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ABSTRACT 
 

Hudson, Dwight A. INTERFACING TO A SYNTHESIZED-TO-HUMAN VOICE 
CONVERTER BY WAY OF WEB-BASED SOCIAL NETWORKING (Major 
Professor: Dr. Corey A. Graves), North Carolina Agricultural and Technical State 
University 
 

With the exponential growth of social media in today’s society there is a growth 

in the amount of data that is disseminated on these sites.  With the amount of 

communication that takes place on Social Media sites such as Twitter and Facebook, 

there are not many ways to express ones emotions via sites aside from emoticons and 

Computer Language (i.e. LOL, SMH etc.).  Studies have shown the there is a correlation 

between what happens on social media and ones emotions [3].  Studies also show that 

users tend to express their opinions more via Social Media rather than in person [3].  

While there are TTS Applications that can be used to convert the text to speech, the 

speech that is created lacks the emotion that the user would have used if they were to 

have said it themselves.   

 The PSEE VOICE (Pervasive System for Educational Enhancement) is designed 

as add-on system to the UMSEE (Ubiquitous Mobile System for Educational 

Enhancement) project designed by Dr. Corey Graves and Brandon Judd.  By using 

Twitter, Cinch (Audio Twitter equivalent), and Espeak a TTS Application the PSEE 

VOICE system can register a user’s voice in the database and convert text sent in via 

Twitter.  The purpose of the system is to allow users to send text message that will sound 

more human like.  This thesis addresses the area of pitch and word transition and how it 

affects the clarity of a speech signal.  THE PSEE VOICE uses the Weighted Frequency 
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Warping and a Gaussian Mixture Model Based Transformation function.  The system 

will be based on training data that is used for registration, the transformation that is used 

for voice conversion, and the order of the Gaussian Mixture Models that are used for the 

training. The system proves that having more training sets, using 16th order GMM for 

training and using the GMM Based Transformation yields the clearest results.  
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

With the continuing expansion of social networks, such as Facebook, Twitter, 

YouTube, and Foursquare, in modern society, the type of information that is being 

exchanged is no longer just verbal (auditory) messages.  Users are exchanging large 

amounts of Pictures, Video and Music on a day-to-day basis. According to Doug Beaver 

[1], in 2008 there were over 10 billion photos uploaded to the Facebook server and 

expected that 2-3 Terabytes will be uploaded daily.  YouTube has over 800,000,000 

million viewers every month.  Twitter, being the newest of the social networks, went 

from about 3 million users at the beginning of 2009 to over 40 million users at the end of 

2009 [2]. Twitter is a social media site geared towards utilizing messages only as a means 

for people to express opinions.  Taking advantage of this large population one could 

subliminally educate or miseducate the masses. People between the ages of 14-25 are the 

primary users of Facebook. This age group also represents the majority of all high school 

and college students.  

The primary method of communication via Twitter is written text.  With written 

text, emotions and other personable traits are absent from the conversation.  A study was 

done in [3] to view how often people actually express emotions on Twitter.  The results 

showed that emotions are often attempted to be expressed via “smiley faces” or other key 

emotional words, which often have the ability for users to misinterpret ones emotions.  

Through spoken communication, aside from instances of sarcasm, ones emotions can 
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usually be identified. While there are many systems that can convert text to synthesize 

speech, a system capable of accurately converting messages from text form to a target 

human speech is currently unavailable. With the rise of social media sites such as twitter 

and further development of “text emotions”, all emotions will be able to be expressed via 

emoticons and other textual devices. A system is needed that will allow users to hear 

messages, that sound like the sender of the message from Twitter and other social media 

sites in the form of spoken word.  

1.2 Summary of Background 

 With the evolution of Digital Communication one can easily see how the use of 

print messages has become a thing of the past. While speech is still commonly used many 

would rather tweet or use other text-base social media sites to communicate instead of 

making a voice call via telephone.  With this in mind Text-to-Speech and Speech-to-Text 

Tools have become common throughout modern technology.  An example of technology 

of this type is Apple’s Siri Application [4]. This application allows users to input real 

time speech commands and receive feedback from a synthesized voice known as Siri.  

With the creation of synthesized speech applications such as Siri and E-speak (Freeware 

application to convert text to speech) the next step is to create more realistic and human-

like audio output [5]. Creating such a tool would require the capturing of intonation, 

pitch, dialect, tone quality, etc. in order to get the most realistic voice possible.   

 In the past years some researchers have developed tools that have addressed some 

of the issues to create voice conversion systems that utilize computational/ visualization 

Engines, such as MATLAB, to convert voice [6] [7] [8].  Developing systems able to 
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address these issues may require a variety of techniques such as Weight Frequency 

Warping, Formant Tracking, Gaussian Mixture Model Based, or Linear Predictive 

Coding.   

1.3 Proposed Solution  

Utilizing the UMSEE system that was conceived by Dr. Corey Graves, this 

system was then modified to become Twitter Based by Brandon Judd M.S. [9] This 

system utilizes twitter as its primary source for data and captures and analyzes those 

signals using Octave/MATLAB. Also this system was based on the work of Daniel 

Valencia M.S. who developed a TTS system that used text messaging as a means for 

English to Spanish translation [29].  Using this system as a base, the PSSEE VOICE 

system was developed as an add-on to this system that will capture messages from 

Twitter.  With twitter being one of the top Social Media Sites in society today there is an 

abundance of data and emotions that can be acquired, having access to twitter is limitless 

[10]. With this much data one has the ability to capture lots of text that will include 

emotion.  A system that would be able to accurately convert text sent by a user to the 

voice of the user would be useful.   

Finding a MATLAB –based voice conversion system, would be ideal. In nearly 

all of the research examined on Voice Conversion the mention is made of a “source” and 

a “target” speaker.  The idea is that the source speaker, after conversion, will sound like 

the target speaker, but saying what the source speaker said [11].  This will require a 

method for capturing voice files to be used for the source and target speakers.  This 
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project will address Voice Conversion with the source being a synthesized voice that is 

produced from some Text-to-Speech Application such as Siri, Espeak, or Google Voice. 

This project will approach ways to convert the vocal characteristics of a 

synthesized voice, produced from a TTS system, to a target voice by using social 

networks to acquire the source and target speaker for training and conversion. 

 

Figure 1.1 Apples Siri Logo 
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CHAPTER 2 

BACKGROUND 

2.1 Art of Speaking 

 Speech is the practice of communicating messages by utilizing a certain set of 

articulated sounds [12].  These sounds can be manipulated in many ways such as 

loudness, pitch, intonation, or emphasis.  Loudness can be defined as the amount of 

volume applied to a given phonetic syllable or word.  Pitch is the frequency at which a 

sound is made.  Within speech, pitch can also be associated with overtones, which are 

sounds that are the same just at different octaves.  The spontaneity of overtones also aid 

in making the human voice sound more realistic, in comparison to synthetic speech which 

has a programmatic way of applying overtones to the voice.  Also, intonation plays a 

major role in how well speech can be interpreted.  Intonation is a learned or natural 

inflection or deflection of the voice to certain words, phrases, or phonemes.  Intonation 

can be broken into two sub categories, which are prosody and articulation.  Prosody deals 

with how long certain sounds are held out for a given word.  Articulation deals heavily 

with the inflection and deflection of the voice.  Also known as dialect, articulation is a 

major factor in the characteristics of speech. Just as in the other characteristics, intonation 

can be very random an unpredictable.  The last characteristic addressed here is emphasis.  

Emphasis is a combination of intonation and loudness.  This characteristic, in the 

formation of speech, is very similar to loudness and articulation but in terms of speech 

interpretation it can play a major part. The characteristics discussed: Loudness, 

Intonation, and Emphasis all deal with what is called the neuromuscular commands [12]. 
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These are controlled by the neuromuscular commands given from the brain to produce 

the given sound.   

The production of speech by humans can be compared to that of a machine.  

Figure 2.1 from [12] gives a great explanation of how speech generation and speech 

recognition work.  Just as with a computer, human speech starts with a message.  The 

message is then formulated to a language code.  Examples of the “language code” include 

English, Spanish, Chinese, etc.  After it is converted to the users language then the 

neuromuscular system will then communicate with the code that was created and begin to 

produce the sound waves suitable for recognition from another listener.  After the speech 

has been produced then it is the job of the listener as well as the talker to extract the 

phonemes, and speech characteristics (Loudness, pitch, intonation, and emphasis) to 

determine what message was trying to be relayed.  The listener will use the Basilar 

membrane, which is inside of the ear to extract the features.  While this process is 

happening, just as with a computer, features are extracted and saved to a “database” then 

reassembled for later use.  So in the context of speech, the phonemes that can be 

understood are then processed into a language code and then interpreted as the message. 

Speech has other characteristics such as spectral energy, which is classified based 

on the phonetic sound that is being produced and the amount of intensity associated with 

it.  This spectral energy will be used later for the classifying of spectral changes within 

Gaussian Mixture Model the authors in [13] gives a great explanation of what a GMM is 

and how they affect synthesized speech. 
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Figure 2.1 Art of Speaking 

2.2 Text-To-Speech Technology 

 Text-to-Speech is the procedure of converting a written message to a verbal 

message by the use of some synthetic voice creation.  Within the past 20 years there have 

been 3 major methods for synthesizing voice: Residue Excited (RELP), Voice Excited 

(VELP), and Linear Predictive Coding (LPC).  The most commonly used method is LPC 

due to the advantages discussed in [14]. These methods are used within many 

applications such as E-Speak, Google Translate, AT&T Natural Voices ®, and Natural 

Reader.  These tools have various methods of creating the databases for the source of the 

speech sounds.  Some TTS applications use a diphone-based method in which there is 

one sound associated with a certain diphone. Diphones are a pair of phones, the basic unit 

of phonetics, which deal with a sound a certain sound.  With that method, there is no care 

about the prosody of the sound that is being used.  While this method does produce a 

synthesized voice, the sound produced is inhuman like and sometimes unrecognizable.  

Another method that is used for voice synthesizing is called unit selection, in which there 
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are multiple instances of one diphone and the system has the capability to choose an 

instance of that unit depending on the placement of that sound.   

 There are also applications such as Apple’s Siri in which the synthesize speech 

has the capability to include articulation specific to the users voice [4].  One of the issues 

of speech synthesis is that to get the most realistic sound the database that is being used 

must include a large data set and specification to what dialect is being used.  This is 

important so that the synthesized speech can sound more realistic given a different region 

and how articulation plays a part. 

2.3 Voice Conversion Methods  

 Voice Conversion can be defined as the method of converting one persons voice 

to another person’s voice.  Common terms used throughout voice conversion are source 

speaker and target speaker.  Source speaker being the voice that is going to be converted 

and target speaker being the voice that the source is being converted to, these two 

speakers are the foundation of voice conversion.   

 Many of the voice conversion systems have similar building bocks.  Gaussian 

Mixture Models and Hidden Markov Models are two concepts that are used in the 

descriptions of voice conversion systems [15].  Hidden Markov Models (HMM) are a 

statistical method of collecting data from observation vectors that uses probability as the 

measure to model sequential data. HMMs are created after collecting training data from a 

target or source speaker. HMMs observe the temporal progression of a sound and 

separate each accord sound into different states that represent those progressions.  

Gaussian Mixture Models, unlike the HMM, treats the entire sound as a single class and 
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classify the data based on the spectral characteristics.  While both models are commonly 

used in speech analysis, HMMs are used more commonly because they can be comprised 

of GMMs. Each GMM can be viewed as a state within the HMM and classified into 

different observation vectors and later used for conversion.  While this is the basis of 

voice conversion and how the states are determined, the data captured is what gives us 

different voice conversion methods. 

 Voice Conversion based on Formant mapping is one method of voice conversion 

[16] [17]. This method involves a process called frame alignment in which a training set 

created by the source speaker and a training set created by the target speaker are aligned.  

Each training set must contain the same phrases or sentence spoken by the respective 

speaker.  Once the frames are aligned then the formants, the spectral peaks of the sound 

spectrum of voice, are extracted from each training set and then warped using a method 

called frequency warping.  This process is used to produce a frequency warping function 

that will be used as a means to convert the source speech to the target speech.  

 Another voice conversion method is fundamental frequency adjustment.  This 

method takes the fundamental frequency of the source target, captured by a training set 

and the fundamental frequency of the target speaker and uses the average and variance of 

the two fundamental frequencies as a means to convert the source to the target. [17]

 Spectral Envelope Equalization is voice conversion techniques in which the curve 

between the average power spectra of the source and target are calculated.  This curve is 

then smoothed and used a filter for voice transformation. [17] 
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 Non-Aligned Weighted frequency warping is another method of voice conversion.  

This method is very similar to the formant mapping based conversion system.  Unlike the 

formant mapping the training sets that are used during alignment do not have to be the 

same.  During the alignment phase instead of the frames having to be of the exact same 

length and speech timing, a Maximum likelihood function is created from the Hidden 

Markov Model that is created.  This function will then be used similarly to the “perfectly 

aligned” training sets for the frequency warping techniques. [18]  

2.4 Scientific Computational/Visualization Engines and Voice Conversion 

  MATLAB is a common computational Engine that is used by engineers for 

audio, visual, and numerical data.  There are many toolboxes that are used to manipulate 

data.  Voice conversion requires the extensive use of calculations, which if done by hand 

would be nearly impossible.  Also the audio tools needed to convert the speech are easily 

accessible through MATLAB, thus making it a useful tool for voice conversion.  There 

are many voice conversion toolboxes that have been created in MATLAB using many of 

the different voice conversion methods.  These include the Siemens Voice Conversion 

Toolbox, VOICE BOX and HSM Voice Conversion Toolbox [6][7][8].  These toolkits 

take the functionality of MATLAB and allows the user to test from simple and very 

complex voice conversion. 

2.4.1 HSM Voice Conversion Toolbox 

The HSM Voice Conversion Toolkit uses the Harmonic Stochastic Model for 

voice conversion.  Dr. Daniel Erro of University Politècnica de Catalunya developed this 

system [19].  This model differs from its predecessors because it pays more attention to 
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the prosodic details of the signal as well it focus on better way to concatenate the 

segments that are formed during the analysis and synthesis process. To explain HSM, 

first consider voice conversion in general, Figure 2.2 shows a diagram of a typical voice 

conversion system.  

For this system, the first step is the analysis and synthesis of the original target 

and source speaker to assure that they can be used during the alignment phase.  Once the 

source and target have been synthesized they are then ready to create the corpus set, 

which include the speech parameters:  line spectral frequencies, spectral samples, 

formants, and cepstral coefficient. Those parameters will be used for training.  This 

project will be using the non-parallel corpus and training, which will make use of the 

nearest neighbor algorithm for alignment.  The nearest neighbor algorithm classifies data 

based on results, in this project, how close the frames are to each other.  The content of 

those frames are not the primary focus but rather the frames themselves. X represents the 

target speaker and Y represents the source speaker.  Two auxiliary vectors are then 

formed (x’ and y’) which will be used as the vectors that will be used to test the 

convergence.  The Nearest neighbor algorithm is repeated until the x’ and y’ converge 

and the GMM Function or Weighted Frequency Warping Function (WFW) stores the 

value as F, which will be used as the voice conversion function that will be used to 

convert the source to the target.  The authors in [16] give details about the algorithm.   
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Figure 2.2 Standard Voice Conversion System  

 

After the voice conversion function, F, has been created then it will be stored until the 

source voice is to be converted again.  Once converted the data has to be resynthesized so 

that it can become a waveform once more.  Then a fully converted sound will be 

available.   

2.4.2 Siemens Toolbox 

 The Siemens Toolbox is a MATLAB based voice conversion system that utilizes 

the Vocal Length Tract Normalization frequency and time domain transformation or 

linear transformation [6].  This system is based on pitch tracking which is explained in 

[20].  This tool allows users to have a fully functional system that allows them to 

determine the training algorithm that would be used for the wave files that are used.  
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Unfortunately this system has been discontinued and has been removed by the sponsoring 

company. 

2.4.3 Voicebox    

 This system as described in [7] has numerous voice conversion methods that 

could be use.  Mike Brooks developed this system for the public to practice voice 

conversion. Mike Brooks is a professor at Imperial College. While this system has many 

conversion methods such as, Frequency Warping and LPC filtering, the ease of use of 

this tool was not as simple. This system was not very user friendly 

2.5 Web-based Social Networking: Twitter and Cinch 

 Web-based Social Networking is the practice in which users of different networks 

communicate based on a variety of social demographics.  This functionality has resulted 

in the eruption of the Social Media Revolution. Companies such as YouTube, Facebook, 

Twitter, MySpace, and Google+ have erupted as some of the most prominent members of 

this revolution in the past few years.  While these are the more prominent members of the 

social media team there are a number of social networks that are growing in popularity.  

Twitter with 250,000,000 unique visitors each month is the 2nd most visited social 

media site in the world [10].  Twitter is a social network unlike its predecessors, 

Facebook and MySpace, as it has a very different layout in which users are only allowed 

to send in statuses that must be under 140 characters. With the aid of 3rd party 

applications such as TwitPic and TwitVid, Twitter can now engage the user in other 

manners by allowing users to upload videos or pictures.  Along with those applications, 

many websites now have a share button as seen in Figure 2.3, by which users can directly 
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share links or information.  Also other social networks have twitter plugins that allow 

users to sign into their own sites with their twitter credentials, which can be very helpful 

as users go from one site to another.  Twitter also uses the short-url technology, which 

allows users to shorten the length of a URL (Uniform Resource Locator)[22].  Twitter 

uses the “t.co” short code for all URLs that are placed in a message.  This is very helpful 

since there are a limited amount of characters one can use for tweets.  This gives the 

ability to share information across different social networks.   

For development purposes, a user may need to expand the short URL that is 

provided from Twitter. There are several “URL Expansion Sites” that allow users to input 

the short code and it will provide the original link examples are, expandurl.com, 

longurl.com, and Google’s URL Expander, to name a few. This technology is helpful 

because some URLS have very pertinent information such as a username or link ID.  

 Cinch is a social network that allows users to record audio messages onto a 

“timeline”, similar to Twitter, that a user may add to at any time [20].  Cinch allows one 

to post messages from one’s computer, home telephone, or cellular phone.  Users have 

the option to share the message with other social networks such as Twitter or Facebook.  

Cinch also allows users to sign in with their Twitter or Facebook credentials see Figure 

2.3 and 2.4.   
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Figure 2.3 Blog with Twitter Share Button  

 

Figure 2.4 Website that uses Twitter credentials to login  
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CHAPTER 3 

PSEE VOICE DEVELOPMENT 

3.1 Introduction 

 The PSEE VOICE system is a C# based application that will be used for the 

conversion of voice from synthesize speech, produced from text acquired from Twitter, to 

some target voice captured from a user using Cinch.  PSEE VOICE is divided into two 

major sub functions, Registration and Conversion.  Registration encompasses the 

incorporation of Cinch, Twitter, and MATLAB for the saving and manipulating of the 

target and source speaker.  Conversion involves Twitter, MATLAB, and the “To User’s” 

Cell phone to send a converted file to that user.  Figure 3.1 gives a greater explanation of 

how the system works as a whole.  Later on in this chapter the details will be explained. 

 

Figure 3.1. PSEE VOICE System Flow Chart 
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3.2 Voice Conversion Methodology 

Dr. Erro of the Polytechnic University of Catalonia has developed the 

methodologies that will be used for this project.  The explanation of the full system can 

be found in Section 2.4.  The following processes explain in greater detail what happens 

at each step. 

Analysis/Synthesis: 

The Target/Source (T/S) original training data is passed into the analyze function.  

The data is then parsed into a series of vectors, which capture the characteristics of the 

original data.  This data is then synthesized and then it is reconstructed into a nearly exact 

replica of the original data. 

Non-Parallel Corpus (Parameterization): 

 There are three main reasons discussed in [19] for the purpose of 

parameterization: (1) speaker identification, (2) difficulty in converting high dimensional 

vectors, and (3) voice conversion parameters have good interpolation properties. The 

speech parameters that are used in this system are line spectral frequencies, spectral 

samples, formants, and cepstral coefficient. These properties are then used for training to 

create a voice conversion function. 

Non-Parallel Training: 

 As described in section 3.1 the nearest neighbor algorithm will be used during the 

training to train the T/S speakers. The amount of GMMs (Gaussian Mixture Models) can 

also be specified as an input to the training function.  In section 5 we will see how the 

number of GMMs affect the voice conversion system.  This process will yield a Voice 
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conversion function, which will be used to convert the T/S speakers. This function will be 

specific to the T/S pair that is used to create it. 

GMM/WFW Convert: 

 The conversion process uses the conversion function that was created in the 

training process to convert the source speaker to the target speaker.  Once that occurs 

then there has to be an inverse parameterization that takes place to apply the proper vocal 

characteristics back to the converted voice.  After this process has taken place then the 

signal is then reconstructed to become a wave that can be heard as the final output. 

3.3 HSM VC Toolbox and PSEE VOICE 

 The HSM (Hidden Stochastic Model) Toolbox came with several functions that 

encompass the methodology described in section 3.2.   

