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Abstract 

Eco-Core is a fire resistant structural core material that was developed at North Carolina 

A&T State University in 2003. During the last 10 years, mechanical, fracture and fatigue 

properties as well as resistance to sea water were established for Eco-Core. A design 

methodology for Eco-Core in sandwich structures was provided. The objective of this research 

was to develop a dynamic constitutive equation for Eco-Core in a multi-axial stress state that is 

valid for both static and dynamic loadings, and then demonstrate the model to be used in a 

commercial code to solve real life problems. A special tri-axial loading and strain measurement 

test fixture was developed and used in static and dynamic tests. The material was tested at strain 

rates ranged from 310 /s to 3500/s. Analysis of the results showed that the net-deviatoric stress is 

independent of lateral stress. Based on the test results and a multi-variable regression analysis, a 

two part constitutive equation was developed. The first part was for the linear response and the 

second part was for the non-linear response that covers translation, crushing and densification of 

micro bubbles in the Eco-Core. The equation was validated by independent experiments and 

simulation by LS-DYNA. The dynamic energy absorption capability for Eco-Core was found to 

be superior compared to commercial materials such as PVC foam, Rohacell foam and Balsa 

wood.  
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1 CHAPTER 1 

Introduction 

This chapter presents a background and historical facts about fire resistant materials and 

Eco-Core, detailed literature review about constitutive modeling of foams and other similar 

materials, confinement techniques and types, sandwich structure concept, strain rate definition, 

challenges of this research, rational of the study, objectives of the research and finally the scope 

of this dissertation.    

1.1 Background  

In the era of lightweight structures where weight plays the major role for classifying 

materials; there is no doubt that composite sandwich structures are adorable. They are highly 

desired because of their superior stiffness-to-weight ratio, high strength-to-weight ratio, good 

endurance under cyclic loading and high resistance to corrosion [1]. Furthermore, composite 

sandwich structures are perfect for applications that require high specific flexural properties and 

not too sensitive to weight [2]. Hence, composite sandwich structures are replacing metals in a 

long list of civilian and military applications including air-craft, aerospace, naval, ships, 

submarines, infrastructures and others.  

Advanced composite materials like Polymer Matrix Composites (PMC) and their 

sandwich structures have been widely used in the military applications for the last 40 years. 

Also, civilian and military aircraft manufacturers have been using ever-increasing amounts of 

advanced composite materials and their sandwich structures in their designs since 1940s. For 

example the Airbus A320 currently contains over 9,000 pounds of composite materials and the 

C-17 has more than 15,000 pounds of composite materials [3]. 
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Despite of the entire success that polymer composite sandwich structures achieved, fire 

continues to be a major obstacle in their growth. Accidental or deliberate fire may ignite, spread 

and engulf the composite releasing both heat and toxic gases and smoke. Thus, a localized fire 

may propagate to an uncontrolled larger structural fire in polymer composite structures. One of 

the main reasons is that polymer composites contain about 25% of weight as volatiles; once it is 

ignited it fuels the fire. The National Fire Protection Association reported that in 2011, U.S. fire 

departments responded to about (1,389, 500) fires. These fires caused about 3000 citizens their 

lives and caused other 17,500 sever injuries. On average, a fire department responded to a fire 

every 23 second, a structure fire every 65 second, a vehicle fire every 144 second [4].  

Nevertheless, on the military vehicles aspect, fire and toxicity has been a significant 

concern. In enclosed and confined spaces such as aircrafts, ships, submarines and others the 

growing fire can lead to a flashover condition in which all combustible materials within the 

enclosure ignite and generate enormous amounts of toxic smoke. If the burning composite is part 

of the primary structure; it may also collapse. In aircraft, composite matrices may be combustible 

contributing to the fuel load in making the situation even more critical. In submarines, the use of 

the composites was based on assumptions that the fire must be extinguished or brought under 

control within 5 minutes and in surface ships, fire should be controlled within 30 minutes [3]. 

These requirements are very difficult to achieve. US Navy currently uses unprotected sandwich 

composites do not meet the fire growth requirement of ISO 9705. Thus, Navy has invested $10M 

toward the development of new fire restricting resins and foams over the last 5-10 years [5].  

Because of the never ending demand for composite material that meets both, fire and 

toxicity safety and superior mechanical properties requirements, extensive research is being 

conducted by many national laboratories and universities. In 2003, fire resistant syntactic foam 
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called “Eco-Core” was conceived and developed by Shivakumar and his co-researchers in 

NCA&T State University [6]. It is a fly ash based core material for sandwich structures that 

contains or mitigates fire.  

Hollow ceramic microspheres extracted from fly ash called Cenospheres were pressed 

and banded by small quantity of high char yield binder to make the syntactic foam [6]. The 

Cenospheres withstand temperatures in excess of 1,000
o
 C. The small percentage of high char 

binder deprives the fire from fueling because it essentially reduces or eliminates the volatile 

content. Eco-Core has successfully passed the ASTM-1354fire (75kW/m
2
) and toxicity safety [6, 

7]. The cost of processing Eco-Core is low since it uses the waste product of coal fired from 

electric power plants. The most important advantages of Eco-Core can be listed as:  

o Inexpensive material (from a waste product). 

o Excellent fire resistant [7]. 

o Nontoxic in fire [7]. 

o Superior mechanical properties [6, 7]. 

o Good thermal and sound insulator. 

o Adaptable to existing manufacturing facility. 

o Moldable and shapeable to complex configurations. 

Comprehensive studies were made on Eco-Core to understand and improve its 

mechanical properties. These studies can be summarized as follows: study on mechanical and 

fracture properties [1, 6, 7], sea water resistance [8], compression, shear and flexural fatigue of 

sandwich structures [9-11], design guidelines of Eco-Core sandwich composite structures [12], 

fracture toughness enhancement [13], energy absorption for blast applications [14], unconfined 

high strain rate constitutive equation [15]. 
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Eco-Core has the potential to be used in military as well as civilian applications, 

transportation, buildings and other industries where fire and toxicity safety are major 

requirement. These applications might be subjected to blast, shocks, high speed projectiles and 

other high strain rate impacts. Thus, high strain rate constitutive equation for Eco-Core is needed 

for designing structures.  

Panduranga and Shivakumar [14-16] studied the static and dynamic compression under 

unconfined and rigid confinement conditions. Results showed that the constitutive equation for 

static with rigid confinement [14, 16] is:  

 1.1451  
5.4

a

C

a 



  

and the unconfined high strain rate equation [15, 16] is: 

 2.1)(901  
)( 5.4

t
t

a

C

a 



  

Where a is axial stress, c is compression strength (20 MPa), and a is axial strain. The 

constants in the equation are the results of equation fit to experimental data. Also, note that the 

Eco-Core was found to be strain rate insensitive.  

Eco-Core is primarily used as a core material in sandwich structures where the stress state 

is 3-dimentional (see Figure 1.1). Thus, a multi-axial constitutive equation of the material is 

needed for general structural application and designs. Therefore, the overall objective of this 

research is to develop a multi-axial constitutive equation for Eco-Core for both static and 

dynamic loadings. 
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                                            (a)                                          (b) 

Figure 1.1. Schematic of unconfined stress state, (b) Schematic of confined stress state. 

1.2 Literature Review  

Many efforts have been made in the literature to provide constitutive equation of 

nonlinear materials. Only important and relevant models are presented here. In 1943, Ramberg 

and Osgood [17] expressed deformation of metals in power low form as: 

)3.1()( m

E
k

E


   

Where  is static stress, ε is strain, E is modulus of elasticity and k and m are material constants. 

In 1952, Cowper and Symonds [18] extended Ramberg and Osgood’s static model for metals to 

the dynamic condition by introducing the strain rate effect term in the form: 

)4.1(1
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Where dy is dynamic stress, st is static stress and C1 and C2 are material constants. In 1983, 

Johnson and Cook [19] introduced the temperature effects in addition to the strain rate effect to 

the metals model as: 

    )5.1(1ln1 mn

ys TCB     

q
Multi-axial stress
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Where   is stress, ε is strain,  is strain rate, ys is yield strength, T is the temperature and B, n, 

C and m are material constants. In 1987, Zerilli and Armstrong [20] introduced their version of 

the material model that included the strain rate and the temperature effects in the form: 

   
)6.1(6

ln

321
54 nTCC

CeCCC  


 
 

Where C1, C2, C3, C4, C5, C6 and n are material constants. Among these models Johnson and 

Cook model is widely used by researches. 

Three references were found in the literature for foam type materials. Gibson and Ashby 

model for polymeric foam in 1997 [21], Song et al model for epoxy syntactic foam in 2005 [22] 

and Subhash and Liu model for epoxy polymeric foam in 2009 [23]. Gibson and Ashby’s study 

was based on unconfined test )0( r with using the assumption of Poisson’s ratio is zero. In this 

model, stress-strain response is divided into three parts: Linear, plateau and densification parts. 

They are expressed as:  
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Where   is stress, ε is strain, E is modulus of elasticity y is yield strain, D is densification 

strain, pl is yield strength and D and m are material constants. In dynamic condition, the static 

yield strength of the foam ( pl ) is replaced by the dynamic yield strength as:  
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Where pl is dynamic yield strength, 0)( pl  is static yield strength, T is material temperature,    

is glass transition temperature, 0 is a reference strain rate and A is material constant. Gibson and 

Ashby model was found to be valid for low density foam used in packaging industries. 

Song et al model was developed for syntactic foam under rigid confinement condition. 

The constitutive equation is divided into two parts, first part represents the linear response and 

the other part represents the plateau and densification responses, given as: 
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Where ys is yield strength, y and d are yield and densification strains, respectively, m and n 

are material constants. The third model was developed by Subhash and Liu. Again the model is 

for syntactic foam with rigid confinement. It captured the three responses: Linear, plateau and 

densification parts in one equation. But, this equation requires a look up table of constants for 

each strain rate. The equation is given by: 

  )10.1(1
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Where cand,,  are material constants and K=1 with stress units. 
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All of the three equations (models) discussed above were one-dimensional. No attempt 

was made to quantify the radial confinement stress (this is also referred to as lateral stress at 

some places). In order to introduce the effect of lateral (radial) stress to the stress-strain relation, 

direct measurement of this lateral stress is required in the experiment. Although, the concept of 

tri-axial stress is widely adopted in soil and sand mechanics to build earthen dams and retention 

walls, but, such model has not been evaluated for syntactic foams like Eco-core. The key 

difference between the above and the syntactic foam is the compressibility. The soil and sand are 

assumed incompressible but Eco-Core is not.  

Several authors have tried to measure confinement stress and relate it to compression 

yield strength for solid materials: Rittel and Hanina et al [24] worked on pressure insensitive 

materials like metals and introduced direct determination of confinement pressure, Rittel and 

Brill [25] and Forquin and Nasraoui et al [26] worked on a PMMA and found that the 

confinement increases the compression strength of the material. Similar results were also noted 

by Hung and Subhash [27] for basalt rock; and Bentayeb and Taher et al [28] for concrete. 

However, the measurement of confinement stress and relating it to static and dynamic 

constitutive equation of syntactic foam has not been established. The present study focuses on 

this subject for Eco-Core material.  

Finally, It is important to mention other study by Chun and Lim et al  [29] involved static 

compression under hydrostatic confinement of expended polystyrene (EPS) geo-foam. They 

conducted the study for different levels of hydrostatic pressure and different densities of the 

foam. A hyperbolic model for the static stress–strain behavior as a function of hydrostatic stress 

and density was developed as: 

)11.1(





bc

a b


  
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Where a, b, and c are material constants as function of density and confinement stress (pressure). 

