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Abstract 

Food banks provide services that allow households facing food insecurity to 

receive nutritious food items.  Food banks, however, experience operational 

challenges as a result of constrained and uncertain supply and complex routing 

challenges.  The goal of this research is to explore opportunities to enhance food 

bank operations through metaheuristic forecasting and scheduling practices.   

Knowledge discovery methods and supervised machine learning are used to 

forecast food availability at supermarkets.  In particular, a quasi-greedy algorithm 

which selects multi-layer perceptron models to represent food availability is 

introduced.  In addition, a new classification of the vehicle routing problem is 

proposed to manage the distribution and collection of food items.  In particular, 

variants of the periodic vehicle routing problem backhauls are introduced.  In 

addition to discussing model formulations for the routing problems, a hybrid 

genetic algorithm is introduced which finds good solutions for larger problem 

instances in a reasonable computation time.   
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1. CHAPTER 1 

Introduction 

 

1.1. Problem Motivation 

Food insecurity is defined as the inability of individuals to obtain consistent 

access of adequate food (Maxwell and Frankenberger 1992).  This condition affects 

a significant proportion of the U.S. population.  In two reports, the US Department of 

Agriculture estimate that food insecurity affects at least 10 percent of all U.S. 

households (Nord et al. 2009, Coleman-Jensen et al. 2011).   These reports make the 

connection between food insecurity and economic conditions, showing that food 

insecurity increased to 14.6% in 2008 with the onset of the recession.  Figure 1.1 

gives a visual representation of food insecurity since 1998. 

 

Figure 1.1.  Food Insecurity Percentages, 1998 - 2012 (Coleman-Jensen et al. 2011) 
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The effects of food insecurity are counteracted through non-profit 

organizations.  Some of them, including food banks, soup kitchens, food pantries, 

and shelters provide in-kind food to those that might otherwise not receive it.  This 

research is motivated by the desire to improve the efficiency of non-profit food 

collection and distribution in relation to food bank operations. 

The existence of food banks has been vital to sustainability in the United 

States.  Food banks serve as central warehouses where donations can be 

inventoried and distributed to any number of charitable agencies.  Many 

government-supported programs, (e.g. including The Emergency Food Assistance 

Program) depend on food banks to transport surplus commodities to emergency 

food programs in local communities (Cabili et al. 2013).  Food banks are also 

involved with disaster relief, providing millions of pounds of food to individuals in 

affected areas (FA 2011b).  Over 200 food banks operating in the United States are 

affiliates of Feeding America®, a network of food banks, corporations, and 

community-concerned groups whose objective is to end food insecurity in the 

United States. 

The flow of in-kind foods, resources, funds, and information among 

government, local donors, and collaborating food banks is captured in Figure 1.2.  In 

this research, this is referred to as the Charity-Focused Secondary Food Supply 

Chain (CFSFSC).  Product flows are represented by forward arcs.  Reverse flows 

represent the sharing of information and dollars that would promote improved 

coordination.   
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Figure 1.2.  Diagram of Material and Information Flows in the CFSFSC (Adapted 

from FA 2011b) 

Food banks represent one of three stages in the CFSFSC whose primary 

concern is to alleviate hunger at the local level.  The others are charitable agencies 

and clients receiving food assistance.  Food banks perform most of the warehousing 

and logistical operations.  Commodities received by food banks are distributed to 

charitable agencies who distribute the commodities to their clients.   

Local sources of supply for the CFSFSC can be generated at each stage of the 

for-profit food supply chain.  Food producers (i.e. farmers) provide food donations 

that are leftover from harvested commercial crops.  Food processors and food 

distributors provide items which are usable yet inappropriate to be sold in local 

markets.  Examples of these commodities include dented canned goods and 

products with minor damage to labeling.  Food retailers provide items which are 
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approaching their manufacturer-recommended “sell-by” dates (see Teron and 

Tarasuk (1999), Tarasuk and Eakin (2005), FA 2011a).  While the majority of high-

volume donations are received from food processors and retailers, consumers also 

serve as a source of supply through local food drives.   

1.2. Operational Challenges and Opportunities for the CFSFSC 

1.2.1. Constrained and Uncertain Supply 

Charitable agencies rely heavily upon food bank assistance.  According to a 

report by Mabli et al. (2010), food banks account for 76% of the food received by 

pantries, 50% of the food received by soup kitchens, and 41% of food received by 

shelters.  However, the ability to provide uninterrupted services to the charities 

they serve is challenging given the limited availability of supply.  Many food banks 

across America have experienced supply shortages.  The Food Bank of Northwest 

North Carolina (FBNWNC), for example, reported three supply depletions between 

2009 – 2012, two of which occurred in 2011 (Campbell 2011; Garms 2012).  Some 

of its metropolitan areas, including  Winston-Salem and Greensboro/High Point 

were among the most food insecure in the country in the calendar years where 

shortages were reported (FRAC 2011, 2012 and 2013).   

Food items provided by government agencies are not expected to fully satisfy 

local hunger needs, and the primary responsibility of cooperating food banks is their 

own local communities.  Food banks must generate sufficient supply from their local 

communities to promote on-going service.  This is extremely difficult because the 

amount of food provided by local donors is both uncertain and in many cases, not 
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obtained unless an on-site collection is performed.  Furthermore, the use of 

forecasting methods in food banks operations is limited.  Supply forecasting could 

help to mitigate the effects of supply shortages by quantifying the amounts of 

different in-kind food types available through different donor locations.  If not 

addressed, supply shortages are inevitable.  

1.2.2. Routing Schedule Complexity 

A second challenge for the CFSFSC is presented by the complex routing 

challenges associated with providing equitable food assistance to individuals 

through a food bank service area without compromising client safety and neglecting 

inventory replenishment needs.  Since food banks are responsible for much of the 

food delivery to distant charitable agencies, there is a tremendous workload 

assigned to them.  For example, the Good Shepard food bank of Maine states cites “a 

lack of transportation as a common and significant barrier for its food pantries,” 

(GSFB 2013).  This, coupled with the need to replenish supply through local 

donation sources, presents a very complicated vehicle scheduling problem with 

many alternatives that should be assessed.  The challenge is further complicated by 

the need to keep commodities that have not been evaluated (i.e. collected foods) at 

the warehouse (i.e. food bank) separated from items that have been verified as safe 

(i.e. distributed foods).  Lastly, limitations with respect to operation time, vehicle 

capabilities and fleet size, and concrete food delivery and collection requirements 

force routing decisions to occur over a multi-day planning horizon. 
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1.3. Contribution of Work 

The goal of this research is to explore opportunities to improve food bank 

operations through forecasting and scheduling practices.  The first contribution of 

this research is the use of knowledge discovery methods and supervised machine 

learning to characterize the nature of food availability at supermarkets.  In 

particular, multiple layer perceptron neural network models are developed to 

predict the amount of in-kind food types available for collection at different 

supermarkets.  Historic food collection records, community-specific employment 

data, and financial wellness indicators are used to characterize food donations.  A 

quasi-greedy heuristic is used to select a multi-layer perceptron model to represent 

the relationship between the donation-specific information and collection amounts.   

The scope of this research is limited to inventoried food items.  Forecasts are 

limited to food retailers providing large quantities of in-kind donations (i.e. 

supermarkets).   

The specific research questions addressed are as follows. 

 Are the MLP-NN estimates for in-kind food collections more accurate than 

other approximation methods that are more commonly utilized when 

information sharing is and is not permitted? 

 Do the estimates translate to an observed improvement in transportation 

costs? 

Few researchers address in-kind donations forecasting for food banks.  Among the 

areas discuss in literature include the assessment of food quality and food bank 
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workforce in Canada (Teron and Tarasuk 1999, Tarasuk and Eakin 2005), 

community assessments that validate the need for food banks (Vinopal and Cooper 

2011, Winter 2009, Mosley and Tiehen 2004), and the scheduling of vehicles and 

food allocation to charitable agencies and/or collection (Bartholdi et al. 1983, Lien 

et al. 2008, Gunes et al. 2010).  Researchers have also identified methods of 

approximating the average food supply received from donors over a specified time 

interval (Davis et al. 2013a, 2013b) and schedule the collection of the average 

supply to meet aggregate demand (Phillips et al. 2011).  Nonetheless, the shortage of 

related contributions, suggests that there is little literature which introduces 

methods for estimating the amount of food that is available at grocery stores at the 

time of an on-site food collection. 

The second contribution introduces a new model formulation that addresses 

the vehicle routing problems experienced by food banks when collecting and 

distributing inventoried food.  In particular a periodic vehicle routing problem with 

backhauls (PVRPB) is presented.  The essential features of this problem consists of 

constructing routes over a fixed time horizon that encompass food collections, food 

deliveries, constraints on vehicle capacity, food spoilage, and operator workday, as 

well as collection and delivery frequency. Model formulations and computational 

complexity are discussed.  In addition, a genetic algorithm-based approached is 

presented to find good solutions for large problems.  Such a problem has not been 

discussed in the literature.  Gunes et al. (2010) discuss different formulations for the 

one-commodity generalized pickup and delivery problem that can be used to 
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manage the collection of prepared food items and delivery to charitable agencies.  

This model is appropriate for food items that have very short shelf lives which 

prevent them from being stored as inventory.  Solak et al. (2012) introduce the stop-

and-drop problem to assign agencies to food delivery sites.  This approach, however, 

does not take food collection into account, nor does it address routing food 

collections or deliveries over a multi-day planning horizon. 

1.4. Key Findings 

This research makes a case for incorporating artificial intelligence 

approaches into two important aspects of food bank operations:  forecasting and 

scheduling.  The research suggests that multi-layer perceptron neural network 

(MLP-NN) models are more effective than traditional forecasting methods at 

accounting for supply uncertainty in the CFSFSC. This claim is supported by 

demonstrating how their improved forecasts result in better estimates for actual 

transportation costs.  Furthermore, a quasi-greedy algorithm is introduced which 

executes a MLP-NN models selection process which incorporates the impacts of the 

model structure, its initial weights, and data partitioning strategies.  The research 

also suggests that food banks can implement the PVRPB as a universal routing 

strategy for the collection and delivery of inventoried food items.  When fewer 

customers are in the network, these schedules can be determined using a model 

formulation.  Schedules which for larger networks, however, should use advanced 

search procedures.  This research presents a genetic algorithm-based metaheuristic 

capable of finding a feasible set of routes in a very reasonable computation time.  
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The proposed metaheuristic makes a contribution to vehicle routing literature in 

that it can be applied to a variety of routing problem generalizations. 

1.5. Organization of Dissertation 

This research is organized as follows.  Chapter 2 presents a combined data 

mining/supervised machine learning approach to estimating the amounts of 

different in-kind food types that are available for collection.  The approach involves 

the selection of multi-layer perceptron neural networks to estimate the amounts of 

different in-kind food types available for collection at supermarket branches.  The 

usefulness of the neural network models is compared to traditional forecasting 

methods both in terms of predictive error and impacts on food collection costs.  

Chapter 3 presents model formulations for variants of the periodic vehicle routing 

problem with backhauls.  Formulations for the problem variants are introduced.  In 

addition, the computational complexity and resulting transportation costs for 

different test instances are observed.  Chapter 4 presents a hybrid genetic algorithm 

that finds good solutions for each routing problem in a reasonable computation 

time.  After providing a detailed description of the metaheuristic, a set of 

experiments are performed to validate its ability to provide consistent, cost effective 

solutions for each routing problem.  Chapter 5 summarizes the findings of this 

research and identifies opportunities for future research extensions. 
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2. CHAPTER 2 

Estimating Available Supermarket Commodities for Food Bank Collection in 

the Absence of Information 

2.1. Introduction 

Food banks collect, store, and distribute food donated by local businesses 

(i.e. food producers/manufacturers, food distributors, and supermarkets) and 

community-serving organizations.  These commodities are processed, stored, and 

eventually dispatched to charitable agencies.  The charitable agencies, in turn, 

distribute the items that they receive to individuals and families experiencing food 

insecurity.  Their warehousing capabilities, interest in providing unbiased service to 

the agencies, and cooperative approach to counteracting hunger make food banks 

an attractive non-profit agency to high-volume donors.  Supermarkets are one of the 

high-volume donation sources for food banks.  Commodities that are generated from 

supermarkets include food items that are usable yet for various reasons, unsellable 

in local markets.  Examples of these edible food items include dented canned goods, 

bruised fruit, and non-perishables approaching manufacturer-recommended sell by 

dates.  The donation of these items is both good-hearted and practical because their 

disposal would otherwise be managed by the supermarket branch and/or franchise.  

Food banks welcome these items as tight funding both limits the amount of food 

that can be purchased in local markets and the amount of money that can be 

allocated for daily operations.   
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One of the obstacles to scheduling food bank operations is the uncertainty in 

available supply.  Food banks must make collections at supermarkets with no 

indication as to whether desired food items are available, and if so, how much.  

Unlike typical for-profit supply chains, suppliers (i.e. supermarkets) have a different 

objective than their downstream recipients (i.e. food banks).  While interested in 

aiding the food insecure, these donors are in business to make a profit.  This profit is 

realized by selling food items rather than donating them.  Furthermore, 

supermarkets typically elect not to share information regarding product availability 

because it is either difficult to forecast (Pechenizkiy 2008) or kept confidential.  

Without having knowledge of what items are available for collection at different 

stores, the degree to which food banks can make cost-effective transportation 

schedules is limited.  The problem is further complicated by this being a decision 

that is made each day.   

The goal of this research is to identify an approximation method that is useful 

when estimating the amounts of different in-kind food types available for collection 

at a supermarket branch.  This extends the work of Brock and Davis (2012) to 

address instances where there is no information shared between supermarket 

branches and the regional food banks.  As specified in the preceding investigation, 

quantifying food availability is complicated because 1) collections can occur at 

different points in time, 2) the amount of surplus food available changes over time, 

3) food is perishable and must be collected and distributed quickly to avoid 

spoilage.  Given the dynamics associated with collection frequency and food 
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availability, approximation methods must have the ability to generalize what is 

received in a specific collection event.  Therefore, knowledge discovery and 

supervised machine learning approaches are used to predict food availability.  In 

particular, multi-layer perceptron neural network (MLP-NN) models are proposed 

to determine the amounts of food available for a specific collection event.  The 

models incorporate information related to the observable characteristics of a 

collection event, the financial wellness of communities served, and past operational 

decisions made by the food bank.  The MLP-NN models are compared to more 

traditional approximation methods.  Specifically, we consider multiple linear 

regressions, the average collection amount received by a regional food bank, and the 

average collection amount received by a specific warehouse maintained by the 

regional food bank.  The results of a computational study show that MLP-NN models 

are more effective than traditional forecasting methods at accounting for supply 

uncertainty.  The results also show that the improved forecasts also result in better 

estimates for transportation costs. 

The remainder of this chapter is organized as follows.  Section 2.2 provides a 

review of literature related to the forecasting problem.  Sections 2.3 and 2.4 

summarize the approximation methods considered in this research.  Section 2.5 

provides a more detailed description of supermarket and regional food bank 

practices that affect food availability.  Section 2.6 presents a case study implemented 

using data from the Food Bank of Central and Eastern North Carolina Food Bank 

(FBCENC).  Section 2.7 compares the four approximation methods based on both 
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prediction error and the impacts of using each method to schedule food collections.  

Section 2.8 summarizes the key findings of this research and identifies opportunities 

for future research extensions. 

2.2. Related Literature 

The idea of using data mining in the context of operations management is not 

new.  In fact it has been utilized in a number of applications including engineering 

design (Feng and Wang et al. 2003; Feng et al. 2006) and production and 

maintenance scheduling (Luxhoj et al. 1997; Sha and Liu 2005).  While there is little 

work published in the context of in-kind donations forecasting, there is considerable 

work published that is relevant to demand forecasting.  A partial review of recent 

work addressing demand forecasting is provided.  For a comprehensive review of 

demand forecasting methods, the reader is referred to Zhang et al. (1998).   

Meulstee and Pechenizkiy (2008) address the challenges associated with 

wholesale food suppliers estimating demand for food items sold.  The researchers 

incorporate ensemble learning approaches to predict product sales.  The problem is 

motivated by the need for food suppliers to improve forecasting ability.  This 

problem posed in their investigation is similar to this research in that the forecasted 

outcome (i.e. product sales) is perceived as affected by some unknown context (i.e. 

consumer preference, habits, interests, etc.) that could not be effectively monitored 

through previous forecasting methods.  The ensemble model incorporates sales for 

different product types, past weather conditions, and school holidays.   
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Gutierreza et al. (2008) evaluates forecasting methods that are appropriate 

for products with intermittent demand.  Such forecasts are used when there may be 

long periods when items are not demanded followed by periods when demand is 

elevated.  In their investigation, they compare MLP-NN models, simple exponential 

smoothing and the smoothing approximations of Croston (1972) and Syntetos and 

Boylan (2005).   

Shahrabi et al. (2009) evaluates different forecasts when determining long-

term demand for car components.  In their investigation, the moving average, 

exponential smoothing, exponential smoothing with trend, support vector 

regressions, and MLP-NN models are compared.   

Forecasting methods are also utilized to assess demand for limited resources 

including water (Adamowski 2008, Firat et al. 2009, Pulido-Calvo et al. 2007), 

energy consumption in buildings (Ekici and Aksoy 2009), energy consumption by 

communities as a whole (Geem and Roper2009, Murat and Ceylan (2006); Wang 

and Liang 2009). 

The problem presented in this study is one where food banks must be able to 

estimate how much of each in-kind food type is available for collection on specific 

collection days.  Each of the aforementioned forecasting methods is limited for this 

problem.  Most time series methods focus on the cumulative collection amount 

received.  When attempting to schedule vehicles for food collection it is necessary to 

focus on the anticipated amount of food received through an isolated collection 

event.  Davis et al. (2013) does give some estimate for what can be received through 
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a collection; however, estimates are limited to the average monthly collection 

amount.  This is an important distinction because food banks may elect to perform 

zero, one, two or multiple collections at either a given supermarket branch, 

supermarket franchise, or at supermarkets in general for an unspecified period of 

time.  The contribution of Brock and Davis (2012) is limited to situations where the 

types of food that supermarket branches have on-hand is known.  This is unlikely 

for many systems, as there is no coordination mechanism that allows food banks to 

know with certainty which items will be available for collection upon arrival.     

2.3. Methodology 

This study compares four forecasting methods that may be utilized to 

estimate the amount of different in-kind food types available for collection.  These 

forecasting methods are 1) the average amount received from a supermarket 

branch (SM Average), 2) the average amount received by a specific warehouse from 

a supermarket branch (SMWH Average), 3) the predicted amount received by a 

regional food bank as determined using multiple linear regressions (MLR), and 4) 

the predicted amount received by a regional food bank as determined by the 

selected MLP-NN models.   The first two forecasting methods are based on observed 

collection amounts at a specific location.  MLR and MLP-NN models are based on a 

number of event-related characteristics.  Event-related characteristics considered 

are observable system characteristics, the financial wellness of supermarket 

customers, and past operational decisions made by the food bank.  All four 
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approximation methods are evaluated to determine which is most appropriate to 

estimate the amount of food available in the next planning period.   

While making predictions, the MLR and MLP-NN models are evaluated to 

determine whether they identify the system as stationary or non-stationary.  System 

stationarity implies that in separate observations, there is no change in the overall 

impacts of system inputs.  In relation to this problem, system stationarity would be 

implied by approximations methods presented in this research producing similar 

predictions in different planning periods.  When systems are non-stationary, 

planning methods must compensate for system variability. 

Past transactions involving supermarket branches and food bank-managed 

warehouses are based on historic records maintained by a regional food bank.  A 

regional food bank consists of one or more warehouses which perform food 

collections. A variety of pre-processing techniques are applied to the data, resulting 

in a final set of observations that are used to define a relationship between a set of 

system characteristics and the resulting collection amounts.  After pre-processing 

data, different forecasting methods are used to estimate the amount of each of the 

different food types targeted by the regional food bank.   

2.3.1. Assumptions 

The system characteristics outlining food collection events are as follows.  

Parties directly involved in the system include supermarket locations and regional 

food bank affiliates.  Supermarket branches generate usable, yet unsellable in-kind 

food items on a nightly basis as a result of a number of customer purchasing 
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decisions.  It is assumed that customers can be generalized to the county in which 

they reside.  The amount that is generated nightly is not shared with food bank 

affiliates nor is the amount accumulated.  Food items generated remain on-hand 

until a collection occurs or the end of the calendar week.  At the end of the calendar 

week, any on-hand food items are disposed.  A regional food bank receives unusable 

food items through on-site collections performed by personnel at one of its affiliate 

warehouses.  Each warehouse maintains its own refrigerated vehicles.  Records of 

all collections are maintained by the regional food bank.  Each record indicates the 

date of food collection, the supermarket branch where food was collected, what food 

was received, and which warehouse collected the food.  It is assumed that 

warehouses process all collected commodities on the day they are collected, 

classifying each food as a specific food type.  Planning activities for food collections 

occur prior to the start of the operating week.  The planning horizon, including the 

availability of food in a collection week is provided by Figure 2.1. 
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Figure 2.1.  Description of Planning Horizon for Food Collections 

2.3.2. Variables and Representation 

The dependent variable (DV) in this system is the amount of a particular in-

kind food type that is available for receipt at a particular supermarket.  This amount 

is represented by the term Output_Amount.  Independent variables (IV) considered 

in this study are classified as indicating 1) the observable characteristics of a 

collection event, 2) the financial wellness of targeted supermarket customers, or 3) 

past operational decisions.   

2.3.2.1. Observable System Characteristics.  Observable characteristics are those 

that are most apparent when a collection occurs.  They express who 

performed the food collection, where it was collected, and when it 

occurred.  Week_of_Year and Weekday indicate the week of the calendar 

Start of 
week (t)

End of 
week (t)

Start of 
week (t+1)

Transportation scheduling period for week (t+1)

Dispose of foods not 
collected in week (t)

Dispose of foods not 
collected in week (t-1)
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year and day of the calendar week when a collection occurs.  The 

inclusion of these variables allows the model to express impacts that may 

be the result of seasonality and collecting on specific days of the calendar 

week.  The parties involved in past food collections are given by WH and 

SM.  WH identifies the food bank warehouse that collected donated food 

items.  This variable is important when food banks operate out of more 

than one storage location, as it allows the model to differentiate between 

receipts collected at each.  SM identifies the supermarket branch from 

which collections are received. 

2.3.2.2. Financial Wellness.  Real_GDP provides a measure for the gross domestic 

product for a state after accounting for price inflations and deflation.  The 

gross domestic product expresses the overall standard of living in a 

specific state.  This value is calculated yearly.  Unemploy_Rate gives the 

rate of unemployment in the current calendar month.  This measure is 

evaluated at the county level monthly by the North Carolina Bureau of 

Labor Statistics.  Cons_Confid gives a measure for consumer confidence in 

the economy.  This measure is calculated based on statewide consumer 

spending over the previous calendar month. 

2.3.2.3. Past Operational Decisions. Numeric measures which identify the recency, 

frequency, and monetary value of customers are important factors in 

customer relationship management.  These are typically called RFM 

variables.  They have been useful in many contexts including direct 
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marketing (see e.g., McCarty and Hastak (2007)) and business 

management (see e.g., Li et al. (2008)).  Given the success of using these 

factors in their respective contexts, historic donation records are 

manipulated to express the recency, frequency, and value of supermarket 

donors measured from prior donations.  This measurement is recorded 

with respect to both overall receipts by the regional food bank and those 

collected by the receiving warehouse.   

2.3.2.3.1. Recency.  The recency of past collections is measured through the number 

of days which have elapsed since the last collection.  CW_Rec_SM 

measures the number of elapsed days since a collection at the 

supermarket has been attempted by any warehouse affiliated with the 

regional food bank.  CW_REC_SMWH measures the number of elapsed 

days since a collection at the supermarket had been attempted by the 

warehouse performing the current collection. Recency is defined by 

integers in the range [0, 8], where a value of 8 represents that there has 

not been a prior collection in the calendar week.   

2.3.2.3.2. Frequency.  CW_Freq_SM and CW_Freq_SMWH indicate the number of 

collections at the contributing supermarket that have occurred in the 

current calendar week which a) have been received by any warehouse of 

the regional food bank and b) have been received by a specific 

warehouse, respectively.  Ttl_Freq_SM and Ttl_Freq_SMWH indicate the 

total number of recorded collections at the contributing supermarket a) 
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received by any warehouse of the regional food bank and b) received by a 

specific warehouse, respectively. 

2.3.2.3.3. Value.  Week_Amt_SM and Week_Amt_SMWH indicate the amount of a 

specific food type that has been generated from the supermarket 

previously in the current calendar week which a) has been received by 

any warehouse affiliated with the regional food bank and b) has been 

received by a specific warehouse, respectively.  Ttl_Amt_SM and 

Ttl_Amt_SMWH express the total amount of a specific food type that has 

been generated from the supermarket branch which a) has been received 

by any warehouse affiliated with the regional food bank and b) has been 

received by a specific warehouse, respectively.  Both Ttl_Amt_SM and 

Ttl_Amt_SMWH include all donations received to date prior to the current 

receipt. 

A complete listing of the representation for system variables is given in Table 2.1.  

The one-of-m encoding is used for independent variables that are either nominal 

variables or have smaller ratio values.  This encoding scheme uses a set of m dummy 

variables to represent each possible value.  Variables such as Week_of_Year, 

Weekday, and WH are represented through this scheme.  Independent variables that 

have continuous values are scaled to the range of [0, 1].  The decision was made to 

scale continuous variables to the range [0, 1] instead of [-1, 1] so that both discrete 

and continuous variables are maintained within the same interval.  The decision was 

made to simply scale continuous variables with larger ranges (i.e. Week_Amt_SM, 
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Ttl_Amt_SMWH, etc.) to the range [0, 1] for two reasons.  First, a considerable 

amount of time is required to identify the most effective bins for each category 

represented by a one-of-m encoding scheme.  Second, system characteristics are 

prone to change in subsequent scheduling periods, making the bins used to make 

one set of projections inappropriate for the next planning period.  Crone et al. 

(2006) suggest that scaling continuous variables to this range promotes improved 

neural network performance as opposed to no pre-processing.  While 

Output_Amount was originally scaled to this range as well, the decision was made 

not to scale the dependent variable.   

Table 2.1 

Representation for System Variables 

Classification 
Sub-

Classification  
Variable Role Representation 

Observable 

Characteristics 

Collection  

Date 

Week_of_Year IV [1-of-m] 

Weekday IV [1-of-m] 

Transaction  

Parties 

WH IV [1-of-m] 

SM IV [1-of-m] 

Financial Wellness 
 

Real_GDP IV [0,1] scaling 

Unemloy_Rate IV [0,1] scaling 

Cnsmr_Confid. IV [0,1] scaling 
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Table 2.1 (cont’d.) 

Past Operational 

Decisions 

Recency 
CW_Rec_SM IV [1-of-m] 

CW_Rec_SMWH IV [1-of-m] 

Frequency 

CW_Freq_SM IV [0,1] scaling 

CW_Freq_SMWH IV [0,1] scaling 

Ttl_Freq_SM IV [0,1] scaling 

Ttl_Freq_SMWH IV [0,1] scaling 

Value 

Week_Amt_SM IV [0,1] scaling 

Week_Amt_SMWH IV [0,1] scaling 

Ttl_Amt_SM IV [0,1] scaling 

Ttl_Amt_SMWH IV [0,1] scaling 

Collection Amount   Output_Amount DV [0,∞) 

 

2.3.3. Traditional Forecasting Methods 

The model formulations for each of the traditional forecasting methods are 

now discussed.  The SM Average and SMWH Average are based solely on outcomes 

from historical collections.  The MLR incorporates all of the independent and 

dependent variables presented in Table 2.1.  It should be noted that each of the 

traditional methods represent an approach that might be implemented in practice.  

The SM Average and SMWH Average are naïve estimates assumed to remain 

constant throughout the planning period. 

2.3.3.1. Model #1:  SM Average.  The average amount of food generated from a 

specific supermarket is defined in equation (2.1).  Given a specific food 

type  ,    
(   ) gives the amount of food available from supermarket branch 
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  at collection event  .  The total number of collection events occurring 

from branch   is given by   . 

 ̂    
∑   

(   )  
   

  
 (2.1) 

2.3.3.2. Model #2:  SMWH Average.  The average amount of food generated from a 

specific supermarket when collected by a food bank warehouse is defined 

in equation (2.2).  Given a specific food type  ,   
(     )gives the amount of 

food available from supermarket branch   collected by warehouse   at 

collection event  .  The total number of collection events occurring from 

branch   is given by     .  

 ̂      
∑   

(     )    
   

    
 (2.2) 

2.3.3.3. Model #3:  MLR Model.  MLR creates an approximation for the amount of 

food collected based on the linear combination represented by a set of 

weighted system inputs.  MLR is approximated by equation (2.3) where    

represents system input  ,   reflects the number of system inputs, and    

represents the coefficients assigned to each input.  Model bias is 

represented by   .   

 ̂     ∑    

 

   

 (2.3) 



26 

 

 

 

The coefficient values are identified by solving for the least squared 

error among all observations.  In the case of this modeling approach, this 

is approximated using a linear function.  MLR models are sufficient for 

representing systems when multiple co-linearity among system inputs is 

negligible and the represented system is not subject to noise. 

2.4. Multi-Layer Perceptron Neural Network Models 

2.4.1. Model Structure 

MLP-NNs are a type of feed-forward artificial neural network represented 

through at least three layers of neurons.  The neurons of a MLP-NN are represented 

through an acyclic directed graph where each neuron is represented by a node.  The 

first layer of nodes represents identified system inputs and the last layer represents 

observed system outcomes.  The nodes in layers located between the first and last 

layer represent intermediate signal transmissions.  These nodes and layers are 

hereafter referred to as hidden nodes and hidden layers, respectively.  The arcs that 

connect nodes of a preceding layer to those in the next layer reflect the portion of 

the cumulative signal emitted from a firing neuron that is directed toward a 

receiving neuron.  Arcs also represent a bias that is attributed to each layer on 

neurons.  A visual representation of a MLP-NN with   layers is given in Figure 2.2.  

An in-depth explanation of the figure follows. 
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Figure 2.2.  A Visual Representation of an L-Layered MLP-NN 

All nodes in the network have a value assigned to them which represents a 

signal.  First layer nodes reflect the signal resulting from observed system 

characteristics.  The signal from these nodes is transmitted to nodes in subsequent 

layers until it reaches the output layer.  The signal observed by a transmitting 

neuron is    
  where   indicates a specific node in layer   when that node is not 

located in the output layer.  Nodes that are located in the output layer are 

represented by  ̂.  Each weighted arc is represented by    
  where   indicates the 

transmitting node of layer   and   indicates the receiving node of the next layer.  

Layer bias is represented by    
 .  The cumulative signal   

    is defined in equation 

(2.4).  

  
       

  ∑    
   

 

    

   

 (2.4) 

The response of receiving neurons is represented using a monotonically increasing 

transfer function.  According to Demuth and Beale (1993), approximation models 

typically utilize an S-shaped transfer function to represent the cumulative signal 
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received at hidden layers and linear transform activation functions to represent the 

cumulative signal received in the last layer.  This study uses the logistic sigmoid 

function to represent this response.  The resulting neuron and its firing strength, 

denoted by   
    are given by (2.5). 

  
    

 

      
    (2.5) 

Since the last layer is represented using a linear transform function, the outcomes 

portrayed by nodes is defined according to equation (2.6). 

 ̂     
    ∑    

     
   

    

   

 (2.6) 

MLP-NN models, therefore, have non-linearity distributed throughout their 

structures. 