3.3.1 Reconstruction  

During the Analysis and Synthesis phase there were two functions, HSMAnalyze.m and 

HSMSynthesize.m.  The input parameters to this phase are the original .wav file of the 

T/S speakers and the output is a .mat file, which contains the parameters of that input file.  

That file is then used as an input to the HSMSynthesize.m function, which is used to 

reconstruct a .wav file that will be used for parameterization/training.  The project 

required that the ampreduce.m be applied, which reduce the amplitude of the .wav files 

that would be used. Figure 3.2 gives an explanation of what takes place during this phase 

of the process. 
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Figure 3.2 Wave Reconstruction 

 3.3.2 Parameterization 

 After the Analysis and Synthesis phase the parameterization occurs in the 

HSMnonpcorpus.m file.  For the sake of this project we will be using the nonpcorpus and 

nonptraining because we are using non-parallel data sets.  The inputs for this function are 

the reconstructed signals of the synthesized signals.  The number of data sets can vary.  In 

the experiment section, how the length and number of samples can affect the results will 

be discussed later.  During the parameterization a .mat file containing both the T/S 

speakers’ speech parameters is created. The .mat file that is created is then passed into the 

HSMnonptraining.m function.  This function will create a voice conversion as well an 

inverse voice conversion function, which will be used during the inverse parameterization 

of the converted source.  After these functions have been created they are stored in a 

folder and wait to be used for conversion.   
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 3.3.3 Voice Conversion 

 Once the source speaker has input another file, either the function 

HSMwfwconvert.m or the function HSMgmmconvert.m is called, depending on the type 

of warping that is going to be used.  Just as the training data, the testing data has to pass 

through the ampreduce.m function for further analysis. The input file is analyzed, using 

HSMAnalyze.m and the vocal characteristics of that file are then passed into the 

respective convert function.  After the conversion has taken place then the .mat file is 

sent to HSMSynthesize.m for reconstruction and the final output is created. Figure 3.3 

gives a better description of what is happening during this phase. 

 

Figure 3.3 Voice Training 

 In the context of this thesis these are the only functions that were used for the 

voice conversion process.   
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3.4 PSEE VOICE System 

One great asset to utilizing social networking tools such as twitter is that the sites 

allow developers to use their functionality for further development.  In the scope of the 

research I will be utilizing the UMSEE model for the interface between Twitter and the 

C# Application [9].  Along with the UMSEE system this system will make use of the 

MATLAB Voice Conversion Toolbox described earlier utilizing Espeak and Cinch as a 

means for source and target speakers. This section will discuss how the full system works 

including the registration and conversion processes. 

3.4.1 Registration 

 

Figure 3.4 Registration 

Cinch Record: 

 Cinch will be used as a mechanism to capture the voice files that will be added to 

the database of target voices as shown in Figure 3.1.  Figure 3.5 explains how the voice 

collection will work.  In utilizing Cinch’s recording capability there will be 5 phrases that 
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will be used as the target voice.   Users can record the phrases in via computer, telephone, 

or cell phone. Once the cinch is recorded there is a short URL that is created which 

contains the MP3 of the cinch that was recorded.  After recording, the cinch must be 

posted to that users Twitter account.  The format for the Tweet is as follows, 

“@PSEEVOICE ??Phrase1 <icin.ch/#####>”.  The “cinch.fm” link is only viewed in that 

form on the twitter timeline.  

 

Figure 3.5.   Audio Recording from Cinch 

MP3 Capture: 

After recording the phrases into Cinch and posting them as a mention to the host 

Twitter account (@PSEEVOICE) the C# Application will use the UMSEE Mention 

retrieval to capture the 5 most recent mentions that contain “??Phrase” and “t.co”. NOTE: 

The icin.ch/##### is actually a second generation Short URL so it requires the use of a 

URL expander, expandurl.com, to get all generations of the link.  With each icin.ch short 

URL there are 3 URLs associated with it: “t.co”, “incin.ch”, and “cinch.fm”.  When the 

C# Application captures the mention it will read the URL in its “t.co” format. 
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After deciding if the mention has “t.co” in it that tweet is then split into the 

various words and the URL is extracted.  Through string manipulation the URL 

containing the MP3 that was recorded is then saved in a directory for later use. Figure 3.6 

shows how the entire MP3 Capture works. The data is stored in a folder that has the 

username (target) of the corresponding twitter/cinch user, as the title. 

 

 

Figure 3.6. MP3 Capture 



24 	
  
	
  

MP3 Conversion: 

This process is to convert the MP3s that have been captured from the Cinch are 

then converted to .wav files so that they can be used in the MATLAB toolbox.  

During this process the MP3read.m function, developed by Alfredo Fernandez [28], 

which takes in an .MP3 file and converts it to a .wav file.  After the file has been 

converted the length of the file is then checked to determine if it is the proper length 

for testing. If it is not the length that is specified then the zeroappend.m function will 

add zeros until the signal is the desired length.  The converted .wav files are sampled 

at a rate of 22khz and for the sake of the MATLAB toolbox the signal has to be 8khz.  

So to create the desired sampling frequency we have to interpolate the .wav file by 12 

and then decimate the signal by 33 to get the data’s sampling rate to 8khz.  After the 

signal has been resampled then it is pass through a Low-Pass Filter to remove higher 

frequencies that may have occurred during recording. Then the final signal is 

rewritten to a .wav file.  The system is explained in Figure 3.7. 

 

Figure 3.7. MP3 to Wave conversion 
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Espeak Wave Create: 

The TTS system that will be utilized for this thesis is Espeak.  “ESpeak is a 

compact open source software speech synthesizer for English and other languages, for 

Linux and Windows.   http://espeak.sourceforge.net Espeak uses a ‘formant synthesis’ 

method. This allows many languages to be provided in a small size. The speech is clear, 

and can be used at high speeds, but is not as natural or smooth as larger synthesizers 

which are based on human speech recordings.” [5] This synthesizer was chosen because 

it was the cheapest TTS speech application that was compatible with the system that was 

created.  While the quality of the speech is not as high as some of the more expensive 

competitors, it does create a synthesized speech that can be used for testing. 

Using the Espeak TTS system we use the same phrases that were used by the 

target voices in Cinch.  Espeak creates a wave file that will be put through the 

reconstruction process that was described in section 3.3.  The file is then saved in a 

database which will be used as the source during the voice conversion. This file will be 

saved as “TEMP_ORG.wav” in the “from user’s” directory. 

Cinch Reconstruction and Conversion:  

 After the Cinch MP3 has been converted then the signal is passed through the 

parameterization and reconstruction process described in section 3.3.  This signal will 

produce the reconstructed signal that will be used for conversion.   
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Voice Conversion: 

The reconstructed Espeak and cinch voices are then passed into the processes that 

were described in section 3.3.2 and 3.3.3.  The .mat files that are created are then stored 

for use during the testing phase. There is a registration tutorial shown in Appendix A. 

3.4.2 Conversion 

Message Retrieval: 

 At this phase the system will again go to the host twitter account to acquire the 

textual message from a tweet. The system will parse each tweet looking for “o_o” 

delimiter to determine if the message is in the proper form.  The proper form is as follow 

“@PSEEVOICE o_o <to user> <message>”.  After searching for the delimiter it will also 

save the “To Username”, “From Username”, and the message.  The usernames are then 

checked to determine if they are in the database, this process will be explained in greater 

detail in the next sub section.  If the check user process is validated then the message 

would be passed into the Espeak wave create function in MATLAB.   

Check User: 

 The “To Username” and “From Username” are used as inputs to see if they are 

inside of the Userfile.txt, which contain the username, carrier, and telephone number.  

From that data an EMAILfile.txt is created which creates the email based on telephone 

number and carrier (i.e. 55555555@pm.sprint.com). This information will be used in the 

send message function.  If the username is not in the text file, then the function will 

return false (invalid) and there is an on screen form that will capture that data and store it 

in the text file.   
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Voice Conversion: 

 After the users have been confirmed then the system uses the “from username” as 

means to search all directories to get the voice conversion function of that particular user.  

The files created, from the message, in the Espeak wave create function are viewed as the 

source and the voice conversion functions associated with the “from user” are seen as the 

target.  The two file sets will be used as the input to the MATLAB Voice conversion 

function.  After the file has been converted then the newly signal passes through another 

low pass filter to remove any other random noises that were created. Once the data has 

gone through all phases it is stored and saved for use in the message that will be sent. 

Send Message: 

 Once the wave file has been created then the “To Username” is used as an index 

to search for the email address associated with that username.  Once the name has been 

found the function returns the email address, which is passed in to the send message 

function.  This function sends the message along with the attachment including the wave 

file. 
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CHAPTER 4 

EXPERIMENTAL SETUP AND RESULTS 

4.1 Explanation of Setup 

The PSEE VOICE system has several parameters that can be tested.  The length 

of the sample, the order of the GMMs [19], or using a Gaussian Mixture Model based 

transformation versus using Weighted Frequency Warping transformation are the areas 

that were tested in this experiment.  These are the three areas that will be tested for this 

study.  These tests will help identify the best settings with which to get clear and 

intelligible conversions. 

  Since this work only requires conversion from synthetic speech to human voice 

each test will only require one voice sample. Each sample will undergo subjective testing 

from a random set of listeners to grade the quality of the voiced based on a 5=(Sounds 

Human like) to 1=(doesn’t sound human like at all).  

The data will also be tested objectively to find quantifiable measures of success in 

voice conversion.  When a sound is spoken by the source, after the data has been trained, 

that does not match what is in the database then a “squeak” will be heard.  By capturing 

the number of squeaks that a sample has this will test the clarity of a particular testing 

environment.  Along with the number of squeaks, the percentage of correctly transformed 

data will be captured.  The length of the squeaks will be parsed from the output and used 

to determine the percentage of the signal that is correctly trained. 
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4.1.1 Order of GMM Sample Setup 

 This experiment will test to see if the order of the GMM has an affect on the 

quality of the signal.  Using the GMM Transformation method the signal will be tested 

for 4th, 16th, and 32nd order GMM for training.  The signals will be divided into five-12 

second phrases. 

4.1.2 Number of Training Files  

 This experiment will test to see if the number of training sets will have an affect 

on the converted voice.  Each wave will use the same data set but that data set will be 

split into different length phrases. (I.e. Five-12 second phrases, Four-15 second phrases, 

or Two-30s phrases). All other parameters for this test will remain the same.  

4.1.3 GMM vs. Weighted Frequency Warping 

 This experiment will test the type of transformation that is being used for 

conversion.  As discussed in section 2.4.1 there are multiple methods that can be used for 

converting the trained data.  The two options that are available in the HSM Toolbox are 

Weighted Frequency Warping and GMM based conversion. The length will be 12 

seconds and the phrase will remain the same.  All recordings will be done through the 

computer.  All other parameters will remain constant except for those specified here. 

4.2 Results  

In this section we will take a look at the results based on the three experimental 

setups that were explained in the previous section.  The two test that were done on each 

data included a subjective hearing test by 20 random listeners and an observation of the 

amount of “squeaks” that are present in a given .wav file plot. 
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4.2.1 Subjective Hearing Test 

All users listened to the phrase that was sent in via E-Speak.  The message said, 

“This is a test for listeners to decide which settings sounds the most like Dwight, now the 

test is over”.   

The results of the test show that users found the 16th order GMM was the most 

human sounding signal.  While users were asked to ignore the squeaks that were 

associated with the signal, the 4th and 32nd order signals did have squeaks which could 

have taken away from the quality of the speech that they heard.   Table 4.1 shows the 

result of this test. While the 16th order was the most successful in comparison to the other 

two orders, the average score does reflect that users felt the converted signals sounded 

slightly more human like than synthesized.  

Table 4.1 Order of GMM Mean Opinion Score  

GMM Order Average Score  

4th  2.75 

16th  3.2 

32nd  2.45 

 

The results as it relates to the number of training sets did not vary much in results.  

Users felt that the signals that were produced here did not sound very human like.  While 

the five-12 second and four-15 second samples yielded the same average score, which 

was the highest, they were far away from sounding human like. Table 4.2 shows the 
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results of this test. With an average score of 1.95 users felt that these signals resembled 

more synthesized speech. 

Table 4.2 Number of Samples Mean Opinion Score  

Sample-Length Average Score  

Five-12 second 1.95 

Four-15 second 1.95 

Two-30 second 1.85 

 

These results show that using the Gaussian Mixture Model produces the most 

human like sounding samples.  While the WFW samples did produce a signal that users 

thought did sounded more human like, comments were made that the GMM transformed 

samples sounded “smoother”.  The “smoothness” of the voice equated too more human 

like transitions from word to word.  Table 4.3 shows the results from this test. 

Table 4.3 Transformation Method Mean Opinion Score  

Transformation Method Average Score  

Weighted Frequency Warping 3.3 

Gaussian Mixture Model 3.8 

 

4.2.2 Squeak Observations 

The extreme samples that are shown correspond to “squeaks” in the signal. 

Extreme samples correlate to any sample that is higher than the highest peak of the 

normal signal. Refer to figure 4.1 for an example of Extreme Samples.  Again these 
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squeaks represent unmatched data. Each test will have a table that shows the number of 

squeaks that occurred and the percentage of the signal that was unmatched. 

 Figures 4.1 and 4.3 shows that there were several squeaks recorded in the 4th and 

32nd order cases.  The 16th order GMM had no squeaks recorded at all, Figure 4.2.  The 

larger number of squeaks recorded in the 32nd order example could be accounted for 

because the GMMs are looked at as states during the transformation process and the 

larger number of states require more precise examples of the phoneme that is spoken.  

The smaller number of GMMs works in the same manner but thus causing for more 

broad and unspecified phoneme matches.   

 

Figure 4.1 4th Order GMM Signal 
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Figure 4.2 16th Order GMM Signal 

 

 

Figure 4.3 32nd Order GMM Signal 
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The 16th order GMM for this given set of data yielded the clearest results in terms 

of squeaks.  While the pieces that were converted in both the 4th and 32nd order did sound 

similar to the 16th order GMM conversion, the phonemes that did not match yielded more 

corrupted results. Table 4 shows the number of squeaks that were found in the data sets. 

Thus proving that the 16th order GMM was the most efficient for conversion of the 

signal. 

Table 4.4 Order of GMM Squeak Count  

GMM Order Unmatched Data Instances 

(Squeaks) 

Total Unmatched 

Percentage of the Signal 

4th  6 2.8% 

16th  0 0.1% 

32nd  14 6.6% 

 

The results of this test have shown that the training set with the most number of 

training signals has yielded the clearest results.  Figure 4.4 has shown that using five-12 

sec signals yields a system in which all the training data is matched.  Figure 4.4 show 

shows that by decreasing the number training signals by 1 we get a drastic change in the 

number of unmatched samples. While the message that was used is the same, the more 

instances of the samples yielded clearer results.   Figure 4.6 shows that by using 2 

training signals you will yield the largest amount of untrained samples.  This could be 

due to many factors such as the use of the nearest neighbor algorithm and the nun parallel 

training.  With larger sample sets there could be more instances of similar phonemes, 
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which would provide larger matched samples. Table 5 shows the number of Samples that 

had unmatched signals 

Table 4.5 Number of Samples Squeak Count  

Sample-Length Unmatched Data Instances 

(Squeaks) 

Total Unmatched 

Percentage of the Signal 

Five-12 second 0 0% 

Four-15 second 10 5.4% 

Two-30 second 11 7.8% 

 

 

Figure 4.4 Five- 12 Second Samples 
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Figure 4.5 Four-15 Second Samples 

 

 

Figure 4.6 Two-30 Second Samples 
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The results for this test showed that the change in transformation functions did not 

play a role in how many squeaks were heard.  That is predictable, as the transformation 

function has little to do with the training of the data sets.  So this test resulted in perfectly 

clear results for both instances. 

Table 4.6 Transformation Method Squeak Count  

Transformation Method Unmatched Data Instances 

(Squeaks) 

Total Unmatched 

Percentage of the Signal 

WFW 0 0% 

GMM 0 0% 

 

 

Figure 4.7 Weighted Frequency Warping Function 
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Figure 4.8 Gaussian Mixture Model Based Function 
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CHAPTER 5 

CONCLUSION 

5.1 Summary 

 This thesis has addressed the area of finding a practical method for users to create 

user specific human sounding synthesized voice from a TTS using a social network as a 

source for training speech data, as well as text to be converted.  With the increase focus 

on textual messages and less focus on actually spoken messages TTS applications have 

been created to give users the capability to convert text messages to speech.  While these 

technologies are very helpful for the intended purpose of converting text-to-speech, the 

emotional component of speech is sacrificed by a synthesized voice that cannot show 

emotion.  This system has aided in the solution to that issue by the use of a voice 

conversion system that can edit the vocal characteristics of synthesized speech to sound 

more like human voice.  

5.2 Contributions 

The contributions of this project to the area of synthesized speech to real speech 

voice conversion, is that it allows each level of input to be acquired via social media.  

The system has the capabilities of getting the text that has been extracted from a tweet 

through twitter.  The use of Cinch as a means for voice capture makes further use of 

social networking.  The area of “socially acquired” data as a means for engineering 

research has not been a heavy focus area for research.  By being able to manipulate the 

vocal characteristics of voice this can be contribute to the ultimate goal, which is a 

system that will include TTS conversion that includes emotion through textual inferences.   
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Additionally, the application of social media to the field of Digital Signal 

Processing has the potential to aid in the development of STEM related interest in 

younger students.  The incorporation of an audio use for the UMSEE model contributes 

to the research that Dr. Corey Graves at North Carolina A&T State University is doing in 

an effort to increase STEM interest.  

This thesis has also confirmed areas of research as it results to Voice Conversion 

and given parameter.  This system has also tested the voice conversion capabilities of the 

ESPEAK TTS System.  The results shown in chapter 4 gives the explanation of how 

GMM order, Number of training signals, and the type of voice conversion that is used 

can affect the quality of converted signal from Espeak.  

