
North Carolina Agricultural and Technical State University North Carolina Agricultural and Technical State University

Aggie Digital Collections and Scholarship Aggie Digital Collections and Scholarship

Dissertations Electronic Theses and Dissertations

2014

Modeling And Applying Biomimetic Metaheuristics To Product Modeling And Applying Biomimetic Metaheuristics To Product

Life Cycle Engineering Life Cycle Engineering

Patrick TchapdiÃ© Wanko
North Carolina Agricultural and Technical State University

Follow this and additional works at: https://digital.library.ncat.edu/dissertations

Recommended Citation Recommended Citation
Wanko, Patrick TchapdiÃ©, "Modeling And Applying Biomimetic Metaheuristics To Product Life Cycle
Engineering" (2014). Dissertations. 71.
https://digital.library.ncat.edu/dissertations/71

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Aggie
Digital Collections and Scholarship. It has been accepted for inclusion in Dissertations by an authorized
administrator of Aggie Digital Collections and Scholarship. For more information, please contact iyanna@ncat.edu.

https://digital.library.ncat.edu/
https://digital.library.ncat.edu/dissertations
https://digital.library.ncat.edu/etds
https://digital.library.ncat.edu/dissertations?utm_source=digital.library.ncat.edu%2Fdissertations%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digital.library.ncat.edu/dissertations/71?utm_source=digital.library.ncat.edu%2Fdissertations%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:iyanna@ncat.edu

Modeling and Applying Biomimetic Metaheuristics to Product Life Cycle Engineering

Patrick Tchapdié Wanko

North Carolina A&T State University

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department: Industrial and Systems Engineering

Major: Industrial and Systems Engineering

Major Professor: Dr. Paul M. Stanfield

Greensboro, North Carolina

2014

i

The Graduate School

North Carolina Agricultural and Technical State University

This is to certify that the Doctoral Dissertation of

Patrick Tchapdié Wanko

has met the dissertation requirements of

North Carolina Agricultural and Technical State University

Greensboro, North Carolina

2014

Approved by:

Dr. Paul M. Stanfield

Major Professor

Dr. Lauren B. Davis

Committee Member

Dr. Abdollah Homaifar

Committee Member

Dr. Sanjiv Sarin

Dean, The Graduate School

Dr. Tonya Smith-Jackson

Department Chair

Dr. Xiuli Qu

Committee Member

ii

© Copyright by

Patrick Tchapdié Wanko

2014

iii

Biographical Sketch

 Patrick Tchapdié Wanko was born on April 5, 1981, in Garoua, Cameroon, to Joseph

Wanko and Jeanne Tchantchou. He received a Bachelor of Science degree in Computer

Engineering from the United States Air Force Academy in 2007 and returned to Cameroon

where he served as a second lieutenant in the Cameroonian Air Force. In January 2008, he

returned to the United States to further his education at North Carolina Agricultural and

Technical State University. In December 2009, he received a Master of Sciences degree in

Electrical Engineering, option Computer Engineering. He decided to shift his concentration to

Industrial and Systems Engineering for a doctoral degree. He currently is a doctorate candidate

in the Department of Industrial and Systems Engineering of North Carolina Agricultural and

Technical State University, where he is specializing on the application of biomimetics to product

design within the operational research field.

iv

Dedication

I dedicate this dissertation to my parents. Without their understanding, support, and most

of all love, the completion of this work would not have been possible. I also dedicate this

dissertation to my beautiful and loving wife; Carole Lise Waguem Kouam. She has stood by me

and has given me her unconditional support and devoted motivation from day one of my doctoral

journey. Without her support and understanding, I would have not been able to complete my

work in due time.

v

Acknowledgements

Special thanks are given to my main advisor: Dr. Paul Stanfield, and to the rest of my

committee members; Dr. Lauren Davis, Dr. Abdollah Homaifar, and Dr. Xiuli Qu, for their

contributions to this dissertation and to my overall learning experiences at North Carolina

Agricultural and Technical State University.

This research was based in part upon work supported by the National Science Foundation

under Cooperative Agreement No. DBI-0939454. Any opinions, findings, and conclusions or

recommendations expressed in this work are those of the author and do not necessarily reflect the

views of the National Science Foundation.

vi

Table of Contents

List of Figures ... xii

List of Tables .. xvi

List of Abbreviations .. xviii

Abstract ... 2

CHAPTER 1 Introduction .. 3

1.1 Product Life cycle Engineering... 4

1.2 Durable Product Evolution.. 5

1.3 Motivation of Research ... 6

1.4 Objectives of Research ... 8

1.5 Research Contribution .. 9

1.6 Dissertation Overview .. 10

1.7 Summary ... 11

CHAPTER 2 Overview of Product Design and Biomimetics .. 12

2.1 Product Design .. 12

2.1.1 Integrated product and process development. .. 18

2.1.2 Deductive product development approaches. .. 20

2.1.2.1 Design for operational feasibility. ... 21

2.1.2.2 User-behavior based. ... 23

2.1.2.3 Bio-inspired product design methodology. ... 24

2.2 Biomimetics .. 24

vii

2.2.1 Biomimetics a computing tool. .. 24

2.2.1.1 Ant colony optimization. ... 25

2.2.1.2 Particle swarm optimization. ... 26

2.2.1.3 Genetic algorithms. ... 27

2.2.1.4 Schooling genetic algorithms. ... 28

2.2.2 Biomimetic as a conceptual framework. .. 28

2.2.2.1 Bio-inspired design. .. 28

2.2.2.2 Life cycle assessment. ... 29

2.3 Summary ... 30

CHAPTER 3 Product Design .. 32

3.1 Current Product Design Limits ... 33

3.2 Life Cycle Parameters ... 36

3.2.1 Design parameters. ... 41

3.2.1.1 Material. .. 41

3.2.1.2 Functions. .. 41

3.2.1.3 Sensor. ... 41

3.2.2 Operational parameters. ... 42

3.2.2.1 Type of use. ... 42

3.2.2.2 Frequency of use. .. 42

3.2.2.3 Type of maintenance. .. 43

3.2.3 Environmental parameters. .. 43

viii

3.2.3.1 Physical environment. ... 43

3.2.3.2 Alternative products. ... 44

3.2.3.3 Culture. .. 44

3.3 Sustainable Performance ... 44

3.4 Generalized Life cycle Product Design .. 47

3.5 Summary ... 52

CHAPTER 4 Schooling Genetic Algorithms .. 53

4.1 Introduction ... 53

4.2 Parallel Genetic Algorithms .. 55

4.3 SGA Overview .. 57

4.3.1 Fish school. .. 57

4.3.2 Terminology and taxonomies. .. 58

4.4 SGA Procedure ... 60

4.5 SGA Modeling .. 61

4.5.1 School merging and splitting. .. 61

4.5.1.1 Computational aspect of GEMAC. ... 63

4.5.1.2 Clustering in action with GEMAC. ... 64

4.5.2 Behavior setup. .. 67

4.5.3 Predator avoidance. .. 68

4.5.4 Food foraging. .. 70

4.5.5 School maintenance. .. 72

ix

4.5.6 SGA Life Cycle. ... 73

4.6 Summary ... 74

Chapter 5 Applying Schooling Genetic Algorithms to Generalized Life cycle Product Design 75

5.1 Introduction ... 75

5.2 Problem Definition .. 75

5.3 Applying SGA to GLPD ... 77

5.4 Experimental Design ... 79

5.4.1 Environment driving design for performance. ... 81

5.4.2 Environment driving both design and operations for performance. ... 81

5.4.3 Environment and design both driving operations for performance. ... 81

5.4.4 Environment and the design both driving performance. .. 82

5.4.5 Environment, design and operations driving performance. ... 84

5.5 Results and Interpretation ... 85

5.5.1 Environment driving design for performance. ... 86

5.5.2 Environment driving both design and operations for performance. ... 90

5.5.3 Environment and design both driving operations for performance. ... 93

5.5.4 Environment and the design both driving performance. .. 96

5.5.4.1 Using Griewank to characterize LCE’s relationship. .. 96

5.5.4.2 Using Schwefel to characterize LCE’s relationship. ... 100

5.5.5 Environment, design and operations all driving performance. .. 102

5.5.5.1 Using Ackley to characterize LCE’s relationship. .. 103

x

5.5.5.2 Using Schwefel to characterize LCE’s relationship. ... 108

5.6 Summary ... 114

CHAPTER 6 Genetic Social Networks .. 117

6.1 Introduction ... 117

6.2 GSN Overview .. 118

6.2.1 Gravitational pull. .. 122

6.2.2 Proportionate breeding. .. 122

6.3 GSN Procedure ... 123

6.4 GSN Modeling .. 125

6.4.1 Joining and leaving groups. ... 125

6.4.2 Fuzzy membership. .. 126

6.5 Summary ... 128

Chapter 7 Applying Genetic Social Networks to Generalized life cycle product design 129

7.1 Introduction ... 129

7.2 Applying GSN to GLPD ... 129

7.3 GSN Approach to the Problem ... 130

7.4 Experimental Design ... 131

7.4.1 Environment driving design for performance. ... 133

7.4.2 Environment driving both design and operations for performance. ... 133

7.4.3 Environment and design both driving operations for performance. ... 133

7.4.4 Environment and design both driving performance. .. 133

xi

7.4.5 Environment, design and operations all driving performance. .. 135

7.5 Results and Interpretation ... 136

7.5.1 Environment driving design for performance. ... 137

7.5.2 Environment driving both design and operations for performance. ... 140

7.5.3 Environment and design both driving operations for performance. ... 141

7.5.4 Environment and the design both driving performance. .. 143

7.5.4.1 Using Griewank to characterize LCE’s relationship. .. 143

7.5.4.2 Using Schwefel to characterize LCE’s relationship. ... 145

7.5.5 Environment, design and operations all driving performance. .. 146

7.5.5.1 Using Ackley to characterize LCE’s relationship. .. 146

7.5.5.2 Using Schwefel to characterize LCE’s relationship. ... 151

7.6 Summary ... 155

Chapter 8 Conclusion .. 158

8.1 Contributions ... 159

8.2 Future Directions .. 159

References ... 161

Appendix A ... 178

Appendix B ... 193

Appendix C ... 205

Appendix D ... 210

Appendix E ... 215

xii

List of Figures

Figure 1.1. AIT technologies in modern product parts ... 5

Figure 1.2. Product life cycle information and material flow (Hong-Bae Jun, Dimitris Kiritsis, &

Xirouchakis, 2007) .. 8

Figure 2.1. Model of reasoning by designers. (Roozenburg & Eekels, 1995) 13

Figure 2.2. LCE methodologies: (a) Waterfall model (Horner, 1993), and (b) Spiral model

(Boehm, 1986) .. 15

Figure 2.3. LCE methodologies: (a) IPPD model (DEFENSE, 1996), and (b) Dual Vee Model

(Kevin Forsberg & Mooz, 1997) .. 15

Figure 2.4. Integrate product design process (Hock, 1997) .. 19

Figure 2.5. Common tasks in a manufacturing firm and relevant biological analogies(Mill &

Sherlock, 2000) ... 25

Figure 3.1. Product design factors .. 32

Figure 3.2. Systemic view of a product .. 37

Figure 3.3. Impact of parameters on product performance ... 38

Figure 3.4. Collaborative life cycle ... 40

Figure 3.5. System Operational Effectiveness (SOE) (Verma & Gallois, 2001) 47

Figure 3.6. Generalized life cycle product design (GLPD) approach ... 49

Figure 3.7. Grouping vs. performance .. 51

Figure 4.1. Food vs. Predator .. 58

Figure 4.2. Taxonomy of search techniques ... 59

Figure 4.3. Taxonomy of parameter setting in evolutionary algorithms (Michalewicz & Fogel,

2004) ... 59

xiii

Figure 4.4. Genetic Algorithms vs. Schooling Genetic Algorithms (* often omitted) 61

Figure 4.5. Domains with predetermined cluster centers ... 64

Figure 4.6. GEMAC output for Test 1 .. 65

Figure 4.7. GEMAC output for Test 2 .. 65

Figure 4.8. GEMAC output for Test 3 .. 66

Figure 4.9. Fish school behavior assignment .. 67

Figure 4.10. Predator avoidance maneuver. .. 68

Figure 5.1. Transformation of a designed product into a GA entity ... 76

Figure 5.2. Griewank function in [-100, 100] plotted using Matlab .. 83

Figure 5.3. Schwefel function in [-100, 100] plotted using Matlab .. 84

Figure 5.4. Ackley's function in [-25, 25] plotted using Matlab ... 85

Figure 5.5. Tabu list contents plot for experiment set 1 ... 87

Figure 5.6. SGA results per generation for experiment 1 ... 89

Figure 5.7. SGA results per generation for experiment set 2 .. 91

Figure 5.8. Tabu list contents plot for experiment set 2 ... 93

Figure 5.9. SGA results per generation for experiment set 3 .. 94

Figure 5.10. Tabu list contents plot for experiment set 3 ... 96

Figure 5.11. SGA results per generation for experiment set 4 – Griewank 97

Figure 5.12. Tabu list contents plot for experiment set 4 – Griewank .. 99

Figure 5.13. SGA results per generation for experiment set 4 – Schwefel 100

Figure 5.14. Tabu list contents plot for experiment set 4 – Schwefel .. 102

Figure 5.15. SGA results per generation for experiment set 5 – Ackley 103

Figure 5.16. Average population fitness over time with PGA for experiment set 5 – Ackley ... 105

xiv

Figure 5.17. Average population fitness over time with IGA for experiment set 5 – Ackley 107

Figure 5.18. SGA results per generation for experiment set 5 – Schwefel 109

Figure 5.19. Average population fitness over time with PGA for experiment set 5 – Schwefel 111

Figure 5.20. Average population fitness over time with IGA for experiment set 5 – Schwefel . 113

Figure 6.1. Genetic social networking .. 121

Figure 6.2. GSN high level diagram ... 124

Figure 7.1. Transformation of a designed product into a GA entity ... 130

Figure 7.2. Griewank function in [-100, 100] plotted using Matlab .. 135

Figure 7.3. Schwefel function in [-100, 100] plotted using Matlab .. 136

Figure 7.4. Ackley's function in [-25, 25] plotted using Matlab ... 136

Figure 7.5. GSN results per generation for experiment set 1 .. 137

Figure 7.6. Final population plot for experiment set 1 ... 140

Figure 7.7. GSN results per generation for experiment set 2 .. 140

Figure 7.8. Final population plot for experiment set 2 ... 141

Figure 7.9. GSN results per generation for experiment set 3 .. 142

Figure 7.10. Final population plot for experiment set 3 ... 143

Figure 7.11. GSN results per generation for experiment set 4 – Griewank 144

Figure 7.12. Final population plot for experiment set 4 – Griewank .. 145

Figure 7.13. SGA results per generation for experiment set 4 – Schwefel 145

Figure 7.14. Final population plot for experiment set 4 – Schwefel... 146

Figure 7.15. GSN results per generation for experiment set 5 – Ackley 147

Figure 7.16. Average population fitness over time with PGA for experiment set 5 – Ackley ... 149

Figure 7.17. Average population fitness over time with IGA for experiment set 5 – Ackley 151

xv

Figure 7.18. GSN results per generation for experiment set 5 – Schwefel 151

Figure 7.19. Average population fitness over time with PGA for experiment set 5 – Schwefel 153

Figure 7.20. Average population fitness over time with IGA for experiment set 5 – Schwefel . 155

xvi

List of Tables

Table 1.1 Sikorsky 70 models in the U.S. military ... 6

Table 1.2 Research contribution ... 10

Table 2.1 System engineering and life cycle engineering resources .. 14

Table 3.1 Samples for life cycle parameters ... 39

Table 3.2 Classifying LCE data .. 40

Table 3.3 GLPD process elements .. 48

Table 4.1 GEMAC clustering output summary .. 66

Table 5.1 Factors, assessment criteria, and methods for SGA.. 80

Table 5.2 Sample of initial population for experiment 1 .. 86

Table 5.3 Tabu list contents for experiment 1 .. 88

Table 5.4 Sample of final population for experiment 1 .. 89

Table 5.5 Sample of initial population for experiment 2 .. 90

Table 5.6 Sample of final population .. 91

Table 5.7 Tabu list contents for experiment 2 .. 92

Table 5.8 Tabu list contents for experiment set 3 ... 95

Table 5.9 Tabu list contents for experiment set 4 – Griewank ... 98

Table 5.10 Tabu list contents for experiment set 4 – Schwefel .. 101

Table 5.11 Tabu list contents for experiment set 5 – Ackley ... 104

Table 5.12 Sample of final population for PGA experiment set 5 – Ackley 106

Table 5.13 Sample of final population for IGA experiment set 5 – Ackley 108

Table 5.14 Tabu list contents for experiment set 5 – Schwefel .. 110

Table 5.15 Sample of final population for SGA in experiment set 5 – Schwefel 111

xvii

Table 5.16 Sample of final population for PGA experiment set 5 – Schwefel 112

Table 5.17 Sample of final population for IGA experiment set 5 – Schwefel........................... 114

Table 5.18 Summary of experiments on SGA ... 116

Table 7.1 Factors, assessment criteria, and methods .. 132

Table 7.2 Sample of final population of GSN for experiment set 1 ... 138

Table 7.3 Starting and ending themes in experiment set 1 ... 139

Table 7.4 Sample of final population for GSN in experiment set 2 ... 141

Table 7.5 Sample of final population for SGN in experiment set 3 ... 142

Table 7.6 Sample of final population for SGN in experiment set 4– Griewank 144

Table 7.7 Sample of final population for GSN experiment set 5 – Ackley 147

Table 7.8 Sample of final population for PGA experiment set 5 – Ackley 148

Table 7.9 Sample of final population for IGA experiment set 5 – Ackley 150

Table 7.10 Sample of final population for GSN experiment set 5 – Schwefel 152

Table 7.11 Sample of final population for PGA experiment set 5 – Schwefel 153

Table 7.12 Sample of final population for IGA experiment set 5 – Schwefel............................ 154

Table 7.13 Summary of experiments on GSN ... 156

Table 7.14 Comparative results of GSN, SGA, IGA, and PGA .. 157

xviii

List of Abbreviations

ACO Ant Colony Optimization

AIT Automated Identification Technology

BOL Beginning Of Life

EOL End Of Life

ERP Enterprise Resource Planning

GA Genetic Algorithms

GLPD Generalized Life cycle Product Design

GSN Genetic Social Network

IGA Island Genetic Algorithm

INCOSE International Council of Systems Engineering

IPPD Integrated Product and Process Design

LCE Life Cycle Engineering

MOL Middle Of Life

PLE Product Life cycle Engineering

PSO Particle Swarm Optimization

SE System Engineering

SGA Schooling Genetic Algorithm

SIAIT Sensor-Integrated Automatic Identification Technology

2

Abstract

Due to its potential for significant impact, interest continues to grow in the assessment of

products from a life cycle perspective. As the nature of products shifts from mechanized and

Newtonian to more adaptive and complex, the behavior of products more closely resembles

biological organisms in community. The change in product nature is increasingly mirrored at the

component level. The work presented in this dissertation is twofold. First, the research proposes

a general, systematic and holistic classification of life cycle data to transform the design problem

into an optimization problem. Second, the research proposes two new metaheuristics (bio-

inspired and socio-inspired) to solve optimization problems to produce grouped solutions that are

efficient, evolvable and sustainable. The bio-inspired approach is schooling genetic algorithms

(SGA), while the socio-inspired approach is referred to as genetic social networks (GSN).

SGA is an approach that combines fish schooling concepts with genetic algorithms (GAs) to

enable a dynamic search process. The application of GA operators is subject to the perception of

the immediate local environment by clusters of candidate solutions behaving as schools of fish.

GSN is an approach that adds social network concepts to GAs, implementing single and dyadic

social interactions of social groups (clusters of similar candidate solutions) with GA operators.

SGA and GSN both use phenotypic representations of a hypothetical product or system as input.

The representations are derived from the proposed life cycle engineering (LCE) data

classification. The outputs of either method are the representations that are more than likely to

perform better, longer, and more autonomously within their environment during their life cycle.

Both methods can also be used as a decision making tool. Both approaches were tested on

product design problems with differing parametric relations, underlying solution space, and

problem size.

3

CHAPTER 1

Introduction

Systems engineering is defined as an “interdisciplinary approach and means to enable the

realization of large and complex systems that meet a defined set of organizational and technical

requirements” (INCOSE, 2006). Systems engineering (SE) as a scientific approach has been

around since the 1940s and has evolved significantly from its prior engineering approaches. SE

development post WW II was driven by U.S aerospace and defense industries, which formulated

SE theory and best practices. Today, many techniques developed by those pioneering industries

(e.g. parts traceability, materials and process control, improved product accountability) are being

applied in other industries. In many ways, this field is mature. However, with the incorporation

of information technology (IT) in ordinary products to create smart systems, the methods and

tools that have made traditional SE successful are in need of improvement.

Traditionally, SE has emphasized: (1) design optimization into a fixed configuration, (2)

system decomposition in order to facilitate system analysis, and (3) the guiding role of systems

engineers to design and maintain systems. Such an emphasis does not account for products

and/or product parts that are getting smarter, and tend to make SE heavily rely on the design

engineer’s knowledge and expertise. These limitations, and the increasingly shortened life cycle

of products (Griffin, 1997b) make it difficult for engineers to innovate and to sustain their

design. With products becoming more complex and resembling biological entities (sense,

process and act depending on environment), tools and approaches are necessary that will allow

engineers in general, and design engineers in particular, to achieve system efficiencies. The work

presented here is an attempt at crafting such an approach and associated tools. The research

4

provides a holistic approach, and relies both on the data gathered during a product’s life cycle,

and on the evolution of durable products.

1.1 Product Life cycle Engineering

SE is interdisciplinary and proceeds from concept to production and to operation by

considering both the business and the technical needs with the goal of providing a quality

product that meets the user needs at a low cost. SE integrates life cycle data, and has the same

objectives as product life cycle engineering (PLE). PLE is a holistic business concept that was

developed in the late 1980’s to manage a product throughout its life cycle. PLE is the activity of

managing, in the most effective way, a company’s products across their life cycles from product

concept to retirement and disposal (Stark, 2011). PLE allows any organization to oversee the

whole lifespan of a product and the information connected with it (Sääksvuori & Immonen,

2008). To achieve its goal, PLE has become a central approach for the integrated management of

product related data, engineering processes, and applications along the different phases of the

product life cycle. PLE enables an organization to learn from its customers, analyze challenges

and constraints, forecast changes in the development of a product or process, and make decisions

based on the changes. PLE evolves with the product, its associated processes and its targeted

market.

The remainder of the chapter is organized as follow: Section 1.2 addresses durable

product evolution followed by the motivations of the research work in Section 1.3. The

objectives of the research and the research contribution follow in Section 1.4 and 1.5

respectively. Finally, an overview of the remainder of the dissertation is given in Section 1.6,

followed by a summary of the chapter.

5

1.2 Durable Product Evolution

Increasingly, the design of durable products, such as automobiles and aircraft, has

expanded from traditional mechanical design to include more biologically inspired capabilities -

learn, morph, communicate, and sustain. The trend of using analogies to biological systems to

develop solutions for engineering problems, also called biologically inspired design, is somewhat

new and keeps gaining importance as a wide-spread movement in design (Anastas & Warner,

2000; Benyus, 1997). Biologically inspired design often results in innovation (Collins &

Brebbia, 2004; Forbes, 2005; Vogel, 2000). The timeline of the growth of biologically inspired

design patents is described by Bosner (Bosner, 2006; Bosner & Vincent, 2006). The transition to

biologically inspired design is making its way to high value assemblies and parts on such

products. These changes have resulted in terms such as ‘‘evolving parts/products families’’

(ElMaraghy, 2007; Wiendahl et al., 2007) to address and describe the changes occurring to those

product families as mutations, with product features losses and gains through generations, and

the appearance of new families of products. The transition is enabled by Sensor-Integrated

Automatic Identification Technology (SIAIT), which can provide data collection, storage,

processing, and communication capabilities with minimal power requirements as depicted in

Figure 1.1.

Figure 1.1. AIT technologies in modern product parts

6

The intelligent use of these enhanced capabilities depends primarily on the development

of integrated processes. Processes that are needed to use the collected data to improve

part/product design and operating parameters in order to minimize total cost of ownership,

extend product life cycles, and enhance sustainability. As an example, the DoD alone spends

US$10s billions each year on these issues (AT&L, 2012). Due to the biological nature of the

parts, bio/eco systems are expected to be the primary sources of process innovation.

1.3 Motivation of Research

Consider the Sikorsky 70 helicopter (Table 1.1). The U.S Army, the U.S Coast Guard,

and the U.S Navy all use different variations of the same helicopter model. The variation the U.S

Army uses is known as Black Hawk and operates in a typically arid environment; whereas the

variation the U.S Coast Guard uses, the Jayhawk, operates in a damp environment and was

designed to better accommodate its type of missions.

Table 1.1

Sikorsky 70 models in the U.S. military

 Army

UH-60 Black Hawk

USCG

HH-60 Jayhawk

Navy

SH-60 Seahawk

Model

Missions

Combat Search and

Rescue, Special Forces

operation…

Security and interdiction,

offshore rescue…

Search and rescue, vertical

replenishment, logistics

support…

Environment Land (Desert, Sahel) Water Sea, Land

7

Such a variation in the environment makes the annual acquisition and maintenance of the

Sikorsky 70 inventory costly and difficult. In addition, the complexity makes it hard to know

where to standardize designs and operational processes for the operational efficiency of the

helicopter. The complexity also makes it difficult to detect where to customize a specific

helicopter model to meet its mission objectives.

Today, organizations use a segmented LCE approach to remain competitive and

innovative while managing the life cycle of their diverse portfolio. Firms would customize their

tools so they can better integrate them with their different processes and at the same time,

streamline the flow of material and information. However, the customization, segmentation of

LCE phases, and integration of tools do not only come at a high cost (Jardim-Goncalves, Grilo,

& Steiger-Garcao, 2006; Lin, Harding, & Shahbaz, 2004), but also fail (in its current state) to

address one of the main issues the systems engineers still face. The main problem encountered is

that the decisions taken during the beginning of life (BOL), which comprises conception, design

and production are fixed and infrequently change; yet they are known to have a huge impact on

middle of life (MOL) and end of life (EOL) decisions. The MOL stage of a product includes

product’s sale, operation, support and sustainment; whereas the EOL stage includes product’s

retirement for disposal or recycling. The data that is used in a segmented fashion could provide

the good results for its segment, but not necessarily for the life cycle system. Information and

material flow in a typical product life cycle implementation is represented in Figure 1.2. Figure

1.2 does not account for pieces of information such as consumers/users gained experience

through recurrent product usage, or of the possible interactions among a life cycle BOL, MOL,

and EOL.

8

Figure 1.2. Product life cycle information and material flow (Hong-Bae Jun, Dimitris Kiritsis, &

Xirouchakis, 2007)

1.4 Objectives of Research

Working within the context of product life cycle management, the objective of this

research was to develop a framework that allows capturing the complex changes occurring in

products and their attributes during their life cycle. This representation is an important first step

towards their integration and the effective management of life cycle product evolution.

Considering the nature of the problems described within the previous sections, and the fact that

there is no existing exact method to approach them, metaheuristics are suggested as a basis for

the research. The research problem addressed the following problem. Based on the shift in

product nature, how does one characterize and extend PLE, using biological and sociological

inspiration, to incorporate evolvability (evolution in design and operational parameters of

9

products and product’s parts), grouping (based on environmental parameters related to a

product), and sustainability (ability of the system to maintain and improve itself)? In other

words, how does one develop metaheuristic search algorithms, with the emphasis here on

evolutionary approaches, using biological/sociological inspiration and grouping to design

processes that can use a product’s collected life cycle data to maintain and improve it totally

(whole product) or partially (parts of the product) in a way that minimizes costs, and

human/expert intervention?

Regarding the other part of the research, which is the development of a PLE-data based

methodology for continuous sustainable product design, there is another research question. The

research question is to find out whether and how metaheuristic search algorithms can be used to

iterate through product life cycle data and find meaningful patterns to help engineers within an

organization design better products for their users. The goal is to make available to the

systems/design engineers the knowledge captured from the products’ interactions with both the

users, and the environment.

1.5 Research Contribution

The intellectual contribution of the research presented here falls in two categories

associated with modeling product life cycle. First, a general characterization of life cycle data

was made. The characterization was then used to develop a new, generic, and iterative approach

for life cycle based product development. The new approach is called generalized life cycle

product design (GLPD). Next, two new metaheuristic tools were developed, implemented and

tested as metaheuristic tools applicable to both product design, via GLPD, and general stochastic

optimization. The developed tools are a bio-inspired approach known as schooling genetic

algorithms (SGA), and a socio-inspired approach known as genetic social network (GSN). Both

10

tools solve problems by not only looking for solutions that can perform better, but also by

looking for solutions that have groupings, evolvability, and sustainability characteristics. The

intellectual contribution is summarized in Table 1.2

Table 1.2

Research contribution

 Modeling Product Life cycle

 Characterization of LCE data

Generalized Life cycle Product Development (GLPD)

Chapter 3

Biology Schooling Genetic Algorithms

(SGA) Chapter 4

SGA in GLPD Chapter 5

Sociology Genetic Social Network

(GSN) Chapter 6

GSN in GLPD Chapter 7

1.6 Dissertation Overview

The dissertation is comprised of eight chapters. Chapter 2 contains the literature review

of biomimetics and life cycle engineering. Chapter 3 describes a new suggested PLE-data based

representation for continuous sustainable product design that is consistent with life cycle

principles. Chapter 4 introduces SGA in terms of concepts, parameters and implementation.

Chapter 5 is about using PLE-data to apply SGA to product design. Chapter 6 introduces GSN.

Chapter 7 is about the application of GSN to product design using PLE-data. Finally, Chapter 8

concludes the dissertation and discusses possible future work.

11

1.7 Summary

Within this chapter, the dissertation topic was introduced and PLE defined. The

progression of durable product was explained and the motivations of the research work were

given. The objectives of the research work were then explained, followed by the intellectual

contribution. Finally, a complete overview of the dissertation, chapter by chapter was given.

12

CHAPTER 2

Overview of Product Design and Biomimetics

A literature review of product design and biomimetics is performed in this chapter. LCE

methodologies for product design are reviewed as well. Some of the gaps, inherent to traditional

SE, are identified. Uses of biomimetics in industry are also reviewed from a conceptual and

computational perspective that fits within the traditional view of SE.

 From an engineering standpoint, the design for durable goods consists of finding and

defining the geometry and materials so the required prescribed physical behavior of that system

is realized. Product design is the efficient and effective generation and development of ideas

through a process that leads to new products (Morris, 2009).

Biomimetics on the other hand, also known as biomimicry is the examination of nature,

its models, systems, processes, and elements to emulate or take inspiration in order to solve

human problems ("The University of Reading: What is Biomimetics?," Retrieved June 5, 2012).

Biomimetics is the abstraction of good design from nature (Low, 2009). This chapter covers both

concepts.

2.1 Product Design

Usually embedded in a larger process called “product development” or “new business

development”, the design of a product requires engineers reasoning from function to form and

use. Figure 2.1 shows the model of reasoning by designers. This model of reasoning is based on

induction (bottom-up reasoning) and is also known as synthesis. Despite the fact that companies

are aware (Roozenburg & Eekels, 1995) of the necessity to learn to innovate effectively, and if

possibly to overhaul their new product processes to incorporate ideas for successful new

13

products, Griffin (1997a) reported that almost 40% of firms surveyed still use no formalized

product development process.

Figure 2.1. Model of reasoning by designers. (Roozenburg & Eekels, 1995)

The function and sustained performance of a product does not only depend on its

properties (geometrical and physico-chemical form), but also on its environment, mode and

conditions of use. However, one can reasonably say that product design stage decisions play the

most important role in a product’s performance during its entire life cycle.

Traditional SE is a mature field. Table 2.1 shows a brief summary of available resources

on the topic of SE from commonly used academic resources. “Systems Engineering and

Analysis” by Blanchard and Fabrycky, “Product Lifecycle Management” by Saaksvuori and

Immonen, and “Product Lifecycle Management: 21
st
 Century Paradigm for Product Realisation”

by Stark, are well-known and often cited books in SE. The International Society for the Systems

Sciences (ISSS), and the International Council Of Systems Engineering (INCOSE) are two

professional organizations established in 1956 and chartered in 1991 respectively. Both

organizations have been establishing guidelines, and are references in the field of systems

engineering.

http://isss.org/world/
http://isss.org/world/

14

Table 2.1

System engineering and life cycle engineering resources

Literature on SE and LCE Source

3,500,000+ Articles and (e)books Google Scholar

2,400,000+ Articles and (e)books Engineering Village

1,500,000+ Articles Science Direct

7,000,000+ Articles and (e)books Bluford library

1,500,000+ Articles IEEE Xplore

6,000,000+ Articles and (e)books ProQuest

Figure 2.2 and Figure 2.3 represent a sample of the more well-known LCE product

design methodologies. The waterfall model, often used in software development processes, was

first formally described by (Royce, 1970) as a sequential design process in which progress is

seen as flowing steadily downwards through the phases of requirements specification, design,

coding, integration, testing and debugging, installation, and maintenance. The waterfall model is

the classic software and durable good life cycle model. The model represents the life cycle using

processes and products, with each process transforming a product to produce a new product as

output. The new product becomes the input of the next process, marking the completion and

perfection of the preceding phase, and the progression of a product development processes.

Because it requires the completion of a phase of a product's life cycle perfectly before moving to

the next phases and learning from them, the waterfall model is viewed as a rigid approach to

15

product development as a project constantly changes due to requirement modifications and new

realizations about the project itself.

Figure 2.2. LCE methodologies: (a) Waterfall model (Horner, 1993), and (b) Spiral model

(Boehm, 1986)

Figure 2.3. LCE methodologies: (a) IPPD model (DEFENSE, 1996), and (b) Dual Vee Model

(Kevin Forsberg & Mooz, 1997)

(a)
(b)

(a) (b)

16

Different approaches have been used to overcome the limitations of the waterfall model.

Such methods include having an experienced developer spending time early to consolidate the

design or using modularity with interfaces to adjust to the forward momentum the model creates

in order to increase the flexibility of the product with respect to the design. Based on the review

of the waterfall model, the model would not be adequate as a continuous design approach for

sustainable product development.

The spiral model (Figure 2.2.b), also often used in software and durable goods’

development process, was originally described by (Boehm, 1986) as a “process model generator”

that guides a team of developers working on a design project, to adopt elements of one or more

process models depending on the risks associated with the project. Also known as the spiral life

cycle model, the spiral model combines elements of one or more process models in an effort to

combine advantages of top-down and bottom-up concepts. In (Boehm, 2000), Boehm lists six

characteristics or invariants common to all authentic applications of the spiral model. The focus

on the system and its life cycle is the last (sixth) invariant of the model, and it highlights the

importance of the overall system and the long-term concerns spanning its entire life cycle. As the

spiral model continues towards the final phase, the customer's expertise on the new system

grows, enabling smooth development of the product meeting client's needs. However, the model

needs extensive skill in evaluating uncertainties or risks associated with the project and its

abatement. Depending on how intensive the risk evaluation process is, it might translate to extra

cost for building the system. The model also requires strict adherence to the project’s protocol

for its smooth operation, potentially building some rigidity within the overall development

process.

17

The dual Vee model (Figure 2.3.b), often used in systems engineering for the design and

development of complex systems, is a top-down model built on the Vee Model to manage a

system of systems. The model uses two Vees: (1) an architecture Vee that manages the system,

and (2) an entity Vee that branches off the architecture Vee to manage sub-systems. The

architecture Vee produces the what, why, and who (which entity level) that are responsible for a

system’s architecture. The entity Vee illustrates the entity development and realization process,

which describes how each entity, will be obtained (development, purchase, reuse, etc.). Within

each Vee, the model organizes development phases into levels of complexity with the most

complex item on top and least complex item on bottom (Kevin; Forsberg & Mooz, October

1991). The left side of the Vee is about a project definition; the bottom is about the project

implementation whereas the right side deals with the project’s test and integration. Proceeding

this way, the Vee model connects the requirements to the operation, while connecting

verification to design. Each Vee within the dual Vee model is flexible as it can either be

expanded to meet system requirements or evolve its architecture baseline from initial

requirements to a delivered system. A major advantage of the dual Vee model over the waterfall

model is the lack of prohibition against exploratory design and analysis at any point in the

project cycle to investigate or prove performance or feasibility. A major advantage of the dual

Vee model over the spiral model is the opportunity and risk investigations that may be performed

either serially or in parallel in the dual Vee model rather than being conducted sequentially and

prior to the design development process, as it is the case with the spiral model. Working on a

system of systems, the dual Vee model would provide excellent horizontal scaling. However, the

model appears not to be inclusive of the life cycle of the system it designs, and not to be

accounting for possible similarities between components across subsystems. The dual Vee model

18

guaranteed performance of a system is limited to the as-integrated and as-verified performance.

The dual Vee model also appears to be an expert-based system design approach that does not

account for the use of SIAIT in design improvements.

The last of the sampled methodologies is the Integrated Product and Process Design

(IPPD). The IPPD is explored within the next section. The IPPD is a model that, in a rather clear

fashion, encapsulates some of the emphasis of traditional SE that was mentioned earlier.

2.1.1 Integrated product and process development. Developed in the early 1980s by

the U.S. industry as a way to improve global competitiveness, the integrated product and process

design (IPPD) concept has its roots in integrated design and production practices, concurrent

engineering, and total quality management (DEFENSE, 1996). The U.S Department of Defense

(DoD) defines IPPD as, “a management process that integrates all activities from product

concept through production/field support, using a multifunctional team, to simultaneously

optimize the product and its manufacturing and sustainment processes to meet cost and

performance objectives.” IPPD is a generic iterative process with no single solution or

implementation strategy. This means that IPPD’s implementations are product and process

specific.

