Γi     Li]   (2.23) 

We require that Mi ∈ M ⊂ Zn×n, where M is a finite set of nonsingular matrices, and that Li ∈ 

Zn×(p−2n) and contains at least one column, the column of zeros. 

A pattern to search Pi is computed by the columns of the matrix Pi = BGi. Because both B 

and Gi have rank n, the columns of Pi span Rn. For convenience, we use the partition of the 

generating matrix Gi given in Equation (2.23) can be partitioned Pi as follows: 

  Pi  =  BGi   =  [BMi  −BMi   BLi]  =  [BΓi  BLi]  (2.24) 

Given Δi ∈ R, Δi > 0, we define a trial step sji to be any vector of the form  

sji = ΔiBgji        (2.25) 

where gji is a column vector of Gi = [g1i · · · gpi]. Bgji determines the direction of the step, while 

Δi serves as a step length parameter. At iteration i, we define a trial point as any point of the form 

xji = xi+sji, where xi is the current iterate.  

The pattern for linearly constrained minimization is defined in a way that is only slightly 

less flexible than for patterns in the unconstrained case. According to Lewis and Torczon (1997), 

at each iteration the pattern Pi is specified as the product Pi = BGi of two components, a fixed 
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basis matrix B and a generating matrix Gi that can vary from iteration to iteration. For linearly 

constrained problems, B can be ignored to be B = I and Pi = Gi.  

A pattern Pi is a matrix Pi ∈ Znxpi, where pi > n+1 and no upper bound for pi. The 

generating matrix can be divided into components Pi = [Γi Li] where Γi ∈ Zn×ri which belongs to a 

finite set of matrices Γ with certain geometrical properties, and that Li ∈ Zn×(pi−ri) contains at least 

one column, a column of zeroes. The inclusion of a column of zeroes is simply a formalism to 

allow for a zero step, i.e., xi+1 = xi, and n + 1 ≤ ri < pi. 

Given Δi ∈ R, Δi > 0, a trial step sji can be any vector of the form sji = Δicji, where cji is a 

column vector of Pi = [c1i ・ ・ ・ cpji]. The trial step sji feasible for (xi + sji) ∈ Ω. At iteration i, 

a trial point is any point of the form xji = xi + sji, where xi is the current iterate. 

2.8.1.2 The linearly constrained exploratory moves. A pattern search or GPS method 

conducts a sequence of exploratory moves about the current iterate xi to determine a feasible step 

si and a new iterate xi+1 = xi + si. The hypotheses for linearly constrained exploratory moves 

shown in Algorithm 2.1, provide a broad choice of exploratory moves while ensuring the 

properties required to prove convergence. These hypotheses assume the role played by sufficient 

decrease conditions in quasi-Newton methods.  

The choice of exploratory moves must ensure two things: 

1. The direction of any step si accepted at iteration i is defined by the pattern 

     Pi, and its length is determined by Δi. 

2. If simple decrease on the function value at the current iterate can be found among any 

of  the 2n trial steps defined by ΔiBΓi, then the exploratory moves must produce a step si 

that also gives simple decrease on the function value at the current iterate. In particular, 
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f(xi + si) need not be less than or equal to min{f(xi + y), y ∈ΔiBΓi}. The iterates must be 

feasible. 

 

1. si ∈ ΔiPi = Δi [Γi Li]. 

2. (xi + si) ∈ Ω. 

3. If min { f(xi + y) | y ∈ ΔiΓi and (xi + y) ∈  Ω} < f(xi), 

then f(xi + si) < f(xi). 

Algorithm 2.1. Hypotheses on the result of the linearly constrained exploratory moves. 

2.8.1.3 The generalized pattern search (GPS) method. The generalized pattern search 

(GPS) method for minimization with linear constraints is displayed in Algorithm 2.2. In order to 

define a particular pattern search method, we must specify the pattern Pi, the linearly constrained 

exploratory moves for generating a feasible step si, and the specific algorithms for updating Pi 

and Δi. 

Let x0 ∈Ω and Δ0 > 0 be given. 

For i = 0, 1, ・ ・ ・, 

a) Compute f(xi). 

b) Determine a step si using a linearly constrained exploratory moves algorithm. 

c) If f(xi + si) < f(xi), then xi+1 = xi + si. Otherwise xi+1 = xi. 

d) Update Pi and Δi. 

Algorithm 2.2. The generalized pattern search (GPS) method for linearly constrained problems. 

2.8.1.4 The updates. The rules of updating Δi are specified in Algorithm 2.3. The goal of 

updating Δi is to make sure that the objective function f(x) decreases. An iteration is successful if 
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f(xi +si) < f(xi); otherwise, the iteration is considered unsuccessful. For any pattern search 

method to be acceptable, a step needs only produce simple decrease, and not sufficient decrease. 

Let τ ∈ Q, τ > 1, and {w0, w1, ・ ・ ・, wL} ⊂ Z, w0 < 0, and wj ≥ 0, j = 1, ・ ・ ・, L. Let θ = 

τ
w0

, and λi ∈ Λ = {τ
w1

 , ・ ・ ・, τ
wL

}. 

a) If f(xi + si) ≥ f(xi), then Δi+1 = θΔi. 

b) If f(xi + si) < f(xi), then Δi+1 = λiΔi. 

Algorithm 2.3. Updating Δi. 

The conditions on θ and Λ ensure that 0 < θ < 1 and λi ≥ 1 for all λi ∈ Λ. Thus, if an iteration is 

successful it may be possible to increase the step length parameter Δi, but Δi is not allowed to 

decrease. The algorithm for updating Gi depends on the pattern search method. 

2.9 Genetic Algorithms 

A Genetic algorithm (GA) is an adaptation procedure based on the mechanics of natural 

genetics and natural selection (Goldberg, 1989).  The GA discovers new solutions among a 

population of candidate solutions using mutation and crossover operators.  Unlike gradient based 

search techniques, the GA search is not trapped in local optima since the search is performed 

over the entire domain in parallel.  Basically GA involves three major operations: reproduction, 

crossover, and mutation.  Reproduction is done by mating better solutions from the population.  

There are different selection mechanisms in the literature (roulette wheel, tournament, elitist and 

ranking selection) and a comparative analysis of the selection schemes is given in Goldberg and 

Deb (1991).  In this research, a roulette wheel selection method is used to select parents for 

reproduction.  The roulette wheel selection is a probabilistic selection method where the chance 

of an individual being selected for reproduction is proportional to its fitness.  Accordingly, 
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individuals with a higher fitness (objective function value) will reproduce more often and, hence, 

dominate the population in the coming generations.  The crossover operator allows the GA to 

come up with a better candidate solution by exploiting its experience through genetic 

combination of existing solutions.  The mutation operator gives the power to discover new 

solutions from the search space, and, hence, provides a mechanism to get out of local optima. 

When there is lack of diversity in the population, Genetic algorithms (GAs) can converge 

prematurely. Mutation and crossover operations play an important role in GAs to discover new 

solutions as well as accelerate convergence. The mutation assists the GA in the new discovery by 

getting out of local optima, while the crossover accelerates its convergence by enhancing already 

acquired solutions. In GAs there should be an equilibrium maintained between exploration and 

exploitation. High mutation rate means too much exploration and this would destroy good 

solution and delays convergence. Higher crossover (higher crossover rate) means too much 

exploitation and this brings about a premature convergence which overlooks perhaps better or 

even global optimal solutions at the unexplored space (Floudas and Pardalos, 1996; Pardalos and 

Romeijn, 2002). 

GAs can be categorized into a bigger class of population-based search algorithms called 

Evolutionary Approaches (EAs). Though traditional search methods employing gradients and/or 

higher derivatives are susceptible to be trapped in local optima, generally Evolutionary 

Approaches (EAs) utilize the mutation operator to escape such local optima (Floudas and 

Pardalos, 1996; Pardalos and Romeijn, 2002). On the other hand, no one can warranty that EAs 

would always find out the global optima every time they are executed. This is because finding a 

global optima basically rests on various dynamics such as initial population and type of fitness 

landscape (like uni-modality, multimodality, ruggedness, etc.) (Jong, 1975). The observation and 
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study on H- stacking surfaces in this research shows that those surfaces are generally 

characterized by multimodality.  

2.9.1 Genetic algorithms in seismology. In the last two decades, genetic algorithms 

(GAs) have been successfully applied in various areas of seismology (e.g., Stoffa and Sen, 1991; 

Sambridge and Drijkoningen, 1992; Shibutani et al, 1996; Chang et al., 2004; Wu et al., 2008).  

These seismic studies include investigations of crustal velocity structure (e.g., Jin and 

Madariaga, 1993; Zhou et al., 1995; Yamanaka and Ishida, 1996; Bhattacharyya et al., 1999; 

Lawrence and Wiens, 2004; Pezeshk and Zarrabi, 2005), studies of mantle velocity structure 

(Lomax and Sneider, 1995; Curtis et al., 1995; Neves et al., 1996), hypocenter (the exact location 

of the earthquake origin) relocations (e.g., Sambridge and Gallagher, 1993; Billings et al., 1994), 

and determinations of source parameters (e.g., Yin and Cornet, 1994; Sileny, 1998; Jimenez et 

al., 2005; Wu et al., 2008).  Genetic algorithms (GAs) have been effective techniques for 

searching parameter spaces to obtain optimal values.  The GA uses the mechanics of natural 

selection and natural genetics in their search and is based on the principle of survival of the 

fittest (Goldberg, 1989). GAs are population based stochastic search algorithms that start with a 

random population of candidate solutions and evolve it to a new and possibly better population 

using crossover and mutation operators.  The techniques which GAs employ in their attempt to 

mimic “natural selection” are the use of roulette-wheel and tournament selection to choose the 

fittest individuals from a mating pool (Homaifar et al., 1987; Goldberg, 1988).  

One of the major goals of this research has been to implement genetic algorithms to 

determine optimal or near optimal values of weights which are essential to compute the H- 

stacking of receiver functions along with searching for optimal H and  values. Since its 

introduction, the H-κ stacking has been applied in many crustal structure studies to determine 
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crustal thickness and Vp-to-Vs ratio,, or the Poisson’s ratio (e.g., Julia and Mejia, 2004; Dugda 

and Nyblade, 2006; Buffoni et al., 2012).   

2.10 Fitness Proportionate Niching (FPN) 

Traditional GAs are appropriate for discovering the optimum of unimodal functions as 

they converge to a single solution of the search space (Sareni and Krähenbühl, 1998).  The H- 

stacking problem in this study, on the other hand, has a very good similarity to a clustering 

problem. Due to its resemblance, not as a unimodal clustering problem, but as a multimodal 

clustering problem, it is proposed in here to approach the problem at hand as a clustering 

problem. Then, each cluster center corresponds to a local or global optimum of the fitness 

function (objective function). Algorithms that allow the formation and the maintenance of 

different solutions can be used to solve such multimodal problems. By retaining useful diversity in 

a population, GAs can avoid early convergence so that they can explore the search space very well 

and locate multiple optima at the same time (Horn and Goldberg, 1996; Shir and Back, 2006). 