1.3 Confinement  

Confinement simply refers to a technique that constrains material from lateral 

deformation. Because of Poisson deformation, the lateral strain develops under an axial stress. 

Confinement reduces the lateral deformation by applying lateral constraint. In this study 

axisymmetric problem in cylindrical shell is considered. Therefore, the terminologies are 

confined to this type of problems; however, this can be extended to other class. Several types of 

confinement were studied in the literature, they are reviewed below:  

1.3.1 Sleeve (mechanical) confinement. This is the most commonly used type of 

confinement. It is practical and easy to conduct experimentally. In this case, a metallic sleeve is 

used to encase the specimen and provide the required level of lateral stress (see Figure 1.2). It 

can be either a tight fit (about 25 μm clearance) or otherwise a loose fit if clearance is more than 

the mentioned one [30]. The confinement level is controlled by the dimensions and material of 

sleeve. With this type of confinement, the lateral confinement stress is initially zero and then it 

develops as the axial stress is applied on the specimen.  

When specimen inside the sleeve goes under elastic axial deformation, a lateral 

deformation occurs according to Poisson’s effects. The resistance of sleeve to the lateral 

deformation develops the lateral confinement stress. If the specimen undergoes plastic 

deformation beyond the elastic limit, then the confinement stress will be almost constant while 

the material is deforming under constant axial stress. But, when specimen undergoes 

densification mode it bulges laterally causing the confinement stress to increase rapidly. The 

sleeve can be designed to be rigid as in [22], deforms only elastically during the test (in this case 

most often a strain gauge is mounted on the sleeve to measure circumferential strain)  as in [31], 
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deforms elastically and plastically (in this case an analytical or numerical simulation is required 

to determine confinement stress) as in [26] and finally, in some cases the sleeve is designed to 

yield at early stage of specimen deformation to apply nearly constant lateral confinement stress 

while deforming plastically [32].     

 

Figure 1.2. Schematic of sleeve confinement. 

1.3.2 Hydrostatic confinement. This kind of confinement can be provided by a 

hydrostatic pressure cell that connected to either a manual or electrical pressure pump. The 

specimen is placed inside the pressure cell to be pressurized radially by the cell and axially by 

two plungers. The cell, specimen and plungers assembly is placed in between the two platens of 

the test apparatus. The beauty of this method it allows for applying initial confinement pressure 

before applying axial strain on the specimen, which is not possible with other methods. Radial 

pressure may vary from few to hundreds of thousands of pounds per square foot; it all depends 

on the application and the design of the pressure cell. 

 In general pressure cells consist of a hollow steel cylinder with threaded removable ends, 

a urethane rubber or other material bladder incorporating a seals at both ends to form a 

pressurization chamber for the hydraulic fluid within the cell. A spherical seat at each end 
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applies an axial load to the flatted ends of the specimen. Pressure sensor is installed on the cell to 

measure confinement pressure. A strain gauge can be installed on the specimen to measure 

lateral strain. Photograph and schematic of a pressure cell provided by ROCTEST Company are 

shown in Figures 1.3a and b, respectively. Typical type of pressure cell can be seen in [33, 34]. 

 

                                    (a)                                                  (b)  

Figure 1.3. (a) Photograph of pressure cell, (b) Schematic of pressure cell. 

1.3.3 Electro-magnetic confinement. This method is usually used with dynamic tests. 

The lateral confinement is achieved by using an electro-magnetic force generator. It consists of a 

copper or other metal strip surrounding the specimen and a capacitor bank. The capacitor bank 

consists of capacitors connected by inductances such that the capacitors will discharge in a given 

sequence. The copper strip provides a path for high intensity electric currents moving in opposite 

directions around the specimen. Copper strips are arranged as two layers forming two coils one 

inside the other.  

When current passes through the copper strip, the resulting electro-magnetic force will 

move the two layers apart from each other’s in two opposite directions. The outer layer of the 

copper strip tends to expand outwards but is restricted by a rigid mass, since the inner strip tends 
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to move inwards against the specimen. Thus, the electro-magnetic force will generate a lateral 

confinement pressure on the specimen. It is preferred to use a cylindrical specimen to obtain an 

evenly distributed confining pressure over the lateral surface of the specimen [35]. Figure 1.4 

shows a schematic of the electro-magnetic confinement system.   

 

Figure 1.4. Schematic of Electro-magnetic confinement. 

This method of confinement has two advantages: First is pulse tailoring, where the 

dynamic confinement pressure pulse can be tailored to the desired shape. Amplitude and duration 

of the pulse can be controlled through proper design of the capacitor bank circuits. Second is 

timing, as this method provides a precise timing control for the confinement pressure pulse to 

initiate and terminate with the axial loading while using for example Split Hopkinson Pressure 

Bar (SHPB) apparatus or other impact machine. Timing can be controlled by an ignition trigger 

delay circuit and a thyratrodmercury switch ignition unit. 

1.3.4 Self confinement.  When a normal force acts on a part of object in the axial 

direction for example, that part develops an axial stress/strain. According to the Poisson’s effect 

the part tends to expand laterally. The rest of the object material will constrain that lateral 

deformation and will develop a lateral stress or confinement stress. Since the material provides a 

confinement for itself, it is called self-confinement in this research. Figure 1.5 shows a schematic 
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expresses the self-confinement. This type of confinement is the most related to the real life 

applications. The multi-axial stresses acting on the core material of a sandwich structure is a 

good example for this type of confinement.  

 

Figure 1.5. Schematic of self-confinement. 

1.4 Sandwich Structures  

Sandwich-structure is a special class of structural construction fabricated by attaching 

two thin and stiff layers called face sheets to the top and bottom surfaces of a lightweight and 

thick core material as shown in Figure 1.6. Typically core material is of low strength, low 

density and inexpensive. But, its high thickness provides the sandwich structure with 

superior bending stiffness with overall low density. First sandwich structure appeared in 1820 

when Delau introduced the principal of using two cooperating faces with a distance between 

them. Then during the World War 2 sandwich panels were extensively used for the first time in 

the Mosquito Aircraft. The demand for sandwich structure increased because of the shortage of 

the other materials in England during the war. Veneer was used to make the skin or the face and 

balsa wood to make the core.  

 

Figure 1.6. Schematic of typical sandwich structure. 

Multi-axial Stress

a

r (q)
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The first theoretical writing about sandwich structures appeared during the World War 2 

as well. During the 50’s, the development focused mainly on the honeycomb materials when it 

mainly used as core materials in the aircraft industry. However, honeycomb had some limitations 

like corrosion problem. During the 60’s, different cellular plastic core materials were produced. 

In the beginning, soft core materials like polystyrene and polyurethane were used because of 

their insulation properties. Later on, harder cellular plastics were produced with higher densities. 

By that time sandwich structure became a very useful and flexible concept. The aim was to use 

materials with a maximum of efficiency.  

The two faces are placed at a distance from each other’s to increase the moment of inertia 

and the flexural rigidity about the neutral axis of the structure. A sandwich beam of the same 

width and weight as a solid beam has become remarkably stiffer because of its higher moment of 

inertia [36]. Nowadays, sandwich structures are extensively used in many applications like 

aircraft, aerospace, ships, infrastructures and others due to their superior mechanical properties.  

Core can be open or closed-cell structured foams like polyvinylchloride, polyurethane, 

polyethylene or polystyrene foams. Also it can be balsa wood, synthetic foam or metal foam and 

finally it can be honeycombs. Face material can be a laminate of glass or carbon fiber reinforced 

polymers or it can be a sheet of metal. The faces are usually bonded to the core with an adhesive. 

If the adhesive bond between the core and the face is not strong enough that results in 

delamination [37].The function of each component in the sandwich structure can be summarized 

as following: 

Faces carry the tensile and compression stresses of the bending moment acting on the 

sandwich structure. They also carry local pressure; if the local pressure is high the face should be 

designed to carry the shear forces associated with it. 
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Core keeps the distance between the two faces constant, so it has to be stiff enough. Also 

it has to be rigid if shear forces tend to slide the faces against each other. Otherwise the structure 

will lose its stiffness. 

Adhesive keeps the faces and core bonded and cooperated with each other’s. It has to be 

able to carry and transfer the shear forces between the faces and the core. At least it must 

withstand shear and tensile stresses as much as the core does [36]. 

1.5 Strain Rate  

Strain rate is the rate of applying strain (load) on the material. If the strain rate is about 

0.01s
-1

 or less, then this is called a static or quasi-static condition. It can be achieved using a 

universal static test apparatus like MTS Machine. With this process the acceleration effect on 

load measuring devices is insignificant and the stress wave propagation effect can be ignored. 

Intermediate strain rate is in the range of 0.1 - 100 s
-1

. It is generally covered by universal test 

instruments, standard servo-hydraulic test instruments, specialized drop towers and high-speed 

servo-hydraulic test instruments. The strain rates above 100 s
-1

 are considered to be high strain 

rates. They require apparatus that includes stress wave propagation such as Split Hopkinson 

Pressure Bar (SHPB) apparatus.  

The physical properties of many materials are sensitive to the strain rate. However, some 

materials are more sensitive to strain rate than others. It makes sense to observe these changes 

over orders of magnitude of strain rate. Changing the strain rate by the order of doubling or 

halving may generate very small structural changes that are difficult to observe. But, Strain rate 

measurements over orders of magnitude change in strain rate such as 0.1, 1, 10 and 100s
-1

 will 

produce meaningful results [38]. 
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1.6 Challenges  

Static and dynamic response of syntactic foams like Eco-Core under confinement stress is 

not well understood. The models reviewed previously treated the problem either as free of 

confinement or under rigid confinement conditions. The challenge has been the measurement of 

lateral strain while the axial stress is applied. This problem has been encountered in both static 

and dynamic loadings. This research attempts to develop appropriate test fixtures to measure the 

lateral strain/stress for both of these conditions. Then effect of lateral stress is included in 

obtaining the constitutive equation of the Eco-Core.  

1.7 Rationale of the Study  

The development of a material model is very important to conduct analytical simulation 

studies of real life problems using commercial codes like ANSYS, LS-DYNA, ABACUS and 

others.  Accuracy of the prediction depends on the accuracy of the material model used. 

Therefore, development of material model that accounts for stress state, failure onset and 

progression is very important. Thus, this study carries significant importance as it establishes the 

basics for development of multi-axial material models, in particular syntactic foams like Eco-

Core. That helps to understand and improve their mechanical properties to expand their usage in 

the sandwich structures applications. Finally, introducing fire resistant material like Eco-Core for 

the sandwich structures in the high strain rate applications saves lives and possessing. 

1.8 Objectives of the Research  

The overall objective of this work is to develop a dynamic constitutive equation for Eco-

Core material under multi-axial stress state. However, this first attempt was to develop the 

constitutive equation for problems of axisymmetric type. The specific objectives are: 

o Identify the stress-state that causes the failure. 
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o Develop a static constitutive equation and validate it by experiments. 

o Develop a dynamic constrictive equation and validate it by experiments.  

o Develop a single constitutive equation that covers static and dynamic conditions. 

o Validate the model by dynamic simulation using LS-DYNA code. 

o Asses the energy absorption of Eco-Core and compare it with other core materials.  