5.3 Recommendations for Future Direction 

 There are several areas that could be further developed.  First, the investment into 

a more natural sounding TTS system would yield better results.  While the Espeak system 

did give the results from the standpoint of vocal characteristics, but from the standpoint 

of intonation and articulation it still maintained a “computerized voice”. Secondly the 

development of other Signal Processing functions with socially acquired data could be 

used.  The development of technologies that could incorporate music would also be area 

that could be incorporated.  For example conversion of songs to another persons voice 

could be developed.  Also a process to make could make this system automated would be 

very helpful for everyday usage.  Developing a system that could handle the large 

amounts of users would also make this system better.  Lastly, investigating use of any 

Social Media network as means for textual messages, other than Twitter (i.e. the use of 
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ones Facebook Status as a means for text) would be useful.  By doing this the scope of 

voice conversion can become completely universal. 
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APPENDIX A 
 

TWITTER BASED APPLICATION 
 

using System; 
using System.Collections.Generic; 
using System.Configuration; 
using System.ComponentModel; 
using System.Data; 
using System.Drawing; 
using System.Linq; 
using System.Text; 
using System.Windows.Forms; 
using System.Net; 
using System.Web; 
using System.Xml; 
using System.IO; 
using System.Diagnostics; 
using System.Runtime.Serialization.Json; 
using System.Text.RegularExpressions; 
using System.Net.Sockets; 
using System.Net.Security; 
using System.Net.Mail; 
using MLApp; 

 
namespace CodingTheTweet 

 
{ 

 
public partial class MatLabTwitterApp : Form 

 
    { 
 

private WebClient client = new WebClient(); 
string TwitpicUrl = “”; 
string TwitpicCommand = “”; 
string LastMention = “”; 
int exiter = 0; 
string cinch = “”; 
Tweets TweetObj = new Tweets(); 

 
 

public MatLabTwitterApp() 
 
        { 
 

InitializeComponent(); 
 
 

}//end constructor 
 

private void Form1_Load(object sender, EventArgs e) 
 
        { 

// Set up our credentials... 
_oAuth.Token = Settings1.Default.token; 
_oAuth.TokenSecret = Settings1.Default.secretToken; 
_oAuth.ConsumerKey = Settings1.Default.consumerKey; 
_oAuth.ConsumerSecret = Settings1.Default.consumerSecret; 
_oAuth.PIN = Settings1.Default.pin; 

 
 
        } 
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public bool IsConfigured 
 
        { 
 

get 
 
            { 
 

return !String.IsNullOrEmpty(Settings1.Default.token) && 
!String.IsNullOrEmpty(Settings1.Default.secretToken) && 
!String.IsNullOrEmpty(Settings1.Default.consumerKey) && 
!String.IsNullOrEmpty(Settings1.Default.consumerSecret) && 
!String.IsNullOrEmpty(Settings1.Default.pin); 
 
            } 
 
        } 
 
 
 

private oAuthTwitter _oAuth = new oAuthTwitter(); 
 

private void TweetCheck_Tick(object sender, EventArgs e) 
 
        { 
 

TweetCheck.Enabled = true; 
 
        } 
 
 
 
 
 
        

//*************************************************************************************** 
 

//REGISTRATION PROCESS 
private void Voice_Reg_Click(object sender, EventArgs e) 

 
        { 
 

StreamWriter sw; 
StreamWriter sw2; 
string[] final_message = new string[20]; 
string[] final_from = new string[20]; 
string[] final_to = new string[20]; 

 
//Create the Database if it doesn’t exist 
if (!Directory.Exists(“c:\\UMSEE”)) 
Directory.CreateDirectory(“c:\\UMSEE”); 
if (!File.Exists(“c:\\UMSEE\\usersfile.txt”)) 

 
            { 
 

sw = new StreamWriter(“c:\\UMSEE\\usersfile.txt”); 
sw.Close(); 
}//end if 
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if (!File.Exists(“c:\\UMSEE\\ProgramInfo”)) 
 
            { 
 

sw2 = new StreamWriter(“c:\\UMSEE\\ProgramInfo”); 
sw2.WriteLine(LastMention); 
sw2.Close(); 
}//end if  
 
 

//Read the last mention 
LastMention = File.ReadAllText(“c:\\UMSEE\\ProgramInfo”).Trim(); 

 
 

//***************Parse the XML page and display the last 20 tweets************** 
 
 

/*initialize a new instance of the XmlDocument class*/ 
XmlDocument xDoc = new XmlDocument(); 
XmlDocument xDoc2 = new XmlDocument(); 
string DirectMessage = “”; 
string Mentions = “”; 
//load the XML document from the twitter stream 
try 

 
            { 

DirectMessage = _oAuth.oAuthWebRequest( 
oAuthTwitter.Method.GET, 
“http://api.twitter.com/1/direct_messages.xml”, 
“screen_name=pseevoice”); 
xDoc.InnerXml = DirectMessage; 

 
            } 
 

catch { } 
try 
 
            { 
 

if (LastMention == “”) 
 
                { 

//check the mentions as well 
Mentions = _oAuth.oAuthWebRequest( 
oAuthTwitter.Method.GET, 
“http://api.twitter.com/1/statuses/mentions.xml”, 
“screen_name=pseevoice”); 
xDoc2.InnerXml = Mentions; 
}//end if 
else 
 
                { 
 

Mentions = _oAuth.oAuthWebRequest( 
oAuthTwitter.Method.GET, 
“http://api.twitter.com/1/statuses/mentions.xml”, 
“screen_name=pseevoice&sinceid=” + LastMention); 
xDoc2.InnerXml = Mentions; 
}//end else 
 
            } 
 

catch { } 
 

//method GetElementsByTagName() obtains the addresses of a collection of elements that 
match the specified name 

XmlNodeList tweets = xDoc.GetElementsByTagName(“text”); 
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XmlNodeList tweetid = xDoc.GetElementsByTagName(“id”); 
XmlNodeList screen_name = xDoc.GetElementsByTagName(“sender_screen_name”); 
//Mentions 
XmlNodeList Mentionid = xDoc2.GetElementsByTagName(“id”); 
XmlNodeList MentionTweet = xDoc2.GetElementsByTagName(“text”); 
XmlNodeList Mentionscreen_name = xDoc2.GetElementsByTagName(“screen_name”); 
 
 

//Create an array to convert the XmlNodeList to an array 
string[] tweetarray = new string[tweets.Count]; 
string[] tweetidarray = new string[tweetid.Count]; 
string[] screen_namearray = new string[screen_name.Count]; 
//mentions 
string[] Mentionidarray = new string[Mentionid.Count]; 

string[] Mentionscreen_namearray = new string[Mentionscreen_name.Count]; 
string[] MentionTweetarray = new string[MentionTweet.Count]; 

//Populates the Mention Array that will be used for parsing 
for (int i = 0; i < 10; i++) 

 
            { 
 

Mentionidarray[i] = Mentionid[i].InnerText.ToString(); 
Mentionscreen_namearray[i] = Mentionscreen_name[i].InnerText.ToString(); 
MentionTweetarray[i] = MentionTweet[i].InnerText.ToString(); 
 
            } 

//Remove Duplicate names from the screen name array 
string[] duplicates = RemoveDuplicates(Mentionscreen_namearray); 

 
//Search mentions for twitpics 
for (int j = 0; j < duplicates.Length - 1; j++)//USer For 

 
            { 
 

if (!Directory.Exists(“c:/Dwight_Research/UPC_HSM_VC 2/” + duplicates[j])) 
 
                { 
 

for (int i = 0; i < 5; i++)//All Mentions For 
 
                    { 

if (MentionTweetarray[i].Contains(“t.co”)) 
 
                        { 
 

TweetCheck.Enabled = false;  // disable timer                        
//Checks to see if message contains Phrase 1 

if (MentionTweetarray[i].Contains(“??Phrase1”)) 
 
                            { 
 

//Splits the entire message up based on ‘ ‘ 
TwitpicCommand = MentionTweetarray[i].Substring(MentionTweetarray[i].IndexOf(“??”) + 

2); 
string[] words = MentionTweetarray[i].Split(‘ ‘); 
foreach (string word in words) 
 
                                { 
 

//finds the word that has the t.co link 
if (word.Contains(“t.co”)) 
 
                                    { 
 

//Removes the excess spaces from the t.co 
TwitpicUrl = word.Trim(); 
string down = “ “; 
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//Preparing to expand the ural and get the needed link to download the MP# directly 
from the site 

WebClient webClient = new WebClient(); 
//expandurl.appspot.com expands the t.co Short Url to all of its previous forms 
byte[] myDataBuffer = webClient.DownloadData(“http://expandurl.appspot.com/expand?url=” 

+ TwitpicUrl); 
 

// Display the downloaded data. 
string download = Encoding.ASCII.GetString(myDataBuffer); 
//String Manipulation to extract the 5 digit code at the end of the cinch.fm link 

int start = download.IndexOf(“end_url”, 1); 
int end = download.IndexOf(“redirects”, 1); 

down = download.Substring(start + 13, (end - start - 17)); 
string final = down.Replace(“\\/”, “/”); 
string[] userinfo = final.Split(‘/’); 
//Declares which user file the data will be saved in 
string cinchusername = userinfo[0]; 
cinch = cinchusername; 
string filename = userinfo[1]; 

//appends the extracted code to the link so that it can be downloaded directly 
string finalurl = “http://cinch.fm/” + final; 
 
 

if (Directory.Exists(“c:/Dwight_Research/UPC_HSM_VC 2/” + cinchusername + 
“/sourceMP3/fileorg001.mp3”)) 

break; 
else 
 
                                        { 
 
Directory.CreateDirectory(“c:/Dwight_Research/UPC_HSM_VC 2/” + cinchusername + 

“/sourceMP3”); 
 
                                        } 
 

//declares which folder the file will be downloaded to 
string destination = “c:/Dwight_Research/UPC_HSM_VC 2/” + cinchusername + 

“/sourceMP3/fileorg001.mp3”; 
//download the file from the web 
webClient.DownloadFile((finalurl + “.mp3”), destination); 

break; 
 
                                    } 

}//end foreach 
} 
 

else if (MentionTweetarray[i].Contains(“??Phrase2”)) 
 
 
                            

//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
                            { 
 
 
 

//Splits the entire message up based on ‘ ‘ 
TwitpicCommand = MentionTweetarray[i].Substring(MentionTweetarray[i].IndexOf(“??”) + 

2); 
string[] words = MentionTweetarray[i].Split(‘ ‘); 
foreach (string word in words) 
 
                                { 
 

//finds the word that has the t.co link 
if (word.Contains(“t.co”)) 
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                                    { 
 

//Removes the excess spaces from the t.co 
TwitpicUrl = word.Trim(); 
string down = “ “; 
 
 

//Preparing to expand the ural and get the needed link to download the MP# directly 
from the site 

WebClient webClient = new WebClient(); 
//expandurl.appspot.com expands the t.co Short Url to all of its previous forms 
byte[] myDataBuffer = webClient.DownloadData(“http://expandurl.appspot.com/expand?url=” 

+ TwitpicUrl); 
 
 

// Display the downloaded data. 
string download = Encoding.ASCII.GetString(myDataBuffer); 
//String Manipulation to extract the 5 digit code at the end of the cinch.fm link 

int start = download.IndexOf(“end_url”, 1); 
int end = download.IndexOf(“redirects”, 1); 

down = download.Substring(start + 13, (end - start - 17)); 
string final = down.Replace(“\\/”, “/”); 
string[] userinfo = final.Split(‘/’); 
//Declares which user file the data will be saved in 
string cinchusername = userinfo[0]; 
cinch = cinchusername; 
string filename = userinfo[1]; 

//appends the extracted code to the link so that it can be downloaded directly 
string finalurl = “http://cinch.fm/” + final; 
 
 

if (Directory.Exists(“c:/Dwight_Research/UPC_HSM_VC 2/” + cinchusername + 
“/sourceMP3/fileorg002.mp3”)) 

break; 
else 
 
                                        { 
 
Directory.CreateDirectory(“c:/Dwight_Research/UPC_HSM_VC 2/” + cinchusername + 

“/sourceMP3”); 
 
                                        } 
 

//declares which folder the file will be downloaded to 
string destination = “c:/Dwight_Research/UPC_HSM_VC 2/” + cinchusername + 

“/sourceMP3/fileorg002.mp3”; 
//download the file from the web 
webClient.DownloadFile((finalurl + “.mp3”), destination); 

break; 
 
                                    } 
 

}//end foreach 
 
                            } 
 

else if (MentionTweetarray[i].Contains(“??Phrase3”)) 
 
 
                            

//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
                            { 
 

//Splits the entire message up based on ‘ ‘ 
TwitpicCommand = MentionTweetarray[i].Substring(MentionTweetarray[i].IndexOf(“??”) + 

2); 
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string[] words = MentionTweetarray[i].Split(‘ ‘); 
foreach (string word in words) 
 
                                { 
 

//finds the word that has the t.co link 
if (word.Contains(“t.co”)) 
 
                                    { 
 

//Removes the excess spaces from the t.co 
TwitpicUrl = word.Trim(); 
string down = “ “; 
 
 

//Preparing to expand the ural and get the needed link to download the MP# directly 
from the site 

WebClient webClient = new WebClient(); 
//expandurl.appspot.com expands the t.co Short Url to all of its previous forms 
byte[] myDataBuffer = webClient.DownloadData(“http://expandurl.appspot.com/expand?url=” 

+ TwitpicUrl); 
 
 

// Display the downloaded data. 
string download = Encoding.ASCII.GetString(myDataBuffer); 
//String Manipulation to extract the 5 digit code at the end of the cinch.fm link 

int start = download.IndexOf(“end_url”, 1); 
int end = download.IndexOf(“redirects”, 1); 

down = download.Substring(start + 13, (end - start - 17)); 
string final = down.Replace(“\\/”, “/”); 
string[] userinfo = final.Split(‘/’); 
//Declares which user file the data will be saved in 
string cinchusername = userinfo[0]; 
cinch = cinchusername; 
string filename = userinfo[1]; 

//appends the extracted code to the link so that it can be downloaded directly 
string finalurl = “http://cinch.fm/” + final; 
 
 

if (Directory.Exists(“c:/Dwight_Research/UPC_HSM_VC 2/” + cinchusername + 
“/sourceMP3/fileorg003.mp3”)) 

break; 
else 
 
                                        { 
 
Directory.CreateDirectory(“c:/Dwight_Research/UPC_HSM_VC 2/” + cinchusername + 

“/sourceMP3”); 
 
                                        } 
 

//declares which folder the file will be downloaded to 
string destination = “c:/Dwight_Research/UPC_HSM_VC 2/” + cinchusername + 

“/sourceMP3/fileorg003.mp3”; 
//download the file from the web 
webClient.DownloadFile((finalurl + “.mp3”), destination); 

 
 
 
 
 
 

break; 
 
                                    } 
 

}//end foreach 
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                            } 
 

else if (MentionTweetarray[i].Contains(“??Phrase4”)) 
 
 
                            

//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
                            { 
 

//Splits the entire message up based on ‘ ‘ 
TwitpicCommand = MentionTweetarray[i].Substring(MentionTweetarray[i].IndexOf(“??”) + 

2); 
string[] words = MentionTweetarray[i].Split(‘ ‘); 
foreach (string word in words) 
 
                                { 
 

//finds the word that has the t.co link 
if (word.Contains(“t.co”)) 
 
                                    { 
 

//Removes the excess spaces from the t.co 
TwitpicUrl = word.Trim(); 
string down = “ “; 
 
 

//Preparing to expand the ural and get the needed link to download the MP# directly 
from the site 

WebClient webClient = new WebClient(); 
//expandurl.appspot.com expands the t.co Short Url to all of its previous forms 
byte[] myDataBuffer = webClient.DownloadData(“http://expandurl.appspot.com/expand?url=” 

+ TwitpicUrl); 
 
 

// Display the downloaded data. 
string download = Encoding.ASCII.GetString(myDataBuffer); 
//String Manipulation to extract the 5 digit code at the end of the cinch.fm link 

int start = download.IndexOf(“end_url”, 1); 
int end = download.IndexOf(“redirects”, 1); 

down = download.Substring(start + 13, (end - start - 17)); 
string final = down.Replace(“\\/”, “/”); 
string[] userinfo = final.Split(‘/’); 
//Declares which user file the data will be saved in 
string cinchusername = userinfo[0]; 
cinch = cinchusername; 
string filename = userinfo[1]; 

//appends the extracted code to the link so that it can be downloaded directly 
string finalurl = “http://cinch.fm/” + final; 
 
 

if (Directory.Exists(“c:/Dwight_Research/UPC_HSM_VC 2/” + cinchusername + 
“/sourceMP3/fileorg004.mp3”)) 

break; 
else 
 
                                        { 
 
Directory.CreateDirectory(“c:/Dwight_Research/UPC_HSM_VC 2/” + cinchusername + 

“/sourceMP3”); 
 
                                        } 
 

//declares which folder the file will be downloaded to 
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string destination = “c:/Dwight_Research/UPC_HSM_VC 2/” + cinchusername + 
“/sourceMP3/fileorg004.mp3”; 

//download the file from the web 
webClient.DownloadFile((finalurl + “.mp3”), destination); 

 
 
 
 

break; 
 
                                    } 
 

}//end foreach 
 
                            } 
 

else if (MentionTweetarray[i].Contains(“??Phrase5”)) 
 
 
                            

//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
                            { 
 
 
 

//Splits the entire message up based on ‘ ‘ 
TwitpicCommand = MentionTweetarray[i].Substring(MentionTweetarray[i].IndexOf(“??”) + 

2); 
string[] words = MentionTweetarray[i].Split(‘ ‘); 
foreach (string word in words) 
 
                                { 
 

//finds the word that has the t.co link 
if (word.Contains(“t.co”)) 
 
                                    { 
 

//Removes the excess spaces from the t.co 
TwitpicUrl = word.Trim(); 
string down = “ “; 
 
 

//Preparing to expand the ural and get the needed link to download the MP# directly 
from the site 

WebClient webClient = new WebClient(); 
//expandurl.appspot.com expands the t.co Short Url to all of its previous forms 
byte[] myDataBuffer = webClient.DownloadData(“http://expandurl.appspot.com/expand?url=” 

+ TwitpicUrl); 
 
 

// Display the downloaded data. 
string download = Encoding.ASCII.GetString(myDataBuffer); 
//String Manipulation to extract the 5 digit code at the end of the cinch.fm link 

int start = download.IndexOf(“end_url”, 1); 
int end = download.IndexOf(“redirects”, 1); 

down = download.Substring(start + 13, (end - start - 17)); 
string final = down.Replace(“\\/”, “/”); 
string[] userinfo = final.Split(‘/’); 
//Declares which user file the data will be saved in 
string cinchusername = userinfo[0]; 
cinch = cinchusername; 
string filename = userinfo[1]; 

//appends the extracted code to the link so that it can be downloaded directly 
string finalurl = “http://cinch.fm/” + final; 
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if (Directory.Exists(“c:/Dwight_Research/UPC_HSM_VC 2/” + cinchusername + 

“/sourceMP3/fileorg005.mp3”)) 
break; 
else 
 
                                        { 
 
Directory.CreateDirectory(“c:/Dwight_Research/UPC_HSM_VC 2/” + cinchusername + 

“/sourceMP3”); 
 
                                        } 
 

//declares which folder the file will be downloaded to 
string destination = “c:/Dwight_Research/UPC_HSM_VC 2/” + cinchusername + 

“/sourceMP3/fileorg005.mp3”; 
//download the file from the web 
webClient.DownloadFile((finalurl + “.mp3”), destination); 

 
 
 
 
 
 

break; 
 
                                    } 
 
 
 

}//end foreach 
 
 
 
 

}//End t.co Search 
 
 
 
 
 
 

}//Check for 5 
}//end ALL MEntions For 
//Create VCFUNCTION based  
REGISTER(cinch); 

 
 

}//Directory Doesnt Exist 
else 

 
                { 
 

MessageBox.Show(“ “ + duplicates[j] + “Voice is already saved in our database”, “Voice 
Already Registered”, 

MessageBoxButtons.OK, MessageBoxIcon.Exclamation); 
 
 
 
 
                } 
 
 
 

}//end User For 
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return; 
 
 

}//End VOICE_REG_CLICK 
 
 

//END REGISTRATION PROCESS 
 
        

//***************************************************************************************
******************************* 

 
 
 
 
 
        

//***************************************************************************************
******************************* 

 
//BEGINCONVERSION PROCESS 
private void button2_Click(object sender, EventArgs e) 

 
        { 
 

StreamWriter sw; 
StreamWriter sw2; 
 
 

string[] final_message = new string[20]; 
string[] final_from = new string[20]; 
string[] final_to = new string[20]; 
string[] tweet_to_B = new string[20]; 
string[] tweet_to_B_ScNm = new string[20]; 
//Create the Database if it doesn’t exist 
if (!Directory.Exists(“c:\\UMSEE”)) 
Directory.CreateDirectory(“c:\\UMSEE”); 
if (!File.Exists(“c:\\UMSEE\\usersfile.txt”)) 

 
            { 
 

sw = new StreamWriter(“c:\\UMSEE\\usersfile.txt”); 
sw.Close(); 
}//end if 
if (!File.Exists(“c:\\UMSEE\\ProgramInfo”)) 
 
            { 
 

sw2 = new StreamWriter(“c:\\UMSEE\\ProgramInfo”); 
sw2.WriteLine(LastMention); 
sw2.Close(); 
}//end if  
 
 

//Read the last mention 
LastMention = File.ReadAllText(“c:\\UMSEE\\ProgramInfo”).Trim(); 

 
 

//***************Parse the XML page and display the last 20 tweets************** 
 
 

/*initialize a new instance of the XmlDocument class*/ 
XmlDocument xDoc = new XmlDocument(); 
XmlDocument xDoc2 = new XmlDocument(); 
string DirectMessage = “”; 
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string Mentions = “”; 
 
 
 
 

//load the XML document from the twitter stream 
try 

 
            { 
 
 
 

DirectMessage = _oAuth.oAuthWebRequest( 
oAuthTwitter.Method.GET, 

 
“http://api.twitter.com/1/direct_mess

ages.xml”, 
 

“screen_name=pseevoice”); 
 
 

xDoc.InnerXml = DirectMessage; 
 
            } 
 

catch { } 
try 
 
            { 
 

if (LastMention == “”) 
 
                { 
 

//check the mentions as well 
Mentions = _oAuth.oAuthWebRequest( 

oAuthTwitter.Method.GET, 
 

“http://api.twitter.com/1/statuses/me
ntions.xml”, 

 
“screen_name=pseevoice”); 
xDoc2.InnerXml = Mentions; 
}//end if 
else 
 
                { 
 

Mentions = _oAuth.oAuthWebRequest( 
oAuthTwitter.Method.GET, 

 
“http://api.twitter.com/1/statuses/me

ntions.xml”, 
 

“screen_name=pseevoice&sinceid=” + LastMention); 
xDoc2.InnerXml = Mentions; 
}//end else 
 
            } 
 

catch { } 
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//method GetElementsByTagName() obtains the addresses of a collection of elements that 
match the specified name 

XmlNodeList tweets = xDoc.GetElementsByTagName(“text”); 
XmlNodeList tweetid = xDoc.GetElementsByTagName(“id”); 

XmlNodeList screen_name = xDoc.GetElementsByTagName(“sender_screen_name”); 
//Mentions 
XmlNodeList Mentionid = xDoc2.GetElementsByTagName(“id”); 
XmlNodeList MentionTweet = xDoc2.GetElementsByTagName(“text”); 

XmlNodeList Mentionscreen_name = xDoc2.GetElementsByTagName(“screen_name”); 
 
 

//Create an array to convert the XmlNodeList to an array 
string[] tweetarray = new string[tweets.Count]; 
string[] tweetidarray = new string[tweetid.Count]; 
string[] screen_namearray = new string[screen_name.Count]; 
//mentions 
string[] Mentionidarray = new string[Mentionid.Count]; 

string[] Mentionscreen_namearray = new string[Mentionscreen_name.Count]; 
string[] MentionTweetarray = new string[MentionTweet.Count]; 
 