In the ideal IPPD scenario, the user knows and communicates his/her needs. The experts,

within the design process, listen to the users. An integrated product team (IPT) of people, using

their technical expertise, set the requirements, design and manufacture the product. The team

works by using multidisciplinary tools with axiomatic design methodology for durable product

development (Goel & Singh, 1998). An axiomatic design methodology is a systems design

methodology that uses matrix methods to systematically analyze the transformation of customer

needs into functional requirements, design parameters, and process variables. Figure 2.4 has a

19

more detailed overview of the process. With a strict IPPD approach, creativity and innovation are

not always part of the solution. Also, the socio-cultural aspect of innovation, the life cycle of the

product being designed, the smart capabilities of today’s product, and the possible interactions

between the parameters affecting the performance of a product, among other factors, were not

considered.

Figure 2.4. Integrate product design process (Hock, 1997)

As a bottom-up approach, the IPPD methodology puts the system engineers as the experts

and the enablers of the system. The user of the system is part of the IPPD design process as an

input provider. The engineer creates a solution to a problem, serves as the expert; and the

consumers and users communicate their concerns. However, the users of a product can

contribute more to help the designers generate innovative, functional and more intuitive

20

products, the users can be turned into co-designers who can add valuable information to the

process.

Within the IPPD process, a multidisciplinary team of engineers works to design the best

product that satisfies a given set of requirements. The team achieves that by (1) decomposing the

system to be built to facilitate its analysis, and then (2) building the system into a configuration

that would allow the system to perform well under some given criteria. With the more frequent

integration of AIT in products today, what this entails is that the IPPD methodology helps

building smart products with rich sensorial and actuator capacities. Those capacities are able to

collect data during the life cycle of a given product. IPPD is unable to utilize effectively that data

to keep improving the quality of that product.

So far, some of the well-known LCE design methodologies were reviewed and some of

their strengths and limits were assessed. The next sections give us some elements of answer to

the questions raised within the previous sections.

2.1.2 Deductive product development approaches. Deductive product development

approaches (DPDA) are top-down reasoning approaches to product design. DPDA is product

design in reverse. Using the data gathered during the life cycle of a product, hidden patterns are

mined that can better inform product designers, or IPTs. Such methods are geared towards

products wide acceptance via mass customization and/or rigorous testing and validation. Two

methods for product design are reviewed: (1) a design for operational feasibility approach; and

(2) a user-behavior based approach. Either method naturally contributes to product design with a

creativity and innovation touch, key elements to survival and profitability in a rapidly evolving,

complex and competitive global business environment.

21

2.1.2.1 Design for operational feasibility. Generally known as Design for X, the design

for operational feasibility is used by organizations to guarantee that some essential and desired

operational parameters are built into a product/system being realized. The life cycle factors, once

selected, are imparted during the design and development of the considered product. A non-

exhaustive list of such parameters includes reliability, maintainability, usability, affordability,

producibility, supportability, sustainability, recyclability, and disposability. The first four

parameters are further explored.

Reliability is defined as the probability of a product to accomplish its designated goal or

mission for a given period and when used under specified operating conditions. Reliability is a

critical life cycle factor that must be properly defined during the conceptual design phase of a

product in meaningful quantitative terms (Henley & Kumamoto, 1985). Designing for reliability

allows an organization to have its product evaluated using precisely defined reliability concepts

and measures. Three accepted ways or methods of reliability measure are the mean time between

failure (MTBF), the mean time to failure (MTTF), and the failure rate (λ). Qualitative and

quantitative reliability requirements for a product are developed through feasibility analysis,

operational requirements and the maintenance concept identification (Blanchard & Fabrycky,

2011).

Maintainability is defined as the ease, accuracy, safety, and economy in the performance

of the maintenance function (Bloom, 2005; Dhillon, 2006). Two accepted metrics for

maintainability are the mean time to repair (MTTR), and the mean down time (MDT). Like

reliability, maintainability is design-dependent. Two approaches of dealing with maintainability

are through the use of corrective maintenance to restore a system or product to a specified level

22

of performance, and preventive/predictive maintenance to retain a system at a specified level of

performance (Blanchard & Fabrycky, 2011).

Designing for usability means designing with consideration for the user/operator of the

product. Also known as ergonomics or human factors, usability acknowledges the fact that

product hardware and software alone will not guarantee good system operability (Lehto, Landry,

& Buck, 2007). Designing for usability, the design team would normally consider factors such

as: anthropometric (by considering the dimensions of the human body), sensory (by being

cognizant of certain human sensory capabilities), physiological (by recognizing the effects of

environmental stresses on the human body while performing system tasks), and psychological

(by acknowledging the human mind and the aggregate of emotions, traits, and behavior patterns

as they relate to job performance) (Blanchard & Fabrycky, 2011). Similarly, a designing team

would choose the most adequate approach for measuring the impact of human factors on a

product. Two such approaches could be the quantity of personnel required to operate a system or

the number of human errors committed per period of time.

Designing for affordability, an organization would design with life-cycle cost in mind.

Life cycle cost (LCC) refers to all costs associated with a system: such costs include enterprise

costs, users’ costs, and societal costs. LCC represents the estimated total incremental cost of

developing, producing, using, supporting and retiring a system (Asiedu & Gu, 1998). Initially

applied by the US Department of Defense (DoD), the importance of the LCC concept in defense

was stimulated by findings that operation and support costs for typical weapon systems

accounted for as much as 75% of the total cost (Gupta, 1983). There are many existing tools and

approaches to perform LCC analysis. Two such approaches are the LCC by money flow

modeling and the LCC by economic optimization. The former approach relies on economic

23

equivalence expressed as the present/annual/future equivalent, the internal rate of return and the

payback period. The latter approach is based on the models of economic evaluation, design

optimization, and finite population queuing (Blanchard & Fabrycky, 2011). LCC is the most

important of all life cycle factors that organizations designing for X would consider as it is

inclusive of the costing of all the activities related to the life cycle of a product.

Organizations use different approaches to achieve their goals when designing for

operational feasibility. Approaches used rely on surveys, simulations, stress testing, failure

testing, validation testing, experimental design, statistical analyses, and use case scenarios.

Design for X reinforces the design of systems to best configuration, and organizational design

activities are considered completed right as the product enters its production phase. Within the

context of durable product evolution, customers now have a wide range of life cycle decisions

they can take that will impact a product life and performance. Such life cycle decisions include

but are not limited to change(s) in an organization’s policies, the frequency and type of

maintenance uses, a decision to scale up an existing system, or a decision to extend the life of a

system beyond the manufacturer’s recommendations.

2.1.2.2 User-behavior based. Design based on user behavior can be a difficult goal to

attain, as that would require a design team to account for the occasional or opportunistic user of

the system. Designing with the user-behavior can be achieved for some systems. Computer-

based products and services having some sort of user interface, as well as some ergonomically

designed goods such as car seats or desks have been designed for a while now with the user-

behavior and attitude in mind (Kühme, 1993; Oyewole, Haight, & Freivalds, 2010). Working on

the benefits and costs of adaptive user interfaces, (Lavie & Meyer, 2010) reached the conclusion

that the preferred type of system depends on a number of factors, such as the frequency at which

24

the tasks are performed, the user’s age, the difficulty level of the task and the level of user

involvement in the task. In other terms, a robust system is not enough; the system must be

considerate of the user. At the end of a couple of case studies, (Z.-j. Wu, Li, Chen, & Cai, 2010)

concluded that designers can acquire interactive relationships between user and product by

behavioral process analysis, and design creativity can be realized by creating any new variables

of scenarios, actions, or schemes of product part.

2.1.2.3 Bio-inspired product design methodology. There is no known framework that

approaches product design from a holistic and complex adaptive system view. Although bio-

inspired has been around for some time, it has been used as a way of directly capturing and

abstracting the metaphors of nature into product design. Bio-inspired design is used to design

products in the traditional sense: leveraging the knowledge of multi-disciplinary teams to design

innovative and durable products.

2.2 Biomimetics

The term biomimetics was coined by Otto Schmitt in the 1950s for the transfer of ideas

and analogues from biology to technology (J. F. V. Vincent, Bogatyreva, R., Adrian, & Pahl,

2006). Biomimetics operate under the premise that nature works for maximum achievement at

minimum effort. In engineering, the reason of mimicking life is to make engineering products

adaptable, self-functioning, energy-efficient and reliable (J. Vincent, Bogatyreva, & Bogatyrev,

2007). Biomimetics are used both as computing tools and as a conceptual framework when it

comes to engineering design. A review of biomimetics as a tool is given first, followed by its use

as a framework.

2.2.1 Biomimetics a computing tool. A subfield of optimization, known as

metaheuristics, provides a general algorithmic framework consisting of problem-independent

25

general heuristic approaches, which can be applied to many optimization problems. Many of the

metaheuristic approaches are computational biomimetics. These approaches mimic biological

and other natural processes. Genetic algorithms (GAs) are a notable example as they mimic the

natural evolutionary process, survival of the fittest, and the natural selection process. Many types

of metaheuristic approaches exist including simulated annealing (Cern´y, 1985; Kirkpatrick, Jr.,

& Vecchi, 1983), Tabu search (Glover, 1989, 1990; Glover & Laguna, 1997), iterated local

search (Lourenço, Martin, & St¨utzle, 2002), evolutionary computation (Fogel, Owens, & Walsh,

1966; Holland, 1975; Rechenberg, 1973; Schwefel, 1981), and ant colony optimization (Dorigo

& Caro, 1999; Dorigo, Caro, & Gambardella, 1999; Dorigo, Maniezzo, & Colorni, 1996; Dorigo

 St tzle, 2004). This section focuses on four metaheuristic types that are bio-inspired. Figure

2.5 shows how some biology metaphors are used in manufacturing.

Figure 2.5. Common tasks in a manufacturing firm and relevant biological analogies(Mill &

Sherlock, 2000)

2.2.1.1 Ant colony optimization. Ant colony optimization (ACO) metaheuristic mimics

the behavior of ants depositing and following pheromone (Dorigo, Birattari, St tzle, 200 ;

Dorigo & Stützle, 2003; Dorigo St tzle, 2004). Ants leave and return to their nest discharging

26

pheromone on their path. Other ants follow the pheromone before it dissipates, and eventually

mark a path that leads to a food source. ACO’s premise is that as the amount of pheromone

discharged on the path to the food increases, the path to the food will become more “obvious” to

the ants. This trait emerges because at the colony-level, the behavior of ants is based on

autocatalysis, the exploitation of positive feedback that the ants use to find the shortest path.

Developed by Goss et al. (Goss, Aron, Deneubourg, & Pasteels, 1989), a model is built of ants

observed behavior in a double bridge experiment in which one bridge is significantly longer.

Assuming that at a given moment in time m1 ants have used the first bridge and m2 the second

one, the probability p1 for an ant to choose the first bridge is given as:

where, parameters k and h are to be fitted to the experimental data, and p2 = 1 − p1 is the

probability for ants to choose the second bridge.

The computational model of this behavior has many applications. ACO has been

successfully used on different types of problems to include routing, assignment, scheduling, and

subset (Dorigo et al., 2006).

2.2.1.2 Particle swarm optimization. Particle swarm optimization (PSO) (Kennedy &

Eberhart, 1995; Ozcan & Mohan, 1999) combines social psychology principles and evolutionary

computation to mimic social behavior (Kennedy, 1997) as a stylized representation of the

movement of organisms in a bird flock or fish school. The movements of the particles are guided

by their best-known position in the search space as well as the swarm's best-known position.

PSO’s premise is that as each particle improves and updates its position relatively to all other

particles, all particles will eventually converge to a satisfactorily solution. It is postulated that

27

some same rules available in PSO underlie animal social behavior, including herds, schools, and

flocks, and even that of humans. As particles move within a domain, they modify their velocities

based on previous best and global (or neighborhood) best.

 ()

Where d is the dimension of the domain, c1 and c2 are positive constants, rand() and

Rand() are random functions, w is the inertia weight of the particle, pid is the particle's best

known position, and are the current position and velocity of particle i, and pgd is the

swarm best known position. The adjustment toward pid and pgd by the particle swarm optimizer is

conceptually similar to the crossover operation utilized by genetic algorithms.

PSO has various applications and does not need the previous knowledge of the problem

space. Applications include scheduling, sequencing, forecasting, traffic management and data

mining (Sedighizadeh & Masehian, 2009).

2.2.1.3 Genetic algorithms. The genetic algorithm (GA) metaheuristic (Davis, 1991;

Goldberg, 1994; Holland, 1975) mimics evolution and the survival of the fittest. A population of

individuals (solution candidates to a problem) interacting evolves over time (generations). The

interactions are through mating of “randomly” selected sets of individuals, or mutation of single

individuals. GAs’ premise is that as time progresses, the population will naturally improve by

preserving its more fit children (survival of the fittest) while discarding its unfit members. Like

PSO, GAs belong to the ontogeny category of natural computing paradigms in the sense that it

requires adaptation of special organisms to their environment.

GAs have been used for timetabling, scheduling, design, network, rule discovery, and a

wide range of engineering problems (Ross & Corne, 1994). Besides their strengths, GAs have

28

some shortcomings such as its built-in inductive evolution, naturally occurring genetic drift that

sometimes causes suboptimal solutions to be created, the highly individualized nature of its

operations (crossover, mutation and selection), or their operations and processes that tend to be

static rather than adaptive. Those shortcomings cause, to some extent, GAs to underperform for

problems where grouping and evolvability are prevalent.

2.2.1.4 Schooling genetic algorithms. Introduced by Wanko and Stanfield in 2011

(Wanko & Stanfield, 2012), schooling genetic algorithms (SGA) are a new GA-based model that

enable process and operator adaptability by mimicking fish schooling. Within SGA, operators

behave differently depending on the perceived immediate environment and of school dynamics.

SGA was designed to address some of the listed shortcomings of GAs, to make GAs suitable for

problems where grouping and evolvability are prevalent such as product design for different

geographic, social, or economical users’ categories.

2.2.2 Biomimetic as a conceptual framework. As a conceptual framework, biomimetic

is used both as a way of innovative ideation and as an assessment tool. The next two subsections

detail those two uses, their strengths and their limits.

2.2.2.1 Bio-inspired design. From the perspective of design, a number of characteristics

make biologically inspired design an especially interesting and attractive problem to study.

Biologically inspired design is inherently interdisciplinary (engineering and biology). Both

biologists and engineers typically use different terminology, creating communication challenges.

Because biologists seek to understand designs occurring in nature while design engineers

generally seek to generate designs for new problems, biological designs characteristically result

in more multi-functional and interdependent designs than engineering designs. Therefore, the

resources, such as materials and processes, available in nature to realize an abstract design

29

concept typically are very different from the resources available in the engineering domain

(Helms, Vattam, & Goel, 2009). Investigating the use of biologically-inspired design as a context

from which to teach innovative design, Nelson, Wilson, and Yen worked with mechanical

engineering students on design projects (Nelson, Wilson, & Yen, 2009). They found that ideation

behavior among mechanical engineering that had a semester-long course specifically focused on

biologically inspired design had an average novelty score 80% higher than those from a control

group of students that did not take such a class. The results of the findings were statistically

significant. Such a study was one of the first to put in evidence the link between bio-inspired

design and innovation. Using biological concepts to design can yield to designs that are

innovative since it forces the engineer to think like a biologist. However, it still is the

responsibility of the designer to find and to harness the analogies.

2.2.2.2 Life cycle assessment. Life Cycle Assessment (LCA) is another framework

commonly used by organizations wanting to measure the total environment effect of their

product from “cradle to grave.” LCA is a tool used to evaluate the potential environmental

impact of a product, process or activity throughout its entire life cycle by quantifying the use of

resources (“inputs” such as energy, raw materials, water) and environmental emissions

("outputs" to air, water and soil) associated with the system that is being evaluated (EPA, 17

October 2010). LCA is based around three principles (Duda & Shaw, 1997).

The first principle, known as inventory analysis, entails the identification and

quantification of material and energy inputs and outputs for each stage of the product life cycle.

The second principle, called impact assessment, helps characterizing the various impacts

identified during inventory analysis. And the third principle, called improvement assessment,

involves identifying options for reducing environmental burden in product systems and

30

developing strategies for environmental improvements in the product life cycle. LCA places the

onus of the design on the engineer who must carefully inventory the inputs and outputs of his/her

product. It emphasizes designing sustainable products, but it does not account for the end user’s

interests, preferences, and concerns.

2.3 Summary

Within this chapter, a literature review of both product design and of biomimetics was

performed. The product design process was viewed both from a top-down approach, and from a

bottom-up approach. The structured approach of the latter was elaborated and contrasted with the

rather newer and reverse course of the former, which is based on latent knowledge. The design

for operational feasibility, also known as design for X was reviewed to show the impact of SE

factors on product design. Four life cycle factors namely reliability, maintainability, usability and

affordability were further defined and explained. Some gaps were identified within the current

approaches to product design to include (1) the non-inclusion of life cycle data from smart

product/systems back into the design process for traditional product design approaches, and (2)

the reliance of product design processes on expert knowledge.

Biomimetics was defined and reviewed. Application of biomimetics to stochastic

optimization processes (select metaheuristics) was reviewed. A metaheuristic was defined as a

higher-level search method that uses incomplete or imperfect information to provide a

sufficiently good solution to an optimization problem. Some heuristic approaches were defined

and explained including ant colony optimization, particle swarm optimization, genetic

algorithms, and schooling genetic algorithms. A case was made for the lack of adequate

stochastic models dealing with problems where grouping and evolvability are prevalent. These

types of problems are very crucial in life cycle engineering and design where the environment,

31

the culture, legislative and competitive pressure among others require firms to think differently

to stay competitive while being innovative and sustainable. Some gaps were identified within the

current applications of biomimetics to product design to include (1) the lack of in-depth research

and appropriate methods that look at design as an optimization problem, and (2) the lack of

known framework that characterizes product design enabling evolvability, grouping, and

sustainability.

The gaps identified within the review reinforce and make more specific the intellectual

contribution of the current dissertation work. The contribution includes (1) the elaboration of a

biologically-inspired framework for product design that uses PLE data, and (2) the conception of

a biologically-inspired analytical tool that could at the very least, be used as a complement tool

of the framework.

32

CHAPTER 3

Product Design

In the previous chapter, a literature review of product design and biomimetics was

provided. The strengths and weaknesses of some of the existing tools and frameworks were

identified, and the gaps addressed by this dissertation were detailed. Chapter 3 details a

generalized methodology for product design. The methodology discussed here is about

characterizing PLE data in a general way that facilitates the search of metaheuristic solutions,

and assists the system/design engineers in making better sense of the factors affecting the

product design space as shown in Figure 3.1.

Figure 3.1. Product design factors

Chapter 3 is organized as follows. First, the existing gaps on product design are reviewed.

Next, the parameters driving the performance of a product are discussed in more detail, and a

non-exhaustive list of some attributes is constructed and explained. After that, a suitable

33

sustainable performance measurement for our approach is defined. Finally, a new PLE-data

representation of continuous sustainable product design is given and discussed.

3.1 Current Product Design Limits

The field of engineering design can be divided into three branches: the traditional school

(still dominant), the algorithmic school, and the axiomatic school (Suh, 1999). The traditional

school believes that design is a creative process, which cannot be completely performed by

deductive reasoning, and requires experience. The algorithmic school relies on optimization tools

such as Genetic Algorithms, Neural Networks, or Fuzzy Logic to achieve the best possible

design based on some design goals. The axiomatic school is based on the premise that there are

generalizable principles that form the basis for distinguishing between good and bad designs.

According to (Suh, 1999), a good design needs to use all three methodologies when going

through all the required design activities. Different approaches exist that use or combine together

any of the three approaches.

(Nelson et al., 2009) research with engineering students working on their design projects

found in a statistically relevant experiment that ideation behavior, and therefore the creative

process, can be infused through the use of biologically inspired design. On a study focusing on

the collective beliefs of managers in competing firms and how they interpret and respond to

successful technological innovation, Jenkins identified some of the potential interplay between

design innovation and design imitation by organizations in order to sustain an incremental

innovation (Jenkins, 2013). The study suggested a more nuanced way of considering incremental

innovation by extending the potential opportunities for creating competitive advantage through

innovative imitation and also imitative innovation. Therefore, there are many ways a company

34

can use and sustain the traditional design views of design. Both the use of biological models and

the use of models from competitive marketed products appear to be viable sources of inspiration.

The algorithmic approach to design relies on mathematical processes to solve problems

related to design. The algorithmic approach automates some aspects of the design process,

enabling design engineers to compute optimal parameters and dimensions of the design that

would maximize or minimize some design objective (Kumar, 2005). The considered aspects of

the design process would include, among others, the enhancement of customer satisfaction (Chen

& Chuang, 2008), the streamlining of the supply chain (Akanle & Zhang, 2008; Elimam &

Dodin, 2013; Ghasimi, Ramli, & Saibani; Kabak & Ülengin, 2011), the product specification

process (Wallace, Jakiela, & Flowers, 1996), the improvement of the production system (Jeong,

2000; Ohno, 2011; Stanfield, King, & Joines, 1996), or the minimization of the product overall

life cycle cost (Janz, Sihn, & Warnecke, 2005; Massarutto, Carli, & Graffi, 2011). However,

whether considering SE with life cycle based factors or the engineering activities of an

enterprise, existing algorithmic approaches do not consider the ambient intelligence concept.

Ambient intelligence is the convergence of ubiquitous computing (useful, pleasant and

unobtrusive presence of computing devices everywhere), ubiquitous communication (access to

network and computing facilities everywhere), and intelligent user adaptive interfaces

(perception of the system as intelligent by people who naturally interact with the system that

automatically adapts to their preferences) (Kopácsi, Kovács, Anufriev, & Michelini, 2007).

Ambient intelligence is a natural result of the evolution of durable product, which is enabled by

smart capabilities that can provide data collection, storage, processing, and communication

capabilities with minimal power requirements such as previously depicted in Figure 1.1. Within

an ambient intelligence area, the algorithmic approach of system design ought to include the best

35

way to integrate smart capabilities into a design and to be part of the product life cycle from

conception to retirement/recycling instead of sales. Using the algorithmic approach to blend the

life cycle results with the reuse of the enterprise expertise acquired while working on previous

products can help an organization make its design sustainable. However, such a new way of

using the algorithmic method to design requires a different approach that will make the design

process life cycle-based and continuous (design never ends).

The axiomatic design approach has contributed to the advancement of design practice,

and design evaluation criteria based on design axioms. Such design evaluation criteria include

(but are not limited to) level of innovativeness, quality of design, intuitiveness of design,

functionality, choice of material, safety, the positive influence on the environment, and some life

cycle factors such as ergonomics, reliability or affordability. Most of the metrics set in place look

at design as a static activity. Once prototyped, tested and validated, a product is set to have met

the design requirements, and as the design phase of the product is considered completed, the

product enters its production phase. Extrapolating from the axiomatic design perspective, a good

design is a differentiation factor of a product from the competition. A good design is one of the

key factors a consumer would consider when deciding whether to acquire a product. However,

the factors affecting the way a user looks and assesses a product change over time. As listed in

Figure 3.1, some of those factors can be decided by the user such as the frequency and the type

of maintenance to perform. Some other factors, such as the functions to be built into a product,

can be decided only by the manufacturing firm. There are other remaining factors, such as the

operational environment, that are not set at the discretion of the user or the designers. Therefore,

knowing the relationship between the performance of a product and the life cycle factors that

impact it can only facilitate the work of the designer by putting in place a sustainable product

36

design process. Yet, the axiomatic approach typically does not consider design as a holistic life

cycle sustainable process.

Finally, consider the objective of a systems engineer to find the best solution that

optimizes the operation of a product within a given configuration, context, and environment.

From the SE traditional perspective, sustainability means ecological balance to avoid depletion

of natural resources. In other words, being sustainable equates to being environment friendly.

Sustainability is accomplished by having a small footprint on the environment by using less

material, shipping with smaller or recycled packaging, being free of many toxic substances and

being as energy efficient and recyclable as possible. Several methods, both qualitative and

quantitative, have been proposed to solve the design problem from the sustainability point of

view. Some of the methods include qualitative matrices (Allenby, 1992), abridged LCA

(Graedel, Allenby, & Combrie, 1995), checklists (Clark & Charter, 1999; Fiksel, 1996), LCA

streamlining (Mueller & Besant, 1999), eco-design (Braungart, McDonough, & Bollinger, 2007;

Knight & Jenkins, 2009), and Whole Systems Design (Blizzard & Klotz, 2012). Nevertheless, all

the methods listed recommend good and sustainable design based on both the knowledge of the

engineer and the projected impact of a product on its environment. The approaches appear not to

build on the smart capabilities built into products. The design approach presented here defines

sustainability as the ability of a product to be designed, operated and supported with the least

possible intervention of the systems engineers. The approach is life cycle centered and relies on

life cycle parameters.

3.2 Life Cycle Parameters

Product life cycle parameters are factors that impact the life cycle performance of a

product. The objective is to find the different factors, from conception to retirement or recycling,

37

that are key determinants of the product’s performance. The concern this section addresses is a

way of measuring, tracing and tracking the inputs that affects performance in an objective, and

comparable manner. The case was made in last section on the necessity for using PLE-data to

make designed products perform better and be more innovative. The case was made about

factors that affect the performance of a product or system. Some factors such as the type of

maintenance performed on a system, the type of functions available on a system, and the

environment where the product is used are functions of the user, the designer, and the

environment respectively. In order to proceed further, a categorization of the parameters that can

impact the performance of a product is made. Life cycle parameters are divided into three

categories, namely design, operational, and environmental. Figure 3.2 shows the relationships

between the parameters and the performance within the systemic view of a product.

Figure 3.2. Systemic view of a product

Figure 3.2 illustrates that a product’s performance is a function (whether simulated by a

model or observed in the real system) of the interactions between that product design,

operational, and environmental parameters. Figure 3.2 also illustrates individual learning by a

product through user’s interactions, and group learning by the product through interactions with

other products. Using the same parameters to group products according to their similarities can

inform the systems engineer or designer of the relevance of one parameter or type of parameter.

38

A similarity based grouping can help the systems engineer make some informed decisions to

either decrease production cost while maintaining product performance, or to improve

performance by changing an existing system configuration. Using a similarity based grouping, a

design parameter could be turned into an operational parameter, and vice versa, provided that the

existing product makes the shift feasible. Figure 3.3 shows the performance plot of the instances

of a hypothetical product grouped according to its design parameters (vertical axis), operational

parameters (horizontal), and its operating environment (shape: green diamond vs. red square).

Figure 3.3. Impact of parameters on product performance

Suppose Figure 3.3(a) is the starting point for a metaheuristic search. It represents the

product designed with diversity (different design and operational value combinations for each

environment) built-in. The other three graphs (following directional arrows) represent three

possible outcomes if each product is able to improve itself during its life cycle. Figure 3.3(b)

shows two distinct clusters, one from each environment. Such a grouping tells the designer that

the combination of design and operational parameters should be customized to the environment.

39

Figure 3.3(d) shows no distinct grouping and with reduced range along the design parameter

axis. Finally, Figure 3.3(c) represents a case the operational parameter should be customized

based on environment. The design parameter might be common (and appears to be flexible) for

both environments. Table 3.1 shows a sample of parameters. It is important to note that engineers

set the design parameters of any product before the production of that product begins. They are

infrequently changed. Operational parameters are those that can be changed by the user to meet a

specific use or need. The environmental parameters are tied to the environment and are out of the

designers of users’ control. The attributes listed within the table come from the literature review,

and they will be described later in this chapter.

Table 3.1

Samples for life cycle parameters

Design Operational Environment

Layout Type of use Temperature

Material Frequency of use Humidity

Functions Type of Maintenance Culture

Sensors Frequency of Maintenance Infrastructure

Size Custom settings Regulations

Shape Number of resets Similar Products

Dimension Climate

Manufacturing Process Location

Setting the operational parameters is the responsibility of the user or maintainer. Figure

3.4 shows a collaborative life cycle. A collaborative life cycle is formed by the different user-to-

product (operational parameters), and product-to-product interactions that occur during a

40

product’s life. A collaborative life cycle can better inform the designers of a product when

working on the next generations of the product. A collaborative life cycle enables group learning

through products’ interactions. Considering that the success of product updates strongly depends

on consumer heterogeneity, on the rate of content consumption, and on the social interaction of

consumers (Albuquerque & Nevskaya, 2012; Keeney & Lilien, 1987), using a product smart

capabilities to capture the changes in operational parameters during product’s interactions can

give designers valuable insights on the next generation of a product.

Figure 3.4. Collaborative life cycle

Therefore, by using PLE in product design, the PLE-data the engineers need to work on

can be modeled as an aggregation of design, operational, and environmental parameters. Table

3.2 shows a brief summary of the attributes of each category of parameter.

Table 3.2

Classifying LCE data

Parameters Controllable Evolution cycle Associated LCE stage

Design Yes (Engineer) Slow BOL

Operational Yes (User) Fast MOL+EOL

Environmental No (Environment) N/A N/A

41

Each of those categories of parameters will now be defined, and the meaning of the use

of some attributes given.

3.2.1 Design parameters. Design parameters are the qualitative and quantitative aspects

of physical and functional characteristics of a component, device, product, or system that are

input to the product design process. The design parameters determine the cost, design, and risk

tradeoffs in an item's production. The design parameters are set by the engineers who use matrix

methods to systematically analyze the transformation of customer needs into functional

requirements, design parameters, and process variables. Design parameters are set by the

engineers during the design process, and are not changed easily. Examples of commonly used

design parameters are now described.

3.2.1.1 Material. A material is the matter from which a product is or can be made. The

choice of materials to be used for the design of a product is of strategic importance. These days,

the criteria choice of material used in components not only have to meet some given functional

and performance requirements, but must also account for environmental considerations to

minimize the environmental impact associated with the product’s entire life-cycle (Giudice, La

Rosa, & Risitano, 2005; Mayyas, Qattawi, Mayyas, & Omar, 2012).

3.2.1.2 Functions. Functions are defined as the “product’s answer to the set of user

tasks”; unlike features that are the “user tools” inherent in the product used to perform the

functions (Technologies, 2012). It is common to see products with the same functions, but with

different features. Product types have different sets of functions, and each model within a type of

product accomplishes its functions through potentially different features (Technologies, 2012).

3.2.1.3 Sensor. By definition, a sensor is a device that can detect or measure a physical

property and record, indicate, or otherwise responds to it. Sensors are used to allow devices

42

becoming aware of something via the senses. Sensors are the counterparts of actuators. As

mentioned earlier, the evolution of products from a mechanized to a more biological entity has

been enabled thanks to the use of AIT components, some of them being sensors. Today, a cell

phone for instance is a very complex device capable of sensing temperature, altitude, location,

and motion at a minimum. The decision to include a specific type of sensor within a product may

be more of a strategic decision (Seltzer, 2012) than an engineering decision, but the choice of the

make and the integration of a given type of sensors are the prerogative of the design engineers.

3.2.2 Operational parameters. Operational parameters are defined as a product

functional attributes that can change with values set by the user or maintainer of that product.

Operational parameters are product features that allow flexibility. The operational parameters are

set by the user to get a service. Operational parameters are under the control of the user and may

be changed frequently. The following are examples of operational parameters that can impact the

performance of a product.

3.2.2.1 Type of use. The type of use is defined within the context of a product with many

different features. Within that context, the type of use is a measure that tracks the type of feature

the user of the product makes use of. The type of use reveals among others the preferential use of

the product by the main user. The type of use can prompt engineers to make a given feature of a

product better, or to attach a given service or related product to the initial product.

3.2.2.2 Frequency of use. The frequency of use keeps track of the frequency with which

any feature or component of a product is used at any given time by its user or other components.

From an engineering reliability standpoint, some components are more likely to fail based on

their usage frequency. Metal fatigue, in material sciences, is a typical example. Therefore, the

43

frequency of use can inform engineers about the part of the design that can focus on to make

their product more reliable or more appealing.

3.2.2.3 Type of maintenance. Maintenance is defined as the process of keeping

something in good condition. Complex products such as an airplane will require different types

of maintenance during its life cycle. The maintenance can be preventive (performed specifically

to prevent faults from occurring), predictive (performed to determine the condition of a system in

order to predict when maintenance should be performed) or corrective (performed to identify,

isolate, and rectify a fault so that a failed system can be restored to an operational condition

within the prescribed tolerances or limits). The type and/or frequency of maintenance tend to be

set according to an organization’s policy.

3.2.3 Environmental parameters. We define environmental parameters as the attributes

of the context or environment a product is being operated or used. It is not part of the product per

say, but part of its surroundings. The user cannot change environmental parameters, but they do

affect the way the product performs. The following are examples of environmental parameters

that can impact the performance of a product.

3.2.3.1 Physical environment. Temperature, humidity, and vibration all fit within this

category. Temperature for instance can directly affect product performance (Fakhim, Behnia,

Armfield, & Srinarayana, 2011; Larrosa-Guerrero et al., 2010; PILCHER, NADLER, &

BUSCH, 2002). The effects of temperature, whether low or high can either enhance or impair the

performance of a product. Keeping track of the performance of a device along with the operating

temperature over time can help an engineer not only better understand the relation between

performance and temperature for given environments, but also better decide on the make of a

specific product component.

44

3.2.3.2 Alternative products. Those are also known as competition. Similar products

altogether with the product of interest define the ecosystem. Watching the competition’s market

serves a twofold interest. On one hand, it allows a company to stay knowledgeable and carefully

follow the design trend of the market, and on the other, it allows a company to engage in a

proactive learning. According to (Bapuji & Beamish, 2008) any company, in order to avoid

hazardous design flaws, should at a minimum study competitors’ recalls, overall recall trends,

issues leading to recalls, or regulators’ comments. There is a lot that can be learnt, either directly

or indirectly, from the competition.

3.2.3.3 Culture. The definition of culture used here is the distinct ways that people living

in different parts of the world or of a country classified and represented their experiences, and

acted creatively. Although (Im, Hong, & Kang, 2011) showed that the UTAUT model is affected

by culture, the model strengthen the evidences according to which the acceptance of a product

depends not only on the way it was designed by the engineers, but also on the way it is being

perceived by the users within a both personal and socio-cultural context. The knowledge of such

a context calls for the need of a design tool that can inform the engineers about the users at large

and their environment in order to design great products.

3.3 Sustainable Performance

The mapping of life cycle parameters to performance, treated by this section, is not a

trivial issue. Performance measurements should carefully be defined whenever designing a

system. A performance measure is an indicator of progress toward achieving a goal. The design

of performance measurement systems appropriate for modern organizations is a topic of

increasing concern for both academics and practitioners (Neely, 1998). According to (MWG,

2010), performance measurement in SE aims at helping managers controlling the SE processes to

45

improve the quality, timeliness, efficiency, and effectiveness of the products and supporting

processes.

The ability to measure any significant activity associated with a product during its life

cycle is critical. Such measurements give the engineers the aptitude to improve the design of the

product and of all the associated processes, to allocate or reallocate resources to that product, or

to compare that product against the competition. A system with sustainable performance

accounts for the evolution of the product and processes tied to it.

As an example, the performance of a procuring function in a firm could be gauged by the

costs and availability of raw materials. The availability of a production system within an

organization could be gauged by its reliability (probability of a system to perform its designated

mission for a given period when used under specified conditions), its maintainability (the ease,

accuracy, safety and economy in the performance of maintenance function), its supportability

(ability to install, configure, monitor, identify issues, and restore systems), and its producibility

(the capacity of making goods and services). The performance of a manufacturing function could

be gauged by capacity utilization, defects, output, and down time; whereas the performance of

sales within an organization can be gauged by the (preferably high) amount of sales and of the

(preferably low) number of returns. However, devising a model that spans across the entirety of

the life cycle spectrum requires an adequate performance measure that will go with it.

Performance or measures can be based on a priori set multi-criteria, or on aggregated

targeted objectives. The MACBETH (Measuring Attractiveness by a Categorical Based

Evaluation Technique) or the Analytic Hierarchy Process (AHP) approaches are examples of

multi-criteria decision analysis approaches that are used in different industries and fields as an

efficient technique for rank ordering alternatives (R. W. Saaty, 1987; T. L. Saaty, 1982, 1990,

46

2005; Zahedi, 1986). However, when defined as an aggregated value, performance can be

formalized using the following mapping (Berrah, Mauris, & Vernadat, 2004):

EEEEEA nig : 21

)....,...,,()....,...,,(2121 nigAni ppppAppppp
g

Where the iE ’s are the universes of discourse of the elementary performance expression

)....,...,,(21 ni pppp and E is the universe of discourse of the global performance expression
gAp .

And since that the universes iE ’s and E can be different, the determination of the aggregation

mapping gA , which is generally not straightforward, would require some heuristics to deal with

the heterogeneity of the life cycle data. Going further, since the objective here is to assess a life

cycle-based performance measurement from an SE point of view, a more appropriate example of

an aggregated performance measurement known as the System Operational Effectiveness (SOE)

is described.

The SOE is a concept that was defined to reflect the holistic objective of SE and

integration efforts in achieving a balance between system performance, availability, process

efficiency (operational, maintenance, and support processes), and total system ownership costs.

Figure 3.5 shows the SOE model. The SOE requires proper attention and balance among all the

factors included in the SOE model in order to maximize operational effectiveness, and to prevent

risks and challenges associated with end-of-life obsolescence (Verma, Farr, & Johannesen,

2003). An example of unbalanced approach could consist of a disproportionate allocation of

resources and attention to one area (e.g. performance) at the expenses of others (e.g. availability

47

or efficiency) and could lead to an excessive ownership costs. The SOE model is an aggregated

performance measure.

Figure 3.5. System Operational Effectiveness (SOE) (Verma & Gallois, 2001)

The next section synthesizes all the components of the LCE data characterization, and

explains how the components are integrated. The section also makes the case for a generalized

approach to product design that could be applied to any design methodology that is inclusive of

the life cycle data.

3.4 Generalized Life cycle Product Design

The generalized life cycle product design (GLPD) is a generalized PLE-data based

product design approach resulting from the proposed LCE data classification. As its name

implies, GLPD is a product design approach that relies on the data collected during the life cycle

of a product or system to better design products or systems. Table 3.3 shows some GLPD

process elements. The processes are categorized both by the life cycle phase they belong to, and

48

by the desired characteristic of the product they target: evolvability (E), sustainability (S), and

grouping (G).