1.9 Scope of the Dissertation  

This dissertation consists of six chapters. Chapter One consists background of Eco-Core, 

literature review about available material models, some related general concepts, importance of 

the study and objectives of the research. Chapter Two explains the processing of Eco-Core and 

specimen preparation. Chapter Three presents the static confined compression test, identification 

of stress state that controls the failure process of Eco-Core and development of static constitutive 

equation. Chapter Four presents the dynamic confined compression testing using Split 

Hopkinson Pressure Bar apparatus and development of dynamic constitutive equation. Chapter 

Five discusses the finite element simulation using LS-DYNA code to simulate static and 

dynamic tests. Chapter Six contains the concluding remarks and suggestions for future work.  
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2 CHAPTER 2 

Processing of Eco-Core and Specimen Fabrication 

This chapter describes processing of Eco-Core material and preparation of test specimens 

in details. It explains the fabrication of Eco-Core panels including preparation of fly ash mixture, 

molding, curing and post curing. The same procedure followed in references [6, 9, 10, 16] was 

followed and explained in this work. Specimen preparation for the static and dynamic tests is 

also discussed in details in this chapter. 

2.1 Material  

A class of fly ash known as Cenosphere (BIONIC BUBBLE™-XL-150 was obtained 

from Sphere Services Inc. was used. The binder resin was a phenol-formaldehyde resole resin, 

Durite SC 1008 supplied by Borden Chemical Company. The physical properties of the 

Cenosphere, chemical properties of Cenosphere and the physical and chemical properties of the 

phenolic resin as provided by the material supplier are listed in Tables 2.1, 2.2 and 2.3, 

respectively. Typical microscopic structure of the treated Cenosphere as received from the 

supplier is shown in Figure 2.1. This figure shows the spherical shape of the bubbles that are 

evolved in the coal fire power plant. 

Table 2.1 

Phsical properties of Cenospere 

Size 10-350 μm (63 μm at 50% Passing) 

Wall thickness 10-30 μm 

pH in water 6.0-8.0 

Bulk density 0.29-0.32 g/cc 

Specific gravity  0.5-0.6 

Compressive strength  12 MPa (Average) 

Softening point Above > 1000
o 
C 

Shape Spherical 

Color Off white to light grey 
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Table 2.2 

Chemical properties of Cenosphere 

Composition Wt.% 

Silica 15%-50% 

Aluminum 30%-35% 

Iron oxide 1%-5% 

Titania 0.5%-1.5% 

 

Table 2.3 

Physical and chemical properties of phenolic resin 

Boiling Point 

Vapor pressure 

98
o 
C 

28 mm of Hg 

Vapor density 2.1 

Spec gravity 1.07 - 1.10 

pH value > 7.9 

Viscosity 180 -300 cps 

Solubility in water 100% 

Appearance and oder Clear amber liquid 

% Volatiles by volume 38 

 

 

 

Figure 2.1. Typical microscopic structure of Cenosphere. 
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2.2 Panels Fabrication  

 Eco-Core mixture was prepared following the procedure explained in the references 

mentioned before, as well as molding, curing and post curing processes. Eco-Core panels were 

fabricated in two thicknesses, h = 25.4 mm to prepare static test specimens and h = 12.7 mm to 

prepare dynamic test specimens. The steps of panels’ fabrication followed in this work are listed 

below:  

1. The fly ash (Cenosphere) was treated by the supplier company before delivery to remove 

lime components by a dilute hydrochloric acid (pH ~ 4). The heavier than water fraction of 

the ash was separated and removed by settling. The lighter floating fraction material was 

further washed with water approximately 3-4 times and was separated by filtration from the 

water. The floaters were scooped out and then they were thoroughly dried at 110
o 

C in a 

convection oven.  Subsequently, the treated fly ash was treated with an aminoalkyl 

triethoxysilane coupling agent. The Cenosphere after saline treatment was dried in an oven to 

attain a free-flowing material. 

2. Resin-alcohol solution was prepared by mixing Isopropanol alcohol with the Phenol-

formaldehyde resin at a weight ratio of 1:10. The solution was stirred for about 5 minutes.  

3. Treated fly ash was mixed with the resin-alcohol solution at a weight ratio of 5:1. It was 

mixed in a low-shear planetary motion mixer so that fly ash is uniformly coated with resin. 

Figure 2.2 shows the mixing bowl with mixture of fly ash and resin. This process was 

continued for about 12 minutes. 

4. The volatile solvents from the fly ash mixture were removed while mixing it in a stream of 

warm air for about 5 minutes. 
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Figure 2.2. Fly ash-resin mixing process. 

5. The volatile fraction for the mixture was calculated by taking three samples (small quantities 

of the mixture) and weighing them before and after drying for 30 minute at 180
o 
C 

temperature. The deference in the weight over the original weight represents the volatile 

fraction. It was calculated for each sample then averaged for the three samples. From 

knowing the final desired volume and density of the panel and knowing the volatile fraction 

of the mixture, the quantity of the required mixture can be calculated as: 

)1.2(
1 fractionvolatile

volumedensity
Weight




  

Additional amount of about 5% of the calculated mixture weight should be added to 

compensate for the material lost in the process (bowl, mold and others). 

6. The mixture was then charged into compression steel molds. Note that the used steel molds 

were of two sizes. One of 356 x 356 x 25.4 mm dimensions to produce panels for the static 

test and the other of 356 x 356 x 12.7 mm to produce panels for the dynamic test. The 

mixture was distributed uniformly using plastic rollers. Figures 2.3a and b show the mixture 

in the mold and the distribution by rolling process, respectively. 
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                                (a)                                                          (b)  

Figure 2.3. (a) Photograph of fly ash-resin mixture in the mold, (b) Distribution process. 

7. The mixture was then pre-compacted and preheated in a laboratory hot press at 82
o
 C for 

about 30 minutes with no pressure (see Figure 2.4). 

 

Figure 2.4. Photograph of preheating of mold and Eco-Core mixture. 

8. The preheated panel was then cured at 163
o 
C and 1.55 MPa pressure for about 30 min. The 

cured Eco-Core panel is shown in Figure 2.5. The time, temperature and pressure cycle used 

with curing the Eco-Core is shown in Figure 2.6. 
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Figure 2.5. Photograph of cured Eco-Core panel. 

 
Figure 2.6. Time, temperature and pressure cycle for curing Eco-Core. 

9. The Eco-core panels were finally post cured in a circulating air oven at 163
o
 C for 4.5 hours. 

The temperature cycle for post curing is shown in Figure 2.7. The post cured panel is shown 

in Figure 2.8. 
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Figure 2.7. Post curing time-temperature cycle. 

 

Figure 2.8. Post cured Eco-Core panel. 

10. Four panels were fabricated for each size. In order to assess the quality of the fabricated 

panels, density and dimensional measurements were performed. Each panel was identified 

and weighed and panel dimensions were measured. Table 2.4 lists the average dimensions, 

weights and density of the four panels of static test (356 x 356 x 25.4 mm) and Table 2.5 lists 

the same properties for the four panels of the dynamic test (356 x 356 x 12.7 mm). 
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Table 2.4 

Properties of static test panels 

Panel             

# 

Ave length 

mm 

Ave width, 

mm 

Ave thickness, 

mm 

Weight,          

g 

Bulk density, 

g/cm
3
 

1 304.5 304.6 25.6 1157.3 0.485 

2 304.6 304.5 25.6 1191.3 0.489 

3 304.7 304.6 25.7 1192.4 0.501 

4 304.6 304.7 25.7 1238.0 0.525 

 

Table 2.5 

Properties of dynamic test panels 

Panel              

# 

Ave length, 

mm 

Ave width,  

mm 

Ave thickness, 

mm 

Weight,          

g 

Bulk density, 

g/cm
3
 

1 304.5 304.7 12.9 619.0 0.519 

2 304.5 304.5 12.9 597.8 0.503 

3 304.7 304.7 12.8 586.0 0.491 

3 304.7 304.7 12.8 606.6 0.510 

 

The thickness of the panel was quite uniform. Figure 2.9 shows the locations on the panel 

where measurement of length, width and thickness were taken. These dimensions were 

averaged and listed in the above tables. Panel number 3 was selected to prepare static test 

specimens as its density of 0.501 g/cm
3
 was the closest to the desired one (0.5 g/cm

3
). For the 

dynamic test, panel number 2 was selected to prepare the specimens. Its density of 0.503 

g/cm
3
 was the closest to the first selected panel. Using uniform density of the specimens of 

the static and dynamic test eliminates the possible variation in the properties according to the 

density variation. The whole steps of Eco-Core panel fabrication are summarized in Figure 

2.10. The SEM microscopic picture of broken piece of Eco-Core material is shown in Figure 

2.11 for two magnifications; 250 and 1000 times. This figure shows the sphere to sphere 

contact structure of the material with very little resin binder.   
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Figure 2.9. Locations of measurements on Eco-Core panel. 

 

Figure 2.10. Process flow diagram for producing Eco-Core panel. 

 

Figure 2.11. SEM micrograph of broken piece of Eco-Core. 
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2.3 Preparation of Test Specimen   

The two selected panels of the thicknesses 25.4 mm and 12.7 mm were used to fabricate 

specimens for the static and dynamic tests, respectively. The fabrication process of the specimen 

is detailed as below: 

2.3.1 Preparation of static test specimens. Panel number 3 of the static test panels was 

selected to perform the fabrication of static test specimens. Thickness and bulk density of the 

panel were 25.4 mm and 0.501 g/cm
3
, respectively. The panel was cut into smaller rectangular 

blocks of 100 mm x 100 mm dimensions to fit in the vise of the drill machine (see Figure 2.12a). 

Cylindrical specimens were cut from these small panels using a 36 mm inner diameter core 

cutter (see Figure 2.12b).  

 

                                        (a)                                                                       (b) 

Figure 2.12. (a) Photograph of cutting of panels, (b) Photograph of core drilling. 

At this stage, the diameter of the specimens was about 25% larger than the final diameter.  

Then specimens were turned on the lathe machine to the final diameter of 28.5 mm and length of 

25.4 mm (see Figure 2.13a). The volume and the weight of specimens were measured and the 

density of each specimen was determined to classify the specimens according to the density. Just 

the ones within the 0.5 - 0.52 g/cm
3
 density range were chosen to conduct the test. The variation 



29 

 

 

in the density of specimens was limited to 2%. Table 2.6 lists the geometric configurations and 

densities of the static test specimens. Figures 2.13a, b and c show turning process, a photograph 

of the static test specimens and schematic of the specimen, respectively. 

Table 2.6 

Dimensions and densities of static test Eco-Core specimens 

Sleeve        

type 

Specimen 

number 

Length, L  

mm 

Diameter, d 

mm 

Weight, w      

g 

Density, ρ   

g/cm3 

Rubber 

1 25.63 28.44 8.21 0.504 

2 25.62 28.44 8.28 0.509 

3 25.63 28.4 8.44 0.520 

4 25.64 28.44 8.34 0.512 

5 25.64 28.44 8.26 0.507 

Ave 25.63 28.43 8.31 0.510 

Acrylic 

1 25.62 27.90 7.93 0.506 

2 25.62 27.90 8.10 0.517 

3 25.62 27.90 7.83 0.500 

4 25.62 27.90 7.88 0.503 

5 25.62 27.90 7.97 0.509 

Ave 25.62 27.90 7.94 0.507 

Aluminum 

1 25.63 28.40 8.41 0.518 

2 25.63 28.40 8.18 0.504 

3 25.63 28.40 8.33 0.513 

4 25.63 28.40 8.30 0.511 

5 25.63 28.40 8.13 0.501 

Ave 25.63 28.40 8.27 0.509 

Copper 

1 25.63 28.37 8.15 0.503 

2 25.63 28.37 8.13 0.502 

3 25.63 28.37 8.28 0.511 

4 25.63 28.37 8.33 0.514 

5 25.63 28.37 8.20 0.506 

Ave 25.63 28.37 8.22 0.507 

Steel 

1 25.48 28.58 8.17 0.500 

2 25.63 28.58 8.24 0.501 

3 25.63 28.58 8.35 0.508 

4 25.63 28.58 8.27 0.503 

5 25.63 28.58 8.27 0.503 

Ave 25.60 28.58 8.26 0.503 
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                         (a)                                                (b)                                       (c) 

Figure 2.13. (a) Photograph of specimen turning on lathe machine, (b) Photograph of static test 

specimens, (c) Schematic of static test specimen. 