 
 
 

//Populate MentionTweet 
 
 

for (int i = 0; i < 19; i++) 
 
            { 
 
 
 

Mentionscreen_namearray[i] = Mentionscreen_name[i].InnerText.ToString(); 
MentionTweetarray[i] = MentionTweet[i].InnerText.ToString(); 
 
            } 
 

//populate DMs 
 
 
 
 

//Search mentions for twitpics 
 
 
 
 

int count = 0; 
 
 

for (int i = 0; i < 19; i++) 
 
            { 
 
 
 

if (MentionTweetarray[i].Contains(“o_o”)) 
 
                { 
 

tweet_to_B[count] = MentionTweetarray[i]; 
tweet_to_B_ScNm[count] = Mentionscreen_namearray[i]; 
count++; 
 
                } 
 
            } 
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for (int i = 0; i < count; i++) 
 
            { 
 

string[] message = tweet_to_B[i].Split(‘ ‘); 
string username = tweet_to_B_ScNm[i]; 
string messanger = “”; 
 
 
 
 
 
 

for (int j = 3; j < Convert.ToInt16(message.Length); j++) 
 
                { 
 

messanger = messanger + “ “ + message[j]; 
 
                } 
 
 
 

messanger = “\”” + messanger + “\””; 
final_message[i] = messanger; 
final_from[i] = username; 
final_to[i] = message[2]; 
bool loop = check_user(final_to[i]); 
while (loop == false) 

 
                { 
 

MessageBox.Show(“” + final_to[i] + “ was not found in our database please fill in the 
proper fields and click Submit”, “Registration Error”, 

MessageBoxButtons.OK, MessageBoxIcon.Exclamation); 
exiter = 1; 
break; 
 
 
                } 
 

if (exiter == 1) 
 
                { 
 

break; 
 
                } 
 
 
 

bool looper = check_user(final_from[i]); 
while (looper == false) 

 
                { 
 

MessageBox.Show(“” + final_from[i] + “ was not found in our database please fill in the 
proper fields and click Submit”, “Registration Error”, 

MessageBoxButtons.OK, MessageBoxIcon.Exclamation); 
exiter = 1; 
break; 
 
 
                } 
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if (exiter == 1) 

 
                { 
 

break; 
 
                } 
 
 
 

DialogResult answer; 
answer = MessageBox.Show(final_from[i] + “ Would like to send the message “ + 

final_message[i] + “ to “ + final_to[i], “Confirmation”, 
MessageBoxButtons.YesNo, MessageBoxIcon.Exclamation); 

if (answer == DialogResult.Yes) 
 
                { 
 

wavcreate(final_from[i], final_message[i]); 
matlab_Command(@” cd (‘C:\Dwight_Research\UPC_HSM_VC 2\’); cinch_wfw(‘” + final_from[i] 

+ “’) “); 
string final_email = get_email(final_to[i]); 
for (int delay = 0; delay > 1000000000; ) 
 
                    { 
 
                    } 
 

//  SendMessage(final_email, final_message[i], final_from[i]); 
 
 

MessageBox.Show(“Message Sent”, “Confirmation”, 
MessageBoxButtons.OK, MessageBoxIcon.Exclamation); 
//Decides if we want send the next message 

bool keep_going = new_message(final_to[i + 1], final_from[i + 1], final_message[i + 
1]); 

if (keep_going == false) 
 
                    { 
 
 
 

break; 
 
                    } 
 
                } 
 

} //end for 
 
        } 
 
 
 
 
 

//END REGISTRATION PROCESS 
 
        

//***************************************************************************************
******************************* 
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//***************************************************************************************
******************************* 

 
//ADDITIONAL FUNCTIONS 

 
 

//Checks to see if Users wants to convert the next message 
private bool new_message(string to, string from, string message) 

 
        { 
 

DialogResult result; 
result = MessageBox.Show(“Would you like to send the next message”, “Send Next 

Message”, 
MessageBoxButtons.YesNo, MessageBoxIcon.Exclamation); 
 
 

if (result == DialogResult.No) 
 
            { 
 

return false; 
 
            } 
 

else if (result == DialogResult.Yes) 
 
            { 
 

return true; 
 
            } 
 

return false; 
 
        } 
 
 
 
 
 
 
 
 
 

//Runs the MATLAB code to Register voice 
private void REGISTER(string name) 

 
        { 
 
 
 

string answer = matlab_Command(@” cd (‘C:\Dwight_Research\UPC_HSM_VC 2\’); 
cinch_register(‘” + name + “’) “); 

 
 
 
 

answer = answer.Replace(“\n”, “”); 
MessageBox.Show(“” + name + “ Your voice is saved”, “Confirmation”, 
MessageBoxButtons.OK, MessageBoxIcon.Exclamation); 

 
 
 
 
        } 
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//Creates wavefile from the Twitter 
private void wavcreate(string user, string message) 

 
        { 
 
 
 

//string message is the message that was extracted from Twitter 
//String user 
//DOS Command to save a .wav file      

string text = @”cd C:\Documents and Settings\dahudson\My Documents\Visual Studio 
2008\Projects\WindowsFormsApplication2\WindowsFormsApplication2\bin\Debug\eSpeak\command_
line” + Environment.NewLine + 

 
 

@”espeak -v en -g 10 -w C:\Dwight_Research\” + user + @”TEMP_ORG.wav “ + message; 
 
 

//Writes that command to a BATCH file 
System.IO.File.WriteAllText(@”C:\First.bat”, text); 

 
 

//Runs BATCH file in DOS 
System.Diagnostics.Process.Start(@”C:\First.bat”); 

 
 
 
 
        } 
 
 
 

//Checks to see if user is in the USERFILE 
private bool check_user(string user) 

 
        { 
 

string sample = “”; 
int line_count = 0; 
string[,] info = new string[10, 3]; 
string telephone = “”; 
string carrier = “”; 
string username = “”; 
 
 

string[] email = new string[20]; 
// Create an instance of StreamReader to read from a file. 
// The using statement also closes the StreamReader. 

using (StreamReader sr = new StreamReader(@”C:\Dwight_Research\USERFILE.txt”)) 
 
            { 
 

String line; 
// Read and display lines from the file until the end of 
// the file is reached. 
while ((line = sr.ReadLine()) != null) 
 
                { 
 

sample = line; 
string[] all = sample.Split(‘ ‘); 
username = all[0]; 
carrier = all[1]; 
telephone = all[2]; 
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info[line_count, 0] = username; 
info[line_count, 1] = carrier; 
info[line_count, 2] = telephone; 

email[line_count] = email_create(info[line_count, 2], info[line_count, 1]); 
//Writes Emails and USername to file to be used when sending the message 

 
 

line_count++; 
 
                } 
 
            } 
 

for (int i = 0; i < line_count; i++) 
 
            { 
 

if (user == info[i, 0]) 
 
                { 
 
 
 

return true; 
 
                } 
 
            } 
 
 
 

return false; 
 
        } 
 
 
 

//Creates Email address from carrier and number 
public string email_create(string Number, string Carrier) 

 
        { 
 

if (Carrier.Contains(“Sprint”))//if carrier is sprint 
Number = string.Concat(Number, “@pm.sprint.com”); 
else if (Carrier.Contains(“VERIZON”))//if carrier is sprint 
Number = string.Concat(Number, “@vzwpix.com”); 
else if (Carrier.Contains(“ATT”))//if carrier is sprint 
Number = string.Concat(Number, “@mms.att.net”); 
else if (Carrier.Contains(“CRICKET”))//if carrier is sprint 
Number = string.Concat(Number, “@mms.mycricket.com”); 
else if (Carrier.Contains(“NEXTEL”))//if carrier is sprint 
Number = string.Concat(Number, “@messaging.nextel.com”); 
else if (Carrier.Contains(“ALLTELL”))//if carrier is sprint 
Number = string.Concat(Number, “@mms.alltel.net”); 
else if (Carrier.Contains(“Verizon”))//if carrier is sprint 
Number = string.Concat(Number, “@vzwpix.com”); 
else if (Carrier.Contains(“Alltell”))//if carrier is sprint 
Number = string.Concat(Number, “@mms.alltel.net”); 
else if (Carrier.Contains(“SPRINT”))//if carrier is sprint 
Number = string.Concat(Number, “@mms.alltel.net”); 
else if (Carrier.Contains(“Att”))//if carrier is sprint 
Number = string.Concat(Number, “@mms.att.net”); 
else if (Carrier.Contains(“Cricket”))//if carrier is sprint 
Number = string.Concat(Number, “@mms.mycricket.com”); 
else if (Carrier.Contains(“Nextel”))//if carrier is sprint 
Number = string.Concat(Number, “@messaging.nextel.com”); 
return Number; 
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        } 
 
 
 
 
 

// Used to run MATLAB Commands  
public String matlab_Command(String cmd) 

 
        { 
 

MLAppClass ml = new MLAppClass(); 
ml.Execute(cmd); 
string ans = “DONE”; 
return ans; 
 
        } 
 
 
 
 
 
 
 
 
 

//Sends the Converted Message from the From User to the To User 
public void SendMessage(string SendTo, string MessageToSend, string from) 

 
        { 
 

try 
 
            { 
 

//create the mail message 
MailMessage mail = new MailMessage(); 
mail.From = new MailAddress(“pseevoice@gmail.com”); 
 
 

mail.To.Add(SendTo); 
mail.Body = MessageToSend; 

 
 

System.Net.Mail.Attachment attachment; 
attachment = new System.Net.Mail.Attachment(@”C:/Dwight_Research/UPC_HSM_VC 2/” + from 

+ “/FINAL_OUT/output.wav”); 
mail.Attachments.Add(attachment); 
 
 
 
 

SmtpClient smtp = new SmtpClient(“smtp.gmail.com”); 
 
 

smtp.EnableSsl = true; 
smtp.Credentials = new NetworkCredential(“pseevoice@gmail.com”, “convoice”); 

 
 

smtp.Send(mail); 
}//end try 
catch (Exception ex) 

 
            { 
 

MessageBox.Show(ex.ToString(), “SendMessage”); 
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            } 
 
 
 

}//end SendMessage 
 
 

//Captures the email address of a given user from the EMAILFILE.txt 
public string get_email(string username) 

 
        { 
 
 
 

string email = “”; 
 
 

using (StreamReader sr = new StreamReader(@”C:\Dwight_Research\EMAILFILE.txt”)) 
 
            { 
 

String line; 
// Read and display lines from the file until the end of 
// the file is reached. 
while ((line = sr.ReadLine()) != null) 
 
                { 
 

string sample = line; 
string[] all = sample.Split(‘ ‘); 
username = all[0]; 
email = all[1]; 
 
                } 
 
            } 
 

return email; 
 
        } 
 
 
 

//Remove Duplicates from the list 
public static string[] RemoveDuplicates(string[] s) 

 
        { 
 

HashSet<string> set = new HashSet<string>(s); 
string[] result = new string[set.Count]; 
set.CopyTo(result); 
return result; 
 
        } 
 
 
 

//Used to Input new users into the USERFILE.TXT 
private void button1_Click(object sender, EventArgs e) 

 
        { 
 

string new_username = textBox1.Text; 
string new_carrier = textBox2.Text; 
string new_telephone = textBox3.Text; 
string text = new_username + “ “ + new_carrier + “ “ + new_telephone; 
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using (StreamWriter sw = File.AppendText(@”C:\Dwight_Research\USERFILE.txt”)) 
 
            { 
 

sw.WriteLine(text); 
 
 
            } 
 
 
 

//Modifies the EMAILFILE.TXT with the new users information 
string new_email = email_create(new_telephone, new_carrier); 

using (StreamWriter sw = File.AppendText(@”C:\Dwight_Research\EMAILFILE.txt”)) 
 
            { 
 

string email_text = new_username + “ “ + new_email; 
sw.WriteLine(email_text); 
 
 
            } 
 

MessageBox.Show(“Your Information has been Recorded”, “Registration Complete”, 
MessageBoxButtons.OK, MessageBoxIcon.Information); 

 
 

textBox1.Text = “”; 
textBox2.Text = “”; 
textBox3.Text = “”; 

 
        } 

}//end class Form1       
 
 

}//end namespace 
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APPENDIX  B 

 
PSEE VOICE MATLAB CODE 

 
CINCH REGISTER 
 
 
 
function [status] = cinch_register (source) 
 
%UNTITLED2 Summary of this function goes here 
 
%   Detailed explanation goes here 
 
 
 
 if exist(strcat('C:/Dwight_Research/UPC_HSM_VC 2/',source))==0 
 
   
 
 
 
        %Analyzes and Synthesizes WAV files to ensure that they can be used for 
 
        %WFW Voice Conversion 
 
         cinch_synth(source); 
 
 else 
 
        %Makes Directory for source speaker to save acoustic Parameters 
 
        %as well as the corpus and vcfunction needed for the HSMnonpcorpus and 
 
        %HSMnonptraing Functions which will be used for converting to the 
 
        %ESPEAK Voice Files 
 
        %REMOVE  LATER 
 
        cinch_synth(source); 
 
        mkdir(strcat('C:/Dwight_Research/UPC_HSM_VC 2/',source,'/CONVERTED/'));    
 
        save(strcat('C:/Dwight_Research/UPC_HSM_VC 

2/',source,'/CONVERTED/corpus')); 
 
        save(strcat('C:/Dwight_Research/UPC_HSM_VC 

2/',source,'/CONVERTED/vcfunction')); 
 
        save(strcat('C:/Dwight_Research/UPC_HSM_VC 

2/',source,'/CONVERTED/CONVSRC')); 
 
         %Does the actual training of the source to speaker  
 
        

HSMnonpcorpus(strcat('DELL/sourcespk/file'),1:5,strcat(source,'/sourcespk/file'),1:5,3,st
rcat('C:/Dwight_Research/UPC_HSM_VC 2/',source,'/CONVERTED/corpus')); 

 
        HSMnonptraining(strcat('C:/Dwight_Research/UPC_HSM_VC 

2/',source,'/CONVERTED/corpus'),strcat('C:/Dwight_Research/UPC_HSM_VC 
2/',source,'/CONVERTED/vcfunction'),4); 

 
status='Voice Saved'; 
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 end 
 
 
 
CINCH WFW 
 
 
 
function [] = cinch_wfw (source) 
 
%Takes the ESPEAK file and converts it to the desired target voice using 
 
%the vcfunction that was created in cinc_register 
 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
         
 
         
 
     
 
        %Formats the wav file to be used for analysis 
 
        [a b]=wavread(strcat('C:/Dwight_Research/',source,'TEMP_ORG.wav')); 
 
        wavwrite(a,8000,'22khz.wav'); 
 
        [SRCFILE2 d]=wavread('22Khz.wav'); 
 
        SRCFILE2=ampreduce(SRCFILE2); 
 
        SRCFILE2=interp(SRCFILE2,12); 
 
        SRCFILE2=decimate(SRCFILE2,33); 
 
         
 
        mkdir(strcat('C:/Dwight_Research/UPC_HSM_VC 2/',source,'/TO_BE_CONV/'));    
 
        wavwrite(SRCFILE2,8000,strcat('C:/Dwight_Research/UPC_HSM_VC 

2/',source,'/TO_BE_CONV/TEMP.wav')); 
 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
        %Converts the new wav file to the desired target speaker 
 
        HSManalyze(strcat('C:/Dwight_Research/UPC_HSM_VC 

2/',source,'/TO_BE_CONV/TEMP.wav'),strcat('C:/Dwight_Research/UPC_HSM_VC 
2/',source,'/TO_BE_CONV/TEMP.mat')); 

 
       %Choose which Transformation you want to use 
 
        %HSMgmmconvert(strcat('C:/Dwight_Research/UPC_HSM_VC 

2/',source,'/CONVERTED/vcfunction'),strcat('C:/Dwight_Research/UPC_HSM_VC 
2/',source,'/TO_BE_CONV/TEMP.mat'),strcat('C:/Dwight_Research/UPC_HSM_VC 
2/',source,'/TO_BE_CONV/TEMP_CONV.mat')); 

 
        HSMwfwconvert(strcat('C:/Dwight_Research/UPC_HSM_VC 

2/',source,'/CONVERTED/vcfunction'),strcat('C:/Dwight_Research/UPC_HSM_VC 
2/',source,'/TO_BE_CONV/TEMP.mat'),strcat('C:/Dwight_Research/UPC_HSM_VC 
2/',source,'/TO_BE_CONV/TEMP_CONV.mat')); 
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        HSMsynthesize(strcat('C:/Dwight_Research/UPC_HSM_VC 

2/',source,'/TO_BE_CONV/TEMP_CONV.mat'),strcat('C:/Dwight_Research/UPC_HSM_VC 
2/',source,'/TO_BE_CONV/output.wav')); 

 
        data=wavread(strcat('C:/Dwight_Research/UPC_HSM_VC 

2/',source,'/TO_BE_CONV/output.wav')); 
 
        data=ampreduce(data); 
 
         
 
        mkdir(strcat('C:/Dwight_Research/UPC_HSM_VC 2/',source,'/FINAL_OUT/'));   
 
         DataPre=filter([1-.95],[1],data); DataPreInc=DataPre*40;  
 
         plot(DataPreInc); 
 
wavwrite(DataPreInc,strcat('C:/Dwight_Research/UPC_HSM_VC 

2/',source,'/FINAL_OUT/output.wav')); 
 
beep_remove(strcat('C:/Dwight_Research/UPC_HSM_VC 

2/',source,'/FINAL_OUT/output')); 
 
 
 
CINCH SYNTH 
 
 
 
function [] = cinch_synth (source) 
 
 
 
if exist(strcat('C:/Dwight_Research/UPC_HSM_VC 2/',source))==0 
 
    display('This source is not in our database. ')  
 
     
 
end 
 
 mkdir(strcat('C:/Dwight_Research/UPC_HSM_VC 2/',source,'/sourcespk/')); 
 
%Converts the MP3s to WAV files for the  
 
cinch_conv(strcat('C:/Dwight_Research/UPC_HSM_VC 

2/',source,'/sourceMP3/fileorg001.mp3'), strcat('C:/Dwight_Research/UPC_HSM_VC 
2/',source,'/sourcespk/file001org')); 

 
cinch_conv(strcat('C:/Dwight_Research/UPC_HSM_VC 

2/',source,'/sourceMP3/fileorg002.mp3'), strcat('C:/Dwight_Research/UPC_HSM_VC 
2/',source,'/sourcespk/file002org')); 

 
cinch_conv(strcat('C:/Dwight_Research/UPC_HSM_VC 

2/',source,'/sourceMP3/fileorg003.mp3'), strcat('C:/Dwight_Research/UPC_HSM_VC 
2/',source,'/sourcespk/file003org')); 

 
cinch_conv(strcat('C:/Dwight_Research/UPC_HSM_VC 

2/',source,'/sourceMP3/fileorg004.mp3'), strcat('C:/Dwight_Research/UPC_HSM_VC 
2/',source,'/sourcespk/file004org')); 
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cinch_conv(strcat('C:/Dwight_Research/UPC_HSM_VC 
2/',source,'/sourceMP3/fileorg005.mp3'), strcat('C:/Dwight_Research/UPC_HSM_VC 
2/',source,'/sourcespk/file005org')); 

 
 
 
%Analyzes and Synthesizes WAV files to ensure that they can be used for 
 
%WFW Voice Conversion 
 
 
 
% espeak_trans(strcat('C:/Dwight_Research/UPC_HSM_VC 

2/',source,'/sourcespk/file001org.wav')); 
 
% espeak_trans(strcat('C:/Dwight_Research/UPC_HSM_VC 

2/',source,'/sourcespk/file002org.wav')); 
 
% espeak_trans(strcat('C:/Dwight_Research/UPC_HSM_VC 

2/',source,'/sourcespk/file003org.wav')); 
 
% espeak_trans(strcat('C:/Dwight_Research/UPC_HSM_VC 

2/',source,'/sourcespk/file004org.wav')); 
 
% espeak_trans(strcat('C:/Dwight_Research/UPC_HSM_VC 

2/',source,'/sourcespk/file005org.wav')); 
 
 
 
HSManalyze(strcat('C:/Dwight_Research/UPC_HSM_VC 

2/',source,'/sourcespk/file001org.wav'),strcat('C:/Dwight_Research/UPC_HSM_VC 
2/',source,'/sourcespk/file001.mat')); 

 
HSManalyze(strcat('C:/Dwight_Research/UPC_HSM_VC 

2/',source,'/sourcespk/file002org.wav'),strcat('C:/Dwight_Research/UPC_HSM_VC 
2/',source,'/sourcespk/file002.mat')); 

 
HSManalyze(strcat('C:/Dwight_Research/UPC_HSM_VC 

2/',source,'/sourcespk/file003org.wav'),strcat('C:/Dwight_Research/UPC_HSM_VC 
2/',source,'/sourcespk/file003.mat')); 