Niching methods have been established for the purpose of maintaining population 

diversity in GAs so that they will not be trapped by a single optimum solution. The fundamental 

notion of niching methods comes from natural ecosystems which preserve population diversity 

(Forrest et al., 1993; Goldberg and Richardson, 1987; R. Smith et al., 1993). The diverse population 

in a GA enables it to investigate many optima in parallel. A typical ecosystem is consisting of 

various physical niches that display different attributes to be able to allow both the development 

and the preservation of different types of species. Individuals in a species have similar biological 

characteristics and are capable of reproducing among themselves, but unable to reproduce with 

individuals of other species (Chang et al., 2010; Mayr, 1942). By analogy, in artificial systems, a 

niche corresponds to a local optimum of the fitness/objective function, and the individuals in one 
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niche show similar characteristics in terms of certain metrics. Among niching techniques 

proposed so far, fitness sharing (FS), or traditional fitness sharing (TFS) as some studies call it, 

is among the best known and widely applied methods (Workineh, 2013; Goldberg and 

Richardson, 1987; Deb and Goldberg, 1989; Smith et al., 1992; Forrest et al., 1993; Darwen and 

Yao, 1996). 

Fitness sharing (FS) has been widely applied in multimodal optimization because of the 

common need of multiple optima in real-world optimization problems (Sareni and Kräahenbühl, 

1998). In fitness sharing (FS), the shared fitness of individual i with an actual fitness value of fi is 

given by 

im

i'

i

f
=f     (2.26) 

where mi is the niche count that measures the approximate number of individuals with whom the 

fitness is shared. The niche count is obtained by summing a sharing function over all members of 

the population 




N

1j

,i )(=m jidsh     (2.27) 

 

where N represents the population size and di,j represents the distance between individual i and 

individual j. The sharing function (sh) measures the similarity level between two individuals in 

the population and the most widely used sharing function is: 



 

 )/(d-1

0
=)sh(d ji,

ji,    (2.28) 
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By decreasing the payoff in densely populated regions, FS (TFS) can modify the search 

site.  Thus, TFS cuts the fitness of an individual in the population by an amount nearly equal to 

the number of similar individuals in the population.  With such a strategy, TFS keeps population 

diversity and allows the exploration of many peaks (optima) in a given feasible domain.  

Fitness sharing has been widely used for clustering data and for finding multiple optimal 

solutions (Chang et al., 2010; Sareni and Kräahenbühl, 1998). Over the last few decades, clustering 

has turned out to be an essential part of data mining. The main goal of clustering is to partition a 

given set of data or objects into clusters or subsets depending on some patterns so that objects in 

one cluster will have some resemblance to each other in some sense. Based on the kind of metric 

(genotypic or phenotypic similarity) we define, the distance between individuals is the norm by 

which we categorize to one group or to the other. Genotypic similarity is associated with bit-

string representation and it is mostly the Hamming distance. On the other hand, phenotypic 

similarity is interrelated to real parameters of the search space and it can be the Euclidian 

distance. 

In FS or TFS, the fitness is the resource for which the individuals in the same niche group 

are competing (Goldberg and Richardson, 1987). However, TFS should define a similarity 

metric on the search space and an appropriate niche radius, and usually providing an operative 

value for the niche radius without any a priori knowledge is very challenging. Deb and Goldberg 

(1989) proposed a criterion for estimating the niche radius given the heights of the peaks and 

their distances (Deb and Goldberg, 1989). Since in most of the real applications there is little 

prior knowledge about the fitness landscape, it is difficult to estimate the niche radius.  

Clustering analysis has become a central problem in data mining and its applications are 
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crossing various disciplines (Tou and Gonzalez, 1974; Jain and Dubes, 1988). A clustering 

algorithm based on dynamic niching with niche migration (DNNM-clustering) is proposed by 

Chang et al. (2010). DNNM-clustering introduces a dynamic niching with niche migration to 

preserve the diversity of the population. DNNM-clustering is claimed to be robust to noise and 

cluster volumes. The niche migration is introduced to overcome the dependence of the niche 

radius. In DNNM-clustering, all the niches presented in the population at each generation are 

automatically and explicitly identified. The application of TFS is then limited to individuals 

belonging to the same niche.  

Another new approach that overcomes the two major challenges of prior knowledge of 

number of niches and dependence on the niche radius has been proposed and it is called fitness 

proportionate niching (FPN) (Workineh, 2013). Fitness Proportionate niching (FPN) is a new 

niching approach in GA when we don’t have a prior knowledge on the number of niches. Like 

the traditional fitness sharing (TFS) based on niche counts, the FPN technique is based on the 

notion of limited resources where individuals in a given niche share the resource of that niche. 

However, resource sharing in FPN is in proportion to strength (fitness value) (Workineh, 2013; 

Workineh and Homaifar, 2012).  

According to the FPN sharing scheme, the sharing function and the derated fitness of 

individual i are given by the following equations, respectively:  

            

          (2.29) 

      

          (2.30) 
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where M is the number of individuals in a given niche, di,j is the distance between individuals i 

and j, sh(di,j) is the sharing function which measures the similarity between the two individuals, 

and σsh is the niche radius. 
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 CHAPTER 3 

Proposed Methodology 

One major goal of this study has been to harness genetic algorithm (GA) to determine 

optimal or near optimal values of weights that will be used to compute the H and  crustal 

parameters along with the optimal values of H and . The GA has been shown to be a useful tool 

to obtain those optimal weights and crustal parameters simultaneously (Dugda et al, 2012). 

Another objective of this research is to implement a Generalized Pattern Search (GPS) technique 

to determine those optimal values of crustal parameters as well as the weights and to verify the 

performance of these different approaches. In addition, we consider the H- stacking problem as 

a multimodal problem for the first time. Thus, the Fitness Proportionate Niching (FPN) has been 

proposed and implemented to operate with GPS whenever the GPS method is trapped in local 

optima instead of a global optima point.  

The implementation of both the evolutionary (GA and FPN) and direct (GPS) techniques 

for solving the receiver function inversion problem in this dissertation is to pave a way to the 

development of a complete automatic receiver function inversion system. These techniques don’t 

involve any assumptions about weights involved and they can be applied for a number of seismic 

stations at the same time, which have not been done before. 

3.1 H- Stacking of Receiver Functions 

For the implementation of the H- stacking, the arrival times for three important 

converted phases in the receiver functions, the P-to-S converted phase (Ps) and the first two 

reverberations of P-to-S converted phases (PpPs and PsPs+PpSs), need to be determined (see 
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Figure 2.4(b)).  These arrival times can be obtained from the crustal thickness (H) and Vp-to-Vs 

ratio () (equations 2.21-2.23).   

3.1.1 Fixed weights vs variable weights. Many researchers have attempted to solve this 

H- stacking of receiver function problem just one seismic station at a time. Over the last 

decade, different approaches have been utilized for estimating reasonable values of weights to be 

used in the H-κ stacking. For weights assignment or computation, the different approaches 

introduced so far can be categorized into two categories: fixed weights and variable weights 

approaches. 

3.1.1.1 Fixed weights. Please take a look at Figure 2.4(b). Almost equal weights for all 

the three receiver function phases (0.34, 0.33, 0.33) have been apportioned by Crotwell and 

Owens (2005) for weights w1, w2, and w3, respectively. Equal weights of 0.5 for any two of the 

three phases, usually for the first two phases, has been assigned (e.g., Julia et al, 2005). Normally 

when one or two of the receiver function phases are clear and the other(s) are not, assigning 

equal weights doesn’t seem a reasonable solution or approach. We may illustrate this point in 

Figure 3.1 with a receiver function (Dugda et al., 2005). 

Figure 3.1 displays an example of a receiver function from a seismic station CHEF in 

Ethiopia (Dugda et al., 2005). In Figure 3.1, the peaks of Ps and PsPs+PpSs phases are clear in 

the receiver function. However, the exact timing (location) of PpPs phase is not clear, in this case 

it forms a plateau. Allocating equal weights to the different phases, as in the aforementioned 

fixed weights approaches does not seem a good idea.    
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Figure 3.1 An example of a receiver function with two distinct and one indistinguishable phases 

 

3.1.1.2 Variable weights. Different combinations of weights based on the quality of 

receiver functions and clarity of phases could be a better solution for such a problem. Variable 

weights approach using Monte Carlo technique has been introduced in 2005 (Dugda et al., 2005; 

Dugda and Nyblade, 2006) and some studies are still following similar variable weights 

approaches (e.g., Jeon, 2013; Moidaki et al., 2013). One disadvantage of applying such variable 

weights approach was that it has been time-consuming. This is because appropriate weights had 

to be searched on a station-by-station basis for every set of receiver functions and at the 

completion of each search the picking of the phases has to be verified for its correctness. 

In the past, a variable weights approach was introduced that uses a Monte Carlo 

technique to find the variable weights for H-κ stacking of receiver functions (Dugda et al., 2005). 
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The earlier technique has been implemented to solve one seismic station at a time, and the 

confirmation of the picking of the phases was required to determine the correctness of the 

corresponding phase picking. The search method used to determine the best crustal parameters 

was focused on uni-modal portions of the objective function at a time. Therefore, the technique 

we introduced then was a new method but it was time-consuming compared to a fixed weights 

approach. The Monte Carlo technique was applicable to one station at a time and it was not 

suitable for automatic implementation. The techniques developed in this dissertation are variable 

weights approaches with new capabilities such as being appropriate for automatic application.  

In this study, the techniques developed involve evolutionary and direct optimization 

approaches and they are used to invert receiver functions for determining crustal parameters and 

the three associated weights simultaneously. The first technique developed here makes use of the 

GA optimization technique. This H-κ stacking of receiver function inversion is shown to be a 

multimodal problem and a second technique involving both direct and evolutionary techniques 

has been developed to solve this problem. The second technique introduced in this research 

combines the direct GPS and evolutionary FPN technique by employing their strengths. 

Compared to the previous Monte Carlo variable weights approach introduced in the previous 

study, the current GA and GPS-FPN techniques have remarkable advantages of saving time and 

these new techniques are suitable for automatic and simultaneous determination of the crustal 

parameters with variable weights. 

In this dissertation the first part of the study involves the GA and it was published in a 

leading seismology journal (Dugda et al., 2012). The GA introduced here solves for all the five 

parameters (the two model parameters and the three weights) simultaneously. Such a GA 

implementation has taken care of the variable weights approach without being protracted. Thus, 
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an optimization method like the GA that may be automated looks a natural choice for a complete 

solution of this problem, without assuming equal weights or equally identifiable phases. The 

implementation of GPS with FPN is another alternative variable weights approach which will 

also take care of the weights as variables to be determined by the optimization technique as in 

the GA which reduces the painstaking effort of applying variable weights. 

3.1.2 The inverse problem of finding model parameters with best fitting data. For an 

inverse problem, we determine the model parameters which are best fit the observation (the 

observed data). In the current receiver function inversion problem the important parameters to be 

utilized in the receiver functions (which are actually processed seismic signals/data) are relative 

arrival times of the P-to-S converted phases and their reverberations within the crust, and the 

receiver function amplitudes. Thus, what we are accomplishing in this research for the inversion 

process is finding the model parameters that would result in the best fitting of the three relative 

arrival times for the set of receiver functions in each seismic station. 

The weighted sum objective function used in this study has been developed on the 

premises that when the right model parameters H and κ are picked they would lead to the picking 

of the best fitting arrival times. Then the weighted sum of the receiver function amplitudes at the 

rightly picked arrival times would produce the highest value of the objective function. Therefore, 

the objective function can be calculated directly from the weighted summation of the receiver 

function amplitudes. 

3.1.3 Inversion of H- stacked receiver function. To discuss the receiver function 

inversion process, we consider an inversion implementation result using seismic data from 

seismic station ARBA of Ethiopia. Figure 3.2 shows two inversion results, one using the GA of 

this study and the other result by an exhaustive search for the limited search space with assumed 
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values of weights (w1=0.5, w2=0.4, w3=0.1). The weights used in the exhaustive search are the 

same as the weights determined in a 2005 study for comparison purposes (Dugda et al., 2005). 