2.4.2. Quasi-Greedy Algorithm for MLP-NN Model Selection 

MLP-NN models are impacted by a number of random events including a) the 

initial arc weights and b) model structure, and c) observations assigned to different 

data partitions.  These models are also a function of the selected back-propagation 

method and neural network configuration.  Model selection methods should, 

therefore, take these factors into consideration.  Many researchers have attempted 

to identify rules that can be used to approximate the number of hidden neurons that 

should be used for different model constructions.  However, no overall 

approximation for this range is widely accepted.  Hence, a trial-and error approach 

is typically used (Zhang et al. 1998).   
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This model selection process can be very time consuming, as it is dependent 

upon the number of user-specified conditions for (a) early-stopping criteria, (b) 

maximum training time, and (c) maximum number of training epochs.  The model 

selection process is further complicated by the need for researchers to introduce 

test conditions and manually record their results.  This is especially true when 

performing repeated runs for each configuration to account for the impact of 

random arc initialization conditions and data partitioning.  In the case of this study, 

multiple food types are explored, thus further complicating the organization of the 

model selection process. 

These challenges are overcome by creating a quasi-greedy algorithm to 

automate the testing of different training parameters, comparing constructed MLP-

NN, and selecting a non-dominated MLP-NN.  Parameters introduced by the 

algorithm include 1) different data partitions for training/test sets, 2) the number of 

hidden layers, and 3) the number of hidden nodes in each layer.  It also permits 

users to select the number of times that each combination of parameters should be 

repeated.  The algorithm is classified as quasi-greedy because although it has the 

ability to terminate when a more complex model structure results in an inferior 

solution, the algorithm can also explore even more complex model structures.  The 

algorithm is initialized by evaluating models constructed using the set of input and 

output.  At initialization the MLP-NN structure evaluated has one hidden layer 

containing one hidden node.  Model complexity is introduced by adding neurons to 

the hidden layer.  Complexity is also increased by adding one additional hidden 
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layer at a time.  This process is repeated iteratively until a non-dominated MLP-NN 

with the lowest generalization error is found.  A visual representation of this 

algorithm is illustrated in Figure 2.3. 

 

Figure 2.3.  Diagram of the Quasi-Greedy Algorithm Model Selection Process 

In this example, user-specified conditions state that model structures with no 

more than two additional neurons in the actively-evaluated hidden layer can be 

explored without a change in the non-dominated MLP-NN.  Models constructed 

where the additional neuron did not produce improvements in predictive error are 

shaded black.  The search process is initialized with    .  The algorithm initially 

explores different models that are structured with one hidden layer containing one 

hidden neuron (2.3a).  After evaluating structures with five neurons, the non-

dominated MLP-NN for structures with k = 3 layers is determined to be a model 

with three hidden nodes in its hidden layer (2.3b).  The algorithm continues by 
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evaluating model structures with k = 4 layers.  The first model evaluated has the 

same structure as the non-dominated MLP-NN with an additional hidden layer 

containing one neuron (2.3c).  Model configurations with as many as two neurons 

are explored before terminating (2.3d), both of which are inferior to the non-

dominated MLP-NN where k = 3.  Since the non-dominated MLP-NN for k = 3 is 

superior to the non-dominated MLP-NN where k = 4, the quasi-greedy heuristic 

selects the non-dominated MLP-NN model where k = 3 to make forecasts for system 

outcomes (2.3e).  The pseudocode provided in Appendix A.1 summarizes the 

algorithm. 

2.5. Computational Study 

2.5.1. Data 

A computational study is conducted using data provided by the Food bank of 

Central and Eastern North Carolina (FBCENC).  FBCENC operates out of 6 

warehouses.  The historical data used in this study reflect food collections at 

supermarket branches between July 1, 2006 and April 30, 2011.  The data consists 

of a total of 17,555 records.  Four of the 6 food bank warehouses are represented in 

these collection records.  The collection amounts range from 1 to 19,585 pounds.  

Each collection record indicates the date of collection, supermarket branch, 

commodity type, receiving warehouse, and zip code of the contributing 

supermarket.  There are a total of 70 zip codes, 124 supermarkets, and 15 different 

in-kind food types represented in the data. 
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2.5.2. Data Preprocessing 

The pre-processing, model training, and experimentation processes 

implemented in this study are described in Figure 2.4.  Transactions reflecting 

receipts from supermarket branches are extracted and matched with financial 

indicators based on the date of collection and county in which the donating 

supermarket resides.  Records pertaining to food types received in less than 5% of 

all collections are then removed.  Additionally, the collection amounts are limited to 

being no more than the lower 95th percentile of what had been reported for the food 

type in historic records.  Next, past operational decisions are interpreted based on 

the dates when one of the remaining in-kind food types is received.  Having 

incorporated all variables and addressed all outliers, data are partitioned to 

represent the known history and a future planning horizon. 

Observations from the known history are used to predict SM Averages and 

SMWH Averages.  These models are validated by comparing the predicted collection 

amounts over the known history to the actual collections in the future planning 

horizon.  Prior to making predictions using MLR or MLP-NN models, variables are 

converted as described in Section 2.4.1.  MLR models are created without 

partitioning the known history.  MLP-NN models are selected using the quasi-greedy 

algorithm. 
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Figure 2.4.  Data Pre-processing, Model Training, and Experimentation Processes 

Implemented for the Computational Study 

2.5.3. Experiments 

Two experiments are performed to evaluate the accuracy of the proposed 

forecasting approaches.  In the first experiment, the predictive errors of the four 

forecasting models are compared using a data set not included in model training (i.e. 

known history).  The second experiment evaluates the impact supply forecasting 

can have on operations decisions.  Transportation costs are evaluated when vehicles 

are scheduled for food collection using predicted collection amounts verses 

estimates based on perfect information.  This experiment is motivated by 
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transportation savings that can be realized by reducing uncertainty in supply 

availability.  If the food bank had perfect information (i.e. food availability at 

supermarket branches known with certainty), planners could conceivably develop 

schedules that lower transportation costs and maximize vehicle utilization more 

readily than when they there is greater supply uncertainty.   

2.5.3.1. Experiment #1:  Forecasting Efficacy.  Each of the four forecasting 

methods is constructed using observations that occur prior to April 25, 

2011.  For the MLP-NN, the complete list of training conditions is given in 

Table 2.2.  MLP-NN training involves an iterative process in which the arc 

weights are assigned a set of measurements.  The training process 

continues until an MLP-NN is identified as providing its best 

approximation for the relationship between inputs and outcomes.  The 

best approximation is based on the minimization of the generalization 

error as measured by the mean squared error (MSE).  The calculation for 

the MSE is provided in Equations (2.7), where   represents the number of 

observations. 

      
∑ (    ̂ )

  
   

 
 (2.7) 

The Scaled Conjugate Gradient back propagation algorithm is used for 

model training due to its relatively fast convergence when used for large 

data sets (Moller 1993).   



35 

 

 

 

This study prevents over-fitting by using an early-stopping criteria which 

terminates the aforementioned training process when deemed 

appropriate.  The incorporation of this condition requires the model to 

make projections for unobserved system observations after each training 

epoch.  This condition is satisfied when the generalization error 

associated with projections for the unobserved system events is 

perceived to have reached a global minimum.  The incorporation of an 

early-stopping condition requires that all available system observations 

are partitioned into two or more data sets.  One of these data sets is used 

to train models.  The second data set (i.e. test set) is used to represent 

previously unseen system outcomes.  A popular data partitioning 

approach is to assign observations to training and test sets randomly.  

Typical partitions include 50/50, 60/40, and 67/33 allocations to training 

and test sets, respectively.  In some instances, a third data set (i.e. 

validation set) is used to provide a second set of previously unseen 

system outcomes.  The minimum generalization error across the 

validation set is useful in understanding system stability.  When the 

epoch where the minimum generalization error occurs for test and 

validation sets is the same, the system is assumed to be stationary.  When 

the epochs are different, the system is assumed to be non-stationary.  The 

third data set is especially useful in instances when the system is 
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expected to change with respect to time.  In this study, the validation data 

set consists of observations in the period April 25 – 30, 2011. 

Table 2.2 

Training Parameters for the Quasi-Greedy Algorithm 

Training Parameters  

Number of Runs Per Data Partition 5 

Data Partitions {50/50, 60/40, 67/33} 

Maximum Training Time per Run 10 minutes 

Early Stopping Criteria 150 consecutive epochs without improvement  

Maximum Training Epochs 1000 

Activation Function  

         Forward to Hidden Node Logistic Sigmoid 

         Forward to Output Node Weighted Linear Sigmoid 

BP Algorithm Scaled Conjugate Gradient 

 

While useful for training, the MSE does not give an accurate assessment 

of overall predictive error.  Therefore, the mean absolute error (MAE) 

and coefficients of determination (R2) are used to evaluate forecasts 

efficacy over future collection periods.  The MAE, as shown in Equation 

(2.8), gives an estimate for the expected difference between predicted 

and actual system outcomes.   
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(2.8) 

R2 measures the proportion of the variation in the actual collection 

amount that can be attributed to the observed characteristics defining a 

collection event.  This measurement is bound by 0 < R2 < 1.  Models that 

are more effective at accounting for variation in food availability are 

assigned an R2 which is closer to 1.  Models that are less effective at 

accounting for variation in food availability are assigned an R2 which is 

closer to 0. 

2.5.3.2. Experiment #2:  Impacts of Forecasts on Transportation Decisions.  Food 

collections for the data set are grouped by the date of their occurrence 

and the collecting warehouse.  After grouping data, aggregate collection 

amounts are estimated for each food type using each of the forecasting 

methods.  Lastly, the saving heuristic of Clarke and Wright (1964) is used 

to determine appropriate routing solutions for a set of capacity 

constrained vehicles.  For this experiment, the rental cost per vehicle use 

is $1000.  The high rental cost is used to promote the reduction of 

vehicles whenever possible.  This allows the resulting assignments to 

only be impacted by the aggregate collection amount, tour duration, and 

limitations of load capacitated vehicles.  The fuel cost associated with a 

vehicle travel is $.40 per mile.  The refrigeration cost is $4 per hour.  The 
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collection time at each supermarket is negligible.  The tow capacity for 

each vehicle is set at 10,000 lbs.   

Both experiments are executed using customized MATLAB code.  The first 

experiment uses code based on the Neural Network Toolbox.  The second 

experiment is developed without the use of an additional toolbox.  Both are run on a 

computer with a processing speed of 2.99 GHz, and 3.00 GB of RAM. 

2.6. Results 

After completing all preprocessing, four food types remain:  grains, frozen 

meats, frozen mixed foods, and produce.  The average, standard deviation, and 

coefficient of variation for each food type are given in Table 2.3.  After 

preprocessing, 10,464 records remain.  There are 10,336 records that reflect known 

history.  The remaining 128 observations reflect the future planning period.  the 

maximum collection amounts of grains, frozen meats, frozen mixed foods, and 

produce are 2500, 360, 2200, and 2500 pounds, respectively.   
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Table 2.3 

Summary Statistics for Data Set after Preprocessing (By Food Type) 

Parameter 

In-Kind Food Type 

Grains 

Frozen 

Meats 

Frozen Mixed 

Foods Produce 

Maximum Collection Amount 2500 360 2200 2500 

Average Collection Amount  414.17 117.94 358.70 321.41 

Standard Deviation 987.27 149.26 935.03 973.00 

Coefficient of Variation 2.38 1.27 2.61 3.03 

 

2.6.1. Performance of Forecasting Methods 

The characteristics of the selected MLP-NN models are summarized in Table 

2.4.  The selected model configuration is read from left to right.  The model selected 

for grains, for example, has 288 nodes in the input layer, 4 nodes in the first hidden 

layer, 2 nodes in the second hidden layer, and 1 node in the output layer.  The 60/40 

partition yielded the best MLP-NN models for each food type.  Readers, therefore, 

should not conclude that this partition is the most effective in all situations.  Three 

of the four selected models are constructed using only a single hidden layer.  This 

supports the idea that neural networks with a single hidden layer and a sufficient 

number of neurons can represent any function (Gallant and White 1998; Hornik et 

al. 1989; Hornik 1991; Lippmann 1987).  While the model selected for grains does 



40 

 

 

 

not reject this idea, it does suggest that model configurations that have more than 

one hidden layer should be considered in the model selection process. 

Table 2.4 

Model Characteristics for Selected MLP-NN Models 

 

Performance  

Measure 

In-Kind Food Type 

 

Grains 

Frozen  

Meats 

Frozen Mixed 

Foods 

 

Produce 

Selected Model [288-4-2-1] [288-2-1] [288-7-1] [288-8-1] 

Best Epoch - Test Set 177 389 230 246 

Best Epoch  - Validation Set 151 30 254 321 

Total Epochs 327 539 380 396 

Test Set Partition % 0.4 0.4 0.4 0.4 

Training Set Partition % 0.6 0.6 0.6 0.6 

 

The total number of epochs required to train each model is less than the 

maximum permitted.  Similarly, the termination conditions for training were 

reached before the maximum number of permitted training epochs.  This indicates 

that the models were terminated as a result of obtaining what is perceived as the 

minimum MSE for test set observations.  The table also shows the best epoch for the 

test set is different from that of the validation set.  This suggests the system is non-

stationary. 
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Table 2.6 shows the overall predictive error for each approximation method.  

The most difficult to forecast food type is frozen meats.  This is also the food type 

with the lowest collection amount and the smallest coefficient of variation.  This 

could suggest that since the amount of food generated is so small, a less weighted 

performance measure (i.e. MAE) may have produced better results.  Another 

explanation for this is that initial months of food collection which were performed 

for frozen meats reflect different food collection practices than the rest of the 

occurrences.  Frozen meats are the only food type of those remaining after pre-

processing that is collected in 2006 and 2007.  Nonetheless, each of the forecasting 

methods is better than estimating the collection amount using an overall average 

that is indiscriminate of the supermarket branches.   
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Table 2.5 

Model Approximation Performance (By Food Type) 

Model Data Set Measure 

In-Kind Food Type 

Grains 
Frozen 

Meats 

Frozen 

Mixed 

Foods 

Produce 

MLP-NN 

Known History 

(Training) 

R2 0.7815 0.6136 0.8543 0.8378 

MAE 165.59 46.38 101.40 6.69 

Known History 

(Test) 

R2 0.7896 0.5711 0.8720 0.8301 

MAE 168.50 47.28 103.88 6.64 

Next Period 

(Validation) 

R2 0.6936 0.5380 0.7375 0.7948 

MAE 331.84 47.52 253.80 12.92 

MLR 

Known History 
R2 0.5067 0.2654 0.6605 0.6574 

MAE 230.53 52.69 155.66 8.62 

Next Period 
R2 0.6907 0.4280 0.7441 0.6979 

MAE 366.72 55.63 315.62 14.65 

Averages 

SM – Next 

Period 

R2 0.6285 0.3509 0.7043 0.4623 

MAE 366.87 56.15 264.24 559.84 

SMWH – Next 

Period 

R2 0.6430 0.3572 0.7095 0.4787 

MAE 353.09 55.45 260.20 555.44 
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Based on the values for   , most of the variability in the collection amounts 

of each food type can be attributed to the set of independent variables when using 

the MLP-NN models.  The exception is frozen meat, which is marginally above 0.5.  

In terms of MAE, MLP-NN models are superior to each of the other forecasting 

methods across each data set.  This supports the idea that the relationship between 

observable system characteristics and the amount of each food type collected is best 

approximated through non-linear functions.  The MAE appears to be at its lowest for 

training set projections.  While very close to those of the training set, the 

approximations for the MAE for test set observations are slightly higher.  The 

greatest MAE is observed for the validation set.  This is expected of forecasting 

models, as it indicates that the model projections are most accurate when assessing 

known history and less accurate when making predictions for observations not used 

in training as well as taken from a different planning horizon.  The similarities 

between the performances of selected models when forecasting grains and produce 

suggest that the system characteristics and predicted outcomes are very similar in 

both data partitions.  In contrast, there is a noticeable change in the MAE observed 

for past and future observations.  This supports the idea that the system is non-

stationary. 

MLR appears to produce very poor projections for the known history.  Only 

grains, frozen mixed foods, and produce have coefficients of determination greater 

than 0.5.  This suggests that less than half of the variability in the amount of frozen 

meats collected through a donation can be attributed to system inputs when the 
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MLR model is used.  The    for frozen mixed foods and produce, although higher 

than other food types, is less than 0.7. Each of these models is inferior to the MLP-

NN model projections corresponding to the same food type in terms of both R2 and 

MAE.  A very interesting finding is that MLR models appear to make much better 

projections for the next period than for the known history.  This improvement 

suggests that certain observations from the next planning period better suited for 

the model than those used to train the model.  This is concerning because one would 

expect model accuracy to either remain the same or decrease when used to make 

estimates for an unobserved planning period.  Given the unexpected behavior of 

MLR models, one can confidently observe that the systems represented by the MLR 

models are non-stationary.  Since such a drastic improvement in    is observed, one 

can also observe that MLR models are inappropriate for forecasting food 

availability.  Given the results for the MLP-NN models, the likely reason for MLR 

models being outperformed is their inability to account for interactions between 

system characteristics when accounting for variability in the collection amount.  

This is a limitation of linear causal models. 

SM and SMWH averages both have coefficients of determinations for frozen 

meats and produce that are less than 0.5.  The MAE obtained using the SM average 

to estimate future receipts of grains and frozen meats yields similar result to using 

MLR.  The SM average produces better results than MLR when used to estimate 

frozen mixed foods.  The performance of both the SM and SMWH averages are 

noticeably low for produce.  This is believed to be because the averages do not 
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consider some of the parameters for which causal models like MLR and MLP-NN can 

adjust.  This suggests that both the SM average and SMWH averages can greatly 

inflate food bank estimates.  The MAE obtained from using both averaging methods 

for grains, frozen meats, and frozen mixed foods are either comparable or better 

than those obtained using MLR.  Nonetheless, the R2 value for each averaging 

method is inferior to its MLR counterpart.  This is believed to be due to the 

variability in the observed collection amount which may be related to factors not 

considered through these averaging methods (refer to Table 2.3). 

2.6.2. Impacts on Transportation Costs 

When scheduling food collections using the aggregate collection amounts 

predicted by each forecasting method, only estimates made for the Greenville and 

Wilmington branches result in inflated transportation costs.  For the Greenville 

branch, when provided with perfect information, only 10 vehicles are required and 

transportation costs are $18,073.87.  When using MLP-NN or MLR projections as the 

basis for scheduling, 11 vehicles are required.  The associated transportation cost is 

$19,416.28.  Three additional vehicles are required when schedules are based on 

estimates obtained using SM or SMWH averages.  The transportation cost estimates 

using the SM average are $22,493.35.  The costs using the SMWH average are 

$22,386.46.  Figure 2.5 shows both the number of customers visited on each 

scheduled delivery day (see line graph) as well as the cost increases that would be 

experienced using one of the approximation methods rather than having perfect 

information (see bar graph).  The figure also identifies the number of supermarkets 
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visited on each day.  While all of the forecasting models results in inflated 

transportation costs, collection estimates determined from MLP-NN and MLR result 

in lower costs than a more naïve approach. 

 

Figure 2.5.  Food Collections and Percentage Change in Estimated Transportation 

Costs for Greenville Branch 

For the Wilmington branch, the SM and SMWH averages result in the 

scheduling of 19 vehicles for food collection on Saturday.  This is believed to be the 

result of both an increased number of supermarkets visited on Saturday and inflated 

demand estimates for SM and SMWH averages. Only 10 vehicles are required on 

Saturday when using the selected MLP-NN or MLR models.  Figure 2.6 gives the total 

number of supermarkets visited and the difference in transportation cost estimates 

when using perfect information verses each forecasting method. The estimates for 

the MLP-NN and MLR models do not appear because they match the costs obtained 

under the perfect information case. 
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Figure 2.6.  Food Collections and Percentage Change in Estimated Transportation 

Costs for Wilmington Branch 

Based solely on the transportation costs incurred for each system, the results 

show that MLP-NN models or the MLR models produce results closer to the perfect 

information case.  These forecasting methods are likely more attractive than SM and 

SMWH averages because they are better at taking into account system variability.   

2.7. Managerial Impacts 

No forecasting method is perfect.  The results for this computational study 

show that all forecasting methods overestimated total collections for the future 

planning period.  However, the amount for which the supply is overestimated is less 

for the MLP-NN models.  Furthermore, the operational impact from using MLP-NN is 

no more than 10 percent in terms of additional transportation costs.  

While not considered in this investigation, operational impacts would also 

result from underestimating supply.  Among these impacts are lost food 

replenishment opportunities.  Underestimating supply could result in one or more 
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vehicles reaching their tow capacity before completing their tour.  When vehicle 

tours are developed off-line, which is the case for the second experiment, the 

vehicles return to the depot prior to collecting food from the remaining 

supermarket branches.  The receipt of these additional supplies could have been 

helpful in some instances, especially when inventory is very low.  In addition, when 

inventory replenishment is less critical, underestimated supply suggests that 

operating funds could have been allocated more effectively.  Nonetheless, the 

findings of this research suggest that MLP-NN models are more appropriate for 

forecasting in-kind donations than other forecasting methods considered in this 

study because it is superior at minimizing the overestimation and underestimation 

of supply. 

Despite it providing better results than other approximation methods, each 

of the selected MLP-NN models interpret the system representing food availability 

as non-stationary.  This non-stationarity suggests that models may not accurately 

account for system variability as a result of some unobserved trend.  It is 

recommended that planners limit the planning horizon to one calendar week when 

using the MLP-NN models to forecast food availability.  Including the most recent 

system data allows the models to include data that may be pertinent in capturing 

some degree of system variability. 

2.8. Conclusion 

This research explores different forecasting methods that can be used to 

overcome the supply uncertainty experienced by regional food banks and food 
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recovery organizations when attempting to estimate available supplies at 

supermarket locations.  This study evaluates the impacts of using different 

forecasting methods to approximate the amounts of different in-kind food types 

collected in isolated collection events when information is not shared by 

supermarket branches.  Forecasting methods considered are the average amount 

received by the regional food bank from a supermarket branch, the average amount 

received by a specific food bank warehouse from a supermarket branch, the 

predicted amount when all attributes of the collection event are evaluated using 

multiple linear regressions, and the predicted amount received when all attributes 

of the collection event are evaluated using selected multi-layer perceptron neural 

network models.  The multi-layer perceptron neural network models are selected 

using a quasi-greedy heuristic.  In addition, the models are constructed using 

historic collection records along with indicators of financial wellness for counties in 

which the donations are generated.  Results from our investigation suggest that the 

selected multi-layer perceptron neural network models are superior to each of the 

other forecasting methods both in terms of prediction accuracy and impacts on 

transportation costs.  The results also suggest that with respect to forecasting, the 

two methods utilizing supermarket averages outperform the standard multiple 

linear regression model when trends may not be observed through linear models.  

These averages, however, can greatly inflate the projected collection amounts when 

the collection amount is not random and can lead to incorrect estimates for food 

collection requirements. 
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The findings of this study should promote further research into in-kind 

donation estimation.  The system representation developed for this study is based 

on available collection records, discussions with food bank and supermarket 

personnel, and public information maintained by government agencies.  Similarly, 

while not inclusive of all forecasting methods, this study evaluates both traditional 

and artificial intelligence approaches that are relevant to the research problem.   

While this research does not make the assertion that the prescribed MLP-NN 

selections produce the most accurate predictions, it does make a strong case for 

using more advanced forecasting methods when predicting the amounts of food 

type available for receipt in the next planning period.  Future research will continue 

to study the data set and incorporate other supervised learning methods which are 

more effective at accounting for system variability.  Research extensions should also 

develop fiscally-responsible inventory-based vehicle routing strategies resulting 

from forecasts. 
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3. CHAPTER 3 

Formulations for the Periodic Vehicle Routing Problem with Backhauls 

3.1. Introduction 

Vehicle routing problem is one of the most research-studied in operations 

research.  Since the introduction of the capacitated vehicle routing problem by 

Dantzig and Ramseur (1959), the original problem has been adapted to unique 

challenges experienced in different industries.  These adaptations often result in the 

introduction of new problem variants.  Among these variants are the vehicle routing 

problem with time windows (VRPTW), the vehicle routing problem with backhauls 

(VRPB), and the periodic vehicle routing problem (PVRP).  The VRPTW builds upon 

the foundation of the capacitated VRP by adding the requirement that customer 

deliveries must be satisfied within pre-determined time intervals.  The VRPB 

extends the capacitated VRP such that vehicles are used to satisfy two sets of 

customers, one requiring service through the delivery of commodities from a depot 

(i.e. linehauls) and the other requiring service through the on-site collection of 

commodities for deposit at the depot (i.e. backhauls).  An important feature of this 

problem is that the two commodity types cannot be on a truck at the same time.  The 

PVRP relaxes the assumption that all customers are served in a single day.  Instead, 

the vehicles are scheduled to make a collection (delivery) at customer locations on 

one or more days over a finite planning horizon.  Given the overall importance of 

minimizing transportation costs across different industries, a considerable amount 

of literature is published that is related to at least one of these routing problem 
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generalizations.  These extensions are often based on two or more existing 

generalizations.  Examples of these papers include the vehicle routing problem with 

backhauls and time windows (see e.g., Zhong and Cole (2005)) and the periodic 

vehicle routing problem with time windows (see e.g., Nguyen et al.(2014); Michallet 

et al. (2014)).   

While there is considerable literature published related to variants of the 

VRPB and VRPTW, as well as growing interest in the PVRP, the periodic vehicle 

routing problem with backhauls (PVRPB) appears to one that has been overlooked.  

This generalization has practical applications in numerous industries, particularly in 

distribution networks where both the suppliers and customers for a warehouse are 

located in the same geographic region.  Examples of possible applications include 

(1) food recovery and distribution operations managed by supermarket warehouses 

and local charities such as food banks, (2) distribution and collection routes 

coordinated by manufacturers to promote the safe receipt and disposal of 

pharmaceutical drugs, and (3) mail carrier pickup and delivery services. 

This dissertation chapter provides the first formal introduction of the PVRPB.  

In doing so, three objectives are met in terms of understanding the problem variant.  

The first objective is to provide a problem description and model formulations for 

three problem variants.  The second objective is to understand the impacts of each 

problem variant in terms of the objective function value and the computational 

complexity of different instances.  Vehicle routing problems are based on the 

traveling salesman problem, a NP-complete problem where there is one vehicle with 
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infinite capacity.  Vehicle routing problems are much more difficult to solve as they 

present multiple vehicle assignment options and add load constraints to available 

vehicles.  As such, obtaining even a feasible solution to larger problems could be 

problematic (see e.g., Mingozzi et al. (1999)).  The PVRPB presents an even more 

complex problem which, depending on problem complexity, might not be solved to 

optimality.  The third objective is the introduction of tour limitation constraints 

which when added to the model formulations, permit commercial solvers to identify 

good solutions for many of these problems.   

While making these contributions, two research questions are addressed.  

The first research question evaluates the ability of commercial solvers to find 

solutions for these routing problems.  Using the obtained solutions as a baseline, a 

second research question determines the effectiveness of adding tour limitation 

constraints to each model formulation. 

The remainder of the dissertation chapter is organized as follows.  Section 

3.2 provides a brief review of literature specific to the PVRP and VRPB in terms of 

their computational complexity and related problem variants.  Section 3.3 presents 

a formal definition for the PVRPB, including a model formulation.  Section 3.4 

discusses how the model formulation can be expanded into two variants of the 

PVRPB, in particular, the periodic vehicle routing problem with backhauls and time 

windows (i.e. PVRPBTW) and the heterogeneous fleet periodic vehicle routing 

problem with backhauls (i.e. HPVRPB).  Section 3.5 introduces a set of constraints 

that when added to the formulation allows feasible solutions for the PVRPB, 
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PVRPBTW, or HPVRPB to be found for larger routing problems when provided with 

a sufficient number of vehicles.   Section 3.6 presents a set of experiments based on 

the aforementioned research objectives.  Section 3.7 discusses the results of the 

experiments, and Section 3.8 provides managerial insights that are obtained from 

the experiments.  Section 3.9 summarizes the research findings and identifies 

opportunities for future research extensions. 

3.2.  Literature Review 

A review of literature is provided to understand routing problems that are 

similar to the PVRPB.  The review was initialized by searching for pre-existing 

literature that addresses problems that might be classified as a PVRPB.  An 

extensive review of this generalization is completed using online engineering 

databases including Compendex, Web of Science, and Google Scholar.  Key words 

used in the search include “period vehicle routing problem” AND “backhauls”, 

“PVRP” AND “backhauls”, “period distribution routing problem” AND “collection”, 

and “multi-day routing” AND “backhauls” AND “linehauls”.  These queries were 

performed as late as January 5, 2014 to ensure the inclusion of the most recent 

literature.  Manuscripts written in languages other than English are excluded.   The 

abstracts for manuscripts obtained through the search are reviewed to identify the 

routing problems that match the characteristic of the PVRPB.  Those which appear 

to be closely related to the problem were read in their entirety. 

Davis et al. (2014) provide the only known contribution that in some way 

addresses this problem variant.  The researchers utilize a variation of the PVRPB to 
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schedule the collection and distribution of charitable foods.  The problem minimizes 

the total vehicle travel distance for food bank vehicles when delivering commodities 

to remote charitable agencies and collect needed food items from high-volume 

donors (i.e. supermarkets, food manufacturers, etc.).  A two-phased model-based 

heuristic is implemented to (a) assign the charitable agencies to a food delivery 

point and (b) develop routes that allow food bank vehicles to both deliver allocated 

commodities to the food delivery points and make collections at the high-volume 

donors over the course of a 5-day planning horizon.  The approach limits vehicles to 

making only one delivery per tour.   

The PVRPB is anticipated to be a hybrid model based on the PVRP and VRPB.  

Accordingly, a concise, yet comprehensive review of key literature for both 

generalizations is provided.  Readers interested in a review of the PVRP or VRPB are 

referred to Francis et al. (2008) and Goetschalckx and Jacobs-Blecha (1989).  

3.2.1. PVRP 

The PVRP is a routing problem which consists of a set of customers requiring 

transportation services one or more times over a multi-day planning horizon.  Every 

customer transportation service results in every customer being served by a 

delivery (or collection).   All services are performed by vehicles which have both 

pre-defined maximum tow capacities and tour durations.  Depot distribution and 

collection capabilities are assumed to be infinite.  The CVRP is an instance of the 

PVRP where there is only one day in the planning horizon and all customers are 

visited once.  This causes the PVRP present a more complex extension of the CVRP.   
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Previous literature expresses a general consensus that the PVRP is a 

combination of two classical problems:  an assignment problem and a routing 

problem (Baptista et al. 2002).  The assignment problem is used to allocate 

customers to a preliminary set of arrival day(s) and/or a vehicle route.  The routing 

problem follows by searching for the most efficient sequence in which customers 

assigned can be served by capacitated vehicles.  The solution methods that are 

explored include exact methods (EM), classified as classic heuristics (CH), and 

metaheuristics (MH).  The customer assignments for each problem include an 

assignment problem (AP) as well as a geometrically-based assignment problem 

(GAP).  The GAP is a special case of the assignment problem that uses geometric 

approximations for travel distance to make its selections.  The routing problem 

classification states whether the authors determine route configuration by solving 

separate traveling salesman problems (TSP) or vehicle routing problems (VRP).  A 

classification of each of these routing approaches is given in Table 3.1.  The table 

highlights EM and CH approaches.  MH approaches are discussed in Chapter 4. 
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Table 3.1 

Problem Decomposition Used to Solve the PVRP 

  Solution 

Method 
 

Customer 

Assignment 
 

Routing 

Problem 

Author(s)  EM CH  AP GAP  TSP VRP 

Beltrami and Bodin (1974)   ●  ●    ● 

Russell and Igo (1979)   ●  ●    ● 

Christofides and Beasley 

(1984) 

  ●  ●   ●  

Tan and Beasley (1984)   ●   ●  ●  

Russell and Gribbin (1991)   ●   ●   ● 

Gaudioso and Paletta (1991)   ●  ●    ● 

Baptista et al. (2002)          

Francis et al. (2006b)  ●   ●     

Mourgaya and Vanderbeck 

(2007) 

 ●    ●    

 

3.2.1.1. CH Contributions.  Many early publications addressing the PVRP 

incorporated classical heuristic methods.  Beltrami and Bodin (1974) use 

optimization methods to assign customers to delivery day combinations.  