Table 3.3

GLPD process elements

Life Cycle Phase Processes E/G/S

Research / Development - Determine key life cycle parameters

- Create initial parameter categorization

Design / Simulation - Create performance evaluator/simulator

- Search to find

- High performance configurations

- Grouping opportunities

- Consider parameter shift

- Design to operational

- Operational to design

S

G

E

G

Operation / Sustainment - Use actual system performance

- Enable evolution through

- Change in objective

- Change in parameter representation

- Enable group-based efficiency by

- Group configuration evolution

- Group merges and division

- Enable sustainability through

- Metaheuristic-driven group and

individual change

S

E

E/S

E/S

G

E/G

E/G

S

E/G/S

The GLPD approach is a top-down-up approach. A top-down-up approach is one that is

both top-down and bottom-up. A top-down-up approach is defined here as an approach that

decomposes an existing system into smaller components with the goal of providing a holistic

perception and an improved reconstruction of the system with a subset of the same or similar

49

components. GLPD aims at assisting engineers with the design of innovative and creative

products that are user-centered, evolvable, and sustainable. GLPD is a life cycle data sourced

approach that integrates with current practices and views a product design process as continuous.

GLPD recognizes the ongoing evolution in durable product, as well as the increasing use of

smart components within systems to offer a continuous design representation. Rather than solely

focusing on the BOL part of the life cycle during the design process, GLPD recommends using

the data gathered during the lifetime of similar products or previous versions of a product when

working on a prototype for that product next generation. Figure 3.6 represents the GLPD

approach for continuous design, along with all its components.

Figure 3.6. Generalized life cycle product design (GLPD) approach

The GLPD approach is iterative, continuous, and spans through the life cycle of a product

or family of products. The approach forms a closed loop process that can sustain the design

process by constantly processing inputs (life cycle data) to turn those inputs into “better”

50

characteristics for a product. The iterative nature of the GLPD approach enables a rapid

transition from simulated to realistic design, supporting this way any design methodology that

promotes or uses short life cycle. Being continuous and iterative, GLPD is also able to respond

rapidly to changing customer needs occurring during the life cycle usage of a given product.

Therefore, GLPD can be viewed as a decision making tool as it allows organizations to respond

to local changes by using information specific to a given locale: the life cycle data. The

classification of life cycle data enables GLPD to provide a life cycle holistic view of the design

process by integrating the various life cycle parameters into the design process. Such a holistic

view of the life cycle, when used with an aggregated performance measurement, provides the

design process with a performance modeling tool. By representing a product as an assembly of

three defined life cycle classes, GLPD creates an implicit mapping between an aggregated life

cycle-based SE performance indicator and the evolving characteristics of a product. That

mapping or relationship between product’s performance and the life cycle data classes enables

the designer to decide on whether to turn a design parameter into an operating parameter (or

conversely), without impacting the performance of the product.

Using the GLPD suggested representation of a product (dashed box in Figure 3.6), a

metaheuristic search tool can be used that cluster products along the defined life cycle

parameters, looking for possible relationships between the life cycle classes and performance,

and determining the degree of importance of lifecycle attributes to the performance of a product.

Grouping, as enabled by the GLPD representation provides the designer with design

alternatives for a given range of desired performance values. Grouping would make the solution

of a GLPD-based approach capable of scaling and of being flexible from a configuration point of

view as shown in Figure 3.7.

51

Figure 3.7. Grouping vs. performance

Using the same shape nomenclature for the product as in Figure 3.3, Figure 3.7 shows a

possible outcome of grouping which results in four groups with two of them presenting

interesting properties for a system designer. Solutions from group#3, like those from group#1

and group#4 are performing well. However, because group#3 and group#4 are more spread out

than group#1, they offer a better starting point for risk analysis, and further performance

improvement for a system. Also, when comparing group#3 against group#4, group#3 offers a

diversity that can be used for instance: (1) to build efficient systems that the change of

environment will not significantly affect, (2) to scale a system without adverse effects on the

overall performance of the system, or (3) to build efficient systems capable of operating in

heteroclite environments. By being cognizant of the relationships in case they exist, between

LCE parameters, a systems engineer could decide to change the class of a product performance

parameter. Such a change could include a shift of a lesser-used performance parameter from

operational to design without hurting a system performance.

Finally the GLPD approach, when applied to a bigger and complex system such as a

vehicle or an aircraft inventory with numerous interchangeable parts can help a systems

engineer, using the appropriate grouping tools, to simplify the design of that system by enabling

52

him/her to either discover interoperable parts that impact that system’s performance, or parts of

the design that, because of their nature, could be pushed from design to operational without

compromising that system long term performance.

3.5 Summary

Within this chapter, three views of engineering design, known as the traditional, the

algorithmic, and the axiomatic views were explored, and their limitations identified. The

limitations were primarily identified as caused by the ongoing trend of using smart components

in complex systems. The use of smart components is changing the way systems engineers look at

life cycle data. A case was made for a continuous design process that can be self-sustaining. A

generalized, iterative, and highly responsive design process called generalized life cycle product

design (GLPD) was given. Performance measurement, key attribute of the proposed GLPD

methodology was discussed. After addressing some commonly used performance measuring

systems, a case was made for one approach that uses aggregated data, with heuristics or real

experience as a mapping function between the proposed life cycle parameters set and the

performance universe that any organization can set to assess and improve its life cycle. The

components of the proposed methodology namely the life cycle parameters (LCP) were

explained and some components were defined, with their importance and their meanings

explained from a design point of view. An example of interactions between design and

operational parameters was discussed for a hypothetical product. A case was made for GLPD to

be used in conjunction with an appropriate clustering/grouping tool to complement expert

knowledge, with aggregated knowledge from life cycle data. Finally, an example of grouping, as

enabled by GLPD was given, followed by possible interpretations.

53

CHAPTER 4

Schooling Genetic Algorithms

This dissertation seeks to develop optimization models dealing with problems where

grouping, evolvability, and sustainability are key characteristics of the solution. These

characteristics are prevalent in smart system LCE and design. Considering the nature of the

described problems, metaheuristics, with the emphasis here being put on evolutionary methods,

provide a foundation to solve the described problems. As a result, an enhanced metaheuristic

search approach that uses biological inspiration and grouping by exploiting fish schooling group

dynamics is created. The method is termed “schooling genetic algorithms”.

Schooling genetic algorithm (SGA) are GA-based models that enable process and

operator adaptability by mimicking fish schooling. SGA represents an adaptive type of

metaheuristic where operators behave differently depending on the perceived immediate area of

the search domain in the context of fish schooling dynamics. SGA was built from concepts with

multiple objectives in mind, notably the ability to “naturally” group candidate solutions based on

some type of similarity, the ability to “intuitively” ungroup clusters of candidate solutions based

on the local perception of the immediate environment, and the ability to exploit the evolvability

of a subpopulation to possibly predict the performance trend of that subpopulation. This chapter

serves as a detailed introduction to SGA.

4.1 Introduction

Genetic algorithms (Holland, 1975) are global optimization techniques inspired by the

mechanisms of natural evolution. GAs are useful both as search methods for solving problems

and for modeling evolutionary systems. GAs operate on a population of individuals (or potential

solutions to a problem) and within a domain without an explicit mathematical description. GAs

54

work by applying the principle of survival of the fittest to achieve an optimal (or strong)

solution.

The successful application of GA mainly depends on the population size or the diversity

of individual solutions in the search space, and on the devising of the crossover and the mutation

operators. If the GA cannot hold its diversity well before the global optimum is reached (ideally),

it may prematurely converge to what is known as a local optimum. Such a phenomenon is known

as a genetic drift, which is responsible for reducing the genetic variation within a population.

Though maintaining diversity is the predominant concern of GA, it also increases the

computational cost of GA. Various techniques have been attempted and used to find a balance

between the population diversity and the performance of GA (exploration and exploitation).

An approach that has proved successful at increasing the diversity and exploiting its

benefits is the use of distributed subpopulations. It is a “divide and conquer” approach that

allows tackling increasingly complicated cost functions emanating from complex simulations

common for engineering design problem. For solving complex problems, parallel GAs are used.

Combining GAs with other alternatives has often proved to yield better results than traditional

GAs, which uses a single large panmictic population. In parallel GA, it can reasonably be argued

that having multiple subpopulations helps preserving the genetic diversity, since each

subpopulation can potentially follow a different search trajectory through the search space. Two

parallel GA approaches which have proved to be successful are known as the Island Genetic

Algorithm (IGA) (Cantú-Paz, 2000), and the Niching Genetic Algorithms (NGA) (Mahfoud,

1995). The remainder of the chapter will be structured as follow. Since SGA represents an

inherent form of parallel genetic algorithms, parallel GA (notably NGA and IGA) are described.

55

Using biology, the context of SGA will be situated followed by a detailed explanation of the

SGA procedure and life cycle.

4.2 Parallel Genetic Algorithms

In ecology, a niche is defined as the sum total of an organism’s use of the living and

nonliving resources in its environment. Mahfoud and Watson both suggest an evolutionary

classification method based on the way multiple niches are found in a GA (Mahfoud, 1995). In

GA, niching refers to the notion that competing individuals or species cannot coexist in the same

local environment. Both spatial and temporal (sequential) niching approaches have been used in

the literature. Spatial methods can be further categorized depending on whether they use sharing,

crowding, or clearing methods, whereas temporal or sequential niching methods find multiple

niches iteratively or temporally. By maintaining subpopulations in so-called “niches”, NGA

prevents genetic drift and forces parallel convergence within the solution domain. The two main

objectives of niching algorithms are (i) a converge to multiple, highly fit, and significantly

different solutions, and (ii) a slowdown convergence in cases where only one solution is required

(Mengshoel & Goldberg, 2008).

IGA operates differently as it does not avoid genetic drift, but isolates the subpopulations

that are only allowed to exchange information via a migration operator. The migration operator

acts as a fitness-based probabilistic selection operator for migration selection and replacement. In

IGA, a third operator (besides mutation and crossover), known as the migration operator, is

responsible for the communication between these “islands” of chromosomes. The

communication occurs infrequently. The separation into subpopulations aims at preventing

premature convergence by acting as a non-dominating strategy for the population as a whole.

Such a scheme can lead to the finding of multiple solutions to a problem. Therefore, IGA has

56

been proven to be more suitable for linearly separable problems, although also slower

(implementation) since it tends to perform better on larger total population sizes (Whitley, Rana,

& Heckendorn, 1998). Although IGA is parametric (requires at least the provision of the given

number of islands as a parameter in order to get the full benefits of using subpopulations), its

implementation arbitrarily assigns solution candidates to islands.

Although both reviewed parallel strategies (IGA and NGA) involve groups of genes,

which are usually sent to separate processors to evolve apart from the rest of the population

(common characteristics of parallel GAs), the approach used in each case is what makes them

different and unique. However, maintaining all islands and/or niches during the search process

does not take advantage of the topology (attractors) of the solution domain. Further, both

methods despite being inherently parallel are not using mutation and crossover in an

advantageous way. The basic idea behind mutation is to reintroduce divergence into a

converging population through exploration, whereas crossover aims at improving a population

by exploiting its strengths. Consider the objectives of both mutation and crossover in traditional

GAs. It is possible to make a parallel GA approach more adaptive by looking into a proper

balancing of the use of GA operators (Luke & Spector; Spears, 1992). SGA is a suggested

approach.

In Chapter 3, Figures 3.3 and 3.7 help demonstrate the connection of such a method in

the LCE domain. In Figure 3.3, the impact of parameters on product performance showed that

the performance of a system depends on the type of interaction between the design, operational,

and environmental parameters. Determining the nature of the relationship between good

performance and LCE parameters is a complex task requiring consideration of individual and

group characteristics and accounting for interactions between systems. As SGA is now further

57

described and the suitability of schooling behavior to search heuristics is assessed, efforts will be

made to answer the second question.

4.3 SGA Overview

Since SGA mimics the way fish live in community, a summary of schooling dynamics is

necessary.

4.3.1 Fish school. A group of fish (shoal) that stay together not only for social reasons,

but also for coordinated group swimming are said to be schooling (Bonabeau & Dagorn, 1995).

Fish derive many benefits from schooling behavior including defense against predators (through

better predator detection and diminished chance of individual capture), and enhanced foraging

success. Schooling fish are usually of the same species and tend to have similar size. Schooling

fish are capable of undertaking complicated maneuvers (Moyle & Joseph J. Cech, 2004). Fish

school is a classic example of emergence, where there are properties that are possessed by the

school but not by the individual fish (Parrish, Viscido, & Grunbaum, 2002). The emergent

properties give an evolutionary advantage to members of the school, which individual fish do not

receive.

Fish schools, ant pheromone trail networks, bird flocks, or aggregation of cockroaches

are some typical examples of collective behavior of animals that have been accurately described

in terms of individuals following simple sets of rules. Fish schools for instance are known to

come in many different shapes and sizes: predator avoiding vacuoles, stationary swarms, flash

expansions, herds and balls, hourglasses and vortices; highly aligned cruising parabolas (Parrish

et al., 2002; B. L. J. Partridge, 1982; B. L. J. Partridge, Johansson, & Kalisk, 1983), and the

principles that give rise to their collective behavior have already been more or less successfully

58

explained (Ballerini, Cabibbo, Candelier, Cavagna, Cisbani, Giardina, Vincent, et al., 2008;

Inada, 2000; Pitcher, 2001; Sumpter, 2006).

4.3.2 Terminology and taxonomies. SGA intends to exploit fish schooling dynamics to

enhance metaheuristic search. SGA is not a simulator, as its key concern is not to accurately

mimic the explicit actions of schools of fish. SGA is an optimization technique based on an

evolutionary algorithm: GA. An SGA fish is a GA string of encoded genes also known as a

candidate solution. A local cluster, group, or subpopulation of fish is a school of fish and

represents fishes that share some similarities. The domain of definition of an SGA problem is its

search domain or the sea. In SGA, food and predators are represented by attractive and

unattractive locations in the search domain respectively. SGA incorporates a technique for food

depletion to encourage exploration. Figure 4.1 gives an example of food vs. predator for a

maximization problem.

Figure 4.1. Food vs. Predator

Using this terminology, SGA can then be defined as an enhanced metaheuristic search

technique in which the fishes discover and eat food, and spawn new fish whenever the conditions

are favorable while avoiding, by escaping means, existing predators. SGA does so by modifying

Food

Predator

59

traditional GA to account for schooling. It uses a model’s parameters to control the different

methods/functions/processes available within the model. As a process mimicking natural

methods, SGA then accounts for the way a model’s parameter either changes independently, or

as a consequence of the variation in another model’s parameter. Figure 4.2 shows the taxonomy

of search techniques.

Figure 4.2. Taxonomy of search techniques

In SGA, schools are sensitive to their surroundings. Schools use their perception of the

environment to guide the search through the solution domain. SGA has an adaptive parameter

control mechanism, meaning that there is some form of feedback from the search that is used to

determine the direction and/or magnitude of the change to the strategy parameter. Figure 4.3

shows the taxonomy of parameter setting. SGA falls under the red labeled (adaptive) category.

Figure 4.3. Taxonomy of parameter setting in evolutionary algorithms (Michalewicz & Fogel,

2004)

60

The next section addresses the procedural aspect of SGA. It explains the fish school

concepts and details the implementation of those concepts.

4.4 SGA Procedure

The fish in the presented algorithm randomly but collectively “swim” and discover new

places to feed. Each time a new feeding ground is found; the school consumes it, and then moves

on to look for another (not yet fed on) location to exploit. The act of leaving a location after

feeding from it is to prevent any school, for time to time, from being trapped in an optimum

(whether local or global) solution. The behavior of depleting the food when feeding is also

intended for the schools to explore new areas of the sea in which the global solution may be

discovered.

During the schooling process, schools sometimes encounter predators and are forced to

escape using various strategies. SGA mimics such a behavior by first defining a predator as any

region of the search domain where solutions are relatively worse than the currently obtained best

solutions. A predator avoidance mechanism built into each school allows the fish of that school

to swiftly escape predators while looking for feeding grounds.

The sea can host many schools at a time. With SGA, within school and between schools’

interactions are behavior based. Applying genetic operators such as mutation and crossover

carries out the interactions between fishes and between schools. Due to the dynamic nature of the

interactions, the mutation rate (number of offspring to result from the mutation process), the

mutation magnitude (defined here as the length of the phenotype to be affected by the mutation

process), and the crossover rate (number of offspring to result from the crossover process)

change during the run of an SGA algorithm. Their values change according to the size of a

school, the overall average fitness of that school, and the relative perception of the local area of

61

the sea by a fish school. Figure 4.4 shows a side-by-side comparison of traditional GA and SGA.

The “Food Foraging”, “Predator Avoidance”, and “School Maintenance” are processes

belonging to SGA. “School Division” and “School Formation” are simple collateral effects of the

SGA processes. The collateral effects are not built into SGA, but are the consequences of the

grouping mechanism built into SGA. The SGA processes are the fish school dynamics SGA uses

to enhance GA heuristics.

Figure 4.4. Genetic Algorithms vs. Schooling Genetic Algorithms (* often omitted)

4.5 SGA Modeling

The most notable features of SGA are its ability to “naturally” group subpopulations, and

to exploit the evolvability characteristics of a population when assessing its performance. Both

grouping and evolvability features rely on the perception of the local search space by fish

schools.

4.5.1 School merging and splitting. Fish schools have various shapes and sizes, and

those shapes and sizes change depending on the environment (proximity of food or predator

62

etc.). Couzin, Krause, James, Ruxton, and Franks (2002) proposed a model in which individual

animals living in communities follow three simple rules of thumb: (1) move away from very

nearby neighbors; (2) adopt the same direction as those that are close by and (3) avoid becoming

isolated. A number of grouping techniques might be employed. In order to make SGA grouping

simple, an unsupervised density based clustering algorithm is created for use in this research.

The algorithm has an average runtime. The developed clustering approach named

GEMAC (Geometrically Expanded Membership for Automated Clustering), allows SGA to

group fish in schools based on: (1) the relative proximity of other fishes to any given fish within

the school, and (2) on the relative geometric proximity of shared near neighbors. The density

within the aggregations of fish schools is nonhomogeneous, as fishes are packed more tightly at

the border than the center of the shoal (Ballerini, Cabibbo, Candelier, Cavagna, Cisbani,

Giardina, Orlandi, et al., 2008). The change in density is responsible for the oblong shape

frequently observable with fish schools (Hemelrijk & Hildenbrandt, 2008; B. L. Partridge, 1980).

The benefit of the oblong shape is considered to be the protection against predators (Hemelrijk &

Hildenbrandt, 2008, 2012; Hemelrijk, Hildenbrandt, Reinders, & Stamhuis, 2010). GEMAC was

not designed to exactly replicate the density distribution of fish schools, but to mimic the change

of density along a cluster.

Let },...,, 21 Nxxx be a set of data points in an L dimensional Euclidean vector space. It is

required that these N points be clustered in K groups (K unknown) where each group must fulfill

the requirement of changing density from the head to the tail of the group. Let us consider the

subset },...,, 21 Mxxx as a cluster of points from the previous set. To build such a cluster with

GEMAC, points must be added one by one to the cluster, starting with 1x and ending with Nx .

63

Let ix , jx , kx , and lx be four points added to the precedent cluster in that exact order. The

distances formed by the pairs (ix , jx), (jx , kx), and (kx , lx) should have values that are either

the same or decrease in a geometrically scaled down fashion. The highest distance between two

consecutively added points to the cluster should not exceed the modal distance calculated

between the first vector to the cluster and a randomly sampled set of points within the search

domain.

4.5.1.1 Computational aspect of GEMAC. The clustering algorithm using the above

grouping concept is carried out in the following manner.

 Step 1: Compute an proximity matrix of the set },...,, 21 Nxxx . This operation has

a runtime complexity.

 Step 2: Randomly sample a set number of entries from each row of the proximity matrix.

Sample the same number of entry from each row, and calculate the row-wise mean of all the

samples entries. A mean is the modal distance to be used for the corresponding row.

Geometrically scale all modal distances by dividing them by an a priory set value higher than 1.

Values between two and three seem to yield excellent results.

 Step 3: For each vector, starting from the first vector, assign to the same cluster all points

located within the calculated modal distance for that vector.

 Step 4: For each vector assigned in step 3, use the same modal distance geometrically

scaled one more time, and assign to the cluster of the starting vector, all points located within the

newly calculated modal distance for that vector.

Step 5: For each vector left unassigned, repeat step 3 and step 4 until a vector either finds

a cluster, or is left unassigned to form its own cluster. Step 3 thru step 5 represents an overall

worst case complexity of

64

Rather than using the Euclidean distance, the taxicab distance (Krause, 1987) is used to

speed up the algorithm. Further, making GEMAC simple also has the benefit of minimizing SGA

overhead beyond the GA.

4.5.1.2 Clustering in action with GEMAC. Figure 4.5 represents the partitioning that

was used for testing GEMAC.

Figure 4.5. Domains with predetermined cluster centers

Two dimensional data with values across each dimension set such that .

Three test results are reported here. Each test was performed by generating, using a normal

distribution (

), a number

 of points around each of the centers (represented with an X in Figure 4.5) of all

the domains. The resulting data points for each domain were passed to a GEMAC routine for

automated clustering, and the output of GEMAC plotted. In Test 1, points were generated around

the designated cluster centers with a standard deviation

. Test 2 (respectively

Test 3) used a standard deviation

 (respectively

) to test

65

how GEMAC would perform with respect to a changing density. 12% of each row was sampled

to determine the modal distance as explained in step 2 above. The value was used as

the scaling factor for the modal distances. Figure 4.6 thru 4.8 show the output of GEMAC for

Test 1 thru 3.

Figure 4.6. GEMAC output for Test 1

Figure 4.7. GEMAC output for Test 2

66

Figure 4.8. GEMAC output for Test 3

Table 4.1 summarizes the results of all eight experiments run to test the GEMAC.

Table 4.1

GEMAC clustering output summary

Number of given cluster

centers

Number of cluster found per case and per test

 Test 1 Test 2 Test 3

2 16 13 10

3 12 9 7

4 13 7 5

5 11 7 6

6 9 6 6

7 8 7 7

8 9 8 7

7 8 7 7

67

Since the role of GEMAC is solely to group, split and/or merge schools in an

unsupervised fashion, no clustering validity checking approaches based on either internal and

external criteria is presented or discussed, a simple comparison table is provided. Since GEMAC

was created to meet a specific clustering need and a particular problem, the final partitions of the

tested data set does not require some sort of comparative evaluation as it is the case in most

applications (Milligan & Cooper, 1985; Pal & Biswas, 1997; Ramze Rezaee, Lelieveldt, &

Reiber, 1998).

4.5.2 Behavior setup. Figure 4.9 shows a simple view of a school behavior assignment.

Using the performance of a school center of mass (), the averaged performance value of all the

schools within the sea (), and some cutoffs (offoff h ,l), the behavior of any school within a

sea can be defined: a low value for with respect to would be characterized as the

presence of a predator. All other fish school behaviors will refer to Figure 4.9 which also has a

decision making node (selection statement) called “Is Food still available?” that also leads to the

predator avoidance mode.

Figure 4.9. Fish school behavior assignment

68

The “Is food still available?” selection statement of Figure 4.9 connects to the predator

avoidance in case of no food availability. The purpose of the selection statement is to mimic the

depletion of food within any given area of the sea. By translating the time spent (generation

wise) by a school of fish in an area of the sea (whether attractive or not) into the food being

depleted; any school will be pushed away to explore other possibilities after some time.

4.5.3 Predator avoidance. Predator avoidance occurs when the school enters a

dangerous or unattractive area. Fish swiftly move in an attempt to escape the detected predator.

Such an operation sometimes results in school division, as the fishes will quickly swim in diverse

directions. Figure 4.10 shows how a predator avoidance maneuver is performed. To create the

appearance of motion of a school fleeing from a predator, SGA proceeds via two phases. First,

some mutation operations are randomly performed on the fish of the school. Then the fish

resulting from the mutation are used as the first parents for some crossover operations (during

the second phase) with the members of the school. To keep SGA as simple as possible, both the

proportion of crossover operations and the number of mutation operations could be equally set to

half the proportion of fish allocated to the school by SGA.

Figure 4.10. Predator avoidance maneuver.

69

To be able to assess the perception of a predator requires an assumption: the presence of a

predator is characterized by a portion of the sea perceived as dangerous/unattractive by a fish

school. This means that the fishes might perform worse than expected if performing a depth

search within the local area. Therefore, to locally perceive an environment as one that requires a

predator avoidance behavior, the SGA uses the fitness of the center of mass (CM) of that school

and compares it to the average fitness (sea wise) of all the other schools. The center of mass in

return, is assessed as a fitness-weighted combination of all the fish within a school. Proceeding

such a way to get a school center of mass makes the center of mass biased towards the strongest

fish of the school. The approach is simple and forces any underperforming school to keep

exploring, whereas it allows the better performing schools to capitalize by exploiting

performance. The center of mass CM of a school of n fish, where fish in the school are

represented by data points Xi (Xi = <x1…xL>), and have fitness values fi should be calculated as:

∑

∑

The choice of the “escapee” fish, picked during the first phase of the predator avoidance

maneuver, is explained below. The farther from the school CM, and the stronger a fish is, the

higher is the selection likelihood of that fish as the escapee fish. During the second phase, the

second parents are picked probabilistically, proportionally to their fitness values, using a simple

fitness proportionate selection. Let pi represent the probability of selection of fish i as an escapee

fish, fi represent the fitness of fish i within a school of N fish, and di the distance of fish i to the

center of mass of the school. The probability value of pi should be calculated as:

∑

70

During the second phase, the parents are picked probabilistically using a simple fitness

proportionate selection.

 In reality, a school can either move as one entity further away from a predator or split as

it moves away. Since the flee forces the fish to explore new areas of the sea, predator avoidance

can result in the split of a school. SGA mimics the predator avoidance mechanism by giving high

fitness fish locate on the outside of a school, a higher probability of pulling the school during a

predator avoidance maneuver. Since GEMAC operates on a proximity basis for grouping, such

an implementation of predator avoidance may yield a school split, which is a desirable intended

side effect.

4.5.4 Food foraging. The food foraging behavior occurs when a fish school finds a

relative safe or attractive area. Fish foraging assumes that the proximity of food would cause a

school to have its average performance higher than the whole sea average performance.

Therefore, the food foraging behavior would manifest when a part of the search domain is

perceived as attractive by a school.

Looking back at Figure 4.9, a school in food foraging mode is already performing well

compared to the other schools within the sea. For that reason, the mutation rate of a school in

food foraging mode is low when compared to that school crossover rate. The crossover operator

is a process that takes more than one parent (two in SGA) solutions to produce a child solution.

Crossover is analogous to reproduction and capitalizes on the strengths/fitness of the parents to

generate a hopefully more fit child.

The choice of the fish to use for either mutation or crossover during the food foraging

mode is conditioned by the fitness of the fish. The higher the fitness value of a fish is, the higher

is the selection likelihood of that fish as a parent for crossover. This is a typical fitness

71

proportionate situation. Let pi represent the probability of selection of fish i, and fi represent the

fitness of fish i within a school of N fish. The probability value of pi should be calculated as:

∑

Although the choice of the fish to use for mutation during the food foraging mode solely

depends on the fitness of the fish from the school, the mutation magnitude is not and will be

small. The mutation magnitude is defined as the length of the phenotype to be affected by the

mutation operator. The purpose of mutation during the food foraging mode is to mimic a fish

school spreading over an area to feed. Because of the use of mutation operations to simulate the

feeding process, food foraging can end up with a school split. Such a split as a result of foraging

is not very likely.

The implementation of the food depletion, as listed on Figure 4.9, relies on the periodic

use of the GEMAC clustering and of a recency Tabu list. Performing school clustering

periodically with GEMAC enables schools in a given behavioral mode to stay in that mode for a

given (short) period of time. The recency-based tabu list can serve many purposes, with one of

them providing medium-term knowledge of the search history. During the metaheuristic search

process, all known better solutions are stored in a Tabu list. The solutions are updated or

removed to the list on a first-entered first-removed basis. While a solution is still in the Tabu list,

no school is allowed within a given proximity. Therefore, the Tabu list also guides the search

process by guaranteeing that a given part of the search domain, once explored for food by any

school, will not be visited again until it is removed from the list. The list size determines the

duration of a location in tabu status.

72

4.5.5 School maintenance. School maintenance occurs when a fish school is neither

looking for food, nor trying to escape predators. This behavior, as shown on Figure 4.9, is the

default behavior for any school. In school maintenance mode, both GA operators (crossover and

mutation) are balanced, as a school in this mode represents a school that is both exploring and

exploiting. Unlike the procedure for predator avoidance, school maintenance uses all the fish of

the school to sample the candidate solutions for both crossover and mutation. A maintaining

school is a wandering school.

When choosing the candidate parents, whether for crossover or mutation, SGA uses

roulette-wheel selection (SCX), also known as fitness proportionate selection. SCX allows SGA

to select fishes based on their fitness, with the probability of a fish being selected increasing with

the fitness of the fish greater or less than its competitor's fitness. In other terms, if is the fitness

of fish i, and school has fishes, then its probability of being selected among the other fishes

of the school is:

∑

When applying either crossover or mutation to a fish school, a proportionate measure is

used to guarantee the survival of the more fit schools. The number of crossover and/or mutation

operations a school can perform depends on a proportion allocated to the school based of the

collective performance of its fish. The higher the number of high fitness fish in a school, the

higher its proportional value. Assuming there are schools within the sea, and that each of those

schools possesses fishes where the performance of fish 𝑗 is denoted , then the computation

of the number Ci to breed by school i will be calculated as follow:

73

 ∑

∑ ∑

4.5.6 SGA Life Cycle. The SGA life cycle represents the steps required for implementing

an SGA algorithm based on the given concepts. The implementation of the life cycle of SGA

alternates between groupings and the application of GA operators based on the local perception

of the sea by the diverse fish schools.

The initial number of schools could either be set manually and the grouping performed

using a clustering algorithm such as the k-means algorithm (Hamerly, 2010; Nock & Nielsen,

2006; X. Wu et al., 2008). However, the GEMAC algorithm was built so that anything related to

groupings (merge and split) can be unsupervised and nonparametric. Next, all the concepts

talked about will be tested for the ability of SGA to converge to a global optimum within an

unconstrained domain, and to perceive and avoid deceptive features of the search domain.

Algorithm 1. Schooling Genetic Algorithm High Level Metaheuristic

Set the parameters, initialize the population

while termination condition not met do

Organize fishes in schools

Set schools’ statuses based on performances of fishes

 Foreach school within the sea:

 If school’s status is foraging then look for food //Crossover rate > Mutation rate

 If status is predator avoidance then escape //Mutation precedes Crossover

 If status is maintenance then (explore and exploit) //Crossover rate = Mutation rate

 endforeach

Proceed with reduction to keep overall population size constant

endwhile

74

4.6 Summary

Within this chapter, SGA, a new metaheuristic created to work on problems where

grouping, evolvability, and sustainability are characteristics of the solution was developed,

explained, and discussed. Increasingly complicated cost functions emanating from complex

simulations use life cycle data and could benefit from SGA. Such cost functions are common for

engineering design problem.

SGA mimics fish schooling and uses GAs that it extends with some new concepts. SGA

develops and implements the concepts of predator avoidance, food foraging, school maintenance,

and food depletion/replenishment. SGA uses a new density based clustering approach named

GEMAC. GEMAC is used within SGA for all tasks related to grouping and splitting in fish

schooling. To finish, a high level view of SGA was given.

75

Chapter 5

Applying Schooling Genetic Algorithms to Generalized Life cycle Product Design

5.1 Introduction

Schooling genetic algorithms (SGAs) are GA-based metaheuristics built using fish

schooling mechanisms, and designed for problems where evolvability, grouping, and

sustainability are characteristics of the solution. Generalized life cycle product design (GLPD) is

a product life cycle engineering (PLE) based approach for product design that uses life cycle

engineering (LCE) data characterization to assist system engineers with their design process. In

this chapter, the applicability of SGA to product design, using GLPD, is investigated. Using

simulated life cycle engineering data, different case scenarios are envisioned to assess SGA as an

analytic tool for better product design.

5.2 Problem Definition

Traditional SE, when designing for the life cycle, not only transforms a need into a

system configuration, but also strives to ensure design compatibility with related physical and

functional requirements. Traditional SE tends to emphasize design optimization into fixed

configuration, along with system decomposition to facilitate system analysis, and the central role

of systems engineer for design and sustainment. Such an approach does not capitalize on the

ongoing trend of using analogies to biological systems to develop solutions for engineering

problems, also called biologically inspired design. Therefore, based on the shift in product

nature, there is a need to characterize and extend product life cycle engineering (PLE), to

incorporate evolvability (modularity, interoperability, and software level configurability),

grouping (system efficiency due to the economy of scale), and sustainability (ability to

continuously operate with minimal intervention).

76

In an attempt to meet and characterize the need of extending PLE, SGA will be applied to

the generalized life cycle product design (GLPD) model. Using simulated PLE-data generated

for a product, a product’s DNA, as displayed in Figure 5.1, was created and was used as an input

to an SGA algorithm. The objective was to find out the potential benefits of using SGA and

GLPD in the design process of a system/product. Within the designed SGA test bed created for

this chapter, values for n, m, and p representing the number of genes to encode the design,

operational, and environmental parameters respectively, varied from 0 to 2.

Figure 5.1. Transformation of a designed product into a GA entity

Being able to assess the effects of grouping on performance when running SGA is

important. Such an assessment assists in interpreting the solutions returned by SGA, and possibly

helps objectively mapping the fitness values of the final solutions. A solution quality assessment

indicator was defined as the trait performance indicator (TPI). The TPI was defined such that its

value would indicate how important (0.0 to 1.0) any given phenotype is to the observed

performance values. Considering all the final solutions returned by the SGA implementation, the

wider the spread over the range of permissible values for a given phenotype, the higher the

importance of that phenotype. Let BP be the set of all the final solutions returned by the SGA,

and jP any element of BP. jP is a solution candidate. Let j

iP designate a trait i of the solution jP .

77

Ideally, each trait has a range of values (constraints on trait) that fall between a minimum and a

maximum. Let E designate the set of minima and maxima for all the traits of the phenotype, with

m

iE / M

iE representing the minimum/maximum value for trait i. For a phenotype subset of n traits,

the TPI values are computed in a way similar to a relative error, giving an indication of how

important the selected set of traits is to the observed performance, relatively to the whole

phenotype. The TPI value for trait i (iTPI) is computed as:

m

i

M

i

j

i

j

i

i
EE

BPPBPP
TPI

}min{}max{

The TPI values account for all the solutions returned by the SGA. TPI values should inform the

systems engineer about a stricter constraint that can be imposed on a given parameter without

sacrificing the system overall performance. The possible implications of a TPI value are as

follow:

- The corresponding or involved component of the system/product can be changed to

another less accurate, sensitive, or performing without hurting the system performance.

- The corresponding or involved attribute can be pushed from design to operational or vice

versa, without hurting the system performance.

5.3 Applying SGA to GLPD

When applying SGA to GLPD, the SGA concepts take the following meanings within the

LCE context:

- A fish is an instance of a product/system configuration represented by the life cycle

parameters that will yield the predicted performance if designed.

- A school is a set of product/system configurations sharing some similarities

78

- A school center of mass (CM) is the central configuration for a cluster of systems, that is,

it represents the average best configuration of a set of given configurations. Unlike a

fish’s performance value that only informs about the performance of one product, a CM

on the other hand should inform about the average best of a set of configurations.

- A SGA’s tabu list represents the set of best solutions found.

- A TPI value provides further insights into the SGA’s group performance values that were

recorded during the search process into the SGA’s tabu list. Assuming that the SGA is

able to return the absolute best solution for a problem, the TPI values would help the

designer capture the lower and upper specification limits of the LCE parameters

involved.

Using probability distributions, constrained continuous random values were generated

that represent the design, operational of a hypothetical product. Considering the immutable

character of environmental parameters, their values were set (discrete values) and for any given

product, could not change during the simulation. The proportion of the number of products

available for each environment over the number of products that is available overall was set and

kept constant, via population reduction, throughout each simulation. Simulations were carried

using one or more parameters of each LCE type. LCE data was generated to test GLPD with

SGA for the following five scenarios (explained in following sections):

- Environment driving design for performance

- Environment driving both design and operation for performance

- Environment and design both driving operations for performance

- Environment and design only driving performance

- Environment, design, and operations all driving performance

79

5.4 Experimental Design

For the experiments/simulations, each candidate solution had n design genes/parameters,

m operational genes/parameters, and p environmental genes/parameters. Therefore, each

candidate solution was an N-dimensional data point of the search space, where N = n+ m + p.

Each dimension or independent product performance parameter was coded with a 10-bit string

value (actual decimal values falling within the range of -500 to 500). The size of the population

was set and maintained at 120 fish. The proportion for each environment was 55% for

environment A, and 45% for environment B. The stopping criteria was set to be either the

maximum number of generations (set to 1000), or the lack of improvement of the average fitness

value of the population for three consecutive generations, whichever came first. Each experiment

was repeated three times and the recorded assessment criteria were:

- the number of generations it took for SGA to converge (if convergence occurs)

- the distribution of the behavioral states

- the best solutions obtained

- the best school, and

- the TPI values of each dimension (allele) of the product.

GEMAC was used to handle all SGA grouping operations. Each simulation started with a

population of fish randomly (uniform distribution) distributed across the search domain (design

and operational parameters). This step was followed by the environmental parameter value(s)

being assigned, using a uniform distribution. This process was adopted to allow schools to form

in various proportions from each environment, since that GEMAC, the non-parametric clustering

algorithm that was used for school formation, is a proximity-based clustering method.

80

Table 5.1 shows the factors, assessment criteria, and methods that were used to assess the

results of the experiments. As far as the relationship is concerned (first factor), five were tested

as explained within the previous section. The number of parameters/alleles ranged from three to

six. Besides the simple case of a linear and polynomial underlying shape (not listed within the

table), the Ackley, Griewank, and Schwefel functions were used to characterize the underlying

shape of the search domain. On the assessment criteria side, the number of generations to

convergence, along with the TPI values, the best schools and distributions of behavioral states

were used. For some experiments, SGA performance was also compared to island GA (IGA) and

parallel GA (PGA).