 
HSManalyze(strcat('C:/Dwight_Research/UPC_HSM_VC 

2/',source,'/sourcespk/file004org.wav'),strcat('C:/Dwight_Research/UPC_HSM_VC 
2/',source,'/sourcespk/file004.mat')); 

 
HSManalyze(strcat('C:/Dwight_Research/UPC_HSM_VC 

2/',source,'/sourcespk/file005org.wav'),strcat('C:/Dwight_Research/UPC_HSM_VC 
2/',source,'/sourcespk/file005.mat')); 

 
 
 
HSMsynthesize(strcat('C:/Dwight_Research/UPC_HSM_VC 

2/',source,'/sourcespk/file001.mat'),strcat('C:/Dwight_Research/UPC_HSM_VC 
2/',source,'/sourcespk/file001.wav')); 

 
HSMsynthesize(strcat('C:/Dwight_Research/UPC_HSM_VC 

2/',source,'/sourcespk/file002.mat'),strcat('C:/Dwight_Research/UPC_HSM_VC 
2/',source,'/sourcespk/file002.wav')); 

 
HSMsynthesize(strcat('C:/Dwight_Research/UPC_HSM_VC 

2/',source,'/sourcespk/file003.mat'),strcat('C:/Dwight_Research/UPC_HSM_VC 
2/',source,'/sourcespk/file003.wav')); 

 
HSMsynthesize(strcat('C:/Dwight_Research/UPC_HSM_VC 

2/',source,'/sourcespk/file004.mat'),strcat('C:/Dwight_Research/UPC_HSM_VC 
2/',source,'/sourcespk/file004.wav')); 
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HSMsynthesize(strcat('C:/Dwight_Research/UPC_HSM_VC 
2/',source,'/sourcespk/file005.mat'),strcat('C:/Dwight_Research/UPC_HSM_VC 
2/',source,'/sourcespk/file005.wav')); 

 
  
 
end 
 
 
 
CINCH CONV 
 
 
 
function [] = cinch_conv (cinchmp3, cinchwav) 
 
 
 
%cinchMp3 is the cinch MP3 file that is being converted to the WAV 
 
%cinchMp3 is sampled at 22000 
 
 
 
%cinchwav is the location in which you want the wav file to be saved 
 
 
 
%Read in the MP3 
 
[data fs]=mp3read(cinchmp3); 
 
if(fs==22050) 
 
 
 
%Reduce the amplitude of the data so that it can be used in the HSM toolbox 
 
z=zeros(96000-length(data),1); 
 
data=vertcat(data,z); 
 
data=ampreduce(data); 
 
data=ampreduce(data); 
 
%Interpolate and Decimate to get the data to the 8000 Sample rate that is 
 
%used for the HSM Toolbox 
 
%22000*12=264,000 <--Interpolation 
 
%264000/33=8,000 <--Decimation  
 
 
 
data=interp(data,12);  
 
data=decimate(data,33); 
 
 
 
%Preemphasis filter to remove all "Pops" from the original WAVE FILE 
 
 
 
 DataPre=filter([1-.99],[1],data); DataPreInc=DataPre*30;  
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wavwrite(DataPreInc, strcat(cinchwav,'.wav')); 
 
else if (fs==11025) 
 
        %Reduce the amplitude of the data so that it can be used in the HSM 

toolbox 
 
z=zeros(96000-length(data),1); 
 
data=vertcat(data,z); 
 
data=ampreduce(data); 
 
data=ampreduce(data);  
 
data=ampreduce(data);  
 
%Interpolate and Decimate to get the data to the 8000 Sample rate that is 
 
%used for the HSM Toolbox 
 
%11000*8=88,000 <--Interpolation 
 
%88000/11=8,000 <--Decimation  
 
 
 
data=interp(data,8);  
 
data=decimate(data,11); 
 
 
 
%Preemphasis filter to remove all "Pops" from the original WAVE FILE 
 
 
 
 DataPre=filter([1-.99],[1],data); DataPreInc=DataPre*30;  
 
wavwrite(DataPreInc, strcat(cinchwav,'.wav')); 
 
    end; 
 
end; 
 
 
 
AMPREDUCE 
 
 
 
function outputsignal = ampreduce(varargin) 
 
%ampreduce   Reduces the amplitude of a signal 
 
% 
 
%   For vectors, AMPREDUCE(X) is a vector with the same mean but  
 
%   smaller range than the original vector. The range is reduced by a factor 
 
%   defined by the user. If the user does not define a factor, the range is 

reduced by a factor of 2 
 
% 
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%   Example: If X = [0 2 4] 
 
% 
 
%   then ampreduce(X) is [1 2 3] 
 
% 
 
%   See attached license for terms of use. 
 
 
 
 
 
%Initial checks 
 
if nargin == 1 
 
    signal = varargin{1}; 
 
    reduction = 2; 
 
elseif nargin == 2 
 
    signal = varargin{1}; 
 
    reduction = varargin{2}; 
 
else 
 
    error('Wrong number of inputs'); 
 
end 
 
 
 
%Processing... 
 
temp_signal = signal / reduction; 
 
outputsignal = (mean(signal)) - (mean(temp_signal))  + temp_signal; 
 
 
 
end 
 
 
 
ZERO APPEND 
 
function [data] = zero_append (data) 
 
z=zeros(480000-length(data),1); 
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APPENDIX C  
 

UPC TOOLBOX MATLAB CODE 
 

HSM ANALYZE 

 
function HSManalyze(fileIN,fileOUT) 
 
%_________________________________________________________________________________

_ 
 
%                         
 
%    UPC Toolkit for HSM-based Voice Conversion 
 
%    Copyright (C) 2007  TALP Research Center 
 
%                        Universitat PolitËcnica de Catalunya (UPC) 
 
%     
 
%    This library is free software; you can redistribute it and/or 
 
%    modify it under the terms of the GNU Lesser General Public 
 
%    License as published by the Free Software Foundation; either 
 
%    version 2.1 of the License, or (at your option) any later version. 
 
% 
 
%    This library is distributed in the hope that it will be useful, 
 
%    but WITHOUT ANY WARRANTY; without even the implied warranty of 
 
%    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 
 
%    Lesser General Public License for more details. 
 
% 
 
%    You should have received a copy of the GNU Lesser General Public 
 
%    License along with this library; if not, write to the Free Software 
 
%    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 
 
%                                                
 
%     
 
%    Contact information: 
 
%            AsunciÛn Moreno (asuncion.moreno@upc.edu) 
 
%            TALP Research Center, Universitat PolitËcnica de Catalunya 
 
%            UPC Campus Nord, Building D5 
 
%            08034 - Barcelona, Spain 
 
%_________________________________________________________________________________

_ 



74 	
  
	
  

 
% 
 
% 
 
%   HSManalyze(fileIn,fileOut) 
 
% 
 
%   fileIn (string): wav file to be analyzed. Only wav files sampled at 
 
%   16KHz 16bits mono, are accepted. 
 
%   fileOut (string): matlab file containing the HSM parameters of the 
 
%   input signal. 
 
% 
 
%   If the input arguments are not specified, the program will ask for 
 
%   them. 
 
% 
 
 
 
 
 
% The HSM parameters are stored in a structure called 'picos', whose fields are: 
 
% pm: analysis sample (where the current parameters are measured) 
 
% f0: pitch estimation at pm 
 
% a: amplitudes of the harmonics at f0, 2f0, ... <fmax 
 
% p: phases of the harmonics 
 
% alfa: linear phase term of the harmonics 
 
% e: denominator of the LPC filter (including gain) 
 
 
 
% general settings 
 
N=128; % analysis rate: 8ms at 16KHz sampling freq = 128 samples 
 
f0min=60.0; f0max=500.0; % pitch range 
 
fmax=5000.0; % maximum voiced frequency (fixed value) 
 
ordenLPC=14; % order of the filters representing the stochastic component 
 
% go 
 
if nargin==0 [fileIN,pathIN]=uigetfile('*.wav','Select WAV file'); if 

(isequal(fileIN,0)|isequal(pathIN,0)) return; end; fileIN=[pathIN fileIN]; end; 
 
if length(fileIN)>4 if fileIN(length(fileIN)-3:length(fileIN))=='.wav' 

fileIN=fileIN(1:length(fileIN)-4); end; end; 
 
[x,fs]=wavread(fileIN); x=transpose(x); L=length(x); 
 
if size(x,1)>1 x=x(1,:); disp('   Only the first channel will be processed.'); 

end; 
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if fs~=8000 disp('   This tool operates only with sounds sampled at 16khz!!'); 

return; end; 
 
fmax=min(fmax,0.5*fs); 
 
pms=1+ceil(1.5*fs/f0min)+N*(0:floor((L-3.0*fs/f0min)/N)); 
 
f0s=f0analysisbyboersma(x,fs,pms,f0min,f0max); % f0 analysis 
 
picos=harmonicanalysis(x,fs,pms,f0s,fmax); % amplitudes and phases 
 
picos=stochasticanalysis(x,fs,N,picos,ordenLPC); % noise lpc filter 
 
picos=polarityanalysis(picos); % waveform peaks are made possitive (necessary for 

phase decomposition) 
 
picos=decomposephase(picos); % decomposition into a linear term and a "filter" 

term 
 
if nargin<2 [fileOUT,pathOUT]=uiputfile('*.mat','Save MAT file',fileIN); if 

(isequal(fileOUT,0)|isequal(pathOUT,0)) return; end; fileOUT=[pathOUT fileOUT]; end; 
 
save(fileOUT,'L','fs','picos'); 
 
 
 
% harmonicanalysis 
 
function picos=harmonicanalysis(x,fs,pms,f0s,fmax) 
 
picos(1:length(pms))=struct('pm',0,'f0',0.0,'a',[],'alfa',0.0,'p',[],'e',[]); 
 
for k=1:length(pms) 
 
    picos(k).pm=pms(k); picos(k).f0=f0s(k); 
 
    if f0s(k)>0.0 
 
        Lw=ceil(2.2*fs/min(f0s(k),150.0)); 
 
        Lw2=floor(Lw/2); Lw=2*Lw2+1; 
 
        trama2T=x(pms(k)+(-Lw2:Lw2)); 
 
        win=transpose(0.54+0.46*cos(pi*(-Lw2:Lw2)/Lw2)); 
 
        trama2T=transpose(trama2T).*win; 
 
        K=ceil(fmax/f0s(k))-1; 
 
        h=zeros(Lw,K); h(:,1)=transpose(exp(i*2*pi*f0s(k)*(-Lw2:Lw2)/fs)); for 

kk=2:K h(:,kk)=h(:,kk-1).*h(:,1); end; for kk=1:K h(:,kk)=h(:,kk).*win; end; h=[h 
conj(h)]; 

 
        if 1 coef=(h'*h)\(h'*trama2T); else coef=inv(h'*h)*h'*trama2T; end; 
 
        picos(k).a=transpose(2.0*abs(coef(1:K))); 
 
  picos(k).p=transpose(angle(coef(1:K))); 
 
    end; 
 
end; 
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% stochanal 
 
function picos=stochasticanalysis(x,fs,N,picos,ordenLPC) 
 
Npm=length(picos); 
 
yd=zeros([1,length(x)]); 
 
for j=1:length(picos(1).a) yd(picos(1).pm-N:picos(1).pm-1)=yd(picos(1).pm-

N:picos(1).pm-1)+(picos(1).a(j)*(0:N-1)/N).*cos(2*pi*j*picos(1).f0*(-N:-
1)/fs+picos(1).p(j)); end; 

 
for k=1:Npm-1 
 
    for j=1:min(length(picos(k).a),length(picos(k+1).a)) 
 
        a1=picos(k).a(j); a2=picos(k+1).a(j); 
 
        

[c0,c1,c2,c3]=bymcaquat(picos(k).p(j),picos(k+1).p(j),j*picos(k).f0,j*picos(k+1).f0,N,fs)
; 

 
        yd(picos(k).pm:picos(k).pm+N-1)=yd(picos(k).pm:picos(k).pm+N-1)+(a1+(a2-

a1)*(0:N-1)/N).*cos(c0+(0:N-1).*(c1+(0:N-1).*(c2+c3*(0:N-1)))); 
 
    end; 
 
    for j=length(picos(k+1).a)+1:length(picos(k).a) yd(picos(k).pm:picos(k).pm+N-

1)=yd(picos(k).pm:picos(k).pm+N-1)+(picos(k).a(j)*(N:-
1:1)/N).*cos(2*pi*j*picos(k).f0*(0:N-1)/fs+picos(k).p(j)); end; 

 
    for j=length(picos(k).a)+1:length(picos(k+1).a) yd(picos(k+1).pm-

N:picos(k+1).pm-1)=yd(picos(k+1).pm-N:picos(k+1).pm-1)+(picos(k+1).a(j)*(0:N-
1)/N).*cos(2*pi*j*picos(k+1).f0*(-N:-1)/fs+picos(k+1).p(j)); end; 

 
end; 
 
for j=1:length(picos(Npm).a) yd(picos(Npm).pm:picos(Npm).pm+N-

1)=yd(picos(Npm).pm:picos(Npm).pm+N-1)+(picos(Npm).a(j)*(N:-
1:1)/N).*cos(2*pi*j*picos(Npm).f0*(0:N-1)/fs+picos(Npm).p(j)); end; 

 
ye=x-yd; ye=filter(fir1(48,500/(0.5*fs),'high'),1,ye); ye=[ye(25:length(ye)) 

zeros(1,24)]; 
 
hnnN=sqrt(8/3)*(0.5-0.5*cos(2*pi*(0:N-1)/N)); 
 
for k=1:Npm trama=ye(picos(k).pm-floor(N/2):picos(k).pm-floor(N/2)+N-1).*hnnN; if 

trama==zeros(size(trama)) picos(k).e=[inf zeros(1,ordenLPC)]; else 
R=zeros([1,ordenLPC+1]); for j=0:ordenLPC R(j+1)=sum(trama(j+1:N).*trama(1:N-j)); end; 
picos(k).e=sqrt(N)*bylevdurb(R); end; end; 

 
 
 
% bymcaquat (mcaulay & quatieri) 
 
function [c0,c1,c2,c3]=bymcaquat(p1,p2,f1,f2,N,fs) 
 
w1=2*pi*f1/fs; w2=2*pi*f2/fs; 
 
M=round((1/(2*pi))*((p1+w1*N-p2)+0.5*N*(w2-w1))); 
 
c0=p1; c1=w1; c2=(3/(N*N))*(p2-p1-w1*N+2*pi*M)-(w2-w1)/N; c3=(-2/(N*N*N))*(p2-p1-

w1*N+2*pi*M)+(w2-w1)/(N*N); 
 
 
 
% bylevdurb (levinson-durbin) 
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function ai=bylevdurb(R) 
 
ordenLPC=length(R)-1; ai=zeros([1,ordenLPC]); e=R(1); 
 
for u=1:ordenLPC if (u==1) k=R(2)/R(1); ai(1)=k; e=(1-k*k)*e; else k=R(u+1); for 

v=1:u-1 k=k-ai(v)*R(u-v+1); end; k=k/e; ai(u)=k; for v=1:u-1 aux(v)=ai(v)-k*ai(u-v); end; 
ai(1:u-1)=aux(1:u-1); e=(1-k*k)*e; end; end; 

 
ai=[1 -ai]/sqrt(abs(R(1)-sum(ai.*R(2:ordenLPC+1)))); 
 
 
 
% polarityanalysis 
 
function [picos,pol]=polarityanalysis(picos) 
 
pol=0; polE=0.0; 
 
for k=1:length(picos) 
 
    if picos(k).f0>0.0 
 
        E=sum(picos(k).a.*picos(k).a); 
 
        alfa=2.0*picos(k).p(1)-picos(k).p(2); alfa=alfa-2*pi*floor(alfa/(2*pi)); 
 
        dP=min(abs([alfa 2*pi-alfa])); dN=abs(alfa-pi); 
 
        if dN<dP pol=pol-1; polE=polE-E; elseif dP<dN pol=pol+1; polE=polE+E; end; 
 
    end; 
 
end; 
 
if pol<0 pol=-1; elseif pol>0 pol=1; elseif polE<0.0 pol=-1; else pol=1; end; 
 
if pol==-1 for k=1:length(picos) if picos(k).f0>0.0 picos(k).p=picos(k).p+pi; end; 

end; end; 
 
 
 
% f0analysisbyboersma (boersma) 
 
function f0s=f0analysisbyboersma(x,fs,pms,f0min,f0max) 
 
Ncandidates=6; 
 
if nargin<5 f0max=500.0; if nargin<4 f0min=60.0; end; end; 
 
lagmin=ceil(fs/f0max); lagmax=floor(fs/f0min); fact=0.01*fs/(pms(2)-pms(1)); 
 
voith=0.45; silth=0.03; octcost=0.01; vuvcost=0.14*fact; uvvcost=0.14*fact; 

uvuvcost=0.0; octjump=0.35*fact; 
 
L=ceil(3.0*fs/f0min); if rem(L,2)==0 L2=L/2; L=L+1; else L2=(L-1)/2; end; 
 
Lz=ceil(1.5*L); Lp2=2; while Lp2<Lz Lp2=Lp2*2; end; 
 
Lxlmax=ceil(0.5*fs/f0min); Ldc=2*Lxlmax; 
 
w=zeros(1,Lp2); w(1:L)=0.5*(1-cos(2*pi*(0:(L-1))/L)); 
 
rw=real(ifft(abs(fft(w)).^2)); rw=(1/rw(1))*rw(1:L2); 
 
xgmax=max(abs(x)); 
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dat(1:length(pms))=struct('r',[],'f',[],'ac',[],'ant',[]); 
 
for k=1:length(pms) 
 
    if pms(k)-L2<1 trama=x(1:(pms(k)+L2)); trama=[zeros(1,L-length(trama)) trama]; 
 
    elseif pms(k)+L2>length(x) trama=x((pms(k)-L2):length(x)); trama=[trama 

zeros(1,L-length(trama))]; 
 
    else trama=x(pms(k)+(-L2:L2)); end; 
 
    trama=trama-sum(trama(L2+1+(-Ldc:Ldc)))/(2.0*Ldc+1.0); 
 
    xlmax=max(abs(trama(L2+1+(-Lxlmax:Lxlmax)))); 
 
    trama=[trama zeros(1,Lp2-L)].*w; 
 
    ra=real(ifft(abs(fft(trama)).^2)); ra=(1/ra(1))*ra(1:L2); 
 
    rx=ra./rw; rx=max(rx,0.0); 
 
    rk=zeros(1,Ncandidates-1); fk=zeros(1,Ncandidates-1); 
 
    for j=lagmin+1:lagmax+1 
 
        if rx(j)>0.5*voith && rx(j-1)<rx(j) && rx(j+1)<rx(j) 
 
            tmax=0.5*(rx(j-1)-rx(j+1))/(rx(j-1)-2.0*rx(j)+rx(j+1)); 
 
            rmax=rx(j)+0.5*tmax*(rx(j+1)-rx(j-1)+tmax*(rx(j-1)-2*rx(j)+rx(j+1))); 
 
            if rmax>1.0 rmax=1.0/rmax; end; 
 
            tmax=(tmax+j-1)/fs; fmax=1.0/tmax; rmax=rmax-octcost*log2(f0min*tmax); 
 
            [rmin,jj]=min(rk); if rmax>rmin rk(jj)=rmax; fk(jj)=fmax; end; 
 
        end; 
 
    end; 
 
    ruv=voith+max(0.0,2.0-min(1.0,xlmax/xgmax)/(silth/(1.0+voith))); 
 
    jj=find(fk>0.0); dat(k).r=[rk(jj)+octcost*log2(f0min./fk(jj)) ruv]; 

dat(k).f=[fk(jj) 0.0]; 
 
    dat(k).ac=zeros(size(dat(k).f)); dat(k).ant=zeros(size(dat(k).f)); 
 
end; 
 
dat(1).ac=-dat(1).r; 
 
for k=2:length(pms) 
 
    for j=1:length(dat(k).f) 
 
        mincost=inf; jjmincost=-1; 
 
        for jj=1:length(dat(k-1).f) 
 
            cost=dat(k-1).ac(jj)-dat(k).r(j); 
 
            if dat(k).f(j)==0.0 && dat(k-1).f(jj)==0.0 cost=cost+uvuvcost; 
 
            elseif dat(k).f(j)==0.0 cost=cost+vuvcost; 
 
            elseif dat(k-1).f(jj)==0.0 cost=cost+uvvcost; 
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            else cost=cost+octjump*abs(log2(dat(k).f(j)/dat(k-1).f(jj))); end; 
 
            if cost<mincost mincost=cost; jjmincost=jj; end; 
 
        end; 
 
        dat(k).ac(j)=mincost; dat(k).ant(j)=jjmincost; 
 
    end; 
 
end; 
 
f0s=zeros(size(pms)); 
 