The initial assignment is followed by solving vehicle routing problems for 

each day of a planning horizon.  In their investigation, schedules which 
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limited customers to being served 3 or 6 days of the planning horizons 

are considered.  Russell and Igo (1979) explore more flexible delivery 

frequencies.  Christofides and Beasley (1984) present the first model 

formulation for the PVRP; however, they solve the problem using a three 

phased heuristic.  The first phase of the heuristic assigns customers to 

clusters which indicate a specific vehicle used on a given day of the 

planning horizon.  These clusters are based on the least cost heuristic of 

Eilon and Christofides (1971).  Solutions are improved by solving 

separate periodic traveling salesman problems (PTSP) problems for each 

day.  Each tour of the PTSP is solved separately using 2-opt intra-route 

improvement heuristics introduced by Lin and Kernighan (1973).  

Different customer delivery day combinations are explored by re-

incorporating the least cost heuristic followed by re-solving the PTSP.  

Tan and Beasley (1984) and Russell and Gribbin (1991) present 

heuristics based on the random seed generation procedure of Fisher and 

Jaikumar (1981).  This random seed generator inserts customer into 

vehicle routes based on the change in cost of a round trip from the depot 

through each seed point.  Gaudioso and Paletta (1991) present a unique 

application of the PVRP which is designed to balance workload among 

vehicles.  Initial routes are constructed by assigning each customer to a 

multi-day delivery schedule, and one of the available vehicles for each day 

using the delivery amount per day.  Assignments are completed based on 
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a first-fit decreasing bin packing procedure.  After an initial assignment, 

customers are reassigned to vehicles based on the application of the 2-opt 

heuristic of Lin and Kernighan (1973) for both inter-route and intra-route 

exchanges occurring on the same day, and a smoothing algorithm 

designed to balance workload on peak delivery days.  After each customer 

reassignment, tours are reconfigured according to a first-fit decreasing 

bin packing procedure. 

3.2.1.2. EM Contributions.  Few researchers solve the PVRP using exact 

formulation methods.  Francis et al. (2006b) present an exact solution 

method for solving the problem based on the Lagrangian relaxation of an 

integer programming formulation of the problem.  The authors reduce 

the dimensionality of the problem by limiting the service schedules to 

permissible day combinations where a given customer is served to a set 

of disjoint day combinations and a single schedule which includes all days 

in the planning horizon.  Through the Lagrangian relaxation, the problem 

is decomposed into a capacitated assignment problem and a separate TSP 

for each day.  Further improvements to the integer solution are made 

using a branch-and-bound algorithm.  This approach was applied to 

problem instances with up to 50 nodes, each of which were solved to 

within 2% of the optimal solution.  Mourgaya and Vanderbeck (2007) use 

column generation to solve a special case of the PVRP where the objective 

function promotes a balanced vehicle workload and improved vehicle 
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regionalization.  The problem is formulated as a generalized assignment 

problem which groups customers into geometrically-dispersed clusters.  

All customers assigned to the same customer are served by the same 

vehicle route.  The formulation uses approximations to determine 

improvements to vehicle travel time based on the total travel time 

incurred by a vehicle visiting the imaginary central point for each cluster 

before returning to the depot.  After providing the formulation, its 

limitations are discussed in terms of estimating system costs and problem 

relaxation.  These limitations are overcome through a Dantzig-Wolf 

reformulation which assigns each tactical scenario to customers and 

customers to clusters.  The reformulated problem is solved using column 

generation to minimize the cost of serving the specified clusters.  Despite 

reformulation, the problem remains difficult to solve with reported 

optimality gaps of 14 – 30%. 

3.2.1.3. MH Contributions.  Metaheuristic search procedures comprise the most 

prevalent method for solving the PVRP.  Those that have been effective 

for the PVRP include tabu search (see e.g. Rusdiansyah and Tsao (2005)), 

variable neighborhood search (see e.g., Hemmelmayr et al. (2009b)), 

scatter search (see e.g. Alegre et al. (2007)), and genetic algorithms (see 

e.g., Vidal et al. (2012)).  Initial solutions are based on a preliminary 

assignment of customers to vehicle routes and visit schedules.  Most 

metaheuristics surveyed for the PVRP use construction algorithms 
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similar in form to Beltrami and Bodin (1974) and Gaudioso and Paletta 

(1991).  Exceptions to this form of construction include Vidal et al. (2012) 

and Nguyen et al.(2014) who both utilize a two-vector representation to 

solve the PVRP, periodic vehicle routing problem with time windows 

(PVRPTW), and multi-depot vehicle routing problem (MDVRP) through a 

hybrid genetic algorithms.  The initial construction and search process 

associated with each, however, is based on augmenting the service 

schedule assigned for each customer, followed by updating the affected 

vehicle routes.  A more in-depth discussion of the metaheuristics 

approaches is provided in Chapter 4. 

3.2.2. VRPB 

The VRPB presents a routing problem where two sets of customers are 

served through the capacitated vehicle fleet.  One set of customers is satisfied by the 

delivery of a set of commodities from a depot (i.e. linehauls) and the other set of 

customers is satisfied by the collection of commodities which are deposited into the 

depot (i.e. backhauls).  Vehicles are limited by both their tow capacity and pre-

defined maximum tour durations.  Those which deliver linehaul items contain all 

commodities that are requested by the customers they serve.  As such, a key 

assumption of this problem is that the depot has infinite distribution and collection 

capabilities.  The CVRP is an instance of the VRPB where there are only linehaul or 

backhaul customers, making the VRPB a more complex extension of the CVRP.  Yano 

et al. (1987) present an exact algorithm which places special constraints on the 
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number of total customers that can be satisfied on a vehicle tour.  Toth and Vigo 

(1997) present an exact algorithm to solve the VRPB with both symmetric and 

asymmetric travel distances.  Each of these algorithms was only able to identify the 

optimal solution for problems with 100 or fewer customers.  Furthermore, 

convergence required more time than heuristic methods.  Gelianas et al. (1995) 

present an exact algorithm to solve instances where there are customer-specific 

time windows.  Less restrictive heuristic algorithms for the VRPB are also presented 

in literature.  The publications include variant with time windows (Duhamel et al. 

1997), heterogeneous fleet (Tutuncu 2010), and multiple depots (Wang and Li 2009, 

Wang et al. 2009). 

3.2.3. Unaddressed Research Area 

Since the PVRPB has not been studied previously, a direct application of one 

of the pre-existing heuristics designed to solve PVRP or VRPB is premature.  In the 

absence of formal heuristic methods, the use of an exact method may be sufficient.  

Advances in computer processing capabilities, coupled with improved problem 

relaxation, cutting plane, and branch and bound methods allow optimal solutions to 

be obtained for growing number of difficult problems (see e.g., Toth and Vigo 2002).  

Many of these methods are incorporated into commercial software applications.  

The ability of modeling software to solve this understudied problem has yet to be 

evaluated.  Additionally, the characteristics of problem extensions where customers 

are served within pre-determined time intervals or where collections and deliveries 

are performed using a heterogeneous vehicle fleet should be studied.  Practices that 
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reduce the complexity of the routing problem to find good solutions in a reasonable 

time given its complexity may be identified.     

3.3. Model Formulation 

The PVRPB is based on the following assumptions.  A fleet of capacitated 

vehicles travel across a network in order to satisfy two sets of customers.  The first 

set consists of customers requiring delivery service whereas the second consists of 

customers requiring collection service.  Each customer who requires both delivery 

and collection service is treated as two separate customers.  Vehicle tours originate 

at a single depot.  This depot is the origin for all dispatched commodities and the 

destination for collected commodities.  The first group of customers is satisfied by 

receiving commodities dispatched from the depot through linehauls.  The second 

group of customers is satisfied by having commodities collected for backhaul to the 

depot.  The amount of food that is dispatched or collected at each location is 

assumed to be known with certainty.  Hence, the service time for customer 

deliveries (collections) are assumed to be known with certainty.  The delivery 

(collection) requirements of customers are satisfied by vehicles over a specified 

number of days while strictly adhering to tow capacity and tour duration 

restrictions.  In addition, while permitted to serve both linehaul and backhaul 

customers on the same tour, vehicles cannot simultaneously contain commodities 

from the two sets of customers.  Finally, the depot is assumed to have infinite 

capacity.   
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A mathematical formulation for the PVRPB is now introduced.  The network 

associated with this formulation is represented through the graph   (   ), 

where   corresponds of the set of customer locations with    corresponding to 

customer locations and   { } indicating the depot.  Customers served through 

linehauls are members of the set      whereas those serviced by backhauls are 

members of the set     , where         and        .  Thus, if there 

are no linehaul or backhaul customers, the problem reduces to a PVRP.  The set   

represents arcs along which vehicle travel, represented by the ordered pair (   ).  

Sets   and   define the sets of vehicles and days included in the planning horizon, 

respectively.  Individual vehicles and days within the planning horizon are 

represented by     and    , respectively.  When traveling between two nodes, a 

distance of     and a travel time of     are incurred.  Each time that a vehicle arrives 

at a customer, a service time of    is incurred.  The amount of the commodity 

received (linehauls) or distributed (backhauls) through this arrival is given by   .  

The total number of times a customer must be visited is given by   .  Customers are 

limited to being served according to a set of permissible schedules  .  For a specific 

schedule,     indicates service on a given day   by a value of 1 and no service by a 

value of 0.  The capacity of each vehicle is given by  . 

Decision variables for this model are the following:  Variables     identify the 

schedule selected for delivery and collection customers.  Variables       indicate 

whether vehicle   travels along arc (   )on day  .  Variables    indicate the time of 

departure from customer   on day  . 
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The PVRPB is formulated as a mixed integer linear programming (MILP) 

problem.  The objective function for the PVRPB is based on costs incurred from 

vehicle usage, fuel consumption for travel, and utilizing vehicle refrigeration 

capabilities.  The parameters associated with daily vehicle usage, fuel cost per mile, 

and refrigeration cost per hour are given by , , and  , respectively.  The resulting 

formulation is as follows. 

            ∑∑∑     
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The objective function (3.1) minimizes the vehicle costs over the planning 

horizon.  This cost is a function of the number of vehicles rented, the cost of fuel, and 

hourly usage costs for refrigerated trucks.  Note that the first or third component of 

the objective function can be removed when vehicle usage or refrigeration is 

necessary.  Constraints (3.2) ensure that the number of collections or deliveries 

specified for a customer is satisfied.  Constraints (3.3) ensure that all collections and 

deliveries are satisfied by the arrival of a vehicle.  Constraints (3.4) and (3.5) ensure 

the conservation of flow for customers served through deliveries and collections, 
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respectively.  Constraints (3.6) and (3.7) ensure that vehicle capacity is not 

exceeded while completing linehauls and backhauls, respectively.  Constraints (3.8) 

maintain proper vehicle sequencing between successive customers on the same 

tour.  As such is the case, they also eliminate sub-tours.  Constraints (3.9) ensure 

that vehicle tours do not exceed their maximum duration.  Constraints (3.10) 

identify the departure times from the first customers served through vehicle tours.  

Constraints (3.11) ensure that only one schedule is selected per customer served.  

Constraints (3.12) ensure that each vehicle is assigned no more than one tour per 

day.  Constraints (3.13), (3.14), and (3.15) ensure that decision variables maintain 

non-negativity and binary values.  In total, there are up to(| |   )  | |  | |  

| |  | | binary decision variables and | |  | | non-negative decision variables.   

3.4. Formulations for Variants for the PVRPB 

Many systems have additional characteristics that greatly impact routing 

decisions.  For example, many customers can only be served within pre-determined 

time intervals.  It is also common for vehicles to have different capabilities and/or 

incur different fixed and variable costs when used.  Accordingly, MILP formulations 

for the periodic vehicle routing problem with backhauls and time windows (i.e. 

PVRPBTW) and the heterogeneous fleet periodic vehicle routing problem with 

backhauls (i.e. HPVRPB) are introduced for these additional system characteristics.  

The next two subsections discuss constraints added to the PVRPB formulations to 

solve each problem variants. 
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3.4.1.  Time Windows 

When time windows are considered, additional constraints are added to 

represent interval of time in which customers can be served.  This interval is 

represented by an earliest time (denoted by ie ) and a latest time (denoted by il ).  

This investigation considers instances where the time windows are soft, 

characterized by permitting vehicles to arrive at the customer early and wait until 

the earliest start time to begin service. 

    (     )∑       
   

           (3.16) 

               . (3.17) 

Constraints (3.16) ensure that customers are not served prior to the earliest service 

start time.  Constraints (3.17) ensure that customers are served prior to the latest 

permitted departure time.  The constraints can also be observed to be appropriate 

for instances where a customer is not served on a specific day.  It should be noted 

that the formulation for the PVRPBTW is only a lower-bound for the food bank 

routing problem because the formulation does not account for refrigeration costs 

incurred when vehicles remain idle while waiting until service is permitted to start. 

3.4.2. Heterogeneous Fleet 

When considering a heterogeneous fleet, equations for the PVRPB 

formulation are modified to reflect the different characteristics of each vehicle.  In 

this research, the physical characteristics of vehicles such as their tow capacity, 

fixed costs, fuel efficiency, and refrigeration costs per hour are adapted as such, 
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    ,     ,     , and     .  Accordingly, equations (3.1), (3.6), and (3.7) 

are adapted as seen in equations (3.18), (3.19), and (3.20) respectively. 
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3.5. Tour Limitation Constraints  

The PVRPB and its variants are NP-complete because they represent 

problems that are at least as complex as the PVRP.  It complexity is affected by the 

size of the underlying assignment and routing problems, both of which are also NP-

complete (Karp 2010).  The CVRP has underlying TSP and generalized assignment 

problem characteristics (Fisher and Jaikumar 1981); therefore, it is the more 

complex of the two NP-complete problems from which the multi-period routing 

problems are based.  The TSP is the more difficult of the two underlying problems to 

solve.  The complexity of this problem is a function of the number of customers 

visited on a vehicle tour. 

A set of constraints which reduce the number of customers included in 

vehicle tours are now discussed.  Constraints (3.21) and (3.22) are added to each of 
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the model formulations to reduce the maximum number of linehauls permitted per 

vehicle tour (denoted by MaxLH) as well as the maximum number of backhauls 

permitted per vehicle tour (denoted by MaxBH).  The PVRPB, PVRPBTW, and 

HPVRPB provided previously can be viewed as solving instances where MaxLH 

=|  |and MaxBH =|  |. 

∑ ∑                      ,         , (3.21) 

∑ ∑                      ,         . (3.22) 

The additional constraints are beneficial in obtaining a good solution using less 

computation time; nevertheless, these extended formulations for the PVRPB, 

PVRPBTW, and HPVRPB produce solutions that may be inferior to the objective 

function. 

3.6. Experimentation 

Two experiments are performed to study the PVRPB and extensions 

discussed.  The first experiment compares the solution quality and computation 

times obtained using the PVRPB, PVRPBTW, and HPVRPB to solve different test 

scenarios.  The second experiment studies the impacts of incorporating the tour 

limitation constraints to each of the PVRPB variants in terms of solution quality and 

computation time. 
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3.6.1. Case Study:  Charitable Food Distribution and Collection Challenges of Food 

Banks 

All test scenarios are based on a perceived opportunity for food banks to 

realize lower transportation costs, improve food access for remote charitable 

agencies, and promote safe food replenishment.  Many remote agencies do not have 

refrigerated vehicles, preventing them from safely transporting perishable food 

items across the vast distance between their place of operation and the food bank.  

As a means of promoting safe food transfer, food banks serve one or more charitable 

agencies through shuttle services.  Food bank vehicles are also essential for food 

replenishment.  Food banks are the central warehouse through which many of the 

in-kind food contributions donated by for-profit companies (i.e. grocery stores, food 

manufacturers, etc.) are repurposed for charitable intent.  These items are received 

by the food bank through on-site food collections performed by its own vehicles.  

Items that are collected include usable, yet unsellable food items such as items in 

dented cans, perishable foods approaching manufacturer-recommended sell-by 

dates, and test products which perform poorly in the market.  After completing 

collection runs, vehicles return all commodities to the food bank, where they are 

inspected and stored for future distribution. 

For the prescribed set of scenarios, charitable agencies are served through 

deliveries to shuttle locations.  Each linehaul customer (i.e. a set of agencies served 

through a shuttle location) receives a single shipment of a prescribed amount of 

food measured in pounds.  Each linehaul requires 1 hour.  Local food donors 
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represent the set of backhaul customers.  Each donor contributes 300 pounds of 

food per collection.  Only one collection is permitted at each backhaul customer per 

day and exactly three are made over the course of a five-day planning horizon.  The 

service time for each collection is 30 minutes.  Each vehicle tour is limited to 10 

hours.  The scenarios present instances where 5 to 42 customers are served.  The 

characteristics of customers including the food delivery (collection) amounts for 

each are provided in Appendix B.1 and B.2.  The distances and travel times between 

two locations are provided in Appendices B.3 and B.4.  The designation of customers 

as being served through linehauls or backhauls is given in Table 3.2. 

Table 3.2 

Characteristics for each Test Scenario 

Scenario 

Model Parameters 

NL NB |V| |D| 

1 C1-3 C:4-5 7 5 

2 C:1-4 C:5-6 7 5 

3 C:1-5 C:6-7 7 5 

4 C:1-6 C:7-8 7 5 

5 C:1-7 C:8-9 7 5 

6 C:1-8 C:9-10 7 5 

7 C:1-10 C:11-15 7 5 

8 C:1-10 C:11-20 7 5 
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Table 3.2 (cont’d.) 

9 C:1-14 C:15-25 7 5 

10 C:1-14 C:15-30 7 5 

11 C:1-14 C:15-35 7 5 

12 C:1-14 C:15-42 7 5 

 

The characteristics of each vehicle are provided in Table 3.3.  The PVRPB and 

PVRPBTW are solved using the homogeneous vehicle fleet, whereas the HPVRPB is 

solved using the heterogeneous fleet type.   

Table 3.3 

Vehicle Characteristics 

Fleet 

Type 

 

Vehicle  

 

Capacity 

(lbs.)  

Fixed 

Cost 

($/Use) 

 Fuel 

Efficiency 

($/mile) 

 Refrigeration 

Cost 

($/hour) 

1  1 – 7  20000  150.00  0.40  1.25 

 

 

 

2 

 1  20000  150.00  0.40  1.25 

 2  18550  125.00  0.40  1.50 

 3  15000  100.00  0.35  1.75 

 4  15000  80.00  0.30  2.00 

 5  12500  60.00  0.25  2.25 

 6  5000  50.00  0.20  2.50 
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Table 3.3 (cont’d.) 

2  7  1000  0.00  0.15  3.00 

Homogeneous Fleet indicated by Fleet Type = 1 
Heterogeneous Fleet indicated by Fleet Type = 2 

 

3.6.2. Experimental Design 

Each of the experiments uses one or more of the following performance 

measures:  observed transportation costs, optimality gap, and the required 

computation time.  The transportation costs are recorded to understand how the 

each problem variant impacts company operational costs.  The optimality gap 

provides insight into how close the best observed solution is to the LP Relaxation 

(denoted by    ).  The optimality gap is calculated using the formula, 

                
                           

                      
 (3.20) 

Thus, the optimality gap is a non-negative proportion between [0, 1] with a value of 

0 indicating that the optimal solution for the problem is obtained.  When the 

solution obtained by a commercial solver matches the best possible solution, the 

optimality gap is zero.  The computation time indicates the required runtime to 

obtain a solution.  This computation time reaches a pre-determined upper-bound 

unless the optimal solution is obtained.  These experiments are conducted with each 

of the first 6 scenarios permitting a computation time of 15,000 seconds and test 

scenarios 7 – 12 permitting a computation time of only 5,000 seconds.  The 
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difference in computation times is due to the computer memory requirements for 

larger problems.  The details of each experiment are discussed below. 

3.6.2.1. Experiment #1:  A Comparison of Different Problem Generalizations.  The 

PVRPB, PVRPBTW, and HPVRPB are tested on all twelve test set 

scenarios.  The output for each scenario, including the total 

transportation costs, optimality gap, and computation time are both 

recorded.   

3.6.2.2. Experiment #2:  Impact of Tour Limitation Constraints on Different 

Problem Generalizations.  The tour limitation constraints are applied to 

the PVRPB, PVRPBTW, and HPVRPB and evaluated for all twelve test 

scenarios.  In each scenario, MaxLH =1 and MaxBH = 5.  Results from 

these runs are compared to those obtained without these limitation 

constraints (see experiment #2) to observe the tradeoffs between 

solution quality and computational efficiency.  Solution quality is 

measured by comparing the optimality gaps obtained when using the 

tour limitation constraints to those of the original formulation.  This 

measurement, denoted as Optimality Gap (TLC), is given through the 

formula, 

               (   )   
              (   )      

             (   )
 (3.21) 
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The computational efficiency is evaluated by comparing the difference 

between the computation times of both the original and modified 

formulation which include the tour limitation constraints.   

3.6.3. Equipment 

All experiments are performed using the CPLEX solver for mixed integer 

programming problems through the GAMS interface.  All experiments are run on a 

Pentium Dual Core 2.33 GHz Processor with 2.99 GB of RAM. 

3.7. Results 

3.7.1. Experiment #1:  Computational Complexity of PVRPB Extensions 

3.7.1.1. PVRPB Results. Table 3.4 lists the transportation costs and runtime for the 

PVRPB.  The LP relaxation and solutions for the base model formulation 

without tour limitation constraints) are given by     and BMF. 

Table 3.4 

Results Obtained when Attempting to Solve the BMF of the PVRPB 

 

 

Scenario 

 Transportation Costs  Runtime (Seconds) 

 
LP* BMF 

Optimality 

Gap 
 BMF 

Maximum 

Allowed 

1  566.44 566.44 0.00  0.269 15000 

2  570.48 570.48 0.00  6.921 15000 

3  670.54 670.54 0.00  8.929 15000 

4  709.06 709.06 0.00  874.01 15000 
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Table 3.4 (cont’d.) 

5  682.93 682.93 0.00  2025.63 15000 

6  687.57 833.73 .1753  15000 15000 

7  410.48 1123.67 .6347  5000 5000 

8  300.67 1601.55 .8123  5000 5000 

9  405.82 1771.63 .7709  5000 5000 

10  nsf nsf n/a  5000 5000 

11  nsf nsf n/a  5000 5000 

12  nsf nsf n/a  5000 5000 

nsf= No solution found 

With the exception of Scenario 5, the total transportation cost increases 

with each scenario.  It is believed that this scenario does not follow the 

same trend as others because it is one where a backhaul customer (i.e. 

customer 3) is further from the remaining customers. The more frequent 

travel to this remote location is believed to have made the problem 

uniquely different from both prior scenarios and Scenario 6.  The 

computation time increases as with every scenario.  This is expected as 

the number of variables is proportionate to the number of locations.  The 

CPLEX compiler could only find the optimal solution for Scenarios 1 - 5.  

Problems with a greater number of customers could not be solved to 

optimality.  In addition, no solution was obtained for Scenarios 10 – 12.  It 
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is important to note that our designation of not obtaining a solution is 

different from there being no feasible solution. 

3.7.1.2. PVRPBTW Results.  Table 3.5 summarizes the result for the PVRPB with 

time windows.  As expressed for the PVRPB, the objective function value 

does not always increase with the number of customer visits, as is evident 

by Scenarios 5 and 6 having lower transportation costs than Scenarios 4 

and 5.  Furthermore, the CPLEX solver obtained the optimal solutions for 

Scenarios 1 – 4 and 6.  No solution was found for Scenarios 10 – 12. 

Table 3.5 

Results Obtained when Attempting to Solve the BMF of the PVRPBTW 

 

 

Scenario 

 Transportation Cost  Runtime (Seconds) 

 
LP* BMF 

Optimality 

Gap 
 BMF 

Maximum 

Allowed 

1  729.29 729.29 0.00  0.269 15000 

2  883.82 883.82 0.00  6.921 15000 

3  994.28 994.28 0.00  8.929 15000 

4  1030.06 1030.06 0.00  874.01 15000 

5  842.89 988.04 .1469  2025.63 15000 

6  837.03 837.03 0.00  15000 15000 

7  470.03 1469.39 .6801  5000 5000 

8  444.66 1630.06 .7272  5000 5000 
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Table 3.5 (cont’d.) 

9  562.63 2247.53 .7497  5000 5000 

10  nsf nsf n/a  5000 5000 

11  nsf nsf n/a  5000 5000 

12  nsf nsf n/a  5000 5000 

nsf= No solution found, n/a = Not applicable 

3.7.1.3. HPVRPB Results.  Table 3.6 summarizes the result for the heterogeneous 

fleet PVRPB.  Given the characteristics of available vehicles, the HPVRPB 

produced low-cost solutions.  This is expected because the problem 

variant presents some routing options that are considerably less 

expensive than the homogeneous fleet-based variants.  In addition, 

attempts to solve the HPVRPB to optimality were more successful than 

the PVRPB and PVRPBTW.  Considering vehicle characteristics allows the 

costs associated with vehicle usage to be compared and allows certain 

routing decisions to be prioritized over others.  This is likely the 

explanation for improvements in solution quality observed for this 

variant.  The first five test scenarios are solved to optimality and a 

solution for Scenario 6 is found that is within 10% of the best possible 

solution.  Second, the solver was able to obtain a feasible solution for 

Scenario 10.  Neither of the other two problem variants is able to obtain a 

solution for this test scenario. 
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Table 3.6 

Results Obtained when Attempting to Solve the BMF of the HPVRPB 

 

 

Scenario 

 Transportation Costs  Runtime (Seconds) 

 
LP* BMF 

Optimality 

Gap 
 BMF 

Maximum 

Allowed 

1  270.27 270.27 0.000  0.269 15000 

2  274.56 274.56 0.000  6.921 15000 

3  399.26 399.26 0.000  8.929 15000 

4  420.04 420.04 0.000  874.01 15000 

5  481.57 481.57 0.000  2025.63 15000 

6  572.19 572.19 0.000  15000 15000 

7  367.47 748.88 .5093  5000 5000 

8  341.70 792.06 .5686  5000 5000 

9  364.74 988.73 .6311  5000 5000 

10  405.29 1275.76 .6823  5000 5000 

11  nsf nsf n/a  5000 5000 

12  nsf nsf n/a  5000 5000 

nsf= No solution found, n/a = Not applicable 
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Figure 3.1 compares the transportation costs obtained for the PVRPB, PVRPBTW, 

and HPVRPB.  Scenarios for which no solution is found are not included. 

 

Figure 3.1.  Transportation Costs Obtained for PVRPB, PVRPBTW, and HPVRPB in 

Test Scenarios 

 The HPVRPB has the lowest transportation costs across all scenarios.  As 

stated previously, this is because certain vehicles are less expensive to use than 

others.  Vehicles 2 – 7 are less expensive per use and more fuel efficient than any of 

the vehicles used for the PVRPB and PVRPBTW.  The differences in transportation 

costs between the different problems indicate that the lower-cost vehicles were 

largely preferred over the higher-cost vehicle with greater tow capacity.  

Conversely, the transportation costs of the PVRPBTW tend to be higher than those 

of the PVRPB.  This suggests that considering time windows can make the routing 

problem more expensive.  Figure 3.2 expresses the solution quality of the three 

problem variants in terms of the optimality gap.  Each of the three problem variants 
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performs well for the first four scenarios.  Only the HPVRPB obtains feasible 

solutions for Scenarios 5 and 6.  The HPVRPB has the lowest optimality gap for all 

remaining scenarios.  No conclusion can be made as to whether the PVRPB out 

performs the PVRPBTW in terms of optimality gap. 

 

Figure 3.2.  Optimality Gap Percentages for the BMF when Solving Test Scenarios 

for the PVRPB, PVRPBTW, and HPVRPB 

3.7.2. Experiment #2:  Tour Limitation Constraints 

The objective function value, optimality gap percentages, and percentage of 

available runtime incurred for the PVRPB, PVRPBTW, and HPVRPB are given in 

Tables 3.7 – 3.9. 
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Table 3.7 

Solutions Obtained when solving the BMF and TLC Formulations of the PVRPB 

 

 

Transportation Costs 

 Optimality 

Gap 

 Runtime 

(in seconds) 

Scenario  LP* BMF TLC  BMF TLC  BMF TLC 

1  566.4  566.4  567.7   0.000 .0022  1.23  0.14  

2  570.5  570.5  725.7   0.000 .2139  5.18  0.19  

3  670.5  670.5  982.0   0.000 .3172  11.16  0.22  

4  709.1  709.1  1,177.2   0.000 .3977   65.49  0.44  

5  682.9  682.9  1,308.9   0.000 .4782   508.53  0.36  

6  687.6  833.7  1,473.5   0.000 .5334   15,000 0.27  

7  410.5  1,123.7  1,903.6   .5093 .7844   5,000 2.23  

8  300.7  1,601.6  1,923.1   .5686 .8437   5,000 5,000  

9  405.8  1,771.6  2,617.9   .6311 .8450   5,000 18.23  

10        nsf       nsf   2,722.9   n/a  n/a   5,000  5,000  

11          nsf  nsf 3,181.5   n/a  n/a   5,000  5,000 

12          nsf nsf 4,493.3  n/a  n/a   5,000  5,000  

nsf= No solution found, n/a = Not applicable 
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Table 3.8 

Solutions Obtained when solving the BMF and TLC Formulations of the PVRPBTW 

 

 

Transportation Costs 

 Optimality 

Gap 

 Runtime     

(in Seconds)  

Scenario  LP* BMF TLC  BMF TLC  BMF TLC 

1  729.3 729.3 889.8   0.000 .1803  1.498  0.22  

2  883.8  883.8  1,191.7   0.000 .2584  7.925  3.74  

3  994.3  994.3  1,309.6   0.000 .2408  9.157  0.11  

4  1030.1  1030.1  1,359.7   0.000 .2424  144.48  0.20  

5  842.9  988.0  1,309.2   .1469 .3562  15,000 0.31  

6  837.0  837.0  1,460.1   0.000 .4267  847.85  0.52  

7  470.0  1,469.4  1,915.8   .6801 .7547  5,000 5,000  

8  444.7  1,630.1  1,947.2   .7272 .7716  5,000  5,000  

9  562.6 2,247.5 2,767.0  .7497 .7967  5,000  5,000  

10   nsf   nsf   nfs   n/a n/a  5,000  5,000  

11   nsf   nsf   nfs   n/a n/a  5,000  5,000  

12   nsf   nsf  nfs  n/a n./a  5,000  5000 

nsf= No solution obtained, nfs = No feasible solution, n/a = Not applicable 
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Table 3.9 

Solutions Obtained when solving the BMF and TLC Formulations of the HPVRPB 

 

 

Transportation Costs 

 Optimality 

Gap 

 Runtime 

(seconds)  

Scenario  LP* BMF TLC  BMF TLC  BMF TLC 

1  270.3  270.3  270.3   0.00 0.00  0.269  0.062  

2  274.6  274.6  326.6   0.00 0.1594  6.921  0.15  

3  399.3  399.3  451.5   0.00 0.1157  8.929  0.15  

4  420.0  420.0  524.9   0.00 0.1997  874.01  0.24  

5  481.6  481.6  586.4   0.00 0.1788  2,025.6 0.50 

6  572.2  572.2  677.0   0.00 0.1549  15,000 0.36  

7  367.5  748.9  944.6   50.93 0.6110  5,000  6.43  

8  341.7  792.1  971.9   56.86 0.6484  5,000  2,606.4  

9  364.7  988.7  1,271.7   63.11 0.7132  5,000  185.00  

10  405.3  1,275.8  1,361.6   68.23 0.7024  5,000  5,000  

11  nsf nsf 1,463.5   n/a n/a  5,000  5,000  

12  nsf nsf 2,654.1   n/a n/a  5,000  5,000 

nsf= No solution found, n/a = not applicable 

Solutions were obtained in each of the 12 scenarios when the tour limitation 

constraints were applied.  The difference in optimality gap percentages between the 

BMF and TLC formulations also appear to decrease as system complexity increases.  