The horizontal axis represents crustal thickness H and the vertical axis denotes the Vp/Vs ratio 

(). The highest of the objective function S occurs at the center of the yellow ellipse.  

The color scale variations in the figure show the value of the objective function. Thus, the 

red places indicate higher values of the objective function while the blue places show smaller 

values of the objective function. The white star and blue circle indicate the positions of optimal 

values for H and κ using exhaustive search and GA, respectively. The contours display 10% 

reductions in values of the objective function value with respect to the highest objective function 

value which occurs at the center of the yellow ellipse. The yellow ellipse is an error ellipse 

representing twice the standard deviation in the estimates of H and κ.  The internal contour 

surrounding the white star and the blue circle is at 90% of the highest value of the objective 

function. The next successive contours show 80%, 70%, etc., of the highest value. 

With the exhaustive search, we are considering the variations of only H and  since the 

weights have assumed certain values. What the exhaustive search technique does is attempt to 

solve for only two parameters by computing all the objective function values in the plausible H- 

parameter space. This is usually a very time-consuming procedure. The process of receiver 

function inversion with the given weights is to attempt to find the best (H, ) 2-tuples that would 

fit the observed receiver function data. For each possible (H, ) point, we compute the three 

relative arrival times in the receiver function for each of the points in the H- parameter space 

using Equations (2.21-2.23). Then, we obtain the amplitudes of all the receiver functions at those 

computed arrival times in the data set. Next, the objective function values are computed for each 

one of the points in the H- parameter space. Figure 3.2 gives an example where the surface of 
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objective function values on the H- parameter space looks simple. However, even for a 

simplified case of fixed weights, a fairly complicated objective function surface with multiple 

optimum points will be obtained when the H- parameter space is somewhat expanded. This will 

be discussed further in section 3.4.1.     

 

Figure 3.2 An example of H- receiver functions inversion process with station ARBA data 

 

3.2 Genetic Algorithms for Optimal H-κ Inversion 

Genetic Algorithms (GA) are powerful tools for finding optimal solutions from a given 

population of candidate solutions. Traditional GAs are fit for locating an optimum of unimodal 

function. GAs utilize mutation and crossover operators applied at different locations within 

selected string of parameters. The next subsection entails the procedure of how the lengths of the 

different parameters are selected in this study. 
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3.2.1 Implementation of GA  

3.2.1.1 String lengths for the GA implementation. One of the intermediate parameters 

that need to be determined in the implementation of GA is the string length required to represent 

each of the parameters under investigation.  The limits on the parameters and the precision 

required dictate the number of binary bits by each parameter.  The number of binary bits for each 

parameter is directly related to the precision desired which is given by: 













1-b2

X - X
 = 

i

minmax
i       (3.1) 

where Δi is the precision sought, Xmax and Xmin are the maximum and minimum possible values, 

and bi is the string length for the i
th

 parameter.  The crustal thickness (H), Vp/Vs ratio (κ), and 

the weights necessary for stacking the receiver functions (w1, w2, and w3) are determined through 

GA implementation.  

Based on previous studies (e.g., Zhu and Kanamori, 2000; Julia and Mejia, 2004; Dugda 

et al., 2005), the precisions for the crustal thickness H, Vp-to-Vs ratio (κ), and the three weights 

can be taken as 0.5 km, 0.01, and 0.01, respectively.  The string lengths or the number of binary 

bits ‘bi’ which is required to obtain a certain precision can be calculated using following 

equation:  
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     (3.2) 

For representing crustal thickness, the string length can be calculated as follows: 

The practical limits on crustal thickness parameters, especially for the East African region are:  

X1max =max H (maximum crustal thickness) 

=60 km, and  
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X1min =min H (minimum crustal thickness) 

=10 km, 

Using the above parameters and precision Δ1=0.5 km, b1=6.7.  Since the string length is an 

integer value, the next higher integer value for b1=7.  Similarly, string length for the Vp-to-Vs 

ratio (κ) is 6.2; string length for the all the three weights w1, w2, w3 is 6.7.  In all cases the next 

higher integer values are taken as shown in Table 3.1.   

Table 3.1  

String lengths used in this paper for representing crustal thickness, Vp-to-Vs ratio (κ), and 

weights w1, w2, w3 in the GA implementation. 

Parameter Parameter 

Precision 

(Δ) 

Xmax Xmin String 

length (b) 

Crustal 

thickness 

0.5 km 60 

km 

10 km 6.7 =>7 

Vp-to-Vs 

ratio (κ) 

0.01 2.2 1.5 6.2=>7 

Weights 

(w1, w2, w3) 

0.01 1.0 0.0 6.7=>7 

 

 

Table 3.1 provides the assumed precision, minimum and maximum values, and the 

corresponding string lengths of the parameters in this study. The average crustal P-wave velocity 

(Vp) for the Main Ethiopian Rift in which station ARBA is situated is 6.4 km/s and this value is 

used in our implementation (Dugda et al., 2005). 

3.2.1.2 Inclusion of the constraint in the objective function. In the GA implementation 

of the H-κ stacking, we integrated the constraint into the objective function. From the constraint 

equation (Equation (2.3)) we could write one of the variables in terms of the other two variables. 

Thus, our new objective (fitness) function is: 
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     )(H,t)rw-w-(1)(H,tr w+)(H,trw=)S(H, 3j21

N

1j=

2j21j1     (3.3) 

The inclusion of the constraint into the objective function allows us to effectively search 

for four variables instead of five. Thus, the search space for the GA involves H, κ, w1, w2. Once 

the GA determines optimal values for those four variables, the value for third weight w3 will be 

determined from the other two weights using the constraint equation. Any one of the weights can 

be written in terms of the other two. 

The H-κ receiver function stacking algorithm using GA has been implemented in Matlab.  

First, a population is initialized, and limits on variables and search spaces are defined.  Second, 

the receiver functions are read for a crustal structure analysis. At each generation, the whole 

population   is updated and the process continues until there is no improvement.  At each 

generation, the H- stacking or objective function values are also calculated based on the 

offspring or candidate solution.  The candidate solutions are selected using the roulette wheel 

technique based on the values of the objective function.  From those selected individuals or 

candidate solution called “parents” the offsprings are obtained after applying crossover and 

mutation operators.  This process continues until optimal or near optimal values of weights, H 

and  are obtained. Figure 3.3 displays the flow diagram of the GA implementation in this study. 
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Initialize the Population, 

Define search space (H and κ ) and 

limits on variables, generation (G)

Read Receiver Functions

Increment G

Compute Objective Function 

from Receiver Function

Select Individuals for Reproduction

(using Roulette Wheel)

Apply Cross over and Mutation 

Operation on the offsprings

Check for 

Stopping 

Criteria

Get optimal values of H, κ , 

w1,w2 and w3

No

Yes

 

Figure 3.3 Flow diagram for the implementation of GA for H-κ stacking 
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3.3 Generalized Pattern Search Technique for Optimal H-κ Inversion  

Generalized pattern search (GPS) is a direct search method that does not need to compute 

the derivative of the objective function. GPS technique has significant resemblance to steepest 

descent method, but unlike steepest descent scheme the GPS does not require the computation of 

derivatives or directional vectors. H-κ stacking optimization equation has five parameters to be 

determined, if we would like to solve the problem wholly, without any assumed value for those 

parameters. In this case, we apply the Generalized Pattern Search (GPS) technique to solve the 

H-κ stacking optimization problem entirely. Just like in the case of the GA implementation, we 

can solve for all the five parameters using GPS technique.  

For objective functions which are not differentiable or not continuous, GPS is an 

appropriate approach for optimization. It can be used to optimize directly all the five parameters 

in the problem. GPS as a direct search technique is used for solving optimization problems with 

no information about the gradient of the objective function. Unlike the more traditional 

optimization methods that use information about the gradient or higher derivatives to search for 

an optimal point, a direct search algorithm searches for a set of points surrounding a given point, 

then it looks for one where the value of the objective function is lower than the value at the 

current iterate point (Note that we are considering a minimization problem). In general direct 

search techniques are applied to solve problems for which the objective function is neither 

differentiable nor continuous. 

3.3.1 Advantages of the GPS technique for H-κ inversion. Application of GPS on H- 

stacking of receiver functions enables to almost exhaustively search for the weights w1, w2, w3 as 

well as H and  within the given parameter space. GPS results are repeatable. GPS provides 



63 

 

 

highly repeatable outputs, especially compared to heuristic methods which may need more runs 

to provide similar results.  

The repeatable results are important in our research because the repeatability 

characteristics would help us check the dependence of the inversion on initial model parameters. 

If the results are independent of the initial values, we should obtain almost identical results for 

any initial model. GPS delivers repeatable results, even if it starts at different initial conditions. 

Thus, the repeatable behavior can be harnessed to use GPS to test initial value dependence of 

final parameters. 

3.3.2 A drawback of GPS and its FPN solution. One major drawback/challenge of GPS 

is that it may be trapped in a local optimum point. The solution may depend on our initial values.  

One solution for this is to apply complete polling instead of partial polling. However, complete 

polling may not provide the global optimum point all the time. When complete polling is not 

sufficient enough to obtain the global optimal solution, GPS needs support from heuristic 

techniques such as FPN. FPN can be used to identify the best initial values, which are close to 

the optimal solution. We may not know how many local minima we have in the search space and 

where the local optima are located.  

For the specific receiver function inversion, the solution parameter space is bounded. The 

bounded parameter space characteristics makes our problem fit for dynamic identification of 

niches within Fitness Proportionate Niching (FPN) to automatically evolve the optimal number 

of niches. Thus, within the bounded region of parameters, we propose to apply Fitness 

Proportionate Niching (FPN) to identify the right starting parameters which will lead to the right 

optimal solution. FPN is able to automatically evolve dynamically and find niches or clusters. 

Those identified niche masters (cluster centers) represent approximate locations of potential local 
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and global optimum points. Among the potential optimum points, we can identify the best or 

optimal solution. Only few iteration results from FPN are sufficient enough to determine the best 

initial parameters. 

We implemented GPS as an automatic technique to solve the problem for a number of 

stations at the same time. After the GPS inversion is executed for a set of stations, we use the 

GPS again to test the final model to check any sensitivity to the initial model. If the inversion is 

found to be sensitive to initial models for some specific seismic stations (i.e., if the objective 

function has different local and global optima in the given H-κ parameter space), we invoke 

fitness proportionate niching (FPN) to identify the right initial model.  

3.3.3 The proposed minimization problem for GPS implementation and modified 

bounds of weights. The H-κ stacking hypothesis has been developed based on exploiting the 

fact that the amplitudes of the seismic phases in the receiver functions picked will attain their 

maximum values when the correct H and κ values are chosen. The H-κ stacking takes advantage 

of the Signal to Noise ratio (SNR) improvement with employing more receiver functions. Thus, 

we maximize the stack of receiver functions which identify the correct H and κ values as well as 

the right set of weights which are appropriate to the quality of receiver functions. Originally, the 

pattern search algorithm has been developed for a minimization problem. There are two ways to 

implement the GPS algorithm for our specific problem. We have to either modify the GPS 

algorithm to work for a maximization problem, or else change our problem from maximization 

to a minimization problem. It is at ease to convert the maximization problem of H-κ stacking into 

a minimization problem. Since the expected values of the H-κ stacking are either zero or 

positive, the maximum values of the H-κ stacking are always positive. Multiplication of the H-κ 

stacking values by -1 will turn the data upside down. Then, the maximum value changes to a 



65 

 

 

minimum value and the minimum value to a maximum. Thus, this will be equivalent to the 

minimization problem. Therefore, we are able to find the optimal values for H, κ, w1, w2, and w3 

using GPS technique.  