2.3.2 Preparation of dynamic test specimens. Panel number 2 of the dynamic test 

panels was selected to perform the fabrication of dynamic test specimens. Thickness and bulk 

density of the panel were 12.7 mm and 0.503 g/cm
3
, respectively. Similar to the previous case, 

the panel was cut into smaller rectangular blocks of 100 mm x 100 mm dimensions as well. 

Cylindrical specimens were cut from these small panels using a 16 mm inner diameter core 

cutter. At this stage, the diameter of the specimen was about 30% larger than the final specimen 

diameter. Then specimens were turned on the lathe machine to the final diameter of 11 mm.  

The 12.7 mm long specimen was cut into two halves each half was placed in the 3.2 mm 

depth hole of the fixture shown in Figure 2.14. Then it was sanded down by 400-grit sand paper 

to a final length of 3.2 mm within 25 μm variation. The two surfaces of the specimen were 

perfectly parallel to minimize the misalignment in the test fixture. Length direction is the axial 

direction of the test. Dimensions and masses of all specimens were measured and the density was 

calculated for each specimen and listed in Table 2.7. The density of the selected specimens 

ranged 0.5 - 0.52 g/cm
3
 with a variation of 2%. A photograph and schematic of the dynamic test 

specimens are shown in Figures 2.15a and b, respectively. 



31 

 

 

 

Figure 2.14. Fixture to adjust the length of the dynamic test specimen. 

Table 2.7 

Dimensions and densities of dynamic test Eco-Core specimens 

SPC # d, mm L, mm w, g ρ, g/cm
3
 

1 11.00 3.20 0.155 0.511 

2 11.01 3.20 0.155 0.510 

3 11.00 3.21 0.153 0.500 

4 11.01 3.20 0.158 0.519 

5 10.99 3.20 0.153 0.505 

6 11.00 3.20 0.155 0.509 

7 11.01 3.20 0.154 0.505 

8 11.01 3.20 0.156 0.513 

9 10.99 3.19 0.152 0.502 

10 11.00 3.20 0.156 0.514 

11 11.00 3.20 0.154 0.506 

12 10.99 3.19 0.156 0.516 

 

 

 

 

                                             (a)                                                                (b) 

Figure 2.15. (a) Photograph of dynamic test specimens, (b) Schematic of dynamic test specimen. 
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2.4 Summary   

 Eco-Core panels were molded in two thicknesses, 25.4 mm and 12.7 mm. Then 

specimens for the static and dynamic tests were prepared.  Static test specimen had 25.4 mm 

length and 28.5 mm diameter. Dynamic test specimen had 3.2 mm length and 11 mm diameter. 

Total 25 static test and 12 dynamic test specimens were prepared. The density of the static test 

specimens ranged from 0.500 to 0.520 g/cm
3 

with average of 0.507 g/cm
3
. The density of the 

dynamic test specimens ranged from 0.500 to 0.519 g/cm
3 

with average of 0.509 g/cm
3
.    
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3 CHAPTER 3 

Static Confined Compression Tests 

This chapter discusses the static confined compression testing of Eco-Core, test results 

and analysis of results. Then, the results are expressed as net-deviatoric stress versus axial strain 

response that independent of confinement (lateral) stress using simple assumptions. This 

response is used to develop a constitutive equation. 

3.1 Methodology 

The methodology adopted in this study is to measure the axial compression stress-strain 

response and the confinement stress as it develops in the confinement casing (sleeve) of Eco-

Core. Change the confinement sleeve stiffness by changing material and sleeve thickness. From 

the database of the above test study, develop a comprehensive constitutive equation that includes 

the confinement stress. 

3.2 Confined Compression Testing  

Confined compression testing includes two parts: test set up and testing. Note that the 

static test specimens were used in this test. Preparation and configuration of static test specimen 

were discussed in Chapter 2. 

3.2.1 Test setup. The test setup consists of two parts: specimen and test fixture assembly 

and then compression testing in a universal test machine (MTS 810). The specimen placed inside 

a sleeve that fits smoothly. Then two (top and bottom) plungers that smoothly fit the sleeve were 

pushed together to apply compression stress. Three strain gauges were installed on the sleeve to 

measure Hoop strain as the axial compression stress increases. Four different types of sleeves 

were used to provide the lateral confinement of the specimens during the compression tests: 
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acrylic, aluminum, copper and steel. In addition test was conducted with thin rubber sleeve to 

simulate near zero confinement. The material properties of the sleeves are listed in Table 3.1.  

All sleeves had an inner diameter of 28.50 mm, length of 50.80 mm and thickness of 1.65 

mm (except acrylic sleeve with 5.00 mm thickness). The three strain gauges were mounted on 

each sleeve (except on the thin rubber sleeve), they were arranged to be one at the midlevel, and 

other two at 6.4 mm (0.25 in) from top and bottom of the specimen (see Figure 3.1a). The 

compression load was applied using steel plungers that snug fit the sleeves (within 25 μm 

clearance). Schematic of test fixture and the associated induced Hoop strains, Hoop stress, radial 

stress (q) and their calculations based on thin walled cylinder theory are shown in Figures 3.1a 

and b, respectively. 

Table 3.1 

Material properties of sleeves 

Material 
Modulus Strength Diameter Thickness E   t 

GPa MPa mm mm N/m 

Acrylic 3.3 55 28.5 5.00 16.5 10
6
 

Aluminum (6061-T6) 69 255 28.5 1.65 113.9 10
6
 

Copper (122) 117 221 28.5 1.65 193.0 10
6
 

Steel (DOM) 200 496 28.5 1.65 330.0 10
6
 

 

This arrangement was used to capture maximum deformation or maximum Hoop 

(circumferential) strain all along the specimen, even if the specimen passed one of the strain 

gauges. MTS system model 810 was used to conduct the static test (quasi-static). The whole 

specimen and test fixture assembly was placed in between the two platens of the MTS system. 

Displacement was applied by the bottom platen of the MTS to simulate compression stress on 

the specimen. The used displacement rate was 0.02 mm/s over the specimen length of 25.4 mm, 

which is equivalent to strain rate of 4103.8  /s. The three strain gauges and the output of the 
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MTS machine were all connected to data acquisition system (scanner model 5100). The scanner 

was connected to a computer that has a STRAIN-SMART software to acquire the data. The test 

set up in the MTS system including test fixture is showing in Figure 3.2.  

 

                                             (a)                                              (b)  

Figure 3.1. (a) Static test fixture, (b) Axial and cross sections of test specimen and sleeve. 

 

Figure 3.2. Confined compression test setting. 
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3.2.2 Testing. After placing specimen-fixture assembly on the MTS machine and 

connecting the strain gauges to the data acquisition system, the test was started. The controller of 

the MTS machine was set to displacement rate of 0.02 mm/s (strain rate of 4103.8  /s). The 

axial displacement (δ) and the force (P) from the MTS machine and the three Hoop strains of the 

sleeve were recorded every 0.02 second. The specimen was compressed to about 60% for stiff 

sleeves and to about 80% for rubber sleeve. From the raw data, axial stress )(
ca AP and strain

)( La   were calculated. The cross-sectional area of the specimen is 42dAc  .  

The first maximum load is the failure load (Pf) and the corresponding stress and strain are 

represented as compression strength )( c and yield strain )( c , which is in some references 

denoted by )or( ysy  . The confinement stress (q) was calculated from the measured Hoop strain 

(  ), by calculating Hoop stress  sE    and using thin walled cylinder theory (Equation 

3.1) [39].  

)1.3(
2

d

h
q   

Where h is the thickness of the sleeve and d is the diameter of the specimen. Figure 3.1b shows 

the steps involved in calculating the confinement stress (q). 

Note that the thin walled cylinder theory to be valid, d/h of the sleeve has to be more than 

10; this requirement is violated in acrylic sleeve. The data is used as a representative value. The 

test was first conducted using aluminum sleeve confinement then it was repeated for copper, 

steel and acrylic. In each case five specimens were tested to ensure the repeatability of the test 

results. The dimensions and test values of c  and c  for all specimens are listed in Table 3.2. 

The average value for the confined compression strength was 21 MPa, whereas, the unconfined 
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compression strength )( c was 20MPa. However, the unconfined strength was used to normalize 

all data. The average confined at failure (yield) strain was 0.023, whereas, the unconfined yield 

strain )( c was 0.02. Again, the unconfined yield strain was used to separate the linear and 

plateau parts of the confined stress-strain curve. 

Table 3.2 

Static test results 

Sleeve     

type 

Specimen 

number 

Length, L 

mm 

Diameter, d 

mm 

σc                

MPa 

ԑc                  

m/m 

Rubber 

1 25.63 28.44 20.53 0.023 

2 25.62 28.44 20.26 0.019 

3 25.63 28.40 18.84 0.027 

4 25.64 28.44 21.33 0.020 

5 25.64 28.44 21.58 0.022 

Acrylic 

1 25.62 27.90 21.48 0.021 

2 25.62 27.90 20.49 0.031 

3 25.62 27.90 21.41 0.021 

4 25.62 27.90 19.94 0.023 

5 25.62 27.90 22.18 0.022 

Aluminum 

1 25.63 28.40 22.68 0.020 

2 25.63 28.40 22.43 0.020 

3 25.63 28.40 20.69 0.017 

4 25.63 28.40 22.83 0.023 

5 25.63 28.40 20.88 0.016 

Copper 

1 25.63 28.37 20.52 0.018 

2 25.63 28.37 22.21 0.039 

3 25.63 28.37 21.31 0.039 

4 25.63 28.37 20.45 0.023 

5 25.63 28.37 21.72 0.019 

Steel 

1 25.48 28.58 21.72 0.034 

2 25.63 28.58 22.16 0.020 

3 25.63 28.58 19.86 0.019 

4 25.63 28.58 21.71 0.023 

5 25.63 28.58 20.46 0.029 
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3.3 Test Results 

The results of the tests are presented under three sections according to the type of sleeve 

confinement: aluminum sleeve, rubber sleeve and other sleeves (copper, steel and acrylic).  

3.3.1 Aluminum sleeve. The axial stress-strain responses of all five specimens of Eco-

Core under aluminum sleeve confinement are plotted in Figure 3.3. All five curves were close to 

each other’s to indicate repeatability of results. The mean value of the five tests was calculated 

and plotted in Figure 3.4. The curve has three parts: linear part ),0( ca   a plateau and then 

densification curve. The linear part of maximum stress is called the compression strength, c  

and the corresponding strain is called the yielding strain, c . The strain where the densification 

starts is called densification strain, )4.0( dd  . The curve between dac    is called the 

compressibility of the material and the curve beyond da    is called the densification. Here the 

axial stress )( a  rises steeply with strain. 