In terms of the computation time, only scenarios 8, 10 – 12 when solving the PVRPB, 
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7 – 12 when solving the PVRPBTW, and 10 – 12 when solving the HPVRPB were not 

solved within the available computation time (See Table 3.7).   

Another important finding is that the TLC has an infeasible solution for 

Scenario 12.  This suggests that this formulation may not find a feasible solution for 

systems where there are few vehicles or where trucks are expected to have high 

utilization.  This is useful in practical application because slight modifications to 

customer requirements might result in there being insufficient resources (i.e. 

vehicle capacity, tour duration, number of vehicles, etc.) to satisfy all customers in 

the network. 

3.8. Managerial Insights 

The results of these experiments give many implications which are helpful 

when developing transportation schedules for networks that have characteristics of 

a PVRPB variant.  Two aspects of this research must be discussed so that the 

implications are not taken out of context.  First, since the experiments are conducted 

using the commercial software, the results expressed in this study are specifically 

limited to exact solution methods.  Hence, differences in computing capabilities can 

lead to alternate solution outcomes.  Despite these differences, it is expected that the 

comparisons made in this study are universal, regardless of the commercial solver 

used or computer processing capabilities.  Second, the results provided are 

problem-specific.  There can be realistic systems which have different customer 

requirements, vehicle capabilities, and time constraints.  These results provide 

guidelines that while conservative, can be beneficial for realistic systems.   
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The experiments suggest that the PVRPB can indeed be formulated using 

mixed integer programming and solved to optimality for certain systems.  The 

problem is NP complete, making each problem variant difficult to solve to optimality 

as the problem size grows.  This complexity causes many large problems not to be 

solvable.  In light of this limitation, one may elect to include the tour limitation 

constraints in the formulation.  Doing so allows good solutions to be found for many 

instances in substantially less time.  Secondly, when multiple customers express a 

willingness to be served at the same delivery points (see e.g. Davis et al. (2014)), 

many of the modeling difficulties may be avoided. 

It is important to note, however, that the limitations placed on linehaul and 

backhaul customers could promote poor solutions if not assigned in light of system 

characteristics.  In the scenarios presented in this research, the service times are at 

least 5 percent of maximum tour duration.  The prescribed MaxLH and MaxBH are to 

some degree based on system knowledge.  These assigned values are not necessarily 

the best upper bounds for the tour limitation constraints. 

3.9. Conclusions 

In closing, this research provides the first detailed study of the periodic 

vehicle routing problem with backhauls where (a) vehicles are not constrained and 

(b) there can be more than one linehaul customer per tour.  This study introduces a 

MILP formulations for each routing problem that is NP-complete.  In addition, a set 

of constraints which promote the identification of feasible solutions using less 

computation time is introduced.  Two experiments are conducted to help one 
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understand the complexity of the routing problems and identify practices that are 

useful when using commercial software to obtain routing schedules for realistic 

systems. 

The model formulations introduced in this research are useful when the  

number of decision variables is small.  Through this investigation, model 

formulations obtained feasible solutions for systems with 42 customers using tour 

limitation constraints.  Nonetheless, because the tour limitation constraints 

assigned in this research are problem specific, they do not necessarily reflect the 

best solutions for the problem.  Furthermore, if the maximum number of linehauls 

and backhauls permitted per tour is not based on a proper understanding of the 

network, infeasible solutions or no solution can result.  Future research should 

provide planners with insight into what values should be assigned to these 

constraints.  Future research will introduce more sophisticated methods for solving 

these routing problems. 
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4. CHAPTER 4 

A Hybrid Genetic Algorithm for Solving the Periodic Vehicle Routing Problem 

with Backhauls 

4.1. Introduction 

The computational complexity associated with applying the PVRPB towards 

realistic, industry problems presents formidable challenges.  The network may 

include over 100 charitable agencies and high-volume donation sites (i.e. 

supermarkets).  Even when delivery site consolidation approaches are utilized (see 

Solak et al. (2012), Davis et al. (2014)), the routing problem remains very complex, 

resulting in over-estimated transportation costs and in some cases, undetermined 

vehicle routing decisions.   

This research introduces an HGA designed to find good solutions for the 

PVRPB variants introduced in the previous chapter, particularly for systems where 

there are many food banks and charitable agencies served.  Since the HGA solves 

multi-day routing problems with multiple customer types and in some cases, 

multiple types of vehicles, this HGA is called MULTI-HGA-ROUTE (MHR).  The 

metaheuristic is designed based on the strategies of maintaining a diverse 

population of solutions and maintaining information learned in the most recent 

training epochs.  By coupling these two components, the algorithm identifies a set of 

cost-effective routes for a number of days simultaneously.  The metaheuristic has 

three unique characteristics.  First, MHR is the only known metaheuristic search 

procedure that solves a variant of the PVRPB.  The HGA is designed to ensure that 
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linehaul precede backhauls on vehicle routes.  Second, MHR is based on a 

permutation-based representation that allows the solution to be efficiently and 

effectively augmented as well as easily interpreted.  The representation is beneficial 

for the search process, as it allows characteristics learned through the search 

procedure to be protected a specified number of training epochs.  The results of a 

computational study show MHR finds good solutions for the PVRPB and  PVRPBTW 

that are comparable and in some cases better than feasible solutions obtained using 

commercial solvers in a reasonable computation time.  The results also show that 

MHR provides feasible solutions for the HPVRPB. 

The remainder of the paper is organized as follows.  Section 4.2 provides a 

review of related literature.  Section 4.3 describes the characteristics of MHR.  

Section 4.4 describes the computational study conducted to evaluate the 

performance of MHR.  Section 4.5 discusses calibration steps implemented for the 

algorithm.  Section 4.6 summarizes the results of the experiments.  Section 4.7 

provides managerial insights obtained from the experiments that are relevant to 

food bank operations.  Section 4.8 concludes the chapter by summarizing the 

findings and identifying opportunities for future research extensions. 

4.2. Literature Review 

The existing literature for the PVRPB is limited.  Only Davis et al. (2014) 

consider a variation of this routing problem.  This approach consists of a two-phase 

heuristic method which determines a delivery and collection schedule for 

constrained food banks vehicles that allow them to (a) deliver processed food items 
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to remote charitable agencies and (b) collect donated food items from high-volume 

donors, such as supermarkets.  The first phase assigns each charitable agency (i.e. 

linehaul customer) to a food delivery point (FDP) through an assignment model.  

Customers are assigned to FDPs based on vehicle capacity and their ability to access 

the alternative FDPs without compromising food safety.  Having considered vehicle 

capacity in the first phase, the second phase solves a multi-period vehicle routing 

problem where (a) FDPs and food collection sites are visited multiple times over the 

planning horizon and (b) each route is permitted at most one linehaul.  Thus, this 

component may be considered a periodic vehicle routing problem with one linehaul 

(i.e. PVRPB-1L).  Both phases of the approach utilize commercial solvers to obtain 

feasible solutions.   

Given the limited number of papers related to the routing problem, there are 

no known metaheuristic approaches that solve the PVRPB.  A review of literature 

that highlights metaheuristic methods to solving the periodic vehicle routing 

problem (PVRP) and the vehicle routing problem with backhauls (VRPB) follows.  

Through this review, important insights which are useful in solving the PVRPB are 

identified.  It is important to note that this review is not intended to be 

comprehensive.  Comprehensive reviews for the PVRP and VRPB are provided by 

Francis et al. (2008) and Thangiah et al. (1996).   
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4.2.1. Metaheuristic Search Procedures for the PVRP 

With the exception of problem variants that consider the impacts of different 

service choices (see e.g., Francis et al. (2006a), (2006b)), a specified number of visits 

is determined for each customer and maintained in every solution considered.  

Given one or more initial solutions, alternative solutions are considered where 

customers are served on alternate days, through alternate vehicle routes, and in a 

different order on the same vehicle routes.  A unique feature of metaheuristics is 

that they allow the exploration of solutions after a local optimal solution is obtained 

(Laporte 2007).   

The metaheuristic approaches to solving the PVRP can be categorized as 

either local search, population-based search methods, or hybrid search methods.  

Table 4.1 lists contributions that have introduced different metaheuristic search 

methods for the PVRP.  Among these methods are memoryless heuristics (Unsp.), 

Tabu search (Tabu), genetic algorithms (GA), ant colony optimization (ACO), 

variable neighborhood search (VNS), scatter search (SS), and hybrid genetic 

algorithms.  Local search methods include Unsp., Tabu, and VNS.  Population-based 

methods include GA, SS, and ACO.  HGA presents a hybrid approach that 

incorporates both local search and population-based methods. 
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Table 4.1 

Metaheuristics Methods to Solving the PVRP 

  Metaheuristic Method 

Author(s)  Unsp. Tabu VNS GA ACO SS HGA 

Chao et al. (1995)  ●       

Cordeau et al. (1997)   ●      

Drummond et al. (2001)     ●    

Matos and Oliveira (2004)      ●   

Alegre et al. (2007)       ●  

Pourghaderi et al. (2008)  ●       

Hemmelmayr et al. (2009b)    ●     

Vidal et al. (2012)        ● 

Nguyen et al. (2014)        ● 

 

The vast majority of heuristics implemented are single-point, single 

neighborhood local search methods. Chao et al. (1995) introduced one of the first 

heuristic methods for the PVRP that is structured to converge on a local optimal 

solution.  This search method generates an initial solution by assigning customers to 

visit schedules while simultaneously minimizing the maximum load assigned to a 

vehicle.  In the subsequent improvement process, better solutions are found by 

moving customers to other tours by changing their visitation schedule.  Customers 

are identified based on the greatest offenders to feasibility.  A modified Clarke and 
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Wright algorithm (Golden et al. 1977) is used to schedule new route assignments for 

the affected days.  The improvement process also utilizes exchange heuristics that 

allow customers to be reassigned to other possible routes that do not change their 

delivery schedule.   

Cordeau et al. (1997) present a tabu search heuristic for solving the PVRP 

and other more complex routing problems, including a multi-depot vehicle routing 

problem (MDVRP) and periodic traveling salesman problem.  Unlike its predecessor, 

this metaheuristic incorporates some degree of exploration, thereby permitting it to 

escape local optimal solutions.  The relative success of this algorithm led to its 

application for a number of problem variants and industry applications such as 

those with multiple depots (Hadjiconstantinou and Baldacci (1998)), intermediate 

capacity replenishment (Angelelli and Speranza (2002), Alonso et al. (2008)), and 

customer-specific time windows (see e.g., Cordeau et al. (2004)).  Variable 

neighborhood search methods for solving the PVRP are introduced by Hemmelmayr 

et al. (2009a) and Pirkwieser and Raidl (2009).   

Contributions utilizing global-based search procedures to solve the PVRP are 

limited.    Drummond et al. (2001) utilize GA to solve the PVRP problem using a two-

vector representation that indicates vehicle schedule and cumulative collection 

amount as a result of sequencing.  Much of the processing capability of this approach 

is based on its use of a parallel computing infrastructure to manage smaller 

subpopulations on different processors.  Each subpopulation manages pre-

determined customer schedules.   
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Population-based search methods are very effective covering different 

aspects of the solution space.  They are also limited in terms of their ability to 

compare observed points to neighboring solutions.  This is supported in related 

literature.  Z ̈phel and B ̈gl (2008) for example, found that genetic algorithm-

inspired search are inefficient when compared to tabu search variations.  Alegre et 

al. (2007) propose a scatter search procedure for the PVRP designed to solve 

problems with a large number of periods.  It is the first single processor based 

global search method for the PVRP that outperformed pre-existing local search 

methods. 

4.2.2. Hybrid Genetic Algorithms for Routing Problems 

Using hybrid genetic algorithms (HGA) to solve combinatorial optimization 

problems can often outperform GAs.  HGA incorporates neighborhood-based local 

search as a reproduction operator.  This allows some of the learning that was 

destroyed through crossover and mutation operators to be recovered (Wang and 

Wu 2004).  If diversity is not properly managed, the local search components of 

HGAs can diminish population diversity after a number of training epochs (Merz and 

Katayama 2004). 

The effectiveness of HGAs is supported by its success towards other problem 

variants including the CVRP (Braysy et al. 2004) and the multi-depot vehicle routing 

problem with backhauls (MDVRPB).  Wang et al. (2009) and Chunyu et al. (2009) 

also use an HGA to solve a variant of the MDVRPB with heterogeneous vehicle types.   
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There are several recent publications that use HGAs for the PVRP.  Vidal et al. 

(2012) present an HGA that can be used to solve both the PVRP and the MDPVRP.  

Solutions are expressed using a three-vector representation.  The vectors define (a) 

the visit schedules for each customer, (b) the depot or origin for vehicles serving 

each customer, and (c) a sequential ordering of customers visited on each day 

without the depot serving as a delimiter.  The algorithm incorporates selection, 

crossover, education, and replacement operators.  Selection identifies parents 

according to a uniform distribution.  The crossover operator is applied to the third 

chromosome by utilizes a splitting algorithm discussed by Prins et al. (2004).  This 

algorithm assigns all sequences pertaining to a specific day (and depot) from each 

parent and probabilistically assigns route segments for each of the remaining days.  

The education operator repairs infeasible solutions by solving VRP problems for 

each day.  Reproduction uses an elitist strategy to penalize solutions that have the 

same customer visit schedule and customer assignment to depots.  In future work, 

Vidal et al. (2014) demonstrate that the algorithm finds the optimal solution for test 

instances for 29 of the most common routing problem variants without loss of 

generality.  

Nguyen et al. (2014) solve the PVRPTW using a two-vector representation.  

The first vector indicates the visit schedules for each customer; the second vector 

identifies the concatenated sequence in which customers are served.  Their 

algorithm uses selection, crossover, mutation, education, and replacement 

operators.  A roulette wheel selection operator is utilized to create the mating pool.  
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The crossover operator creates two offspring by choosing new visit patterns for 

customers followed by assigning customers to new routes.  Violations to customer 

visit requirements are corrected based on which options results in the maximum 

cost increase.  A combination of the unified tabu search of Cordeau et al. (2004) and 

random variable neighborhood of Pirkweiser and Raidl (2009) are used to perform 

customer visit schedule improvements.  Each pattern improvement is followed by 

route improvement procedures.   

4.2.3. Limitations of Existing Metaheuristics for Research Problem 

The review identifies numerous characteristics that are relevant to this 

research.  First, it verifies that there is a need to create a metaheuristic approach 

that can be used to solve the PVRPB.  In addition, this review suggests that HGAs are 

the current state-of-the-art in terms of advanced search procedures for routing 

problems.  New methods should incorporate them when possible.  A third, indirectly 

related finding is that metaheuristics created to solve the PVRP routing problems 

may be appropriate for solving a variety of routing problem generalizations without 

loss of generality.  This is important to this research because food banks can 

experience a number of unique system requirements when scheduling vehicles for 

food delivery and collection.  A more universal heuristic search method would 

empower personnel to make cost-effective transportation schedules regardless of 

vehicle characteristics or customer requirements. 

 

 



98 

 

 

 

4.3. MHR Characteristics 

The process flow for MHR is provided in Figure 4.1.  All solid lines represent 

sequential transitions between operators.  Dotted lines represent the storing of 

information about individuals in the population, mating pool, and offspring as well 

as their consideration in HGA operators. 

 

Figure 4.1.  Process Flow for MHR 

MHR is executed as follows.  A population of initial solutions is constructed.  

Each individual (i.e. solution) represents a combination of vehicle tours which 

collectively satisfy customer demand without violating tour requirements.  Tour 

requirements pertaining to this model are that (a) the depot is the first location 

involved of a vehicle route, (b) linehaul customers precede backhaul customers 

when both are served on the same route, (c) vehicle routes do not exceed maximum 
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tow capacity or maximum tour duration, and (d) vehicles can only serve customers 

between pre-determined time intervals.  Each individual is evaluated to determine 

its overall fitness with respect to both the objective function and compliance to 

system constraints.  This measurement is used as the basis for a selection process 

which picks individuals to be the parents.  Parents are placed in a mating pool where 

they are paired to create two offspring.  Offspring characteristics are based on three 

reproduction operators:  crossover, mutation, and learning.  The reproduction 

operators are preceded by referring to a tabu list to identify which characteristics 

are targeted for change.  The list identifies scheduling days that have been targeted 

by prior generations of each parent.  Based on the list, a scheduling day is targeted 

and reproduction operators are implemented.  Crossover creates the initial 

offspring by exchanging characteristics of the parents on the targeted reproduction 

day followed by correcting any violations resulting from a) a change in the number 

of times a customer is visited or b) the relative order in which the depot, linehaul 

customers, and backhaul customers are scheduled on a route after crossover.  

Mutation involves a recombination of customers assigned to a single route in a 

manner that does not violate tour characteristics.  Learning executes local search 

procedures to improve the vehicle routes on the targeted day.  After all offspring are 

created, a replacement operator picks individuals for the population of a new 

generation.  This iterative process continues until a termination condition is 

reached.  At termination, the individual with the best fitness reflects the algorithm 

approximation for the optimal solution.   
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4.3.1. Solution Space 

Let  ( )represent a set of vehicle tours making up solution which spans a 

multiple day planning horizon.  Each route    ( ) starts at the depot, visits a 

sequence of   linehaul customers   
    

      
 followed by a sequence of   backhaul 

customers   
    

      
 .  It should be noted that    and    are route-specific.  

However, for simplicity, the subscript   is not included.   
  denotes the ith customer 

visited in route    and corresponds to a specific linehaul customer in the set   .  

Similarly,   
  denotes the ith customer visited in route    and corresponds to a 

specific backhaul customer in the set   .  After visiting all customers, the vehicle 

returns to the same depot.  The depot is represented by   
 at the start of any tour 

where      and   
  at the beginning tours where     .    The return to the depot 

is represented by      
 where      and      

  when       Vehicle routes are 

characterized by cumulative linehaul tow amounts (4.1), cumulative backhaul tow 

amounts (4.2), a total driving time (4.3), and a total duration (4.4).  The notation is 

defined in Table 4.2. 
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Table 4.2 

Notation for Solution Space 

Symbol Definition 

   Amount collected from or delivered to location   

    Total driving time between locations   and location   

   Service time at location   

  Maximum tour duration 

   Maximum vehicle tow capacity 

  ( ) Total delivered to linehaul customers for a given route   

  ( ) Total collected from backhaul customers for a given route   

 ( ) Total distance for route   

 ( ) Total tour duration for route   

 

  ( )  {
∑    

 

  

   
                                                                                (    )

                                                                                                  (    )

 

  ( )  {
∑    

 

  

   
                                                                                (    ) 

                                                                                                 (    )

 

 ( )  

{
  
 

  
 ∑    

      
 

  

   
                                                                            (    )

∑    
      

 

  

   
                                                                            (    )

∑    
      

      
    

  ∑    
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Equations (4.2a), (4.3a), and (4.4a) pertain to instances where only linehaul 

customers served through tour r.  Equations (4.2b), (4.3b), and (4.4b) pertain to 

instances where there are only backhaul customers served through tour r.  When 

both linehaul and backhaul customers are served through route r, equations (4.2c), 

(4.3c), and (4.4c) apply.   

4.3.2. Representation 

Each solution   is composed of selected and unselected scheduling options.  

The options indicate (a) whether or not a specific vehicle is used on a specific day of 

the planning horizon, (b) whether or not a customer is served on a specific day of 

the planning horizon, (c) which vehicle is assigned to customers served on a specific 

day of the planning horizon, and (d) the sequence in which customers assigned to a 

specific vehicle on a specific day of the planning horizon are served.  A solution   is 

represented by a chromosome comprised of three equally-sized vectors.  The length 

of each chromosome is given by Equation (4.5) where   is the set of days in the 

planning horizon.    is the set of customers, and   is the set of all vehicles. 

sl = | |  (| |  | |)                                                              (4.5) 

The relative position of each allele is given by   {        }.  The first 

vector,    is a permutation-based representation of all scheduling options, each of 
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which is represented allele     .  Each allele in the second vector     is represented 

by     .  The second vector, uses a limited number representation to identify allele 

     as a selected customer or vehicle option (    = 1), unselected vehicle departure 

(     2), or unselected customer visit (     3).  The third chromosome,   , uses a 

limited, natural number representation where each allele      identifies vehicle 

assignments prescribed for     .  While a value is prescribed for in each allele, the 

value of     is negligible when       .  Further detail into the representation 

follows. 

The location indicated by      is denoted by  (    ).  The associated 

location is determined using equation (4.6).   

 (    )  

{
 
 

 
 
                                                                 > | |  | |           

   (     | |)           | |  | |       (     | |) >   

| |                                                                                        

 

(4.6a) 

(4.6b) 

(4.6c) 

Vehicle departures are indicated by (4.6a) whereas customer visits are 

given by equations (4.6b) and (4.6c), respectively.  The day associated 

with      is defined by      .  The associated departure day is given by 

equation (4.6).  Condition (4.7a) expresses the day associated with a 

customer visits option, and condition (4.7b) expresses the day associated 

with the usage of a specific vehicle.   

 (    )  {

⌈    | |⁄ ⌉                                                  | |  | |

 ⌈(     | |  | |)/| |⌉                       > | |  | |

 

(4.7a) 

(4.7b) 
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When  (    )   , the vehicle that performs the move is given by 

equation (4.8).  When  (    )   , customers are initially assigned to 

vehicles according to the route construction algorithm (see Section 

4.3.4.).  These initial assignments are modified throughout the execution 

of the metaheuristic.   

     {

   (     | |)                     (    )        (     | |) >  

| |                                          (    )        (     | |)   

 
(4.8a) 

(4.8b) 

A gene corresponds to the three alleles (              ) in the same relative 

position.  Genes that represent selected customer visit options are indicated by 

 (    )   , and       .  Genes that represent unselected routing options are 

indicated when       .  Figure 4.2 provides two examples of individuals that could 

be created for a routing problem with | |    | |     and | |    with    {   } 

and    {   }.  Given 4 customers, 2 days, and 3 vehicles,      takes on integer 

values in the range [1,18].  The values      {        } indicate customer visits on a 

specific day where      represents a visit to customer   on day     and   is in the 

range [  | |   ].  Customer visits and the departure of a vehicle from the depot are 

defined according to equation (4.6).  The values      {          } indicate vehicle 

departures from the depot.  The specific vehicle leaving the depot is defined 

according to equation (4.8).  The specific day associated with the vehicle departure 

and the day in which customers are visited are defined by equation (4.7).   
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Customers 1, 2, and 3 require two visits and customer 4 requires three visits.  

Customer demand is fully satisfied over the planning horizon. Let    and    to 

express vehicle routes assigned to the first and second vehicle. Figure (2a) defines a 

solution where    = [0-1-3-0] and    = [0-2-4-0] on day 1;    = [0-4-0] and    = [ ] on 

day 2; and    = [0-1-2-3-4-0] and    = [ ] on day 3.  The representation for the 

individual in Figure (2b) defines a solution where    = [0-1-0] and    = [0-2-3-4-0] 

on day 1;    = [0-4-2-0] and    = [ ] on day 2; and    = [0-1-0] and    = [0-3-4-0] on 

day 3.  Note that vehicle assignments are based on      , not precedence. 

 

Figure 4.2.  The Representations for the (a) First and (b) Second Individual 

4.3.3. Evaluation of Individuals 

Route r is subject to fixed costs f resulting from vehicle use, and variable 

costs h and g as a result of fuel consumption and utilizing vehicle refrigeration 

capabilities.  The resulting transportation cost attributed to route r is given by 

equation (4.7).  

1 1 1 1 1 1 1 1 1 1 1 1 13 3 3 2 2X2

1 1 2 2 1 2 1 1 1 1 1 1 11 1 1 2 2

13 1 14 2 3 4 15 8 17 9 10 11 125 6 7 16 18X1

X3

1 1 1 1 1 1 1 1 1 1 3 1 11 3 3 2 2X2

1 1 2 2 2 2 1 1 1 1 1 1 11 1 1 2 2

13 1 14 2 3 4 15 6 17 9 10 11 128 5 7 16 18X1

X3

P1

P2

1 2 3 4 5 6 7 8 13 14 15 16 179 10 11 12 18i:

(a)

(b)



106 

 

 

 

 ( )       ( )     ( ) (4.7) 

Let        and    represent the penalty charges for exceeding vehicle capacity, tour 

duration, and customer-specified time windows.  The departure time for linehaul 

customer location    in route   is defined as    
 .  Similarly, the departure time for 

backhaul customer location    in route   is defined as   
 .  The latest departure time 

for a specified linehaul (backhaul) customer is given by    
  (   

 ).  The penalized cost 

of route r is defined as the transportation cost plus a weighted penalized sum of the 

total number of units exceeding prescribed system requirements as given in 

equation (4.9).  

 ( )   ( )       {   ( )   }       {    ( )    } 

                  {    ( )    } 

               [∑    {     
     }

  

   

 ∑    {     
     }

  

   
] 

(4.9) 

An individual consists of multiple routes during the planning horizon and is 

evaluated using a total penalized cost (Equation 4.10). 

 ( )   ∑  ( )   ( )                                                         (4.10) 

Penalty cost coefficients (        ) are updated each epoch according to weighted 

penalty charges as expressed by Nguyen et al. (2014).  Let  ̅ ,  ̅ and  ̅ represent 

average number of violations to vehicle capacity, tour duration, and time window 

constraints observed for the population.  The number of violations is based on the 



107 

 

 

 

standard metric used to reflect distance and time.    represents an extremely large 

penalty.  This penalty should be large enough to make every solution for which 

there is a violation inferior to those where there is not a violation.  The updated 

penalty coefficients are given by the equations (4.11), (4.12), and (4.13). 

   {
 (

 ̅

  ̅    ̅    ̅
)            ̅    ̅    ̅ >                    (     ) 

                                                                                      (     )

 

   {
 (

 ̅

  ̅    ̅    ̅
)            ̅    ̅    ̅ >                    (     ) 

                                                                                      (     )

 

   {
 (

 ̅

  ̅    ̅    ̅
)            ̅    ̅    ̅ >                     (     ) 

                                                                                       (     )

 

The coefficient values apply whenever there is at least one violation, as expressed 

by (4.11a), (4.12a), and (4.13a).  When there are no violations in the population, the 

coefficient values are dropped.   

4.3.4.  Initial Population 

The population is created using a new route construction algorithm which 

iteratively assigns zero or more linehaul and backhaul customers to each vehicle.  

The algorithm is initialized by generating three random vectors identifying a 

sequence of possible vehicle departures from the depot, linehaul visit, and backhaul 

visit options.  A counter is also initialized to track all customers visits assigned.  

After initialization, the algorithm iteratively evaluates each vehicle departure option 

to determine if unsatisfied customers can be served and whether to assign linehaul 
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and/or backhaul customers.  When the evaluated vehicle is the last one available for 

a specific day, every customer who (a) has not been assigned for that day and (b) 

whose total number of required visits has not been satisfied is assigned.  If the 

vehicle is not the last one available for that day, it is assigned a tour containing all 

linehauls, all backhauls, or linehauls followed by backhauls.  The maximum number 

of linehauls and backhauls assigned to each of the constructed routes is randomly 

selected.  Linehaul and backhaul customers are assigned to vehicles in the order that 

they are arranged during initialization.  All linehaul and backhaul visit options 

which are not assigned to a vehicle are prescribed as unselected customer visits.  

This algorithm is repeated iteratively based on the size of the population.  The 

pseudocode for this process is given in Appendix A.2. 

4.3.5. Mating Selection Reproduction Day Targeting 

4.3.5.1. Mating Pool Selection.  The selection operator is designed to choose 

individuals within the population with high-fitness for mating purposes.  

A mating pool is identified through the fitness proportionate selection 

operator.  This operator performs a biased selection from the current 

population.  For the purposes of minimizing the similarity of solutions in 

the mating pool, this research explores a variation of the strategy 

presented by Vidal et al. (2012).   Their approach penalizes the weighted 

fitness cost of individuals in proportion to the number of alternate 

solutions within the population for which customers are served through 
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the same underlying visit schedules.  Accordingly, the biased weighted 

penalty cost is given by Equation 4.14. 

  ( )  
 ( )

 
                                                          (    ) 

The number of individuals in a population which have a specific customer 

visit schedule is represented by  .  The selection consists of popsize picks 

with replacement.  

4.3.5.2. Reproduction Day Targeting Operator.  Reproduction is targeted toward 

genes prescribed for a selected day    .  MHR uses a tabu list to 

promote equal treatment of all genes.  The list records the crossover 

option used for the past Ψ generations.  The list size is based on equation 

(4.15). 

  {

⌊| |  ⁄ ⌋                  | |                                 (     )

⌊| |  ⁄ ⌋               | |                              (     )
 

An example of the reproduction day targeting operator is given in Table 4.3.  Given a 

system with a 5-day planning horizon, the targeted reproduction day for two 

parents, P1 and P2, is selected as follows.  First, the union of the tabu lists of the two 

parents is identified.  In this problem, this combined list is the set {     }.  Next, the 

set of days in the planning horizon which are not in the combined list are identified.  

These non-tabu days serve as the candidate reproduction day targets.  The 

reproduction day target is selected according to a uniform distribution.  This target 

is temporarily stored as the “selection” which directs crossover and mutation 
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operators.  At the completion of all reproduction operators, the target enters the 

tabu list.  Days in the tabu list are treated on a first-in/first-out basis. 

Table 4.3 

Example of Tabu List Selection 

Parent Tabu List 
Possible 

Target 

Selected 

Day 

Updated Tabu List 

(Next Epoch) 

   {   } 
{   } 2 

{   } 

   {   } {   } 

 

4.3.6. Crossover Operator 

The crossover operator creates two offspring   and   which are based on 

the features of two parents    and    selected from the mating pool.  Each offspring 

matches the genes of one of the parents for scheduling options occurring on the 

targeted reproduction day.  Scheduling options not on the targeted day are based on 

the other parent.  Using the targeted reproduction day to define the crossover 

region, alleles are exchanged between the two parents.  This process is followed by a 

correction procedure that maintains the prescribed customer visit frequency.  More 

specifically, when the exchange results in too many visits for a specific customer, an 

option is removed.  If an exchange results in too few visits for a specific customer, an 

option is added.  This process is summarized in the pseudocode in Appendix A.3. 

Figure 4.3 gives a visual example of how the crossover operator works.  

Referring to the description provided for the representation (see Section 4.2.3), and 
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assuming that the tabu list = {1}, and the targeted reproduction day is {2}, two 

offspring   and   are created from parents    and   .  The figure expresses that 

after exchanging genes on the targeted reproduction day, the total number of times 

that customer 2 is visited in   increases to 3.  This is corrected by removing the 

customer visit on day 3.  After crossover, the number of times customer 2 is visited 

in   decreases from 2 to 1.  This is corrected by adding a visit on day 3.  It is worth 

mentioning that since there was an unused vehicle for this scheduling day, the 

added customer is placed on a new vehicle route.  This is an important feature of the 

algorithm because it prevents pre-mature vehicle removal from solutions.  (See 

Section 4.2.3). 
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Figure 4.3.  Example of (a) Two Parents and (b) Offspring Created by the Crossover 

Operator 

When a customer is added to a vehicle route through the correction process, the 

route is resorted such that all linehauls precede backhauls.  The relative order in 

which linehaul and backhaul customers are served is maintained. 