Table 5.1

Factors, assessment criteria, and methods for SGA.

Factors Assessment criteria

Relationship }{ zationCharacteriLCE Number of generations to convergence

Size }/allelesparameters ofNumber { Quality of solutions obtained

Underlying shape

}Schwefel ,Polynomial Linear, Griewank, Ackley,{
TPI values for each LCE parameter type

Best schools

Distribution of behavioral states

Methods

Schooling Genetic Algorithms (SGA) vs. }IGA PGA,{

81

5.4.1 Environment driving design for performance. The objective of the experiments

carried here was to determine the ability of SGA to effectively use grouping to converge on

separate environments, and to check the ability of SGA to characterize the life cycle parameters’

relationship. The relation used for the experiments was linear as follow:

{

Using a linear relationship, the expected characterization is vertical lines within the (D,

O) plane. The lines should contain the best solutions of the problem. This test is for the case of a

product with a simple (linear) performance function that depends on just two life cycle attributes.

 5.4.2 Environment driving both design and operations for performance. The objective of

the experiments carried here was to determine the ability of SGA to effectively use grouping to

converge on separate environments, and to check the ability of SGA to characterize the life cycle

parameters’ relationship. The relation used for the experiments was polynomial as follow:

{

Using a polynomial relationship as described above, the expected characterization is

interceptions of vertical and horizontal lines within the (D, O) plane. The best solutions of the

problem should be located around the interception points of the lines. This test is for the case of a

product with a performance function that depends on three life cycle attributes.

5.4.3 Environment and design both driving operations for performance. The objective of

the experiments carried here was to determine the ability of SGA to effectively use grouping to

82

converge on separate environments, and to check the ability of SGA to characterize the life cycle

parameters’ relationship. The relation used for the experiments was linear as follow:

{

{

{

Using a linear relationship, the expected characterization is vertical lines within the (D,

O) plane. However, the expected characterizing lines should only occupy half of the plane and

should contain the best solutions of the problem. This test is for the case of a product with a

performance function that depends on three life cycle attributes and that has two main modes of

operations depending on the environment where the product is being used.

5.4.4 Environment and the design both driving performance. The objective of the

experiments described in this section was to not only determine the ability of SGA to effectively

use grouping to converge on separate environments, but also to check the ability of SGA to

operate on “noisy” life cycle data. Similar to the previous experiments, the solution

representation was picked to have three parameters, one of each kind. Two different sets of

experiments were performed. They differed in the function that was used to represent the LCE

relationship. This test was for the case of a product with a performance function that depends on

many life cycle attributes and that has multiple modes of operations depending on the

environment where the product is being used.

83

The Griewank function was used for the first experiment, and the Schwefel function was

used for the second experiment. The Griewank function (Griewank, 1981) is a standard test

functions for unconstrained global optimization, and it is used to test the convergence of

optimization functions. It has many widespread local minima regularly distributed, to act as

attractor to deceive the search process. The function that was used was a modified Griewank

function to make the problem a maximization problem. The function is defined by:

 (

√
)

For , Figure 5.2 shows the typical Griewank function plotted for n=2.

Figure 5.2. Griewank function in [-100, 100] plotted using Matlab

The Schwefel function on the other hand is a deceptive function that has its global

minimum geometrically distant, over the parameter space, from the next best local minima.

Therefore, with the Schwefel function, the search algorithms are potentially prone to

convergence in the wrong direction. The function that was used was a modified Schwefel

function to make the problem a maximization problem. The function is defined by:

84

 ∑ √

 ; , ,

For , Figure 5.3 shows a plot of the Schwefel’s function.

Figure 5.3. Schwefel function in [-100, 100] plotted using Matlab

5.4.5 Environment, design and operations driving performance. The objective of the

experiments was to determine the ability of SGA to effectively use grouping to converge on

separate environments, and to check the ability of SGA to operate on “noisy” life cycle data.

Unlike the previous experiments and setups, two experiments were carried here, each with a

different representation of a solution. This test was for the case of a product with a performance

function that depends on many life cycle attributes and that has multiple modes of operations

depending on the environment where the product is being used. The supposed product required

five parameters/genes for encoding: one for environment, and two of each of the other kind. The

Ackley function was used to model the LCE relationship. The Ackley’s function is a widely used

multimodal test function. It has the following definition:

85

 ([])
 √

 ∑

√

 ∑

]

 ; , , ,

For , Figure 5.4 shows a plot of the Ackley’s function.

Figure 5.4. Ackley's function in [-25, 25] plotted using Matlab

After testing with the Ackley’s function, an extra parameter was added to the product

definition to give it six performance parameters (two for each kind). This time, a modified

Schwefel function was used to model the complex multidimensional LCE relationship. The

modified Schwefel function that was used is defined by:

 ∑ √

 ; ,

 , , ,

5.5 Results and Interpretation

For each set of experiments that were carried out, results were collected and an

interpretation provided. The following subsections show the typical results for each set of

experiment.

86

5.5.1 Environment driving design for performance. Table 5.2 represents a sample of the

initial population after a first grouping using GEMAC. There were 22 schools total.

Table 5.2

Sample of initial population for experiment 1

Design Operational Environmental School ID Fitness

3.805499 -22.01624352 B 1 -1.791211

-30.3083 -20.23126913 B 2 -0.782837

-15.6684 5.927718548 A 3 -0.618067

-4.18381 -10.30136624 A 1 -0.785097

49.54511 -4.415981823 B 4 -0.86212

-28.8373 19.94448208 B 5 -2.05356

26.28639 35.06889827 B 6 -0.767593

10.33888 -6.631614192 A 1 -0.75937

-7.83431 10.97721849 A 3 -1.033247

-2.90412 14.73992981 B 7 -1.974045

-49.2247 -20.66500862 B 2 -1.100193

6.438105 9.207032362 A 8 -1.466603

-27.5468 20.13691809 A 5 -0.860644

-3.15706 3.092316367 A 3 -0.558884

11.26315 57.94968662 B 9 -0.767323

-9.65659 -24.69150235 B 1 -1.996565

11.7271 -58.62095676 A 10 -1.345763

-61.5013 30.50116642 A 11 -2.0623

81.21945 -2.676410108 A 12 -3.063364

Plotting the contents of the experiment’s tabu list showed the SGA was able to capture

the nature of the relationship between the LCE parameters. Figure 5.5 shows the plot of the tabu

list contents. The best performance for environment A (red dotted line) and environment B (blue

87

dotted line) are both plotted. The contents of the tabu list tend to follow the line that the plot of

the performance within (D, O) plan would return for each environment. The observed trend gives

an idea of the embedded relationship between performance and LCE parameters.

Figure 5.5. Tabu list contents plot for experiment set 1

Table 5.3 shows the contents of the SGA’s tabu list for experiment 1. The tabu list is

recency based with elements representing the best feeding locations recorded by SGA during the

search process. Along with the locations, are listed the composition, environment wise, of the

number of fish that made that school. The CM values represent the average best configurations

available to the designer.

88

Table 5.3

Tabu list contents for experiment 1

Center of mass from tabu List Tabu

Performance

fish

from A

fish

from B
Total

Design Operational Environmental

209.2005 -169.253392 A 0.881598961 1 0 1

156.6719 248.6509379 A 0.986656224 3 1 4

146.0206 -229.1916984 A 0.992041137 4 1 5

135.1326 64.83714354 A 0.970265136 19 7 26

148.7408 257.8771119 A 0.997481554 1 0 1

151.2075 118.6229351 A 0.99758492 1 0 1

148.7791 -77.94622939 A 0.997558292 43 0 43

150.5193 84.01986896 A 0.998961384 8 0 8

350.6195 115.1523153 B 0.998761058 0 9 9

354.9097 209.0342458 B 0.990180656 0 2 2

348.7395 -84.68739403 B 0.99747906 0 51 51

349.7957 98.50342012 B 0.999591313 0 19 19

The contents of the tabu list were used to calculate the TPI. The TPI value for the design

parameter (0.2523) indicates that the recorded best performance was achieved for values of the

design parameter occupying just 25.23% of the available range [-500, 500]. This means that the

best performances recorded can still be achieved, even if the designers was to only consider that

small range of values for the design parameters. The TPI value for the operational parameter was

0.8025, indicating a wider coverage of the permissible values by the operational parameters. The

TPI value for the environment should always be 1 when the performance is to some extent

environment dependent. Unlike Table 5.4 that shows a sample of the final population, Table 5.3

has more information because of the convergence of SGA.

89

Table 5.4

Sample of final population for experiment 1

Population

Design Operational Environmental School ID Performance

350 -85.75016356 B 1 1

350 -85.75016356 B 1 1

350 -85.75016356 B 1 1

150 -79.03928056 A 2 1

150 -79.03928053 A 2 1

150 -79.03928051 A 2 1

Figure 5.6 shows a plot of the final results for one of the experiments. From Figure 5.6, it

can be seen that as the population’s average fitness improves, the number of schools decreases to

a final count of 2, matching the number of environments.

Figure 5.6. SGA results per generation for experiment 1

The lower right graph represents the number of schools that were on a given behavioral

mode during a given generation. School maintenance (SM) is in red (R), predator avoidance

(PA) is in green (G), and food foraging (FF) is in blue (B). Although all behavioral modes were

in used early during the simulation, by the time the final count of 2 is reach, the improvements

90

per generation to the population’s average fitness become too small and school maintenance

become the predominant behavior for the schools. Table 5.2 shows the contents of the SGA’s

tabu list for experiment 1. Along with the locations, are listed the composition, environment

wise, of the number of fish that made that school.

5.5.2 Environment driving both design and operations for performance. The simulation

started with 120 fish initially grouped in 23 schools using GEMAC. Table 5.5 below represents a

sample of the initial population.

Table 5.5

Sample of initial population for experiment 2

Design Operational Environmental School ID Fitness

41.45297 -13.7693545 A 1 -1.068152565

1.105899 22.2292995 B 2 -0.551974849

4.139539 7.56370167 B 2 -1.546313486

9.176969 -7.13024429 A 3 -0.591220148

33.95105 -5.21207269 A 1 -0.9252308

-31.0792 4.32645342 A 8 -1.67771339

-37.2721 -3.80320293 A 8 -1.768311975

-45.6622 -3.00839178 B 7 -1.630178013

As a contrast to Table 5.5, Table 5.6 displaying a sample of the final population has much

less diversity. This is a result of the convergence of SGA.

91

Table 5.6

Sample of final population

Population

Design Operational Environmental School ID Performance

-350 -150.408 B 1 1

-350 -150.408 B 1 1

-350 -150.408 B 1 1

-150 6.0132 A 2 1

-150 6. 0132 A 2 1

-150 6. 0132 A 2 1

The convergence of SGA is also observable from Figure 5.7 that shows a plot of the final

results for one of the experiments. From Figure 5.7, it can also be seen that as the population’s

average fitness improves, the number of schools decreases to a final count of 2. The SM mode is

the only school behavior that was used during the simulation by all schools. This could be

explained by the nature of LCE parameters relationship that was used. An LCE relationship that

changes linearly or smoothly will make effective perception of the environment hard to be

achieved, causing the default behavior of fish to be used most of the time.

Figure 5.7. SGA results per generation for experiment set 2

92

Table 5.7 shows the contents of the tabu list at the end of the simulation. The tabu list is

recency based with elements representing the best feeding locations recorded by SGA during the

search process. Along with the locations, are listed the composition, school and environment.

Table 5.7

Tabu list contents for experiment 2

Center of mass from tabu List Tabu

Performance

fish

from A

fish

from B

Total

Design Operational Environmental

357.1424 220.0255 B 0.997999 0 0 2

157.1135 276.0899 A 0.997897 1 0 1

316.0363 146.6837 B 0.999549 0 3 3

354.0654 141.5273 B 0.999862 0 1 1

-152.593 -212.36 A 0.998572 7 0 7

189.1089 361.0956 A 0.998264 1 0 1

-349.138 150.9856 B 0.999997 0 15 15

-322.118 -150.408 B 0.999955 0 6 6

-342.429 -150.408 B 0.999988 0 27 27

347.8761 -150.408 B 0.999997 0 7 7

150.3152 -291.122 A 0.999926 26 0 26

-150.086 90.7473 A 0.999911 25 0 25

-149.999 6 A 0.999999 10 0 10

-350 0 B 1 0 1 1

The contents of the tabu list represent the average best solutions gathered by the SGA

during the process. The values of the tabu list were used to calculate the TPI. The interpretation

of those values is as follow: the TPI for the operational and the design parameters (0.6522 and

0.7071 respectively) indicates that the recorded best performance was achieved for values of the

operational and the design parameter occupying just 65.22% and 70.71% respectively of the

93

available range [-500, 500]. Considering the relation used for LCE parameters, a TPI value of

75% (

) or lesser was expected that would capture the lower and upper specification

limits of each LCE parameter.

Plotting the contents of the experiment’s tabu list showed that the tabu list was able to

capture the nature of the relationship between the LCE parameters. Figure 5.8 shows the plot.

The best performance for environment A and environment B are both plotted: red dotted line and

blue dotted line respectively. The contents of the Tabu list tend to follow the lines and line

intersections for each environment, giving an idea of the performance trend hidden within the

life cycle data.

Figure 5.8. Tabu list contents plot for experiment set 2

5.5.3 Environment and design both driving operations for performance. Figure 5.9 shows

a plot of the final results for one of the experiments. From Figure 5.9, it can be seen that as the

population’s average fitness improves, the number of schools decreases to a final count of 3. The

SM mode dominated during most of the simulation, with PA being the first behavior to stop

being used after a couple of generations.

94

Figure 5.9. SGA results per generation for experiment set 3

Table 5.8 shows the contents of the SGA’s tabu list for experiment 3. As a reminder, the

tabu list is a recency based tabu list whose elements represent the best feeding locations recorded

by SGA during the search process. Along with the locations are listed the composition,

environment wise, of the number of fish that made that school.

The contents of the tabu list were used to calculate the TPI. The interpretation of the TPI

values is straightforward. The TPI for the operational and the design parameters (0.7751 and

0.7021 respectively) indicates that the recorded best performance was achieved for values of the

operational and the design parameter occupying up to 77.51% and 70.21% respectively of the

available range [-500, 500].

Plotting the contents of the experiment’s tabu list showed the tabu list was able to capture

the nature of the relationship between the LCE parameters. Figure 5.10 shows the plot. The best

performance for environment A (red dotted line) and environment B (blue dotted line) are both

plotted. The contents of the tabu list tend to follow the half-lines for each environment, giving an

idea of the performance trend hidden within the life cycle data.

95

Table 5.8

Tabu list contents for experiment set 3

Center of mass from tabu List Tabu

Performance

fish

from A

fish

from B

Total

Design Operational Environmental

59.29144 -190.786 B 0.918429 0 2 2

60.55729 -51.0816 A 0.997837 4 3 7

159.3046 50.94962 A 0.998101 2 0 2

50.0277 157.3688 B 0.985262 0 2 2

-271.822 -438.411 A 0.976821 1 0 1

65.7312 -166.77 B 0.96646 0 5 5

34.33504 -133.416 B 0.966832 0 5 5

262.0071 -55.5769 A 0.988846 1 0 1

406.3256 -131.402 B 0.962804 0 1 1

-75.1225 336.6956 B 0.973391 0 15 15

170.409 168.5702 B 0.96286 0 35 35

205.8378 167.9305 B 0.964139 0 31 31

430.2609 -55.5769 A 0.988846 11 0 11

414.0749 -55.5769 A 0.988846 14 0 14

394.8999 -55.5769 A 0.988846 9 0 9

96

Figure 5.10. Tabu list contents plot for experiment set 3

So far, the plotting of the tabu list has succeeded in giving a trend of the underlying LCE

parameters relationship. The success has been observed with both linear and polynomial

relationship characterizing the LCE parameters. The setup of school behavior, based on the

perception of the environment by fish schools, appears to work as expected: SGA is able to use

grouping to prevent premature convergence of a population while learning relationships within

the data.

5.5.4 Environment and the design both driving performance. As mentioned during the

setup phase, two sets of experiments were carried out for this case.

5.5.4.1 Using Griewank to characterize LCE’s relationship. The Griewank function was

modified to turn the problem into a maximization problem with global best performance value

being 0. The simulation started with 27 schools, and ended with 2 schools. Figure 5.11 shows a

plot of the final results for one of the experiments.

97

Figure 5.11. SGA results per generation for experiment set 4 – Griewank

From Figure 5.11, it can be seen that as the population’s average fitness improves, the

number of schools decreases to a final count of 2. The PA and FF modes of behavior dominated

during the whole simulation. Although such domination was expected, its underlying cause

cannot be determined with 100% confidence. The assignment of a school behavior based on the

relation between the school CM’s fitness and the current global average rather than past school

history, or the regularly spaced sinusoidal-shaped subdomains making up the entire search

domain are two possible reasons. With the later reason, the subdomains created by the Griewank

function would then cause fish schools to perceive the environment predominantly as either food

or predator. Table 5.9 shows the contents of the SGA’s tabu list for experiment set 4. Along with

the locations are listed the composition, school, and environment.

98

Table 5.9

Tabu list contents for experiment set 4 – Griewank

Center of mass from tabu List Tabu

Performance

fish

from A

fish

from B

Total

Design Operational Environmental

31.03806 -16.3634 A -0.31139 0 0 1

34.53917 -89.5806 B -0.85465 3 0 3

-22.2395 -61.805 B -0.69388 2 0 2

44.07288 -24.9635 A -0.4897 0 2 2

0 -67.032 A 0 0 1 1

0 73.32395 A 0 0 2 2

-0.61877 -89.0321 A -0.18551 1 17 18

-0.4102 -108.575 A -0.083 1 9 10

-0.04092 28.67091 A -0.00084 0 8 8

1.87E-09 220.4507 A 0 0 4 4

0 141.3936 A 0 0 2 2

3.31E-09 115.2158 A 0 0 3 3

4.42E-10 -218.242 A 0 0 3 3

4.74E-09 -21.5506 A 0 0 4 4

0 -262.493 A 0 0 1 1

0 -131.247 A 0 0 2 2

-0.31273 162.7716 A -0.04853 1 9 10

2.12E-09 45.25208 A 0 0 1 1

3.41E-09 90.50417 A 0 0 1 1

99

The contents of the tabu list were used to calculate the TPI values. The TPI for the

operational and the design parameters (0.9547 and 0.1512 respectively) indicates that the

recorded best performance was achieved for values of the operational and the design parameter

occupying up to 95.47% and 15.12% respectively of the available range [-500, 500]. The big

difference was not expected, considering the shape and the symmetry of the Griewank space.

Finally, plotting the contents of the experiment’s Tabu list revealed a peculiar median

line that happens to be one of the lines of local minima of the Griewank function. The nature of

the relationship between the LCE parameters was more complex in this experiment than within

the previous experiments. Figure 5.12 shows the plot. The best performance for environment A

(red circle) and environment B (black stars).

Figure 5.12. Tabu list contents plot for experiment set 4 – Griewank

No direct explanation can be given to explain the line trend observable from Figure 5.12.

The same pattern was observed for three repetitions of the same simulations.

100

5.5.4.2 Using Schwefel to characterize LCE’s relationship. The Schwefel function was

modified to turn the problem into a maximization problem with global best performance value

being 0. Figure 5.13 shows a plot of the final results for one of the experiments. From Figure

5.13, it can be seen that although the simulation started with 9 schools, as the population’s

average fitness improved, the number of schools decreases to a final count of 2 matching the

number of environments. The PA mode of behavior dominated during the whole simulation.

Such a behavior was not expected. The Schwefel function, like the Griewank function, creates

deceptive attractors all over the search domain. However, both PA and FF are not used the same

way in this experiment as they were in the previous experiment.

Figure 5.13. SGA results per generation for experiment set 4 – Schwefel

Table 5.10 shows the contents of the SGA’s tabu list for experiment set 4 with Schwefel.

Along with the locations are listed the composition, school and environment. Unlike other

experiments, the tabu list has more heterogeneous schools (school made of fish from different

environment). Within the LCE context, heterogeneous school would represent groups of diverse

products that can scale out when used together.

101

Table 5.10

Tabu list contents for experiment set 4 – Schwefel

Center of mass from tabu List Tabu

Performance

#fish

From A

fish

From B

Total

Design Operational Environmental

-250.589 200.4185 A -668.096 4 0 4

52.03411 -177.402 B -674.953 3 6 9

43.96935 -196.146 B -628.541 2 6 8

190.3945 85.05112 A -641.294 1 1 2

-46.2981 57.2122 B -760.096 3 45 48

-48.6146 -214.007 B -618.408 0 3 3

-66.2954 60.12544 A -714.58 6 0 6

-53.8317 53.7223 A -744.667 11 3 14

386.7243 59.9561 A -496.749 1 0 1

-76.0 -60.9655 A -727.712 5 3 8

193.3622 29.97805 A -671.441 2 0 2

-78.8 52.95076 A -752.547 10 0 10

-183 155.5399 A -704.687 1 0 1

-212 -14.4036 A -652.891 1 0 1

-185.958 19.295 A -693.135 14 0 14

221.7683 4.757077 A -672.518 1 0 1

-225.367 1.062059 B -692.607 4 16 20

-187 2.3209 A -668.605 36 0 36

-223 -1.00857 A -681.406 32 0 32

-187.419 -24.846 A -692.896 17 0 17

-381.054 -4.83064 A -597.112 30 0 30

-412.277 -7.06338 A -425.163 38 0 38

-423.489 -5.21758 B -415.84 12 54 66

102

The contents of the tabu list were used to calculate the TPI values. The values for the

design and the operational parameter were 0.8102 and 0.4144 respectively. The interpretation of

those values follows the same logic as previously used.

Similar to the previous experiments, the final population lost its diversity because of the

premature convergence the GA. Figure 5.14 shows the plot of the contents of the experiment’s

tabu list. The best performance for environment A is represented with red dotted circle, whereas

environment B is represented with black stars. The plotting shows some areas of the design and

operational spectrum where performance will favor one environment at the expenses of the other.

Those are areas where only a concentration of best performing products from one type of

environment is observed. The plot also shows area of the same spectrum were a product

manufactured for environment A, is expected to perform equally well if moved to environment

B. Those are areas where there is an overlap between a red dot and a star.

Figure 5.14. Tabu list contents plot for experiment set 4 – Schwefel

5.5.5 Environment, design and operations all driving performance. Performing

experiments with more than three parameters and comparing the results obtained to other known

103

GA-based approaches make possible seeing the potential benefit of grouping on GA, as well as

the possible use of SGA as a general optimization method. GA is a trial and error method to

problem solving. GA is solution-oriented and makes no attempt to discover why a solution

works; merely that it is a solution. SGA on the other hand was built to not only discover

solutions that work, but also solutions that share some common characteristics so they can

grouped to make them scale. The purpose of the experiments carried out in this section was to

determine whether the grouping feature built into SGA make SGA a lesser metaheuristic

performer when compared to other well-known GA derivatives. Two sets of experiments were

carried out for this case.

5.5.5.1 Using Ackley to characterize LCE’s relationship. The Ackley’s function was

modified to turn the problem into a maximization problem with global best performance value

being 0. Figure 5.15 shows a plot of the final results for one of the experiments.

Figure 5.15. SGA results per generation for experiment set 5 – Ackley

From Figure 5.15, it can be seen that as the population’s average fitness improves, the

number of schools decreases to a final count of 2. The predator avoidance (PA) mode of

behavior dominated during the whole simulation. Table 5.11 shows the contents of the SGA’s

104

Tabu list for experiment set 5 with Ackley’s function. Along with the locations are listed the

composition, schools, and environment.

Table 5.11

Tabu list contents for experiment set 5 – Ackley

Center of mass from tabu List Tabu

Perform.

fish

From A

fish

From B

Tot

Design Design Operation. Operation. Environ.

258.00 -224.77 -236.931 -152.174 A -20.8506 3 0 3

-0.9928 165.980 224.9858 -119.284 A -20.7190 4 0 4

61.885 203.219 66.9298 -65.0451 B -20.7005 0 5 5

342.91 -203.80 -240.03169 -185.0174 A -20.5072 2 0 2

11.129 183.018 14.9800 16.9225 B -20.2851 0 5 5

124.17 -227.93 -70.0579 64.9784 A -20.4186 2 2 4

44.911 55.1262 236.0550 -65.902 B -20.4305 0 1 1

115.00 -59.997 -37.170105 49.027457 B -20.3397 0 1 1

115.00 -59.997 -37.1701 49.0274 A -20.3396 2 1 3

 The contents of the Tabu list were used to calculate the TPI. The TPI values for the

design parameters were 0.3439 and 0.4312. The TPI values for the operational and

environmental parameter were 0.4761 and 0.25 respectively. With low TPI values, a designer

can change the specification limits on all LCE parameters. Such a change of specifications

without impact of the observed performance can significantly lower the overall production cost

of any product/system.

105

Once again, a convergence of the underlying GA was observed, as the final population

completely lacked diversity. Therefore, the school mechanisms built into SGA appear to not

prevent premature convergence. However, SGA returns more information besides the final

solutions. SGA allows the engineer to get an idea on how the underlying life cycle processes a

product goes through during its life affect its performance or operational efficiency.

The implementation of parallel GA (PGA) that was made had a total of five

subpopulations evolving separately from one another. The number of five has no specific

meaning. Each subpopulation had access to the entire search domain. Figure 5.16 shows the

evolution per generation of the PGA implementation.

Figure 5.16. Average population fitness over time with PGA for experiment set 5 – Ackley

Table 5.12 represents a sample of the final population obtained after running PGA.

Although no better results were achieved by PGA when compared to those recorded by SGA, the

final population in PGA has a lot more diversity than that of SGA.

106

Table 5.12

Sample of final population for PGA experiment set 5 – Ackley

Population

Design Design Operational Operational Environment Performance

-164.799 -481.572 143.7725 -50.9452 B -21.5891

-150.984 -129.014 45.69213 -48.8014 B -21.0889

-152.78 42.47536 -0.91078 -143.042 B -21.4305

134.262 -24.4091 -17.4822 3.941685 A -21.9349

-10.1991 -158.589 19.10951 -50.6574 B -21.7926

157.0182 180.3656 -10.7803 246.5109 A -21.8312

-110.008 9.519213 -55.0603 157.9034 A -21.167

54.69766 28.84379 87.06999 20.79368 A -21.2958

-30.1471 265.754 -37.3501 -48.7556 A -21.6995

-66.0542 165.0322 75.19613 104.2058 B -20.8368

32.89862 -79.0304 -54.6876 297.3046 A -21.4126

-166.391 -3.13498 328.9591 -93.6539 A -21.6443

48.71317 -351.099 128.035 -93.0879 B -20.8908

-247.845 216.9395 3.951581 229.2697 A -20.9307

The implementation of island GA (IGA) that was made had a total of five subpopulations

evolving on separate islands from one another. However, a migration operator was available to

IGA that every 30 generations, would allow the islands to exchange in a round-robin way, up to

107

5 of their best solutions as a way to re-introduce diversity within a given island. Figure 5.17

shows the evolution per generation of the IGA implementation.

Figure 5.17. Average population fitness over time with IGA for experiment set 5 – Ackley

Table 5.13 represents a sample of the final population obtained after running IGA. Here

also, no better results were achieved when compared to SGA. Also, unlike SGA, the final

population in IGA has a lot more diversity.

Making an overall comparison based on the quality of the final population (final

population average fitness), SGA appears to be performing slightly better than both PGA and

IGA. Therefore, the grouping feature built into SGA seems to keep the quality of the solutions at

worst at the quality level of PGA and SGA.

108

Table 5.13

 Sample of final population for IGA experiment set 5 – Ackley

Population

Design Design Operational Operational Environment Performance

59.17157 149.4894 78.91444 -44.9946 A -21.3225

-51.3367 67.59259 -58.8961 -185.948 B -21.6164

-6.18678 -127.84 -0.44204 14.86595 A -21.5407

-16.9806 -66.4336 377.3741 -265.759 A -21.85

36.25633 149.859 -100.201 -98.6796 A -21.5935

-124.87 -63.334 6.866562 -211.447 A -21.7417

79.23545 -131.754 -107.063 -82.734 A -21.4536

-37.0189 -45.1076 -44.081 -148.812 B -20.588

-153.066 -290.224 62.93955 -140.625 A -21.3334

38.14309 60.99853 407.2399 -113.165 A -20.9871

-135.449 -44.9966 239.352 46.58049 B -22.0175

149.4617 104.3652 152.6735 55.39732 A -22.2333

-29.057 -43.0327 261.2078 341.5205 A -21.3733

11.56537 -149.069 -154.211 -148.015 A -21.3592

106.5239 128.9473 -398.941 -297.036 A -21.1254

-48.8613 233.3871 28.19601 -116.926 A -21.3975

5.5.5.2 Using Schwefel to characterize LCE’s relationship. The Schwefel function was

modified to turn the problem into a maximization problem with global best performance value

109

being 0 with six parameters. Figure 5.18 shows a plot of the final results for one of the

experiments.

Figure 5.18. SGA results per generation for experiment set 5 – Schwefel

From Figure 5.18, it can be seen that the simulation started with 23 schools, and as the

population’s average fitness improved, the number of schools decreases to a final count of 2. The

PA mode of behavior dominated during the whole simulation. Table 5.14 shows the contents of

the SGA’s Tabu list for experiment set 5 with Schwefel. Along with the locations are listed the

composition, school, and environment.

The contents of the tabu list were used to calculate the TPI. The values found were

0.1205 and 0.5988 for the design parameters, and 0.4281 and 0.4255 for the operational

parameters. The interpretation of those values follows the same logic as previously used.

110

Table 5.14

Tabu list contents for experiment set 5 – Schwefel

Center of mass from tabu Tabu

Perform.

fish

From A

fish

From B

Tot

Design Design Oper. Oper. Envmt Envmt

210.499 -44.3764 -211.401 -58.9357 -421 -421 -1215.6 12 0 12

203.901 -54.981 -186.05 -57.551 -421 -421 -1211.7 12 0 12

128.126 391.989 216.716 74.3986 421 421 -1240.4 0 1 1

214.337 4.01311 -170.286 203.008 -421 -421 -1210.0 3 0 3

200.08 -187.992 216.413 100.685 421 421 -1187.2 0 2 2

93.820 -8.093 -203.508 366.578 -421 -421 -1386.1 3 0 3

193.668 -206.812 174.553 133.469 421 421 -1290.0 0 47 47

190.887 -192.707 194.522 117.762 421 421 -1232.7 2 44 46

210.410 -75.729 7.47638 189.982 -421 -421 -1247.9 1 1 2

199.587 -190.474 210.934 105.087 -421 -421 -1185.6 23 2 25

111

Here also, the SGA converged. Table 5.15 shows a sample of the final population.

Table 5.15

Sample of final population for SGA in experiment set 5 – Schwefel

Population

Design Design Oper. Oper. Envmt. Envmt. School ID Performance

199.726 -189.773 212.4815 103.8441 -421 -421 1 -1185.686114

199.726 -189.773 212.4815 103.8441 -421 -421 1 -1182.902624

199.726 -189.773 212.4815 103.8441 -421 -421 1 -1182.897779

199.726 -189.773 212.4815 103.8441 421 421 1 -1181.014161

199.726 -189.773 212.4815 103.8441 421 421 2 -1183.284507

199.726 -189.773 212.4815 103.8441 421 421 2 -1181.469692

 The same implementation of parallel GA (PGA) was modified to use a phenotype of

length six and was run with subpopulations evolving separately from one another. Figure 5.19

shows the evolution per generation of the PGA implementation.

Figure 5.19. Average population fitness over time with PGA for experiment set 5 – Schwefel

112

Table 5.16 represents a sample of the final population obtained after running PGA. Unlike SGA,

the final population in PGA did not converge and therefore, has a lot more diversity.

Table 5.16

Sample of final population for PGA experiment set 5 – Schwefel

Population

Design Design Operation Operation Environment Environment Performance

-110.764 110.6206 114.1634 -122.78 421 421 -2103.88

-25.7738 -152.613 168.5419 -135.198 421 421 -1773.22

-234.052 -91.0003 123.9331 163.4755 421 421 -1680.41

-149.203 -41.7851 150.3702 -21.3514 -421 -421 -1786.03

-46.3813 -211.623 100.9683 192.426 -421 -421 -1331.79

-180.18 105.9761 -330.7 -46.8641 421 421 -1799.66

-117.068 10.2877 115.6455 81.87175 -421 -421 -1874.06

235.6803 -159.186 -163.512 218.4388 421 421 -1375.04

-37.0359 281.4288 -71.315 91.45364 421 421 -1883.17

-85.9352 44.27344 193.3139 33.32065 421 421 -1474.88

-320.59 141.7975 155.5812 116.4146 421 421 -2150.88

18.55694 -31.4216 37.39198 -144.287 -421 -421 -1794.91

-85.6409 112.4326 245.2906 64.79873 421 421 -1690.4

225.2474 77.72268 1.193966 27.54271 -421 -421 -1509.05

4.131756 -450.11 -114.329 -130.813 -421 -421 -1584.54

223.6794 -55.4336 78.82555 21.12316 -421 -421 -1452.28

113

The same implementation of island GA (IGA) was modified to use a phenotype of length

six and was run with subpopulations evolving separately from one another. Figure 5.20 shows

the evolution per generation of the IGA implementation.

Figure 5.20. Average population fitness over time with IGA for experiment set 5 – Schwefel

Table 5.17 represents a sample of the final population obtained after running IGA. Unlike

SGA, the final population in IGA has a lot more diversity.

Once again, making an overall comparison based on the quality of the final population

(final population average fitness), SGA performance appears to be just as bad as either PGA or

IGA. Therefore, the grouping feature built into SGA seems not to be affecting the ability of GA

to successfully perform metaheuristic search.

114

Table 5.17

 Sample of final population for IGA experiment set 5 – Schwefel

Population

Design Design Operation Operation Environment Environment Performance

75.329 -167.453 -262.074 300.293 -421 -421 -1984.768

-33.249 154.567 341.833 -63.650 421 421 -1770.517

83.422 -122.429 294.779 -45.117 421 421 -2048.165

-186.50 175.472 -61.005 206.677 -421 -421 -1138.464

-18.631 -8.129 -133.941 98.169 421 421 -1848.615

-364.10 107.688 443.436 101.915 421 421 -1386.967

-138.43 119.805 -320.32 224.222 -421 -421 -2005.699

130.081 -346.562 -287.362 133.558 -421 -421 -2260.600

13.845 -251.76 -202.456 -190.149 -421 -421 -1342.991

258.964 55.81715 -328.877 -61.453 -421 -421 -1875.343

52.933 228.1491 -420.826 121.588 -421 -421 -1204.704

40.352 -220.977 -66.664 98.310 -421 -421 -1491.028

29.213 58.4483 -39.935 -114.615 -421 -421 -1749.626

493.048 385.762 -107.189 5.968 421 421 -1588.027

5.6 Summary

Within this chapter, schooling genetic algorithms (SGA) was applied to the GLPD

methodology of continuous product design. Simulations of SGA were carried out according to a

set of factors including the relationship between LCE parameters, the number of parameters, and

115

the shape of the search domain. The quality of the solutions returned by SGA was assessed using

different criteria including the TPI values for each LCE parameter type, and the distribution of

behavioral mode.

A first set of experiments (1-4) was successfully carried to better understand how SGA

works on different types of environments, and how the SGA built-in grouping shapes both the

search process and the interpretation of the returned results. As the nature of the LCE

parameters’ relationship gets more complex, SGA appears to return more heterogeneous groups

when the density of deceptive attractors within the search domain is low (Schwefel function).

Similarly, SGA appears to return more homogeneous groups when the density of deceptive

attractors within the search domain is high (Griewank, Ackel function).

A last (5
th

) set of experiments that was carried to assess the impact of grouping on the GA

search process by comparing SGA to both parallel GA (PGA) and island GA (IGA) proved

conclusive. The grouping mechanism appears not to negatively impact SGA. However, further

experiments with different type of LCE parameter relationships would be necessary to decide

whether the metaheuristic search process of GA was improved as suggested by the results from

one of the sets of experiments.

Overall, the SGA would converge even when GA, PGA and SGA will not. By returning

the average best solutions that were found and stored within a recency list, SGA provides a view

of the series of improvements a group of products has gone through. With some of the

experiments the SGA was able, via the TPI values, to provide insights on better specification

limit for LCE parameters.

Table 5.18 summarizes the results of all the experiments.

116

Table 5.18

 Summary of experiments on SGA

SGA Summary

Linear & Polynomial

Performance

Griewank & Schwefel

Performance

Ackley & Schwefel

Performance

Convergence observed within

population for both

environments

Some delimited characterization

of LCE parameters relationship

for both environments

Performs better than

IGA and PGA on

optimization

Good characterization of LCE

parameters relationship for both

environments

Food foraging and predator

avoidance were both frequently

used

Tabu shows that best

schools are small schools

School maintenance observed as

the predominant behavior for

schools

TPI values indicate where

parameter range can be reduced

TPI values indicate

where parameter range

can be reduced

TPI values indicate where

parameter range can be reduced

Final best school centers in tabu

indicate the presence of multiple

attractors within the search

domain

Predator avoidance

observed as the

predominant behavior

 Center of mass capturing best

solutions for both environments

were found

Population average

fitness quickly rise and

stabilizes

117

CHAPTER 6

Genetic Social Networks

Genetic Social Networks (GSNs) are GA-based models that enable process and operator

adaptability by mimicking social networks. In GSN, operators behave differently depending on

the perceived immediate area of the search domain, and on social networking connections and

dynamics. This chapter serves as an introduction to GSN.

6.1 Introduction

GAs have been successful at solving problems in a variety of engineering fields ranging

from engineering cost control to the design and the implementation of systems (Hassan, Azubir,

Nizam, Toha, & Ibrahim, 2012; Sarkar, Mandal, Saha, Mookherjee, & Sanyal, 2013; Toulabi,

Shiroei, & Ranjbar, 2014). Applications of GAs to complex design optimization problems rely

on population’s diversity in order to generate solutions that are acceptable. GAs are a trial and

error approach, and as such, GAs are solution-oriented, and problem-specific (do not attempt to

generalize a solution to other problems). GAs require little knowledge to get started, and are

typically good for problems where there are multiple chances to get the best solution. Such

problems are common in engineering design.