 

Figure 3.3. Stress-strain response of five Eco-Coe specimens with aluminum sleeve. 
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Figure 3.4. Mean stress-strain response of five Eco-Core specimens with aluminum sleeve. 

The largest Hoop strain )(  from the three strain gauges on the sleeve was selected. The 

mean value of largest Hoop strains of the five sleeves was calculated and plotted against the axial 

stress in Figure 3.5. This curve has three parts: a linear, nonlinear and the 2nd linear curve. These 

three represent the linear elastic part, failure onset, crushing and finally densification of Eco-

Core of the axial stress-strain response in Figure 3.4. As mentioned previously, the results in 

Figure 3.5 is average result of five test specimen. 

 Hoop stress )(  of the aluminum sleeve was calculated from Hoop strain )(  and the 

aluminum elastic modulus (see Table 3.1). Calculated Hoop stress versus axial stress response is 

similar to Hoop strain versus axial stress in Figure 3.5, and it is shown in Figure 3.6.  The 

corresponding confinement stress (q) acting on the Eco-Core specimen was calculated by Eq. 3.1 

and plotted in Figure 3.7 as q versus a .  
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Figure 3.5. Mean Hoop strain versus axial stress of Eco-Core with aluminum sleeve 

confinement. 

 

 

Figure 3.6. Hoop stress versus axial stress of Eco-Core with aluminum sleeve confinement. 
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Figure 3.7. Confinement stress versus axial stress of Eco-Core with aluminum sleeve 

confinement. 

3.3.2 Rubber sleeve. The thin rubber sleeve of 0.13 mm thickness is barely strong 

enough to hold the material together all through the test. It was used to represent the unconfined 

stress-strain response. The axial stress-strain responses for the five specimens of Eco-Core with 

rubber sleeve were measured and compared to each other’s in Figure 3.8. The comparison 

indicated repeatability of results. The mean value of the five tests was calculated and plotted in 

Figure 3.9. The curve has three parts as well: linear part identical to that of aluminum sleeve, a 

concave part that is different from aluminum sleeve (concave stress about 50% of plateau) due to 

bulging of the material (see Figure 3.9) and then densification curve. The densification strain 

)( d in this case is extended to about 75.0d . No Hoop strain measurement was conducted with 

this type of confinement due to the difficulty of mounting strain gauges on rubber sleeve and due 

to the large strains as well. 
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Figure 3.8. Axial stress-strain response for five specimens with rubber confinement. 

 

 

Figure 3.9. Mean stress-strain response of Eco-Core with thin rubber sleeve confinement. 
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 3.3.3 Effect of sleeve type. In addition to the aluminum and rubber sleeves, Eco-Core 

was tested under the confinement of other types of sleeves to check the effect of different 

confinement. Acrylic sleeve of 5.00 mm thickness, copper sleeve of 1.65 mm thickness and steel 

sleeve of 1.65 mm thickness were used. Also five specimens were tested with each type of 

sleeves. Figures 3.10, 3.11 and 3.12 show the response of the five specimens with acrylic, copper 

and steel sleeves, respectively. The last three figures indicate good repeatability for the results in 

all three cases. 

  Axial stress )( a  versus axial strain )( a  response of Eco-Core under the confinement of 

the five different sleeves (acrylic, aluminum, copper, steel and rubber) was determined. The 

different types of material and sleeve thicknesses provided different stiffness level of the sleeves

)(hE . The stiffness was almost zero for rubber sleeve, whereas it is 6105.16   N/m for acrylic 

sleeve, 6109.113   N/m for aluminum sleeve, 6100.193   N/m for copper sleeve and 6100.330   

N/m for steel sleeve. 

 

Figure 3.10. Axial stress-strain response for five specimens with acrylic sleeve.  
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Figure 3.11. Axial stress-strain response for five specimens with copper sleeve. 

 

 

Figure 3.12. Axial stress-strain response for five specimens with steel sleeve. 
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 The average value of axial stress responses under each sleeve type was calculated. The 

means of the axial stress-strain responses under different sleeves were plotted together as shown 

in Figure 3.13. Also, average Hoop strains versus axial stress for all sleeve types were plotted 

together as shown in Figure 3.14. Hoop stresses were calculated form Hoop strains and plotted 

versus axial stress as shown in Figure 3.15. Note the confinement stress response of all metallic 

sleeves collapsed as a single curve. However, the acrylic sleeve responded differently because of 

the violation to the thin walled cylinder theory )10( hd . The confinement stresses of the 

metallic sleeves were all plotted verses axial stresses as shown in Figure 3.16. The last figure 

showed that the confinement stress was independent of sleeve type or sleeve stiffness ).(hE  

 

 

Figure 3.13. Stress-strain response of Eco-Core under different types of sleeve confinement. 
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Figure 3.14. Mean Hoop strain of different sleeves versus axial stress of Eco-Core. 

 

 

Figure 3.15. Hoop stress of different sleeves versus axial stress of Eco-Core. 
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Figure 3.16. Confinement stress versus axial stress of Eco-Core under different sleeves 

confinement. 

3.4 Development of Static Constitutive Equation   

The stress state acting on confined test specimen is shown in Figure 3.17a. This includes 

axial stress )( a , radial compressive stress (q) and the friction shear between the specimen and 

the sleeve )(  . To derive a constitutive equation, the following assumptions were made: 

a) The friction shear between the specimen and the sleeve )(  is replaced by an equivalent 

axial frictional stress )(  . 

b) Then the principal axial stress is  a . 

c) The axisymmetric principal lateral stress is q. 

 From these assumptions, an effective net-deviatoric stress-strain relation was derived as the one 

that controls the failure of Eco-Core. 
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3.4.1 Frictional stress )(  . In all previous studies, friction force between the specimen 

and the sleeve was either ignored or estimated by numerical or analytical simulation. Our 

experimental observations showed that friction effect is significant and must be included. 

Therefore, friction effect was considered in this work. Static coefficient of friction between Eco-

Core and the sleeve material was measured as detailed in Appendix A. The coefficient of static 

friction (μ) for all sleeves was found to be about 0.18.  

The equivalent force in the axial direction due to the shear friction between Eco-Core and 

sleeve was denoted by F (see Figure 3.17a). Dividing this force by the cross section area of the 

specimen )4( 2dAc   results in an equivalent friction stress in the axial direction called   

and it can be derived as: 

   2.314 a
d

l
q   








  

Where μ is the static coefficient of friction and l and d are the length and the diameter of the 

specimen, respectively. This equation accounts for axial contraction )( a  of the specimen due to 

crushing. From the superposition of   on the axial stress (Figure 3.17b), we get the principal 

frictional axial stress )(  a . 

3.4.2 Net-deviatoric stress )(  d . The difference between the maximum and minimum 

principal stresses acting on a body is called deviatoric stress )( d . 

)3.3(31  d  

Where 1 and 3 are maximum and minimum principal stresses, respectively. In this case, the 

axial principal stress is the difference between the axial stress )( a and the equivalent frictional 
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stress in the axial direction )(  , it is referred to by principal frictional axial stress )(  a . 

The asymmetric (cylindrical specimen) lateral principal stress is the hydrostatic stress (q). The 

deviatoric stress is referred to by the net-devatoric stress )( d in this study to indicate that it 

includes the frictional effects. The net-deviatoric stress is determined by using the superposition 

of (q) on the principal axial stress )(  a of Figure 3.17b, as shown in Figure 3.17c. Similar 

approach of the superposition was used for metals by Rittle, Hanina and Ravichandran [24]. 

Mathematically, the net-devatoric stress )( d is derived as:    

   4.3141 aad
d

l
q   
















  

 

(a)  

 

(b)  

 

(c)  

Figure 3.17. (a) Stress state on Eco-Core specimen confined by sleeve, (b) Derivation of 

principal axial stress, (c) Derivation of net-deviatoric stress. 
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The plot of d  versus a for aluminum, copper, steel and rubber sleeves are shown in 

Figure 3.18. All four curves collapsed into a single curve until the Eco-Core started to densify. 

Therefore, the net-deviatoric stress )( d  versus axial strain )( a is considered to be unique and 

that controls the failure response of Eco-Core until reaches or near solid state. Once it reaches 

the solid state, Eco-Core follows the Gibson and Ashby’s model [21]. 

 

Figure 3.18. Net-deviatoric stress of Eco-Core under different types of sleeve confinement. 

3.4.3 Development of constitutive equation. The net-deviatoric stress-axial strain 

response of Eco-Core under aluminum sleeve confinement was chosen to develop the 

constitutive equation. The normalized net-deviatoric stress )( cd   versus axial strain )( a

response from the mean experimental data was used for curve fitting. The response is divided 

into two regions: up to crushing strain )( c which is 02.0c , and beyond crushing strain
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)( ca   . Least Squares Curve fitting method was used to fit both parts of the response with two 

parts equation as: 

 5.3
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Figure 3.19 shows the comparison of Equation 3.5 with the experimental data In terms of net-

deviatoric stress.  

 

Figure 3.19. Comparison of curve fitting equation (3.5) and experiment. 

Equation 3.5 is rewritten in terms of normalized axial stress and axial strain by adding the 

confinement and equivalent friction stresses for both sides of the equation as follows:  
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Equation 3.6 represents the multi-axial stress constitutive equation of Eco-Core. This 

equation expresses the axial stress as a function of axial strain, confinement stress and average 

friction effect. The response of the constitutive equation 3.6 is compared against the 

experimental data (axial stress versus axial strain) in Figure 3.20 for Eco-Core with aluminum 

sleeve confinement. The average difference between Equation 3.6 and experiment is limited to 

4.1% and maximum error of 12%. 

 

Figure 3.20. Comparison between constitutive equation and experimental data (aluminum 

sleeve). 

The developed constitutive equation was compared with the experimental data of the two 

other metallic sleeves, copper and steel sleeves. Figures 3.21 and 3.22 show the comparison for 

the copper sleeve and steel sleeve, respectively. In both cases the average error was about 6%, 

the maximum error for copper sleeve was about 10% and the maximum error for steel sleeve was 

about 14%.  
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Figure 3.21. Comparison between constitutive equation and experiments (copper sleeve). 

 

 

Figure 3.22. Comparison between constitutive equation and experiments (steel sleeve). 
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3.5 Summary 

Static confined compression test of Eco-Core was conducted using different sleeves 

(acrylic, aluminum, copper, steel and rubber) to simulate different confinement stress. The 

confinement stress was calculated from the measured Hoop strain at the sleeve. The axial stress, 

radial confinement stress and the friction between the specimen and the sleeve were reduced to 

net-devitoric stress (net-deviatoric stress = axial stress – friction equivalent stress – confinement 

stress). The net-deviatoric stress versus axial strain was found to be unique and independent of 

confinement stress. From these results, a general axial stress-strain constitutive equation was 

developed for Eco-Core under a multi-axial stress state. The equation was validated by 

experiment. 
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4 CHAPTER 4 

Dynamic Confined Compression Tests 

This chapter discusses the dynamic (high strain rate) confined compression study of Eco-

Core material. The chapter includes development of test fixture and methodology, Split 

Hopkinson Pressure Bar (SHPB) high strain testing and analysis of results, also it includes the 

modification and validation of SHPB apparatus and design of test specimen. Based on the test 

results a dynamic constitutive equation was developed in this chapter.  

4.1 High Strain Rate Testing   

High strain rate test was conducted using the SHPB test apparatus and using a specially 

designed test fixture. The SHPB test apparatus was independently validated for solid specimens 

tested in literature. Then the apparatus was used to test Eco-Core using the specially designed 

fixture. Note that preparation of dynamic test specimens was explained in Chapter 2. 