[mincost,jjmincost]=min(dat(length(dat)).ac); 
 
f0s(length(f0s))=dat(length(dat)).f(jjmincost); 

jjmincost=dat(length(dat)).ant(jjmincost); 
 
for k=length(pms)-1:-1:1 f0s(k)=dat(k).f(jjmincost); 

jjmincost=dat(k).ant(jjmincost); end; 
 
 
 
% decomposephase 
 
function picos=decomposephase(picos) 
 
fmaxopt=1000.0; 
 
for k=1:length(picos) 
 
    if picos(k).f0>0.0 
 
        alfa=linphaseterm(picos(k).a,picos(k).p,fmaxopt); 
 
        picos(k).alfa=-alfa; picos(k).p=picos(k).p+(1:length(picos(k).p))*alfa; 
 
    end; 
 
end; 
 
 
 
% linphaseterm 
 
function alfa=linphaseterm(aa,pp,fmaxopt) 
 
%poffset=-pp(1)+pi; pp=pp+(1:length(pp))*poffset; 
 
fmax=5000.0; if nargin<3 fmaxopt=1000.0; end; 
 
K=ceil(length(aa)*fmaxopt/fmax); aa_=aa(1:K); pp_=pp(1:K); 
 
alfa=sumcos((1:K).*aa_,pp_,'sin'); % x=Sumk{Ak∑cos(k∑alfa+pk)} ,, dx/dalfa=-

Sumk{k∑Ak∑sin(k∑alfa+pk)}=0 
 
if length(alfa)>1 s=zeros(1,length(alfa)); for k=1:length(alfa) 

s(k)=sum(aa_.*cos((1:length(pp_))*alfa(k)+pp_)); end; [smax,imax]=max(s); 
alfa=alfa(imax); 

 
else disp(num2str([aa_.' pp_.'])); error('No hay alfa!!'); end; 
 
%alfa=alfa+poffset; 
 
 



80 	
  
	
  

 
% sumcos 
 
function x=sumcos(aa,pp,modo) 
 
K=length(aa); AcP=aa.*cos(pp); AsP=aa.*sin(pp); 
 
[T,U]=polytseb(K); 
 
if isequal(modo,'cos') Tx=AcP*T; Ux=-AsP*U; elseif isequal(modo,'sin') Ux=AcP*U; 

Tx=AsP*T; end; 
 
Px=conv([-1.0 0.0 1.0],conv(Ux,Ux))-[0.0 0.0 conv(Tx,Tx)]; 
 
x=roots(Px).'; x=x(find(imag(x)==0.0 & abs(x)<=1.0)); 
 
for k=1:length(x) term1=sqrt(1-x(k)*x(k))*polyval(Ux,x(k)); 

term2=polyval(Tx,x(k)); if abs(term2+term1)<abs(term2-term1) x(k)=acos(x(k)); else x(k)=-
acos(x(k)); end; end; 

 
 
 
% polytseb 
 
function [T,U]=polytseb(K) 
 
T=zeros(K+1,K+1); T(1,K+1)=1; T(2,K)=1; U=zeros(K+1,K+1); U(1,K+1)=1; U(2,K)=2; 
 
for k=2:K T(k+1,:)=2*[T(k,2:K+1) 0]-T(k-1,:); U(k+1,:)=[U(k,2:K+1) 0]+T(k+1,:); 

end; 
 
T=T(2:K+1,:); U=U(1:K,:); 
 
 
 
HSM SYNTHESIZE 
 
 
 
 function HSMsynthesize(fileIN,fileOUT) 
 
%_________________________________________________________________________________

_ 
 
%                         
 
%    UPC Toolkit for HSM-based Voice Conversion 
 
%    Copyright (C) 2007  TALP Research Center 
 
%                        Universitat PolitËcnica de Catalunya (UPC) 
 
%     
 
%    This library is free software; you can redistribute it and/or 
 
%    modify it under the terms of the GNU Lesser General Public 
 
%    License as published by the Free Software Foundation; either 
 
%    version 2.1 of the License, or (at your option) any later version. 
 
% 
 
%    This library is distributed in the hope that it will be useful, 
 
%    but WITHOUT ANY WARRANTY; without even the implied warranty of 
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%    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 
 
%    Lesser General Public License for more details. 
 
% 
 
%    You should have received a copy of the GNU Lesser General Public 
 
%    License along with this library; if not, write to the Free Software 
 
%    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 
 
%                                                
 
%     
 
%    Contact information: 
 
%            AsunciÛn Moreno (asuncion.moreno@upc.edu) 
 
%            TALP Research Center, Universitat PolitËcnica de Catalunya 
 
%            UPC Campus Nord, Building D5 
 
%            08034 - Barcelona, Spain 
 
%_________________________________________________________________________________

_ 
 
% 
 
% 
 
%   HSMsynthesize(fileIn,fileOut) 
 
% 
 
%   fileIn (string): input matlab file to be transformed into sound. 
 
%   fileOut (string): output wav file (16KHz 16bits mono). 
 
% 
 
 
 
if nargin==0 [fileIN,pathIN]=uigetfile('*.mat','Select MAT file'); if 

(isequal(fileIN,0)|isequal(pathIN,0)) return; end; fileIN=[pathIN fileIN]; end; 
 
if length(fileIN)>4 && isequal(fileIN(length(fileIN)-3:length(fileIN)),'.mat') 

fileIN=fileIN(1:length(fileIN)-4); end; 
 
load(fileIN); 
 
y=synth(L,fs,picos); 
 
if nargin<2 [fileOUT,pathOUT]=uiputfile('*.wav','Save WAV file',fileIN); if 

(isequal(fileOUT,0)|isequal(pathOUT,0)) return; end; fileOUT=[pathOUT fileOUT]; end; 
 
wavwrite(y,fs,fileOUT); 
 
 
 
% synth 
 
function y=synth(L,fs,picos) 
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y=zeros([1,L]); Npm=length(picos); ordenLPC=length(picos(1).e)-1; 
 
for k=1:Npm 
 
    n2=picos(k).pm; if k==1 n3=picos(k+1).pm; n1=max(1,n2-(n3-n2)); elseif k==Npm 

n1=picos(k-1).pm; n3=min(L,n2+(n2-n1)); else n1=picos(k-1).pm; n3=picos(k+1).pm; end; 
 
    N12=n2-n1; N23=n3-n2; 
 
    win=[0:1/N12:(N12-1)/N12 1:-1/N23:1/N23]; 
 
    trama=zeros(1,n3-n1); 
 
    for j=1:length(picos(k).a) trama=trama+(picos(k).a(j))*cos(2*pi*(-N12:N23-

1)*(j*picos(k).f0)/fs+picos(k).p(j)+j*picos(k).alfa); end; 
 
    trama=trama+filter(1,picos(k).e,randn(1,n3-n1)); 
 
    y(n1:n3-1)=y(n1:n3-1)+trama.*win; 
 
end; 
 
data=vertcat(data,z); 
 
 
 
 
 
 
 
HSM Non-Paralell Corpus 
 
 
 
function HSMnonpcorpus(raiz1,inds1,raiz2,inds2,nc,fo) 
 
%_________________________________________________________________________________

_ 
 
%                         
 
%    UPC Toolkit for HSM-based Voice Conversion 
 
%    Copyright (C) 2007  TALP Research Center 
 
%                        Universitat PolitËcnica de Catalunya (UPC) 
 
%     
 
%    This library is free software; you can redistribute it and/or 
 
%    modify it under the terms of the GNU Lesser General Public 
 
%    License as published by the Free Software Foundation; either 
 
%    version 2.1 of the License, or (at your option) any later version. 
 
% 
 
%    This library is distributed in the hope that it will be useful, 
 
%    but WITHOUT ANY WARRANTY; without even the implied warranty of 
 
%    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 
 
%    Lesser General Public License for more details. 
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% 
 
%    You should have received a copy of the GNU Lesser General Public 
 
%    License along with this library; if not, write to the Free Software 
 
%    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 
 
%                                                
 
%     
 
%    Contact information: 
 
%            AsunciÛn Moreno (asuncion.moreno@upc.edu) 
 
%            TALP Research Center, Universitat PolitËcnica de Catalunya 
 
%            UPC Campus Nord, Building D5 
 
%            08034 - Barcelona, Spain 
 
%_________________________________________________________________________________

_ 
 
% 
 
% 
 
%   HSMnonpcorpus(prefix1,ind1,prefix2,ind2,numdigits,fout) 
 
% 
 
%   Example of usage: 
 
% 
 
%   HSMpcorpus('srcfile',1:2,'tgtfile',6:7,4,'corpus') 
 
% 
 
%   The output training corpus, called 'corpus', is created from the 
 
%   following matlab files: {srcfile0001, srcfile0002}, {tgtfile0006, 
 
%   tgtfile0007}. 
 
% 
 
 
 
p1v=[]; p2v=[]; 
 
for nf=1:length(inds1) 
 
    n=int2str(inds1(nf)); for k=length(n)+1:nc n=['0' n]; end; 
 
    load([raiz1 n]); 
 
    f0s=zeros(1,length(picos)); for k=1:length(picos) f0s(k)=picos(k).f0; end; 
 
    p1v=[p1v picos(find(f0s>0.0))]; 
 
    clear picos fs L f0s; 
 
end; 
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for nf=1:length(inds2) 
 
    n=int2str(inds2(nf)); for k=length(n)+1:nc n=['0' n]; end; 
 
    load([raiz2 n]); 
 
    f0s=zeros(1,length(picos)); for k=1:length(picos) f0s(k)=picos(k).f0; end; 
 
    p2v=[p2v picos(find(f0s>0.0))]; 
 
    clear picos fs L f0s; 
 
end; 
 
save(fo,'p1v','p2v','inds1','inds2'); 
 
 
 
 
 
HSM Non-Parallel Training 
 
 
 
function HSMnonptraining(corpus,fout,m) 
 
%_________________________________________________________________________________

_ 
 
%                         
 
%    UPC Toolkit for HSM-based Voice Conversion 
 
%    Copyright (C) 2007  TALP Research Center 
 
%                        Universitat PolitËcnica de Catalunya (UPC) 
 
%     
 
%    This library is free software; you can redistribute it and/or 
 
%    modify it under the terms of the GNU Lesser General Public 
 
%    License as published by the Free Software Foundation; either 
 
%    version 2.1 of the License, or (at your option) any later version. 
 
% 
 
%    This library is distributed in the hope that it will be useful, 
 
%    but WITHOUT ANY WARRANTY; without even the implied warranty of 
 
%    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 
 
%    Lesser General Public License for more details. 
 
% 
 
%    You should have received a copy of the GNU Lesser General Public 
 
%    License along with this library; if not, write to the Free Software 
 
%    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 
 
%                                                
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%     
 
%    Contact information: 
 
%            AsunciÛn Moreno (asuncion.moreno@upc.edu) 
 
%            TALP Research Center, Universitat PolitËcnica de Catalunya 
 
%            UPC Campus Nord, Building D5 
 
%            08034 - Barcelona, Spain 
 
%_________________________________________________________________________________

_ 
 
% 
 
% 
 
%   HSMnonptraining(corpus,fout,[m]) 
 
% 
 
%   corpus (string): input non-parallel corpus. 
 
%   fout (string): matlab file containing the trained voice conversion 
 
%   function. 
 
%   m (integer): number of gaussian components of the function (def=8). 
 
% 
 
 
 
p=14; % order of the LSF vectors 
 
if nargin<3 || length(m)==0 m=1; m_=8; elseif length(m)==1 m_=m; m=1; else 

m_=m(2); m=m(1); end; 
 
if nargin<1 [corpus,paux]=uigetfile('*.mat','Select training corpus'); if 

(isequal(corpus,0)|isequal(paux,0)) return; end; corpus=[paux corpus]; end; if 
corpus(length(corpus)-3)=='.' corpus=corpus(1:length(corpus)-4); end; load(corpus); 

 
Nx=length(p1v); Ny=length(p2v); 
 
if 1 
 
    lf01=zeros(1,Nx); for k=1:Nx lf01(k)=log10(p1v(k).f0); end; 

lf01u=(1/Nx)*sum(lf01); lf01v=sqrt((1/Nx)*sum((lf01-lf01u).^2)); 
 
    lf02=zeros(1,Ny); for k=1:Ny lf02(k)=log10(p2v(k).f0); end; 

lf02u=(1/Ny)*sum(lf02); lf02v=sqrt((1/Ny)*sum((lf02-lf02u).^2)); 
 
    f0f12=[lf01u lf01v lf02u lf02v]; f0f21=[lf02u lf02v lf01u lf01v]; 
 
else f0f12=[]; f0f21=[]; end; 
 
if 1 
 
    [X_,X]=detalsf(p1v,p); 
 
    [Y_,Y]=detalsf(p2v,p); 
 
    Xe=stochalsf(p1v); 
 
    Ye=stochalsf(p2v); 
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end; 
 
clear p1v p2v; pack; 
 
if 1 
 
    Xt=X; sigue=1; iter1=0; itermax1=25; itermax2=25; dtotant=inf; parejaxy=[]; 

parejayx=[]; ind=[]; 
 
    while sigue>0 
 
        iter1=iter1+1; dtot=0; 
 
        parejaxyant=parejaxy; parejayxant=parejayx; indant=ind; 
 
        parejaxy=zeros(1,Nx); for k=1:Nx [parejaxy(k),dpar]=nnfind(Y,Xt(:,k)); 

dtot=dtot+dpar; end; 
 
        parejayx=zeros(1,Ny); for k=1:Ny [parejayx(k),dpar]=nnfind(Xt,Y(:,k)); 

dtot=dtot+dpar; end; 
 
        for k=1:length(parejayx) if parejaxy(parejayx(k))==k parejayx(k)=0; end; 

end; ind=find(parejayx>0);         
 
        if dtot>=dtotant || iter1>=itermax1 sigue=0; X=X_; Y=Y_; m=m_; 

parejaxy=parejaxyant; parejayx=parejayxant; ind=indant; itermax2=inf; clear X_ Y_; pack; 
else dtotant=dtot; end; 

 
        Z=[X X(:,parejayx(ind)); Y(:,parejaxy) Y(:,ind)]; N=size(Z,2); 
 
        ugral=(1/N)*sum(Z,2); Egral=zeros(2*p,2*p); for t=1:N v=Z(:,t)-ugral; 

Egral=Egral+v*transpose(v); end; Egral=(1/N)*Egral; umb=zeros(1,2*p); for j=1:2*p 
umb(j)=0.02*Egral(j,j); end; pert=min(umb); clear ugral Egral umb; 

 
        if m==1 
 
            ui=(1/N)*sum(Z,2); 
 
            Ei=zeros(2*p,2*p); for t=1:N Ei=Ei+(Z(:,t)-ui)*transpose(Z(:,t)-ui); 

end; Ei=(1/N)*Ei+pert*eye(2*p); 
 
            thz=struct('a',1.0,'u',ui,'E',Ei); 
 
        else 
 
            [c,c0]=clustkmeans(Z,m); 
 
            thz(1:m)=struct('a',0,'u',zeros(2*p,1),'E',zeros(2*p,2*p)); for i=1:m 

indi=find(c==i); subZ=Z(:,indi); subN=length(indi); thz(i).a=subN/N; ui=Z(:,c0(i)); 
thz(i).u=ui; Ei=zeros([2*p,2*p]); for k=1:subN v=subZ(:,k)-ui; Ei=Ei+v*transpose(v); end; 
thz(i).E=(1/subN)*Ei+pert*eye(2*p); end; 

 
            P=zeros(m,N); seguir=1; umb=0.000001; cte=power(2*pi,-p); iter2=1; 
 
            pxt=zeros(1,N); for i=1:m ai=thz(i).a; ui=thz(i).u; Ei=thz(i).E; 

dEi=1/sqrt(det(Ei)); iEi=inv(Ei); for t=1:N P(i,t)=ai*dEi*exp(-0.5*transpose(Z(:,t)-
ui)*iEi*(Z(:,t)-ui)); pxt(t)=pxt(t)+cte*P(i,t); end; end; Lant=sum(log(pxt)); 
Psum=sum(P,1); for i=1:m P(i,:)=P(i,:)./Psum; end; 

 
            while seguir==1 
 
                for i=1:m thz(i).a=(1/N)*sum(P(i,:)); end; % Calcular las nuevas 

alfa 
 
                for i=1:m ui=zeros(2*p,1); for t=1:N ui=ui+P(i,t)*Z(:,t); end; 

thz(i).u=ui*(1/(N*thz(i).a)); end; % Calcular las nuevas medias 
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                for i=1:m Ei=zeros(2*p,2*p); for t=1:N Ei=Ei+P(i,t)*(Z(:,t)-

thz(i).u)*transpose(Z(:,t)-thz(i).u); end; thz(i).E=Ei*(1/(N*thz(i).a))+pert*eye(2*p); 
end; % Calcular las nuevas covarianzas 

 
                pxt=zeros(1,N); for i=1:m ai=thz(i).a; ui=thz(i).u; Ei=thz(i).E; 

dEi=1/sqrt(det(Ei)); iEi=inv(Ei); for t=1:N P(i,t)=ai*dEi*exp(-0.5*transpose(Z(:,t)-
ui)*iEi*(Z(:,t)-ui)); pxt(t)=pxt(t)+cte*P(i,t); end; end; L=sum(log(pxt)); Psum=sum(P,1); 
for i=1:m P(i,:)=P(i,:)./Psum; end; % Calcular la nueva likelihood y las siguientes P's 

 
                if iter2==itermax2 seguir=0; else iter2=iter2+1; end; 
 
                if (L-Lant)/Lant<umb seguir=0; else Lant=L; end; 
 
            end; 
 
        end; 
 
        thxy(1:m)=struct('a',0,'u',[],'E',[],'v',[],'R',[]); thyx=thxy; 
 
        for k=1:m thxy(k).a=thz(k).a; thxy(k).u=thz(k).u(1:p,1); 

thxy(k).v=thz(k).u(p+1:2*p,1); thxy(k).E=thz(k).E(1:p,1:p); 
thxy(k).R=thz(k).E(p+1:2*p,1:p); thyx(k).a=thz(k).a; thyx(k).u=thz(k).u(p+1:2*p,1); 
thyx(k).v=thz(k).u(1:p,1); thyx(k).E=thz(k).E(p+1:2*p,p+1:2*p); 
thyx(k).R=thz(k).E(1:p,p+1:2*p); end; clear thz; 

 
        clear P; pack; 
 
        if sigue>0 
 
            thaux(1:m)=struct('d',0,'I',zeros(p,p)); for j=1:m 

thaux(j).d=det(thxy(j).E); thaux(j).I=inv(thxy(j).E); end; 
 
            Xt=X; for k=1:Nx v=Xt(:,k); subP=zeros(1,m); for j=1:m 

subP(j)=thxy(j).a*(1/sqrt(thaux(j).d))*exp(-0.5*transpose(v-thxy(j).u)*thaux(j).I*(v-
thxy(j).u)); end; Psum=sum(subP); subP=(1/Psum)*subP; vt=zeros(size(v)); for j=1:m 
vt=vt+subP(j)*(thxy(j).v+thxy(j).R*thaux(j).I*(v-thxy(j).u)); end; Xt(:,k)=vt; end; 

 
        end; 
 
    end; 
 
end; 
 
if 1 
 
    thxe=thxy; thye=thyx; 
 
    P=zeros(Nx,m); D=zeros(Nx,m*p); 
 
    for i=1:m ai=thxe(i).a; ui=thxe(i).u; Ei=thxe(i).E; dEi=1/sqrt(det(Ei)); 

iEi=inv(Ei); iEiT=transpose(iEi); for t=1:Nx P(t,i)=ai*dEi*exp(-0.5*transpose(X(:,t)-
ui)*iEi*(X(:,t)-ui)); D(t,(i-1)*p+(1:p))=P(t,i)*transpose(X(:,t)-ui)*iEiT; end; end; for 
t=1:Nx iPsum=1/sum(P(t,:)); P(t,:)=iPsum*P(t,:); D(t,:)=iPsum*D(t,:); end; 

 
    Z=(pinv([P D])*Xe.').'; for i=1:m thxe(i).v=Z(:,i); thxe(i).R=Z(:,m+(i-

1)*p+(1:p)); end; 
 
    P=zeros(Ny,m); D=zeros(Ny,m*p); 
 
    for i=1:m ai=thye(i).a; ui=thye(i).u; Ei=thye(i).E; dEi=1/sqrt(det(Ei)); 

iEi=inv(Ei); iEiT=transpose(iEi); for t=1:Ny P(t,i)=ai*dEi*exp(-0.5*transpose(Y(:,t)-
ui)*iEi*(Y(:,t)-ui)); D(t,(i-1)*p+(1:p))=P(t,i)*transpose(Y(:,t)-ui)*iEiT; end; end; for 
t=1:Ny iPsum=1/sum(P(t,:)); P(t,:)=iPsum*P(t,:); D(t,:)=iPsum*D(t,:); end; 