4.3.7. Mutation Operator 

In order not to duplicate a recombination that might be produced by the 

learning operator, MHR utilizes a modified version of the shift change mutation 

operator discussed in Wang and Wu (2004).  It consists of reordering the sequence 

in which linehaul and/or backhaul customers assigned to an arbitrarily-selected 

vehicle route are visited in a cyclical manner, such that the last linehaul (backhaul) 

1 1 1 1 1 1 1 1 1 1 1 1 13 3 3 2 2X2

1 1 2 2 1 2 1 1 1 1 1 1 11 1 1 2 2

13 1 14 2 3 4 15 8 17 9 10 11 125 6 7 16 18X1

X3

1 1 1 1 1 1 1 1 1 1 3 1 11 3 3 2 2X2

1 1 2 2 2 2 1 1 1 1 1 1 11 1 1 2 2

13 1 14 2 3 4 15 6 17 9 10 11 128 5 7 16 18X1

X3

P1

P2

1 1 1 1 1 1 1 1 1 1 3 1 11 3 3 2 2X2

1 1 2 2 2 2 1 1 1 1 1 1 11 1 1 2 2

13 1 14 2 3 4 15 8 17 9 10 11 126 5 7 16 18X1

X3

  

1 1 1 1 1 1 1 1 1 1 1 1 13 3 3 2 1X2

1 1 2 2 2 2 1 1 1 1 2 1 11 1 1 2 2

13 1 14 2 3 4 15 8 17 9 18 11 125 6 7 16 10X1

X3

  

(a)

(b)
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customer served on a tour becomes the first linehaul (backhaul), the first linehaul 

(backhaul) customer becomes the second, and so on.  The modified shift operator is 

executed only on linehaul or backhaul customers served by a randomly-selected 

vehicle.  Figure 4.4 gives a visual example of the impacts of the operator.  In this 

example, there are two vehicles and four customers.  Customers 1 and 2 are served 

through linehauls; customers 3 and 4 are served through backhauls.  Vehicle 1 is 

assigned the route [0-2-3-4] and vehicle 2 is assigned the route [0-1-0].  Vehicle 1 is 

targeted by the mutation operator.  The shift operator modifies route 1 to [0-2-4-3-

0]. 

 

Figure 4.4.  Visual Representation of Modified Shift Operator 

4.3.8. Learning Operator 

Learning explores local search procedures which move customers from one 

route to another (i.e. inter-route operators) as well as those which change the order 

in which customers on the same route are visited (i.e. intra-route operators).  Local 

Before mutation

After mutation
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search procedures which involve moving customer from one route to another (i.e. 

inter-route operators) are controlled through random variable neighborhood search 

(RVNS).  RVNS implements each inter-route operator repeatedly until no 

improvement to the route results.  The process is continued for another inter-route 

heuristic until each has been implemented.  A unique feature of RVNS is that the 

order in which inter-route operators are implemented is randomly selected.  

Readers interested in an in-depth explanation of RVNS are referred to Hansen and 

Mladenovic (2001).  Each Intra-route operator is repeated in succession until no 

improvement occurs from either. 

Modifications for three inter-route operators and two intra-route heuristics 

are created to ensure that they ensure that linehauls precede backhauls on vehicle 

tours.  Modified inter-route operators include the Two-Opt* exchange operator 

discussed in Potvin and Rousseau (1995), the RELOCATE move operator introduced 

in Savelsbergh (1992), and the CROSS-exchange operator introduced in Tailliard et 

al. (1997).  Visual representations for these operators are provided in Figure 4.5.   
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Figure 4.5.  Visual Representation for (a) Two-Opt*, (b) CROSS, and (c) RELOCATE 

Inter-Route Operators (Braysy and Gendreau 2005) 

As show in the figure, the Two-Opt* operator exchanges the vehicle travel 

paths for two routes that occur after randomly-selected points.  The CROSS operator 

exchanges segments of one or more customers between two routes.  The RELOCATE 

operator moves a route segment containing one or more customers and places them 

on another route.  To ensure linehauls precedence on vehicle tours, modified Two-

 

(a) 

 

(b) 

 

(c) 
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Opt* and CROSS operators are executed between routes when the segments 

involved in the exchanges contain only linehaul customers or backhaul customers.  

The modified RELOCATE operator considers segments that contain linehauls 

customers, backhauls customers, or both linehauls and backhaul customers.  Moved 

segments are limited to being inserted at points which do not violate linehaul 

precedence requirements.  The pseudocode for the modified Two-Opt*, CROSS, and 

RELOCATE operators are provided in Appendices A.4.1 – A.4.3.  Intra-route 

heuristics implemented in this study are based on the Two-Opt exchange operator 

of Lin (1965) and the Or-opt operator of Or (1976).  Figure 4.6 gives a visual 

representation of both intra-route heuristics. 

 

Figure 4.6.  Visual representation of (a) Two-Opt and (b) Or-Opt Intra-Route 

Operators (Braysy and Gendreau 2005) 

 

 

(a) 

 

(b) 
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The two-opt operator alters a single tour by inverting the order of a tour 

between the customers immediately following the two exchanged.  The Or-opt 

operator selects an arbitrary number of sequential customers on a tour and 

repositions them to occur either before or after customers who previously preceded 

or followed them.  Modifications for the two-opt operator restricts the inversion to 

occurring between two arbitrarily-selected linehaul or backhaul customers assigned 

to the tour.  Much like the modified RELOCATE operator, the modified Or-opt 

operator allows a sequence of one or more customers of any type to be moved and 

inserted at any location that would not cause the comingling of linehaul and 

backhaul items.  The pseudocode for the modified two-opt and Or-opt are provided 

in Appendices A.4.4 and A.4.5. 

4.3.9. Replacement Operator 

The replacement operator copies       best unique individuals of the 

original population and the (             ) best unique offspring.  Unique 

individuals are based on the underlying customer visit schedules.  Note that the first 

pick from both the original population and the offspring result in the individual 

corresponding to having the best overall penalized costs is selected.  In subsequent 

selections, however, the pick is limited to individuals who do not have the same 

visits schedules for customers as a prior selection.  If there are no unique 

alternatives, individuals are selected at random.   
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4.4. Calibration of MHR Settings 

MHR is used run in a manner that maximizes solution diversification, 

intensification, and learning.  For that reason, the probability of crossover,       , 

probability of mutation,     , and probability of learning,       , are each set to 

1.0.  The values assigned for         and         are set to 50 and 500, 

respectively.  This decision is made to assign these values based on the results 

observed in Vidal et al. (2012).    

The value for       is calibrated to prevent multiple individuals in the same 

population from having shared customer visit schedules.  This makes it possible for 

each individual to represent a solution containing low-cost routes without 

duplication.  Accordingly,        {              }          are considered.  The 

smallest of these values that maximizes the number of unique customer visit 

schedules in each epoch is selected.  The calibration is based on the observed 

population when solving the PVRPB for test scenario #1 (see Chapter 3 Section 3.6.) 

The population only contained unique solutions in every training epoch 

when       is set to                The population diversity when       

 {           }          is given in Figure 4.5.  It is important to note that 

                  also produces good diversity in many instances, as at least 41 

individuals with unique customer visit schedules are maintained in a population in 

each epoch.  When                   , as few as 11 and no more than 15 

individuals with unique customer visit schedules were maintained in the population 

in each epoch. 
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Figure 4.7.  Impact of different nkeep Values on Diversity 

4.5. Experimentation 

MHR is evaluated in terms of its effectiveness and efficiency when solving 

each of the routing problems variants introduced in this research.  This 

effectiveness is based on both the precision of MHR in successive runs and the 

accuracy of MHR in terms of finding the minimum transportation cost.  The 

efficiency of MHR is evaluated in terms of the required computation time to 

complete training.   

Given the average and standard deviation of transportation costs 

corresponding to feasible solutions for scenario  , the precision of the algorithm is 

calculated using the corresponding coefficient of variation    .  This measurement is 

calculated using equation 4.16. 
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 (4.16) 

Smaller values for CV indicate that MHR provides consistent outcomes for the 

routing problem.  Larger values for CV indicate that the obtained solution is more 

the result of chance rather than its ability to learn the solution space.    

The accuracy of MHR is based on the difference between its calculated 

transportation costs and those obtained using the BMF and TLC introduced in the 

previous chapter.  Both model formulations are calculated using exact solution 

methods executed by commercial software.  The global optimal solution is obtained 

for smaller test instances.  The optimality gap between LP relaxation and the best 

feasible solution obtained by these model formulations increases as the problem 

size grows.  For some very complex problems, a feasible solution is not obtained.   

When a feasible solution is obtained for a scenario using the BMF, it is 

treated as the            solution.  When MHR is superior to BMF, it indicates that 

the metaheuristic is capable of finding solutions for the test scenario more 

efficiently than the commercial solver.  When a solution is obtained using TLC, it 

represents a second feasible solution to the BMF.  This second feasible solution 

represents the time that can be expected to find a feasible solution for the routing 

problem that is acceptable in terms of the number of linehaul and backhaul visits.  

As specified in the previous chapter, TLC evaluate solutions where vehicle tours are 

limited to serving no more than 1 linehaul customer and 5 backhaul customers.  

When no feasible solution is obtained for both BMF and TLC, any feasible solution 
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obtained by MHR is an improvement to the            solution.  In addition to 

providing a second feasible solution, the TLC gives a lower bound for the time 

required to solve the routing problem to optimality using the commercial solver.  If 

MHR requires less time to solve the TLC, it also requires less time to solve the BMF.  

Alternatively, if MHR requires more time to solve than TLC, it indicates that a 

feasible solution can be obtained using the commercial solver in less time than MHR.   

A key performance measure for evaluating effectiveness is the relative gap 

between the transportation costs obtained through MHR and the model formulation 

methods. The relative gap in transportation costs when comparing MHR to BMF is 

calculated for a scenario   using equation 4.17. 

         
          

    
 (4.17) 

Similarly, the relative gap in transportation costs when comparing MHR to TLC is 

calculated for a scenario   using equation 4.18. 

         
          

    
 (4.18) 

The resulting accuracy when compared to either model is within the range (    ) 

with negative values indicating that MHR improves upon the best known solution 

for the test scenario and positive values suggesting that MHR provides inferior 

solutions for the test scenario.  Solutions obtained for MHR that match or improve 

upon those of BMF are favored.  If  the relative gap between MHR and BMF is a small 

positive number, it indicates that the HGA may be preferred in practical use, 
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depending upon the difference in computation time for both solution methods.  This 

is especially true when the relative gap between MHR and TLC is negative.   If the 

relative gap between MHR and TLC is positive, it indicates that MHR is an inferior 

solution method.  When no solution is found for a scenario using     or    , a 

value  /  is assigned for the corresponding relative gap. 

MHR efficiency is based on the computer runtime.  This is the total time 

between the initialization and termination of a run.  In this study, the minimum 

runtime of MHR is compared to that of TLC.  This time is selected to represent the 

model formulations rather than both BMF and TLC for two reasons.  First, TLC 

represents a smaller problem that is solved faster than BMF; therefore, if the 

minimum runtime for MHR is comparable or superior to that of TLC, it is also 

comparable or superior to that of BMF.  Second, much like MHR, TLC represents a 

heuristic solution method for the overall routing problem.  The comparison 

identifies which of the heuristic methods requires the most time to provide 

suggested solution.  It is important to note that since both methods attempt to 

improve the solution over multiple iterations, the suggested solution is not obtained 

until the termination of the search.   

Each of these experiments is run using the test scenarios introduced in 

Chapter 3 (see Section 3.6).  MHR is run three times for each test scenario to solving 

a specific PVRPB variant.  The BMF and TLC obtained from each test scenario are 

used to evaluate model accuracy.  MHR is run on an Intel Core i3 CPU 2.4 GHz with 4 

GB of RAM. 
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4.6. Results 

4.6.1. MHR Precision for Problem Variants 

The precision measures used to evaluate the consistency of MHR 

transportation cost estimates for each test scenario are provided in Tables 4.4 – 4.6.   

Table 4.4 

Precision Measures for Feasible MHR Solutions to the PVRPB 

Scenario Average Std. Dev CV 

1 568.68 1.70 0.00 

2 574.66 0.49 0.00 

3 782.21 81.09 0.10 

4 771.79 79.68 0.10 

5 844.19 2.18 0.00 

6 972.85 105.33 0.11 

7 1,252.75 115.38 0.09 

8 1,587.16 124.07 0.08 

9 2,132.73 167.53 0.08 

10 2,322.19 119.84 0.05 

11 2,779.61 173.77 0.06 

12 3,654.49 - - 
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Table 4.5 

Transportation Cost Measures for Feasible MHR Solutions to the PVRPBTW 

Scenario Average Std. Dev CV 

1 733.16 - - 

2 896.28 5.59 0.01 

3 1,056.18 93.79 0.09 

4 1,054.63 6.72 0.01 

5 1,123.59 110.69 0.10 

6 922.07 97.96 0.11 

7 1,598.67 92.58 0.06 

8 2,166.30 222.07 0.10 

9 2,582.53 76.94 0.03 

10 3,036.19 164.82 0.05 

11 3,795.29 97.77 0.03 

12 4,870.39 90.38 0.02 
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Table 4.6 

Transportation Cost Measures for Feasible MHR Solutions to the HPVRPB 

Scenario Average Std. Dev CV 

1 312.88 15.54 0.05 

2 352.56 24.40 0.07 

3 477.80 61.05 0.13 

4 594.57 48.62 0.08 

5 822.30 198.05 0.24 

6 809.32 38.26 0.05 

7 1,071.42 37.51 0.04 

8 1,219.87 34.89 0.03 

9 1,427.16 169.13 0.12 

10 1,489.38 - - 

11 1,705.29 - - 

12 2,396.03 - - 

 

The average CV across all test scenarios is 0.06 when solving the PVRPB, 0.05 

when solving the PVRPBTW, and 0.07 when solving the HPVRPB.  The CV is no more 

than 0.11 for any test scenario where MHR is used to solve the PVRPB or PVRPBTW.  

MHR has two test scenarios for which its CV is greater than this value when solving 

the HPVRPB.  The largest CV is found for scenario 5.  It is worth mentioning that 
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while solving the HPVRPB, only 1 run provides a feasible solution for scenarios 10 – 

12. 

4.6.2. MHR Accuracy for Problem Variants 

 A comparison of the results obtained using MHR to model formulation-based 

methods of solving the PVRPB is given in Table 4.7.  MHR matches or improves upon 

the overall results in 5 of 12 test scenarios (i.e. Scenarios 7 - 8, 10 – 12).   

Table 4.7 

Comparison of MHR to BMF and TLC when Solving PVRPB 

 

 

Transportation Costs 

 Relative Gap 

(proportion) 

 Runtime 

(in seconds) 

Scenario 

 

MHR BMF TLC 

 vs. 

BMF 

vs. 

TLC 

 

MHR TLC 

1  567.70  566.4  567.70   .002 .000  216.61 0.14  

2  574.38  570.5  725.72   .007 -.263  225.20 0.19  

3  688.58  670.5  981.99   .026 -.426  216.16 0.22  

4  725.79  709.1  1,177.2   .023 -.622  232.32 0.44  

5  842.00  682.9  1,308.9   .189 -.554  231.72 0.36  

6  851.24  833.7  1,473.5   .021 -.731  248.50 0.27  

7  1,122.3  1,123.7  1,903.6   -.000 -.696  281.69 2.23  

8  1,501.8  1,601.6  1,923.1   -.067 -.281  326.72 5,000  

9  1,939.4  1,771.6  2,617.9   .087 -.350  333.34 18.23  
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Table 4.7 (cont’d.) 

10  2,185.1     nsf  2,722.9  n/a -.246  291.12 5,000 

11  2,632.4  nsf 3,181.5   n/a -.209  301.39 5,000 

12  3,654.5  nsf 4,493.3  n/a -.230  309.97 5,000  

nsf = No solution found 
 

BMF provides the best results for smaller test scenarios.  This is anticipated for two 

reasons.  First, the commercial solver finds very good solutions for the first six 

scenarios.  It identifies the optimal solution for the first five test scenarios, and the 

optimality gap between the BMF and the LP relaxation is within 0.18 for scenario 6 

(see Chapter 3, section 3.7).  Second, while the metaheuristic is anticipated to find 

improved solutions, it is not expected to necessarily find the optimal solution.  

Reasonable solutions are found for most scenarios.  In fact, there are only two test 

scenarios where the relative gap between the best known solution and that of MHR 

is more than 3 percent (i.e. Scenarios 5 and 9).  This may be attributed to network 

characteristics.   The optimal solution for scenario 5 is less than that of scenario 4.  

This is interesting because scenario 4 presents a problem with 8 total customers 

requiring a total of 11 visits while scenario 5 presents a problem with 9 total 

linehaul and backhaul customers, requiring a total of 13 visits.  Scenario 9 presents a 

unique instance where the best possible routes for TLC were obtained within the 

allowed computation time.  This is different from Scenario 8 because the best 

possible solution for TLC is not obtained in the allowed computation time.  The 
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transportation costs for MHR are less than or equal to those obtained using TLC in 

each of the 12 scenarios.  For larger instances (i.e. Scenarios 10 – 12), the search 

procedure implemented by MHR is completed faster than TLC.  The runtime for 

MHR is also superior to TLC in test scenario 8.  This is likely the result of the TLC 

having to consider more alternate routes as the problem increases. 

A comparison of the results obtained using MHR, BMF and TLC to solve the 

PVRPBTW is given in Table 4.8.  Solutions for test scenarios 1 – 4, and 6 are solved 

to optimality using BMF.  For test scenario 5, the optimality gap between the BMF 

and the LP Relaxation is within 0.15.  It is important to note that because BMF and 

TLC do not consider refrigeration costs incurred when vehicles wait to be serviced 

(See Chapter 3 Section 3.4.1) they underestimate transportation costs.  Since MHR 

considers these costs, it should be expected that the transportation costs for the 

metaheuristic would be inferior to optimal solutions obtained from BMF.  

Furthermore, the relative gaps between MHR and both model formulation-based 

method are expected to be upper bound values. 

Although model formulations did not account for wait time, MHR was able to 

obtain solutions that are less than .035 of the relative gap for the first six test 

scenarios.   Of the two remaining scenarios, only scenario 8 has a relative gap 

greater than 0.10.  It is interesting to note that the transportation cost for this test 

scenario using MHR is substantially greater than that obtained by both BMF and 

TLC.  This is unusual because MHR solutions are convincingly superior to those of 

TLC for all other test scenarios.  This could suggest that (a) the test scenario 
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presents a more complex instance for the routing problem that is more easily 

interpreted by exact methods and/or (b) the exclusion of refrigeration costs during 

vehicle wait time results in a highly-inflated relative gap.  The same could be said of 

scenario 9, although the relative gap between MHR and TLC favors using the 

metaheuristic.  It is also worth mentioning that these are test scenarios for which 

there are 20 and 25 linehaul and backhaul customers, requiring a total of 40 and 47 

total visits.  Given the number of customers served, it is conceivable that after 

accounting for customer wait time, there may be one or more additional vehicles 

required.  MHR provides the only known solutions for test scenarios 10 – 12 despite 

permitting 5,000 minutes of runtime for BMF and TLC.  Similar to the results for the 

PVRPB, MHR solves larger test scenarios for the PVRPBTW faster than TLC.  The 

results show that the metaheuristic solves each test scenarios 7 – 12 faster than the 

exact formulation method. 

Table 4.8 

Comparison of MHR to BMF and TLC when Solving PVRPBTW 

 

 

Transportation Costs 

 Relative Gap 

(proportion) 

 Runtime     

(in Seconds)  

Scenario 

 

MHR BMF TLC 

 vs. 

Base 

vs. 

TLC 

 

MHR TLC 

1  733.16  729.29 889.75   0.005 -0.214  224.89  0.22  

2  889.82  883.82  1,191.7   0.007 -0.339  202.27  3.74  
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Table 4.8 (cont’d.) 

3    1,002  994.3  1,309.6   0.008 -0.307  214.10  0.11  

4  1,049.3  1,030.1  1,359.7   0.018 -0.296  213.89  0.20  

5  998.6  988  1,309.2   0.011 -0.311  211.83  0.31  

6  864.3  837  1,460.1   0.032 -0.689  232.30  0.52  

7  1,494.6  1,469.4  1,915.8   0.017 -0.282  271.9 5,000  

8  2,037.5  1,630.1  1,947.2   0.200 0.044  298.2 5,000  

9  2,493.7  2,247.5 2,766.1  0.099 -0.109  324.5 5,000  

10  2,919.6   nsf   nfs   n/a n/a  332.4 5,000  

11  3,700.3   nsf   nfs   n/a n/a  315.9 5,000  

12  4,806.5   nsf  nfs  n/a n/a  326.5 5000 

nsf = No solution found 
nfs = No feasible solution 
 

Table 4.9 shows a comparison of MHR to the model formulation-based 

methods when solving the HPVRPB.  The results show that MHR does not perform 

as well on the HPVRPB as other routing problems.  Despite only test scenarios 1 – 5 

being solved to optimality using BMF, MHR could not match the transportation costs 

associated with either of the 9 test scenarios where the model formulation method 

obtains a feasible solution.  In fact, the relative gap between MHR and BMF is less 

than 10 percent in only 2 scenarios.  This is also the only problem variant where the 

relative gap between MHR and TLC is positive in most scenarios. 
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Table 4.9 

Comparison of MHR to BMF and TLC when Solving HPVRPB 

 

 

Transportation Costs 

 Relative Gap 

(proportion) 

 Runtime 

(seconds)  

Scenario 

 

MHR BMF TLC 

 vs. 

BMF 

vs.  

TLC 

 

MHR TLC 

1  295.5  270.3  270.3   0.085 0.085  185.4  0.062  

2  324.6  274.6  326.6   0.154 -0.006  189.4  0.15  

3  411.5  399.3  451.5   0.030 -0.097  185.1  0.15  

4  540.6  420  524.9   0.223 0.029  203.8  0.24  

5  603.9  481.6  586.4   0.203 0.029  181.9  0.50 

6  777.9  572.2  677   0.264 0.130  185  0.36  

7  1,042.2  748.9  944.6   0.281 0.094  239  6.43  

8  1,195.2  792.1  971.9   0.337 0.187  273.7  2,606  

9  1,307.6  988.7  1,271.7   0.244 0.027  267.5  185.00  

10  1,489.4  1275.8  1,361.6   0.143 0.086  286.1  5,000  

11  1,705.3  nsf 1,463.5  n/a 0.142  300.5  5,000  

12  2,396  nsf 2,654.1   n/a -0.108  311.1  5,000 

nsf = No solution found 
 

A likely reason for the poor performance of MHR for the problem variant is that 

unlike the others, the characteristics of assigned vehicles impact solution quality.  
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This is supported by the set of vehicle routes associated with its best solution for the 

HPVRPB assigning customers to vehicles with the largest capacity rather than those 

with the lowest fixed and variable costs (See Appendix C).  This is also supported by 

observing the results for MHR in test scenario 12.  The vehicle route schedules show 

that multiple vehicles are needed to serve customers. 

4.7. Managerial Insights 

As a general rule, MHR provides good solutions for the PVRPB and 

PVRPBTW.  MHR should be considered for any problem that cannot be solved to 

optimality using BMF, including larger routing problems for which a feasible 

solution cannot be obtained using BMF.  Food banks can serve hundreds of 

charitable agencies and receive food from many food donors, making the use of 

MHR an attractive scheduling method for many realistic systems. 

When scheduling routes based on the PVRPBTW, further analysis of routes 

and transportation costs for BMF should be evaluated since the formulation 

provides only a lower bound for transportation costs.  Users should evaluate routes 

to determine if there are any additional costs as a result of vehicle wait time at 

customer locations.  When the total costs after considering these costs is less than 

that obtained using MHR, routes should be determined using BMF.  Otherwise, MHR 

should be used to schedule transportation.  The overall effectiveness of MHR for 

realistic routing problems is such that the solutions obtained using MHR of 

generally less than those obtained using TLC.   
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Unlike the other problem variants, MHR is not necessarily recommended 

when solving the HPVRPB.  It has not been shown effective at discerning which 

vehicles result in lower transportation costs and may not be an effective routing 

method without further enhancements which enable MHR to account for differences 

in vehicle characteristics.  Despite its limitations, MHR overcomes the computational 

complexity of larger problems, making it more appropriate than BMF and TLC.   

4.8. Conclusions 

In closing, a new HGA affectionately referred to as MULTI-HGA-ROUTE is 

presented to solve multi-period vehicle routing problems with both linehaul and 

backhaul customers.  As specified for other HGAs, this new metaheuristic combines 

the population-based search characteristics of genetic algorithms with local search 

procedures to promote a comprehensive search of the solution space.  In addition, 

MULTI-HGA-ROUTE incorporates tabu search to target a routing day for the 

diversification, intensification, and learning processes implemented through its 

reproduction operators.  The algorithm also incorporates strategies that encourage 

a diverse population for each epoch of the search process.  MULTI-HGA-ROUTE is 

tested on pre-existing test scenarios for the PVRPB, PVRPBTW, and HPVRPB.  

Results show that the algorithm produces good solutions for the PVRPB and 

PVRPBTW without loss of generality using very little computation time.  The results 

show that MULTI-HGA-ROUTE solves the HPVRPB; however, it is only appropriate 

in certain situations.  Some of the network conditions where the HGA is most 

appropriate are proposed.   
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The objective of this research is limited to finding good solutions method for 

three variants of the PVRPB. Little calibration is done before testing MULTI-HGA-

ROUTE.  Future research will focus more on calibration and evaluate the 

metaheuristic for larger problems.  Future research will also identify methods that 

make MULTI-HGA-ROUTE more appropriate for the HPVRPB. 
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5. CHAPTER 5 

Recommendations and Future Extensions 

  

This dissertation addresses the challenges that food banks experience when 

overcoming (a) the uncertainty of food availability and (b) the complexity of 

performing multi-day vehicle routes which complete food collection and 

distribution requirements without violating food safety considerations.  This 

dissertation addresses each of the challenges through metaheuristic search 

procedures.   

The combined of data mining and supervised machine learning approach 

presented in this research is recommended in order to provide better estimates for 

food availability at supermarket branches.  The incorporation of a quasi-greedy 

algorithm to select a non-dominated MLP-NN model for each food type is also 

recommended.  This recommendation is supported by a set of experiments which 

demonstrate that MLP-NN models provide more accurate predictions for future 

donation amounts for a regional food bank than traditional forecasting methods.  

Furthermore, when used to schedule transportation for food collection, the total 

cost of receiving the aggregate collection amounts predicted by the MLP-NN models 

were less than or equal to those of all other models.  In addition, this doctoral 

research recommends that transportation practices that are related to one of the 

PVRPB variants be implemented to manage the collection and delivery of 

inventoried food items.  It is also recommended that a metaheuristic search 
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procedure be implemented to solver larger routing problems.  Lastly, it is 

recommended that MHR be considered to determine vehicle routes for larger 

networks.   

As data warehousing capabilities continues to grow, additional predictors 

may be identified which give better insight into food availability at supermarket 

locations.  Accordingly, future work will identify methods that allow food banks to 

approximate the availability of donations at other donor types in the CFSFSC.  In 

addition, future work will use historic data to identify desired supermarket donors 

as well as integrate inventory management strategies into vehicle routing decisions. 
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Appendix A:  Pseudocodes for Heuristics 

A.1. Pseudocode for the Quasi-Greedy Algorithm 

Notation 

 :  the number of layers 

 ⃑⃑ :  the number of neurons in each layer 

 (   ⃑⃑ ): the predictive error of  -layered MLP-NN with  ⃑⃑  neurons after 

completing all runs with each data partition 

  
 :  best model for layer   

 :  represent the number of consecutive models that are inferior to   
  

  : Maximum value for   allowed 

  :  Binary variable reflecting the satisfaction of termination condition for 

algorithm 

Initialization   
                  ,      

     

Calculate     (   ⃑⃑ ) 

if      
 then   

    ,                 

else  

if      then                    

else if   
      

   then           ,         

else      

      (    )  
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A.2. Pseudocode for Initial Route Construction 

Step 0:  Initialization 

a) Randomly generate a sequence of vehicle departures per day,   .  

Associated with each element,      is a unique vehicle assignment 

 ( ), the depot location the vehicle departs  ( ), and a specific departure 

day  ( )   Note that for this problem, there is only one depot; therefore, 

 ( )    for each element    

b) Randomly generate linehaul customer visits per day   .  Associated with 

each element,       is a vehicle assignments,  (  )  unique customer 

location  (  )  and the departure day  (  )    

c) Randomly generate backhauls customer visits per day   .  Associated 

with each element,       is a vehicle assignments,  (  )  unique 

customer location  (  )  and the departure day  (  )    

d) Initialize    [ ]    [ ]    [ ]   Let  ,  , and   correspond to a 

specific position in vector   ,   , and   , respectively.  Let [ ] 

represent the position in which a specific vehicle departure or customer 

visit option is to be assigned in the solution.  At initialization,    ,    , 

   , and    . 

Step 1:  Select a vehicle departure option and determine if it will be a selected or 

unselected vehicle departure option. 

a) Set       and      . 

b) Select the i-th vehicle departure option,  [ ] from   . 
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c) Determine the ordered set of unsatisfied linehaul customers    and 

unsatisfied backhaul customers   that can be assigned to vehicle  ( [ ]) 

based on satisfying  (   [ ])   ( [ ])       and  (   [ ])   ( [ ])   

  . 

d) If        , set    [ ]=  [ ],    [ ] = 1, and    [ ]   ( [ ]) and GOTO 

Step 2.  Otherwise, set    [ ]=  [ ],    [ ] = 2, and    [ ]   ( [ ]) and 

GOTO Step 4. 

Step 2:  If  [ ] is the last unassigned vehicle departure option for day  ( [ ]) 

a) Let    |  |and    |  | 

b) For          ,  

i) Set        

ii) Set   = the     element in    

iii) set    [ ]=  ,    [ ] = 1, and    [ ]   ( [ ]) 

c) For          ,  

i) Set        

ii) Set   = the     element in    

iii) set    [ ]=  ,    [ ] = 1, and    [ ]   ( [ ]) 

d) GOTO Step 1. 

Step 3:  If  [ ] is not the last unassigned vehicle departure option for day  ( [ ])    

a) Randomly determine whether to assign only linehauls, only backhauls, or 

both linehauls and backhauls to the vehicle 
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i) If only linehaul customers are to be assigned to the vehicle, 

(a) Randomly generate    and set        (   |  |) 

(b) For           ,  

(1) Set        

(2) Set   = the jth element in    

(3) Set    [ ]=  ,    [ ] = 1, and    [ ]   ( [ ]) 

ii) If only backhaul customers are to be assigned to the vehicle, 

(a) Randomly generate    and set        (   |  |) 

(b) For           ,  

(1) Set        

(2) Set   = the     element in    

(3) set    [ ]=  ,    [ ] = 1, and    [ ]   ( [ ]) 

iii) If linehaul and backhaul customers are to be assigned to the vehicle,  

(a) Randomly generate    and set        (   |  |) 

(b) Randomly generate    and set        (   |  |) 

(c) For           ,  

(1) Set        

(2) Set   = the jth element in    

(3) Set    [ ]=  ,    [ ] = 1, and    [ ]   ( [ ]) 

(d) For           ,  

(1) Set        
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(2) Set   = the     element in    

(3) set    [ ]=  ,    [ ] = 1, and    [ ]   ( [ ]) 

b) GOTO Step 1. 