Since each of the three phases has to contribute for the stacking, the minimum weight 

each phase can contribute is 0.1. The maximum weight of the three phases will be 0.8 as the total 

must be 1. Therefore, these new bounds are used for the upper and lower bounds of weights for 

the GPS implementations. When the original maximization problem with objective function S is 

changed to a minimization problem, we may assign this new minimization variable ̅. Thus our 

new objective function for GPS implementation is: 

Minimize 

         (3.4) 

where rj is the j
th

 receiver function amplitude at the particular expected arrival time, N is the 

number of receiver functions for the seismic stations, and t1, t2 and t3 are arrival times related to 

H and  using equations (2.21-2.23). 

 Or we can minimize the following: 

Minimize 

         (3.5) 

where f1, f2, and f3 are functions relating t1, t2, and t3, respectively, to x1 = H and x2= κ; andx3= 

w1, x4 = w2 and x5 = w3 are weights which is subject to: 

Subject to 

    (Linear Equality Constraint)   (3.6) 
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And using the following bounds: 

         (3.7) 

         (3.8) 

            (3.9) 

The average crustal P-wave velocity (Vp) for the Main Ethiopian Rift in which station ARBA is 

situated is 6.4 km/s (Mackenzie et al., 2005; Makris and Ginzburg, 1987) and the value is used 

for the implementation. 

The H-κ receiver function stacking algorithm using GPS has also been implemented by 

Matlab.  The algorithm for the implementation is given in the next subsection (section 3.3.4).  

The receiver functions and parameters such as times and amplitudes of the receiver functions, 

given seismic station are read for a crustal structure analysis. At each iteration, the H- stacking 

or objective function values are calculated.   

3.3.4 Algorithm 1: The general pattern search (GPS) for linearly constrained problems 

a) Compute f(xi) = -S. 

b) Determine a step si defined by the pattern Pi and its length is determined by Δi.  (si = ΔiPi 

and (xi + si) ∈ Ω, where Ω denotes the feasible region for the problem.) 

c) If f(xi + si) < f(xi), then xi+1 = xi + si. Otherwise xi+1 = xi. 

d) Update Pi and Δi. 

Updating Δi: 

a) If f(xi + si) < f(xi), then Δi+1 = λiΔi. 

b) If f(xi + si) ≥ f(xi), then Δi+1 = θΔi. 

c) 0 < θ < 1 and λi ≥ 1.  

8.01.0 3  x

8.01.0 4  x

8.01.0 5  x
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In the GPS algorithm implementation, the first step in the procedure is to convert our 

maximization problem into a minimization problem. Next, we select step size s. Computation of 

f(xi + si) and comparison to f(xi) follows at iteration i. If f(xi + si) < f(xi), the search will be 

considered successful at iteration i, and then we update the iterate for next iteration: 

xi + 1= xi  + si .      (3.10) 

If the search cannot provide an objective function value which is not less than the value at the 

current iterate, then the search will be considered unsuccessful at iteration i, and we continue the 

iteration:  

xi + 1= xi.      (3.11) 

On the next step, the step length control parameter Δi at iteration i will be determined. Δi can take 

either of two values: when the search is successful, it will attain  

Δi+1 = λi Δi,      (3.12) 

where λi has a value greater than 1. Otherwise, when the search is unsuccessful, and 

Δ i + 1= θΔ i      (3.13) 

where θ takes a value between 0 and 1. θ is called a contraction factor while λ is an expansion 

factor.  

3.3.5 Generalized pattern search (GPS) algorithm using pseudo code. Let Δi be the 

step length control parameter, and Δtol be the tolerance used to test for convergence. Assume that 

the algorithm starts with an initial guess x0 that has a finite function value and an initial step 

length Δ0 > Δtol. Then, the GPS technique can be conveyed using a pseudo code as follows: 

 

1: Choose generating set G, for example, G = {e1, e2, . . . , en,−e1,−e2, . . . ,−en} 
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2: Choose Δ0 

3: for i = 1, 2, . . . do 

4:  if there exists gi ∈ G such that f (xi + Δigi) < f (xi)  

5: then 

6:   Set xi+1 = xi + Δigi     (update the iterate) 

7:   Set Δi+1 = Δi   (no change to the step length control parameter) 

8: else 

9: Set xi+1 = xi  if f (xi + Δigi) ≥ f (xi) for all gi ∈G; (do not update the 

iterate) 

10:   Set Δi+1 = ½ Δi  (contract the step length control parameter) 

11:   if Δi+1 < Δtol  

12:  then 

13:    GPS algorithm has converged 

12:   end if 

13:  end if 

14: end for 

Algorithm 3. The Generalized Pattern Search (GPS) Algorithm 

3.3.6 How the GPS implementation works. The Generalized Pattern Search (GPS) 

optimization procedure is suitable to solve different kinds of optimization problems as well as 

the standard optimization methods. Generally, GPS is reasonable and efficient in computation. 

Unlike heuristic algorithms, such as genetic algorithms (Goldberg, 1989; Michalewicz, 1996), 

GPS is a flexible technique to improve and adapt the global and fine tune local searches. 
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The Generalized Pattern Search (GPS) algorithm ensues by computing a succession of 

points to approach the optimal value. In GPS, the objective function value should decrease or 

stay the same from one point to the following point in the succession. The algorithm commences 

by establishing a set of points which form a mesh around an initial point. The starting point could 

either be provided or computed from a previous step of the algorithm. The mesh is actually 

constructed by adding the current point to a scalar multiple of a set of vectors known as patterns 

(pattern vectors). If a point in the mesh is found to improve the objective function at the current 

point, the new point becomes the current point at the next iteration. 

3.3.7 The GPS strides for the H-κ stacking inverse problem. We can apply GPS on H-

 stacking of receiver functions, and GPS operates as if it searches the parameter space 

exhaustively for the three weights w1, w2, w3 as well as for H and  parameters. GPS does not do 

exhaustive search, but it searches along a given pattern in matrix.  

First, the search starts at an initial point X0 which will be usually be provided by us or by 

the user. At the first iteration, with a scalar equal to 1 (which is the mesh size), the pattern 

vectors are constructed to solve the problem. In the specific GPS implementation for receiver 

function inversion, we set B = I, and the pattern (direction) vectors are then:  

P1 = [1 0 0 0 0]; P2 = [0 1 0 0 0 0]; P3 = [0 0 1 0 0]; P4 = [0 0 0 1 0]; P5 = [0 0 0 0 1];  

P6 = [-1 0 0 0 0]; P7 = [0 -1 0 0 0 0]; P8 = [0 0 -1 0 0]; P9 = [0 0 0 -1 0]; P10 = [0 0 0 0 -1].  

One initial value set for the Main Ethiopian Rift area, or even for the whole region 

including the Ethiopian Plateau, is X0 = [40 1.75 0.34 0.33 0.33]. The GPS algorithm adds these 

direction vectors to the initial point X0 to compute the following new mesh points: 

X0 + P1;  X0 + P2;  X0 + P3;  X0 + P4;  X0 + P5;  

X0 + P6;  X0 + P7;  X0 + P8;  X0 + P9;  X0 + P10 
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The algorithm polls the mesh points by computing their objective function values until it 

finds the one with a value smaller than the objective function value of X0. If there is such a point, 

the poll is successful and the algorithm sets this point as equal to X1. 

After a successful poll, the algorithm steps to the second iteration and multiplies the 

current mesh size by 2 (which is the mesh expansion factor). Multiplying the mesh size by 2 will 

lead to a faster convergence. The mesh at iteration 2 of the implementation contains the 

following points:  

2*P1+ X1;  2*P2+ X1;  2*P3+ X1;  2*P4+ X1;  2*P5+ X1;  

2*P6+ X1;  2*P7+ X1;  2*P8+ X1;  2*P9+ X1;  2*P10+ X1;  

If the poll is successful and the algorithm sets this point as equal to X2. 

Next, if iteration 3 (mesh size = 4) ends up being an unsuccessful poll, i.e. none of the 

mesh points have a smaller objective function value than the value at X2, the algorithm does not 

change the current point at the next iteration, that is, X3 = X2. At the next iteration, the algorithm 

multiplies the current mesh size by 0.5, a contraction factor (mesh reduction factor), so that the 

mesh size at the next iteration is smaller. The algorithm then polls with a smaller mesh size. 

The GPS algorithm will repeat the above demonstrated steps until it discovers the optimal 

solution for the minimization of the objective function. The x stopping criteria can be one or 

combination of some of the conditions listed below:  

• The mesh size is less than mesh tolerance. 

• The number of iterations performed by the algorithm reaches a predefined value. 
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• The total number of objective function evaluations performed by the algorithm   

reaches a pre-set maximum number of function evaluations. 

• The distance between the point found at one successful poll and the point found 

at the next successful poll is less than a set tolerance. 

• The change in the objective function from one successful poll to the next 

successful poll is less than a function tolerance. 

The occurrence of any one of the criteria conditions given above was sufficient to stop 

the algorithm from searching further. All the parameters can be pre-defined subject to the nature 

of the problem. Based on previous studies for the specific region and some global studies such as  

CRUST2.0 (Bassin et al., 2000; Zandt, G., & Ammon, C. J. (1995), there are some suggested 

ranges for the variables in the particular problem using the available seismic data for the 

Ethiopian Plateaus and the Main Ethiopian Rift region: x1 = H ranges between about 20 and 45 

km; x2 = Vp/Vs ranges between about 1.65 and 1.95; x3 = w1 ranges between 0.1 and 0.8; x4 = w2 

ranges between 0.1 and 0.8; x5 = w3 ranges between 0.1 and 0.8.  

The updating parameters are permitted to take some commonly used values of θ = 0.5 

and λ = 2.0.  

3.3.8 Algorithm 2:  testing the inversion with GPS. Algorithm 2 is basically applying 

Algorithm 1 for at least two different extreme initial conditions. We take combinations of 

extreme values as initial values, especially, for H and Vp/Vs, in the H-κ parameter space and run 

the GPS algorithm.  For H ranging between 20 and 45 km, and for κ = Vp/Vs ranging between 

1.65 and 1.95, the combination of extreme values means (20, 1.65) and (45, 1.95) which can be 

used as initial values. 
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3.4 Fitness Proportionate Niching (FPN)  

Over the last few decades, clustering has become the essential part of data mining. The 

main goal of clustering is to partition a given set of data or objects into clusters or subsets 

depending on some patterns so that objects in one cluster will have some resemblance to each 

other in some sense. Based on the kind of metric (genotypic or phenotypic similarity), the 

distance between individuals is the norm by which we categorize to one group or to the other. 

Fitness sharing has been used for clustering data and for finding multiple optimal solutions.  

Traditional fitness sharing (TFS) has been widely applied in multimodal optimization 

because of the fact that real-world optimization problems often necessitate the determination of 

multiple optima in a search space. By decreasing the payoff in densely populated regions, TFS 

can modify the search landscape. Thus, TFS drops the fitness of an individual in the population 

by an amount nearly equal to the number of similar individuals in the population.  By doing so, 

TFS maintains population diversity and allows the exploration of many peaks (optima) in a given 

feasible domain.  

Fitness Proportionate Niching (FPN) has been developed as a dynamic clustering 

algorithm which is brought about by keeping population diversity in the GA execution. In FPN 

application, no a priori knowledge of the approximate number of clusters or any information 

about the distribution is necessary. Therefore, it is suitable for our receiver function inversion 

problem. 