However, when solving for a problem in general, and for a design problem in particular,

solutions with given characteristics are sometimes desirable. Such characteristics include

evolvability; have some system efficiency due to the economy of scale, or the ability to

continuously operate with minimal intervention. Solving a problem by looking for solutions with

the described characteristics is difficult for GAs. But building on the strengths of GAs, the

motivation for using social networks comes from the dynamic nature of the component of social

networks: people or organizations. Within social networks, individuals can join or leave a group

118

at any time. Social networks are resilient and scale naturally (A.-L. Barabási & Albert, 1999; A.

L. Barabási et al., 2002). The adaptability and scaling features of social networks are important

and desirable in life cycle engineering (LCE). By mimicking social network interactions, the

main objective is to come up with LCE solutions possessing the same characteristics as those of

social networks.

This chapter presents a new approach to GAs. The approach is carried out by adding

social networking behavior to GAs. In order to assess the suitability of social networking

behavior to search heuristics, a model is designed that mimics a population of individuals who

are socially networked. The proposed model is called genetic social network (GSN). It is further

described in the next sections.

6.2 GSN Overview

Social networks (SNs) are social structures made up of a set of social entities (such as

individuals or organizations) and a set of interactional ties between these entities. The growing

trend and rise in power of some social networks such as Facebook or Twitter have driven

increased research. Social network’s modeling serves at least two purposes. First, such modeling

promotes understanding of social networks formation and evolution. Second, studying network-

dependent social processes by simulation can be used to specify or anticipate the structure of

social networks’ interactions (A. L. Barabási et al., 2002; Eubank et al., 2004). GSN serves a

third purpose: mimicking and applying high level social network concepts to problem solving.

A GSN is a hybrid model that combines social network dynamics with GAs. GSN applies

nodal attribute models (NAMs) with an evolutionary aspect to traditional GAs. NAMs are social

networks models where the probability of each link existing within the network depends only on

nodal attributes, the local network structure being irrelevant (Toivonen et al., 2009). NAMs have

119

also been described by the term spatial models (Boguna, Romualdo, Diaz-Guilera, & Arenas,

2003; Wong, Pattison, & Robins, 2006), to refer to the fact that the attributes of each node

determine its ‘location’ in a social or geographical space. NAMs represent one of the main two

categories of models existing in physics-oriented network literature (Toivonen et al., 2009). The

other category, network evolution models (NEMs), is characterized by the addition of new links

(friends joining), based on the local network structure. NEMs focus on network evolution

mechanisms, and are used to predict the outcome of a network growth based on specific network

evolution mechanisms observed within that network. GSN uses a distance-based scheme

(referred to as influential distance) to determine the membership of an individual to a specific

group sample (group of friends) of a population. GSN applies NAMs by assigning probabilities

to edges forming between two nodes (respectively nodes i and j) as a function of the

attributes of nodes i and j only.

GSN adds social network concepts to GAs, by implementing single and dyadic social

interactions of social groups with GA operators (crossover and mutation). GSN does this by

viewing a whole GA population as a graph, and using both the fitness values and the strengths of

the created links/bounds to assess whether a node (an individual from the population) is fit for

mating. In GSN mutation is used to implement single social interactions, whereas dyadic social

interactions are implemented via crossover.

To mimic social interactions concepts with groups, GSNs introduce the following

notions:

- theme

- group

- term

120

- leader, and membership

Themes are candidate solutions, not part of the original population, which are either

carefully or randomly selected by the GSN. Real life group themes could be: fashion, hip hop,

soccer…. Themes are first set at the beginning of a GSN simulation, and updated periodically, at

the beginning of each term. A group is organized around a single theme. The number of themes

(therefore groups) to be used by GSN is a design decision and can be set to any arbitrary value.

Terms correspond to the number of GA generations an individual gets to be the leader of a group

before group themes are updated. Group themes are updated at the beginning of every term to

keep up with the changes that have occurred within the population. as a result, the themes

themselves evolve as the population evolves. Themes are used to select the leader of their

groups. Leaders’ selection occurs at the beginning of a term. Leaders are among the most fit and

theme “knowledgeable” individuals of the population. An individual becomes a group leader

when two conditions are met. First, of all the individuals making up the population, an individual

must have the highest similarity (proximity) to any given theme. Second, the fitness value of that

individual must be higher than an arbitrary threshold value set at the beginning of the simulation.

The requirement for the highest similarity to the theme is to mimic the expertise of a group

leader as the most knowledgeable individual of his group. The requirement on the fitness value

of the leader is to only allow “strong” individuals as group leaders. The use of two requirements

for a group leader also makes it impossible for any individual within a well-diversified

population, to lead more than one group at a time. Finally, there is a membership concept

characterizing the level of belonging of an individual to a group. In GSN, an individual’s

membership level to a given group is expressed as a rational number (0.0 to 1.0). The

memberships of individuals to groups change constantly causing the population to dynamically

121

reorganize itself according to the formation of links between its selected leaders and the

population. Those constant reorganizations are based on the ability of leaders to influence others.

Such ability is represented in GSNs as a gravitational pull. The higher the leadership ability of an

individual, the higher is the leader’s ability to form links/bounds that yield dynamic mating

scheme called proportionate breeding.

In GSN, the structures observed within the social network are explained by the

interactions of individuals, with reference to their intrinsic properties (ability to influence peers).

In social networks, links are created based on assumptions about the local mechanisms of tie

formation, such as people meeting friends of friends, and thus forming connections with their

network neighbors (triadic closure) (Granovetter, 1973). GSN uses a different approach by

automatically creating links from all individuals (also referred to as solution or configuration

when within the context of LCE problem solving) to the group leaders. The approach of GSN is

simple, enables a global (population wise) linkage mechanism.

Figure 6.1 shows a graphical representation of a GSN with nine individuals and two

themes. Since there are two themes, there are groups that are formed and therefore two leaders.

Figure 6.1. Genetic social networking

122

The two leaders are represented by the individuals with more than two links connected to

them. Each group is also characterized by the color of the link. The thickness of the links

represents the level of membership of the corresponding individuals to the given groups. Fit

individuals with high level of membership to a group have a higher selection probability for

mating and lower selection probability for culling.

6.2.1 Gravitational pull. Also known as the sphere of influence’s value, this is a value

quantifying the influence a leader has on the population. The gravitational pull is proportional to

both a leader and a follower fitness values, and inversely proportional to the squared distance of

the follower to the leader. A follower is any individual that an individual who is not a leader. The

gravitational pull by the leader of group i on individual j, calculated at the beginning of each

term, is given as:

where is the fitness of the leader of group i, is the fitness of the potential follower j, and

 the Manhattan distance leader to potential follower.

6.2.2 Proportionate breeding. During the mating process, group level proportionate

breeding is observed. Proportionate breeding stems from the fact that each generation, each

group is allowed to gain a certain number of new members. GSN rewards groups based on their

overall fitness and on their size. For example, large groups of individuals with fitness values

around the overall population average can be given the same opportunities to gain new members

as small groups of highly fit individuals.

Assuming a constant number of crossovers and mutations for each generation, a group

breeding proportion is calculated based on its relative size and performance level. The proportion

indicates the percentage of new members allowed for that term for that group. With social

123

groups in the environment composed of individuals, where the performance of individual 𝑗 in

group , denoted , is calculated as the product of individual j fitness by its membership level

 within group i. The allocation of the numbers of new members NMi to group i is calculated

as:

 ∑

∑ ∑

=
 ∑

∑ ∑

The performance of individual 𝑗 in group is calculated as the product of their fitness

by their membership level as a way of rewarding “committed” members. Proceeding this

way, groups with high performing (high membership and fitness values) members have a higher

probability of thriving compared to groups of either smaller size, or less high performing

individuals. The next section is about the GSN procedure and includes a high level pseudocode

description of GSN algorithms.

6.3 GSN Procedure

Themes { } are created first. The number of initial themes determines the upper

limit for the number of groups that will ever exist at one point of time within the environment.

Themes and individuals are encoded with the same phenotype. This way, it is possible to define

and use a similarity measure between individuals and themes. Such a measure mimics the

affinity of an individual to that given theme. A non-exhaustive list of usable distance and

similarity measures is available in (Cha, 2007). Assuming that the Sørensen distance

represents the similarities between individuals Ij and the existing themes, the leader of group i

would be the individual meeting the following two requirements:

{
∑ | |

∑ ()

}, and

124

where is the fitness value of individual j, and the previously described threshold value. To

be problem independent, ould be set as a given percentage of the current best fitness value.

If no individual meet both requirements for a given theme during any term, the GSN will then

only run with the other groups during that term. The group without a leader will be considered as

dormant. Such situations are likely in social networks where a group can be inactive just because

of lack of membership or of appropriate leadership. If more than one individual is eligible to the

leadership role, then the first found candidate is selected.

Following the emergence of leaders due to their affinity level (determined by their

relatively strong similarities to the existing themes), links from leaders to followers are formed

based on the influences of group leaders. Choosing leaders instead of the themes as the attraction

is because a leader, unlike a theme, already has the obligation to be a “good” candidate solution.

Therefore, relying on leaders for the attraction is likely to yield a higher performance for the

followers. Every individual is modeled as belonging to all groups, with a given level of

membership. Fuzzy membership is used to represent levels of membership to groups.

Figure 6.2 shows a high level diagram of GSN. Similar to SGA, GSN is adaptive and

does not follow the systematic execution flow of GA operations. A group that is expanding will

need to do more exploration (using the GA mutation operator) in order to become more diverse,

whereas a group that is specializing will capitalize on the strengths of its members only.

Figure 6.2. GSN high level diagram

125

6.4 GSN Modeling

The modeling of GSN involves the different processes of GSN along with the underlying

concepts. GSN most notable features are its ability to group individuals based on their common

interests, and to exploit the grouping. The grouping feature relies on the ability of individuals to

create and maintain links.

6.4.1 Joining and leaving groups. Figure 6.1 showed an example of social network with

two themes. Within the network, each group is a subset of the social network. The GSN

algorithm is implemented so that each group has exactly one leader. Since each group is based

on a given theme set at the very beginning of the experiment, individuals join groups based on

their level of affinity with the leader of that group. Because leaders, rather than themes, are used

to attract members, the GSN always assigns a membership value of 1.0 to all the leaders. The

membership level of the other members to the group, after they join, is determined by the pull of

the leader of the group.

Let us have the Sørensen distance represent the similarity between individuals Ij and

the existing themes. Let represent the membership level of individual Ij to group i, the

fitness value of individual Ij, and the value of theme at term t +1. Let represent

the normalization factor of the gravitational pull that is used to ensure that is within the (0.0

1.0) range, with the membership of a leader being 1.0. Finally, let , represent the fitness value

of the leader of group i, and the distance from group leader to follower j. The following are

the expressions of some of the dynamic concepts related to joining and leaving groups:

 𝑗

126

∑

∑

6.4.2 Fuzzy membership. The current unique purpose of the memberships is to drive the

search process. Using fuzzy membership, each individual may be represented as a member of all

of the existing groups, but with different levels of membership. Only two types of membership

exist within any group: a leader, and a follower. A member of a group, leader excluded, has a

level of involvement in the group that depends on their membership level.

In GSN, it is assumed that brand new members (whether created by crossover of

mutation) to a group would join because of the attributes of their friends. For that reason, the

level of membership is an inheritable characteristic. Therefore, pending a reassessment of themes

at the end of a leadership term, the level of membership of offspring (new members to a group)

is calculated differently depending on whether the offspring is a result of a crossover or a

mutation. Such an approach is used to account for the differences between the crossover and the

mutation operators: the former requires at least two parents from which a child would inherit

characteristics, whereas the later requires one. Considering crossover, the new member’s level of

membership will then be a fuzzy AND of the parents’ level of membership. This way, the

offspring only gets the best from their parents. Considering mutation, the new member’s level of

membership will be a fuzzy OR of the single parent with random values (0.0 1.0). This way, the

offspring gets a chance of exploring the network as a whole. Both cases are summarized below:

The application of GA operators is based on groups. But since individuals belong to all

groups with various levels of memberships, each individual gets a chance to participate to

127

crossover and mutation within all the available groups. Proceeding further, when choosing the

candidate parents, GSN uses weighted roulette-wheel selection (SCX), a form of fitness

proportionate selection. Except that performance, instead of fit ness, is used within the selection

process. The weighted SCX takes into consideration the level of membership of individuals

within the group when computing the chances of being selected. Let G be the population size of

the GSN. The probability of individual selection (for either crossover of mutation) of

individual j from group i is given as:

∑

∑

The GSN life cycle represents the steps required for implementing a GSN algorithm

based on the given concepts. The life cycle of GSN is rather short. A high level overview of the

GSN is given next.

Algorithm 2. Genetic Social Network High Level Metaheuristic

Set the parameters, initialize the population

while termination condition not met do

 Set/update the themes for each group

 Organize individuals in groups based on group theme

 Assign Leadership role based on parameters’ values

 Reset all term counters for newly elected leaders

 while term counter still running

 Foreach group within the world:

 Calculate the number of new members that are allowed

 Apply GA operators based on the number of new members and group dynamics

 Increment term counter for leaders

 Endforeach

 Proceed with culling via reduction to keep overall population size constant

 endwhile

endwhile

128

6.5 Summary

Within this chapter, genetic social networking (GSN), a new metaheuristic created to

work on problems where scaling and sustainability are characteristics of the solution was

developed, explained, and discussed. GSN mimics social networking and uses GAs that it

extends with some new concepts. GSN develops and implements the concepts of group joining

and leaving, and of group fuzzy membership. GSN defines and uses the concepts of group, term,

theme, membership, and leader to mimic and track dyadic links within a social network. To

finish, a high level overview of GSN was provided.

129

Chapter 7

Applying Genetic Social Networks to Generalized life cycle product design

7.1 Introduction

Genetic social networks (GSNs) are GA-based metaheuristics emulating social

networking dynamics, and designed for problems where evolvability, grouping, and

sustainability are characteristics of the solution. Generalized life cycle product design (GLPD) is

a PLE-based approach for product design that uses LCE-data characterization to assist system

engineers with their design process. The product design process is complex and costly. It relies

on expert knowledge. In this chapter, the applicability of GSN to product design, using GLPD, is

investigated. Using simulated life cycle engineering data, different case scenarios are envisaged

to assess GSN as an analytic tool for better product design.

7.2 Applying GSN to GLPD

The GLPD approach is proposed as an attempt to define a life cycle based sustainable

design process. The aim of the GLPD is to capitalize on biologically and sociologically inspired

design to create product configurations that can evolve, group, and sustain. Figure 3.6 shows the

GLPD approach. Considering the highly scalable nature of social networks, structures that

GSNs mimic, how do we use GSN to incorporate evolvability (evolution in design and

operational parameters of products and product’s parts), grouping (based on environmental

parameters related to a product), and sustainability (ability of the system to maintain and

improve itself) into a product attributes?

In an attempt to answer the question, GSN will be applied to the GLPD representation.

Using simulated PLE-data generated for a product, a product’s DNA, as displayed in Figure 7.1,

was created and was used as an input to a GSN algorithm.

130

Figure 7.1. Transformation of a designed product into a GA entity

The GSN concepts, within the LCE context, take the following meanings:

- A theme is one of the early better configurations the systems engineer came up with for a

product/system. It is a conceptual configuration.

- A leader is a current good configuration for a product/system. Defined this way, the role

of a leader is to coordinate the improvements of a group based on constantly updated life

cycle parameters. A leader is a prototype or most closely configured fielded system.

- A group is a set of configurations with common characteristics. Since all solutions

(product/system configuration) are members of all existing groups with some level of

membership, then the notion of group makes better sense within a meaningful definition

of membership.

- A membership level is assigned as a prerogative of a group leader. Therefore, the higher

the membership of a candidate solution is, the lesser is the variability between that

solution the leader of the group.

7.3 GSN Approach to the Problem

The objective is to find out the potential benefits of using GSN and GLPD in the design

process of a system/product. Using the PLE-data generated by a product, a product DNA, as

displayed in Figure 7.1 was created and was used as an input to a GSN algorithm. Within the

131

designed GSN test bed, values for n, m, and p varied from 0 to 2. When applying a fuzzy or GA

operator to a solution, the environmental phenotypic value is given special care so both its

permissible values (discrete only), and proportion are preserved in between generations.

Using probability distributions, constrained random values were generated that

represented the design, operational and environmental parameters of a hypothetical product.

Simulations were then carried using one or more parameters of each type. LCE data was

generated to test GLPD with GSN for the following scenarios described in the following

sections:

- Environment driving design for performance

- Environment driving both design and operation for performance

- Environment and design both driving operations for performance

- Environment and design only driving performance

- Environment, design, and operations all driving performance

7.4 Experimental Design

For the experiments/simulations, each candidate solution was an n-dimensional vector of

the search space, where n is the sum of the number of parameter (of each kind) used. Each

dimension or independent product performance parameter was coded with a 10-bit string value

(actual decimal values falling within the range of -500 to 500). The size of the population was set

and maintained at 120 individuals. The proportion for each environment was 55% for

environment A, and 45% for environment B. The stopping criteria was set to be either the

maximum number of generations (set to 1000), or the lack of improvement of the average fitness

value of the population for three consecutive generations, whichever came first. Each experiment

was repeated three times and the recorded assessment criteria were: (1) the number of

132

generations it took for GSN to converge (if convergence occurs), (2) the solutions returned, and

(3) the quality of the final themes. Each simulation started with a population of individuals

randomly distributed (normally) across the search domain, followed by the environmental

parameter value(s) being assigned, using a uniform distribution, to each individual.

Table 7.1 shows the factors, assessment criteria, and methods that were used to assess the

quality of the experiments that were carried out. As far as the relationship is concerned (first

factor), five were tested as explained within the previous section. The number of parameters or

alleles changed from three to six. Linear, polynomial, Ackley, Griewank, and Schwefel functions

were all used to characterize the underlying shape of the search domain. Different assessment

criteria were used. For some experiments, GSN performance was also compared to island GA

(IGA) and parallel GA (PGA). Table 7.1 shows all the factors, assessment criteria, and methods

that were used to test GSN.

Table 7.1

Factors, assessment criteria, and methods

Factors Assessment criteria

Relationship }zationcharacteri LCE{ Number of generations to convergence

Size }/allelesparameters ofNumber { Quality of solutions obtained

Underlying shape

}Schwefel ,Polynomial Linear, Griewank, Ackley,{
Quality of final themes

Methods

Genetic Social Network (GSN) vs. }SGA IGA, PGA,{

133

7.4.1 Environment driving design for performance. The objective of the experiments

carried here was to determine the ability of GSN to effectively use grouping to converge on

separate environments, and to check the ability of GSN to effectively characterize the life cycle

parameters’ relationship. The relation used for the experiments was linear as follow:

{

 7.4.2 Environment driving both design and operations for performance. The objective of

the experiments was to determine the ability of GSN to effectively use grouping to converge on

separate environments, and to check the ability of GSN to characterize the life cycle parameters’

relationship. The relation used for the experiments was polynomial as follow:

{

7.4.3 Environment and design both driving operations for performance. The objective of

the experiments carried here was to determine the ability of GSN to effectively use grouping to

converge on separate environments, and to check the ability of GSN to characterize the life cycle

parameters’ relationship. The relation used for the experiments was linear as follow:

{

{

{

7.4.4 Environment and design both driving performance. The objective of the experiments

was to not only determine the ability of GSN to effectively use grouping to converge on separate

134

environments, but also to check the ability of GSN to operate on “noisy” life cycle data. Similar

to the previous experiments, a typical representation of a solution was picked to have three

parameters, one of each kind. Two different sets of experiments were carried. They differed in

the function that was used to generate the LCE relationship. The Griewank function was used for

the first experiment, and the Schwefel function was used for the second experiment. The

Griewank function (Griewank, 1981) is a standard test functions for unconstrained global

optimization, and it is used to test the convergence of optimization functions. It has many

widespread local minima regularly distributed, to act as attractor to deceive the search process.

The function that was used was a modified Griewank function to make the problem a

maximization problem. The function is defined by:

 (

√
)

The Schwefel function on the other hand is a deceptive function that has its global

minimum geometrically distant, over the parameter space, from the next best local minima.

Therefore, with the Schwefel function, the search algorithms are potentially prone to

convergence in the wrong direction. The function that was used was a modified Schwefel

function to make the problem a maximization problem. The function is defined by:

 ∑ √

 ; , ,

For , Figure 7.2 shows the typical Griewank function plotted for n=2.

135

Figure 7.2. Griewank function in [-100, 100] plotted using Matlab

7.4.5 Environment, design and operations all driving performance. The objective of the

experiments was to not only determine the ability of GSN to effectively use grouping to

converge on separate environments, but also to check the ability of SGA to operate on “noisy”

life cycle data. Unlike the previous experiments and setups, two sets of experiments were carried

here, each with a different representation of a solution. The Ackley function was first used to

model the LCE relationship, with each solution candidate having five parameters, one for the

environment, and two for each of the other kind. Then, a modified Schwefel function was used to

model the LCE relationship, with each solution candidate encoded with six parameters, two for

each kind.

The Schwefel function is a deceptive function that has its global minimum geometrically

distant, over the parameter space, from the next best local minima. Therefore, with the Schwefel

function, the search algorithms are potentially prone to convergence in the wrong direction. For

 , Figure 7.3 shows a plot of the Schwefel function. The Schwefel function is

defined by:

 ∑ √

 ; , , , ,

136

Figure 7.3. Schwefel function in [-100, 100] plotted using Matlab

On the other hand, the Ackley’s function function is a widely used multimodal test

function. It has the following definition:

 ([])
 √

 ∑

√

 ∑

]

 ; , , ,

For , Figure 7.4 shows a plot of the Ackley’s function.

Figure 7.4. Ackley's function in [-25, 25] plotted using Matlab

7.5 Results and Interpretation

For each set of experiments that were carried out, results were collected and an

interpretation provided. The following subsections show the typical results for each set of

experiment.

137

7.5.1 Environment driving design for performance. Figure 7.5 shows a plot of the final

performance values of the population for one experiment. The relative fitness values were used

to plot the fitness of the population. Relative fitness values were used to give each individual as

many relative fitness values as the number of existing themes. The relative fitness value of an

individual to a group was calculated as a product of that individual (absolute) fitness with their

membership level to that group. The group average fitness per generation was then calculated as

the mean of the averaged fitness values of the whole population calculated theme wise.

Figure 7.5. GSN results per generation for experiment set 1

Figure 7.5 shows that the population’s average performance improved over generations.

The improvements displayed in Figure 7.5 are not steady, proof of the impact of the membership

level values. Table 7.2 shows the population converged. A lack of diversity can be observed,

since that the convergence was to a single point for each environment.

138

Table 7.2

Sample of final population of GSN for experiment set 1

Population

Design Operational Environmental Fitness

350.0362 -246.5235797 A 0.999927602

150.0976 -171.6999546 B 0.999804854

From Table 7.3, it can be observed that the themes did not improve from start to finish.

This was not expected since that the themes contributed to the search process.

Plotting the final population gave Figure 7.6. Nothing further can be inferred from the

graph. The final population lack of diversity makes it impossible to capture the nature of the

LCE parameters’ relationship. The lack of diversity in the final population also makes the scaling

of the final solutions hard to achieve.

139

Table 7.3

Starting and ending themes in experiment set 1

Themes Start

Design Operational Environmental Fitness

65.1214 0.4947 A 0.4302

265.8169 -92.3475 B 0.7683

120.0846 -113.8714 A 0.5401

80.1779 -286.7696 B 0.8603

-271.4478 40.3410 A 0.2428

Themes End

Design Operational Environmental Fitness

40.0775 380.4257 A 0.3801

-483.2775 -467.6816 B 0.2665

145.0424 336.2579 A 0.5900

49.9128 375.1393 B 0.79982

194.6495 369.2472 A 0.6892

140

Figure 7.6. Final population plot for experiment set 1

7.5.2 Environment driving both design and operations for performance. Figure 7.7 shows

a plot of the final results for one of the experiments. From Figure 7.7, the population’s average

performance can be seen to improve.

Figure 7.7. GSN results per generation for experiment set 2

Table 7.4 shows a sample of the final population. The population converged. Like with

the previous experiment, a lack of diversity can be observed, since that the convergence was to a

single point for each environment.

141

Table 7.4

Sample of final population for GSN in experiment set 2

Final Population Sample

Design Operational Environmental Fitness

-234.27425 -350 A 1

201.075351 50 B 1

Figure 7.8 shows a plot of the final population. The algorithm had an environment wise

convergence. Although converging in this scenario is good, it does remove the diversity from

GSN. The red dotted line represents the relationship of LCE parameters to performance in

environment A, and the blue dotted line the same in environment B. From Figure 7.8, there is no

way to tell or approximate the LCE parameters’ relationship.

Figure 7.8. Final population plot for experiment set 2

7.5.3 Environment and design both driving operations for performance. Figure 7.9 shows

a plot of the final results for one of the experiments.

142

Figure 7.9. GSN results per generation for experiment set 3

From Figure 7.9, a trend similar to experiment set 1 and experiment set 2 is observable. A

quick look at the final population show that the algorithm converged. Table 7.5 shows a sample

of the final population.

Table 7.5

Sample of final population for SGN in experiment set 3

Population

Design Operational Environmental Performance

-350.049 -149.99653 A 1

-350 -147.21621 A 1

-102.348 -350 B 1

-102.348 -350 B 1

Figure 7.10 shows a plot of the final population. The algorithm had an environment wise

convergence. Convergence removes the diversity from GSN. Without diversity in the final

population, the scaling of the final solutions would be hard to achieve. There is no way to tell or

143

even approximate the LCE parameters’ relationship. The trend so far seems to be that GSN

would converge, and cannot be used to approximate an LCE parameters’ relationship to

performance.

Figure 7.10. Final population plot for experiment set 3

7.5.4 Environment and the design both driving performance. As mentioned during the

setup phase, two sets of experiments were carried out for this case.

7.5.4.1 Using Griewank to characterize LCE’s relationship. The Griewank function was

modified to turn the problem into a maximization problem with global best performance value

being 0. Figure 7.11 shows a plot of the final results for one of the experiments.

144

Figure 7.11. GSN results per generation for experiment set 4 – Griewank

There is a convergence after a steady but rapid average fitness growth. Table 7.6 shows a

sample of the final population.

Table 7.6

Sample of final population for SGN in experiment set 4– Griewank

Final Population Sample

Design Operational Environmental Fitness

-0.05237 491.7339 A -0.00137

-0.05237 491.7339 A -0.00137

-3.13813 -314.11 B -0.5588

-3.13813 -314.11 B -0.5588

Plotting the final population yields Figure 7.12 where the narrow range of values for the

design parameters shows the ability of GSN to resolve best solutions across and within

environment’s boundaries. However, there is not enough diversity within the final solution to try

and apportion the observed performance values to the solutions’ LCE parameters classes.

145

Figure 7.12. Final population plot for experiment set 4 – Griewank

 7.5.4.2 Using Schwefel to characterize LCE’s relationship. The Schwefel function was

modified to turn the problem into a maximization problem with global best fitness value being 0.

Figure 7.13 shows a plot of the final results for one of the experiments.

Figure 7.13. SGA results per generation for experiment set 4 – Schwefel

Figure 7.14 is the plot of the final population. The convergence of the algorithm is

denoted by the concentration of the final solutions at two locations of the design-operational

domain. However, population diversity was lost.

146

Figure 7.14. Final population plot for experiment set 4 – Schwefel

7.5.5 Environment, design and operations all driving performance. Performing

experiments with more than three parameters and comparing the results obtained to other known

GA-based approaches make possible seeing the potential benefit of grouping on GA, as well as

the possible use of GSN as a general optimization method. GA is a trial and error method to

problem solving. GA is solution-oriented and makes no attempt to discover why a solution

works; merely that it is a solution. GSN on the other hand was built to not only discover

solutions that work, but also solutions that are diverse so they can be grouped and scaled. The

purpose of the experiments carried out in this section was to determine whether the mimicking of

social interactions built into GSN make GSN a lesser metaheuristic performer when compared to

other well-known GA derivatives. Two sets of experiments were carried out for this case.

7.5.5.1 Using Ackley to characterize LCE’s relationship. The Ackley’s function was

modified to turn the problem into a maximization problem with global best performance value

being 0. Figure 7.15 shows a plot of the final results for one of the experiments.

147

Figure 7.15. GSN results per generation for experiment set 5 – Ackley

From Figure 7.15, it can be seen that as the number of generations increases, population’s

average fitness first remains constant before starting to improve at around generation 600.

Although the absolute best solution (0) was not reached, the group average fitness generation

shows that the relative fitness was close to the absolute best. Such a value for the relative

contrasts with absolute fitness values from Table 7.7. The contrast shows the importance of the

membership level values that can be leveraged via a modified aggregated performance

measurement to achieve better results. A sample of the final population is displayed in Table 7.7.

Table 7.7

Sample of final population for GSN experiment set 5 – Ackley

Population

Design Design Operation Operation Environment Fitness

2.4066 -9.9765 -1.9909 -1.8854 A -14.1942

-432.75 -257.25 -187.5 -492 B -21.7183

-290 424 -314 -278 B -20

-104 36 -180 -22 B -20

364 36 340 -336 B -20

2.4066 -9.9765 -1.9909 -1.8854 A -14.1942

148

Unlike SGA when tested in the same conditions, GSN had a diversity built into the final

population. The final population could be used for some further analysis.

The implementation of parallel GA (PGA) that was made had a total of five

subpopulations evolving separately from one another. Table 7.8 represents a sample of the final

population obtained after running PGA. Like GSN, the final population in PGA has diversity.

Table 7.8

Sample of final population for PGA experiment set 5 – Ackley

Population

Design Design Operational Operational Environment Fitness

-164.799 -481.572 143.7725 -50.9452 B -21.5891

-150.984 -129.014 45.69213 -48.8014 B -21.0889

-152.78 42.47536 -0.91078 -143.042 B -21.4305

134.262 -24.4091 -17.4822 3.941685 A -21.9349

-10.1991 -158.589 19.10951 -50.6574 B -21.7926

157.0182 180.3656 -10.7803 246.5109 A -21.8312

-110.008 9.519213 -55.0603 157.9034 A -21.167

32.89862 -79.0304 -54.6876 297.3046 A -21.4126

-166.391 -3.13498 328.9591 -93.6539 A -21.6443

48.71317 -351.099 128.035 -93.0879 B -20.8908

18.68839 88.73163 -156.407 -70.0866 B -21.8296

-247.845 216.9395 3.951581 229.2697 A -20.9307

149

Figure 7.16 shows the evolution per generation of the PGA implementation. Besides

subpopulation 1, all other subpopulations appear to perform exactly the same.

Figure 7.16. Average population fitness over time with PGA for experiment set 5 – Ackley

The implementation of island GA (IGA) that was made had a total of five subpopulations

evolving on separate islands from one another. A migration operator was available to IGA that

every 30 generations, would allow the islands to exchange in a round-robin way, 5 of their best

solutions as a way to re-introduce diversity within all the islands. Table 7.9 represents a sample

of the final population obtained after running IGA. Like GSN, the final population in IGA also

has some diversity.

Figure 7.17 shows the evolution per generation of the IGA implementation. The graph is

similar to that of PGA with a lot of jumps within the average fitness, characteristic of a noisy

environment.

150

Table 7.9

 Sample of final population for IGA experiment set 5 – Ackley

Population

Design Design Operational Operational Environment Fitness

59.17157 149.4894 78.91444 -44.9946 -A -21.3225

-51.3367 67.59259 -58.8961 -185.948 421 -21.6164

-6.18678 -127.84 -0.44204 14.86595 -A -21.5407

-16.9806 -66.4336 377.3741 -265.759 A -21.85

36.25633 149.859 -100.201 -98.6796 A -21.5935

-124.87 -63.334 6.866562 -211.447 A -21.7417

79.23545 -131.754 -107.063 -82.734 A -21.4536

-37.0189 -45.1076 -44.081 -148.812 B -20.588

-153.066 -290.224 62.93955 -140.625 A -21.3334

38.14309 60.99853 407.2399 -113.165 A -20.9871

-135.449 -44.9966 239.352 46.58049 B -22.0175

149.4617 104.3652 152.6735 55.39732 A -22.2333

-29.057 -43.0327 261.2078 341.5205 A -21.3733

11.56537 -149.069 -154.211 -148.015 A -21.3592

106.5239 128.9473 -398.941 -297.036 A -21.1254

-48.8613 233.3871 28.19601 -116.926 A -21.3975

151

Figure 7.17. Average population fitness over time with IGA for experiment set 5 – Ackley

7.5.5.2 Using Schwefel to characterize LCE’s relationship. The Schwefel function was

modified to turn the problem into a maximization problem with global best performance value

being 0 with six parameters. Figure 7.18 shows a plot of the final results for one of the

experiments.

Figure 7.18. GSN results per generation for experiment set 5 – Schwefel

From Figure 7.18, the population is observed to be constantly improving. Within the [-

500 500] range, the Schwefel function, as used, is known to converge (f(x
*
) = 0) for x

*
= (s1, s2,..,

sn) where si = ±421 for 1≤i≤n. Table 7.10 is a sample of the final population. Two observations

are important here: first, the final population does not have much diversity built in it, and second,

152

the final population appears not be fall away from one of the known optimum solution of the

problem.

Table 7.10

Sample of final population for GSN experiment set 5 – Schwefel

Population

Design Design Operation Operation Environment Environment Performance

435.8014 -407.731 -421.017 447.0183 A1 A2 -140.2422491

435.803 -407.726 -420.994 447.0146 A1 A2 -138.5087513

434.8028 -410.375 -434.876 449.2655 B1 B2 -170.8471386

435.5377 -408.429 -424.676 447.6116 B1 B2 -142.7093332

The same implementation of parallel GA (PGA) was modified to use a phenotype of

length six and was run with subpopulations evolving separately from one another. Table 7.11

represents a sample of the final population obtained after running PGA. Unlike SGA, the final

population in PGA has a lot more diversity. Figure 7.19 shows the evolution per generation of

the PGA implementation.

The same implementation of island GA (IGA) was modified to use a phenotype of length

six and was run with subpopulations evolving separately from one another. Table 7.12 represents

a sample of the final population obtained after running IGA. Unlike SGA, the final population in

IGA has a lot more diversity.

153

Table 7.11

Sample of final population for PGA experiment set 5 – Schwefel

Population

Design Design Operation Operation Environment Environment Fitness

-110.764 110.6206 114.1634 -122.78 B1 B2 -2103.88

-25.7738 -152.613 168.5419 -135.198 B1 B2 -1773.22

-149.203 -41.7851 150.3702 -21.3514 A1 A2 -1786.03

19.25329 -467.823 -85.7605 110.0545 -A1 A2 -1610.85

Figure 7.19. Average population fitness over time with PGA for experiment set 5 – Schwefel

154

Table 7.12

Sample of final population for IGA experiment set 5 – Schwefel

Population

Design Design Operation Operation Environment Environment Fitness

75.329 -167.453 -262.074 300.293 A1 A2 -1984.768

-33.249 154.567 341.833 -63.650 B1 B2 -1770.517

83.422 -122.429 294.779 -45.117 B1 B2 -2048.165

-186.50 175.472 -61.005 206.677 A1 A2 -1138.464

-18.631 -8.129 -133.941 98.169 B1 B2 -1848.615

-364.10 107.688 443.436 101.915 B1 B2 -1386.967

-138.43 119.805 -320.32 224.222 A1 A2 -2005.699

130.081 -346.562 -287.362 133.558 A1 A2 -2260.600

13.845 -251.76 -202.456 -190.149 A1 A2 -1342.991

258.964 55.81715 -328.877 -61.453 A1 A2 -1875.343

52.933 228.1491 -420.826 121.588 A1 A2 -1204.704

40.352 -220.977 -66.664 98.310 A1 A2 -1491.028

29.213 58.4483 -39.935 -114.615 A1 A2 -1749.626

493.048 385.762 -107.189 5.968 B1 B2 -1588.027

Figure 7.20 shows the evolution per generation of the IGA implementation. The jumpy

fitness evaluations were not present in GSN.

155

Figure 7.20. Average population fitness over time with IGA for experiment set 5 – Schwefel

7.6 Summary

Within this chapter, genetic social networks (GSN) were applied to the generalized life

cycle product design (GLPD) approach of continuous product design. Simulations of GSN were

carried out according to a set of factors including the relationship between LCE parameters, the

number of parameters, and the shape of the search domain. The quality of the solutions returned

by GSN was assessed using different assessment criteria including their ability to capture the

LCE parameters’ relationship to performance, as well as their ability to scale.

A first set of experiments (1-4) was successfully carried to better understand how GSN

works on different types of environments, and how the GSN built-in social interactions

mimicking shapes both the search process and the interpretation of the returned results. Whether

the nature of the LCE parameters’ relationship was simple or not, GSN appears to converge to

two solutions, one for each environment. Using both absolute and relative fitness values in GSN

enabled a better understanding of the meaning of membership levels. The final themes, and the

final membership level values, both outputs of GSN, could be used to inform about ways the

observed LCE parameters can be tuned to increase the performance of a live system. Assuming

156

for instance that the life cycle aggregated performance measurement is defined as a linear map of

selected LCE parameters, and then the membership level values could be used to scale their

corresponding solutions in order to achieve the best possible performance.

A last (5
th

) set of experiments that was carried to assess the impact of social networking

on the GA search process by comparing GSN to both parallel GA (PGA) and island GA (IGA)

proved conclusive. The performance of GSN was better when compared to that of PGA, IGA,

and SGA. However, as the population would improve in GSN, the same trend was absent from

the themes. Therefore, although they contribute to the optimization process by helping the GSN

pick the leaders, the themes appear to only drive the optimization process.