 
    Z=(pinv([P D])*Ye.').'; for i=1:m thye(i).v=Z(:,i); thye(i).R=Z(:,m+(i-

1)*p+(1:p)); end; 
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    clear P D Z Xe Ye; pack; 
 
end; 
 
if 1 
 
    [fwxy,fwyx]=automaticth2wfw(thxy); 
 
end; 
 
clear X Y; pack; 
 
if nargin<2 [fout,paux]=uiputfile('*.mat','Save transformation function',['vc-' 

corpus]); if (isequal(fout,0)|isequal(paux,0)) return; end; fout=[paux fout]; end; 
 
th=thxy; th2=thye; fw=fwxy; f0f=f0f12; save(fout,'th','th2','fw','f0f'); 
 
th=thyx; th2=thxe; fw=fwyx; f0f=f0f21; save([fout '-inv'],'th','th2','fw','f0f'); 
 
 
 
% clustkmeans 
 
function [c,c0]=clustkmeans(X,n) 
 
N=size(X,2); c0=(1:n)*floor(N/n); c=zeros(1,N); Nj=zeros(1,n); 
 
for k=1:N dmin=Inf; jmin=0; for j=1:n dact=sum((X(:,k)-X(:,c0(j))).^2); if 

dact<dmin dmin=dact; jmin=j; end; end; c(k)=jmin; Nj(jmin)=Nj(jmin)+1; end; 
 
copiac=c; seguir=1; iter=0; maxiters=1000000; 
 
aux(1:n)=struct('act',0,'ind',[],'sumd',[]); 
 
while seguir==1 
 
    for k=1:n aux(k).act=1; aux(k).ind=zeros(1,Nj(k)); aux(k).sumd=zeros(1,Nj(k)); 

end; 
 
    for k=1:N cls=c(k); act=aux(cls).act; aux(cls).ind(act)=k; for j=1:act-1 

dact=sum((X(:,k)-X(:,aux(cls).ind(j))).^2); aux(cls).sumd(j)=aux(cls).sumd(j)+dact; 
aux(cls).sumd(act)=aux(cls).sumd(act)+dact; end; end; 

 
    for k=1:n dmin=Inf; for j=1:Nj(k) if aux(k).sumd(j)<dmin dmin=aux(k).sumd(j); 

c0(k)=aux(k).ind(j); end; end; end; 
 
    Nj=zeros(1,n); for k=1:N dmin=Inf; jmin=0; for j=1:n dact=sum((X(:,k)-

X(:,c0(j))).^2); if dact<dmin dmin=dact; jmin=j; end; end; c(k)=jmin; 
Nj(jmin)=Nj(jmin)+1; end; 

 
    if c==copiac seguir=0; else copiac=c; end; iter=iter+1; if iter>=maxiters 

seguir=0; end; 
 
end; 
 
 
 
% detalsf 
 
function [LSF,CC]=detalsf(picos,p) 
 
fmax=5000; fs=2*fmax; if nargin<2 p=14; end; 
 
LSF=zeros(p,length(picos)); 
 
if nargout>1 CC=zeros(p,length(picos)); end; 
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for k=1:length(picos) 
 
    Nk=length(picos(k).a); if Nk==0; continue; end; 
 
    aa=picos(k).a; ff=(1:Nk)*picos(k).f0; PP=aa.*aa; lim=0.0001; 
 
    R=zeros(1,p+1); for j=1:p+1 R(j)=(1/Nk)*sum(PP.*cos(2*pi*(j-1)*ff/fs)); end; 
 
    ai=zeros(1,p); e=R(1); for j=1:p if j==1 K=R(2)/R(1); ai(1)=K; e=(1-K*K)*e; 

else K=R(j+1); for u=1:j-1 K=K-ai(u)*R(j-u+1); end; K=K/e; ai(j)=K; for u=1:j-1 
aux(u)=ai(u)-K*ai(j-u); end; ai(1:j-1)=aux(1:j-1); e=(1-K*K)*e; end; end; 

 
    ai=[1 -ai]/sqrt(abs(R(1)-sum(ai.*R(2:p+1)))); 
 
    %mat(p+1,p+1)=0; for j1=1:p+1 for j2=1:p+1 mat(j1,j2)=R(abs(j1-j2)+1); end; 

end; mat=inv(mat); 
 
    %emiw=exp(-i*2*pi*ff/fs); emiwj=ones(p+1,length(ff)); for j=2:p+1 

emiwj(j,:)=emiwj(j-1,:).*emiw; end; 
 
    %denom(Nk)=0; h(p+1)=0; eis0=Inf; lap=0; lap2=0; while 1 denom=ai*emiwj; 

e=PP.*(denom.*conj(denom)); eis=(1/Nk)*sum(e-log(e)-1); if (eis0>eis) if (eis0-
eis<lim)|(lap==20) break; end; eis0=eis; lap=lap+1; end; lap2=lap2+1; if lap2>50 break; 
end; for j=1:p+1 h(j)=(1/Nk)*real(sum(emiwj(j,:)./denom)); end; ai=(mat*h')'; end; 
ai=ai/sqrt((1/Nk)*sum(e)); 

 
    ai=(1/ai(1))*ai; 
 
    % cepstrales 
 
    if nargout>1 CC(1,k)=-ai(2); for j=2:p CC(j,k)=-ai(j+1)-sum((1-(1:j-

1)/j).*ai(2:j).*CC(j-1:-1:1,k).'); end; end; 
 
    % conversion a LSF 
 
    az1=[ai 0]; az2=az1(length(az1):-1:1); lsf=angle([roots(az1+az2); roots(az1-

az2)]); for j=1:length(lsf)-1 vmin=Inf; imin=-1; for t=j:length(lsf) if lsf(t)<vmin 
vmin=lsf(t); imin=t; end; end; aux=lsf(j); lsf(j)=lsf(imin); lsf(imin)=aux; end; 

 
    LSF(:,k)=lsf(length(lsf)-p:length(lsf)-1); 
 
end; 
 
 
 
% stochalsf 
 
function LSF=stochalsf(picos) 
 
p=length(picos(1).e)-1; 
 
LSF=zeros(p,length(picos)); 
 
for k=1:length(picos) 
 
    ai=picos(k).e; ai=(1/ai(1))*ai; az1=[ai 0]; az2=az1(length(az1):-1:1); 

lsf=angle([roots(az1+az2); roots(az1-az2)]); for j=1:length(lsf)-1 vmin=Inf; imin=-1; for 
t=j:length(lsf) if lsf(t)<vmin vmin=lsf(t); imin=t; end; end; aux=lsf(j); 
lsf(j)=lsf(imin); lsf(imin)=aux; end; 

 
    LSF(:,k)=lsf(length(lsf)-p:length(lsf)-1); 
 
end; 
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% nnfind 
 
function [ind,dout]=nnfind(X,v); 
 
ind=-1; dout=inf; 
 
for k=1:size(X,2) 
 
    dk=sum((X(:,k)-v).^2); 
 
    if dk<dout dout=dk; ind=k; end; 
 
end; 
 
 
 
% automaticth2wfw 
 
function [fwxy,fwyx]=automaticth2wfw(th,fs2,fmax) 
 
if nargin<2 fs2=8000.0; end; 
 
if nargin<3 fmax=5000.0; end; 
 
m=length(th); p=length(th(1).u); 
 
polos(1:m)=struct('ai1',[],'ai2',[],'p1',[],'p2',[],'cc1',[],'cc2',[]); 
 
for k=1:m 
 
    lsf=transpose(th(k).u); part1=exp(i*lsf(2:2:p)); part2=exp(i*lsf(1:2:p)); 

ai=0.5*(poly([1 part1 conj(part1)])+poly([part2 -1 conj(part2)])); ai=ai(1:length(ai)-1); 
 
    cc=zeros(size(lsf)); ai_=-ai(2:p+1); cc(1)=ai_(1); for n=2:p 

cc(n)=ai_(n)+sum((1-((1:n-1)/n)).*ai_(1:n-1).*cc(n-1:-1:1)); end;    
 
    R=roots(ai).'; Ra=angle(R); Rm=abs(R); ind=find((Ra>0.0)&(Ra<pi)); Ra=Ra(ind); 

Rm=Rm(ind); R=R(ind); [Ra,ind]=sort(Ra); Rm=Rm(ind); R=R(ind); 
 
    if length(R)>=p/2 ind=2:length(R); Ra=Ra(ind); Rm=Rm(ind); R=R(ind); end; 

%R=0.98*R; %ai=zeros(1,p+1); ai(1:2*length(R)+1)=poly([R conj(R)]); 
 
    subais=[ones(length(R),1) -2*real(R.') (R.*conj(R)).']; 

emiwj=ones(3,length(R)); emiwj(2,:)=exp(-i*Ra); emiwj(3,:)=emiwj(2,:).*emiwj(2,:); 
mods=1./abs(subais*emiwj); [modsmax,ind]=max(mods,[],1); ind=find(ind==[1:length(R)]); if 
length(ind)<length(R) Ra=Ra(ind); Rm=Rm(ind); R=R(ind); end; 

 
    polos(k).ai1=ai; polos(k).p1=R; polos(k).cc1=cc; 
 
    lsf=transpose(th(k).v); part1=exp(i*lsf(2:2:p)); part2=exp(i*lsf(1:2:p)); 

ai=0.5*(poly([1 part1 conj(part1)])+poly([part2 -1 conj(part2)])); ai=ai(1:length(ai)-1); 
 
    cc=zeros(size(lsf)); ai_=-ai(2:p+1); cc(1)=ai_(1); for n=2:p 

cc(n)=ai_(n)+sum((1-((1:n-1)/n)).*ai_(1:n-1).*cc(n-1:-1:1)); end;    
 
    R=roots(ai).'; Ra=angle(R); Rm=abs(R); ind=find((Ra>0.0)&(Ra<pi)); Ra=Ra(ind); 

Rm=Rm(ind); R=R(ind); [Ra,ind]=sort(Ra); Rm=Rm(ind); R=R(ind); 
 
    if length(R)>=p/2 ind=2:length(R); Ra=Ra(ind); Rm=Rm(ind); R=R(ind); end; 

%R=0.98*R; %ai=zeros(1,p+1); ai(1:2*length(R)+1)=poly([R conj(R)]); 
 
    subais=[ones(length(R),1) -2*real(R.') (R.*conj(R)).']; 

emiwj=ones(3,length(R)); emiwj(2,:)=exp(-i*Ra); emiwj(3,:)=emiwj(2,:).*emiwj(2,:); 
mods=1./abs(subais*emiwj); [modsmax,ind]=max(mods,[],1); ind=find(ind==[1:length(R)]); if 
length(ind)<length(R) Ra=Ra(ind); Rm=Rm(ind); R=R(ind); end; 

 
    polos(k).ai2=ai; polos(k).p2=R; polos(k).cc2=cc; 
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end; 
 
mat=zeros(2*p,2*p); 
 
for k=1:m 
 
    Np1=length(polos(k).p1); Np2=length(polos(k).p2); 
 
    cc1=polos(k).cc1; cc2=polos(k).cc2; ccd1=cc1.*(1:length(cc1)); 

ccd2=cc2.*(1:length(cc2)); E=sqrt(sum(cc1.*cc1)/sum(ccd1.*ccd1)); ccd1=E*ccd1; 
ccd2=E*ccd2; 

 
    p1=angle(polos(k).p1); p2=angle(polos(k).p2); 
 
    gr1opt=[]; gr2opt=[]; dmin=inf; 
 
    for j=min([3 Np1 Np2]):min(Np1,Np2) 
 
        gr1=1:j; gr1max=Np1+1-(j:-1:1); 
 
        while 1 
 
            gr2=1:j; gr2max=Np2+1-(j:-1:1); 
 
            while 1 
 
                wx=[0 p1(gr1) pi]; wy=[0 p2(gr2) pi]; 
 
                demasiadoirregular=0; if length(wx)>=3 signos=sign(wx-wy); 

signos(length(signos))=-signos(length(signos)-1); for jj=1:length(signos)-2 if 
isequal(signos(jj:jj+2),[1 -1 1]) || isequal(signos(jj:jj+2),[-1 1 -1]) 
demasiadoirregular=1; break; end; end; end; 

 
                if demasiadoirregular==0 
 
                    dact1=0.0; dact2=0.0; 
 
                    for jj=1:length(wx)-1 
 
                        A=(wy(jj+1)-wy(jj))/(wx(jj+1)-wx(jj)); B=wy(jj)-A*wx(jj); 
 
                        for j1=1:2*p 
 
                            for j2=1:j1 
 
                                if j1<=p if j1==j2 

mat(j1,j2)=0.5*cc1(j1)*cc1(j2)*(((1/(j1+j2))*sin((j1+j2)*wx(jj+1))+wx(jj+1))-
((1/(j1+j2))*sin((j1+j2)*wx(jj))+wx(jj))); else 
mat(j1,j2)=0.5*cc1(j1)*cc1(j2)*(((1/(j1+j2))*sin((j1+j2)*wx(jj+1))+(1/(j1-j2))*sin((j1-
j2)*wx(jj+1)))-((1/(j1+j2))*sin((j1+j2)*wx(jj))+(1/(j1-j2))*sin((j1-j2)*wx(jj)))); end; 

 
                                elseif j2>p j1_=j1-p; j2_=j2-p; if j1_==j2_ 

mat(j1,j2)=0.5*cc2(j1_)*cc2(j2_)*(((1/((j1_+j2_)*A))*sin((j1_+j2_)*(A*wx(jj+1)+B))+wx(jj+
1))-((1/((j1_+j2_)*A))*sin((j1_+j2_)*(A*wx(jj)+B))+wx(jj))); else 
mat(j1,j2)=0.5*cc2(j1_)*cc2(j2_)*(((1/((j1_+j2_)*A))*sin((j1_+j2_)*(A*wx(jj+1)+B))+(1/((j
1_-j2_)*A))*sin((j1_-j2_)*(A*wx(jj+1)+B)))-
((1/((j1_+j2_)*A))*sin((j1_+j2_)*(A*wx(jj)+B))+(1/((j1_-j2_)*A))*sin((j1_-
j2_)*(A*wx(jj)+B)))); end; 

 
                                else j1_=j1-p; mat(j1,j2)=-

0.5*cc1(j1_)*cc2(j2)*(((1/(j1_+A*j2))*sin((j1_+A*j2)*wx(jj+1)+B*j2)+(1/(j1_-
A*j2))*sin((j1_-A*j2)*wx(jj+1)-B*j2))-
((1/(j1_+A*j2))*sin((j1_+A*j2)*wx(jj)+B*j2)+(1/(j1_-A*j2))*sin((j1_-A*j2)*wx(jj)-B*j2))); 
end; 

 
                                if j1~=j2 mat(j2,j1)=mat(j1,j2); end; 



92 	
  
	
  

 
                            end; 
 
                        end; 
 
                        dact1=dact1+(1+A)*sum(sum(mat)); 
 
                        for j1=1:2*p 
 
                            for j2=1:j1 
 
                                if j1<=p if j1==j2 mat(j1,j2)=-

0.5*ccd1(j1)*ccd1(j2)*(((1/(j1+j2))*sin((j1+j2)*wx(jj+1))-wx(jj+1))-
((1/(j1+j2))*sin((j1+j2)*wx(jj))-wx(jj))); else mat(j1,j2)=-
0.5*ccd1(j1)*ccd1(j2)*(((1/(j1+j2))*sin((j1+j2)*wx(jj+1))-(1/(j1-j2))*sin((j1-
j2)*wx(jj+1)))-((1/(j1+j2))*sin((j1+j2)*wx(jj))-(1/(j1-j2))*sin((j1-j2)*wx(jj)))); end; 

 
                                elseif j2>p j1_=j1-p; j2_=j2-p; if j1_==j2_ 

mat(j1,j2)=-0.5*ccd2(j1_)*ccd2(j2_)*(((1/((j1_+j2_)*A))*sin((j1_+j2_)*(A*wx(jj+1)+B))-
wx(jj+1))-((1/((j1_+j2_)*A))*sin((j1_+j2_)*(A*wx(jj)+B))-wx(jj))); else mat(j1,j2)=-
0.5*ccd2(j1_)*ccd2(j2_)*(((1/((j1_+j2_)*A))*sin((j1_+j2_)*(A*wx(jj+1)+B))-(1/((j1_-
j2_)*A))*sin((j1_-j2_)*(A*wx(jj+1)+B)))-((1/((j1_+j2_)*A))*sin((j1_+j2_)*(A*wx(jj)+B))-
(1/((j1_-j2_)*A))*sin((j1_-j2_)*(A*wx(jj)+B)))); end; 

 
                                else j1_=j1-p; 

mat(j1,j2)=0.5*ccd1(j1_)*ccd2(j2)*(((1/(j1_+A*j2))*sin((j1_+A*j2)*wx(jj+1)+B*j2)-(1/(j1_-
A*j2))*sin((j1_-A*j2)*wx(jj+1)-B*j2))-((1/(j1_+A*j2))*sin((j1_+A*j2)*wx(jj)+B*j2)-
(1/(j1_-A*j2))*sin((j1_-A*j2)*wx(jj)-B*j2))); end; 

 
                                if j1~=j2 mat(j2,j1)=mat(j1,j2); end; 
 
                            end; 
 
                        end; 
 
                        dact2=dact2+(1+A)*sum(sum(mat)); 
 
                    end; 
 
                    dact=dact1+dact2; if dact<dmin dmin=dact; gr1opt=gr1; 

gr2opt=gr2; end; 
 
                end; 
 
                if gr2==gr2max break; else for jj=j:-1:1 if gr2(jj)<gr2max(jj) 

gr2(jj)=gr2(jj)+1; for jjj=jj+1:j gr2(jjj)=gr2(jjj-1)+1; end; break; end; end; end; 
 
            end; 
 
            if gr1==gr1max break; else for jj=j:-1:1 if gr1(jj)<gr1max(jj) 

gr1(jj)=gr1(jj)+1; for jjj=jj+1:j gr1(jjj)=gr1(jjj-1)+1; end; break; end; end; end; 
 
        end; 
 
    end; 
 
    polos(k).p1=polos(k).p1(gr1opt); polos(k).p2=polos(k).p2(gr2opt); 
 
end; 
 
if m==1 && th(1).a==0 polos(1).p1=[polos(1).p1 -1]; polos(1).p2=[polos(1).p2 -1]; 

end; % trampilla para inicializaciones 
 
ff1=0:100:fs2; ff2=zeros(size(ff1)); 
 
fwxy(1:m)=struct('x',[],'y',[]); fwyx=fwxy; 
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for k=1:m 
 
    ff1r=[0.0 (fmax/pi)*angle(polos(k).p1)]; ff2r=[0.0 

(fmax/pi)*angle(polos(k).p2)]; 
 
    if ff1r(length(ff1r))>ff2r(length(ff2r)) ff1r=[ff1r 

fs2*ff1r(length(ff1r))/ff2r(length(ff2r))]; ff2r=[ff2r fs2]; else ff2r=[ff2r 
fs2*ff2r(length(ff2r))/ff1r(length(ff1r))]; ff1r=[ff1r fs2]; end; 

 
    jjant=1; for j=1:length(ff1) for jj=jjant:length(ff1r)-1 if 

(ff1r(jj)<=ff1(j))&&(ff1r(jj+1)>=ff1(j)) jjant=jj; break; end; end; 
ff2(j)=ff2r(jj)+(ff2r(jj+1)-ff2r(jj))*(ff1(j)-ff1r(jj))/(ff1r(jj+1)-ff1r(jj)); end; 

 
    fwxy(k).x=ff1; fwxy(k).y=ff2; 
 
    jjant=1; for j=1:length(ff1) for jj=jjant:length(ff2r)-1 if 

(ff2r(jj)<=ff1(j))&&(ff2r(jj+1)>=ff1(j)) jjant=jj; break; end; end; 
ff2(j)=ff1r(jj)+(ff1r(jj+1)-ff1r(jj))*(ff1(j)-ff2r(jj))/(ff2r(jj+1)-ff2r(jj)); end; 

 
    fwyx(k).x=ff1; fwyx(k).y=ff2; 
 
end; 
 
 
 
 
 
HSM GMM Conversion 
 
 
 
function HSMgmmconvert(fth,fin,fout) 
 
%_________________________________________________________________________________

_ 
 
%                         
 
%    UPC Toolkit for HSM-based Voice Conversion 
 
%    Copyright (C) 2007  TALP Research Center 
 
%                        Universitat PolitËcnica de Catalunya (UPC) 
 
%     
 
%    This library is free software; you can redistribute it and/or 
 
%    modify it under the terms of the GNU Lesser General Public 
 
%    License as published by the Free Software Foundation; either 
 
%    version 2.1 of the License, or (at your option) any later version. 
 
% 
 
%    This library is distributed in the hope that it will be useful, 
 
%    but WITHOUT ANY WARRANTY; without even the implied warranty of 
 
%    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 
 
%    Lesser General Public License for more details. 
 