3.4.1 H-κ receiver function stacking as a multimodal optimization problem. Figure 

3.4 is a contour plot of H-κ objective function values for seismic station ARBA. This plot 

demonstrates the variation of the H-κ receiver function stack for a wide range of H and κ 
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parameters. This H-κ surface on the κ versus H axes confirms that there are some local optima 

points together with a global optimum point. Thus, the problem is a multimodal optimization 

problem rather than a uni-modal problem. Therefore, our solution for this problem should 

consider this fact and address this multimodality. In order to address this issue while applying 

GPS, we may resort to the use of FPN. FPN provides us the best initial parameters close to the 

global optimum point, which in turn will lead us to the global optimum point. 

 

Figure 3.4 A contour plot of an H-κ Receiver Function stacks demonstrating that the problem 

has multiple peaks and troughs. 

 

3.4.2 How FPN works for multimodal H- stacking surfaces. Generally, the objective 

function of the H-κ stacking algorithm has usually multimodal surfaces with multiple local 

maxima. We would like to find all local and global optimal points that could be potential 
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solutions or best initial parameters for further searching using GPS to the H- stacking of 

receiver functions. FPN, unlike traditional Genetic Algorithms, helps to identify the different 

peaks in multimodal functions and multimodal H- stacking surfaces. FPN keeps diversity in the 

population by uniformly distributing the population fitness along the various peaks. Thus, we can 

find all the peaks of the multimodal H-κ surfaces using Fitness Proportionate Niching (FPN)  of 

the Genetic Algorithms.  

Basically the novel proposal of using FPN for identifying the best initial values comes 

from the idea that the FPN would always include a cluster around the global optimum point 

among the different clusters it is supposed to create. The FPN, as a means of clustering, will 

make different clusters around the different peaks in the data. By the niching mechanism it 

employs, FPN will increase the chances of finding alternative solutions instead of finding a 

single optimum point unlike the traditional GA. However, the FPN like any GA would enable to 

find the global optimum point in addition to other alternative local optima. Therefore, without 

waiting too long for the FPN to converge on all its niches and niche masters, just few runs of 

FPN should be able to allow locating the approximate position of the global optimum point. 

Thus, in every niche master set resulting from every FPN run, we would expect to find a niche 

master corresponding to the global optimum point. Our implementation and test on the H- 

stacking surfaces showed that sometimes we may even find two niche masters which are very 

close to the global optimum. The reason is because the FPN has not yet settled and when settled, 

the close niche masters would belong to a single niche.    

3.4.3 Implementation of FPN. For the implementation of FPN, we need some weights 

for the receiver function set of a seismic station. An acceptable set of weights can be obtained 

using the initial run of the GPS technique, or the GA implementation. Once we have weights for 
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the given set of receiver functions, the variables for the H-κ stacking objective function will be H 

and κ.  

It is not difficult to show that the H-κ parameter space with the objective function value 

variation forms a multimodal surface. Clustering the objective function values together around 

cluster or niche centers will be done using the FPN algorithm. Once the clusters around the peak 

points on the H-κ parameter surface are determined, the niche masters (or the cluster centers) 

will be the potential optimal points. Among these multiple optima the global maximum can be an 

initial point for the GPS run.   

A great advantage about the FPN compared to other clustering techniques such as K-

mean clustering, Traditional Fitness Sharing clustering algorithms is that we don’t need to have a 

priori knowledge about the number of clusters upfront. FPN evolves and determines the number 

of clusters and makes the clustering by itself. 

3.4.4 Algorithm 3: determining best initial models with FPN for rerunning GPS. 

Algorithm 3 basically about applying the Fitness Proportionate Niching (FPN) and determining 

the best initial parameters. 

If Algorithm 2 gives two different H and κ values for different extreme initial values, we 

resort to FPN to determine the best initial model parameters close to the global optimum point. It 

is observed that FPN identifies the approximate global minimum, which is very close to the 

actual value. Every time it runs, it may pick different local minima once or the same local 

minima twice.  

For the case of seismic station ARBA, as an example, the FPN picks 3 niche centers. One 

of these centers is found to be the approximate global minimum, while the other two niche 
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masters indicate either two different local optima or sometimes the same local minima with two 

different but very close niche center values.  

Some FPN implementation results are given in Table 3.2. For station ARBA, the Niche 

Masters (Cluster Centers) identified are tabulated in the Table: 

 

Table 3.2 

Table of Some FPN Implementation Results for Seismic Station ARBA 

FPN Run No. Niche Masters Identified 

1 38.5451    2.1773 30.3465    1.7673 39.2321    2.2116 

2 18.5000    1.1750 18.5000    1.1750 30.1672    1.7584 

3 30.1123    1.7556 18.5000    1.1750 18.5000    1.1750 

4 30.1000    1.7550 30.3000    1.7650 38.3740    2.1687 

5 18.5000    1.1750 30.3000    1.7650 41.5000    2.3250 

6 18.5000    1.1750 30.1578    1.7579 41.5000    2.3250 

7 18.5000    1.1750 30.3478    1.7674 18.5000    1.1750 

8 30.1000    1.7550 30.3000    1.7650 38.3740    2.1687 

9 18.5000    1.1750 30.3000    1.7650 41.5000    2.3250 

10 18.5000    1.1750 30.1578    1.7579 41.50002.3250 

 

Table 3.2 gives FPN results for seismic station ARBA when it is run 10 times. Each time 

the FPN is run, it identifies 3 Niche centers. We can clearly observe that one of those niche 

masters identified is the global optimal point (30.3465    1.7673)   or (30.1123    1.7556). It is 

very important to note that for the initial value of H we can consider only the value “30,” 

dropping fractions after the dot, and for the value of κ we may take “1.76” (rounding the 3
rd

 

number after the dot to the second number if that number is odd, or else keep the second number 
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after the dot as it is). Thus, our best initial value for station ARBA receiver functions set is (30, 

1.76).  

An algorithm that can sum up the above observation for FPN implementation is as 

follows:  

Hinit = (Hi1| Hi2| Hi3)&(Hi+1,1| Hi+1,2| Hi+1,3) &( Hi+2,1| Hi+2,2| Hi+2,3) & … 

κinit = (κi1| κi1| κi1)& (κi+1,1| κi+1,2| κi+1,3)&(κi1| κi1| κi1)&(κi1| κi1| κi1)&(κi1| κi1| κi1)& … 

where Hi1 represents the first of the 2-tuple (H, κ) parameter outputs representing the niche 

master, “i” denotes the run number (epoch) and “1” signifies the first of the niche masters 

identified by FPN during that single run. Thus, Hi2 and Hi3 represent the first of the 2-tuples that 

provide the 2
nd

 and 3
rd

 crustal thickness values which could be either local or global optima 

point(s). “i+1,” “i+2,” “i+3,”… show the (i+1)
th

, (i+2)
nd

, (i+3)
rd

, etc. run. Similarly, κi1, κi+1, κi+2 

denote the second of the 2-tuple (H, κ) parameter outputs representing the niche masters for “i,” 

“i+1,” “i+2,” FPN runs. Finally, Hinit and κinit represent the best initial model to be used when 

rerunning the GPS technique as in Algorithm 1. This algorithm has been implemented by 

Matlab. 
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 CHAPTER 4 

Experimental Implementation and Results 

4.1 Genetic Algorithm Implementation and Test Results 

We implemented the genetic algorithm (GA) for estimating appropriate weights for the 

three seismic phases of receiver functions as well as the optimal values of the crustal parameters 

as shown in the flow diagram in Figure 3.3. To test its performance, the GA has been run for 

receiver functions whose H- stacking result was published before (Dugda et al., 2005). Seismic 

data from more than 25 seismic stations have been used to test the GPS and FPN 

implementation. Most of these data were collected by the Ethiopian Broadband Seismic 

Experiment (Nyblade and Langston, 2002). For testing the application of the three techniques, 

the GA, GPS and FPN, we employed seismic station ARBA. 

Seismic data collected by station ARBA is particularly used in this research for testing 

the GA performance. The station ARBA lies in the southern region of Ethiopia, within the Main 

Ethiopian Rift. The following subsection gives the location of seismic station ARBA and other 

seismic stations from which seismic data are employed for testing the different tools developed 

in this study.  Receiver functions have been computed for the seismic data obtained from those 

seismic stations.  

4.1.1 Location of seismic stations for testing the hypotheses. The location of seismic 

stations from which seismic data has been obtained is shown in Figure 4.1. Seismic data 

collected from Ethiopia has been used for testing the hypotheses and different techniques 

developed in this dissertation. Black triangles represent seismic stations which run for one year 

between 2001 and 2002 (Nyblade and Langston, 2002). Squares with brown inside represent 
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seismic stations which run for one year between 2001 and 2002. Completely white squares 

represent GSN/IRIS permanent seismic stations. IRIS stands for Incorporated Research 

Institutions for Seismology and GSN stands for Global Seismographic Network of the United 

States Geological Survey (USGS). The rift fault lines are shown by heavy lines. 

 

 

Figure 4.1 Figure showing location of 27 Seismic stations in Ethiopia (East Africa) for testing 

our Hypotheses. 

 

There are different numbers of receiver functions for each station, ranging from 5 to 17. 

Seismic station ARBA has 13 receiver functions. Seismic station ARBA (the bottommost of the 

five brown squares) is a station in the Main Ethiopian Rift segment of the East African Rift 

System. This data has been used before in other researches, as well as used in our GA 
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implementation before. Also we will use the same data for the GPS implementation. Then, we 

can compare current results using GA, GPS, and FPN with previously determined results.  

4.1.2 Receiver functions from ARBA and GA results. Figure 4.2 presents the receiver 

functions computed using the seismic data gathered from ARBA. This data set is used for testing 

the GA algorithm technique that we developed.  The receiver functions set contains 13 high 

quality receiver functions obtained from seismic data collected for 2 years and these receiver 

functions were used to determine crustal parameters. The three times t1, t2, and t3 picked by our 

algorithms for the three seismic converted phases from the crust-mantle boundary the Moho are 

shown with short vertical lines on each of the receiver function time series on the  figure.  

 Since weights have been obtained in Dugda et al. (2005) for the same data set using 

Monte Carlo technique, comparison can be easily made to observe if the weights found by the 

GA algorithm closely match the weights obtained in the previous study. After running the GA 

for a number of generations (ranging between 10 and 15) and repeating the experiment about 60 

times, the average of these runs provides the optimal or near optimal weights. As discussed 

below, after about 60 GA runs, the average values of the three weights stabilize to give the 

optimal or near optimal weights.   

A sample plot of the results from the GA implementation is shown in Figure 4.3.  Figures 

4.3 gives contour maps of the H-κ stacking objective function on a κ versus H axes just for one 

instance of running the GA.  The different colors in Figure 4.3 show the value of the objective 

function.  Thus, red color delineates regions where the maximum value of the objective function 

occurs and blue denotes minimum objective function values, and other colors represent values in 

between the maximum and minimum objective function values. Each successive contour 

represents a 10% reduction in values of the objective function with respect to the maximum at 
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the center of an interior contour with orange or brighter colors.  In Figure 4.3, the values of H 

and κ are 30.5 km and 1.76, respectively, for a single GA run and the average values for H and κ 

are 29.7 km and 1.78, after the weights stabilize and take constant average values as shown in 

Figure 4.4.  
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Figure 4.2 The receiver functions used for testing the GA, GPS and FPN techniques. 
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Figure 4.3 One instance of running the GA with very wide H-κ parameter space. Note that the 

parameter space used here is wider than that of Dugda et al. (2012). 