4.1.1 SHPB test apparatus and analysis. The Split Hopkinson Pressure Bar test 

apparatus is used for high strain rate testing of materials. It was designed and developed at NC 

A&T State University. Details of the apparatus are given in references [15, 16]. A schematic and 

photograph of SHPB apparatus are shown in Figures 4.1a and b, respectively. For testing with 

the SHPB, a cylindrical solid specimen (in this study) is sandwiched between the incident bar 

and the transmitter bar.  

A compressive stress/strain pulse is produced by the impact of a striker bar on the impact 

end of the incident bar passes through the whole assembly. A one-dimensional wave propagation 

model of the setup is shown in Figure 4.2. The pulse propagates through the incident bar toward 

the specimen, which is called incident pulse, )(ti . When the pulse reaches the specimen-

incident bar interference, part of the pulse passes through the specimen and then into the 
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transmitter bar, which is called transmitted pulse, )(tt . The other part of the incident pulse 

reflects back to the incident bar as a tensile pulse, which is called reflected pulse, )(tr . The 

incident and reflected pulses are measured by the strain gauge installed on the incident bar at a 

distance of 0.9 m from the specimen-incident bar interference. The transmitted pulse is measured 

by a strain gauge installed on the transmitter bar at a distance of 0.9 m from the specimen-

transmitter bar interference.  

 

(a) 

 

(b) 

Figure 4.1. (a) Schematic of SHPB testing, (b) Photograph of SHPB testing.   

 

Figure 4.2. A one-dimensional strain/stress wave propagation analysis. 
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During the test, the specimen undergoes deformation until it reaches the dynamic limit; 

while the stress wave propagates through the specimen. The signals of the two strain gauges are 

acquired by a high speed digital oscilloscope. The waveform signal is processed by Xviewer 

software to get strain rate, strain and stress versus time from the reflected and transmitted pulse 

signals. The strain rate in the specimen is calculated from the reflected wave signal, )(tr by the 

equation below: 

)1.4(
)(2

)(
l

tc
t rb

s


   

Where bc  is the speed of sound in the bars (5051m/s), l  is the specimen length (3.2 mm). The 

strain is calculated by integrating the strain rate (Eq. 4.1) with respect to time as: 



t

r
b

s dtt
l

c
t
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2

)(   

The axial stress in the specimen as a function of time is calculated from transmitted wave signal, 

)(tt  as: 

)3.4()()( t
A

EA
t t

s

bb
s    

Where bA  is the cross-section area of Incident/Transmitter bar (285 mm
2
), sA  is the cross-

section area of the specimen (95 mm
2
) and bE  is the elastic modulus of bar material (71.7 GPa). 

The stress-strain response of the specimen is obtained by Equations 4.2 and 4.3. This method of 

computation is given in number of text books on impact, for example [42] and in many 

references, for example [15, 16]. Note that the parts of SHPB could be made of different material 

like steel, magnesium or polymer. However, the concept and the calculations are the same and 

only the bars’ properties are different. 
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4.1.2 Calibration of strain rate versus gas gun pressure. This section establishes the 

relation between the pressure of the gas gun of SHPB apparatus and specimen strain rate. 

Although the relation can be established through analysis, but experiment approach is found to 

be simpler and accurate. SHPB tests on Eco-Core specimens confined in aluminum sleeve were 

conducted for gas gun pressures of 55 kPa to 124 kPa (8 psi to 18 psi). Strain rate in the 

specimen was determined for each pressure. The resulting strain rate against pressure was found 

to be linear, see Figure 4.3.  

 

Figure 4.3. Calibration of strain rate of confined Eco-Core versus pressure of gas gun. 

The data followed Eq. 4.4 below with mean square root error of 0.99.   

)4.4(137637  P  

The pressure (P) is expressed in kPa and strain rate )( in 1/s. Eq. 4.4 was used to 

calculate pressures for required strain rates. For planned strain rates around 500/s, 1500, 2225 

and 3250/s, corresponding pressures were 55 kPa, 76 kPa, 97 kPa and 124 kPa, respectively. The 

same approach of calibration was used for polycarbonate and nylon 6/6 specimens of 6.35 mm 
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diameter and 6.35 mm length. To test polycarbonate specimen at 1200/s and nylon 6/6 specimen 

at 1250/s strain rates, gas gun pressures were found to be 97 kPa and 103 kPa, respectively. 

4.1.3 Validation of SHPB apparatus. Before modifying SHPB apparatus for confined 

compression tests of Eco-Core, the original SHPB apparatus was validated for polycarbonate and 

nylon 6/6 specimens at 1200/s and 1250 strain rates, respectively. Measured responses were 

compared with the results of Salisbury [43] and Chou, Robertson and Rainey [44], respectively. 

Note that the used specimens were cylindrical shape with 6.35 mm diameter and 6.3 mm length, 

to match the reference results. In addition, the unconfined compression test of Eco-Core at 

different strain rates up to 3132/s were conducted and results were compared with references [15, 

16]. Figure 4.4 Shows the axial stress-strain response of polycarbonate specimen at strain rate 

ranging from 1160/s to 1290/s with the results of Salisbury [23] for strain rate of 1200/s. The 

present results bounds Salisbury’s results, four results agreed very well with each other’s. 

 

Figure 4.4. Axial stress-strain response of polycarbonate at about 1200/s strain rate. 
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Figure 4.5 shows the stress-strain responses of nylon 6/6 specimen. Present results are for 

strain rates ranged from 1157/s to 1250/s whereas; Chou, Robertson and Rainey [24] result is for 

1250/s strain rate. Present results of 1157/s and 1250/s bounded and agreed well with Chou’s et 

al result [24]. The above results validate fidelity of our SHPB test apparatus, accuracy of 

instrumentations and data analysis.  

Repeatability of the Eco-Core testing was demonstrated by performing unconfined tests 

in the range of 500/s to 3132/s strain rates. Dynamic axial stress-strain response of unconfined 

Eco-Core is shown in Figure 4.6. Present results of six strain rates are plotted and compared with 

Panduranga’s results [16]. The results showed a week or no effect of strain rate on the stress-

strain response of Eco-Core, which is same as that concluded by Panduranga and presented in 

Chapter 1 of this work as Eq 1.2. The present results for 3132/s strain rate agreed well with 

Panduranga’s result [16] for 3150/s. Pandurang’s result was produced for 12.7 mm diameter and 

3.2 mm thick specimen whereas the present results were for 11 mm specimen diameter. 

 

Figure 4.5. Axial stress-strain response of nylon 6/6 at about 1250/s strain rate. 
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Figure 4.6. Axial stress-strain response of unconfined Eco-Core at different strain rates. 

4.2 High Strain Rate Testing of Confined Eco-Core 

High strain rate testing of Eco-Core specimen under lateral confinement consists of three 

major tasks as:  

4.2.1 Design of specimen. High strain rate testing of foams under confined conditions is 

a challenge as there are no straight forward steps to perform such test. It is even more 

challenging, when the lateral confinement stress history needs to be measured. Considerable 

amount of trails were conducted to select sleeve material (steel, copper or aluminum) and 

dimensions. Among the three sleeve materials, aluminum was selected to maintain material 

compatibility with other parts. It had the lowest stiffness )N/m1062.( 6Eh among the three 

sleeves.  

Many preliminary experiments were performed on different diameter sleeves and were 

found that mm9.15mm4.8  d (Based on the available standard sizes) worked very well and 

gave consistent results. Therefore, 11 mm diameter, 0.9 mm thickness and 6 mm long sleeve was 
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selected. The sleeve thickness (h=0.9 mm) was chosen, so that h/d ratio matches with the one 

used in static confined test (Chapter 3). Accordingly, specimen diameter was determined to be 11 

mm to fit the inner diameter of the sleeve within 25 μm clearance. 

To establish specimen length, number of SHPB tests were conducted for specimens of 

lengths ranged from 1 to 13 mm. Typical static stress-strain response of Eco-Core is shown in 

Figure 4.7a. It consists of linear response )( c , crushing response )( crush and densification )( d  

parts. In dynamic tests on short specimens, the linear stress-strain response )( c was very 

difficult to measure. On the other hand, for long specimens the densification response )( d was 

very difficult to attain as well as high strain rate values )/3000( s . The best compromising 

specimen length was found to be 3.2 mm to acquire all three parts of the stress-strain response 

(linear, crushing and densification) and to achieve high strain rate tests )/3000( s as well. 

Figure 4.7b shows the strain versus specimen length for two regions (linear, c and densification, 

d ) of axial stress-strain response. The two curves intersect at 3.2 mm, which was chosen as the 

specimen length. The aspect ratio of the specimen (l/d) is 2.9, which is within the recommended 

range for testing soft material [41]. 

 
                                           (a)                                                             (b) 

Figure 4.7. (a) Typical compression response of foam, (b) Effect of Eco-Core specimen length 

on response.     
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4.2.2 Confined compression test fixture. Test fixture consists of two plugs, sleeve and 

the strain gauge attached to the sleeve. Plugs were made of aluminum 7075/T6 to match the 

impedance of the SHPB bars. Figure 4.8a shows the assembled test fixture with the specimen. 

The left plug butts against the specimen and the transmission bar and the right plug butts against 

the specimen and the incident bar. Dimensions of the identical plugs are shown in Figure 4.8a. 

The specimen snug fits to the sleeve within 25μm clearance and the two plugs slide into the 

sleeve within 50μm. The length of the sleeve was taken to be 6 mm (as mention before) to 

encase the specimen and the ends of the two plugs. A small gage (1 mm size) strain gauge of 350 

Ohm resistance supplied by Micro-Measurements Company was mounted on the mid-length of 

the sleeve to measure Hoop strain as the specimen undergoes axial compression during the test. 

Photograph of plugs, specimen and the sleeve are shown in Figure 4.8b. 

 
                                                      (a)                                                   (b) 

Figure 4.8. (a) Schematic of dynamic test fixture, (b) Photograph of dynamic text fixture. 

4.2.3 Testing of confined Eco-Core. After SHPB apparatus was validated, confined 

compression test of Eco-Core was conducted. Specimen of d=11 mm and l=3.2 mm was inserted 

gently inside the aluminum sleeve. Specimen location was adjusted carefully to be in the mid-

length of the sleeve, which is the same as strain gauge location on the outer surface of the sleeve. 

Arrangement is shown in Figure 4.8a. The whole fixture was placed in between the incident and 



64 

 

 

transmitter bars. The center of the incident plug was aligned to the center line of the incident bar 

and they were taped together without leaving any gap between them. The same process was 

repeated on the transmitter side of the specimen.  

The strain gauge of the sleeve was connected to the same oscilloscope that the incident 

and transmitter strain gauges were connected to. The gas gun of the apparatus was charged to the 

desired pressure (55 kPa, 76 kPa, 97 kPa and 124 kPa). The trigger of the oscilloscope was 

turned on standby position. Then the system was fired, the striker bar impacts the incident bar. 

The stress wave was generated at the impact site, traveled along the incident bar, specimen and 

then to the transmitter bar. The data acquisition system acquired the strain gauge signals from the 

incident and transmitter bars and the sleeve (Hoop strain) at a rate of 0.5 MHz. The original 

waveform signals were filtered to reduce the noise using the Xviewer software. The signals were 

saved and reduced to strain rate, axial strain and axial stress, using Equations 4.1, 4.2 and 4.3. 