% 
 
%    You should have received a copy of the GNU Lesser General Public 
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%    License along with this library; if not, write to the Free Software 
 
%    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 
 
%                                                
 
%     
 
%    Contact information: 
 
%            AsunciÛn Moreno (asuncion.moreno@upc.edu) 
 
%            TALP Research Center, Universitat PolitËcnica de Catalunya 
 
%            UPC Campus Nord, Building D5 
 
%            08034 - Barcelona, Spain 
 
%_________________________________________________________________________________

_ 
 
% 
 
% 
 
%   HSMgmmconvert(VCfunction,fileIn,fileOut) 
 
% 
 
%   VCfunction (string): matlab file containing the voice conversion 
 
%   function. 
 
%   fileIn (string): matlab file containing the HSM parameters of the 
 
%   signal to be converted. 
 
%   fileOut (string): matlab file containing the HSM parameters of the 
 
%   converted signal. 
 
% 
 
 
 
if nargin<1 [fth,pth]=uigetfile('*.mat','Select transformation function'); if 

(isequal(fth,0)|isequal(pth,0)) return; end; load([pth fth]); else load(fth); end; 
 
if nargin<2 [fin,pin]=uigetfile('*.mat','Select MAT file'); if 

(isequal(fin,0)|isequal(pin,0)) return; end; fin=[pin fin]; end; 
 
if fin(length(fin)-3)=='.' fin=fin(1:length(fin)-4); end; 
 
load(fin); 
 
fmax=5000; 
 
u1=f0f(1); v1=f0f(2); u2=f0f(3); v2=f0f(4); 
 
p=length(th(1).u); m=length(th); mm=length(th2); 
 
thaux(1:m)=struct('d',0,'I',zeros(p,p)); for j=1:m thaux(j).d=det(th(j).E); 

thaux(j).I=inv(th(j).E); end; 
 
th2aux(1:mm)=struct('d',0,'I',zeros(p,p)); for j=1:mm th2aux(j).d=det(th2(j).E); 

th2aux(j).I=inv(th2(j).E); end; 
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for k=1:length(picos) 
 
    if picos(k).f0==0.0 continue; end; 
 
    E=sum((picos(k).a).*(picos(k).a)); 
 
    [v,aiv]=aaalsf(picos(k).a,picos(k).f0,p); 
 
    P=zeros(1,m); for j=1:m P(j)=th(j).a*(1/sqrt(thaux(j).d))*exp(-

0.5*transpose(v-th(j).u)*thaux(j).I*(v-th(j).u)); end; Psum=sum(P); P=(1/Psum)*P; 
 
    vt=zeros(size(v)); for j=1:m vt=vt+P(j)*(th(j).v+th(j).R*thaux(j).I*(v-

th(j).u)); end; 
 
    picos(k).f0=power(10,u2+v2*(log10(picos(k).f0)-u1)/v1); 
 
    [aa2,pp2,aivt]=lsfaaapp(picos(k).f0,vt); 
 
    if k>1 if picos(k-1).f0>0.0 picos(k).alfa=picos(k-

1).alfa+pi*(1/fs)*(picos(k).pm-picos(k-1).pm)*(picos(k).f0+picos(k-1).f0); else 
picos(k).alfa=0.0; end; end; 

 
    picos(k).p=pp2; 
 
    picos(k).a=sqrt(E/sum(aa2.*aa2))*aa2; 
 
    % componente estocastica 
 
    P=zeros(1,mm); for j=1:mm P(j)=th2(j).a*(1/sqrt(th2aux(j).d))*exp(-

0.5*transpose(vt-th2(j).u)*th2aux(j).I*(vt-th2(j).u)); end; Psum=sum(P); P=(1/Psum)*P; 
 
    vtt=zeros(size(vt)); for j=1:mm 

vtt=vtt+P(j)*(th2(j).v+th2(j).R*th2aux(j).I*(vt-th2(j).u)); end; vtt=transpose(vtt); 
 
    % ligera proteccion contra desorden en vtt 
 
    vttaux=[0 vtt pi]; for j=2:length(vttaux)-1 if vttaux(j)<=vttaux(j-1) & 

vttaux(j)<vttaux(j+1) & vttaux(j-1)<vttaux(j+1) vtt(j-1)=0.99*vttaux(j-
1)+0.01*vttaux(j+1); end; end; 

 
    part1=exp(i*vtt(2:2:p)); part2=exp(i*vtt(1:2:p)); ai=0.5*(poly([1 part1 

conj(part1)])+poly([part2 -1 conj(part2)])); ai=ai(1:length(ai)-1); 
 
    picos(k).e=(picos(k).e(1)/ai(1))*ai; 
 
end; 
 
if nargin<3 [fout,pout]=uiputfile('*.mat','Save MAT file',[fin 'vc']); if 

(isequal(fout,0)|isequal(pout,0)) return; end; fout=[pout fout]; end; 
 
save(fout,'L','fs','picos'); 
 
%DPSsynthesize(fout,fout); 
 
 
 
% aaalsf 
 
function [lsf,aiout]=aaalsf(aa,f0,p) 
 
fmax=5000; if nargin<4 p=14; end; 
 
Nk=length(aa); ff=(1:Nk)*f0; PP=aa.*aa; lim=0.0001; fs=2*fmax; 
 
R=zeros(1,p+1); for j=1:p+1 R(j)=(1/Nk)*sum(PP.*cos(2*pi*(j-1)*ff/fs)); end; 
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ai=zeros(1,p); e=R(1); for j=1:p if j==1 k=R(2)/R(1); ai(1)=k; e=(1-k*k)*e; else 
k=R(j+1); for u=1:j-1 k=k-ai(u)*R(j-u+1); end; k=k/e; ai(j)=k; for u=1:j-1 aux(u)=ai(u)-
k*ai(j-u); end; ai(1:j-1)=aux(1:j-1); e=(1-k*k)*e; end; end; 

 
ai=[1 -ai]/sqrt(abs(R(1)-sum(ai.*R(2:p+1)))); 
 
%mat(p+1,p+1)=0; for j1=1:p+1 for j2=1:p+1 mat(j1,j2)=R(abs(j1-j2)+1); end; end; 

mat=inv(mat); 
 
%emiw=exp(-i*2*pi*ff/fs); emiwj=ones(p+1,length(ff)); for j=2:p+1 

emiwj(j,:)=emiwj(j-1,:).*emiw; end; 
 
%denom(Nk)=0; h(p+1)=0; eis0=Inf; lap=0; lap2=0; while 1 denom=ai*emiwj; 

e=PP.*(denom.*conj(denom)); eis=(1/Nk)*sum(e-log(e)-1); if (eis0>eis) if (eis0-
eis<lim)|(lap==20) break; end; eis0=eis; lap=lap+1; end; lap2=lap2+1; if lap2>50 break; 
end; for j=1:p+1 h(j)=(1/Nk)*real(sum(emiwj(j,:)./denom)); end; ai=(mat*h')'; end; 
ai=ai/sqrt((1/Nk)*sum(e)); 

 
if nargout>=2 aiout=ai; end; 
 
ai=(1/ai(1))*ai; az1=[ai 0]; az2=az1(length(az1):-1:1); 

lsf=angle([transpose(roots(az1+az2)) transpose(roots(az1-az2))]); for j=1:length(lsf)-1 
vmin=Inf; imin=-1; for t=j:length(lsf) if lsf(t)<vmin vmin=lsf(t); imin=t; end; end; 
aux=lsf(j); lsf(j)=lsf(imin); lsf(imin)=aux; end; 

 
lsf=transpose(lsf(length(lsf)-p:length(lsf)-1)); 
 
 
 
% lsfaaapp 
 
function [aa,pp,ai]=lsfaaapp(f0,lsf) 
 
fmax=5000; Nk=ceil(fmax/f0)-1; p=length(lsf); lsf=transpose(lsf); 
 
part1=exp(i*lsf(2:2:p)); part2=exp(i*lsf(1:2:p)); ai=0.5*(poly([1 part1 

conj(part1)])+poly([part2 -1 conj(part2)])); ai=ai(1:length(ai)-1); 
 
%%%factor=1.01; factorj=factor; for j=2:p+1 ai(j)=ai(j)*factorj; 

factorj=factorj*factor; end; 
 
emw=exp(-i*pi*f0/fmax); emiw=ones(1,Nk); emiw(1)=emw; for j=2:Nk emiw(j)=emiw(j-

1)*emw; end; emiwj=ones(p+1,Nk); for j=2:p+1 emiwj(j,:)=emiwj(j-1,:).*emiw; end; 
 
Af=ai*emiwj; aa=abs(1./Af); pp=-angle(Af); 
 
 
 
HSM Weighted Frequency Warping Conversion 
 
 
 
function HSMwfwconvert(fth,fin,fout,modo) 
 
%_________________________________________________________________________________

_ 
 
%                         
 
%    UPC Toolkit for HSM-based Voice Conversion 
 
%    Copyright (C) 2007  TALP Research Center 
 
%                        Universitat PolitËcnica de Catalunya (UPC) 
 
%     
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%    This library is free software; you can redistribute it and/or 
 
%    modify it under the terms of the GNU Lesser General Public 
 
%    License as published by the Free Software Foundation; either 
 
%    version 2.1 of the License, or (at your option) any later version. 
 
% 
 
%    This library is distributed in the hope that it will be useful, 
 
%    but WITHOUT ANY WARRANTY; without even the implied warranty of 
 
%    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 
 
%    Lesser General Public License for more details. 
 
% 
 
%    You should have received a copy of the GNU Lesser General Public 
 
%    License along with this library; if not, write to the Free Software 
 
%    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 
 
%                                                
 
%     
 
%    Contact information: 
 
%            AsunciÛn Moreno (asuncion.moreno@upc.edu) 
 
%            TALP Research Center, Universitat PolitËcnica de Catalunya 
 
%            UPC Campus Nord, Building D5 
 
%            08034 - Barcelona, Spain 
 
%_________________________________________________________________________________

_ 
 
% 
 
% 
 
%   HSMwfwconvert(VCfunction,fileIn,fileOut) 
 
% 
 
%   VCfunction (string): matlab file containing the voice conversion 
 
%   function. 
 
%   fileIn (string): matlab file containing the HSM parameters of the 
 
%   signal to be converted. 
 
%   fileOut (string): matlab file containing the HSM parameters of the 
 
%   converted signal. 
 
% 
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if nargin<1 [fth,pth]=uigetfile('*.mat','Select transformation function'); if 
(isequal(fth,0)|isequal(pth,0)) return; end; load([pth fth]); else load(fth); end; 

 
if nargin<2 [fin,pin]=uigetfile('*.mat','Select MAT file'); if 

(isequal(fin,0)|isequal(pin,0)) return; end; fin=[pin fin]; end; 
 
if nargin<4 modo='fwa'; end; 
 
if fin(length(fin)-3)=='.' fin=fin(1:length(fin)-4); end; 
 
load(fin); 
 
fmax=5000.0; 
 
fasacum=0.0; 
 
u1=f0f(1); v1=f0f(2); u2=f0f(3); v2=f0f(4); 
 
f01s=zeros(1,length(picos)); f02s=zeros(size(f01s)); dph=0.0; 
 
for k=1:length(picos) 
 
 f01s(k)=picos(k).f0; 
 
 if f01s(k)>0.0 
 
  f02s(k)=power(10.0,u2+v2*(log10(f01s(k))-u1)/v1); 
 
  if k>1 && f01s(k-1)>0 
 
   dph=dph+(picos(k).pm-picos(k-1).pm)*pi*((f02s(k)-

f01s(k))+(f02s(k-1)-f01s(k-1)))/fs; 
 
   picos(k).alfa=picos(k).alfa+dph; 
 
  else dph=0.0; end; 
 
 else f02s(k)=0.0; dph=0.0; end; 
 
end; 
 
clear u1 v1 u2 v2; 
 
p=length(th(1).u); m=length(th); mm=length(th2); 
 
for j=1:m th(j).d=det(th(j).E); th(j).I=inv(th(j).E); end; 
 
for j=1:mm th2(j).d=det(th2(j).E); th2(j).I=inv(th2(j).E); end; 
 
fx=fw(1).x; 
 
for k=1:length(picos) 
 
    if picos(k).f0==0.0 continue; end; 
 
    [v,aiv]=aaalsf(picos(k).a,picos(k).f0,p); 
 
    P=zeros(1,m); for j=1:m P(j)=th(j).a*(1/sqrt(th(j).d))*exp(-0.5*transpose(v-

th(j).u)*th(j).I*(v-th(j).u)); end; Psum=sum(P); P=(1/Psum)*P; 
 
    vt=zeros(size(v)); for j=1:m vt=vt+P(j)*(th(j).v+th(j).R*th(j).I*(v-th(j).u)); 

end; 
 
    aivt=lsfadap(vt); 
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    eevt=ones(p+1,ceil(fmax/f02s(k))-1); eevt(2,1)=exp(-i*pi*f02s(k)/fmax); for 
jj=2:size(eevt,2) eevt(2,jj)=eevt(2,jj-1)*eevt(2,1); end; for jj=3:p+1 
eevt(jj,:)=eevt(jj-1,:).*eevt(2,:); end; 

 
    Afvt=1./(aivt*eevt); 
 
    E1=sum(picos(k).a.*picos(k).a); 
 
    Afvt=Afvt*sqrt(E1/sum(Afvt.*conj(Afvt))); Evt=Afvt.*conj(Afvt); 

aavt=sqrt(Evt); 
 
    % parte estocastica 
 
    PP=zeros(1,mm); for j=1:mm PP(j)=th2(j).a*(1/sqrt(th2(j).d))*exp(-

0.5*transpose(vt-th2(j).u)*th2(j).I*(vt-th2(j).u)); end; PPsum=sum(PP); PP=(1/PPsum)*PP; 
 
    vtt=zeros(size(vt)); for j=1:mm vtt=vtt+PP(j)*(th2(j).v+th2(j).R*th2(j).I*(vt-

th2(j).u)); end; 
 
    % ligera proteccion contra desorden en vtt 
 
    vttaux=[0; vtt; pi]; for j=2:length(vttaux)-1 if vttaux(j)<=vttaux(j-1) & 

vttaux(j)<vttaux(j+1) & vttaux(j-1)<vttaux(j+1) vtt(j-1)=0.99*vttaux(j-
1)+0.01*vttaux(j+1); end; end; 

 
    aivtt=lsfadap(vtt); 
 
    aivtt=(picos(k).e(1)/aivtt(1))*aivtt; 
 
    % Obtener la trayectoria de warping ponderando con P los warpings individuales 

de cada gaussiana 
 
    fy=zeros(size(fw(1).y)); for j=1:m fy=fy+P(j)*fw(j).y; end; 
 
    ff1=[0.0 (1:length(picos(k).a))*f01s(k) fmax]; 
 
    aa1=picos(k).a; 
 
    pp1=picos(k).p; 
 
    ap1=aa1.*exp(i*pp1); 
 
    ap1=[aa1(1) ap1 0.0]; 
 
    aa1=log([aa1(1) aa1 min(aa1)]); 
 
    aa2=zeros(1,ceil(fmax/f02s(k))-1); pp2=zeros(size(aa2)); 
 
    jjant1=1; jjant2=1; scale=0.0; 
 
    for j=1:length(aa2) 
 
        f2j=j*f02s(k); % buscar region de fy donde esta el armonico, y buscar la 

antiimagen en fx 
 
        for jj=jjant1:length(fy)-1 if (f2j>=fy(jj))&&(f2j<fy(jj+1)) jjant1=jj; 

break; end; end; 
 
        f1j=fx(jj)+(fx(jj+1)-fx(jj))*(f2j-fy(jj))/(fy(jj+1)-fy(jj)); 
 
        if f1j<fmax % muestrear envolvente de amplitud y fase 
 
            for jj=jjant2:length(ff1)-1 if (f1j>=ff1(jj))&&(f1j<ff1(jj+1)) 

jjant2=jj; break; end; end; 
 
            aa2(j)=exp(aa1(jj)+(aa1(jj+1)-aa1(jj))*(f1j-ff1(jj))/(ff1(jj+1)-

ff1(jj))); 
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            pp2(j)=angle(ap1(jj)+(ap1(jj+1)-ap1(jj))*(f1j-ff1(jj))/(ff1(jj+1)-

ff1(jj))); 
 
        else % si es mayor que fmax, saco info del filtro convertido gmm 
 
            if scale==0.0 scale=aa2(j-1)/abs(Afvt(j-1)); end; 
 
            aa2(j)=scale*abs(Afvt(j)); pp2(j)=angle(Afvt(j)); 
 
        end; 
 
    end; 
 
    if isequal(modo,'fwa') % corrijo la energia 
 
        flimsm=1000.0; nf=ceil(flimsm/f02s(k)-1); win=1.0-(f02s(k)/flimsm)*(-

nf:nf); win=(1/sum(win))*win; % ventana triangular con gran anchura en f 
 
        g=aavt./aa2; 
 
        g=log(g); gsm=g; for j=1:length(g) ind=j+(-nf:nf); if j<=nf for 

jj=1:length(ind) if ind(jj)<0 ind(jj)=-ind(jj); elseif ind(jj)==0 ind(jj)=1; else break; 
end; end; elseif j>length(g)-nf for jj=length(ind):-1:1 if ind(jj)>length(g)+1 
ind(jj)=2*length(g)+2-ind(jj); elseif ind(jj)==length(g)+1 ind(jj)=length(g); else break; 
end; end; end; gsm(j)=sum(g(ind).*win); end; g=exp(gsm); 

 
        aa2=aa2.*g; 
 
    end; 
 
    aa2=sqrt(E1/sum(aa2.*aa2))*aa2; 
 
    picos(k).f0=f02s(k); picos(k).a=aa2; picos(k).p=pp2; picos(k).e=aivtt; 
 
end; 
 
if nargin<3 [fout,pout]=uiputfile('*.mat','Save MAT file',[fin 'vc']); if 

(isequal(fout,0)|isequal(pout,0)) return; end; fout=[pout fout]; end; 
 
save(fout,'L','fs','picos'); 
 
 
 
% aaalsf 
 
function [lsf,aiout]=aaalsf(aa,f0,p) 
 
fmax=5000; if nargin<4 p=14; end; 
 
Nk=length(aa); ff=(1:Nk)*f0; PP=aa.*aa; lim=0.0001; fs=2*fmax; 
 
R=zeros(1,p+1); for j=1:p+1 R(j)=(1/Nk)*sum(PP.*cos(2*pi*(j-1)*ff/fs)); end; 
 
ai=zeros(1,p); e=R(1); for j=1:p if j==1 k=R(2)/R(1); ai(1)=k; e=(1-k*k)*e; else 

k=R(j+1); for u=1:j-1 k=k-ai(u)*R(j-u+1); end; k=k/e; ai(j)=k; for u=1:j-1 aux(u)=ai(u)-
k*ai(j-u); end; ai(1:j-1)=aux(1:j-1); e=(1-k*k)*e; end; end; 

 
ai=[1 -ai]/sqrt(abs(R(1)-sum(ai.*R(2:p+1)))); 
 
%mat(p+1,p+1)=0; for j1=1:p+1 for j2=1:p+1 mat(j1,j2)=R(abs(j1-j2)+1); end; end; 

mat=inv(mat); 
 
%emiw=exp(-i*2*pi*ff/fs); emiwj=ones(p+1,length(ff)); for j=2:p+1 

emiwj(j,:)=emiwj(j-1,:).*emiw; end; 
 
%denom(Nk)=0; h(p+1)=0; eis0=Inf; lap=0; lap2=0; 
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%while 1 denom=ai*emiwj; e=PP.*(denom.*conj(denom)); eis=(1/Nk)*sum(e-log(e)-1); 

if (eis0>eis) if (eis0-eis<lim)|(lap==20) break; end; eis0=eis; lap=lap+1; end; 
lap2=lap2+1; if lap2>50 break; end; for j=1:p+1 h(j)=(1/Nk)*real(sum(emiwj(j,:)./denom)); 
end; ai=(mat*h')'; end; 

 
%ai=ai/sqrt((1/Nk)*sum(e)); 
 
if nargout>=2 aiout=ai; end; 
 
ai=(1/ai(1))*ai; az1=[ai 0]; az2=az1(length(az1):-1:1); 

lsf=angle([transpose(roots(az1+az2)) transpose(roots(az1-az2))]); for j=1:length(lsf)-1 
vmin=Inf; imin=-1; for t=j:length(lsf) if lsf(t)<vmin vmin=lsf(t); imin=t; end; end; 
aux=lsf(j); lsf(j)=lsf(imin); lsf(imin)=aux; end; 

 
lsf=transpose(lsf(length(lsf)-p:length(lsf)-1)); 
 
 
 
% lsfadap 
 
function ai=lsfadap(lsf,factor) 
 
p=length(lsf); 
 
lsf=transpose(lsf); 
 
part1=exp(i*lsf(2:2:p)); part2=exp(i*lsf(1:2:p)); 
 
ai=0.5*(poly([1 part1 conj(part1)])+poly([part2 -1 conj(part2)])); 
 
ai=ai(1:length(ai)-1); 
 
if nargin>1 factorj=factor; for j=2:p+1 ai(j)=ai(j)*factorj; 

factorj=factorj*factor; end; end; 
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