 

Figure 4.4 exhibits the three GA weights obtained in this study. This figure clearly shows 

that average weights stabilize after about 60 GA runs of the GA implementation on the H- 

receiver function stacks.  Thus, the average weights for the given set of receiver functions from 

the seismic station ARBA in Ethiopia are stabilized to: 

 

w1 = 0.454, w2 = 0.404, and w3 = 0.142  



84 

 

 

 

 

Figure 4.4 A graph showing the values of the three weights stabilized after about 60 epochs. 

 

4.2 GPS Test Results 

4.2.1 Flow chart of the GPS implementation. For the GPS implementation, first, the 

maximization optimization problem needs to be converted to a minimization optimization 

problem. The pattern search technique was originally developed for a minimization problem and 

so we can take advantage of previous studies if we convert the problem from maximization to 

minimization optimization problem. The steps of this conversion have already been discussed in 

chapter 3.  

Since there are five different variables to be determined in the H-κ receiver function 

problem, a mesh size of 1 can offer 10 pattern vectors each of which equal to a unit-size 

direction (pattern) vector. If we add the pattern vectors to an initial iterate point, we obtain 10 

new iterate (mesh) points. If we apply partial polling of GPS, we calculate objective function 

values for the new iterate (mesh) points until we obtain an objective function value less than the 
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objective function at the current iterate.  On the other hand, if complete polling is desired, we 

calculate objective function values at all the new mesh points before seeking to find the mesh 

point with the smallest objective function value in every iteration. Figure 4.5 gives the flow chart 

of the implementation of the GPS algorithm for our research.  
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Figure 4.5 This figure shows the flow chart of the GPS Implementation. MS denotes Mesh Size. 
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4.2.2 GPS results - convergence of final values and objective function  

 

Figure 4.6 This figure displays a GUI developed for GPS implementation. 

 

The GUI implementation of the GPS algorithm is shown in Figure 4.6. The GUI 

implementation provides opportunities to display the GPS results. It shows the initial values of 

the weights and crustal parameters on the top left hand panel, while it provides the final values of 

the weights and the crustal parameters at the bottom panel. The graph on the GUI displays the 

variation of the objective function of the minimization optimization problem versus the number 

of iterations. The figure particularly shows the GPS inversion results for seismic station ARBA. 
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The initial values are (20, 1.70, 0.34, 0.33, 0.33) and the final values are calculated by GPS 

algorithm. The final values of crustal parameters and weights are (30.2, 1.77, 0.6, 0.3, 0.1).  

4.2.3 Graphical user interface (GUI) implementation for the GPS algorithm.  A 

graphical user interface (GUI) implementation is important not only for examining and 

displaying initial parameters and final parameters, but also for demonstrating the convergence of 

the algorithm. A GUI has been developed using Matlab for the GPS algorithm. The GUI is very 

significant especially for the implementation of the GPS initial value dependence testing 

algorithm in this dissertation. Since the GUI clearly shows both the initial as well as final values 

of parameters and weights, observation of initial value dependence will be evident.   

4.2.4 GPS convergence test algorithm. The algorithm of GPS Convergence Test is 

performed to examine final parameters and final objective function values at least for two 

extreme initial values. Using the GUI that is developed in this research work, the convergence 

for seismic station ARBA can be shown.  

4.2.5 GPS convergence test for station ARBA. It is observed that, for two extreme 

initial values and combinations of extreme values as well as for some intermediate initial values, 

GPS gives similar results. Though their initial parameter values as well as their initial objective 

function values are different, the final parameter and objective function values are similar; i.e. 

the GPS results converge to the same final values. Figure 4.7 (a) and (b) show that the final 

values from the GPS converge to the same final or optimal values irrespective of the initial 

values. Therefore, in such a case we don’t need to resort to applying the FPN to find the best 

initial values because the inversion is independent of initial values or model parameters. 
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(a) Lower extreme initial H and κ (Vp/Vs) ratio values  
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(b)  Higher extreme initial H and κ(Vp/Vs) ratio values  

Figure 4.7 Figure displaying two extreme initial values for the region of investigation. (a) 

Smallest and (b) highest initial parameter values.  

 

4.2.6 Complete polling of GPS for global optimization. In a given iteration, the 

generalized pattern search polls the points in the current mesh by computing the objective 

function at those mesh points. The GPS continues this polling process at the mesh points in the 

iteration until it finds the mesh point whose function value is smaller than the function value at 

the current iterate point. Generally a generalized pattern search stops its polling when it 

discovers a mesh point that improves the value of the objective function, and then it appoints that 

point as the current point for the next iteration. If the intent is to get faster computation, usually 

we may not allow all the available mesh points to be polled because we may want the algorithm 



91 

 

 

to search only fewer points in every iteration.  On the other hand, some of these unpolled mesh 

points might produce objective function values which are even smaller than the one the pattern 

search already declared to be smaller.  

H-k stacking is shown in this research to be a multimodal problem with many local 

optima. For such multimodal problems, it is usually superior to construct the generalized pattern 

search technique so that it polls all the available mesh points in all the iterations and pick the one 

with the best objective function value. This kind of polling is known as complete polling and 

such kind of polling facilitates the generalized pattern search to explore more points at every 

iteration and in this way the GPS potentially avoids a local minimum which is not the global 

minimum.  

The ARBA station receiver functions will be used as an example.  The initial and final 

values for complete polling versus partial polling for station ARBA are given in the next two 

subsections. 

4.2.6.1 Partial (non-complete) polling 

Table 4.1 

Initial and Final values for partial polling 

 variables Initial Values Final Values 

H 45 52.0139 

κ 1.6500 1.4360 

w1 0.3400 0.6000 

w2 0.3300  0.3010 

w3  0.3300 0.1000 

 



92 

 

 

 

Table 4.2  

parameters of partial polling of GPS on ARBA receiver function inversion   

Polling Type Partial polling 

Number of iterations 254 

Number of function evaluations 1161 

Time elapsed (minutes) 0.7625 

The best function value -0.550777 

 

 

 

Figure 4.8 Objective function and total number of objective function evaluations versus number 

of iterations for a non-complete polling. 
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4.2.6.2 Complete polling 

Table 4.3 

Initial and Final values for partial polling. 

variables Initial Values Final Values 

H 45 30.1837 

κ 1.6500 1.7728 

w1 0.3400 0.6000 

w2 0.3300 0.3010 

w3 0.3300 0.1000 

 

 

More results from the GPS implementation will be discussed. 

 

Table 4.4  

complete polling of GPS on ARBA receiver function inversion   

Polling Type Complete Polling 

Number of iterations 216 

Number of function evaluations 1156 

Time elapsed (minutes) 0.5847 

The best function value -0.729039 
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Figure 4.9 Objective function and total number of objective function evaluations versus number 

of iterations for a non-complete polling. 

 

This is a 5-dimensional search problem. However, we can utilize only the 2-D cross-

section to show the difference between the complete and partial polling of the GPS when they 

are applied to the ARBA receiver functions inversion. Figure 4.10 demonstrates a 2-D view of 

the location of the two optimal values when the complete polling of the GPS is applied (small 

solid blue circle) and when the partial polling (brown star with white circle inside) is applied. 

The figure clearly shows that the complete polling provides the global optimum while the partial 

polling is trapped in a local optimum point. 
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Figure 4.10 A 2-D view of the locations of the two optimal values when the GPS is applied with 

complete polling (blue circle) and partial polling (brown star with white inside).  
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Table 4.5  
Solutions of crustal parameters (H and κ) and weights (w1, w2, w3) using the current study 

applying the GPS-FPN technique for seismic stations shown on the map of Figure 4.5. 

Station H κ w1 w2 w3 

ARBA 30.1837 1.7728 0.6000 0.3010 0.1000 

AAUS 39.0309 1.8774 0.6000 0.3010 0.1000 

BAHI 42.9995 1.8231 0.3003 0.6000 0.1007 

BDAR 46.4352 1.7175 0.6000 0.3010 0.1000 

BIRH 40.9531 1.8400 0.6000 0.3010 0.1000 

BUTA 30.3464 2.0 0.6000 0.3010 0.1000 

CHEF 34.0872 1.7258 0.3006 0.3004 0.4000 

DELE 35.8398 1.7573 0.3600 0.5410 0.1000 

DIYA 37.3854 1.7232 0.3005 0.6000 0.1005 

DMRK 40.7179 1.8157 0.6000 0.3010 0.1000 

FICH 42.9034 1.7320 0.3973 0.3014 0.3014 

FURI 42.6572 1.7947 0.6000 0.3010 0.1000 

GOBA 41.9530 1.7509 0.6000 0.3010 0.1000 

GUDE 40.8058 1.6500 0.5510 0.3500 0.1000 

HERO 42.4117 1.8312 0.6000 0.3010 0.1000 

HIRN 40.5610 1.7682 0.6000 0.3010 0.1000 

HOSA 36.1074 1.9676 0.6000 0.3000 0.1010 

JIMA 35.2090 1.8753 0.6000 0.3010 0.1000 

KARA 44.7513 1.8386 0.6000 0.3010 0.1000 

NAZA 32.2413 1.9763 0.6000 0.3000 0.1000 

NEKE 33.6187 1.8102 0.5510 0.3500 0.1000 

TERC 34.4358 1.7474 0.6000 0.3000 0.1010 

WANE  28.3318 2.0 0.6000 0.3010 0.1000 

WASH 35.4584 1.9200 0.6000 0.3010 0.1000 

WELK 32.9070 1.8406 0.6000 0.3010 0.1000 
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4.3 FPN Results 

Multimodal optimization problems can be mapped into a clustering problem. FPN, as a 

dynamic clustering algorithm, can be used to solve our H-κ receiver function stacking problem. 

Results from two different seismic stations shown on the map in Figure 4-5 are tabulated here to 

demonstrate that the proposed methodology of FPN can be implemented to solve the multimodal 

optimization problem of receiver function inversion. 

Table 4.6 
 Table of Some FPN-Hκ stacking Implementation Results. Niche Masters (Cluster Centers) 

identified for station ARBA are tabulated. 

FPN Run No. Niche Masters Identified 

1 38.5451    2.1773 30.3465    1.7673 39.2321    2.2116 

2 18.5000    1.1750 18.5000    1.1750 30.1672    1.7584 

3 30.1123    1.7556 18.5000    1.1750 18.5000    1.1750 

4 30.1000    1.7550 30.3000    1.7650 38.3740    2.1687 

5 18.5000    1.1750 30.3000    1.7650 41.5000    2.3250 

6 18.5000    1.1750 30.1578    1.7579 41.5000    2.3250 

7 18.5000    1.1750 30.3478    1.7674 18.5000    1.1750 

8 30.1000    1.7550 30.3000    1.7650 38.3740    2.1687 

9 18.5000    1.1750 30.3000    1.7650 41.5000    2.3250 

10 18.5000    1.1750 30.1578    1.7579 41.5001    2.3250 
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Table 4.7  
Table of Some FPN-Hκ stacking Implementation Results. Niche Masters (Cluster Centers) 

identified for station BUTA are tabulated. 