Step 4:  If all vehicles options have not been assigned, GOTO Step 1, otherwise 

GOTO Step 5. 

Step 5:  Assign all remaining unassigned elements of     and    as unselected 

depot departure options 

a) Determine all unassigned elements of     and    and assign them to    

and   , respectively. 

b) Let    |  |and    |  | 

c) For          ,  

a) Set        

b) Set   = the     element in    

c) set    [ ]=  ,    [ ] = 1, and    [ ]   ( [ ]) 

d) For          ,  

a) Set        

b) Set   = the     element in    

c) set    [ ]=  ,    [ ] = 3, and    [ ]   ( [ ]) 

e) GOTO Step 6 

Step 6:  Exit Code 

 



157 

 

 

 

A.3. Pseudocode for Crossover Operator 

Step 0:  Initialization:  Determine the targeted reproduction day and two parents 

  and    

Step 1:  Identify Customers Currently Served 

a) Identify customers served in parent    on the targeted reproduction day. 

b) Identify customers served in parent    on the targeted reproduction day. 

Step 2:  Offspring Construction 

a) Copy the base components for parents    and    to create offspring 

   and   , respectively. 

b) Calculate the change in the number of visits to each customer in   on the 

reproduction day. 

c) Calculate the change in the number of visits to each customer in   on the 

reproduction day. 

Step 3:  Identify Customers Served After Construction 

a) Replace the genes of   pertaining to the targeted reproduction day with 

the genes of    pertaining to the targeted reproduction day. 

b) Replace the genes of   pertaining to the targeted reproduction day with 

the genes of    pertaining to the targeted reproduction day. 

c) Calculate the net change in the number of times each customer is served 

in   . 

d) Calculate the net change in the number of times each customer is served 

in   . 
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Step 4:  Correct Violations to Customer Service Requirements  

For each customer  

a) If the customer is over-served 

1. If there exists at least one day that is customer is served that is not in 

the tabu list 

i) Find the gene   corresponding to a selected customer visit options 

not in the tabu list. 

ii) Change one of the corresponding genes to an unselected customer 

visit option by setting its allele       .  If more than one gene fits 

this condition, select one according to a uniform distribution. 

iii) GOTO Step 5 

2. If all days that the customer is served is in the tabu list 

i) Find the gene   corresponding to the selected customer visit 

option which occurs on the day associated with the earliest entry 

into the tabu list.   

ii) Change the corresponding genes to an unselected customer visit 

option by setting its allele       .   

3. If the vehicle that served the removed option is now empty, change 

the gene corresponding to its use to an unselected vehicle departure 

by changing the corresponding allele       . 

iii) GOTO Step 5. 

b) If the customer is underserved,  
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1. If there exists at least one day not in the tabu list where the customer 

is not served 

i) Find the gene   corresponding to an unselected customer visit 

options not in the tabu list. 

ii) Change one of the corresponding genes to a selected customer 

visit option by setting its allele       .  If more than one gene fits 

this condition, select one according to a uniform distribution. 

iii) Change the corresponding genes to an unselected customer visit 

option by setting its allele       .   

iv) GOTO Step 5. 

2. If there are no days in the tabu list where the customer is not served 

i) Revert the gene   corresponding to the unselected customer visit 

obtained through crossover by setting its allele       .  

ii) GOTO Step 5. 

3. If there is an unassigned vehicle on the same day as the added 

customer 

i) Let     ,     , and     represent an alleles of   ,    and   that 

corresponds to an arbitrarily-selected unassigned vehicle on  the 

same day as the added customer. 

ii) Arbitrarily select one of the extra depots, setting the respective 

allele to       . 
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iii) Assign the added customer to the newly added vehicle by setting 

    =     .  

iv) If the assigned vehicle is positioned after the added customer, 

exchange the relative positions of the two alleles 

v) GOTO Step 5. 

4. If there are no unassigned vehicles on the same day as the added 

customer 

i) Let     ,     , and     represent an alleles of   ,    and   that 

corresponds to an arbitrarily selected vehicles route that occurs 

on  the same day as the added customer. 

ii) Assign the added customer to the newly added vehicle by setting 

    =     .  

iii) If the assigned vehicle is positioned after the added customer, 

exchange the relative positions of the two alleles. 

iv) Sort customers on the vehicle route such that linehauls are served 

before backhauls, maintaining the relative order in which linehaul 

and backhaul customers are served. 

Step 5:  Calculate updated tour travel distance, travel time, and 

arrival/departure times for all locations. 

Step 6:  Exit Pseudocode 
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A.4. Pseudocode for Modified Local Search Operators 

A.4.1. Modified Two Opt* Inter-Route Operator 

Step 0:  RVNS selects Two Opt* to explore neighborhoods 

Step 1:  Determine if there are enough vehicle to execute Two Opt* Operator 

a) Determine if more than one route is assigned on the targeted routing 

day 

b) If only one vehicle is assigned, Goto Step 6. 

Step 2:  Randomly select two routes 

Step 3:  Select move customers from route 1 

a) Select a customer and identify the customer type (linehaul or 

backhaul) 

b) Randomly select the route segment from the selected customer to the 

end of route to be moved to route 2. 

Step 4:  Determine if Two Opt* is executed 

a) If route 2 does not serve at least one customer of the same type as the 

customers selected from route 1. 

i) Do not move customers from route 1 

ii) Goto Step 6 

Step 5:  Execute Two Opt* Operator 

a) Select the position of a customer of the same type as the customer 

type selected for route 1. 
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b) Move customers from the selected position to the end of tour. 

c) Insert the route segment customers moved from route 2 into route 1  

d) Insert the route segment customers moved from route 1 into route 2. 

Step 6:  Exit Two Opt* Operator 

 

A.4.2. Modified RELOCATE Inter-Route Move Operator 

Step 0:  RVNS selects RELOCATE to explore neighborhoods 

Step 1:  Determine if the routing conditions are appropriate execute RELOCATE 

a) Determine if more than one route is assigned on the targeted routing day 

b) If only one vehicle is assigned, Goto Step 5. 

Step 2:  Randomly select two routes 

Step 3:  Move customers from route 1 

i) Randomly select a route segment containing   customers 

ii) Shift customer that remain   positions towards the start of the 

route 

Step 4:  Insert the moved customers into route 2 

a) If the customers moved are all linehauls,  

i) If route 2 currently serves only linehaul customers,  

1. Randomly select the position of another linehaul customer as 

the insertion point 
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2. Goto Step 4.a.iv 

ii) If route 2 currently serves only backhaul customers,  

1. Select the position of the first backhaul customer as the 

insertion point 

2. Goto Step 4.a.iv 

iii) If route 2 currently serves both linehaul and backhaul customers,  

1. Randomly select the position of another linehaul customer as 

the insertion point  

2. Goto Step 4.a.iv 

iv) Shift customers currently at or after the insertion point   positions 

away from the start of the route 

v) Insert the move customers into route 2 at the insertion point 

vi) Goto Step 5 

b) If the customers moved are all backhauls, 

i) If route 2 currently serves only linehaul customers,  

1. Select the position of the last linehaul customer as the pre-

insertion point 

2. Goto Step 4.b.iv 

ii) If route 2 currently serves only backhaul customers, 

1. Randomly select the position of any backhaul customer as the 

pre-insertion point 

2. Goto Step 4.b.iv 
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iii) If route 2 currently serves both linehaul and backhaul customers, 

1. Randomly select the position of either the last linehaul 

customer or any backhaul customer as the pre-insertion point 

2. Goto Step 4.b.iv 

iv) Shift customers after the pre-insertion point backwards   

positions. 

v) Place the moved customers into route 2 in the position 

immediately after the  pre-insertion point 

vi) Goto Step 5 

c) If moved customers are include both linehauls and backhauls, 

i) If route 2 currently serves only linehaul customers, 

1. Select the position after the last linehaul customer as the 

insertion point 

2. Goto Step 4.c.iv 

ii) If route 2 currently serves only backhaul customers, 

1. Select the position before the first backhaul customer as the 

insertion point 

2. Goto Step 4.c.iv 

iii) If route 2 currently serves only linehaul and backhaul customers, 

1. Select the position after the last linehaul customer as the 

insertion point 

2. Goto Step 4.c.iv 
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iv) Shift customers currently at or after the insertion point backwards 

  positions. 

v) Insert the move customers into route 2 at the insertion point 

vi) Goto Step 5 

Step 5:  Exit RELOCATE Operator 

 

A.4.3. Modified CROSS Inter-Route Operator 

Step 0:  RVNS selects CROSS to explore neighborhoods 

a) Let k1 and  

Step 1:  Determine if there are enough vehicles to execute CROSS Operator 

c) Determine if more than one route is assigned on the targeted routing day 

d) If only one vehicle is assigned, Goto Step 6. 

Step 2:  Randomly select two routes 

Step 3:  Select move customers from route 1 

a) Select a customer and identify the customer type   

b) Randomly select a segment containing    customers of type   to be 

moved to route 2. 

Step 4:  Determine if CROSS is executed 

a) If route 2 does not serve at least one customer of type  , 

a. Do not move customers from route 1 



166 

 

 

 

b. Goto Step 6 

Step 5:  Execute CROSS Operator 

a) Select at   customers from route 2 that are of type  . 

b) Insert the   customers moved from route 1 into route 2 in the relative 

position of the first customer moved from route 2. 

c) Insert the   customers moved from route 2 into route 1 in the relative 

position of the first customer moved from route 1. 

Step 6:  Exit CROSS Operator 

 

A.4.4. Modified Two Opt Intra-Route Operator 

Step 0:  Two Opt Intra-route heuristic is called by intra-route procedure 

Step 1:  Determine if heuristic is executed 

a) If no route is performed Goto Step 3. 

b) Select a route.  If only one customer is assigned to the route, Goto Step 3. 

c) Randomly select a customer.  Let   represent the classification of the 

customer as a linehaul or backhaul 

d) Find all other customers of type   on the route 

e) If there are no other customers of type  , Goto Step 3. 

Step 2:  Execute Two Opt 

a) Let   represent the sequence of customers of type   
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b) Invert   

Step 3:  Exit Modified Two Opt 

 

A.4.5. Modified Or Operator 

Step 0:  Or Intra-route heuristic is called by intra-route procedure 

Step 1:  Determine if Or Operator is executed 

a) If no route is performed Goto Step 4. 

b) Select a route.  If only one customer is assigned to the route, Goto Step 4. 

Step 2:  Select move customers on the selected route 

a) Randomly select an route segment containing   customers 

b) Shift customer that remain on route 1 forward   positions 

Step 3:  Insert the moved customers into another position on the route 

a) If the customers moved are all linehauls,  

i) If the remaining customers served are all linehauls, 

1. Randomly select the position of a linehaul customer as the 

insertion point 

2. Goto Step 3.a.iv 

ii) If the remaining customers served are all backhaul, 

1. Select the position of the first backhaul customer as the 

insertion point 
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2. Goto Step 3.a.iv 

iii) If the both linehaul and backhaul customers remain, 

1. Randomly select the position of another linehaul customer as 

the insertion point  

2. Goto Step 3.a.iv 

iv) Shift customers currently at or after the insertion point backwards 

  positions 

v) Insert the move customers into the route at the insertion point 

vi) Goto Step 4 

b) If the customers moved are all backhauls, 

i) If the remaining customers served are all linehauls,  

1. Select the position of the last linehaul customer as the pre-

insertion point 

2. Goto Step 3.b.iv 

ii) If the remaining customers served are all backhauls, 

1. Randomly select the position of any backhaul customer as the 

pre-insertion point 

2. Goto Step 3.b.iv 

iii) If both linehaul and backhaul customers remain on the route, 

1. Randomly select the position of either the last linehaul 

customer or any backhaul customer as the pre-insertion point 

2. Goto Step 3.b.iv 
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iv) Shift customers after the pre-insertion point backwards   

positions. 

v) Place the moved customers into the route in the position 

immediately after the  pre-insertion point 

vi) Goto Step 4 

c) If moved customers are include both linehauls and backhauls, 

i) If remaining customers served are all linehauls, 

1. Select the position after the last linehaul customer as the 

insertion point 

2. Goto Step 3.c.iv 

ii) If remaining customers served are all backhauls, 

1. Randomly select the position of any backhaul customer as the 

insertion point 

2. Goto Step 3.c.iv 

iii) If both linehaul and backhaul customers remain on the route, 

1. Select the position after the last linehaul customer as the 

insertion point 

2. Goto Step 3.c.iv 

iv) Shift customers currently at or after the insertion point forward   

positions. 

v) Insert the move customers at the insertion point 

vi) Goto Step 4 
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Step 5:  Exit Or Operator 
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Appendix B:  Food Bank Network Characteristics 

B.1. Linehaul Customers 

Location 

(  ) 

Earliest 

Arrival 

Latest  

Departure 

Amount  

 (in lbs.) 

Service  

Time 

(in hours) 

Required  

Arrivals 

1 2 6 9,529.00 1 1 

2 4 6 9,999.00 1 1 

3 5 10 9,999.00 1 1 

4 3 5 1,248.00 1 1 

5 0 6 9,999.00 1 1 

6 1 3 2,385.00 1 1 

7 2 4 9,600.00 1 1 

8 3 5 9,999.00 1 1 

9 0 8 6,877.00 1 1 

10 1 8 7,386.00 1 1 

11 0 7 1,519.00 1 1 

12 2 8 1,390.00 1 1 

13 3 5 3,264.00 1 1 

14 3 7 8,256.00 1 1 
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B.2. Backhaul Customers 

Location 

(  ) 

Earliest 

Arrival 

Latest  

Departure 

Amount  

 (in lbs.) 

Service  

Time 

(in hours) 

Required  

Arrivals 

4 3 5 300.00 0.5 3 

5 0 6 300.00 0.5 3 

6 1 3 300.00 0.5 3 

7 2 4 300.00 0.5 3 

8 3 5 300.00 0.5 3 

9 0 8 300.00 0.5 3 

10 1 8 300.00 0.5 3 

11 0 7 300.00 0.5 3 

12 2 8 300.00 0.5 3 

13 3 5 300.00 0.5 3 

14 3 7 300.00 0.5 3 

15 5 7 300.00 0.5 3 

16 3 7 300.00 0.5 3 

17 1 7 300.00 0.5 3 
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Location 
Earliest 

Arrival 

Latest  

Departure 

Amount  

 (in lbs.) 

Service  

Time 

(in hours) 

Required  

Arrivals 

18 3 10 300.00 0.5 3 

19 0 6 300.00 0.5 3 

20 1 8 300.00 0.5 3 

21 5 7 300.00 0.5 3 

22 0 6 300.00 0.5 3 

23 5 7 300.00 0.5 3 

24 4 6 300.00 0.5 3 

25 4 6 300.00 0.5 3 

26 0 8 300.00 0.5 3 

27 8 10 300.00 0.5 3 

28 1 6 300.00 0.5 3 

29 6 8 300.00 0.5 3 

30 1 3 300.00 0.5 3 

31 6 8 300.00 0.5 3 

32 0 8 300.00 0.5 3 

33 4 9 300.00 0.5 3 
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Location 

(  ) 

Earliest 

Arrival 

Latest  

Departure 

Amount  

 (in lbs.) 

Service  

Time 

(in hours) 

Required  

Arrivals 

34 0 2 300.00 0.5 3 

35 3 6 300.00 0.5 3 

36 0 5 300.00 0.5 3 

37 3 7 300.00 0.5 3 

38 5 7 300.00 0.5 3 

39 6 8 300.00 0.5 3 

40 6 9 300.00 0.5 3 

41 1 10 300.00 0.5 3 

42 5 7 300.00 0.5 3 
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B.3. Vehicle Characteristics by Fleet Type 

Fleet 

Type 

 

Vehicle  

 

Capacity 

(lbs.)  

Fixed 

Cost 

($/Use) 

 Fuel 

Efficiency 

($/mile) 

 Refrigeration 

Cost 

($/hour) 

1  1 – 7  20000  150.00  0.40  1.25 

 

 

 

2 

 1  20000  150.00  0.40  1.25 

 2  18550  125.00  0.40  1.50 

 3  15000  100.00  0.35  1.75 

 4  15000  80.00  0.30  2.00 

 5  12500  60.00  0.25  2.25 

 6  5000  50.00  0.20  2.50 

 7  1000  0.00  0.15  3.00 

Homogeneous Fleet indicated by Fleet Type = 1 
Heterogeneous Fleet indicated by Fleet Type = 2 
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B.4. Travel Time Between Locations 

 To    

From    0 1 2 3 4 5 6 7 

0            -      0.8833    0.4833    0.7500    0.2500    0.3000    0.2500    0.8667  

1   0.8833             -      1.1833    1.1667    0.9000    0.7667    0.9333    1.2333  

2   0.4833    1.1833             -      0.8667    0.4333    0.6333    0.5167    1.1167  

3   0.7500    1.1667    0.8667             -      0.8000    0.5333    0.8167    1.5333  

4   0.2500    0.9000    0.4333    0.8000             -      0.3167    0.2333    0.9833  

5   0.3000    0.7667    0.6333    0.5333    0.3167             -      0.3667    1.0833  

6   0.2500    0.9333    0.5167    0.8167    0.2333    0.3333             -      1.0167  

7   0.8667    1.2333    1.1167    1.5333    0.9833    1.0833    1.0167             -    

8   0.7333    1.0500    1.1333    1.4000    0.8500    0.9333    0.8833    0.7833  

9   0.9333    1.2333    1.3333    1.5833    1.0500    1.1333    1.0833    0.9667  

10   0.4000    0.9667    0.7833    1.0500    0.5167    0.6000    0.5333    0.5500  
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 To    

From    0 1 2 3 4 5 6 7 

11   0.4833    1.1833             -      0.8667    0.4333    0.6333    0.5167    1.1167  

12   0.7500    1.1667    0.8667             -      0.8000    0.5333    0.8167    1.5333  

13   0.3000    0.7667    0.6333    0.5333    0.3167             -      0.3667    1.0833  

14   0.7333    1.0500    1.1333    1.4000    0.8500    0.9333    0.8833    0.7833  

15   0.8833             -      1.1833    1.1667    0.9000    0.7667    0.9333    1.2333  

16   0.4833    1.1833             -      0.8667    0.4333    0.6333    0.5167    1.1167  

17   0.7500    1.1667    0.8667             -      0.8000    0.5333    0.8167    1.5333  

18   0.2500    0.9000    0.4333    0.8000             -      0.3167    0.2333    0.9833  

19   0.3000    0.7667    0.6333    0.5333    0.3167             -      0.3667    1.0833  

20   0.2500    0.9333    0.5167    0.8167    0.2333    0.3333             -      1.0167  

21   0.8667    1.2333    1.1167    1.5333    0.9833    1.0833    1.0167             -    

22   0.7333    1.0500    1.1333    1.4000    0.8500    0.9333    0.8833    0.7833  
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 To    

From    0 1 2 3 4 5 6 7 

23   0.9333    1.2333    1.3333    1.5833    1.0500    1.1333    1.0833    0.9667  

24   0.4000    0.9667    0.7833    1.0500    0.5167    0.6000    0.5333    0.5500  

25   0.2667    0.9500    0.6500    0.9167    0.3833    0.4667    0.4000    0.7167  

26   0.3000    0.7500    0.6333    0.8000    0.3333    0.3500    0.3667    0.7667  

27   1.3000    0.5000    1.6500    1.6833    1.3333    1.2667    1.3833    1.3500  

28   0.5500    1.2333    0.6333    1.0833    0.6000    0.6667    0.5667    0.6333  

29   0.9500    1.2667    1.3500    1.6167    1.0833    1.1667    1.1000    1.0000  

30   0.6833    1.0500    1.0833    1.3333    0.8000    0.8833    0.8167    0.2500  

31   1.0333    0.6500    1.4000    1.5667    1.0833    1.0667    1.1333    1.0833  

32   0.4833    1.0833    0.7667    1.2000    0.6667    0.7500    0.7000    0.6000  

33   0.5833    0.7333    0.9667    1.2333    0.7000    0.7667    0.7167    0.6167  
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 To    

From    0 1 2 3 4 5 6 7 

34   0.5333    0.9000    0.9167    1.1833    0.6500    0.7167    0.6667    0.5000  

35   0.3500    0.7167    0.7333    1.0000    0.4667    0.5500    0.4833    0.5833  

36   0.8833    1.5333    0.7000    0.5333    0.7167    0.9500    0.9000    1.6667  

37   0.7500    1.4333    0.3500    0.9167    0.6833    0.8833    0.7667    1.3667  

38   1.3167    2.0000    0.9167    1.5000    1.2500    1.4500    1.3333    1.9333  

39   1.5500    2.2333    1.1500    1.7333    1.4833    1.6833    1.5667    2.1667  

40   1.1167    1.8000    0.7000    1.2833    1.0500    1.2333    1.1333    1.7333  

41   1.6500    2.3000    1.4667    1.5000    1.4833    1.7500    1.6667    2.4167  

42   1.0000    1.6667    0.8167    0.9333    0.8333    1.1000    1.0333    1.7833  
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 To    

From    8 9 10 11 12 13 14 15 

0   0.7333    0.9167    0.4000    0.4833    0.7500    0.3000    0.7333    0.8833  

1   1.0500    1.2333    0.9667    1.1833    1.1667    0.7667    1.0500             -    

2   1.1333    1.3333    0.7833             -      0.8667    0.6333    1.1333    1.1833  

3   1.4000    1.5833    1.0500    0.8667             -      0.5333    1.4000    1.1667  

4   0.8500    1.0500    0.5167    0.4333    0.8000    0.3167    0.8500    0.9000  

5   0.9333    1.1333    0.6000    0.6333    0.5333             -      0.9333    0.7667  

6   0.8833    1.0833    0.5333    0.5167    0.8167    0.3333    0.8833    0.9333  

7   0.7833    0.9667    0.5500    1.1167    1.5333    1.0833    0.7833    1.2333  

8            -      0.2333    0.5500    1.1333    1.4000    0.9333             -      1.0500  

9   0.2333             -      0.7500    1.3333    1.5833    1.1333    0.2333    1.2333  

10   0.5500    0.7500             -      0.7833    1.0500    0.6000    0.5500    0.9667  
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 To    

From    8 9 10 11 12 13 14 15 

11   1.1333    1.3333    0.7833             -      0.8667    0.6333    1.1333    1.1833  

12   1.4000    1.5833    1.0500    0.8667             -      0.5333    1.4000    1.1667  

13   0.9333    1.1333    0.6000    0.6333    0.5333             -      0.9333    0.7667  

14            -      0.2333    0.5500    1.1333    1.4000    0.9333             -      1.0500  

15   1.0500    1.2333    0.9667    1.1833    1.1667    0.7667    1.0500             -    

16   1.1333    1.3333    0.7833             -      0.8667    0.6333    1.1333    1.1833  

17   1.4000    1.5833    1.0500    0.8667             -      0.5333    1.4000    1.1667  

18   0.8500    1.0500    0.5167    0.4333    0.8000    0.3167    0.8500    0.9000  

19   0.9333    1.1333    0.6000    0.6333    0.5333             -      0.9333    0.7667  

20   0.8833    1.0833    0.5333    0.5167    0.8167    0.3333    0.8833    0.9333  

21   0.7833    0.9667    0.5500    1.1167    1.5333    1.0833    0.7833    1.2333  

22            -      0.2333    0.5500    1.1333    1.4000    0.9333             -      1.0500  
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 To    

From    8 9 10 11 12 13 14 15 

23   0.2333             -      0.7500    1.3333    1.5833    1.1333    0.2333    1.2333  

24   0.5500    0.7500             -      0.7833    1.0500    0.6000    0.5500    0.9667  

25   0.6667    0.8500    0.1667    0.6500    0.9167    0.4667    0.6667    0.9500  

26   0.6167    0.8000    0.5167    0.6333    0.8000    0.3500    0.6167    0.7500  

27   1.1167    1.2667    1.1333    1.6500    1.6833    1.2667    1.1167    0.5000  

28   0.8333    1.0167    0.4167    0.6333    1.0833    0.6667    0.8333    1.2333  

29   0.2833    0.3167    0.7833    1.3500    1.6167    1.1667    0.2833    1.2667  

30   0.6000    0.7833    0.3333    1.0833    1.3333    0.8833    0.6000    1.0500  

31   0.8333    1.0167    0.8667    1.4000    1.5667    1.0667    0.8333    0.6500  

32   0.6667    0.8500    0.2333    0.7667    1.2000    0.7500    0.6667    1.0833  

33   0.3833    0.5667    0.4000    0.9667    1.2333    0.7667    0.3833    0.7333  
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 To    

From    8 9 10 11 12 13 14 15 

34   0.3500    0.5333    0.3000    0.9167    1.1833    0.7167    0.3500    0.9000  

35   0.4333    0.6167    0.3500    0.7333    1.0000    0.5500    0.4333    0.7167  

36   1.5167    1.7000    1.1667    0.7000    0.5333    0.9500    1.5167    1.5333  

37   1.3833    1.5667    1.0333    0.3500    0.9167    0.8833    1.3833    1.4333  

38   1.9333    2.1167    1.6000    0.9167    1.5000    1.4500    1.9333    2.0000  

39   2.1667    2.3667    1.8333    1.1500    1.7333    1.6833    2.1667    2.2333  

40   1.7333    1.9167    1.4000    0.7000    1.2833    1.2333    1.7333    1.8000  

41   2.2667    2.4667    1.8667    1.4667    1.5000    1.7500    2.2667    2.3000  

42   1.6333    1.8167    1.2833    0.8167    0.9333    1.1000    1.6333    1.6667  

 

 

 

 



184 

 

 

 

 

 To    

From    16 17 18 19 20 21 22 23 

0   0.4833    0.7500    0.2500    0.3000    0.2500    0.8667    0.7333    0.9167  

1   1.1833    1.1667    0.9000    0.7667    0.9333    1.2333    1.0500    1.2333  

2            -      0.8667    0.4333    0.6333    0.5167    1.1167    1.1333    1.3333  

3   0.8667             -      0.8000    0.5333    0.8167    1.5333    1.4000    1.5833  

4   0.4333    0.8000             -      0.3167    0.2333    0.9833    0.8500    1.0500  

5   0.6333    0.5333    0.3167             -      0.3667    1.0833    0.9333    1.1333  

6   0.5167    0.8167    0.2333    0.3333             -      1.0167    0.8833    1.0833  

7   1.1167    1.5333    0.9833    1.0833    1.0167             -      0.7833    0.9667  

8   1.1333    1.4000    0.8500    0.9333    0.8833    0.7833             -      0.2333  

9   1.3333    1.5833    1.0500    1.1333    1.0833    0.9667    0.2333             -    

10   0.7833    1.0500    0.5167    0.6000    0.5333    0.5500    0.5500    0.7500  
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 To    

From    16 17 18 19 20 21 22 23 

11            -      0.8667    0.4333    0.6333    0.5167    1.1167    1.1333    1.3333  

12   0.8667             -      0.8000    0.5333    0.8167    1.5333    1.4000    1.5833  

13   0.6333    0.5333    0.3167             -      0.3667    1.0833    0.9333    1.1333  

14   1.1333    1.4000    0.8500    0.9333    0.8833    0.7833             -      0.2333  

15   1.1833    1.1667    0.9000    0.7667    0.9333    1.2333    1.0500    1.2333  

16            -      0.8667    0.4333    0.6333    0.5167    1.1167    1.1333    1.3333  

17   0.8667             -      0.8000    0.5333    0.8167    1.5333    1.4000    1.5833  

18   0.4333    0.8000             -      0.3167    0.2333    0.9833    0.8500    1.0500  

19   0.6333    0.5333    0.3167             -      0.3667    1.0833    0.9333    1.1333  

20   0.5167    0.8167    0.2333    0.3333             -      1.0167    0.8833    1.0833  

21   1.1167    1.5333    0.9833    1.0833    1.0167             -      0.7833    0.9667  

22   1.1333    1.4000    0.8500    0.9333    0.8833    0.7833             -      0.2333  

 



186 

 

 

 

 To    

From    16 17 18 19 20 21 22 23 

23   1.3333    1.5833    1.0500    1.1333    1.0833    0.9667    0.2333             -    

24   0.7833    1.0500    0.5167    0.6000    0.5333    0.5500    0.5500    0.7500  

25   0.6500    0.9167    0.3833    0.4667    0.4000    0.7167    0.6667    0.8500  

26   0.6333    0.8000    0.3333    0.3500    0.3667    0.7667    0.6167    0.8000  

27   1.6500    1.6833    1.3333    1.2667    1.3833    1.3500    1.1167    1.2667  

28   0.6333    1.0833    0.6000    0.6667    0.5667    0.6333    0.8333    1.0167  

29   1.3500    1.6167    1.0833    1.1667    1.1000    1.0000    0.2833    0.3167  

30   1.0833    1.3333    0.8000    0.8833    0.8167    0.2500    0.6000    0.7833  

31   1.4000    1.5667    1.0833    1.0667    1.1333    1.0833    0.8333    1.0167  

32   0.7667    1.2000    0.6667    0.7500    0.7000    0.6000    0.6667    0.8500  

33   0.9667    1.2333    0.7000    0.7667    0.7167    0.6167    0.3833    0.5667  
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 To    

From    16 17 18 19 20 21 22 23 

34   0.9167    1.1833    0.6500    0.7167    0.6667    0.5000    0.3500    0.5333  

35   0.7333    1.0000    0.4667    0.5500    0.4833    0.5833    0.4333    0.6167  

36   0.7000    0.5333    0.7167    0.9500    0.9000    1.6667    1.5167    1.7000  

37   0.3500    0.9167    0.6833    0.8833    0.7667    1.3667    1.3833    1.5667  

38   0.9167    1.5000    1.2500    1.4500    1.3333    1.9333    1.9333    2.1167  

39   1.1500    1.7333    1.4833    1.6833    1.5667    2.1667    2.1667    2.3667  

40   0.7000    1.2833    1.0500    1.2333    1.1333    1.7333    1.7333    1.9167  

41   1.4667    1.5000    1.4833    1.7500    1.6667    2.4167    2.2667    2.4667  

42   0.8167    0.9333    0.8333    1.1000    1.0333    1.7833    1.6333    1.8167  



188 

 

 

 

 To    

From    24 25 26 27 28 29 30 31 

0   0.4000    0.2667    0.3000    1.3000    0.5500    0.9500    0.6833    1.0333  

1   0.9667    0.9500    0.7500    0.5000    1.2333    1.2667    1.0500    0.6500  

2   0.7833    0.6500    0.6333    1.6500    0.6333    1.3500    1.0833    1.4000  

3   1.0500    0.9167    0.8000    1.6833    1.1333    1.6167    1.3333    1.5667  

4   0.5167    0.3833    0.3333    1.3333    0.6000    1.0833    0.8000    1.0833  

5   0.6000    0.4667    0.3500    1.2667    0.6667    1.1667    0.8833    1.0667  

6   0.5333    0.4000    0.3667    1.3833    0.5667    1.1000    0.8167    1.1333  

7   0.5500    0.7167    0.7667    1.3500    0.6333    1.0000    0.2500    1.0833  

8   0.5500    0.6667    0.6167    1.1167    0.8333    0.2833    0.6000    0.8333  

9   0.7500    0.8500    0.8000    1.2667    1.0167    0.3167    0.7833    1.0167  

10            -      0.1667    0.5167    1.1333    0.4167    0.7833    0.3333    0.8667  

 

 



189 

 

 

 

 To    

From    24 25 26 27 28 29 30 31 

11   0.7833    0.6500    0.6333    1.6500    0.6333    1.3500    1.0833    1.4000  

12   1.0500    0.9167    0.8000    1.6833    1.1333    1.6167    1.3333    1.5667  

13   0.6000    0.4667    0.3500    1.2667    0.6667    1.1667    0.8833    1.0667  