Overall, the GSN would leverage the connections of each solution to each group to

generate system efficiency. By having leaders and themes both influencing individuals, yet

“moving” at a less frequent pace than individuals, GSN converged by mimicking the concept of

positive deviance. Table 7.13 summarizes the results of all the experiments.

Table 7.13

Summary of experiments on GSN

Linear & Polynomial

Performance

Griewank & Schwefel

Performance

Ackley & Schwefel

Performance

Convergence observed within

population

Convergence observed within

population

Performs better than SGA,

IGA and PGA on optimization

Delimited characterization of

LCE because of convergence

Delimited characterization of

LCE because of convergence

Delimited characterization of

LCE because of convergence

Themes and leaders updates

reflected by average fitness

change pattern

Themes and leaders updates

reflected by average fitness

change pattern

 Performed better than SGA in

terms of the quality of found

solutions

157

Table 7.14 summarizes the results of the GSN algorithm compared to those obtained by

SGA, IGA and PGA for the same experiment.

Table 7.14

Comparative results of GSN, SGA, IGA, and PGA

Algorithm

Ranking the Achieved Best by Algorithm and Environment

Ackley Performance Schwefel Performance

Environment A Environment B Environment A Environment B

SGA 2 2 2 2

GSN 1 1 1 1

PGA 3 4 4 3

IGA 4 3 3 4

158

Chapter 8

Conclusion

The work presented in this dissertation addressed the modeling and the application of

biomimetic metaheuristics to product life cycle engineering. A broader classification of lifecycle

data was suggested. The generalized life cycle product design (GLPD) model, generic model for

sustainable continuous product design was presented. Two new metaheuristics that are GA-

based, using the concepts of fish schooling (SGA) or the concepts of social network dynamics

(GSN) were presented, implemented and applied to GLPD. The basic functionality of both SGA

and GSN for GLPD was assessed using a design of experiments.

From a LCE relationship standpoint, SGA performed better than GSN by being able to

capture patterns of good performance from life cycle data. A solution quality metric named trait

performance indexes (TPI) was defined and used with SGA. The use of TPI values demonstrated

their ability, in some cases, to help the product designer decide whether to maintain the

permissible values for a life cycle parameter, or to change them without getting a life cycle

performance hit. The use of TPI could also help a designer decide whether to turn an operational

parameter into a design parameter or vice versa. A non-parametric clustering method named the

geometrically expanded membership for automated clustering (GEMAC) was created and used

with SGA.

GSN converges most of the time, even when used within an environment with a high

density of deceptive attractors (Griewank or Ackley). The final themes, and the final

membership level values, both outputs of GSN, could be used to inform about ways the observed

LCE parameters can be tuned to increase the performance of a live system.

159

Both presented metaheuristic methodologies have their strengths and limitations as listed

throughout Chapter 5 and Chapter 7. The limitations can either come from the way life cycle

fitness is calculated, or come from the way either method uses grouping to drive optimization.

8.1 Contributions

The intellectual contributions of the dissertation are listed as follow:

- A sustainable continuous product design approach called GLPD was devised and

presented. The approach is generic enough to be applied to existing methodologies.

o The approach claims a top-down-up approach, and takes from both bottom-up,

and top-down methodologies

o The approach turns design problems into optimization problems

- A GA-based approach to optimization named SGA, that mimics fish schooling, was

presented. SGA was built for the GLPD approach. The ability of SGA to deal with

grouping, and unconstrained optimization was tested and the results presented.

- A GA-based approach to optimization named GSN, that mimics social networks’

interactions, was presented. GSN was built for the GLPD approach. The ability of

GSN to deal with grouping, and unconstrained optimization was tested and the results

presented.

8.2 Future Directions

This research opens many opportunities for future research, as there is still a lot that can

be learned on SGA or GSN either by tuning their respective parameters to make them more

problem-specific or by applying to new types of problem to further study the impact of grouping.

160

Following are a couple of suggestions for derivative and exploratory work that can be undertaken

to improve the work performed:

- Improve the performance of SGA by tuning some of its parameters (tabu distance,

behavior threshold values, metrics, clustering…). A fine-tuning could yield to better

performance with heterogeneous (from different environments) groups.

- Apply SGA or GSN to stochastic optimization problems, and determine when their

use is appropriate. The work presented here just showed that either methodology

(SGA and GSN) deals with unconstrained optimization problem in the worst case

scenario as better as other forms of GA-based metaheuristics.

- Apply SGA and GSN to the study and life cycle-based design of an actual product or

service. Although the work presented was about using either methodology for

continuous product design, it would be interesting to see them being used on a real

product or service design.

161

References

Akanle, O. M., & Zhang, D. Z. (2008). Agent-based model for optimising supply-chain

configurations. International Journal of Production Economics, 115(2), 444-460. doi:

http://dx.doi.org/10.1016/j.ijpe.2008.02.019

Albuquerque, P., & Nevskaya, Y. (2012). The Impact of Innovation on Product Usage: A

Dynamic Model with Progression in Content Consumption. Working Paper. Simon

Graduate School of Business. University of Rochester, New York.

Allenby, B. R. (1992). Design for Environment: Implementing Industrial Ecology. (Doctorate of

Philosophy), Rutgers University, New Brunswick,NJ.

Anastas, P., & Warner, J. (2000). Green chemistry: theory and practice: Oxford University

Press.

Asiedu, Y., & Gu, P. (1998). Product life cycle cost analysis: state of the art review.

International Journal of Production Research, 36(4), 883-908.

AT&L, D. (2012). DoD Maintenance FACT BOOK.

http://www.acq.osd.mil/log/mpp/factbooks/DoD_Maintenance_Fact_Book_2012.pdf:

Office of the Under Secretary of Defense for Acquisition, Technology and Logistics.

Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., . . . Zdravkovic,

V. (2008). Empirical investigation of starling flocks: a benchmark study in collective

animal behaviour. Animal Behaviour, 76(1), 201-215. doi:

10.1016/j.anbehav.2008.02.004

Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., . . . Zdravkovic,

V. (2008). Interaction ruling animal collective behavior depends on topological rather

than metric distance: Evidence from a field study. PNAS, 105(4), 1232–1237.

http://dx.doi.org/10.1016/j.ijpe.2008.02.019
http://www.acq.osd.mil/log/mpp/factbooks/DoD_Maintenance_Fact_Book_2012.pdf:

162

Bapuji, H., & Beamish, P. W. (2008). Avoid Hazardous Design Flaws Retrieved 24 September,

2012, from http://hbr.org/2008/03/avoid-hazardous-design-flaws/ar/1

Barabási, A.-L., & Albert, R. (1999). Emergence of Scaling in Random Networks. Science,

286(5439), 509-512. doi: 10.1126/science.286.5439.509

Barabási, A. L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of

the social network of scientific collaborations. Physica A: Statistical Mechanics and its

Applications, 311(3–4), 590-614. doi: http://dx.doi.org/10.1016/S0378-4371(02)00736-7

Benyus, J. (1997). Biomimicry: innovation inspired by nature: William Morrow.

Berrah, L., Mauris, G., & Vernadat, F. (2004). Information aggregation in industrial performance

measurement: rationales, issues and definitions. International Journal of Production

Research, 42(20), 211-225.

Blanchard, B. S., & Fabrycky, W. J. (2011). Systems Engineering And Analysis (Fifth ed.).

Upper Saddle River, NJ: Pearson Prentice-Hall.

Blizzard, J. L., & Klotz, L. E. (2012). A framework for sustainable whole systems design.

Design Studies, 33(5), 456-479. doi: 10.1016/j.destud.2012.03.001

Bloom, N. (2005). Reliability Centered Maintenance (RCM) : Implementation Made Simple:

Implementation Made Simple: Mcgraw-hill.

Boehm, B. (1986). A Spiral Model of Software Development and Enhancement. ACM SIGSOFT

Software Engineering Notes, 11(4), 14-24.

Boehm, B. (2000). Spiral Development: Experience, Principles, and Refinements Spiral

Development Workshop. Pittsburgh: CMU/SEI-2000-SR-008.

Boguna, M., Romualdo, P.-S., Diaz-Guilera, A., & Arenas, A. (2003). Emergence of clustering,

correlations, and communities in a social network model. Physical Review E 70, 056122.

http://hbr.org/2008/03/avoid-hazardous-design-flaws/ar/1
http://dx.doi.org/10.1016/S0378-4371(02)00736-7

163

Bonabeau, E., & Dagorn, L. (1995). Possible universality in the size distribution of fish schools.

PHYSICAL REVIEW. E. STATISTICAL PHYSICS, PLASMAS, FLUIDS, AND RELATED

INTERDISCIPLINARY TOPICS, 51(6). doi: citeulike-article-id:1128133

Bosner, R. (2006). Patented biologically-inspired technological innovations: a twenty year view.

Journal of Bionic Engineering, Vol 3, 39-41.

Bosner, R., & Vincent, J. (2006). Technology trajectories, innovation, and the growth of

biomimetics. Journal of Mechanical Engineering Science, Vol 221, 1177-1180.

Braungart, M., McDonough, W., & Bollinger, A. (2007). Cradle-to-cradle design: creating

healthy emissions – a strategy for eco-effective product and system design. Journal of

Cleaner Production, 15(13–14), 1337-1348. doi: 10.1016/j.jclepro.2006.08.003

Cantú-Paz, E. (2000). Efficient and Accurate Parallel Genetic Algorithms. Dordrecht: Kluwer

Academic.

Cern´y, V. (1985). A thermodynamical approach to the traveling salesman problem. Journal of

Optimization Theory and Applications, vol. 45(no. 1), pp. 41–51.

Cha, S.-H. (2007). Comprehensive Survey on Distance/Similarity Measures between Probability

Density Functions. INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND

METHODS IN APPLIED SCIENCES, 1(4), 300-307.

Chen, C.-C., & Chuang, M.-C. (2008). Integrating the Kano model into a robust design approach

to enhance customer satisfaction with product design. International Journal of

Production Economics, 114(2), 667-681. doi:

http://dx.doi.org/10.1016/j.ijpe.2008.02.015

http://dx.doi.org/10.1016/j.ijpe.2008.02.015

164

Clark, T., & Charter, M. (1999). Eco-design Checklists for Electronic Manufacturers, Systems

Integrators, and Suppliers of Components and Sub-assemblies. The Centre for

Sustainable Design.

Collins, M., & Brebbia, C. (2004). Design and nature II: comparing design in nature with

science and engineering: Wessex Institute of Technology Press.

Couzin, I. D., Krause, J., James, R., Ruxton, G. D., & Franks, N. R. (2002). Collective memory

and spatial sorting in animal groups. Journal of Theoretical Biology, 218, 1-11. doi:

10.1006/jtbi.2002.3065

Davis, L. (1991). Handbook of genetic algorithms. New York: Van Nostrand Reinhold.

DEFENSE, O. O. T. U. S. O. (1996). DoD Guide to Integrated Product and Process

Development. ACQUISITION AND TECHNOLOGY Retrieved from

https://www.acquisition.gov/sevensteps/library/dod-guide-to-integrated.pdf.

Dhillon, B. S. (2006). Maintainability, Maintenance, and Reliability for Engineers: Taylor &

Francis.

Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant System: Optimization by a colony of

cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol.

26(no. 1), 29–41.

Dorigo, M., & Caro, G. D. (1999). The Ant Colony Optimization meta-heuristic. London, UK: D.

Corne et al.

Dorigo, M., Caro, G. D., & Gambardella, a. L. M. (1999). Ant algorithms for discrete

optimization. Artificial Life, vol. 5(no. 2), pp. 137–172.

Dorigo, M., & Stützle, T. (2003). The Ant Colony Optimization Metaheuristic: Algorithms,

Applications, and Advances. In Handbook of metaheuristics, 250-285.

http://www.acquisition.gov/sevensteps/library/dod-guide-to-integrated.pdf

165

Dorigo, M., St tzle, T. (2004). Ant Colony Optimization. Cambridge, MA: MIT Press.

Dorigo, M., Birattari, M., St tzle, T. (200). Ant Colony Optimization, Artificial Ants as a

Computational Intelligence Technique. IEEE COMPUTATIONAL INTELLIGENCE

MAGAZINE.

Duda, M., & Shaw, J. (1997). Life cycle assessment. Society, 35(1), 38-43. doi: 10.1007/s12115-

997-1054-x

Elimam, A. A., & Dodin, B. (2013). Project scheduling in optimizing integrated supply chain

operations. European Journal of Operational Research, 224(3), 530-541. doi:

http://dx.doi.org/10.1016/j.ejor.2012.09.007

ElMaraghy, H. (2007). Reconfigurable Process Plans For Responsive Manufacturing Systems. In

P. Cunha & P. Maropoulos (Eds.), Digital Enterprise Technology (pp. 35-44): Springer

US.

EPA. (17 October 2010). Defining Life Cycle Assessment (LCA).

Eubank, S., Guclu, H., Kumar, V. A., Marathe, M. V., Srinivasan, A., Toroczkai, Z., & Wang, N.

(2004). Modelling disease outbreaks in realistic urban social networks. Nature,

429(6988), 180-184.

Fakhim, B., Behnia, M., Armfield, S. W., & Srinarayana, N. (2011). Cooling solutions in an

operational data centre: A case study. Applied Thermal Engineering, 31(14–15), 2279-

2291. doi: 10.1016/j.applthermaleng.2011.03.025

Fiksel, J. (1996). Design for Environment: Creating Eco-efficient Products and Processes. New

York: McGraw-Hill.

Fogel, L. J., Owens, A. J., & Walsh, a. M. J. (1966). Artificial Intelligence Through Simulated

Evolution: John Wiley & Sons.

http://dx.doi.org/10.1016/j.ejor.2012.09.007

166

Forbes, P. (2005). The Gecko’s foot: bio-inspiration, engineering new materials and devices

from nature: Harper Collins.

Forsberg, K., & Mooz, H. (October 1991). The Relationship of System Engineering to the Project

Cycle. Paper presented at the Proceedings of the National Council for Systems

Engineering (NCOSE), Chattanooga, Tennessee.

Forsberg, K., & Mooz, H. (1997). Visualizing System Engineering and Project Management as

an Integrated Process. Paper presented at the Proceedings of the International Council

for Systems Engineering (INCOSE) Conference, Los Angeles, CA.

Ghasimi, S. A., Ramli, R., & Saibani, N. A genetic algorithm for optimizing defective goods

supply chain costs using JIT logistics and each-cycle lengths. Applied Mathematical

Modelling(0). doi: http://dx.doi.org/10.1016/j.apm.2013.08.023

Giudice, F., La Rosa, G., & Risitano, A. (2005). Materials selection in the Life-Cycle Design

process: a method to integrate mechanical and environmental performances in optimal

choice. Materials & Design, 26(1), 9-20. doi: 10.1016/j.matdes.2004.04.006

Glover, F. (1989). Tabu search—part I. ORSA Journal on Computing, vol. 1(no. 3).

Glover, F. (1990). Tabu search—part II. ORSA Journal on Computing, vol. 2(no. 1), 4–32.

Glover, F., & Laguna, a. M. (1997). Tabu Search: Kluwer Academic Publishers.

Goel, P. S., & Singh, N. (1998). Creativity and innovation in durable product development.

Computers & Industrial Engineering, 35 (1-2), 5-8.

Goldberg, D. E. (1994). Genetic algorithms in search, optimization, and machine learning.

Reading, Mass [u.a.]: Addison-Wesley.

Goss, S., Aron, S., Deneubourg, J.-L., & Pasteels, J.-M. (1989). Self-organized shortcuts in the

Argentine ant,. Naturwissenschaften, 76, 579-581.

http://dx.doi.org/10.1016/j.apm.2013.08.023

167

Graedel, T., Allenby, B., & Combrie, P. (1995). Matrix approaches to abridged life-cycle

assessment. Environmental Science and Technology in Society, 29 (3), 134-139.

Granovetter, M. (1973). The strength of weak ties. American Journal of Sociology, 78, 1360-

1380.

Griewank, A. O. (1981). Generalized descent for global optimization. Journal of Optimization

Theory and Applications, 34(1), 11-39. doi: 10.1007/bf00933356

Griffin, A. (1997a). PDMA research on new product development practices: updating trends, and

benchmarking best practices. The Journal of Product Innovation Management, 14, 429-

458.

Griffin, A. (1997b). Modeling and measuring product development cycle time across industries.

Journal of Engineering and Technology Management, 14(1), 1-24. doi: 10.1016/s0923-

4748(97)00004-0

Gupta, Y. (1983). Life Cycle Cost Models and Associated Uncertainties. In J. K. Skwirzynski

(Ed.), Electronic Systems Effectiveness and Life Cycle Costing (Vol. 3, pp. 535-549):

Springer Berlin Heidelberg.

Hamerly, G. (2010). Making k-means even faster. Paper presented at the In SIAM International

Conference on Data Mining (SDM).

Hassan, M. K., Azubir, N. A. M., Nizam, H. M. I., Toha, S. F., & Ibrahim, B. S. K. K. (2012).

Optimal Design of Electric Power Assisted Steering System (EPAS) Using GA-PID

Method. Procedia Engineering, 41(0), 614-621. doi:

http://dx.doi.org/10.1016/j.proeng.2012.07.220

Helms, M., Vattam, S. S., & Goel, A. K. (2009). Biologically inspired design: process and

products. Design Studies, 30(5), 606-622. doi: 10.1016/j.destud.2009.04.003

http://dx.doi.org/10.1016/j.proeng.2012.07.220

168

Hemelrijk, C. K., & Hildenbrandt, H. (2008). Self-Organized Shape and Frontal Density of Fish

Schools. Ethology, 114, 245–254. doi: 10.1111/j.1439-0310.2007.01459.x

Hemelrijk, C. K., & Hildenbrandt, H. (2012). Schools of fish and flocks of birds: their shape and

internal structure by self-organization. Interface Focus. doi: 10.1098/rsfs.2012.0025

Hemelrijk, C. K., Hildenbrandt, H., Reinders, J., & Stamhuis, E. J. (2010). Emergence of Oblong

School Shape: Models and Empirical Data of Fish. Ethology, 116(11), 1099-1112. doi:

10.1111/j.1439-0310.2010.01818.x

Henley, E. J., & Kumamoto, H. (1985). Design for Reliability and Safety Control. Upper Saddle

River, NJ: Pearson Printice-Hall.

Hock, T. (1997). Integrated product development. Sadhana, 22(2), 189-198. doi:

10.1007/bf02744488

Holland, J. (1975). Adaptation in Natural and Artificial Systems.

Hong-Bae Jun, Dimitris Kiritsis, & Xirouchakis, P. (2007). Research issues on closed-loop PLM.

Computers in Industry, 58, 855–868. doi: 10.1016/j.compind.2007.04.001

Horner, K. (1993). Methodology as a Productivity Tool. In J. Keyes (Ed.), Software Productivity

Handbook (pp. 97-117). New York, NY: Windcrest: McGraw-Hill.

Im, I., Hong, S., & Kang, M. S. (2011). An international comparison of technology adoption:

Testing the UTAUT model. Information & Management, 48(1), 1-8. doi:

10.1016/j.im.2010.09.001

Inada, Y. (2000). Steering mechanism of fish schools. Complexity International, 8.

INCOSE. (2006). SYSTEMS ENGINEERING HANDBOOK A GUIDE FOR SYSTEM LIFE

CYCLE PROCESSES AND ACTIVITIES.

169

Janz, D., Sihn, W., & Warnecke, H. J. (2005). Product Redesign Using Value-Oriented Life

Cycle Costing. CIRP Annals - Manufacturing Technology, 54(1), 9-12. doi:

http://dx.doi.org/10.1016/S0007-8506(07)60038-9

Jardim-Goncalves, R., Grilo, A., & Steiger-Garcao, A. (2006). Challenging the interoperability

between computers in industry with MDA and SOA. Computers in Industry, 57(8–9),

679-689. doi: 10.1016/j.compind.2006.04.013

Jenkins, M. (2013). Innovate or Imitate? The Role of Collective Beliefs in Competences in

Competing Firms. Long Range Planning(0). doi:

http://dx.doi.org/10.1016/j.lrp.2013.04.001

Jeong, K.-Y. (2000). Conceptual frame for development of optimized simulation-based

scheduling systems. Expert Systems with Applications, 18(4), 299-306. doi:

http://dx.doi.org/10.1016/S0957-4174(00)00011-7

Kabak, Ö., & Ülengin, F. (2011). Possibilistic linear-programming approach for supply chain

networking decisions. European Journal of Operational Research, 209(3), 253-264. doi:

http://dx.doi.org/10.1016/j.ejor.2010.09.025

Keeney, R. L., & Lilien, G. L. (1987). New industrial product design and evaluation using

multiattribute value analysis. Journal of Product Innovation Management, 4(3), 185-198.

doi: 10.1016/0737-6782(87)90003-8

Kennedy, J. (1997, 13-16 Apr 1997). The particle swarm: social adaptation of knowledge. Paper

presented at the Evolutionary Computation, 1997., IEEE International Conference on.

Kennedy, J., & Eberhart, R. (1995, Nov/Dec 1995). Particle swarm optimization. Paper

presented at the Neural Networks, 1995. Proceedings., IEEE International Conference on.

http://dx.doi.org/10.1016/S0007-8506(07)60038-9
http://dx.doi.org/10.1016/j.lrp.2013.04.001
http://dx.doi.org/10.1016/S0957-4174(00)00011-7
http://dx.doi.org/10.1016/j.ejor.2010.09.025

170

Kirkpatrick, S., Jr., C. D. G., & Vecchi, a. M. P. (1983). Optimization by simulated annealing.

Science, vol. 220, pp. 671–680.

Knight, P., & Jenkins, J. O. (2009). Adopting and applying eco-design techniques: a practitioners

perspective. Journal of Cleaner Production, 17(5), 549-558. doi:

10.1016/j.jclepro.2008.10.002

Kopácsi, S., Kovács, G., Anufriev, A., & Michelini, R. (2007). Ambient intelligence as enabling

technology for modern business paradigms. Robotics and Computer-Integrated

Manufacturing, 23(2), 242-256. doi: 10.1016/j.rcim.2006.01.002

Krause, E. F. (1987). Taxicab Geometry: An Adventure in Non-Euclidean Geometry: Dover

Publications.

Kühme, T. (1993). User-centered approach to adaptive interfaces. Knowledge-Based Systems,

6(4), 239-248. doi: 10.1016/0950-7051(93)90015-l

Kumar, A. V. (2005). Introduction. In F. Kreith & D. Y. Goswami (Eds.), The CRC Handbook of

Mechanichal Engineering (Second ed., pp. 1576-1577): CRC Press LLC.

Larrosa-Guerrero, A., Scott, K., Head, I. M., Mateo, F., Ginesta, A., & Godinez, C. (2010).

Effect of temperature on the performance of microbial fuel cells. Fuel, 89(12), 3985-

3994. doi: 10.1016/j.fuel.2010.06.025

Lavie, T., & Meyer, J. (2010). Benefits and costs of adaptive user interfaces. International

Journal of Human-Computer Studies, 68(8), 508-524. doi: 10.1016/j.ijhcs.2010.01.004

Lehto, M. R., Landry, S. J., & Buck, J. (2007). Introduction to Human Factors and Ergonomics

for Engineers: Taylor & Francis.

171

Lin, H. K., Harding, J. A., & Shahbaz, M. (2004). Manufacturing system engineering ontology

for semantic interoperability across extended project teams. International Journal of

Production Research, 42 (24), 5099-5118.

Lourenço, H. R., Martin, O., & St¨utzle, a. T. (2002). Iterated local search. In F. G. a. G.

Kochenberger (Ed.), Handbook of Metaheuristics, (Vol. 57, pp. 321–353): Kluwer

Academic Publishers.

Low, K. H. (2009). Preface: Why biomimetics? Mechanism and Machine Theory, 44(3), 511-

512. doi: 10.1016/j.mechmachtheory.2008.11.008

Luke, S., & Spector, L. A comparison of crossover and mutation in genetic programming.

Mahfoud, S. W. (1995). A comparison of parallel and sequential niching methods. Paper

presented at the Proceedings of the Sixth International Conference on Genetic Algorithms

(ICGA).

Massarutto, A., Carli, A. d., & Graffi, M. (2011). Material and energy recovery in integrated

waste management systems: A life-cycle costing approach. Waste Management, 31(9–

10), 2102-2111. doi: http://dx.doi.org/10.1016/j.wasman.2011.05.017

Mayyas, A. T., Qattawi, A., Mayyas, A. R., & Omar, M. A. (2012). Life cycle assessment-based

selection for a sustainable lightweight body-in-white design. Energy, 39(1), 412-425. doi:

10.1016/j.energy.2011.12.033

Mengshoel, O. J., & Goldberg, D. E. (2008). The Crowding Approach to Niching in Genetic

Algorithms. Evolutionary Computation, 16(3), 315-354. doi: 10.1162/evco.2008.16.3.315

Michalewicz, Z., & Fogel, D. B. (2004). How to Solve It: Modern Heuristics. Germany:

Springer.

http://dx.doi.org/10.1016/j.wasman.2011.05.017

172

Mill, F., & Sherlock, A. (2000). Biological analogies in manufacturing. Computers in Industry,

43(2), 153-160. doi: 10.1016/s0166-3615(00)00064-6

Milligan, G., & Cooper, M. (1985). An examination of procedures for determining the number of

clusters in a data set. Psychometrika, 50(2), 159-179.

Morris, R. (2009). The Fundamentals of Product Design.

Moyle, P. B., & Joseph J. Cech, J. (2004). Fishes: An Introduction to Ichthyology (5 ed.):

Benjamin Cummings.

Mueller, K. G., & Besant, C. B. (1999). Streamlining life cycle analysis: a method. Paper

presented at the Proceedings of the First International Symposium on Environmentally

Conscious Design and Inverse Manufacturing, Tokyo.

MWG. (2010). INCOSE Systems Engineering Measurement Primer v2.0. In INCOSE (Ed.), A

Basic Introduction to Measurement Concepts and Use for Systems Engineering. San

Diego, CA: International Council on Systems Engineering.

Neely, A. (1998). Measuring Business Performance. Economist Books.

Nelson, B., Wilson, J., & Yen, J. (2009, 18-21 Oct. 2009). A study of biologically-inspired

design as a context for enhancing student innovation. Paper presented at the Frontiers in

Education Conference, 2009. FIE '09. 39th IEEE.

Nock, R., & Nielsen, F. (2006). On Weighting Clustering. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 28(8), 1-13.

Ohno, K. (2011). The optimal control of just-in-time-based production and distribution systems

and performance comparisons with optimized pull systems. European Journal of

Operational Research, 213(1), 124-133. doi: http://dx.doi.org/10.1016/j.ejor.2011.03.005

http://dx.doi.org/10.1016/j.ejor.2011.03.005

173

Oyewole, S. A., Haight, J. M., & Freivalds, A. (2010). The ergonomic design of classroom

furniture/computer work station for first graders in the elementary school. International

Journal of Industrial Ergonomics, 40(4), 437-447. doi: 10.1016/j.ergon.2010.02.002

Ozcan, E., & Mohan, C. K. (1999, 1999). Particle swarm optimization: surfing the waves. Paper

presented at the Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999

Congress on.

Pal, N. R., & Biswas, J. (1997). Cluster validation using graph theoretic concepts. Pattern

Recognition, 30(6), 847-857. doi: 10.1016/s0031-3203(96)00127-6

Parrish, J. K., Viscido, S. V., & Grunbaum, D. (2002). Self-organized fish schools: an

examination of emergent properties. BIOLOGICAL BULLETIN- MARINE BIOLOGICAL

LABORATORY, VOL 202; PART 3, 296-305.

Partridge, B. L. (1980). The effect of school size on the structure and dynamics of minnow

schools. Animal Behaviour, 28(1), 68-IN63. doi: 10.1016/s0003-3472(80)80009-1

Partridge, B. L. J. (1982). The structure and function of fish schools. Scientific American, 246.

Partridge, B. L. J., Johansson, J., & Kalisk, J. (1983). Structure of schools of giant bluefin tuna

in Cape Cod Bay. Environ. Biol. Fish., 9, 253–262.

PILCHER, J. J., NADLER, E., & BUSCH, C. (2002). Effects of hot and cold temperature

exposure on performance: a meta-analytic review. ERGONOMICS, 45(10), 682-698.

Pitcher, T. J. (2001). FISH SCHOOLING Encyclopedia of Ocean Sciences (Vol. 2, pp. 975–

987): Elsevier Ltd.

Ramze Rezaee, M., Lelieveldt, B. P. F., & Reiber, J. H. C. (1998). A new cluster validity index

for the fuzzy c-mean. Pattern Recognition Letters, 19(3–4), 237-246. doi: 10.1016/s0167-

8655(97)00168-2

174

Rechenberg, I. (1973). Evolutionsstrategie—Optimierung technischer Systeme nach Prinzipien

der biologischen Information. Freiburg, Germany.

Roozenburg, N., & Eekels, J. (1995). Product Design: Fundamentals and Methods. Chichester:

Wiley.

Ross, P., & Corne, D. (1994). Applications of Genetic Algorithms. AISB Quarterly 89, 23-30.

Royce, W. W. (1970). Amplify Learning Managing the Development of Large Software Systems.

Sääksvuori, A., & Immonen, A. (2008). Product Life Cycle Management Retrieved from

http://www.springerlink.com/content/V01R625382465324 doi:10.1007/978-3-540-

78172-1_1

Saaty, R. W. (1987). The analytic hierarchy process—what it is and how it is used. Mathematical

Modelling, 9(3–5), 161-176. doi: 10.1016/0270-0255(87)90473-8

Saaty, T. L. (1982). Decision making for leaders: The analytical hierarchy process for decisions

in a complex world. Belmont, California: Lifetime Learning Publications.

Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process. European Journal

of Operational Research, 48(1), 9-26. doi: 10.1016/0377-2217(90)90057-i

Saaty, T. L. (2005). Analytic Hierarchy Process Encyclopedia of Biostatistics: John Wiley &

Sons, Ltd.

Sarkar, B. K., Mandal, P., Saha, R., Mookherjee, S., & Sanyal, D. (2013). GA-optimized

feedforward-PID tracking control for a rugged electrohydraulic system design. ISA

Transactions, 52(6), 853-861. doi: http://dx.doi.org/10.1016/j.isatra.2013.07.008

Schwefel, H.-P. (1981). Numerical Optimization of Computer Models.: John Wiley & Sons.

http://www.springerlink.com/content/V01R625382465324
http://dx.doi.org/10.1016/j.isatra.2013.07.008

175

Sedighizadeh, D., & Masehian, E. (2009). An particle swarm optimization method, taxonomy

and applications. Proceedings of the international journal of computer theory and

engineering, 5, 486-502.

Seltzer, L. (2012). Is Apple Or NFC The Bigger Loser With iPhone 5? Retrieved 24 September,

2012, from http://www.informationweek.com/byte/personal-tech/wireless/is-apple-or-

nfc-the-bigger-loser-with-ip/240007606?queryText=iphone%205%20nfc

Spears, W. M. (1992). Crossover or mutation. Foundations of genetic algorithms 2, 221-237.

Stanfield, P. M., King, R. E., & Joines, J. A. (1996). Scheduling arrivals to a production system

in a fuzzy environment. European Journal of Operational Research, 93(1), 75-87. doi:

http://dx.doi.org/10.1016/0377-2217(95)00117-4

Stark, J. (2011). Product Lifecycle Management (pp. 1-16): Springer London.

Suh, N. P. (1999). Engineering Design. In F. Kreith (Ed.), The CRC Hanbook of Mechanical

Engineering (pp. 2-17). Boca Raton: CRC Press LLC.

Sumpter, D. J. T. (2006). The principles of collective animal behaviour. Philosophical

Transaction of Royal Society B, 361, pp. 5-22. doi: 10.1098/rstb.2005.1733

Technologies, I. (2012). Functions and Features Retrieved 22 September 2012, from

http://www.inclusive.com/mmr/findings/functions_and_features.htm

Toivonen, R., Kovanen, L., Kivelä, M., Onnela, J.-P., Saramäki, J., & Kaski, K. (2009). A

comparative study of social network models: Network evolution models and nodal

attribute models. Social Networks, 31(4), 240-254. doi: 10.1016/j.socnet.2009.06.004

Toulabi, M. R., Shiroei, M., & Ranjbar, A. M. (2014). Robust analysis and design of power

system load frequency control using the Kharitonov's theorem. International Journal of

http://www.informationweek.com/byte/personal-tech/wireless/is-apple-or-nfc-the-bigger-loser-with-ip/240007606?queryText=iphone%205%20nfc
http://www.informationweek.com/byte/personal-tech/wireless/is-apple-or-nfc-the-bigger-loser-with-ip/240007606?queryText=iphone%205%20nfc
http://dx.doi.org/10.1016/0377-2217(95)00117-4
http://www.inclusive.com/mmr/findings/functions_and_features.htm

176

Electrical Power & Energy Systems, 55(0), 51-58. doi:

http://dx.doi.org/10.1016/j.ijepes.2013.08.014

The University of Reading: What is Biomimetics? (Retrieved June 5, 2012). from

http://www.reading.ac.uk/biomimetics/about.htm

Verma, D., Farr, J., & Johannesen, L. H. (2003). System training metrics and measures: A key

operational effectiveness imperative. Systems Engineering, 6(4), 238-248. doi:

10.1002/sys.10047

Verma, D., & Gallois, B. (2001). Graduate Program in System Design and Operational

Effectiveness (SDOE): Interface between developers/providers, and users/consumers.

Paper presented at the International Conference on Engineering Design (ICED),

Glasgow, United Kingdom.

Vincent, J., Bogatyreva, O., & Bogatyrev, N. (2007). Towards a theory of biomimetics.

Comparative Biochemistry and Physiology - Part A: Molecular & Integrative

Physiology, 146(4, Supplement), S129. doi: 10.1016/j.cbpa.2007.01.241

Vincent, J. F. V., Bogatyreva, O. A., R., B. N., Adrian, B., & Pahl, A.-K. (2006). Biomimetics:

its practice and theory. Journal of The Royal Society Interface, 3(9), 471-482. doi:

10.1098/rsif.2006.0127

Vogel, S. (2000). Cat’s paws and catapults: mechanical worlds of nature and people.

Wallace, D. R., Jakiela, M. J., & Flowers, W. C. (1996). Design search under probabilistic

specifications using genetic algorithms. Computer-Aided Design, 28(5), 405-421. doi:

http://dx.doi.org/10.1016/0010-4485(95)00059-3

http://dx.doi.org/10.1016/j.ijepes.2013.08.014
http://www.reading.ac.uk/biomimetics/about.htm
http://dx.doi.org/10.1016/0010-4485(95)00059-3

177

Wanko, P. T., & Stanfield, M. P. (2012). Adaptive Metaheuristics with Schooling Genetic

Algorithms. Paper presented at the Industrial and Systems Engineering Research

Conference, Orlando, Florida.

Whitley, D., Rana, S., & Heckendorn, R. B. (1998). The Island Model Genetic Algorithm: On

Separability, Population Size and Convergence. Journal of Computing and Information

Technology, 7, 33-47.

Wiendahl, H. P., ElMaraghy, H. A., Nyhuis, P., Zäh, M. F., Wiendahl, H. H., Duffie, N., &

Brieke, M. (2007). Changeable Manufacturing - Classification, Design and Operation.

CIRP Annals - Manufacturing Technology, 56(2), 783-809. doi:

10.1016/j.cirp.2007.10.003

Wong, L. H., Pattison, P., & Robins, G. (2006). A spatial model for social networks. Physica A:

Statistical Mechanics and its Applications, 360(1), 99-120. doi:

10.1016/j.physa.2005.04.029

Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., . . . Steinberg, D. (2008).

Top 10 Algorithms in Data Mining. Knowledge and Information Systems, 14(1), 1-37.

Wu, Z.-j., Li, L.-z., Chen, Y., & Cai, Y. (2010, 17-19 Nov. 2010). User's behavior -based

creative product design process. Paper presented at the Computer-Aided Industrial

Design & Conceptual Design (CAIDCD), 2010 IEEE 11th International Conference on.

Zahedi, F. (1986). The Analytic Hierarchy Process—A Survey of the Method and its

Applications. Interfaces, 16(4), 96-108. doi: 10.1287/inte.16.4.96

178

Appendix A

This appendix contains the main algorithm for SGA. All the files that are referenced

follow starting with Appendix E. to run the code for all 5 sets of experiments that were carried

for the dissertation, some minor changes need to be made to this file and all the supporting files.

Just follow the comments left within each file. The name of the following file is “sga.m.”

%reset workspace and memory

clear global variables;

clear all;

clc;

global pop envStart envEnd offset nbrAlleles NbrOidx domainRange tolerance tabu

tabuDistance tabuLen tabuIdx limits ext stop nc;

stop = 0;

stop_count = 0;

tabuIdx=0;

tolerance=1e-11;

nbrAlleles=3; %each chromosome will be encoded using nbrAlleles alleles

tabuDistance=5*nbrAlleles; %minimum distance for tabu

ext=100;%500;

%Sets number of each parameter

nDp=1;

nOp=1;

nEp=1;

%generate field data, this is where different types of relation are tested

[X,Y] = meshgrid(-ext:1:ext);

[Z minZ maxZ] = performance(X,Y);

nbr_repetitions=1;

179

max_iterations=1020;%100

maxSameMaxPeriod=3;

exactIterCount = 0;

past_avg = 0.0;

tabuLen=round(max_iterations*.20);%20% of # of iterations

tabu=zeros(tabuLen,nbrAlleles);

tabuF=zeros(tabuLen,1);

fromAnBnTots = zeros(tabuLen,3);

GemacPeriod=10; %determines how often GEMAC runs.