The parameters used in calculations were: bA = 285 mm
2
, sA  = 95 mm

2
, bE = 71.7 GPa, bc = 

5051m/s and l = 3.2 mm 

From the acquired Hoop strain data of the sleeve, )(t ; Hoop stress, )(t was calculated 

using Eq. 4.5. 

)5.4()()( tEt     

Where E is the elastic modulus of the sleeve material (69 MPa). Then the radial stress or the 

lateral confinement stress cting on the specimen )(tq  was calculated by using Eq. 4.6. 

)6.4(
2

)(
d

h
tq   

Where h is the thickness of sleeve (0.9 mm) and d is the diameter of the specimen (11 mm). The 

effective friction stress between the specimen and the sleeve was expressed as an equivalent 
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stress in the axial direction )(   in Chapter 3 on static confined compression test of Eco-Core. 

In this chapter, the equivalent friction stress,   can be expressed in term of time as in Eq. 4.7. 

  )7.4()(1)(4)( t
d

l
tqt a 








  

Where   is the coefficient of friction between Eco-Core and the aluminum sleeve (0.18), see 

Appendix A for details. The superposition of data calculated from Equations 4.1, 4.2, 4.3 and 4.7 

gave the transient multi-axial stress-strain response of Eco-Core at different strain rates.  

4.3 Test Results of Confined Eco-Core 

The test results presented in two parts, typical stress-strain response of confined Eco-

Core at 3120/s strain rate and results at different strain rates. The first part expresses in details 

the basic results of the wave form and the reduction of these results to a final stress-strain 

response. The second part presents the final stress-strain results for different stain rates. 

4.3.1 Typical stress-strain response. A typical time history of strain pulse signals for 

dynamic confined compression test is shown in Figure 4.9. The figure shows the three 

strain/stress pulses of the bars (incident, transmitted and reflected pulses), in addition to the 

fourth pulse of the Hoop strain gauge. The duration of the incident pulse (T/2) was about 415 μs 

(1135 - 720 μs) and the frequency (f=1/T) was 1.2 kHz. Calculation of pulse frequency helps to 

select the suitable sampling rate of the data acquisition system (Oscilloscope), which is 0.5 MHz 

in this present case.  

Note that selecting higher sampling rate results in oscillatory data due to high frequency 

noise whereas lower sampling rate will result in missing important phenomenons like peak 

strains/stress. Figure 4.9 also shows that Hoop strain signal leads the transmitted/reflected signals 

by about 175 μs. That is because Hoop strain signal was measured at the specimen location, but 
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the transmitted/reflected signals were measured by the transmitter/incident strain gauges at 0.9 m 

from the specimen location. The time of the intersection point between the transmitted and 

reflected pulses (1135 μs) was selected as a reference and Hoop strain pulse was shifted to 

synchronize with other pulses.  

 

Figure 4.9. Typical time history of strain pulses of confined compression test at 3120/s.    

The dynamic equilibrium of the specimen during the entire test period was verified by 

comparing the incident pulse to the sum of transmitted and reflected pulses. The pulses time 

history in Figure 4.10 shows that the two values were close to each other’s. It indicates that the 

strains of the bars on both sides of the specimen were almost equal. Since the bars have the same 

area and modulus of elasticity, then the stresses on both sides of the specimen were equal as 

well. That verified the confined specimen was under dynamic equilibrium over the entire period 

of the test. 
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The strain rate, axial strain and axial stress results were derived from the time history of 

the reflected pulse, )(tr  and transmitted pulses, )(tt . Strain rate response was calculated by 

Eq.4.1 and plotted verses time in Figure 4.11a. Axial strain response was calculated by Eq.4.2 

and plotted versus time in Figure 4.11b. The average strain rate was calculated by the slope of 

the strain versus time response and was found to be about 3120/s. The axial stress response was 

calculated by Eq.4.3 and plotted versus time in Figure 4.11c.  

The final axial stress-strain response was derived for the strain verses time response 

(Figure 4.11.b) and the stress versus time response (Figure 4.11c). The derived axial stress-strain 

response at 3120/s strain rate is plotted in Figure 4.11d. Using the same procedure and 

calculations the stress-strain responses of Eco-Core specimens at different strain rates were 

determined as explained in details in the next section.  

 

Figure 4.10. Dynamic balance response of SHPB. 
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                                                (a)                                                            (b) 

 

                                                (c)                                                            (d) 

Figure 4.11. (a) strain rate versus time response, (b) axial strain versus time response, (c) Axial 

stress versus time response, (d) Axial stress-strain response at 3120/s strain rate. 

4.3.2 Results for different strain rates. Test was conducted at different strain rates 

around 500/s, 1574/s, 2220/s and 3120/s. At each strain rate three specimens were tested. The 

strain rate of the three specimens of each case ranged as: 431/s to 568/s, 1474/s to 1577/s, 2208/s 

to 2303 and 3111/s to 3158/s, respectively. The middle curves (500/s, 1574/s, 2220/s and 3120/s) 

were taken to assess the strain rate effect.  The axial stress-strain responses were determined, as 

before, and the confinement stresses were calculated from Hoop strains as in Eq. 4.7. Figures 

4.12, 4.13, 4.14 and 4.15 show the responses of the three specimens at 500/s, 1574/s, 2220/s and 
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3120/s strain rates, respectively. The last four figures indicate good repeatability of the results at 

the mentioned strain rates.  

 

Figure 4.12. Axial and confinement stresses versus axial strain at 500/s strain rate. 

 

Figure 4.13. Axial and confinement stresses versus axial strain at 1574/s strain rate. 
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Figure 4.14. Axial and confinement stresses versus axial strain at 2220/s strain rate. 

 

 

Figure 4.15. Axial and confinement stresses versus axial strain at 3120/s strain rate. 
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The axial stress-strain response of Eco-Core at 500/s, 1574/s, 2220/s and 3120/s were 

compared with each other’s and with the static test results in Figure 4.16.  The test results 

showed that Eco-Core under confinement becomes a strain rate sensitive. The compressive 

strength increased with increasing strain rate and was almost doubled when the strain rate 

changed from static to 3120/s (see Table 4.1).  

 

Figure 4.16. Axial stress-strain response at different strain rates. 

Table 4.1 

Strain rates and compression strengths of Eco-Core specimens 

SPC # Strain rate ( ̇), 1/s Comp. strength (  ), MPa 

1 498 24.00 

2 431 24.06 

3 568 24.80 

4 1537 33.60 

5 1474 33.03 

6 1574 30.44 

7 2220 35.66 

8 2303 32.45 

9 2408 31.01 

10 3158 34.05 

11 3111 35.22 

12 3121 37.83 
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4.4 Derivation of Dynamic Constitutive Equation 

Confinement stresses versus axial strain for different strain rates were plotted in Figure 

4.17. The figure shows that confinement stress, q(t) is insensitive to strain rate. Confinement 

stress followed the same response as that of axial stress. At higher strain rates, which contain 

higher impact energy, the limit of confinement stress increased. The confinement stress limit

)( cq  was 0.15 at  =500/s and it increased to 0.45 at  =3120/s.   

 

Figure 4.17. Confinement stress versus axial strain at different strain rates. 

To include the lateral confinement stress in the axial stress-strain responses, the 

deviatoric stress was introduced (which refers to the deference between the axial stress and the 

lateral confinement stress). The frictional effect between the specimen and the sleeve was 

determined to be important as discussed in Chapter 3. Therefore, an equivalent axial friction 

stress, )(t was calculated by Eq. 4.7. The equivalent friction stress, )(t  versus axial strain 

response is a function of, q(t). Thus, it is also independent of strain rate. To account for both; 

friction effect and lateral stress, the net-deviatoric stress was introduced and determined as: 
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)8.4()()()()( ttqtt ad     

Where )(ta is the axial stress, )(tq is the confinement stress and )(t is the equivalent friction 

stress in the axial direction.  

All the stresses were normalized to compression strength to express the Equation in a 

non-dimensional form. The net-deviatoric stress versus axial strain for different dynamic strain 

rates (500/s, 1574/s, 2220/s and 3120/s) was determined by Eq.4.8. The static (8 x 10
-4

/s) net-

divatoric stress was determined in Chapter 3. The static and dynamic net-deviatroic stresses at 

different strain rates were plotted versus axial strain in Figure 4.18. The figure shows that the 

net-diveatoric stress is sensitive to strain rate where the compression strength of the material 

increased with increasing strain rate. The figure also shows that the net-deviatoric stress-axial 

strain response consists of two parts: Linear (semi-linear) response continues until the failure of 

the material )( ca   and non-linear response starts after the failure of the material )( c  and 

consists of crushing and densification of the material.  

A multi-variable Least Squares Curve Fitting was performed on the linear and nonlinear 

parts of the response. The two parts of the fitted equation are given by:  
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Where c  is the compression strength (20MPa) and c  is the compression yield strain (0.02). 

Figure 4.19 shows that the response of the fitted Eq. 4.9 agreed reasonably with experimental 

results of net-deviatoric stress. Alternatively, Eq. 4.9 was expressed in terms of axial stress by 

adding confinement and friction stresses to both sides of the equation, that resulted in: 
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Figure 4.18. Net-deviatoric stress-strain response at different strain rates. 

 

Figure 4.19. Comparison of Eq. 4.9 and experimental net-deviatoric stress versus axial strain at 

different strain rates. 
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The response of Eq. 4.10 was validated by the experimental data for strain rates ranged 

from static )/108( 4 s to 3120/s as shown in Figure 4.20. The experimental response is 

represented by dotted lines and Eq. 4.10 response is presented by solid lines. The two responses 

agreed well with each other. 

 

Figure 4.20. Validation of constitutive equation (Eq. 4.10) by experiments. 

4.5 Energy Absorption  

Energy absorption of Eco-Core was compared with other commercial core materials such 

as PVC foam, Balsa wood and Rohacell R-71. Dynamic tests were conducted at a strain rate of 

about 3500/s. Tested core material and their corresponding densities are: Eco-Core (500kg/m
3
), 

PVC foam (100kg/m
3
), Balsa Wood (202kg/m

3
)
 
and Rohacell-A (75kg/m

3
). All the materials 

were tested under the same exact conditions. The specimen size was 11 mm diameter and 3.2 

mm length. Aluminum sleeve of 11 mm inner diameter and 0.9 mm thickness was used for 

confinement. Test strain rate was almost the same in all cases that ranged from 3120/s to 3490/s.  
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Energy absorption per unit volume of a material is determined by the area under the 

compression stress-strain curve within the densification limit. The densification limit strain was 

estimated for each material by the intersection of the two tangent lines, one from the 

densification curve and another from the crushing curve (see Figure 4.21). The area under the 

shaded region gave the energy absorption per unit volume.  This can also be calculated by 

integration of Eq.4.10 for axial strain limits of 0 to d .   

 

Figure 4.21. Stress-strain curve of Eco-Core for energy absorption at 3120/s. 

Eco-core absorbs energy through four phases: breaking of bonds between micro-balloons, 

translation of micro-balloons, crushing of hollow micro-balloons and final densification. Energy 

absorption per unit mass or specific energy absorption of the material can be determined by 

dividing the energy absorption per unit volume by the density of the material. Energy 

absorptions per unit volume and per unit mass were determined for Eco-Core and other 

commercial core materials. Results of all are compared with each other’s as shown in Figure 

4.22. The energy absorption per unit volume of Eco-Core is more than twice that of the nearest 
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material (Balsa wood). Both PVC foam and Rohacell-A foam have lowest volumetric energy 

absorption capability. The energy absorption per unit mass of Eco-Core is still better than all 

other core materials but the difference is less dramatic.      