14   0.5500    0.6667    0.6167    1.1167    0.8333    0.2833    0.6000    0.8333  

15   0.9667    0.9500    0.7500    0.5000    1.2333    1.2667    1.0500    0.6500  

16   0.7833    0.6500    0.6333    1.6500    0.6333    1.3500    1.0833    1.4000  

17   1.0500    0.9167    0.8000    1.6833    1.1333    1.6167    1.3333    1.5667  

18   0.5167    0.3833    0.3333    1.3333    0.6000    1.0833    0.8000    1.0833  

19   0.6000    0.4667    0.3500    1.2667    0.6667    1.1667    0.8833    1.0667  

20   0.5333    0.4000    0.3667    1.3833    0.5667    1.1000    0.8167    1.1333  

21   0.5500    0.7167    0.7667    1.3500    0.6333    1.0000    0.2500    1.0833  

22   0.5500    0.6667    0.6167    1.1167    0.8333    0.2833    0.6000    0.8333  

 



190 

 

 

 

 To    

From    24 25 26 27 28 29 30 31 

23   0.7500    0.8500    0.8000    1.2667    1.0167    0.3167    0.7833    1.0167  

24            -      0.1667    0.5167    1.1333    0.4167    0.7833    0.3333    0.8667  

25   0.1667             -      0.3500    1.2833    0.6167    0.9333    0.5333    1.0167  

26   0.5167    0.3500             -      1.1833    0.6833    0.8500    0.5667    0.9167  

27   1.1333    1.2833    1.1833             -      1.4000    1.3500    1.1500    0.2500  

28   0.4167    0.6167    0.6833    1.4000             -      1.0833    0.5833    1.1500  

29   0.7833    0.9333    0.8500    1.3500    1.0833             -      0.8333    1.0833  

30   0.3333    0.5333    0.5667    1.1500    0.5833    0.8333             -      0.8833  

31   0.8667    1.0167    0.9167    0.2500    1.1500    1.0833    0.8833             -    

32   0.2333    0.4500    0.6167    1.2167    0.2667    0.9000    0.4333    0.9500  

33   0.4000    0.6000    0.4667    0.7667    0.7000    0.6333    0.4167    0.5000  



191 

 

 

 

 To    

From    24 25 26 27 28 29 30 31 

34   0.3000    0.4500    0.4167    0.9667    0.6000    0.6000    0.3000    0.7000  

35   0.3500    0.3333    0.2500    0.9833    0.6500    0.6667    0.3833    0.7167  

36   1.1667    1.0167    0.9833    1.9833    1.2500    1.7500    1.4667    1.7167  

37   1.0333    0.8833    0.8833    1.8833    0.9333    1.6167    1.3333    1.6167  

38   1.6000    1.4500    1.4500    2.4500    1.5000    2.1833    1.9000    2.1833  

39   1.8333    1.6833    1.6833    2.6833    1.7333    2.4167    2.1333    2.4167  

40   1.4000    1.2500    1.2500    2.2500    1.3000    1.9833    1.6833    1.9833  

41   1.8667    1.7833    1.7500    2.7500    2.0167    2.5167    2.2333    2.4833  

42   1.2833    1.1500    1.1167    2.1000    1.3667    1.8667    1.5833    1.8500  



192 

 

 

 

 To    

From    32 33 34 35 36 37 38 39 

0   0.4833    0.5833    0.5333    0.3500    0.8833    0.7500    1.3167    1.5500  

1   1.0833    0.7333    0.9000    0.7167    1.5333    1.4333    2.0000    2.2333  

2   0.7667    0.9667    0.9167    0.7333    0.7000    0.3500    0.9167    1.1500  

3   1.2000    1.2333    1.1833    1.0000    0.5333    0.9167    1.5000    1.7333  

4   0.6667    0.7000    0.6500    0.4667    0.7167    0.6833    1.2500    1.4833  

5   0.7500    0.7667    0.7167    0.5500    0.9500    0.8667    1.4500    1.6833  

6   0.7000    0.7167    0.6667    0.4833    0.9000    0.7667    1.3333    1.5667  

7   0.6000    0.6167    0.5000    0.5833    1.6667    1.4833    1.9333    2.1667  

8   0.6667    0.3833    0.3500    0.4333    1.5167    1.3833    1.9333    2.1667  

9   0.8500    0.5667    0.5333    0.6167    1.7000    1.5667    2.1167    2.3667  

10   0.2333    0.4000    0.3000    0.3500    1.1667    1.0333    1.6000    1.8333  

 

 



193 

 

 

 

 To    

From    32 33 34 35 36 37 38 39 

11   0.7667    0.9667    0.9167    0.7333    0.7000    0.3500    0.9167    1.1500  

12   1.2000    1.2333    1.1833    1.0000    0.5333    0.9167    1.5000    1.7333  

13   0.7500    0.7667    0.7167    0.5500    0.9500    0.8667    1.4500    1.6833  

14   0.6667    0.3833    0.3500    0.4333    1.5167    1.3833    1.9333    2.1667  

15   1.0833    0.7333    0.9000    0.7167    1.5333    1.4333    2.0000    2.2333  

16   0.7667    0.9667    0.9167    0.7333    0.7000    0.3500    0.9167    1.1500  

17   1.2000    1.2333    1.1833    1.0000    0.5333    0.9167    1.5000    1.7333  

18   0.6667    0.7000    0.6500    0.4667    0.7167    0.6833    1.2500    1.4833  

19   0.7500    0.7667    0.7167    0.5500    0.9500    0.8667    1.4500    1.6833  

20   0.7000    0.7167    0.6667    0.4833    0.9000    0.7667    1.3333    1.5667  

21   0.6000    0.6167    0.5000    0.5833    1.6667    1.4833    1.9333    2.1667  

22   0.6667    0.3833    0.3500    0.4333    1.5167    1.3833    1.9333    2.1667  

 



194 

 

 

 

 To    

From    32 33 34 35 36 37 38 39 

23   0.8500    0.5667    0.5333    0.6167    1.7000    1.5667    2.1167    2.3667  

24   0.2333    0.4000    0.3000    0.3500    1.1667    1.0333    1.6000    1.8333  

25   0.4500    0.6000    0.4500    0.3333    1.0167    0.8833    1.4500    1.6833  

26   0.6167    0.4667    0.4167    0.2500    0.9833    0.8833    1.4500    1.6833  

27   1.2167    0.7667    0.9667    0.9833    1.9833    1.8833    2.4500    2.6833  

28   0.2667    0.7000    0.6000    0.6500    1.2500    0.9333    1.5000    1.7333  

29   0.9000    0.6333    0.6000    0.6667    1.7500    1.6167    2.1833    2.4167  

30   0.4333    0.4167    0.3000    0.3833    1.4667    1.3333    1.9000    2.1333  

31   0.9500    0.5000    0.7000    0.7167    1.7167    1.6167    2.1833    2.4167  

32            -      0.5000    0.4000    0.4500    1.3667    1.0333    1.6000    1.8333  

33   0.5000             -      0.2667    0.2833    1.3667    1.2333    1.8000    2.0333  



195 

 

 

 

 To    

From    32 33 34 35 36 37 38 39 

34   0.4000    0.2667             -      0.2333    1.2833    1.1500    1.7167    1.9500  

35   0.4500    0.2833    0.2333             -      1.1333    1.0000    1.5667    1.8000  

36   1.3667    1.3667    1.2833    1.1333             -      0.5833    1.1667    1.4000  

37   1.0333    1.2333    1.1500    1.0000    0.5833             -      0.6333    0.8667  

38   1.6000    1.8000    1.7167    1.5667    1.1667    0.6333             -      0.4000  

39   1.8333    2.0333    1.9500    1.8000    1.4000    0.8667    0.4000             -    

40   1.4000    1.6000    1.5167    1.3667    0.9500    0.4333    0.7667    0.4667  

41   1.1167    2.1333    2.0500    1.9000    1.1667    1.4167    1.4333    1.0333  

42   1.4833    1.4833    1.4167    1.2500    0.6000    0.7667    1.3000    0.8833  

 

 



196 

 

 

 

 To    

From    40 41 42 

0   1.1167    1.6500    1.0000  

1   1.8000    2.3000    1.6667  

2   0.7000    1.4667    0.8167  

3   1.2833    1.5000    0.9333  

4   1.0500    1.4833    0.8333  

5   1.2333    1.7500    1.1000  

6   1.1333    1.6667    1.0333  

7   1.7333    2.4167    1.7833  

8   1.7333    2.2667    1.6333  

9   1.9167    2.4667    1.8167  

10   1.4000    1.8667    1.2833  

 

 

 To    

From    40 41 42 

11   0.7000    1.4667    0.8167  

12   1.2833    1.5000    0.9333  

13   1.2333    1.7500    1.1000  

14   1.7333    2.2667    1.6333  

15   1.8000    2.3000    1.6667  

16   0.7000    1.4667    0.8167  

17   1.2833    1.5000    0.9333  

18   1.0500    1.4833    0.8333  

19   1.2333    1.7500    1.1000  

20   1.1333    1.6667    1.0333  

21   1.7333    2.4167    1.7833  

 

 



197 

 

 

 

 To    

From    40 41 42 

22   1.7333    2.2667    1.6333  

23   1.9167    2.4667    1.8167  

24   1.4000    1.8667    1.2833  

25   1.2500    1.7833    1.1500  

26   1.2500    1.7500    1.1167  

27   2.2500    2.7500    2.1000  

28   1.3000    2.0167    1.3667  

29   1.9833    2.5167    1.8667  

30   1.6833    2.2333    1.5833  

31   1.9833    2.4833    1.8500  

32   1.4000    1.1167    1.4833  

 

 

 To    

From    40 41 42 

33   1.6000    2.1333    1.4833  

34   1.5167    2.0500    1.4167  

35   1.3667    1.9000    1.2500  

36   0.9500    1.1667    0.6000  

37   0.4333    1.4167    0.7667  

38   0.7667    1.4333    1.3000  

39   0.4667    1.0333    0.8833  

40            -      1.3500    0.7000  

41   1.3500             -      0.6833  

42   0.7000    0.6833             -    

 

 



198 

 

 

 

B.5. Travel Distance Between Locations 

 To    

From    0 1 2 3 4 5 6 7 

0 0 37 26 42 8 12 7 51 

1 37 0 58 55 40 28 40 57 

2 26 58 0 43 22 35 26 51 

3 42 55 43 0 44 30 43 88 

4 8 40 22 44 0 15 8 58 

5 12 28 35 30 15 0 15 60 

6 7 40 26 43 8 15 0 56 

7 51 57 51 88 58 60 56 0 

8 53 46 68 81 50 52 49 45 

9 50 50 75 87 57 58 55 52 

10 21 46 46 61 28 32 26 23 

 



199 

 

 

 

 To    

From    0 1 2 3 4 5 6 7 

11 26 58 0 43 22 35 26 51 

12 42 55 43 0 44 30 43 88 

13 12 28 35 30 15 0 15 60 

14 53 46 68 81 50 52 49 45 

15 37 0 58 55 40 28 40 57 

16 26 58 0 43 22 35 26 51 

17 42 55 43 0 44 30 43 88 

18 8 40 22 44 0 15 8 58 

19 12 28 35 30 15 0 15 60 

20 7 40 26 43 8 15 0 56 

21 51 57 51 88 58 60 56 0 

22 53 46 68 81 50 52 49 45 

 



200 

 

 

 

 To    

From    0 1 2 3 4 5 6 7 

23 50 50 75 87 57 58 55 52 

24 21 46 46 61 28 32 26 23 

25 12 35 38 53 20 24 18 29 

26 10 28 34 46 16 17 15 44 

27 63 14 70 69 52 45 51 65 

28 26 60 27 63 31 34 26 30 

29 57 59 82 94 64 66 62 59 

30 39 46 64 77 46 48 44 12 

31 55 24 68 80 50 45 50 57 

32 17 54 35 58 25 29 22 25 

33 32 29 57 70 39 41 38 34 



201 

 

 

 

 To    

From    0 1 2 3 4 5 6 7 

34 29 33 54 67 36 38 34 26 

35 20 31 45 58 27 29 26 32 

36 44 75 32 27 36 56 43 93 

37 44 76 20 58 40 53 44 68 

38 78 109 53 92 73 86 77 101 

39 86 118 61 100 82 95 86 110 

40 64 96 40 79 60 73 64 88 

41 92 123 80 80 84 98 92 141 

42 58 89 46 57 50 64 58 107 

 



202 

 

 

 

 To    

From    8 9 10 11 12 13 14 15 

0 43 50 21 26 42 12 43 37 

1 46 50 46 58 55 28 46 0 

2 68 75 46 0 43 35 68 58 

3 81 87 61 43 0 30 81 55 

4 50 57 28 22 44 15 50 40 

5 52 58 32 35 30 0 52 28 

6 49 55 26 26 43 15 49 40 

7 45 52 23 51 88 60 45 57 

8 0 7 32 68 81 52 0 46 

9 7 0 28 75 87 58 7 50 

10 32 28 0 46 61 32 32 46 

 

 



203 

 

 

 

 To    

From    8 9 10 11 12 13 14 15 

11 68 75 46 0 43 35 68 58 

12 81 87 61 43 0 30 81 55 

13 52 58 32 35 30 0 52 28 

14 0 7 32 68 81 52 0 46 

15 46 50 46 58 55 28 46 0 

16 68 75 46 0 43 35 68 58 

17 81 87 61 43 0 30 81 55 

18 50 57 28 22 44 15 50 40 

19 52 58 32 35 30 0 52 28 

20 49 55 26 26 43 15 49 40 

21 45 52 23 51 88 60 45 57 

22 0 7 32 68 81 52 0 46 

 



204 

 

 

 

 To    

From    8 9 10 11 12 13 14 15 

23 7 0 28 75 87 58 7 50 

24 32 28 0 46 61 32 32 46 

25 35 42 5 38 53 24 35 35 

26 36 42 28 34 46 17 36 28 

27 50 45 51 70 69 45 50 14 

28 52 58 23 27 63 34 52 60 

29 15 11 46 82 94 66 15 59 

30 34 41 13 64 77 48 34 46 

31 43 37 44 68 80 45 43 24 

32 39 45 11 35 58 29 39 54 

33 19 26 20 57 70 41 19 29 



205 

 

 

 

 To    

From    8 9 10 11 12 13 14 15 

34 20 26 14 54 67 38 20 33 

35 24 30 17 45 58 29 24 31 

36 86 92 63 32 27 56 86 75 

37 86 93 64 20 58 53 86 76 

38 119 126 97 53 92 86 119 109 

39 128 134 105 61 100 95 128 118 

40 106 112 84 40 79 73 106 96 

41 134 140 111 80 80 98 134 123 

42 100 106 77 46 57 64 100 89 

 

 

 

 



206 

 

 

 

 To    

From    16 17 18 19 20 21 22 23 

0 26 42 8 12 7 51 43 50 

1 58 55 40 28 40 57 46 50 

2 0 43 22 35 26 51 68 75 

3 43 0 44 30 43 88 81 87 

4 22 44 0 15 8 58 50 57 

5 35 30 15 0 15 60 52 58 

6 26 43 8 15 0 56 49 55 

7 51 88 58 60 56 0 45 52 

8 68 81 50 52 49 45 0 7 

9 75 87 57 58 55 52 7 0 

10 46 61 28 32 26 23 32 28 

 

 



207 

 

 

 

 To    

From    16 17 18 19 20 21 22 23 

11 0 43 22 35 26 51 68 75 

12 43 0 44 30 43 88 81 87 

13 35 30 15 0 15 60 52 58 

14 68 81 50 52 49 45 0 7 

15 58 55 40 28 40 57 46 50 

16 0 43 22 35 26 51 68 75 

17 43 0 44 30 43 88 81 87 

18 22 44 0 15 8 58 50 57 

19 35 30 15 0 15 60 52 58 

20 26 43 8 15 0 56 49 55 

21 51 88 58 60 56 0 45 52 

22 68 81 50 52 49 45 0 7 

 



208 

 

 

 

 To    

From    16 17 18 19 20 21 22 23 

23 75 87 57 58 55 52 7 0 

24 46 61 28 32 26 23 32 28 

25 38 53 20 24 18 29 35 42 

26 34 46 16 17 15 44 36 42 

27 70 69 52 45 51 65 50 45 

28 27 63 31 34 26 30 52 58 

29 82 94 64 66 62 59 15 11 

30 64 77 46 48 44 12 34 41 

31 68 80 50 45 50 57 43 37 

32 35 58 25 29 22 25 39 45 

33 57 70 39 41 38 34 19 26 



209 

 

 

 

 To    

From    16 17 18 19 20 21 22 23 

34 54 67 36 38 34 26 20 26 

35 45 58 27 29 26 32 24 30 

36 32 27 36 56 43 93 86 92 

37 20 58 40 53 44 68 86 93 

38 53 92 73 86 77 101 119 126 

39 61 100 82 95 86 110 128 134 

40 40 79 60 73 64 88 106 112 

41 80 80 84 98 92 141 134 140 

42 46 57 50 64 58 107 100 106 



210 

 

 

 

 To    

From    24 25 26 27 28 29 30 31 

0 21 13 10 63 26 57 37 55 

1 46 35 28 14 60 59 46 24 

2 46 38 34 70 27 82 64 68 

3 61 53 46 69 63 94 77 80 

4 28 20 16 52 31 64 46 50 

5 32 24 17 45 34 66 48 45 

6 26 18 15 51 26 62 44 50 

7 23 29 44 65 30 59 12 57 

8 32 35 36 50 52 15 34 43 

9 28 42 42 45 58 11 41 37 

10 0 5 28 51 23 46 13 44 

 

 



211 

 

 

 

 To    

From    24 25 26 27 28 29 30 31 

11 46 38 34 70 27 82 64 68 

12 61 53 46 69 63 94 77 80 

13 32 24 17 45 34 66 48 45 

14 32 35 36 50 52 15 34 43 

15 46 35 28 14 60 59 46 24 

16 46 38 34 70 27 82 64 68 

17 61 53 46 69 63 94 77 80 

18 28 20 16 52 31 64 46 50 

19 32 24 17 45 34 66 48 45 

20 26 18 15 51 26 62 44 50 

21 23 29 44 65 30 59 12 57 

22 32 35 36 50 52 15 34 43 

 



212 

 

 

 

 To    

From    24 25 26 27 28 29 30 31 

23 28 42 42 45 58 11 41 37 

24 0 5 28 51 23 46 13 44 

25 5 0 12 57 29 52 12 50 

26 28 12 0 40 36 50 32 48 

27 51 57 40 0 71 65 56 7 

28 23 29 36 71 0 67 31 64 

29 46 52 50 65 67 0 48 56 

30 13 12 32 56 31 48 0 46 

31 44 50 48 7 64 56 46 0 

32 11 11 35 59 14 53 18 51 

33 20 27 25 31 41 33 23 24 



213 

 

 

 

 To    

From    24 25 26 27 28 29 30 31 

34 14 13 22 39 35 34 14 32 

35 17 10 13 43 38 38 21 36 

36 63 56 51 52 66 99 82 85 

37 64 56 52 93 42 100 83 86 

38 97 90 85 126 76 113 116 119 

39 105 98 94 135 84 141 124 127 

40 84 76 72 113 62 120 102 105 

41 111 104 99 140 114 147 130 133 

42 77 70 65 106 80 113 96 99 



214 

 

 

 

 To    

From    32 33 34 35 36 37 38 39 

0 17 32 29 20 44 44 78 86 

1 54 29 33 31 75 76 109 118 

2 35 57 54 45 32 20 53 61 

3 58 70 67 58 27 58 92 100 

4 25 39 36 27 36 40 73 82 

5 29 41 38 29 56 53 86 95 

6 22 38 34 26 43 44 77 86 

7 25 34 26 32 93 68 101 110 

8 39 19 20 24 86 86 119 128 

9 45 26 26 30 92 93 126 134 

10 11 20 14 17 63 64 97 105 

 

 



215 

 

 

 

 To    

From    32 33 34 35 36 37 38 39 

11 35 57 54 45 32 20 53 61 

12 58 70 67 58 27 58 92 100 

13 29 41 38 29 56 53 86 95 

14 39 19 20 24 86 86 119 128 

15 54 29 33 31 75 76 109 118 

16 35 57 54 45 32 20 53 61 

17 58 70 67 58 27 58 92 100 

18 25 39 36 27 36 40 73 82 

19 29 41 38 29 56 53 86 95 

20 22 38 34 26 43 44 77 86 

21 25 34 26 32 93 68 101 110 

22 39 19 20 24 86 86 119 128 

 



216 

 

 

 

 To    

From    32 33 34 35 36 37 38 39 

23 45 26 26 30 92 93 126 134 

24 11 20 14 17 63 64 97 105 

25 11 27 13 10 56 56 90 98 

26 35 25 22 13 51 52 85 94 

27 59 31 39 43 52 93 126 135 

28 14 41 35 38 66 42 76 84 

29 53 33 34 38 99 100 113 141 

30 18 23 14 21 82 83 116 124 

31 51 24 32 36 85 86 119 127 

32 0 28 22 25 61 52 85 94 

33 28 0 9 13 75 76 109 117 



217 

 

 

 

 To    

From    32 33 34 35 36 37 38 39 

34 22 9 0 11 71 72 105 114 

35 25 13 11 0 63 63 96 105 

36 61 75 71 63 0 34 68 76 

37 52 76 72 63 34 0 35 43 

38 85 109 105 96 68 35 0 16 

39 94 117 114 105 76 43 16 0 

40 72 95 92 83 54 21 29 22 

41 109 123 119 111 57 80 66 50 

42 75 89 85 77 33 46 50 34 

 



218 

 

 

 

 To    

From    40 41 42 

0 64 92 58 

1 96 123 89 

2 40 80 46 

3 79 80 57 

4 60 84 50 

5 73 98 64 

6 64 92 58 

7 88 141 107 

8 106 134 100 

9 112 140 106 

10 84 111 77 

 

 

 To    

From    40 41 42 

11 40 80 46 

12 79 80 57 

13 73 98 64 

14 106 134 100 

15 96 123 89 

16 40 80 46 

17 79 80 57 

18 60 84 50 

19 73 98 64 

20 64 92 58 

21 88 141 107 
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 To    

From    40 41 42 

22 106 134 100 

23 112 140 106 

24 84 111 77 

25 76 104 70 

26 72 99 65 

27 113 140 106 

28 62 114 80 

29 120 147 113 

30 102 130 96 

31 105 133 99 

32 72 109 75 

 

 

 To    

From    40 41 42 

33 95 123 89 

34 92 119 85 

35 83 111 77 

36 54 57 33 

37 21 80 46 

38 29 66 50 

39 22 50 34 

40 0 55 21 

41 55 0 35 

42 21 35 0 
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Appendix C:  Schedules Associated with Best Solutions for Different Routing 

Problems 

C.1. PVRPB Solutions Obtained Using Basic Model Formulation 

Test Scenario #1 

 
 

Tour Stop 

Weekday Vehicle 1 2 3 4 5 

Monday 1 4 5 0 

  Tuesday 1 1 3 5 4 0 

Friday 6 2 4 5 0 

  

Test Scenario #2 

 
 

Tour Stop 

Weekday Vehicle 1 2 3 4 5 

Monday 1 6 5 0 

  Thursday 1 1 3 5 6 0 

Friday 2 2 4 6 5 0 
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Test Scenario #3 

 
 

Tour Stop 

Weekday Vehicle 1 2 3 4 5 

Monday 4 5 6 7 0 

 Wednesday 4 3 1 7 6 0 

Thursday 7 4 2 7 6 0 

 

Test Scenario #4 

 
 

Tour Stop 

Weekday Vehicle 1 2 3 4 5 6 

Wednesday 7 5 8 7 0 

  Thursday 7 3 1 8 7 0 

 Friday 3 6 4 2 7 8 0 
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Test Scenario #5 

 
 

Tour Stop 

Weekday Vehicle 1 2 3 4 5 6 

Monday 1 3 1 8 9 0 

 Wednesday 6 6 4 5 8 9 0 

Thursday 6 2 7 8 9 0 

  

Test Scenario #6 

 
 

Tour Stop 

Weekday Vehicle 1 2 3 4 5 6 

Monday 7 6 4 1 9 10 0 

Tuesday 6 2 7 9 10 0 

 
Wednesday 

2 8 9 10 0 

  3 5 3 0 
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Test Scenario #7 

  Tour Stop 

Weekday Vehicle 1 2 3 4 5 6 7 

Monday 1 5 1 15 0    

 3 10 7 14 11 12 13 0 

Tuesday 3 6 9 8 14 15 0  

 7 4 2 11 12 13 0  

Friday 4 3 12 13 15 14 11 0 
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Test Scenario #8 

 
 

Tour Stop 

Weekday Vehicle 1 2 3 4 5 6 7 8 9 

Monday 
2 1 14 15 20 11 0 

   5 3 17 12 13 16 18 0 

  
Tuesday 

3 4 2 11 16 20 14 15 0 

 4 10 7 13 0 

     Wednesday 4 18 20 19 15 14 12 11 16 0 

Thursday 7 5 19 13 17 0 

    Friday 5 6 8 9 17 12 18 19 0 

  

 

 

 

 



225 

 

 

 

Test Scenario #9 

 
 

Tour Stop 

Weekday Vehicle 1 2 3 4 5 6 7 8 9 

Monday 
5 1 15 19 0 

     6 24 22 23 21 16 17 18 20 0 

Tuesday 4 9 23 22 15 25 0 

   
Wednesday 

2 10 7 21 22 15 25 0 

  6 13 5 4 18 20 25 0 

  
Thursday 

3 6 2 11 12 17 19 0 

  4 14 8 23 24 18 16 0 

  Friday 3 3 16 21 24 25 20 0 
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C.2. PVRPB Solutions Obtained by Adding Tour Limitation Constraints to 

Model Formulation 

Test Scenario #1 

  Tour Stop 

Weekday Vehicle 1 2 3 4 

Monday 1 3 5 4 0 

Tuesday 1 1 5 4 0 

Friday 1 2 4 5 0 

 

Test Scenario #2 

 
 

Tour Stop 

Weekday Vehicle 1 2 3 4 5 

Monday 1 3 5 6 0 

 Tuesday 4 4 6 0 

  Thursday 1 1 5 0 

  Friday 4 2 6 5 0 
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Test Scenario #3 

  Tour Stop 

Weekday Vehicle 1 2 3 4 

Monday 5 3 6 7 0 

Tuesday 6 1 7 0  

Wednesday 1 2 7 0  

Thursday 7 5 6 0  

Friday 3 4 6 0  

 

Test Scenario #4 

  Tour Stop 

Weekday Vehicle 1 2 3 4 

Monday 1 6 0   

 2 1 8 7 0 

Tuesday 1 3 8 7 0 

 5 5 0   

Thursday 3 4 0   

Friday 6 2 7 8 0 
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Test Scenario #5 

  Tour Stop 

Weekday Vehicle 1 2 3 4 

Monday 1 2 0   

 2 7 8 9 0 

 7 6 0   

Wednesday 3 4 0   

Thursday 1 1 8 9 0 

Friday 2 3 8 9 0 

 6 5 0   
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Test Scenario #6 

 
 

Tour Stop 

Weekday Vehicle 1 2 3 4 

Monday 

1 1 0 

  4 3 9 10 0 

5 6 0 

  Tuesday 4 8 9 10 0 

Wednesday 
4 4 0 

  5 7 9 10 0 

Thursday 5 5 0 

  Friday 3 2 0 
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Test Scenario # 7 

 
 

Tour Stop 

Weekday Vehicle 1 2 3 4 5 

Monday 2 7 14 0 

  Tuesday 4 9 14 15 0 

 
Wednesday 

4 1 15 0 

  6 5 13 12 11 0 

Thursday 

1 2 11 12 13 0 

5 4 0 

   7 6 0 

   

Friday 

1 8 14 15 13 0 

5 10 0 

   7 3 12 11 0 
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Test Scenario #8 

 
 

Tour Stop 

Weekday Vehicle 1 2 3 4 5 6 7 

Monday 

1 10 0 

     3 8 14 15 19 13 0 

 5 6 20 0 

    
Tuesday 

2 4 18 20 0 

   5 9 14 15 19 13 0 

 Wednesday 6 3 17 12 16 11 18 0 

Thursday 5 1 15 17 12 16 11 0 

Friday 

1 7 14 20 0 

   4 5 13 19 12 17 0 

 7 2 11 16 18 0 
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Test Scenario #9 

 
 

Tour Stop 

Weekday Vehicle 1 2 3 4 5 6 7 

Monday 

1 2 16 18 20 0 

  3 8 22 23 15 0 

  6 12 17 19 0 

   

Tuesday 

5 7 21 24 25 0 

  6 5 19 0 

    7 11 16 17 0 

   

Wednesday 

1 6 20 0 

    2 

       3 10 21 24 25 0 

  6 3 17 16 18 0 

  
Thursday 

2 4 18 20 0 

   6 14 22 23 15 0 
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Test Scenario #9 (cont’d.) 

Friday 
4 13 19 0 

    7 9 23 22 21 24 25 0 

 

Test Scenario #10 

 
 

Tour Stop 

Weekday Vehicle 1 2 3 4 5 6 7 

Monday 
2 5 19 17 16 18 - 

 5 8 22 29 23 24 25 - 

Tuesday 
4 6 20 - 

    7 10 24 30 21 28 - 

 
Wednesday 

5 3 17 19 26 0 

  6 2 16 18 20 0 
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Test Scenario #10 (cont’d.) 

Thursday 2 12 17 26 0    

 5 7 21 30 25 24 28 0 

 
6          9         23  29 22 27 15 0 

Friday 

3        11         16  28 21 30 25 0 

4 13 19 0         

5 4 18 20 0       

6        14         22  29 23 27 15 0 

 

Test Scenario #11 

 
 

Tour Stop 

Weekday Vehicle 1 2 3 4 5 6 7 

Monday 
4 7 21 29 22 24 25 0 

7 4 26 15 31 33 35 0 
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Test Scenario #11 (cont’d.) 

Tuesday 
3 3 16 18 26 0 

  4 9 23 34 30 28 0 

 

Wednesday 

3 10 24 30 21 16 18 0 

5 12 17 31 27 15 20 0 

7 8 22 35 29 33 19 0 

Thursday 

1 6 20 25 0 

   2 14 22 23 35 24 32 0 

7 3 17 19 34 27 31 0 

Friday 
2 11 28 29 23 34 32 0 

6 5 16 17 19 18 20 0 
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C.3. PVRPB Solutions Obtained Using MULTI-HGA-ROUTE 

Test Scenario #1 

 
 

Tour Stops 

Weekday Vehicle 1 2 3 4 

Tuesday 2 2 4 5 0 

Wednesday 5 3 5 4 0 

Thursday 1 1 5 4 

  

Test Scenario #2 

 
 

Tour Stops 

Weekday Vehicle 1 2 3 4 5 

Tuesday 2 1 5 6 0 

 Thursday 7 2 6 5 0 

 Friday 4 4 3 5 6 0 

 

Test Scenario #3 

 
 

Tour Stops 

Weekday Vehicle 1 2 3 4 5 

Tuesday 4 3 4 6 7 0 

Wednesday 7 2 1 7 6 0 

Friday 7 5 6 7 0 
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Test Scenario #4 

 
 

Tour Stops 

Weekday Vehicle 1 2 3 4 5 

Tuesday 2 2 1 8 7 0 

Wednesday 6 6 5 8 7 0 

Friday 6 4 3 8 7 0 

 

Test Scenario #5 

 
 

Tour Stops 

Weekday Vehicle 1 2 3 4 5 6 

Wednesday 3 6 5 8 9 0   

Thursday 
2 3 1 8 9 0   

4 4 2 0       

Friday 6 7 8 9 0     

 

Test Scenario #6 

 
 

Tour Stops 

Weekday Vehicle 1 2 3 4 5 

Monday 6 4 3 9 10 0 

Tuesday 3 6 5 0     

Thursday 1 2 1 9 10 0 
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Test Scenario #6 (cont’d.) 