%for behavior logging, use the following: 1==FF;2=SM;3==PA

nbrIter_AvgFitness_tConvg_nSchools_reptNbr=zeros(max_iterations,3,nbr_repetitions);

sizStaFitMax=cell(1,max_iterations);

pop_size=120;

envAtot=round(0.55*pop_size);% 55% of population comes from environment A

envBtot=pop_size-envAtot;% 45% of population comes from environment B

nbr_children=round(0.50*pop_size);% 50% of pop size

center=[0 0];% cartesian is [101,101] Matlab

envStart=0;

envEnd=6;

domainStart=-ext;

domainEnd=+ext;

offset=ext+1;

domainRange=domainEnd-domainStart+1;

limits=[domainStart domainEnd; domainStart domainEnd; envStart envEnd];%we are in dim=3

sigma=domainRange/6;

%behavior cutoff values

lw_cut=0.80;%20% under averaged mean

180

hg_cut=1.05;%5% over averaged mean

pop=zeros(pop_size+2*nbr_children,nbrAlleles+2);%2 - |schID|fit)

for i=1:nbr_repetitions

 sgafig = figure('Name','SGA TEST | In Progress Solutions', 'NumberTitle', 'off', 'Units',

'normalized', 'Position', [.10 .10 .90 .90]);

 array1=normrnd(center(1,1),sigma,[1,pop_size]);

 array2=normrnd(center(1,2),sigma,[1,pop_size]);

 envID=randperm(pop_size);

 %makes sure we start with feasible solutions, and correct the offset

 for h=1:pop_size

 pop(h,1)=array1(h)-domainRange*round(array1(h)/domainRange);

 pop(h,2)=array2(h)-domainRange*round(array2(h)/domainRange);

 %randomly assign population to environments

 if envID(h)<= envAtot

 pop(h,nbrAlleles)=envStart;%environment A

 else

 pop(h,nbrAlleles)=envEnd;%environment B

 end

 end

 nmaxes=zeros(1,max_iterations);

 %%%%%%%oIndexes(1,1:pop_size+2*nbr_children)=1:1:pop_size+2*nbr_children;

 j=0;

 while and(j < max_iterations, stop == 0)

 NbrOidx=pop_size;

 %creates schools of fish

 [IDX nc]=gemac();

181

 period=0;

 while period < GemacPeriod;

 t = cputime;

 period=period+1;

 j=j+1;

 nbrIter_AvgFitness_tConvg_nSchools_reptNbr(j,3,i)=nc;

 sizStaFitMax_temp = struct('data','data'); %creates a 1-by-1 structure with no fields.

 data_tmp=zeros(4,nc);

 schools_statuses=zeros(1,nc);

 sum_perf=zeros(1,nc);

 mean_perf=zeros(1,nc);

 school_cm=zeros(nc,nbrAlleles);%But, do not include the environment since it is discrete

 max_perf=zeros(1,nc);

 fitnesses=zeros(NbrOidx,nc);

 fromAnBnTot=zeros(nc,3);

 %neatly repack pop and fitnesses from returned GEMAC output

 indexes=zeros(1,nc);

 whereat=zeros(pop_size+2*nbr_children,nc);

 for k1=1:NbrOidx;

 indexes(IDX(k1))=indexes(IDX(k1))+1;

 %copy performance and school ID the fish belongs to

 pop(k1,nbrAlleles+1:nbrAlleles+2)=[IDX(k1),performance(pop(k1,1:nbrAlleles))];

sum_perf(1,IDX(k1))=sum_perf(1,IDX(k1))+pop(k1,nbrAlleles+2);

fitnesses(indexes(IDX(k1)),IDX(k1))=pop(k1,nbrAlleles+2);

 school_cm(IDX(k1),1:nbrAlleles-1)=school_cm(IDX(k1),1:nbrAlleles-

1)+pop(k1,1:nbrAlleles-1);

 whereat(indexes(IDX(k1)),IDX(k1))=k1;

182

 if pop(k1,nbrAlleles+2)>max_perf(IDX(k1));

 max_perf(IDX(k1))=pop(k1,nbrAlleles+2);

 end

 end

 %When computing breeding proportion per school -- always round

 %whether minimizing or maximizing, we only want to deal with

 %numbers >0

 for k2=1:nc

 school_cm(k2,:)=school_cm(k2,:)/indexes(k2);

 fromAnBnTot(k2,3)=indexes(k2);

 for k21=1:indexes(k2)

 if pop(whereat(k21,k2), nbrAlleles)==envStart

 fromAnBnTot(k2,1)=fromAnBnTot(k2,1)+1;

 else

 fromAnBnTot(k2,2)=fromAnBnTot(k2,2)+1;

 end

 end

 school_cm(k2,nbrAlleles)=envStart;

 opt1=performance(school_cm(k2,:));

 school_cm(k2,nbrAlleles)=envEnd;

 opt2=performance(school_cm(k2,:));

 %the average of the cluster is a weighted average

mean_perf(1,k2)=(opt1*fromAnBnTot(k2,1)+opt2*fromAnBnTot(k2,2))/fromAnBnTot(k2,3);

 if fromAnBnTot(k2,1)>=fromAnBnTot(k2,2)

 school_cm(k2,nbrAlleles)=envStart;%envEnd;

183

 end

 end

 %Determines best and puts it inside (recency) tabu if not yet in already

 is_there=0;

 [v i33]=max(mean_perf);

 for k22=1:min(tabuLen,tabuIdx+1)

 %Close to there is as good as being there

 if (similarity('cityblock',school_cm(i33,:),tabu(k22,:)) <= tabuDistance)

 is_there=1;

 break;

 end

 end

 if is_there == 0 %insert in tabu list and record best for tpi

 tabu(mod(tabuIdx,tabuLen)+1,:)=school_cm(i33,:);

 tabuF(mod(tabuIdx,tabuLen)+1,1)=performance(school_cm(i33,:));

 fromAnBnTots(mod(tabuIdx,tabuLen)+1,:)=fromAnBnTot(i33,:);

 tabuIdx=tabuIdx+1;

 end

 nmaxes(1,j)=max(max_perf);

 nbr_breed=pop_size+nbr_children-NbrOidx;

 mean_schools=mean(mean_perf);

 ratios=sum_perf.*indexes;

 totalRatio=sum(ratios);

 breed_per_school=round(nbr_breed*ratios./totalRatio);

 %in case some sums were negative while others were positive

 for ps=1:length(breed_per_school)

 if breed_per_school(ps)<0

184

 breed_per_school(ps)=0;

 end

 end

 %Check whether a stopping criteria has been reached

 if (abs(past_avg-mean_schools)<=tolerance)

 stop_count = stop_count +1;

 if stop_count == maxSameMaxPeriod

 exactIterCount = j;

 stop = 1;

 end

 else

 past_avg = mean_schools;

 stop_count = 0;

 end

 %we are only interested in the behavior of schools that can breed

 for k3=1:nc

 if breed_per_school(k3)<1; continue; end

 %%if indexes(k3)==1; schools_statuses(k3)=3; continue; end

 if mean_perf(k3)<=lw_cut*mean_schools

 schools_statuses(k3)=3; continue;%Predator Avoidance

 end

 if mean_perf(k3)>=hg_cut*mean_schools

 %schools_statuses(k3)=1;%Food Foraging

 %school is not close to tabu location and food still

 % availabe for consumption by the fish

 [bool pos]=isClear(school_cm(k3,:));

 % If food has depleted, then it is time to move

185

 if or(abs(pos-mod(tabuIdx,tabuLen)) < 05*GemacPeriod, pos==0)

 schools_statuses(k3)=1;%Food Foraging

 else %get away from tabu location

 schools_statuses(k3)=3;%Predator Avoidance

 end

 else %default status

 schools_statuses(k3)=2;%School maintenance

 end

 end

 %record data for all schools and store them

 data_tmp(1,:)=indexes;%stores number of fish per school

 data_tmp(2,:)=schools_statuses;%stores statuses of all schools

 data_tmp(3,:)=mean_perf;%stores avg perf of each school

 data_tmp(4,:)=max_perf;%stores the best performer per school

 sizStaFitMax_temp.data=data_tmp;

 sizStaFitMax{1,j}=sizStaFitMax_temp;

 %Execute behaviors

 for k4=1:nc

 if breed_per_school(1,k4)==0; continue; end %No need

 switch schools_statuses(k4)

 case 1 %Food Foraging – crossover rate > mutation rate

 wtpc=selection(0,breed_per_school(1,k4),fitnesses(1:indexes(k4),k4),0);

 for k41=1:2:breed_per_school(1,k4)

child=crossOver(pop(whereat(wtpc(k41),k4),:),pop(whereat(wtpc(k41+1),k4),:));

 NbrOidx=NbrOidx+1;

 pop(NbrOidx,:)=child;

% indexes(k4)=indexes(k4)+1;

186

% whereat(indexes(k4),k4)=NbrOidx;

 end

 case 2 %School Maintenance – crossover rate = mutation rate

 start1=indexes(k4);

 wtpc=selection(0,round(breed_per_school(1,k4)/2),fitnesses(1:indexes(k4),k4),0);

 for k42=1:2:round(breed_per_school(1,k4)/2)

child=crossOver(pop(whereat(wtpc(k42),k4),:),pop(whereat(wtpc(k42+1),k4),:));

 NbrOidx=NbrOidx+1;

 pop(NbrOidx,:)=child;

% indexes(k4)=indexes(k4)+1;

% whereat(indexes(k4),k4)=NbrOidx;

 end

 wtpm=selection(0,round(breed_per_school(1,k4)/2),fitnesses(1:start1,k4),1);

 for k42=1:round(breed_per_school(1,k4)/2)

 %school_maintenance=max(1.0-mean_perf(k4)/nmaxes(1,j),howFar)

child=mutation(pop(whereat(wtpm(k42),k4),:),max(tolerance,mean_perf(k4)/nmaxes(1,j)));

 %child=mutation(pop(whereat(wtpm(k42),k4),:),randint(1,1,[round((1.0-

mean_perf(k4)/mean_schools)*10000)

round((mean_perf(k4)/mean_schools)*10000)])/(10000)*domainRange);

%child=mutation(pop(whereat(wtpm(k42),k4),:),max(howFar2,howFar)*domainRange);

 NbrOidx=NbrOidx+1;

 pop(NbrOidx,:)=child;

% indexes(k4)=indexes(k4)+1;

% whereat(indexes(k4),k4)=NbrOidx;

 end

 case 3 %Predator Avoidance – Mutation precedes Crossover

187

 start=NbrOidx+1;

 start2=indexes(k4);

 %Prob Select = f (fitness, distance from CM)

 %Farther from CM & higher fitness = higher prob

 %First, compute all distances to school CM

 dist2CM=zeros(indexes(k4),1);

 for k423=1:indexes(k4)

dist2CM(k423,1)=similarity('cityblock',school_cm(k4,:),pop(whereat(k423,k4),1:nbrAlleles));

 end

 %Compute the vector for probabilities

 vect4prob=dist2CM.*fitnesses(1:indexes(k4),k4);

 wtpm2=selection(0,round(breed_per_school(1,k4)/2),vect4prob,1);

 for k43=1:round(breed_per_school(1,k4)/2)

 child=mutation(pop(whereat(wtpm2(k43),k4),:),max(tolerance,

mean_perf(k4)/nmaxes(1,j)));

 NbrOidx=NbrOidx+1;

 pop(NbrOidx,:)=child;

% indexes(k4)=indexes(k4)+1;

% whereat(indexes(k4),k4)=NbrOidx;

 end

 %Crossover: 1st parent comes from pool of mutant fish

wtpc1=selection(0,round(breed_per_school(1,k4)/2),pop(start:NbrOidx,nbrAlleles+2),1);

 %Crossover: 2d parent comes from remaining school

 wtpc2=selection(0,round(breed_per_school(1,k4)/2),fitnesses(1:start2,k4),1);

 for k44=1:round(breed_per_school(1,k4)/2)

 child=crossOver(pop(start+wtpc1(k44)-1,:),pop(whereat(wtpc2(k44),k4),:));

188

 NbrOidx=NbrOidx+1;

 pop(NbrOidx,:)=child;

% indexes(k4)=indexes(k4)+1;

% whereat(indexes(k4),k4)=NbrOidx;

 end

 otherwise

 error('This should never occur')%nothing to be done

 end

 end

 %split population by environment -- to maintain ratio

 %keeps population size constant

 %First, remove duplicates if any

 pop=unique(pop(1:NbrOidx,:),'rows');

 NbrOidx=size(pop,1);

 popA = pop(pop(1:NbrOidx,nbrAlleles)==envStart,:);

 popB = pop(pop(1:NbrOidx,nbrAlleles)==envEnd,:);

 nbr_popA=length(popA);

 nbr_popB=length(popB);

 nbr_popA_to_remove = nbr_popA-envAtot;

 nbr_popB_to_remove = nbr_popB-envBtot;

 if nbr_popA_to_remove>0

 %create the perf vector

 perf_vector=popA(:,nbrAlleles+2);

 %select indexes to remove

 idx_to_remove=selection(1,nbr_popA_to_remove,perf_vector,0);

 i2r=sort(idx_to_remove);

 for k6=1:nbr_popA_to_remove

189

 popA(i2r(k6)-k6+1,:)=[];

% perf_vector(i2r(k6)-k6+1,:)=[];

 end

 end

 if nbr_popB_to_remove>0

 %create the perf vector

 perf_vector=popB(:,nbrAlleles+2);

 %select indexes to remove

 idx_to_remove=selection(1,nbr_popB_to_remove,perf_vector,0);

 i2r=sort(idx_to_remove);

 for k6=1:nbr_popB_to_remove

 popB(i2r(k6)-k6+1,:)=[];

% perf_vector(i2r(k6)-k6+1,:)=[];

 end

 end

 pop=zeros(pop_size+2*nbr_children,nbrAlleles+2

 NbrOidx=size(popA,1)+size(popB,1);

 pop(1:NbrOidx,:)=vertcat(popA,popB);

 clf(sgafig,'reset');%deletes from the current figure all graphics objects

 %record cputime it took

 nbrIter_AvgFitness_tConvg_nSchools_reptNbr(j,2,i)= cputime-t;

 nbrIter_AvgFitness_tConvg_nSchools_reptNbr(j,1,i)=mean_schools;

 %creates population of fishes and group them

 %[IDX nc]=gemac();

 fprintf('Done with iteration %d.\n',j);

 %pause;

 uniqueIDs=unique(pop(1:NbrOidx,nbrAlleles+1));

190

 hmany=size(uniqueIDs,1);

 newIDs=1:1:hmany;

 for y=1:pop_size

 for z=1:hmany

 if(pop(y,nbrAlleles+1)==uniqueIDs(z,1))

 pop(y,nbrAlleles+1)=newIDs(1,z);

 break;

 end

 end

 end

 IDX=pop(1:NbrOidx,nbrAlleles+1);%%%IDX=pop(:,nbrAlleles+1);

 if max(IDX) ~= hmany %check the packing happened well

 error('Error: length(uniqueIDs) value MUST MATCH hmany');

 end

 nc=hmany;

 end

 end

 %update value of max_iterations if convergence caused by 'stop == 1'

 if stop == 1

 max_iterations = j;%exactIterCount;

 tabu=tabu(1:tabuIdx,1:nbrAlleles);

 end

 %Format data for SGA results plotting

 nf=zeros(1,max_iterations);

 statuses=zeros(3,max_iterations);

 nmeans=zeros(1,max_iterations);

 iter_vect=linspace(1,max_iterations,max_iterations);

191

 for m1=1:max_iterations

 nf(1,m1)=nbrIter_AvgFitness_tConvg_nSchools_reptNbr(m1,3,i);%sizStaFitMax(m1).data;

 nmeans(1,m1)=nbrIter_AvgFitness_tConvg_nSchools_reptNbr(m1,1,i);

 nmaxes(1,m1)=max(sizStaFitMax{1,m1}.data(4,:));

 for m2=1:length(sizStaFitMax{1,m1}.data(2,:))

 switch sizStaFitMax{1,m1}.data(2,m2)

 case 1

 statuses(1,m1)=statuses(1,m1)+1;%FF

 case 2

 statuses(2,m1)=statuses(2,m1)+1;%SM

 case 3

 statuses(3,m1)=statuses(3,m1)+1;%PA

 %otherwise %school without progeny

 %error('Case should never occur');

 end

 end

 fprintf('Done with iteration %d.\n',m1);

 end

 % Plots the SGA Results

 sgares=figure('Name','TEST_SGA | Results','Numbertitle','off');

 subplot(2,2,1);

 plot(iter_vect,nf,'k*-');

 title('# Schools per Generation');

 subplot(2,2,2);

 plot(iter_vect,nmeans,'mv-');

 title('School Average Fitness per Generation');

 subplot(2,2,3);

192

 plot(iter_vect,nmaxes(1,1:max_iterations),'cd-');

 title(sprintf('Max fitness per Generation with best = %1.4f',max(nmaxes)));

 subplot(2,2,4);

 plot(iter_vect,statuses(1,1:max_iterations),'b.-');%FF

 hold on

 plot(iter_vect,statuses(2,1:max_iterations),'r.-');%SM

 plot(iter_vect,statuses(3,1:max_iterations),'g.-');%PA

 title('Behavior per Generation. SM-R, PA-G, FF-B');

 hold off;

 filename=strcat('results',num2str(i));

 saveas(sgares,filename,'png');% exports figure to JPEG

 %Compute TPI index of all parameters

 tabu = tabu(1:min(tabuIdx,tabuLen),:);

 [tpi pd] = impactOnPerformance(tabu,nDp,nOp,nEp,limits);%lce_extremes);

 disp('TPI values are:');

 disp(tpi);

 disp('PD values are:');

 disp(pd);

end

193

Appendix B

This appendix contains the main algorithm for GSN. All the files that are referenced

follow starting with Appendix E. to run the code for all 5 sets of experiments that were carried

for the dissertation, some minor changes need to be made to this file and all the supporting files.

Just follow the comments left within each file. The name of the following file is “gsn.m.”

%reset workspace and memory

clear global variables;

clear all;

clc;

global offset MinKnowledge tolerance pop domainRange themes nbrAlleles NbrOidx

memberships stop ext limits envEnd envStart;% tabu tabuLen tabuDistance;

stop = 0;

stop_count = 0;

MinKnowledge=0.7;

tolerance=1e-11;

nbrAlleles=3; %each chromosome will be encoded using nbrAlleles alleles

%tabuDistance=15*nbrAlleles; %minimum distance for tabu

ext=500;

%Sets number of each parameter

nDp=1;

nOp=1;

nEp=1;

%generate field

[X,Y] = meshgrid(-ext:1:ext);

[Z minZ maxZ] = performance(X,Y);

nbr_repetitions=1;

194

max_iterations=1000;

maxSameMaxPeriod=3;

exactIterCount = 0;

past_avg = 0.0;

%tabuLen=round(max_iterations*.20);%20% of # of iterations

%tabu=zeros(tabuLen,nbrAlleles);

lTerm=10;%determines how many generations leaders are elected for

NbrIter_AvgFitness_tConvg_nGroups_reptNbr=zeros(max_iterations,3,nbr_repetitions);

pop_size=120;

percentA=0.55;

envAtot=round(percentA*pop_size);% 55% of population comes from environment A

envBtot=pop_size-envAtot;% 45% of population comes from environment B

nbr_children=round(0.5*pop_size);% 50% of pop_size

nbr_themes=5;

%howFar=0.01;%proportion of search domain to be used for mutation range

%howFar2=0.50;%proportion of search domain to be used for mutation range

center=[0 0];%{0,0] cartesian is [101,101] Matlab

%lce_extremes=zeros(nbrAlleles,2);

envStart=-421;%0;

envEnd=421;%6;

domainStart=-ext;

domainEnd=+ext;

offset=ext+1;

domainRange=domainEnd-domainStart+1;

limits=[domainStart domainEnd; domainStart domainEnd; envStart envEnd];%we are in dim=3

sigma=domainRange/6;

195

pop=zeros(pop_size+2*nbr_children,nbrAlleles+1);%1 - |fit|

themes=zeros(nbr_themes,nbrAlleles+1);

%Zp=zeros(pop_size+2*nbr_children,1);

nmaxes=zeros(1,max_iterations);

for i=1:nbr_repetitions

 gsnfig = figure('Name','GSN TEST | In Progress Solutions', 'NumberTitle', 'off', 'Units',

'normalized', 'Position', [.05 .05 .90 .90]);

 array1=normrnd(center(1,1),sigma,[1,pop_size]);

 array2=normrnd(center(1,2),sigma,[1,pop_size]);

 array4=normrnd(center(1,1),sigma,[1,nbr_themes]);

 array5=normrnd(center(1,2),sigma,[1,nbr_themes]);

 array6=randperm(nbr_themes);

 envID=randperm(pop_size);

 %makes sure we start with feasible solutions, and correct the offset

 for h=1:pop_size

 pop(h,1)=array1(h)-domainRange*round(array1(h)/domainRange);

 pop(h,2)=array2(h)-domainRange*round(array2(h)/domainRange);

 %randomly assign population to environments

 if envID(h)<= envAtot

 pop(h,nbrAlleles)=envStart;%environment A

 else

 pop(h,nbrAlleles)=envEnd;%environment B

 end

 pop(h,nbrAlleles+1)=performance(pop(h,1:nbrAlleles));

 end

% for h2=1:nbrAlleles

% lce_extremes(h2,1)=min(limits(h2,:));

196

% lce_extremes(h2,2)=max(limits(h2,:));

% end

 %makes sure we start with feasible group themes, and correct the offset

 for h2=1:nbr_themes

 themes(h2,1)=array4(h2)-domainRange*round(array4(h2)/domainRange);

 themes(h2,2)=array5(h2)-domainRange*round(array5(h2)/domainRange);

 if array6(h2)<=round(percentA*nbr_themes)

 themes(h2,nbrAlleles)=envStart;%environment A

 else

 themes(h2,nbrAlleles)=envEnd;%environment B

 end

 themes(h2,nbrAlleles+1)=performance(themes(h2,1:nbrAlleles));

 end

 themes0 = themes;

 j=0;

 NbrOidx=pop_size;

 %Zp(1:NbrOidx,1)=performance(pop(1:NbrOidx,1),pop(1:NbrOidx,2),pop(1:NbrOidx,3));

 while and(j < max_iterations, stop == 0)

 %creates population of individuals and group them <- put out of loop so it

 %can be called right at the end of each iteration

 leadIndx=createSocialGroups();

 nc = length(leadIndx);

 membership=zeros(pop_size+2*nbr_children,nc);

 membership(1:NbrOidx,:)=memberships;

 term_counter=0;

 NbrIter_AvgFitness_tConvg_nGroups_reptNbr(j+1,3,i)=nc;

197

 while term_counter < lTerm

 t = cputime;

 j=j+1;

 sum_perf=zeros(1,nc);

 mean_perf=zeros(1,nc);

 max_perf=zeros(1,nc);

 perf=zeros(NbrOidx,nc);

 for k2=1:nc

 perf(:,k2)=membership(1:NbrOidx,k2).*pop(1:NbrOidx,nbrAlleles+1);

 sum_perf(1,k2)=sum(perf(:,k2));

 max_perf(1,k2)=max(perf(:,k2));

 mean_perf(1,k2)=mean(perf(:,k2));

 end

 term_counter=term_counter+1;

 nmaxes(1,j)=max(max(perf));%max(pop(1:NbrOidx,nbrAlleles+1));

 new_members=pop_size+nbr_children-NbrOidx;

 ratios=sum_perf./sum(sum_perf);

 members_per_group=round(new_members*ratios);

% %in case some sums were negative while others were positive

% for ps=1:length(members_per_group)

% if members_per_group(ps)<0

% members_per_group(ps)=0;

% end

% end

 mean_groups=mean(mean_perf);

 %effective number added

 %to_add=0;

198

 %for k3=1:nc

 % to_add=to_add+2*round(members_per_group(1,k3)/2);

 %end

 %for_children=zeros(to_add,3);

 %Check whether a stopping criteria is reached

 if (abs(past_avg-mean_groups)<tolerance)

 stop_count = stop_count +1;

 if stop_count == maxSameMaxPeriod

 exactIterCount = j;

 stop = 1;

 end

 else

 past_avg = mean_groups;

 stop_count = 0;

 end

 %plotting part -- Not available from 4+ dimensions

% contour3(X,Y,Z,70)

% %%%%%%%%%%%%%%%init_pos=campos;

% xlabel('X-plan','FontSize',8)

% ylabel('Y-plan','FontSize',8)

% zlabel('Z-performance','FontSize',8)

% %colormap default

% colormap('white')%'bone' 'white' 'winter'

% colorbar

%

% hold on

% plot3(pop(1:NbrOidx,1),pop(1:NbrOidx,2),pop(1:NbrOidx,nbrAlleles+1),'ob');

199

% campos([0 0 maxZ]);

% title(sprintf('Total Fitness Average = %1.4f, Iteration = %d',mean_groups,j));

% drawnow

% hold off;

% %Uncomment the next 2 lines if you don't mind waiting

% filename=strcat('frame',num2str(j));

% saveas(gsnfig,filename,'jpg');% exports figure to JPEG

 %execute GA operators

 for k4=1:nc

 wtpc=selection(0,round(members_per_group(1,k4)/2),perf(:,k4),0);

 for k42=1:2:round(members_per_group(1,k4)/2)

 child=crossOver2(pop(wtpc(k42),:),pop(wtpc(k42+1),:));

 NbrOidx=NbrOidx+1;

 pop(NbrOidx,:)=child;

 %Crossover requires 2 parents (think fuzzy AND to pass on membership)

 %child_membership=min([membership(wtpc(k42),:);

membership(wtpc(k42+1),:)]);

 %membership(NbrOidx,:)= child_membership;

 membership(NbrOidx,:)= min([membership(wtpc(k42),:);

membership(wtpc(k42+1),:)]);

 end

 wtpm=selection(0,round(members_per_group(1,k4)/2),perf(:,k4),1);

 for k42=1:round(members_per_group(1,k4)/2)

child=mutation2(pop(wtpm(k42),:),mean_perf(k4)/max(tolerance,abs(nmaxes(1,j))));

 NbrOidx=NbrOidx+1;

 pop(NbrOidx,:)=child;

 %Mutation requires 1 parent (think OR, fuzzy OR)

200

 %child_membership=max([membership(wtpm(k42),:);rand(1,nc)]);

 %membership(NbrOidx,:)= child_membership;

 membership(NbrOidx,:)= max([membership(wtpm(k42),:);rand(1,nc)]);

 end

 end

 %keeps population size constant

 %First, remove duplicates if any

 [pop idxs]=unique(pop(1:NbrOidx,:),'rows');

 %remove corresponding rows

 NbrOidx=size(pop,1);

 membrs=zeros(NbrOidx,size(membership,2));

 for cr=1:NbrOidx

 membrs(cr,:)=membership(idxs(cr),:);

 end

 %%%%%%%%%%%%%%%%%%%

 %split population by environment -- to maintain ratio

 popA = pop(pop(1:NbrOidx,nbrAlleles)==envStart,:);

 popB = pop(pop(1:NbrOidx,nbrAlleles)==envEnd,:);

 lenA=length(popA);

 lenB=length(popB);

 nbr_popA_to_remove =lenA-envAtot;

 nbr_popB_to_remove = lenB-envBtot;

 mbr_vectorA=zeros(lenA,nc);

 mbr_vectorB=zeros(lenB,nc);

 idx=ones(1,2);

 for h = 1:NbrOidx

 if pop(h,nbrAlleles)==envStart;%environment A

201

 mbr_vectorA(idx(1),:)=membrs(h,:);

 idx(1)=idx(1)+1;

 else %environment B

 mbr_vectorB(idx(2),:)=membrs(h,:);

 idx(2)=idx(2)+1;

 end

 end

 if nbr_popA_to_remove>0

 %create the perf vector

 perf_vectorA=popA(:,nbrAlleles+1);

 %select indexes to remove

 idx_to_remove=selection(1,nbr_popA_to_remove,perf_vectorA,0);

 i2r=sort(idx_to_remove);

 for k6=1:nbr_popA_to_remove

 popA(i2r(k6)-k6+1,:)=[];

 perf_vectorA(i2r(k6)-k6+1,:)=[];

 mbr_vectorA(i2r(k6)-k6+1,:)=[];

 end

 end

 if nbr_popB_to_remove>0

 %create the perf vector

 perf_vectorB=popB(:,nbrAlleles+1);

 %select indexes to remove

 idx_to_remove=selection(1,nbr_popB_to_remove,perf_vectorB,0);

 i2r=sort(idx_to_remove);

 for k6=1:nbr_popB_to_remove

202

 popB(i2r(k6)-k6+1,:)=[];

 perf_vectorB(i2r(k6)-k6+1,:)=[];

 mbr_vectorB(i2r(k6)-k6+1,:)=[];

 end

 end

 pop_size=size(popA,1)+size(popB,1);

 pop=zeros(pop_size+2*nbr_children,nbrAlleles+1);%1 - |fit|

 membership=zeros(pop_size+2*nbr_children,nc);

 NbrOidx=pop_size;

 pop(1:NbrOidx,:)=vertcat(popA,popB);

 membership(1:NbrOidx,:)=vertcat(mbr_vectorA,mbr_vectorB);

 %%%%%%%%%%%%%%%%%%%%

 clf(gsnfig,'reset');%deletes from the current figure all graphics objects

 %record cputime it took

 NbrIter_AvgFitness_tConvg_nGroups_reptNbr(j,2,i)= cputime-t;

 NbrIter_AvgFitness_tConvg_nGroups_reptNbr(j,1,i)=mean_groups;

 fprintf('Done with iteration %d.\n',j);

 %prep data for next iteration

 %[Zp minZp maxZp] = performance(pop(:,1),pop(:,2),pop(:,3));

 end

 disp('time to upgrade community themes and re-elect leaders ;-)\n');

 %%Upgrade community themes for new leaders --> dynamic themes

 for m=1:nbr_themes

 for t_col=1:nbrAlleles-1

new_val=themes(m,t_col)+sum(perf(1:NbrOidx,m).*pop(1:NbrOidx,t_col))/sum(perf(1:NbrOid

x,m));

203

 themes(m,t_col)=new_val-domainRange*round(new_val/domainRange);

 end

 themes(m,nbrAlleles+1)=performance(themes(m,1:nbrAlleles));

 end

 end

 %update value of max_iterations if convergence caused by 'stop == 1'

 if stop == 1

 max_iterations = exactIterCount;

% if tabuLen > exactIterCount

% tabu=tabu(1:exactIterCount,nbrAlleles);

% end

 end

 %nmeans=zeros(1,max_iterations);

 nmeans=NbrIter_AvgFitness_tConvg_nGroups_reptNbr(1:j,1,i);

 % Plots the GSN Results

 gsnres=figure('Name','TEST_GSN | Results','Numbertitle','off');

 subplot(2,1,1);

 iter_vect=linspace(1,j,j);

 plot(iter_vect,nmeans,'mv-');

 title('Group Average Fitness per Generation');

 subplot(2,1,2);

 plot(iter_vect,nmaxes(1,1:j),'cd-');

 title(sprintf('Max fitness per Generation with best = %1.4f',max(nmaxes)));

 filename=strcat('results',num2str(i));

 saveas(gsnres,filename,'png');% exports figure to JPEG

204

 %Compute TPI index of all parameters

% [tpi pd] = impactOnPerformance(tabu,nDp,nOp,nEp,limits);%lce_extremes);

% disp('TPI values are:');

% disp(tpi);

% disp('PD values are:');

% disp(pd);

end

205

Appendix C

This appendix contains the main algorithm for IGA. All the files that are referenced

follow starting with Appendix E. to run the code for all 5 sets of experiments that were carried

for the dissertation, some minor changes need to be made to this file and all the supporting files.

Just follow the comments left within each file. The name of the following file is “iga.m.”

%reset workspace and memory

clear global variables;

clear all;

clc;

global iSize envEnd envStart nbrAlleles migrationInterval tolerance islands popSize

domainRange limits nbrIslands migrationSize pop;

%initialize variables

nbrAlleles=3;%gen1|gen2|evmt|perf

nbrIslands=5;

popSize=120;

migrationInterval=30;

migrationSize=5;

tolerance=1e-11;

iSize=round(popSize/nbrIslands);%popSize should be a multiple of nbrIslands

ext=500;

%generate field

%[X,Y] = meshgrid(-ext:1:ext);

envAtot=round(0.65*popSize);%65% of tot pop

envBtot=popSize-envAtot;

center=[0 0];

envStart=0;

206

envEnd=6;

domainStart=-ext;

domainEnd=+ext;

offset=ext+1;

domainRange=domainEnd-domainStart+1;

limits=[domainStart domainEnd; domainStart domainEnd; envStart envEnd];%we are in dim=3

sigma=domainRange/6;

nbr_replications=1;

max_iterations=1020;

xVal=1:1:max_iterations;

for i=1:nbr_replications

 %For summary data plotting

 %to record all bests from each island

 bests=zeros(max_iterations,nbrAlleles+1,nbrIslands);

 averages=zeros(max_iterations,1,nbrIslands);

 %initializes population

 pop=zeros(popSize,nbrAlleles+1);%%gen1|gen2|evmt|perf

 array1=normrnd(center(1,1),sigma,[1,popSize]);

 array2=normrnd(center(1,2),sigma,[1,popSize]);

 array3=zeros(1,popSize);

 envID=randperm(popSize);

 %makes sure we start with feasible solutions, and correct the offset

 for h=1:popSize

 pop(h,1)=array1(h)-domainRange*round(array1(h)/domainRange);

 pop(h,2)=array2(h)-domainRange*round(array2(h)/domainRange);

 %randomly assign population to environments

 if envID(h)<= envAtot

207

 pop(h,nbrAlleles)=envStart;%environment A

 else

 pop(h,nbrAlleles)=envEnd;%environment B

 end

 %Add performance values

 pop(h,nbrAlleles+1)=performance(pop(h,1:nbrAlleles));

 end

 %initializes islands structure and populates it

 islands=zeros(iSize,nbrAlleles+1,nbrIslands);

 create_islands();

 j=0;

 nbrOffspring=round(0.50*popSize)/nbrIslands;% 50% of pop size

 while j<round(max_iterations/migrationInterval);

 allBests=zeros(migrationInterval,nbrAlleles+1,nbrIslands);

 allAverages=zeros(migrationInterval,1,nbrIslands);

 j=j+1;

 %Go through all islands, run them all in parallel

 parfor k = 1:nbrIslands

 [allAverages(:,1,k) allBests(:,:,k)]=ga(k,nbrOffspring);

 end

 %Store bests

 for k=1:nbrIslands

 bests((j-1)*migrationInterval+1:j*migrationInterval,:,k)=allBests(:,:,k);

 averages((j-1)*migrationInterval+1:j*migrationInterval,1,k)=allAverages(:,1,k);

 end

208

 %Proceeds with migration to add diversity within each subpopulation

 migrate();

 end

 %plot all bests for each subpopulation

 % Plots the IGA Results

 igares=figure('Name','TEST_IGA | Results','Numbertitle','off');

 subplot(2,3,1);

 plot(xVal,bests(:,nbrAlleles+1,1),'k*-');

 title('Bests/Gen. for Isl.#1');

 subplot(2,3,2);

 plot(xVal,bests(:,nbrAlleles+1,2),'b.-');

 title('Bests/Gen. for Isl.#2');

 subplot(2,3,3);

 plot(xVal,bests(:,nbrAlleles+1,3),'r.-');

 title('Bests/Gen. for Isl.#3');

 subplot(2,3,4);

 plot(xVal,bests(:,nbrAlleles+1,4),'g.-');

 title('Bests/Gen. for Isl.#4');

 subplot(2,3,5);

 plot(xVal,bests(:,nbrAlleles+1,5),'m*-');

 title('Bests/Gen. for Isl.#5');

 filename=strcat('allBests',num2str(i));

 saveas(igares,filename,'png');% exports figure to PNG

209

 igares2=figure('Name','TEST_IGA | Results','Numbertitle','off');

 subplot(2,3,1);

 plot(xVal,averages(:,1,1),'k*-');

 title('Avg/Gen. for Isl.#1');

 subplot(2,3,2);

 plot(xVal,averages(:,1,2),'b.-');

 title('Avg/Gen. for Isl.#2');

 subplot(2,3,3);

 plot(xVal,averages(:,1,3),'r.-');

 title('Avg/Gen. for Isl.#3');

 subplot(2,3,4);

 plot(xVal,averages(:,1,4),'g.-');

 title('Avg/Gen. for Isl.#4');

 subplot(2,3,5);

 plot(xVal,averages(:,1,5),'m*-');

 title('Avg/Gen. for Isl.#5');

 filename=strcat('allAverages',num2str(i));

 saveas(igares2,filename,'png');% exports figure to PNG

 %waits for a key press (any key) before continuing

 %pause

endj

210

Appendix D

This appendix contains the main algorithm for PGA. All the files that are referenced

follow starting with Appendix E. to run the code for all 5 sets of experiments that were carried

for the dissertation, some minor changes need to be made to this file and all the supporting files.

Just follow the comments left within each file. The name of the following file is “pga.m.”