FPN Run No. Niche Masters Identified 

1 28.6400    1.8320 19.5000    1.3750 

   

36.7036    2.2352 

2 28.7764    1.8388 19.5000    1.3750 27.7958    1.7898 

3 28.8407    1.8420 36.5024    2.2251 36.9901    2.2495 

4 28.7598    1.8380 19.5000    1.3750 19.5000    1.3750 

5 28.7000    1.8350 19.5000    1.3750 37.0653    2.2533 

6 20.8374    1.4419 28.8033    1.8402 40.5000    2.4250 

7 28.7979    1.8399 29.2904    1.8645 37.1663    2.2583 

8 28.7000    1.8350 28.8947    1.8447 37.0000    2.2500 

9 28.7000    1.8350 19.5000    1.3750 36.7000    2.2350 

10 28.7631    1.8382 35.9786    2.1989 36.7226    2.2361 

11 28.6704    1.8335 37.5351    2.2768 37.5886    2.2794 

12 28.7764    1.8388 38.0382    2.3019 36.9378    2.2469 

13 28.7638    1.8382 19.5000    1.3750 37.1117    2.2556 

14 38.6899    2.3345 28.8000    1.8400 19.5000    1.3750 

15 36.2703    2.2135 28.7615    1.8381 19.5000    1.3750 
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 CHAPTER 5 

Discussion and Performance Evaluation 

5.1 Discussion on GA Implementation and Results  

In this research, GA has been applied to determine optimal or near optimal weights 

necessary in stacking receiver functions for crustal parameters H and κ.  We used receiver 

functions and the resulting H and κ values similar to our previous study (Dugda et al., 2005) for 

the purpose of comparison.  The receiver functions used for the GA implementation are 

computed from seismic data collected at ARBA seismic station.  

The GA conducts a search for the weights necessary for inverting the receiver functions 

and simultaneously also determines the H and κ parameters from the receiver functions.  After 

about 60 GA runs, the three weights converge to a steady-state value, in which case w1 = 0. 454, 

w2 = 0.404, and w3 = 0.142 for station ARBA in Ethiopia. After the weights converge, the GA 

provides optimal or near optimal values for the weights and the crustal parameters.  

Table 5.1 provides some sample weights computed by GA, number of generations in 

each GA run, and the elapsed times for the different GA runs. The time it takes for the epoch or 

GA run depends on the number of generations. It is observable from the table that one can obtain 

a good estimate of the weights when the number of generations is about 15. When the number of 

generations is in the range of 10 and 15, the weight estimates from each GA run are 

approximately the same as the average weight estimates. The times are given in minutes. 
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Table 5.1  

Sample computed GA weights, number of generations and elapsed times for different GA runs. 

Attempt 

No. 

w1 w2 w3 No. of 

Generations 

Elapsed 

Time (min) 

1 0.465  0.378  0.157     10 2.2 

2 0.492 0.374 0.134 15 3.4 

3 0.425  0.496  0.079   20 4.5 

 

For the same set of receiver functions, we found that the respective best weights for the 

receiver functions stacking were 0.5, 0.4, and 0.1 in the previous work (Dugda et al., 2005), 

which are consistent with that of the GA implementation in this study.  The comparison is given 

in Table 5.2.  Although the two sets of weights match very closely, there seems to be minor 

differences (ranging between 0.004 and 0.046) in the values of the different corresponding 

weights too.  

Table 5.2  
Comparison of weights obtained in this study with the study by Dugda et al. (2005) for the three 

phases in the receiver functions 

Study w1 w2 w3 

Dugda et al. (2005)  0.5 0.4 0.1 

Current Study (GA) 0.454 0.404 0.142 

 

A contour plot in Chapter 4, Figures 4.3, presents the variation of H-κ receiver function 

stack on an H and κ parameter space just for one run of the GA algorithm. The same figure also 

indicates the position of the optimal values for H and κ parameters obtained using the current GA 

algorithm. In order to obtain statistically sound results, we have to run the GA several times 

because of the unpredictability involved in the mutation and crossover, as well as the initial 

parameters.  After 60 GA runs the weights stabilize, as shown in Figure 4.4, and then the values 

for H and κ are 29.8 km and 1.77, respectively. The H and κ values from the previous study 
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(Dugda et al., 2005) were 29.7 km and 1.79, which are strikingly similar to the results in the 

current study. The values of the H and κ obtained through the use of the two different approaches 

are very similar and as may be expected, the two studies produce consistent results. 

The average values for H and κ are 29.7 km and 1.78, after the weights stabilize and take 

almost constant average values as shown in Figure 4.4. The average weights for the given set of 

receiver functions from seismic station ARBA stabilized are: 

w1 = 0.454, w2 = 0.404, and w3 = 0.142  

One approach to evaluate the performance of the GA implementation was to determine 

the time for the GA implementation which gives good results. This could be done by computing 

and comparing H and κ values. The GA outputs after running the GA for 10 to 15 generations 

and repeating the experiment about 60 times, the average of these runs is found to offer the 

optimal or near optimal weights, as well as optimal or near optimal crustal parameters. 

5.2 Discussion on GPS Results and Implementation 

5.2.1 GPS convergence test. GPS technique requires considering initial values for the 

variables to be explored. When we consider initial values for the different variables, especially 

the crustal parameters, we will be very conservative. We would be conservative compared to 

what the expected value for the crustal parameters are, according to global earth models such as 

CRUST2.0. CRUST2.0 gives global crustal thickness estimates for a very large region of 2
0
X2

0 

≈ 222kmX222km grid over many parts of the earth (Bassin et al., 2000). The CRUST2.0 crustal 

model takes advantage of compilation of global sediment thickness and ice thickness on a 1x1 

degree scale. The compilation of CRUST2.0 covers most of Eurasia, North America, Australia 

and some areas of Africa and South America and in the oceans. 
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 In taking the following initial value ranges, we would also be conservative from the 

stand point of other previous crustal studies in and around the Main Ethiopian Rift, where 

seismic station ARBA is situated. The crustal thickness in the Main Ethiopian Rift normally 

varies between about 25 and 35 km (e.g., Makris and Ginzburg, 1987; Mackenzie et al., 2005; 

Dugda et al., 2005). The κ values in the region vary typically between about 1.70 to about 1.90 

(Zandt and Ammon, 1995; Dugda et al., 2005). Thus, the following parameter values can be used 

as initial values for the GPS application: 

Hinit = 20 – 40,  

κinit  = 1.65 - 1.95, 

w1init, w2init, w3init can be taken from the range indicated in chapter 3. 

GPS Convergence has been tested by observing final parameters and also the final 

objective function values. We applied the test using not only two extreme initial values but also 

mixed extreme and some intermediate initial values. This has been performed for seismic station 

ARBA.  
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a) Lower extreme initial H and Vp/Vs ratio values  
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b) Medium initial H and Vp/Vs ratio values  
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c)  Higher extreme initial H and Vp/Vs ratio values  
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d) Mixed of extreme initial H and Vp/Vs ratio values  
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e) Mixed of extreme initial H and Vp/Vs ratio values 

Figure 5.1 GPS convergence test using five different combinations of initial parameters and 

weights. 

 

As shown in Figure 5.1 (a)-(e) for five different initial value combinations, it is found 

that the GPS has converged and offers the same final values irrespective of the initial values. 

Table 5.3 summarizes the above results and the final values for all initial value combinations are 

the same. 
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Table 5.3  

The final values of parameters, weights and objective function. FVAL is the Final Objective 

Function Value. 

Hopt  30.0988 

κopt   1.7750 

w1opt  0.6000 

w2opt  0.3010 

w3opt  0.1000 

FVAL -0.7290 

 

Therefore, the final values are the optimal values from the GPS technique. As long as 

complete polling is applied, initial values can be pushed even further, even though expected 

parameter values for the region would not be higher than the values given in the above given 

conservative range.  

5.2.2 On complete polling of GPS for global optimization. Since there may be many 

local optima in multimodal problems such as H-k stacking, we applied the GPS technique to poll 

all the available mesh points in every iteration. Among these we pick the one with the best 

objective function value. Such complete polling is observed to assist the GPS discover the global 

optimum instead of being trapped in a local minimum (optimum) point. As it is clearly observed 

in section 4.2.7 and displayed on Figure 4.10, the GPS technique provides the global optimum 

using a complete polling implementation. On the figure, we are able to view a 2-D H-κ surface 

with only H and κ parameter variation, though our search is conducted in 5-D.  

Partial polling by GPS technique is considered to provide a possible optimal solution. It 

may be preferred when the main intent is to discover solutions faster.  When partial polling is 

implemented, the GPS halts its polling process in a given iteration when it discovers a mesh 

point that improves the value of the current objective function. The point with smaller objective 
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function value in the current iteration is appointed by the GPS to be the starting point for the next 

iteration. This process of GPS partial polling continues, and by so doing the GPS will involve 

fewer number of points in every iteration that would offer a faster computation. Even though the 

idea was good to find a faster and efficient GPS using partial polling, not only that the GPS ends 

up in a local optima in our case, but also it is not faster either as shown in Table 5.3.   

Table 5.4  

Comparison of complete polling and partial polling of GPS on ARBA receiver function inversion   

Polling Type Complete Polling Partial polling 

Number of iterations 216 254 

Number of function evaluations 1156 1161 

Time elapsed (minutes) 0.5847 0.7625 

 

Table 5.4 clearly shows that partial polling of GPS is not faster than its complete polling 

counterpart. Moreover, in this particular case, the partial polling is found to be computationally 

more expensive, because it requires more iterations as well as more objective function 

evaluations. Two main reasons for many more iterations, more function evaluations and more 

time of computation in the partial polling compared to complete polling could be the fact that the 

searching speed depends on the data structure and the search starting point as well.   

5.3 Comparison of Optimal Crustal Parameters and Weights with Previous Studies 

Table 5.5 shows a comparison of optimal crustal parameters for the seismic station 

ARBA using 4 different approaches:  Monte Carlo approach (Dugda et al., 2005), GA, GPS and 

FPN. 
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Table 5.5  

Comparing Crustal Parameters for Station ARBA from four different approaches 

Different Studies Optimal H (km) Optimal Vp/Vs 

Genetic Algorithm implementation 

(Dugda et al., 2012, this study) 

29.7 1.77 

Monte Carlo (Dugda et al., 2005) 29.8 1.79 

GPS technique 30.1 1.78 

FPN technique 30.3 1.77 

 

Table 5-5 provides an appraisal of weights obtained for seismic station ARBA using the 

Monte Carlo technique, GA, and GPS. 

Table 5.6  

Comparing Optimal Weights for seismic ARBA from three different approaches 

Different Studies Optimal w1 Optimal w2 Optimal w3 

Genetic Algorithm implementation 

(Dugda et al., 2012, BSSA): 

0.5 0.4 0.1 

Monte Carlo (Dugda et al., 2005) 0.5 0.4 0.1 

GPS technique 0.6 0.3 0.1 

 

5.3.1 Crustal thickness (H) values comparison for 27 seismic stations. Figure 5.2 

shows a comparison of crustal thickness obtained for 27 seismic stations in Ethiopia using GPS 

and a Monte Carlo technique (Dugda et al., 2005). The differences for the computed crustal 

parameters between the two approaches are insignificant or consistent. 
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Figure 5.2 Comparison of Crustal Thickness Values from this study (GPS technique) versus 

results from the Monte Carlo technique (Dugda et al., 2005). 

 

5.3.2  (Vp/Vs) values comparison for 27 seismic stations in Ethiopia. Figure 5.3 

shows a comparison of crustal Vp/Vs ratio obtained for 27 seismic stations in Ethiopia between 

GPS and the Monte Carlo (Dugda et al., 2005) methods.  Both crustal Vp/Vs ratio and crustal 

thickness results look consistent. 
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Figure 5.3 Comparison of Crustal Vp/Vs Values from this study (GPS technique) versus results 

from Monte Carlo (Dugda et al., 2005). 

 

5.4 Comparison of the GA and GPS Techniques  

A GA has to be run several times (up to 60) and each GA run requires 10 to 15 

generations before providing a solution. As shown in Table 5.1, each GA run takes 2-3 minutes 

and the average of all the runs can be taken to obtain optimal solutions to the inversion problem. 