Friday 5 7 8 9 10 0 

 

Test Scenario #7 

 
 

Tour Stops 

Weekday Vehicle 1 2 3 4 5 6 7 8 

Monday 

1 5 1 15 12 13 0 

  2 6 2 11 0 

    7 10 9 14 0 

    Thursday 2 4 3 12 11 14 15 13 0 

Friday 1 7 8 14 15 13 12 11 0 
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Test Scenario #8 

 
 

Tour Stops 

Weekday Vehicle 1 2 3 4 5 6 7 8 9 

Monday 
1 2 1 15 14 0         

2 20 18 16 11 12 17 19 13 0 

Wednesday 1 8 7 0             

Thursday 
5 3 17 12 11 16 0       

7 4 18 20 14 15 19 13 0   

Friday 
2 5 6 20 18 16 11 0     

5 10 9 14 15 12 17 13 19 0 
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Test Scenario #9 

 
 

Tour Stops 

Weekday Vehicle 1 2 3 4 5 6 7 8 9 

Monday 
2 6 5 19 15 17 16 18 20 0 

6 8 7 21 22 23 24 25 0   

Tuesday 
4 20 18 16 17 19 0       

6 10 9 23 22 15 21 24 25 0 

Wednesday 

1 13 19 0             

5 1 14 22 23 0         

6 2 21 24 25 20 0       

Thursday 4 11 12 17 16 18 15 0     

Friday 5 3 4 0             
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Test Scenario #10 

 
 

Tour Stops 

Weekday Vehicle 1 2 3 4 5 6 7 8 9 10 11 

Monday 

3 13 3 17 16 0 

      4 4 18 20 28 21 30 24 25 26 19 0 

7 14 22 29 23 27 15 0 

    Tuesday 3 7 8 29 27 30 28 0 

    Wednesday 6 6 5 19 15 17 16 18 20 0 

  Thursday 4 10 9 23 22 21 24 25 26 0 

  

Friday 

2 20 18 0 

        3 2 11 16 28 0 

      4 12 17 19 26 25 24 0 

    5 1 15 27 23 29 22 21 30 0 
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Test Scenario #11 

 
 

Tour Stops 

Weekday Vehicle 1 2 3 4 5 6 7 8 9 10 

Monday 

1 14 22 29 23 31 27 33 34 35 0 

5 6 20 18 19 26 0 

    7 11 28 21 30 25 24 32 0 

  
Tuesday 

2 13 3 17 0 

      3 16 21 25 24 23 22 15 26 0 

 
Wednesday 

3 4 18 19 20 28 30 32 0 

  7 10 8 29 33 27 31 34 35 0 

 
Thursday 

1 9 7 21 22 23 15 0 

   2 12 17 16 0 

      

Friday 

3 20 18 17 19 26 35 0 

   4 5 1 15 27 31 33 29 34 0 

 5 2 16 28 32 30 24 25 0 
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Test Scenario #12 

 
 

Tour Stops 

Weekday Vehicle 1 2 3 4 5 6 7 8 9 10 11 

Monday 

5 3 17 36 37 38 16 0 

    6 4 18 0 

        7 9 33 34 35 15 19 20 0 

   

Tuesday 

2 11 21 34 33 35 25 26 0 

   5 37 40 38 39 41 42 36 0 

   6 8 22 23 24 0 

      

Wednesday 

1 32 28 21 30 34 25 0 

    3 5 6 38 37 36 0 

     4 10 24 22 29 23 31 27 33 35 26 0 

Thursday 

1 2 16 40 39 41 42 19 0 

   2 14 29 28 20 18 0 

     6 13 12 17 15 27 31 30 32 0 
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Test Scenario #12 (cont’d.) 

Friday 

1 19 18 42 41 39 40 0 

  3 26 25 32 28 0 

    6 1 31 27 15 17 16 20 0 

 7 7 21 30 22 29 23 24 0 
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C.4. PVRPBTW Solutions Obtained Using Basic Model Formulation 

Test Scenario #1 

 
 

Vehicle Stop 

Weekday Vehicle 1 2 3 4 

Monday 2 2 3 0   

Tuesday 1 1 4 5 0 

Wednesday 7 4 5 0   

Friday 1 4 5 0   

 

Test Scenario #2 

 
 

Vehicle Stop 

Weekday Vehicle 1 2 3 

Monday 

1 6 5 0 

3 1 3 0 

4 4 2 0 

Tuesday 6 6 5 0 

Wednesday 1 6 5 0 
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Test Scenario #3 

 
 

Vehicle Stop 

Weekday Vehicle 1 2 3 4 

Monday 1 6 7 0 

 
Tuesday 

1 5 6 7 0 

2 1 3 0 

 Thursday 3 6 7 0 

 Friday 4 4 2 0 

  

Test Scenario #4 

 
 

Vehicle Stop 

Weekday Vehicle 1 2 3 4 

Monday 

1 7 8 0   

6 1 3 0   

7 6 4 2 0 

Tuesday 1 5 7 8 0 

Wednesday 4 7 8 0   
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Test Scenario #5 

 
 

Vehicle Stop 

Weekday Vehicle 1 2 3 4 5 

Monday 5 7 8 9 0 

 Tuesday 1 8 9 0 

  

Thursday 

1 5 1 8 9 0 

5 2 3 0 

  7 6 4 0 

   

Test Scenario #6 

 

 
 

Vehicle Stop 

Weekday Vehicle 1 2 3 4 5 

Monday 6 6 4 10 9 0 

Wednesday 3 7 8 9 10 0 

Friday 
2 5 1 9 10 0 

3 2 3 0 
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Test Scenario #7 

 
 

Vehicle Stop 

Weekday Vehicle 1 2 3 4 5 6 

Monday 5 9 14 13 0 

  Tuesday 6 5 1 13 0     

Wednesday 

2 3 12 0       

3 8 14 15 0 

  4 6 4 2 11 0   

Thursday 1 10 7 14 11 12 0 

Friday 1 11 12 13 15 0   
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Test Scenario #8 

 
 

Vehicle Stop 

Weekday Vehicle 1 2 3 4 5 6 7 8 9 

Monday 

4 6 20 19 13 0         

5 4 2 11 16 18 0 

   6 1 3 17 12 0         

Tuesday 
4 12 17 16 11 18 20 0     

6 9 8 14 15 0         

Wednesday 7 5 13 19 14 15 0 

   
Friday 

3 20 19 13 17 12 11 16 18 0 

4 10 7 14 15 0         
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Test Scenario #9 

 
 

Vehicle Stop 

Weekday Vehicle 1 2 3 4 5 6 7 

Monday 
1 9 14 22 23 21 0 

 4 5 19 17 15 18 20 0 

Tuesday 
4 4 1 15 0 

   5 6 20 16 18 22 23 0 

Wednesday 2 10 7 25 24 23 0 

 
Thursday 

2 13 19 17 16 18 0 

 5 25 24 21 0 

   

Friday 

1 11 2 16 20 0 

  2 19 25 24 21 0 

  4 8 22 15 0 

   6 12 3 17 0 
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C.5. PVRPBTW Solutions Obtained Adding Tour Limitation Constraints to 

Model Formulation 

Test Scenario #1 

 
 

Vehicle Stop 

Weekday Vehicle 1 2 3 4 

Monday 1 4 5 0   

Tuesday 3 2 0     

Wednesday 5 3 0     

Thursday 6 4 5 0   

Friday 4 1 4 5 0 

 

Test Scenario #2 

 
 

Vehicle Stop 

Weekday Vehicle 1 2 3 

Monday 
5 6 0   

6 4 5 0 

Tuesday 

1 1 5 0 

2 6 0   

3 2 0   

Wednesday 5 3 0   

Thursday 1 6 5 0 
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Test Scenario #3 

 
 

Vehicle Stop 

Weekday Vehicle 1 2 3 4 

Monday 

1 3 0     

4 4 0     

6 6 7 0   

Tuesday 6 5 6 7 0 

Wednesday 5 1 0 

  Thursday 5 5 6 7 0 

Friday 7 2 0     

 

Test Scenario #4 

 
 

Vehicle Stop 

Weekday Vehicle 1 2 3 4 

Monday 
1 4 0     

3 7 8 0 

 Tuesday 1 2 0     

Wednesday 
5 1 0 

  7 6 7 8 0 

Thursday 7 3 0     

Friday 4 5 7 8 0 
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Test Scenario #5 

 
 

Vehicle Stop 

Weekday Vehicle 1 2 3 4 

Monday 1 5 8 9 0 

Tuesday 
1 1 8 9 0 

3 4 0 

  Wednesday 5 3 0 

  
Thursday 

1 7 8 9 0 

6 6 0     

Friday 5 2 0 

   

Test Scenario #6 

 
 

Vehicle Stop 

Weekday Vehicle 1 2 3 4 

Monday 1 7 9 10 0 
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Test Scenario #6 (cont’d.) 

Tuesday 1 5 0 

Wednesday 
1 8 9 

4 2 0 

Thursday 
2 3 0 

3 4 0 

Friday 
1 1 9 

3 6 0 

 

Test Scenario #7 

 
 

Vehicle Stop 

Weekday Vehicle 1 2 3 4 5 

Monday 
1 6 13 12 11 0 

3 7 14 15 0 

  



255 

 

 

 

Test Scenario #7 (cont’d.) 

Tuesday 

3 9 14 13 0 

 6 10 0       

7 2 11 0     

Thursday 7 5 13 12 11 0 

Friday 

1 4 0       

2 8 14 15 0   

7 3 12 0     
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Test Scenario #8 

 
 

Vehicle Stop 

Weekday Vehicle 1 2 3 4 5 6 7 

Monday 4 5 19 13 12 17 0   

Tuesday 1 4 18 16 11 0     

Wednesday 

2 6 20 13 19 0     

3 3 17 12 0 

   5 10 14 15 0 

   
Thursday 

2 8 14 15 0       

5 7 16 11 18 20 0 

 
Friday 

1 9 14 13 19 17 12 0 

4 2 11 16 18 20 0   
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Test Scenario #9 

 
 

Vehicle Stop 

Weekday Vehicle 1 2 3 4 5 6 

Monday 

1 4 18 0 

   2 3 17 0 

   3 1 19 25 24 20 0 

6 14 22 23 21 0 

 
Tuesday 

2 2 16 18 0 

  4 10 24 25 15 0 

 

Wednesday 

1 5 19 15 0 

  2 7 21 0 

   5 12 17 16 18 20 0 

Thursday 1 8 22 23 21 0 
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Test Scenario #9 (cont’d.) 

Friday 

1 9 23 0 

   2 6 20 15 0 

  4 13 24 25 0 

  6 11 22 19 17 16 0 
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C.6. PVRPBTW Solutions Obtained Using MULTI-HGA-ROUTE 

Test Scenario #1 

 
 

Vehicle Stop 

Weekday Vehicle 1 2 3 4 

Tuesday 6 5 4 0 

 
Wednesday 

1 1 5 4 0 

6 2 3 0 

 Friday 2 5 4 0 

  

Test Scenario #2 

 
 

Vehicle Stop 

Weekday Vehicle 1 2 3 4 5 

Monday 4 1 5 0 

  Tuesday 4 4 3 5 6 0 

Wednesday 5 2 6 5 0 

 Friday 7 6 0 

    

Test Scenario #3 

 
 

Vehicle Stop 

Weekday Vehicle 1 2 3 4 5 

Monday 5 5 4 6 7 0 
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Test Scenario #3 (cont’d.) 

Tuesday 5 1 0 

  
Wednesday 

5 3 6 0 

 7 7 0 

  Thursday 5 2 7 6 

  

Test Scenario #4 

 
 

Vehicle Stop 

Weekday Vehicle 1 2 3 4 

Wednesday 3 7 8 0 

 Thursday 7 7 8 0   

Friday 

2 1 3 0 

 6 6 4 2 0 

7 5 7 8 0 
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Test Scenario #5 

 
 

Vehicle Stop 

Weekday Vehicle 1 2 3 4 5 

Monday 2 8 9 0     

Tuesday 

3 5 1 8 9 0 

5 2 3 0     

6 6 4 0 

  Thursday 6 7 8 9 0 

  

Test Scenario #6 

 
 

Vehicle Stop 

Weekday Vehicle 1 2 3 4 5 

Monday 3 4 2 10 9 0 

Wednesday 
2 7 8 9 10 0 

7 1 3 0 

  Thursday 6 5 6 10 9 0 
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Test Scenario #7 

 
 

Vehicle Stop 

Weekday Vehicle 1 2 3 4 5 6 

Monday 
2 7 8 14 15 0   

5 11 12 13 0 

  
Tuesday 

2 10 9 14 15 0 

 6 6 5 13 12 11 0 

Thursday 3 1 2 11 12 0   

Friday 
2 13 15 14 0 

  4 4 3 0 
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Test Scenario #8 

 
 

Vehicle Stop 

Weekday Vehicle 1 2 3 4 5 6 7 8 9 10 

Monday 
4 11 12 13 0 

      5 7 8 14 0 

      
Tuesday 

3 5 19 17 15 20 0 

    6 2 16 18 0 

      
Wednesday 

4 1 15 14 0 

      7 11 12 13 0 

      
Thursday 

1 10 9 14 15 0 

     5 6 20 19 13 12 17 16 11 18 0 

Friday 
1 19 20 16 18 0 

     5 4 3 17 0 
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Test Scenario #9 

 
 

Vehicle Stop 

Weekday Vehicle 1 2 3 4 5 6 7 8 

Monday 
2 20 18 16 17 19 15 0 

 6 10 9 23 22 21 24 25 0 

Tuesday 

1 13 3 12 17 19 15 0 

 4 14 22 23 21 24 25 0 

 7 4 11 16 18 20 0 

  
Wednesday 

2 2 6 20 19 0 

   7 5 1 23 22 21 24 25 0 

Thursday 3 7 8 15 17 16 18 0 
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Test Scenario #10 

 
 

Vehicle Stop 

Weekday Vehicle 1 2 3 4 5 6 7 8 9 10 

Monday 2 26 23 22 21 24 25 0 

   

Tuesday 

1 4 3 17 19 0 

     2 20 18 16 28 24 21 30 25 26 0 

7 10 9 23 29 22 27 15 0 

  

Wednesday 

2 13 19 17 16 18 20 0 

   4 14 8 29 30 27 15 0 

   6 7 28 0 

       Thursday 6 6 5 26 23 22 21 24 25 0 

 

Friday 

1 11 2 16 18 20 0 

    2 12 17 19 0 

      3 1 15 27 29 30 28 0 
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Test Scenario #11 

 
 

Vehicle Stop 

Weekday Vehicle 1 2 3 4 5 6 7 8 

Monday 

4 1 15 31 27 0 

   5 14 8 33 29 0 

   6 30 34 35 0 

    7 32 28 16 17 0 

   

Tuesday 

2 34 30 21 33 31 27 0 

 3 11 28 32 24 25 0 

  5 20 18 0 

     7 19 26 35 22 23 29 0 

 

Wednesday 

2 6 28 24 21 33 31 27 0 

3 32 30 35 25 0 

   4 13 2 0 

     6 26 34 22 23 29 0 
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Test Scenario #11 (cont’d.) 

Thursday 

3 5 3 17 0 

    4 20 16 18 19 15 0 

  5 9 22 23 21 0 

   

Friday 

1 4 18 16 20 0 

   4 12 17 19 0 

    6 10 7 24 25 15 26 0 
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Test Scenario #12 

 
 

Vehicle Stop 

Weekday Vehicle 1 2 3 4 5 6 7 8 9 

Monday 

1 1 35 33 31 27 0 

   2 7 21 40 0 

     3 34 30 32 28 24 25 0 

  4 2 3 20 0 

     5 26 41 42 0 

     6 4 36 37 38 39 0 

   7 8 22 23 29 0 

    

Tuesday 

1 10 9 23 22 0 

    2 26 19 15 27 0 

    3 5 12 17 36 41 40 0 

  4 6 20 18 38 39 0 

   6 32 34 30 24 25 35 33 31 0 



269 

 

 

 

Test Scenario #12 (cont’d.) 

Tuesday 7 11 16 37 28 21 29 0   

Wednesday 

2 28 16 37 40 41 0 

   3 18 24 25 35 26 27 0 

  4 20 30 21 15 31 0 

   5 19 17 36 42 38 39 0 

  6 32 34 33 22 23 29 0 

  Thursday 2 42 0 

       
Friday 

4 14 15 0 

      7 13 19 17 16 18 0 
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C.7. HPVRPB Solutions Obtained Using Basic Model Formulation 

Test Scenario #1 

 
 

Tour Stop 

Weekday Vehicle 1 2 3 4 

Monday 7 5 4 0 

 Tuesday 5 2 4 0 

 Wednesday 5 3 5 0 

 Thursday 5 1 5 4 0 

 

Test Scenario #2 

 
 

Tour Stop 

Weekday Vehicle 1 2 3 4 

Monday 7 6 5 0 

 Tuesday 5 1 5 0 

 Thursday 3 3 5 6 0 

Friday 5 2 4 6 0 
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Test Scenario #3 

 
 

Tour Stop 

Weekday Vehicle 1 2 3 4 

Monday 5 1 7 0 

 Tuesday 5 5 6 0 

 
Wednesday 

5 3 6 0 

 7 7 0 

  
Friday 

5 2 4 6 0 

7 7 0 

   

Test Scenario #4 

 
 

Tour Stop 

Weekday Vehicle 1 2 3 4 

Monday 
5 5 6 0 

 7 7 0 

  
Tuesday 

5 2 4 6 0 

7 7 0 

  Thursday 5 1 7 0 

 Friday 5 3 6 0 
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Test Scenario #5 

 
 

Tour Stop 

Weekday Vehicle 1 2 3 4 

Monday 
5 3 6 0 

 7 8 9 0 

 Tuesday 5 5 0 

  Wednesday 5 7 8 9 0 

Thursday 5 2 4 0 

 Friday 5 1 8 9 0 

 

Test Scenario #6 

 
 

Tour Stop 

Weekday Vehicle 1 2 3 4 

Monday 5 2 4 0 

 Tuesday 5 3 6 0 

 
Wednesday 

4 5 0 

  5 8 9 10 0 

Thursday 5 7 9 10 0 

Friday 5 1 9 10 0 
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Test Scenario #7 

 
 

Tour Stop 

Weekday Vehicle 1 2 3 4 

Monday 

4 5 13 0   

5 7 14 15 0 

7 12 11 0 

 
Tuesday 

5 6 1 15 0 

7 13 12 11 0 

Wednesday 5 3 12 13 0 

Thursday 5 8 14 15 0 

Friday 
4 10 9 14 0 

5 4 2 11 0 
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Test Scenario #8 

 
 

Vehicle Path 

Weekday Vehicle 1 2 3 4 5 6 7 8 9 10 

Monday 5 5 19 13 12 17 16 11 18 20 0 

Tuesday 
5 7 14 15 13 19 0 

    7 11 16 0 

       
Wednesday 

4 10 9 14 20 0 

     5 1 15 13 19 0 

     Thursday 5 3 17 12 16 11 18 20 0 

  

Friday 

4 6 2 4 18 0 

     5 8 14 15 0 

      7 17 12 0 
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Test Scenario #9 

 
 

Tour Stop 

Weekday Vehicle 1 2 3 4 5 6 7 8 

Monday 

4 10 9 23 22 25 0 

  5 1 15 0 

     7 16 17 19 0 

    
Tuesday 

5 5 4 18 20 0 

   7 24 21 15 0 

    
Wednesday 

5 8 22 23 21 24 25 0 

 7 16 17 19 0 

    
Thursday 

5 12 3 17 0 

    6 6 11 16 18 20 19 0 

 
Friday 

1 2 7 21 24 25 0 

  5 13 14 22 23 15 18 20 0 
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Test Scenario #10 

 
 

Tour Stop 

Weekday Vehicle 1 2 3 4 5 6 7 8 9 10 

Monday 

1 14 7 21 30 25 24 0 

   3 10 9 23 27 15 26 0 

   5 5 0 

        7 20 18 16 0 

      
Tuesday 

5 12 3 17 19 0 

     6 6 20 18 27 15 26 21 30 25 0 

Wednesday 
5 8 22 29 23 24 28 16 0 

  7 19 20 18 0 

      

Thursday 

3 4 11 2 16 0 

     6 28 21 30 29 22 24 25 0 

  7 17 0 
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Test Scenario #10 (cont’d.) 

  Tour Stop 

Weekday Vehicle 1 2 3 4 5 6 7 8 9 10 

Friday 
5 1 15 22 29 23 27 26 0 

  6 13 19 17 28 0 

     



278 

 

 

 

C.8. HPVRPB Solutions Obtained by Adding Tour Limitation Constraints to 

Model Formulation 

Test Scenario #1 

 
 

Tour Stop 

Weekday Vehicle 1 2 3 4 

Monday 5 2 4 0 

 Tuesday 5 1 5 0 

 Wednesday 5 3 5 4 0 

Friday 7 4 5 0 

  

Test Scenario #2 

 
 

Vehicle Path 

Weekday Vehicle 1 2 3 4 

Monday 5 2 6 0 

 Tuesday 1 1 5 6 0 

Wednesday 5 3 5 0 

 Friday 6 4 6 5 0 
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Test Scenario #3 

 
 

Tour Stop 

Weekday Vehicle 1 2 3 

Monday 
5 2 6 0 

7 7 0 

 Tuesday 5 5 0 

 Wednesday 7 7 0 

 Thursday 6 4 6 0 

Friday 5 3 6 0 

 

Test Scenario #4 

 
 

Tour Stop 

Weekday Vehicle 1 2 3 

Monday 
5 1 0 

 6 6 0 

 Tuesday 7 8 7 0 

Wednesday 
5 3 0 

 7 8 7 0 

Thursday 
5 5 0 

 6 4 0 
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Test Scenario #4 (cont’d.) 

Friday 
5 2 0 

 7 8 7 0 

 

Test Scenario #5 

 
 

Tour Stop 

Weekday Vehicle 1 2 3 4 

Monday 

5 5 0 

  6 6 0 

  7 8 9 0 

 Tuesday 5 3 0 

  Wednesday 5 2 0 

  
Thursday 

5 7 8 9 0 

6 4 0 

  Friday 5 1 8 9 0 
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Test Scenario #6 

 
 

Tour Stop 

Weekday Vehicle 1 2 3 4 

Monday 5 8 9 10 0 

Tuesday 
4 5 0 

  5 3 0 

  Wednesday 5 1 9 10 0 

Thursday 
5 2 0 

  6 4 0 

  
Friday 

5 7 9 10 0 

6 6 0 
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Test Scenario #7 

 
 

Tour Stop 

Weekday Vehicle 1 2 3 4 

Monday 

4 5 13 0 

 5 7 14 15 0 

7 11 12 0 

 Tuesday 5 3 12 13 0 

Wednesday 

4 10 0 

  5 1 15 0 

 6 4 

   7 11 

   
Thursday 

5 8 14 0 

 6 6 0 

  
Friday 

4 2 11 0 

 5 9 14 15 0 



283 

 

 

 

Test Scenario #8 

 
 

Tour Stop 

Weekday Vehicle 1 2 3 4 5 6 7 

Monday 

4 5 13 19 0 

   5 3 17 12 11 16 18 0 

6 6 20 0 

    

Tuesday 

4 10 0 

     5 7 14 20 0 

   6 4 18 16 11 12 17 0 

Wednesday 5 1 15 17 12 19 13 0 

Thursday 5 8 14 15 19 13 0 

 
Friday 

4 2 11 16 18 20 0 

 5 9 14 15 0 
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Test Scenario #9 

 
 

Tour Stop 

Weekday Vehicle 1 2 3 4 5 6 7 

Monday 

4 1 15 0 

    5 7 21 24 25 0 

  6 12 17 16 18 0 

  
Tuesday 

5 9 23 22 21 24 25 0 

6 13 19 17 15 0 

  

Wednesday 

4 2 16 0 

    5 8 22 21 24 0 

  6 6 20 0 

    

Thursday 

4 10 25 0 

    5 3 17 19 0 

   6 11 16 18 20 0 
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Test Scenario #9 (cont’d.) 

Friday 

4 5 19 0 

    5 14 22 23 15 0 

  6 4 18 20 0 

    

Test Scenario #10 

 
 

Tour Stop 

Weekday Vehicle 1 2 3 4 5 6 7 

Monday 

5 8 22 29 23 27 15 0 

6 11 16 18 20 26 0 

 7 30 21 28 0 

   

Tuesday 

4 9 23 29 22 26 0 

 5 3 17 19 0 

   6 4 18 20 0 

   7 30 21 28 0 
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Test Scenario #10 (cont’d.) 

Wednesday 

4 2 16 18 0 

 5 7 21 30 24 25 

6 13 19 0 

  7 15 27 17 0 

 

Thursday 

4 10 24 25 0 

 5 1 15 27 26 0 

6 6 20 0 

  

Friday 

4 5 19 0 

  5 14 22 29 23 24 

6 12 17 16 28 0 
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Test Scenario #11 

 
 

Tour Stop 

Weekday Vehicle 1 2 3 4 5 6 7 

Monday 

4 1 15 26 0 

   5 8 22 23 29 33 35 0 

6 11 16 17 19 0 

  7 32 28 20 0 

   

Tuesday 

5 9 23 29 22 35 26 0 

6 12 17 16 28 32 0 

 7 15 27 31 0 

   

Wednesday 

4 5 19 20 0 

   5 14 22 31 27 26 0 

 6 4 18 34 30 21 24 0 

7 25 32 28 0 
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Test Scenario #11 (cont’d.) 

Thursday 

4 2 18 0 

    5 7 21 30 24 25 0 

 6 6 34 23 29 33 35 0 

Friday 

4 10 30 21 24 25 0 

 5 3 17 19 0 

   6 13 15 27 31 33 34 0 

7 16 18 20 0 
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C.9. HPVRPB Solutions Obtained Using MULTI-HGA-ROUTE 

Test Scenario #1 

 
 

Tour Stop 

Weekday Vehicle 1 2 3 4 

Monday 5 2 0 

  Tuesday 5 3 5 4 0 

Wednesday 4 1 5 4 0 

Friday 7 4 5 0 

  

Test Scenario #2 

 
 

Tour Stop 

Weekday Vehicle 1 2 3 4 5 

Monday 4 1 5 0 

  Tuesday 4 4 3 5 6 0 

Wednesday 5 2 6 5 0 

 Friday 7 6 0 

    

 

 

 

 

 



290 

 

 

 

Test Scenario #3 

 
 

Vehicle Stop 

Weekday Vehicle 1 2 3 4 

Monday 5 5 4 6 7 

Tuesday 5 1 0 

  
Wednesday 

5 3 6 0 

 7 7 0 

  Thursday 5 2 7 6 0 

 

Test Scenario #4 

 
 

Tour Stop 

Weekday Vehicle 1 2 3 4 5 

Monday 6 4 0 

   Tuesday 2 8 7 0 

  Wednesday 5 6 5 8 7 0 

Thursday 5 3 0 

   Friday 1 2 1 8 7 
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Test Scenario #5 

 
 

Tour Stop 

Weekday Vehicle 1 2 3 4 5 

Monday 5 2 4 8 9 0 

Tuesday 
5 3 0 

   7 8 9 0 

  
Thursday 

2 6 1 0 

  5 7 0 

   Friday 4 5 8 9 0 

  

Test Scenario #6 

 
 

Tour Stop 

Weekday Vehicle 1 2 3 4 5 

Monday 4 6 0 

   
Wednesday 

2 2 0 

   4 1 9 10 0 

 Thursday 5 4 5 9 10 0 

Friday 
1 7 8 9 10 0 

5 3 0 

   



292 

 

 

 

Test Scenario #7 

 
 

Tour Stop 

Weekday Vehicle 1 2 3 4 5 6 7 

Monday 
1 8 9 6 0 

   5 10 7 15 0 

   Tuesday 2 2 0 

     Wednesday 5 4 11 12 13 15 14 0 

Thursday 
4 5 13 0 

    5 1 15 14 12 11 0 

 Friday 2 3 12 11 14 13 0 
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Test Scenario #8 

 
 

Vehicle Stop 

Weekday Vehicle 1 2 3 4 5 6 7 8 9 10 11 

Tuesday 
1 4 3 17 19 0 

      6 14 15 18 16 20 0 

     

Wednesday 

1 5 1 15 14 18 20 0 

    4 6 2 16 11 12 17 13 19 0 

  5 14 15 12 17 13 19 18 11 16 20 0 

Thursday 
1 8 9 0 

        5 10 7 11 12 13 0 
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Test Scenario #9 

 
 

Tour Stop 

Weekday Vehicle 1 2 3 4 5 6 7 8 9 10 

Tuesday 
3 5 0                 

5 8 0                 

Wednesday 
1 14 9 23 22 21 24 25 0 

  5 13 12 17 19 15 16 18 20 0 

 

Thursday 

1 10 7 11 16 18 0         

4 1 15 0 

       6 6 20 17 19 23 22 21 24 25 0 

Friday 
3 4 2 16 18 20 24 21 25 0   

4 3 17 19 15 22 23 0 
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Test Scenario #10 

 
 

Tour Stop 

Weekday Vehicle 1 2 3 4 5 6 7 8 9 10 11 

Monday 6 15 19 17 16 18 20 0         

Tuesday 

1 5 3 0                 

5 4 14 22 23 29 0           

6 13 15 27 24 30 21 28 0 

   7 16 26 25 0               

Wednesday 

3 6 2 28 0 

       4 1 27 19 0               

5 7 21 30 29 23 22 24 25 26 20 0 

Thursday 
3 11 12 17 19 20 0           

7 16 18 15 0               
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Test Scenario #10 (cont’d.) 

Friday 

2 8 9 23 29 22 24 0 

    5 10 25 30 21 28 0           

6 18 17 27 26 0 

       

Test Scenario #11 

 
 

Vehicle Path 

Weekday Vehicle 1 2 3 4 5 6 7 8 9 10 11 

Monday 
2 10 8 22 23 21 24 25 20 18 0   

5 26 27 15 19 17 16 28 0 

   Tuesday 4 7 0 

         

Wednesday 

2 5 13 19 17 18 26 35 25 0     

3 14 22 23 29 33 31 27 15 0 

  6 4 20 16 28 32 21 30 34 24 0   
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Test Scenario #11 (cont’d.) 

Thursday 

1 1 15 27 31 33 22 23 29 0     

3 11 16 28 32 24 21 30 34 35 25 0 

5 3 17 19 26 18 20 0         

Friday 
4 6 12 2 32 0 

      5 9 29 33 31 34 30 35 0       
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Test Scenario #12 

 
 

Vehicle Stop 

Weekday Vehicle 1 2 3 4 5 6 7 8 9 10 

Monday 
1 18 20 26 15 23 22 21 24 25 0 

5 16 40 39 41 42 17 19 0 

  

Tuesday 

1 5 0 

        4 10 32 30 34 33 31 27 15 0 

 6 17 36 37 38 16 18 0 

   7 28 29 35 0 

      

Wednesday 

1 8 9 23 29 33 34 35 0 

  4 6 4 2 28 32 24 25 0 

  5 7 30 31 27 26 0 

    6 36 42 41 39 38 40 37 0 
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Test Scenario #12 (cont’d.) 

Thursday 

1 20 19 15 27 31 21 35 0 

  2 3 17 36 18 24 25 0 

   4 11 16 37 40 38 39 41 42 0 

 6 26 29 23 22 33 34 30 32 28 0 

Friday 
3 1 12 13 19 20 0 

    4 14 22 21 0 
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