%reset workspace and memory

clear global variables;

clear all;

clc;

global iSize envEnd envStart nbrAlleles migrationInterval tolerance islands popSize

domainRange limits nbrIslands migrationSize pop;

%initialize variables

nbrAlleles=5;%gen1|gen2|evmt|perf

nbrIslands=4;

popSize=120;

migrationInterval=30;

migrationSize=2;

tolerance=1e-11;

iSize=round(popSize/nbrIslands);%popSize should be a multiple of nbrIslands

ext=500;

%generate field

%[X,Y] = meshgrid(-ext:1:ext);

envAtot=round(0.55*popSize);%65% of tot pop

envBtot=popSize-envAtot;

center=[0 0];

envStart=0;

211

envEnd=6;

domainStart=-ext;

domainEnd=+ext;

offset=ext+1;

domainRange=domainEnd-domainStart+1;

limits=[domainStart domainEnd; domainStart domainEnd; envStart envEnd];%we are in dim=3

sigma=domainRange/6;

nbr_replications=1;

max_iterations=1020;

xVal=1:1:max_iterations;

for i=1:nbr_replications

 %For summary data plotting

 %to record all bests from each island

 bests=zeros(max_iterations,nbrAlleles+1,nbrIslands);

 averages=zeros(max_iterations,1,nbrIslands);

 %initializes population

 pop=zeros(popSize,nbrAlleles+1);%%gen1|gen2|gen3|gen4|evmt|perf

 array1=normrnd(center(1,1),sigma,[1,popSize]);

 array2=normrnd(center(1,2),sigma,[1,popSize]);

 array3=zeros(1,popSize);

 envID=randperm(popSize);

 %makes sure we start with feasible solutions, and correct the offset

 for h=1:popSize

212

 pop(h,1)=array1(h)-domainRange*round(array1(h)/domainRange);

 pop(h,2)=array2(h)-domainRange*round(array2(h)/domainRange);

 %randomly assign population to environments

 if envID(h)<= envAtot

 pop(h,nbrAlleles)=envStart;%environment A

 else

 pop(h,nbrAlleles)=envEnd;%environment B

 end

 %Add performance values

 pop(h,nbrAlleles+1)=performance(pop(h,1:nbrAlleles));

 end

 %initializes islands structure and populates it

 islands=zeros(iSize,nbrAlleles+1,nbrIslands);

 create_islands();

 j=0;

 nbrOffspring=round(0.50*popSize)/nbrIslands;% 50% of pop size

 while j<round(max_iterations/migrationInterval);

 allBests=zeros(migrationInterval,nbrAlleles+1,nbrIslands);

 allAverages=zeros(migrationInterval,1,nbrIslands);

 j=j+1;

 %Go through all islands, run them all in parallel

 parfor k = 1:nbrIslands

 [allAverages(:,1,k) allBests(:,:,k)]=ga(k,nbrOffspring);

 end

 %Store bests

213

 for k=1:nbrIslands

 bests((j-1)*migrationInterval+1:j*migrationInterval,:,k)=allBests(:,:,k);

 averages((j-1)*migrationInterval+1:j*migrationInterval,1,k)=allAverages(:,1,k);

 end

 %No migration this time

 end

 %plot all bests for each subpopulation

 % Plots the PGA Results

 pgares=figure('Name','TEST_PGA | Results','Numbertitle','off');

 subplot(2,3,1);

 plot(xVal,bests(:,nbrAlleles+1,1),'k*-');

 title('Bests/Gen. for Subpop#1');

 subplot(2,3,2);

 plot(xVal,bests(:,nbrAlleles+1,2),'b.-');

 title('Bests/Gen. for Subpop#2');

 subplot(2,3,3);

 plot(xVal,bests(:,nbrAlleles+1,3),'r.-');

 title('Bests/Gen. for Subpop#3');

 subplot(2,3,4);

 plot(xVal,bests(:,nbrAlleles+1,4),'g.-');

 title('Bests/Gen. for Subpop#4');

 subplot(2,3,5);

 plot(xVal,bests(:,nbrAlleles+1,5),'m*-');

 title('Bests/Gen. for Subpop#5');

 filename=strcat('results',num2str(i));

214

 saveas(pgares,filename,'png');% exports figure to PNG

 pgares2=figure('Name','TEST_PGA | Results','Numbertitle','off');

 subplot(2,3,1);

 plot(xVal,averages(:,1,1),'k*-');

 title('Avg/Gen. for Subpop#1');

 subplot(2,3,2);

 plot(xVal,averages(:,1,2),'b.-');

 title('Avg/Gen. for Subpop#2');

 subplot(2,3,3);

 plot(xVal,averages(:,1,3),'r.-');

 title('Avg/Gen. for Subpop#3');

 subplot(2,3,4);

 plot(xVal,averages(:,1,4),'g.-');

 title('Avg/Gen. for Subpop#4');

 subplot(2,3,5);

 plot(xVal,averages(:,1,5),'m*-');

 title('Avg/Gen. for Subpop#5');

 filename=strcat('allAverages',num2str(i));

 saveas(pgares2,filename,'png');% exports figure to PNG

 %waits for a key press (any key) before continuing

 %pause

end

215

Appendix E

This appendix contains the support files for SGA, GSN, IGA, and PGA implementations.

In all cases, the name of the file is given prior the listing of its contents.

************************************”gemac.m”********************************

function varargout = gemac()

% Geometrically Expanded Membership for Automated Clustering--> GEMAC

global pop NbrOidx nbrAlleles;

f=2.7;%1.97;%2.7;%2.7183;%power of proximity

distances=zeros(NbrOidx,NbrOidx);

for i1=1:NbrOidx-1

 for j1=i1+1:NbrOidx

 %working with integers is always faster than with reals

 distances(i1,j1)=round(similarity('cityblock',pop(i1,1:nbrAlleles),pop(j1,1:nbrAlleles)));

 distances(j1,i1)=distances(i1,j1);

 end

end

distances2=distances;

mode_node_proxy=zeros(1,NbrOidx);

ppop=0.12;%12% of the population will be sampled

s2=round(ppop*NbrOidx);

rsamples=randint(NbrOidx,s2,[1 NbrOidx]);

for ik=1:NbrOidx

 for ij=1:s2

 mode_node_proxy(ik)=mode_node_proxy(ik)+distances(ik,rsamples(ik,ij));

 end

 mode_node_proxy(ik)=mode_node_proxy(ik)/s2;

216

end

plp=NbrOidx;

k=10000;%must be a value that does not occur within data

e2nc=[(1/f^1) (1/f^2) (1/f^3) (1/f^4) (1/f^5)];

%max_level=5;

k_used=0;

distances(1,1)=k;

distances(2:plp,1)=Inf;%no fuzzy membership allowed.

%level0

%everything was working fine till I substituted i2 with level0(1,i2) in

%following for-loop. I also changed level0=linspace(1,NbrOidx,NbrOidx) to

%level0=randperm(NbrOidx)

level0=linspace(1,NbrOidx,NbrOidx);%randperm(NbrOidx);%

%level1

for i2=1:plp%-1

 if level0(i2)==0; continue; end%no double usage at level0

 %level1conn=[];

 level1conn=zeros(1,NbrOidx);%pre-allocate for speed

 idx1=1;

 for j2=1:plp

 if distances(i2,j2)<=mode_node_proxy(i2)*e2nc(1)

 distances(i2,j2)=k;

 %level1conn=[level1conn j2];

 level1conn(1,idx1)=j2;

 idx1=idx1+1;

 level0(1,j2)=0;

 k_used=1;

217

 distances(i2+1:plp,j2)=Inf;%no fuzzy membership allowed.

 distances(1:i2-1,j2)=Inf;%no fuzzy membership allowed.

 end

 end

 %level2

 for j3=1:length(level1conn)

 %level2conn=[];

 level2conn=zeros(1,NbrOidx);%pre-allocate for speed

 idx2=1;

 if level1conn(1,j3)==0; break; end%no double usage for level1

 for j4=1:plp

 if distances(level1conn(1,j3),j4)<=mode_node_proxy(i2)*e2nc(2)

 %level2conn=[level2conn j4];

 level2conn(1,idx2)=j4;

 idx2=idx2+1;

 level0(1,j4)=0;

 distances(level1conn(1,j3),j4)=k;

 distances(level1conn(1,j3)+1:plp,j4)=Inf;%no fuzzy membership allowed.

 distances(1:level1conn(1,j3)-1,j4)=Inf;%no fuzzy membership allowed.

 end

 end

 %level3

 for j5=1:length(level2conn)

 %level3 --we stop here for now

 %level3conn=[];

 level3conn=zeros(1,NbrOidx);%pre-allocate for speed

 idx3=1;

218

 if level2conn(1,j5)==0; break; end%no double usage for level2

 for j6=1:plp

 if distances(level2conn(1,j5),j6)<=mode_node_proxy(i2)*e2nc(3)

 %level3conn=[level3conn j6];

 level3conn(1,idx2)=j6;

 idx3=idx3+1;

 level0(1,j6)=0;

 distances(level2conn(1,j5),j6)=k;

 distances(level2conn(1,j5)+1:NbrOidx,j6)=Inf;%no fuzzy membership allowed.

 distances(1:level2conn(1,j5)-1,j6)=Inf;%no fuzzy membership allowed.

 end

 end

 %level4 --will start here

 end

 end

 if k_used

 k=k+1;

 k_used=0;

 end

end

for i2=1:plp

 if not(isinf(max(distances(:,i2))))

 distances(1,i2)=k;

 k=k+1;

 end

end

219

%finish the partitioning

CIX=min(distances)-9999;

NC=max(CIX);%returns the number of clusters

% Return Outputs

if nargout

 varargout{1} = CIX;

 varargout{2} = NC;

 varargout{3} = distances2;

 varargout{4} = mode_node_proxy;

end

end

************************************”ga.m”************************************

%GA Simple GA Algorithm with performance that is environment dependent

function varargout = ga(islIdx, nbrOffspring)

global nbrAlleles migrationInterval islands iSize domainRange;

%sets the population--(gen1|gen2|evmt|perf)

%iSize=round(popSize/nbrIslands);%popSize should be a multiple of iSize

lpop=zeros(iSize+2*nbrOffspring,nbrAlleles+1);

lpop(1:iSize,:)=islands(:,:,islIdx);

best=zeros(migrationInterval,nbrAlleles+1);

average=zeros(migrationInterval,1);

NbrOidx=iSize;

%determine ratio for each environment

envAtot=sum(lpop(:,nbrAlleles)==1);

envBtot=iSize-envAtot;

% Run the GA

for iter = 1:1:migrationInterval

220

 %execute GA operators - 50% XER, 50% uTION

 wtpc=selection(0,round(nbrOffspring/2),lpop(1:iSize,nbrAlleles+1),0);

 for k42=1:2:round(nbrOffspring/2)

 child=crossOver2(lpop(wtpc(k42),:),lpop(wtpc(k42+1),:));

 NbrOidx=NbrOidx+1;

 lpop(NbrOidx,:)=child;

 end

 %Use the same population as the XER operator

 wtpm=selection(0,round(nbrOffspring/2),lpop(1:iSize,nbrAlleles+1),1);

 for k42=1:round(nbrOffspring/2)

 child=mutation2(lpop(wtpm(k42),:),max(rand(1,3))*domainRange);

 NbrOidx=NbrOidx+1;

 lpop(NbrOidx,:)=child;

 end

 %Finds the best and the average and record them both

 [v iBest]=max(lpop(1:NbrOidx,nbrAlleles+1));

 best(iter,:)=lpop(iBest,:);

 average(iter,1)=mean(lpop(:,nbrAlleles+1));

 %Reduction/culling process - preserve environment ratios

 %First, remove duplicates if any

 lpop=unique(lpop,'rows');

 pSize=length(lpop);

 lpopA = lpop(lpop(1:pSize,nbrAlleles)==1,:);

 lpopB = lpop(lpop(1:pSize,nbrAlleles)==2,:);

 nbr_lpopA=size(lpopA,1);

 nbr_lpopB=size(lpopB,1);

221

 nbr_lpopA_to_remove = nbr_lpopA-envAtot;

 nbr_lpopB_to_remove = nbr_lpopB-envBtot;

 idxA_to_remove=selection(1,nbr_lpopA_to_remove,lpopA(1:nbr_lpopA,nbrAlleles+1),0);

 i2r=sort(idxA_to_remove);

 for k6=1:nbr_lpopA_to_remove

 lpopA(i2r(k6)-k6+1,:)=[];

 end

 idxB_to_remove=selection(1,nbr_lpopB_to_remove,lpopB(1:nbr_lpopB,nbrAlleles+1),0);

 i2r=sort(idxB_to_remove);

 for k6=1:nbr_lpopB_to_remove

 lpopB(i2r(k6)-k6+1,:)=[];

 end

 %Resets population

 lpop=zeros(iSize+2*nbrOffspring,nbrAlleles+1);

 lpop(1:size(lpopA,1)+size(lpopB,1),:)=vertcat(lpopA,lpopB);

 NbrOidx=size(lpopA,1)+size(lpopB,1);%ideally, should be: iSize

end

% Return Outputs

if nargout

 varargout{1} = average;

 varargout{2} = best;

end

**********************************”similarity.m”********************************

% Similarity measure of numerical data%

function measure = similarity(type,X,Y)

222

lx=length(X);

ly=length(Y);

if lx ~= ly, error('genes''length must match'); end

Z=[X;Y];

switch lower(type)

 case {'euclidean','default','dist'}

 %disp('Computing Euclidean distance')

 measure=pdist(Z,'euclidean');

 case 'seuclidean'

 %disp('Computing the Standardized Euclidean distance')

 measure=pdist(Z,'seuclidean');

 case 'mahalanobis'

 %disp('Computing the Standardized Euclidean distance')

 measure=pdist(Z,'mahalanobis');

 case {'cityblock','manhattan', 'taxicab'}

 %disp('computing the manhattan distance')

 measure=pdist(Z,'cityblock');

 case 'minkowski'

 %disp('computing the minkowski distance')

 measure=pdist(Z,'minkowski');

 case 'cosine'

 %disp('Computing cosine distance')

 measure=pdist(Z,'cosine');

 case 'correlation'

 %disp('Computing the correlation distance')

 measure=pdist(Z,'correlation');

 case 'spearman'

223

 %disp('Computing the spearman distance')

 measure=pdist(Z,'spearman');

 case 'hamming'

 %disp('computing the hamming distance')

 measure=pdist(Z,'hamming');

 case 'jaccard'

 %disp('Computing the jaccard distance')

 measure=pdist(Z,'jaccard');

 case {'chebychev', 'chessboard', 'sup norm'}

 %disp('computing the chebychev distance')

 measure=pdist(Z,'chebychev');

 case 'canberra'

 %disp('computing the canberra distance')

 measure=sum(abs(X-Y)./abs(X+Y));

 case {'bray-curtis', 'sørensen', 'braycurtisdistance'}

 %disp('Computing the Bray-Curtis distance')

 measure=(sum(abs(X-Y))/sum(abs(X+Y)));

 case {'matching'}

 %disp('Computing the matching distance')

 measure=sum(X==Y);

 otherwise

 error('Similarity measure requested is Unknown. Nothing is done')

end

end

**********************************”similarity.m”********************************

224

function [TPI PD] = impactOnPerformance(bests, nDp, nOp, nEp, lce_min_max)

%Outputs:

%- Trait Performance Indicator (TPI) -- Class-wise (Dsg, Opr, Evm)

% vector whose values indicates how significant (0 1.0) the given values

% of a parameter are to the performance

%- Parameter Delta (PD) -- range of parameters for the given performance

%Inputs:

%- nDp/nOp/nEp -- number of Design/Operational/Environmental parameters

%- bests -- best solutions returned by the metaheuristic

%- lce_min_max -- min and max of all considered LCE parameters

%Assumptions:

%- lce_min_max has each allele [min max] values defined row-wise

%- the order (row-wise) of parameters within lce_min_max is Dp|Op|Ep

%- the order (column-wise) of parameters within bests is Dp|Op|Ep

[nBests nAlleles]=size(bests);

if (nDp+nOp+nEp ~= nAlleles)

 error('# of alleles does not equal the sum (nOp+nDp+nEp)');

end

% lce_sizes=[0,nDp,nOp+nDp,nOp+nDp+nEp];

%Use Tanimoto-like distance to compute metric

%We only have 3 classes of LCE parameters

%But each class can be encoded on multiple dimensions

num=zeros(1,nAlleles);%

225

dem=zeros(1,nAlleles);%

%Works with values passed within bests and lce_mins_maxs

% for j=1:nAlleles

% for i=lce_sizes(j)+1:lce_sizes(j+1)

% num(j)=num(j)+max(bests(:,i))-min(bests(:,i));

% dem(j)=dem(j)+lce_min_max(i,2)-lce_min_max(i,1);

% end

% end

for j=1:nAlleles

 num(j)=max(bests(:,j))-min(bests(:,j));

 dem(j)=lce_min_max(j,2)-lce_min_max(j,1);

end

%Outputs MUST always be a 1xnAlleles points

PD=num;

TPI=num./dem;

end

**********************************”isClear.m”********************************

function varargout=isClear(schoolCM)

%Check whether a value belongs to a tabu list

%the tabu list implements a recency list

global tabu tabuDistance tabuIdx tabuLen;

for i=1:min(tabuLen,tabuIdx+1)

226

 if similarity('cityblock',schoolCM,tabu(i,:))<=tabuDistance

 % Return Outputs

 if nargout

 varargout{1} = -5;

 varargout{2} = i;

 end

 return;

 end

end

%new CM does not belong to the list

if nargout

 varargout{1} = 5;

 varargout{2} = 0;

end

end

**********************************”mutation.m”********************************

function child=mutation(parent, range)

%Mutates a parent to create a new solution

 %to be used to select parents for mutation process

global nbrAlleles limits nc domainRange envStart envEnd;

 %limits contains the limits accross each dimension

 %along dim i, limits(i,1)-->min, limits(i,2)-->max

child=zeros(1,size(parent,2));

hm2m=randint(1,1,[1 (nbrAlleles-1)*2]);%Sets the number of alleles or allele to mutate

if hm2m <= nbrAlleles-1

227

 for i=1:nbrAlleles-1

 if i == hm2m

 r=rand;

 child(1,i)=parent(1,i)+(range*r)*limits(i,2)-

domainRange*round((parent(1,i)+(range*r)*limits(i,2))/domainRange);

 %child(1,i)=parent(1,i)+r*limits(i,2)-

domainRange*round((parent(1,i)+r*limits(i,2))/domainRange);

 else

 child(1,i)=parent(1,i);

 end

 end

 r=rand;

 child(1,hm2m)=parent(1,hm2m)+(range*r)*limits(hm2m,2)-

domainRange*round((parent(1,hm2m)+(range*r)*limits(hm2m,2))/domainRange);

 %child(1,i)=parent(1,i)+r*limits(i,2)-domainRange*round((parent(1,i)+r*

 %limits(i,2))/domainRange);

else

 for i=1:nbrAlleles-1

 r=rand;

 child(1,i)=parent(1,i)+(range*r)*limits(i,2)-

domainRange*round((parent(1,i)+(range*r)*limits(i,2))/domainRange);

 %child(1,i)=parent(1,i)+r*limits(i,2)-

domainRange*round((parent(1,i)+r*limits(i,2))/domainRange);

 end

end

%environment and school ID might change

if rand>0.5

 child(1,nbrAlleles-1:nbrAlleles+1)=parent(1,nbrAlleles-1:nbrAlleles+1);

else

228

 env=randint(1,1,[limits(nbrAlleles,1) limits(nbrAlleles,2)]);

 if env<0.5*(envEnd+envStart)

 child(1,nbrAlleles-1)=envStart;

 child(1,nbrAlleles)=envStart;

 else

 child(1,nbrAlleles-1)=envEnd;

 child(1,nbrAlleles)=envEnd;

 end

 child(1,nbrAlleles+1)=randint(1,1,[1 nc]);

end

%perf=performance(child(1:nbrAlleles));

% if perf > 1.0

% child(1:nbrAlleles)

% error('Performance value should never exceed 1.0');

% else

 child(1,nbrAlleles+2)=performance(child(1,1:nbrAlleles));%perf;

% end

end

**********************************”mutation2.m”********************************

function child=mutation2(parent, range)

%Mutates a parent to create a new solution

 %to be used to select parents for mutation process

global nbrAlleles limits domainRange envStart envEnd;

 %limits contains the limits accross each dimension

 %along dim i, limits(i,1)-->min, limits(i,2)-->max

229

child=zeros(1,size(parent,2));

for i=1:nbrAlleles-1

 r=rand;

 child(1,i)=parent(1,i)+(range+r)*limits(i,2)-

domainRange*round((parent(1,i)+(range+r)*limits(i,2))/domainRange);

end

%environment might change

if rand>0.5

 child(1,nbrAlleles:nbrAlleles+1)=parent(1,nbrAlleles:nbrAlleles+1);

else

 child(1,nbrAlleles)=randint(1,1,[limits(nbrAlleles,1) limits(nbrAlleles,2)]);

 if child(1,nbrAlleles)<0.5*(envEnd+envStart)

 child(1,nbrAlleles)=envStart;

 else

 child(1,nbrAlleles)=envEnd;

 end

end

child(1,nbrAlleles+1)=performance(child(1,1:nbrAlleles));

end

*********************************”performance.m”*******************************

function varargout = performance(varargin)

%PERFORMANCE Summary of this function goes here

% Detailed explanation goes here

global envStart tolerance ext;%envEnd

230

maxV=ext;

% persistent perf;

% global offset;

if nargin == 1; %assuming solution was passed in

 soln=varargin{1};%+offset;

% X=[soln(1), soln(2)];

% Y=[soln(3), soln(4)];

% E=[soln(5), soln(6)];

% X=[soln(1), soln(2)];

% Y=[soln(3), soln(4)];

% E=soln(5);

% X=[soln(1)+rand, soln(2)+rand];

% Y=[soln(3)+rand, soln(4)+rand];

% E=[soln(5)+rand, soln(6)+rand];

 X=soln(1);

 Y=soln(2);

 E=soln(3);

elseif nargin==3%assuming X,Y,E were passed in

 X=varargin{1};

 Y=varargin{2};

 E=varargin{3};

else %assuming (nargin==2) X and Y were passed in (Very Special Case)

 X=varargin{1};

 Y=varargin{2};

 Z=-X.*sin(sqrt(abs(X)))-Y.*sin(sqrt(abs(Y)));

 %maxZ=max(max(Z));minZ=min(min(Z));

 if nargout; %assumes nargout value of 3

231

 varargout{1} = Z;

 varargout{2} = min(min(Z));

 varargout{3} = max(max(Z));

 return;

 end

end

sizeZ=size(X,1);

Z=zeros(sizeZ,1);

 %performance is Dp and Op dependent

for i=1:sizeZ

 %Linear

% if X(i) == 50

% Z(i)=1;

% else

% Z(i)=tolerance;

% end

% if E(i)==envStart; %environment A

% Z(i)=abs(1-abs((X(i)/maxV)-0.7));

% else %environment B ==> E(i)==2

% Z(i)=abs(1-abs((X(i)/maxV)-0.3));

% end

% if E(i)==envStart; %environment A

% Z(i)=1-abs(abs(X(i)/maxV)-0.7)*abs(abs(Y(i)/maxV)-0.3);

% else %environment B ==> E(i)==2

% Z(i)=1-abs(abs(X(i)/maxV)-0.3)*abs(abs(Y(i)/maxV)-0.7);

% end

% if E(i)==envStart; %environment A

232

% if X(i)< 0

% Z(i)=1-abs(abs(Y(i)/maxV)-0.7);

% else

% Z(i)=1-abs(abs(Y(i)/maxV)-0.3);

% end

% else %environment B

% if X(i)< 0

% Z(i)=1-abs(abs(Y(i)/maxV)-0.9);

% else

% Z(i)=1-abs(abs(Y(i)/maxV)-0.1);

% end

% end

 %Griewank OpX1, EvX1

 Z(i)=-1*griewank([X(i) E(i)]);

 %Ackley OPX2, DsX2

% Z(i)=-1*ackley([X(1) X(2) Y(1) Y(2)]);

 %Schwefel OPX2, DsX2, EnvX1

 %Z(i)=-1*schw([X(1) X(2) Y(1) Y(2) E]);

% Z(i)=-1*schw([X Y E]);

 %Schwefel OPX2, DsX2, EnvX2

% Z(i)=-1*schw([X(1) X(2) Y(1) Y(2) E(1) E(2)]);

end

 %performance is Dp and Ep dependent

% for i=1:size(X,1)

% if E(i)==1; %environment A

% Z(i)=(pi-abs(X(i)/maxV+0.75));

% else %environment B ==> E==2

233

% Z(i)=(1-abs(X(i)/maxV-0.25));

% end

% end

 %performance is Dp, Op, and Ep dependent

% if E(i)==1; %environment A

% Z(i)=(pi-abs(X(i)/maxV+0.33))+(pi-abs(Y(i)/maxV-0.65));

% else %environment B ==> E==2

% Z(i)=(1-abs(X(i)/maxV-0.85))+(1-abs(Y(i)/maxV+0.55));

% end

 %performance is Op and Ep dependent

% if E(i)==1; %environment A

% Z(i)=(pi-abs(Y(i)/maxV-0.5));

% else %environment B ==> E==2

% Z(i)=(1-abs(Y(i)/maxV+0.5));

% end

 %performance is neither Dp, Op, or Ep dependent

% Z(i)=perf(X(i)+offset, Y(i)+offset);

% Schwefel function

%Z(i)=-X(i)*sin(sqrt(abs(X(i))))-Y(i)*sin(sqrt(abs(Y(i))));

% Schwefel function

%Z=-X.*sin(sqrt(abs(X)))-Y.*sin(sqrt(abs(Y)));

% Griewank function

%S(i)=X(i)^2+Y(i)^2;

%P(i)=(cos(X(i)))*(cos(Y(i))/sqrt(2));

%Z(i)=S(i)/4000-P(i)+1;

% Griewank function

234

%S=X.^2+Y.^2;

%P=(cos(X)./1).*(cos(Y)./sqrt(2));

%Z=S./4000-P+1;

% Ackley function

%S(i)=X(i)^2+Y(i)^2;

%P(i)=(cos(X(i)))*(cos(Y(i))/sqrt(2));

%Z(i)=S(i)/4000-P(i)+1;

% Ackley function

%S=X.^2+Y.^2;

%P=(cos(X)./1).*(cos(Y)./sqrt(2));

%Z=S./4000-P+1;

%maxZ=max(max(Z));minZ=min(min(Z));

if nargout; %assumes nargout value of 3

 varargout{1} = Z;%Z';

 varargout{2} = min(min(Z));%minZ;

 varargout{3} = max(max(Z));%maxZ;

end

end

*********************************”selection.m”*******************************

function varargout = selection(isCulling, number, perf_vect, isMutation)

%SELECTION Summary of this function goes here

% Detailed explanation goes here

%1. isCulling determines the direction (strong vs. weak) of the bias

%2. number determines either:

% - the number of solutions to flag for removal

235

% - or the number of parents to be selected for GA operations

%3. perf_vect is the performance vector of a (sub)population

global tolerance;

ssize=size(perf_vect,1);

%perf_vect=abs(perf_vect);%perf_vect must always contains positive values

[max_perf_vect loc]=max(perf_vect);

min_perf_vect=min(perf_vect);

if or(max_perf_vect==min_perf_vect,abs(max_perf_vect)<=tolerance) %All numbers are equal

 probs=cumsum((1/ssize)*ones(1,ssize));

else

 %Assumes perf_vect is a column vector

 if isCulling %bias toward strongest

 probs=cumsum(max_perf_vect-perf_vect);

 else

 probs=cumsum(perf_vect-min_perf_vect);

 end

end

probs=probs/max(probs);%makes the actual cumulative probabilities

% cprobs=zeros(1,ssize);

% cprobs(1)=probs(1);

% for r=ssize:-1:2

% cprobs(r)=probs(r)-probs(r-1);

% end

%if everything was right then this MUST be true: probs=cumsum(cprobs)

if isCulling

 %if isCulling or is set, we want to return the indexes of the solutions to remove

236

 %fprintf('isCulling=%d, number=%d, isMutation=%d,

length(perf_vect)=%d.\n',isCulling,number,isMutation,length(perf_vect));

 indexes=zeros(1,number);

 for j=1:number

 picked=rand;

 for i=1:ssize

 if picked<=probs(i)%u2b picked<=probs(i)

 indexes(j)=i;

 %Adjust probs(i) value b4 passing ctrl back

 perf_vect(i,1) = max_perf_vect;

 if (max_perf_vect-min(perf_vect)<=tolerance) %All numbers are equal

 perf_vect = .5*(ssize-j-1)*ones(ssize,1);

 max_perf_vect=ssize-j-1;

 %just in case this happens during a generation, we need

 %to make sure all selected idxs can no longer be

 %selected since they must all be unique

 for k=1:j

 perf_vect(indexes(1,k),1) = max_perf_vect;

 end

 perf_vect(loc,1) = max_perf_vect;

% disp('perf_vect values are all equal now');

% perf_vect=perf_vect

% j=j

% loc=loc

 probs=cumsum(max_perf_vect-perf_vect);

 else

237

 probs=cumsum(max_perf_vect-perf_vect);%probs=cumsum(max(perf_vect)-

perf_vect);

 end

 probs=probs/max(probs);

 %perf_vect=perf_vect

% probs=cumsum(cprobs);

% probs=probs/max(probs);

 break;

 end

 end

 end

elseif isMutation

 %if isMutation is set, we want to return he indexes of the solutions to mutate

 if ssize==1

 indexes =ones(1,number); %special case

 else

 indexes=zeros(1,number);

 for j=1:number

 picked=rand;

 for i=1:length(perf_vect)

 if picked<=probs(i)

 indexes(j)=i;

 break;

 end

 end

 end

 end

elseif not(isMutation) %crossover case

238

 indexes=zeros(1,2*number);%doubles since a child requires 2 parents

 first=zeros(1,number);

 count=0;

 not_tired=1;

 not_tired_max=10;

 j=1;

 while j<2*number

 found=0;

 while not(found)

 picked=rand;

 for i=1:ssize

 if picked<=probs(i)

 if not(any(abs(first-i)==0))

 not_tired=1;%resets value

 indexes(j)=i;

 count = count + 1;

 first(count)=i;

 indexes(j+1)=mod(i,ssize)+1;%speeds up process

 j=j+2;

 found=1;

 break;

 else

 not_tired=not_tired+1;

 if not_tired == not_tired_max

 not_tired=1;%resets value

 indexes(j)=i;

 count = count + 1;

239

 first(count)=i;

 indexes(j+1)=mod(i+1,ssize)+1;%speeds up process

 j=j+2;

 found=1;

 end

 break;

 end

 end

 end

 end

 end

end

%Return Results

if nargout

 varargout{1}=indexes;

end

end

*********************************”schw.m”*******************************

function y = schw(x)

% Schwefel function

% Matlab Code by A. Hedar (Nov. 23, 2005).

% The number of variables n should be adjusted below.

% The default value of n = 2.

% Global minimum achieved at x*=(s,s,...,s) where s=420.9687

n = 6;

240

s = sum(-abs(x).*sin(sqrt(abs(x))));

y = 418.9829*n+s;

*********************************” ackley.m”*******************************

function y = ackley(x)

%

% Ackley function.

% Matlab Code by A. Hedar (Sep. 29, 2005).

% The number of variables n should be adjusted below.

% The default value of n =2.

%

n = 4;

a = 20; b = 0.2; c = 2*pi;

s1 = 0; s2 = 0;

for i=1:n;

 s1 = s1+x(i)^2;

 s2 = s2+cos(c*x(i));

end

y = -a*exp(-b*sqrt(1/n*s1))-exp(1/n*s2)+a+exp(1);

******************************” createSocialGroups.m”****************************

function varargout = createSocialGroups()

%CLUSTER Summary of this function goes here

% Detailed explanation goes here

% themes --> Matrix (nthemes x ncols) representing the list of themes

241

% pop --> Matrix (NbrOidx x ncols) representing the pop

% fitnesses --> Column/Row vector containing fitnesses values for the

% pop

global pop NbrOidx nbrAlleles themes MinKnowledge tolerance memberships;

%max_schewfel=3353.8140;

nthemes=size(themes,1);%used to be length(themes);

fitnesses=pop(1:NbrOidx,nbrAlleles+1);

%adjusting fitness values if necessary

if abs(min(pop(1:NbrOidx,nbrAlleles+1)))<tolerance

 fitnesses(1:NbrOidx,1)=fitnesses(1:NbrOidx,1)-min(pop(1:NbrOidx,nbrAlleles+1))+tolerance;

end

%fitnesses=fitnesses+max_schewfel;

%Step#1: Find topic affinities using 'sørensen' similarity

affinities=zeros(NbrOidx, nthemes);

for i2=1:nthemes

 for i1=1:NbrOidx

 affinities(i1,i2)=similarity('sørensen',themes(i2,:),pop(i1,:));

 end

 %normalize affinities or set values to 1.0 if all null

 if abs(max(affinities(:,i2))) > tolerance

 affinities(:,i2)=affinities(:,i2)/max(affinities(:,i2));

 else

 affinities(1:NbrOidx,i2)=ones(NbrOidx,1);

 end

end

%Step#2: Find leaders (most knowledgeable person on their topic)

242

[m_v l_i]=max(affinities,[],1);

%enforce minimum knowledge

i3=1;

while i3<=length(m_v)

 if (m_v(i3)<MinKnowledge)

 l_i(i3)=[];

 %themes(:,i3)=[];

 m_v(i3)=[];

 else

 i3=i3+1;

 end

end

%Step#3: Compute influence matrix (memberships) values, scales and normalizes them

memberships=zeros(NbrOidx,length(l_i));

for j2=1:length(l_i)

 for j1=1:NbrOidx

 if (affinities(j1,j2)~=affinities(l_i(j2),j2))%no div by 0

 memberships(j1,j2)=fitnesses(j1)*fitnesses(l_i(j2))/(tolerance+

similarity('cityblock',pop(l_i(j2),:),pop(j1,:)));

 else

 memberships(j1,j2)=1.0;%since affinities will be normalized

 end

 end

 [val idx]=max(memberships(:,j2));

 if max([abs(affinities(idx,j2)) tolerance])==tolerance

 scaled_max = val*(1+sqrt(5))/2;%scale randomly set to golden ratio

 else

 scaled_max = val/affinities(idx,j2);

243

 end

 for j1=1:NbrOidx

 if (affinities(j1,j2)~=affinities(l_i(j2),j2))%no div by 0

 %normalize all influence values

 memberships(j1,j2)=memberships(j1,j2)/scaled_max;

 end

 end

end

%Step#4: Return Outputs

if nargout

 %varargout{1} = GroupInterest;

 varargout{1} = l_i;

 varargout{2} = affinities;

end

end

******************************” crossOver.m”****************************

function childA=crossOver(parent1, parent2)

 %Assumptions:

 %A1. Parents are of the same size

 %A2. Parents are passed along with fitness as last column

% Performs cross-over with more fit pulling less fit

% We can afford that since we know our domain to be convex

global nbrAlleles tolerance;

%this coefficient guarantees a convex solution

if parent1(nbrAlleles+2)+parent2(nbrAlleles+2)<tolerance % division by zero yields NaN

244

 coeff=[0.5 0.5];

else

coeff=[parent1(nbrAlleles+2)/(parent1(nbrAlleles+2)+parent2(nbrAlleles+2)),parent2(nbrAlleles

+2)/(parent1(nbrAlleles+2)+parent2(nbrAlleles+2))];

end

%Change this for GSN as GSN would only require: psize-1;

%childA_=round(coeff(1)*parent1(1:psize-2)+coeff(2)*parent2(1:psize-2));

%childA_=round(coeff(1)*parent1+coeff(2)*parent2);

childA=coeff(1)*parent1+coeff(2)*parent2;

%Both parents should come from same envmt and belong to the same school

%If it is not the case then stronger parent pulls child to its environment

if coeff(1)>=coeff(2)

 childA(1,nbrAlleles:nbrAlleles+1)=parent1(nbrAlleles:nbrAlleles+1);

else

 childA(1,nbrAlleles:nbrAlleles+1)=parent2(nbrAlleles:nbrAlleles+1);

end

childA(1,nbrAlleles+2)=performance(childA(1,1:nbrAlleles));

% if perfA > 1.0

% childA(1:nbrAlleles)

% error('Performance value should not exceed 1.0');

% else

% childA(psize)=perfA;

% end

end

245

******************************” crossOver2.m”****************************

function childA=crossOver2(parent1, parent2)

 %Assumptions:

 %A1. Parents are of the same size

 %A2. Parents are passed along with fitness as last column

% Performs cross-over with more fit pulling less fit

% We can afford that since we know our domain to be convex

global nbrAlleles tolerance;

%this coefficient guarantees a convex solution

if parent1(nbrAlleles+1)+parent2(nbrAlleles+1)<tolerance % division by zero yields NaN

 coeff=[0.5 0.5];

else

coeff=[parent1(nbrAlleles+1)/(parent1(nbrAlleles+1)+parent2(nbrAlleles+1)),parent2(nbrAlleles

+1)/(parent1(nbrAlleles+1)+parent2(nbrAlleles+1))];

end

%Change this for GSN as GSN would only require: psize-1;

%childA_=round(coeff(1)*parent1(1:psize-2)+coeff(2)*parent2(1:psize-2));

%childA_=round(coeff(1)*parent1+coeff(2)*parent2);

childA=coeff(1)*parent1+coeff(2)*parent2;

%Both parents should come from same envmt and belong to the same school

%If it is not the case then stronger parent pulls child to its environment

if coeff(1)>=coeff(2)

 childA(1,nbrAlleles)=parent1(nbrAlleles);

else

 childA(1,nbrAlleles)=parent2(nbrAlleles);

246

end

childA(1,nbrAlleles+1)=performance(childA(1,1:nbrAlleles));

% if perfA > 1.0

% childA(1:nbrAlleles)

% error('Performance value should not exceed 1.0');

% else

% childA(psize)=perfA;

% end

end

******************************” griewank.m”****************************

function y = griewank(x)

%

% Griewank function

% Matlab Code by A. Hedar (Sep. 29, 2005).

% The number of variables n should be adjusted below.

% The default value of n =2.

%

n = 2;

fr = 4000;

s = 0;

p = 1;

for j = 1:n; s = s+x(j)^2; end

for j = 1:n; p = p*cos(x(j)/sqrt(j)); end

y = s/fr-p+1;

******************************” crossOver2.m”****************************

247

function migrate()

global nbrIslands nbrAlleles migrationSize islands;%5 islands of 8 people each encoded with 3

genes: gen1|gen2|evmt|perf

val_idx=zeros(migrationSize,nbrIslands);

%who will move?

who_move=zeros(nbrIslands*migrationSize,nbrAlleles+1);

gIdx=0;

for i=1:nbrIslands

 [val idx]=sort(islands(:,nbrAlleles+1,i),'descend');

 val_idx(:,i) = idx(1:migrationSize,1);

 for j=1:migrationSize

 gIdx=gIdx+1;

 who_move(gIdx,:)=islands(idx(j,1),:,i);

 end

end

gIdx=0;

%effective migrations occurs according to a ring topology

for i=1:nbrIslands

 for j=1:migrationSize

 gIdx=gIdx+1;

 islands(val_idx(j,i),:,i) = who_move(mod(i-2,nbrIslands)+1,:);

 end

end

end

	Modeling And Applying Biomimetic Metaheuristics To Product Life Cycle Engineering
	Recommended Citation

	tmp.1588277627.pdf.rSxnG