From several experiments, we found that GPS is faster than the GA. 

However, the GA is able to escape easily from the local optima while GPS is trapped into 

local optima. Complete polling of the GPS technique alleviates this problem.  

5.5 On FPN Technique 

Since the H-κ receiver function is a multimodal surface, we can apply FPN, a niching or a 

dynamic clustering algorithm, to overcome the shortcomings of GPS algorithm which is 
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sometimes caught in local optima. In just about 10 runs, each run taking less than 30 seconds, the 

FPN can provide the best initial parameters that should be used with GPS. In all the runs of the 

FPN the global optimum value will be among the few identified niche masters. We have found 

that the FPN obtained approximate global optimum point is very close to the right global 

optimum. The optimal solution by FPN is included in Table 5.5. 
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 CHAPTER 6 

Conclusions and Future Research Directions  

6.1 Conclusions 

In this dissertation, we have developed several techniques to solve an optimization 

problem of inverting receiver functions to find optimal crustal parameters and optimal weights 

using genetic algorithms (GA), generalized pattern search (GPS), and fitness proportionate 

niching (FPN). Previous study has utilized Monte Carlo technique for solving for the weights 

required to determine crustal parameters using the H- stacking of receiver functions (Dugda et 

al., 2005). One major objective of our work has been developing a system that is suitable for 

automation besides providing optimal solutions. Our algorithms have been tested using seismic 

data from more than twenty five seismic stations and we showed that our results are consistent 

with previous studies.  

In the first part of this research, GA has been applied to determine optimal or near 

optimal weights and optimal H and κ values simultaneously. The seismic data for testing the GA 

implementation comes specifically from seismic station ARBA, which lies in the southern region 

of Ethiopia within the main Ethiopian Rift. When applied to receiver functions computed from 

ARBA, the three weights for the H- stacking converge to steady-state values within about 60 

epochs. The values of the H and κ as well as the weights obtained in this dissertation match the 

values obtained previously with a different approach. Thus, the two studies are found to be 

consistent. 

This study shows that GA can be used as an effective tool to determine optimal weights 

together with crustal H and κ parameters, as it iteratively searches many combinations of weights 

without being trapped in local optima due to its crossover and mutation operators. The search 



115 

 

 

space also covers the entire domain with multiple candidate solutions initially generated at 

random.  Determining the optimal parameters along with the weights simultaneously paves a 

way for a complete automatic crustal structure determination system. Besides, since no human 

intervention is required while the GA is searching to obtain the different optimal parameters, the 

GA can be used as an automatic crustal parameters determination tool.  

In the second part of this research, an attempt has been made to implement and test the 

performance of the GPS technique for determining appropriate weights for the three receiver 

function seismic phases besides finding optimal H and  values. GPS is a direct search method 

which is derivative-free, convergent and applicable to linearly constrained minimization 

problems (Lewis and Torczon, 2000). The GPS algorithm has been run for the same set of 

receiver functions from station ARBA as well as many more seismic stations. Seismic data 

collected in Ethiopia have been used in this study for testing the proposed GPS and FPN 

techniques.  

Application of GPS on H- stacking of receiver functions enables to explore for optimal 

values just like it is making an exhaustive search for the weights w1, w2, w3 as well as H and . 

The GPS method does the search very fast because its exploration amounts to finding the 

steepest descent path without computing the derivative of the objective function. Since it is not 

computing the derivatives, this makes the GPS to be faster in its convergence. Moreover, the 

GPS technique is suitable for objective functions in which finding the derivative is not easy 

and/or when the objective functions are not continuous. The objective function in this research 

satisfies both of these last conditions. Finding the derivative for our objective function is not easy 

and the objective function is not continuous either. Whenever the GPS is successful in its search 

in the current iteration, its step length increases (in our implementation the step size Δ doubles) 
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on the next iteration. This is an important factor contributing to the faster convergence of the 

GPS technique.  

Some of the advantages of GPS technique observed in this research include: outputs and 

results can be repeated seamlessly; number of iterations and number of functions evaluated are 

the same as long as the machine and initial conditions remain the same; and optimal values don’t 

usually depend on the initial values. The tool developed utilizing GPS optimizes the given 

problem and has the following features: it is suitable for automatic processing of seismic data 

from all stations at the same time; it uses a user-friendly approach based on Matlab; the approach 

may not need much knowledge of seismology; it takes into account the quality of receiver 

functions through variable weights. 

This study confirms that the GPS technique implemented on the H-κ stacked receiver 

function optimization can furnish optimal weights as well as optimal crustal parameters H and κ. 

The optimal crustal parameters and weights produced by GPS are consistent with the GA results. 

Results for station ARBA and others could make it clear that the weights and parameters found 

by GPS closely match those obtained previously using a different method and also the results 

from the GA implementation. 

In conclusion, this study shows that the GPS can provide optimal weights as well as 

optimal crustal thickness H and κ values. Just like mutation operator helps the GA to avoid being 

trapped in a local optimum, the GPS uses a complete polling search to avoid being trapped in 

local optima. Besides, just like in the case of the GA implementation, since no human 

intervention is needed while the GPS is searching to obtain the different optimal parameters of H 

and κ together with the optimal weights. The GPS technique is a plausible technique to be used 

for complete automatic determination of crustal parameters.  
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Employment of FPN to provide best initial values for an optimization problem is a new 

application area introduced in this research. There are a lot of research in which initial values are 

needed to find a solution to their problem. When there is a potential for finding different 

solutions depending on the initial values, we need to find the best initial values that will lead to 

the right solution. Whenever an ambiguity arises in the solution we have to have a way of 

differentiating the best or the right solution. Among the different possible search regions in the 

parameter space, we have to have a way of selecting the region corresponding to the right 

solution. The region of the right solution is usually the region enclosing the global optimum 

point. This research has shown that FPN helps to cluster the different regions in the parameter 

space and it can help identify the region encompassing the global optimum point.  

Whenever the GPS stuck in a local optimum point, FPN can step in to provide the 

approximate location of the global optimum point which can be used as an initial value for the 

GPS implementation. Applying FPN on the given receiver functions set for a limited number of 

iterations could provide very good initial parameters within few minutes. In fact, the best initial 

parameters (niche masters) identified using the FPN algorithm are very close to the location of 

the global optimum that the GPS or the GA provide. Thus, we conclude that GPS and FPN can 

be integrated for complete automatic receiver function inversion. 

In this dissertation, the receiver function inversion problem is shown to be a multimodal 

problem. This study has also shown that GPS is a very powerful optimization tool that provides 

consistent results as if it searches the parameter space exhaustively. However, GPS searches the 

parameter space in a given pattern and computes objective function values only at the points in 

the given pattern. GPS even produces consistently similar results irrespective of initial values. 

This study also clearly shows that GPS technique offers repeatable results, especially compared 
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to heuristic search approaches. Moreover, the number of iterations as well as the number of 

objective function evaluations will remain the same as long as initial values, the lower and upper 

bounds, and the processing machine remain the same. However, the GPS limitation of being 

trapped at local optima at times is solved in this study by combining GPS with FPN. This new 

combined technique can be called GPS-FPN.   

In summary, the contributions of this work include developing techniques by 

implementing Genetic Algorithms (GA), Generalized Pattern Search (GPS) and Fitness 

Proportionate Niching (FPN) as automatic techniques to solve the problem of inverting receiver 

functions for a number of seismic stations at the same time. The first technique developed here 

makes use of the GA optimization technique. This dissertation shows that receiver function 

inversion with H-κ stacking is a multimodal problem and a second technique involving both 

direct and evolutionary techniques has been developed to solve this multimodal nature of the 

problem. The second technique introduced combines the direct GPS and evolutionary FPN 

techniques by employing their strengths. The inversion here will solve for both crustal 

parameters and the weights simultaneously. So far, techniques introduced have been 

implemented to solve one seismic station at a time and the weight assignment has been either 

fixed by assumption or variable. The variable weights approach introduced previously (Dugda et 

al., 2005) uses a Monte Carlo technique to find the variable weights for receiver functions from 

one seismic station. Verification of the picking of the phases was required to determine the 

correctness of the phase picking. The search method used to determine the best parameters then 

was an exhaustive search technique but it was focused on unimodal portions of the objective 

function at a time. The main focus of our 2005 study was on the accuracy of the then newly 

introduced variable weights approach, on the revelation of the crustal structure of the region and 
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most importantly on the implication of the crustal structure discovered by that study. The 

variable weights approach introduced in the previous study was time-consuming, applicable to 

one station at a time, and it was not suitable for automatic implementation. On the other hand, 

there was not enough time and resource for development and enhancement of techniques in our 

previous study similar to the ones developed in the current study. The research and techniques 

developed in this dissertation take the variable weights approach to a whole new higher level by 

introducing new optimization techniques. Compared to the previous Monte Carlo variable 

weights approach, the current GA and GPS-FPN techniques have significant advantages of 

saving time and the new techniques are suitable for automatic and simultaneous determination of 

crustal parameters and appropriate weights. 

6.2 Future Directions 

The tools developed in this dissertation can be instrumental in geological and geophysical 

surveys and investigations. The technique can be used to solve similar exploration inverse 

problems for the petroleum or oil industry. We plan to apply the techniques developed here to 

geological and geophysical investigations. 

It appears prudent to keep on integrating FPN and GPS further for automatic optimal 

receiver function inversion. At the same time, further investigation on the FPN properties is 

important (Workineh, 2013), though we found that FPN provides both global and local optima 

very quickly. Studying FPN characteristics further and comparing it to other dynamic niching 

techniques is one plan to extend the current study.  

It is a novel idea to develop an FPN based tool as a full-fledged instrument for 

seismologists to observe and investigate different parts of the optimization surfaces along with 

the picked times of seismic phases. There are many seismic research applications which are 
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time-consuming and sometimes frustrating endeavors in which observation of some criteria such 

as the objective functions of H-κ stacking need to be observed along with the picked phases. The 

tool planned to be developed can show all the local and global optima along with the picked 

arrival times corresponding to those optima locations. In this way one can for sure tell that even 

if one has noisy receiver functions, the results are dependable. 

It is also worthwhile to devise means of expanding the application areas of GA, GPS and 

FPN for other inverse problems. Seismic inversion is an important approach widely used in 

geophysical problems to infer the subsurface properties through seismic signal measurements. 

We plan to expand the application area of GA, GPS and FPN.   

Seismic inversion could improve exploration and management success in the oil and gas 

industry. Specifically we plan to implement those new techniques for inverting similar 

geophysical exploration problems. Thus, we may implement the GA, FPN and GPS on such 

geophysical exploration problems.  

Even though the problem we are trying to solve arises in seismology, the existence of 

such a weighted sum objective function optimization problem indicates that there is a potential 

for such weighted sum optimization problems arising in other areas and applications too. Thus, 

the solution sought here can be a good start to tackle those kinds (or classes) of optimization 

problems.  

Another area of further investigation related to this research is somewhat related to 

multimodal optimization and dynamic clustering techniques. Clustering has become a core 

mechanism of data mining and multimodal optimization problems can be mapped into clustering 

problems. Thus, further exploration in these important interrelated areas seems a valuable 

endeavor of research. For the last several decades, data analytics and optimization have been 
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very active areas of research applied almost in every discipline and industry. Data mining, 

clustering being its essential component and optimization are still active areas of research and 

they are applied almost in every field. Further investigation of the GA, GPS and FPN techniques 

for optimization and clustering purposes would contribute to both the wider community research 

effort and to various industry applications. 
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