 

(a)  

 

(b)  

Figure 4.22. (a) Energy absorption per unit volume of different core materials, (b) Energy 

absorption per unit mass of different core materials. 
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4.6 Summary  

High strain rate confined compression testing of Eco-Core material was conducted for a 

strain rate ranged from 500/s to 3120/s using a confined compression test fixture in a SHPB 

apparatus. A special test fixture was developed to apply and measure both radial and axial 

stresses simultaneously. The designed specimen had 11 mm diameter and 3.2 mm length. The 

test instrumentation and data analysis were validated by comparing the measured stress-strain 

response of polycarbonate, nylon 6/6 and Eco-Core materials with data in literature. Test results 

showed that, like unconfined test results, the stress-strain response consists of three domains: 

linear (semi-linear), nonlinear or plateau (crushing) and densification. Unlike unconfined test, the 

stress-strain response is dependent on strain rate and confined compression strength of Eco-Core 

increased with the increasing strain rate.  

An empirical stress-strain equation for Eco-Core was developed. The equation has two 

parts: One for initial linear part ( ca   , strain at compression strength) and nonlinear part for 

ca   . The developed stress-strain equation was verified by experiments. The energy 

absorption per unit volume of Eco-Core was found far superior than Balsa wood (more than 2 

times) and other commercial polymer foams. The energy absorption per unit mass of Eco-Core is 

marginally better than other commercial materials.     
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5 CHAPTER 5 

Simulation by LS-DYNA 

This Chapter presents the finite element simulation of the static and the dynamic tests by 

using LS-DYNA code. A user defined material model was used in the simulation. The problem 

was modeled as an axisymmetric problem. The simulation was performed for both static and 

dynamic conditions at different strain rates and simulation results were compared with 

experiments. 

5.1 Background 

LS-DYNA is a general purpose finite element program developed by the Livermore 

Software Technology Corporation (LSTC) for simulating complex problems. It uses explicit time 

integration to solve nonlinear, transient dynamic finite element analysis. Nonlinearity refers to 

any of the following: Changing any of the boundary conditions over time like contacts among 

parts, large deformations like crashing and nonlinear material behavior like thermoplastic 

materials. Transition refers to analyzing high speed, short duration events where inertial forces 

are important. LS-DYNA is one of the most flexible finite element analysis software used by the 

industries of automobile, aerospace, construction, military, manufacturing, and bioengineering 

[45].  

The most important factor in any successful analytical simulation including LS-DYNA is 

the right selection of material model involved in the simulation. LS-DYNA is provided with 

many material models classified under different categories as shown in Figure 5.1. In the 

literature, many studies were found about simulation of dynamic tests.  Several material models 

were used in those reviewed cases of study like: modified Drucker Prager model and concrete 

model to simulate concrete [46, 47], Johnson Holmquist concrete model to simulate ultra-high 
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performance cement based composites (UHPCC) used in defense works [48], linear elastic 

isotropic material model to simulate PMMA [49] and to simulate adhesive joints [50], Johnson–

Cook and power law plasticity models to simulate steel [51], isotropic hardening plasticity model 

to simulate SFRC [52], Johnson Cook model to simulate copper [53] and aluminum 6061 [54], 

crushable foam and Deshpande and Fleck foam models to simulate light weight metal foam [55].  

 

Figure 5.1. LS-DYNA material models. 
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From the dynamic study in chapter 4, it was found that the lateral confinement and its 

measurement are limited by the geometry and dimensions of both specimen and sleeve. 

Therefore, simulation of these tests especially dynamic one saves considerable amount of time, 

cost and efforts. Besides, it opens the door for flexible analysis of the effects of different 

parameters like specimen dimensions (long specimen) and impact velocity (very high strain 

rates), which are experimentally infeasible. This chapter focuses on this subject for Eco-Core. 

The problem approached by using the previously developed constitutive equation of Eco-Core in 

Chapters 4 as a material model in LS-DYNA simulation code. 

5.2 Challenges  

The simulation of high strain rate testing of foams in general under lateral confinement is 

scarce in the literature. In addition, no material model is available in particular for syntactic foam 

in the analysis codes like LS-DYNA. Although, some models are defined by experimental stress-

strain data as a multi-linear response, still they are all 1- dimensional and mostly strain rate 

insensitive. That makes them invalid for dynamic multi-axial problems. Therefore, simulating 

Eco-Core under multi-axial stress state requires special modifications for the available material 

models.    

5.3 Material Model  

The process of development of material model for Eco-Core consists of two major parts; 

selection of suitable model available in LS-DYNA and modifying the model to fit Eco-Core.   

5.3.1 Selection of LS-DYNA material model. The development of material model for 

Eco-Core in LS-DYNA code starts with the determination of the best available model can be 

used to represent the material.  Most of the material models provided with LS-DYNA as listed in 

Figure5.1 (all except foam models) are incompressible and rely on the plasticity theory in their 
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response. That means volume of the material is constant and only the shape changes when it 

deforms plastically. Dimensions change according to Poisson’s ratio which increases up to about 

0.5 while the volumetric change is constant at zero. That leads to a very high axial stress 

response when the material is under lateral constraint. As that is not the case in syntactic foams 

like Eco-Core, those models are eliminated from the selection.   

Foam models in general are compressible and relay on volumetric change in case of 

reversible deformation like padded foams (urethane) or irreversible deformation or crashing like 

PVC foam. Therefore, the selection of material model to simulate Eco-Core as a crushable 

material with volumetric change is limited within the Foam Material Models. Only Low Density 

Foam Model and Crushable Foam Model allow for defining of material response by 

experimental stress-strain data as a multi-linear response. Then the rest of the foam material 

models are eliminated from the selection.  

Crushable Foam Model exhibited discontinuity in response when used for simulating 

Eco-Core. It is believed because the model assumes sudden drop in the stress followed by sudden 

raise to the previous stress level when crushing. This model is eliminated from selection because 

real response of Eco-Core does no exhibit discontinuity. Then Low Density Foam Model was the 

most suitable among all; therefore it was selected to simulate Eco-Core. 

5.3.2 Modification of material model by constitutive equation. After the selection of 

Low Density Foam Model, it needed to be modified to simulate Eco-Core material. The 

properties of the original model can be listed as: 

o It is 1-dimenstional and requires the experimental stress-strain curve information to be 

defined as multiple points (stress, strain), that makes it a multi-linear curve. 

o It assumes Poisson’s ratio = 0, that means no lateral expansion while deforming axially. 
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o It is strain rate insensitive, that means strain rate has no effects on the response. 

o It also requires additional material properties like density, modulus, strength and others. 

Eco-Core differs from the model as; it expands laterally while deforms axially and it is a strain 

rate sensitive when it is confined. The approach to overcome these issues and modify the model 

to simulate Eco-Core is explained below: 

o From the static response study in Chapter 3, it was found that the correlation between the 

confined and unconfined response of Eco-Core is: 

)1.5(  qunconfconf  

Where conf  is the confined axial stress response, unconf  is the unconfined axial stress 

response, q is the lateral confinement stress and   is the equivalent friction stress between 

specimen and the sleeve in the axial direction. 

o The constitutive equation in Chapter 4 (Eq. 4.10) is used to identify the experimental curve 

information for the material model.  

o By approximating first part of Eq. 4.10 to a linear response and expressing second part in 

form of Eq. 5.1, Eq. 4.10 can be rewritten in Pascal stress units in the following form: 
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Where )( q  is the lateral stress and friction stress added together in Pascal units. 

o The response of )( q  is a strain rate insensitive. The correlation between )( q  and 

a  is explained in details In Appendix B. For the used aluminum sleeve of d=11 mm and 
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h=0.9 mm, the experimental )( q  as a function of a  for 02.0a  is represented by the 

fourth order polynomial equation denoted by Eq. 5.3 below: 

)3.5(7.29732.26213.7095.212.4)( 432   aq  

o From Equations 5.2 and 5.3, the multi-axial stress response can be expressed as a function of 

axial strain )( a and strain rate )( . 

o The expression for the strain rate )( as a function of impact velocity (V) and specimen length 

(l) was derived in details in Appendix C. The derived equation denoted by the following Eq. 

5.4: 

)4.5(
0032.0

)480299(
l

V   

Where V is the velocity of impact in m/s and l is the specimen length in m. 

o From Equations 5.2, 5.3 and 5.4, the axial stress )( a of Eco-Core under multi-axial stress 

state, can be determined as a function of a , V and l. 

o Initial values for a , a and ( q ) were all set to zero. 

o A loop was created for a variable named I in the LS-DYNA code. I increased from 2 to 51 

with step of 1. 

o Inside the loop a value of a was created for each value of I as: 02.0)1(  Ia . Thereby a  

increased from 0.02 to 1 with step of 0.02. 

o  Also inside the loop a value of )( q was calculated for each a by Eq. 5.3. 

o Again inside the same loop a value for a was calculated for each a by Equations 5.2, 5.3 

and 5.4 considering the corresponding value of strain rate. 
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o Since the initial value of a was set to zero and next value (at a = 0.02) was calculated by 

Eq. 5.2, then a for 02.0a  became a linear response determined by the two values of a

(at a = 0 and 0.02)  . Whereas, for 02.0a , a is determined only by Eq. 5.2.  

o A multi-linear material curve was defined by the calculated 50 stress-strain points of the 

loop. 

o The material curve besides other required data like density, modulus and strength were used 

to define and modify the Low Density Foam model to simulate Eco-Core. 

5.4 Simulation of Static Test 

The developed material model was used in simulating the static confined compression 

test of Eco-Core. The simulation process included the development of finite element model, 

extracting the simulation results from the model and verification of simulation results by 

experiments. 

5.4.1 Finite element model of static test. The static test fixture shown in Figure 5.2a 

was simulated in 2-dimentiosnal mechanical model as a symmetric problem along the x-axis and 

axisymmetric along Y-axis as shown in Figure 5.2b. Element type PLANE162 was used with all 

components of the model. The element is defined by four nodes having six degrees of freedom at 

each node: translations, velocities, and accelerations in the nodal x and y directions. Key option 3 

of the element type was used to indicate the axisymmetric.  

The modified Low Density Foam model was used for Eco-Core. In the static range (up to 

100/s), the strain rate has no significant effect on the response. Therefore, it was ignored and the 

material model was reduced by eliminating all the terms of the strain rate. A Linear Elastic 

Isotropic material model was used with the other components in the model. Area mesh was 

performed. Boundary conditions were imposed on the model represented by constraining the 
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displacement in the Y-direction for all nodes at the bottom of the specimen (Y=0). The 2-

dimentional Automatic Surface to Surface contact was chosen to identify the contacts among all 

components.  

 

                               (a)                                                                               (b) 

Figure 5.2. (a) Static test setup, (b) A 2-d axisymmetric model of static test setup. 

The load was applied in the form of displacement imposed on the plunger in the Y-

direction. Displacement value of -7 mm and duration time of 10 second were chosen. With 

knowing the length of the specimen is 12.7 mm, Approximated maximum resultant strain and 

strain rate were expected to be 0.55 and s/105.5 2 , respectively. Then the duration time was 

reduced from 10 to 0.1 second to reduce the computational time. The results did not change since 

the model has become a strain rate insensitive in the static range. The finite element model is 

shown in Figure 5.3. 
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Figure 5.3. Finite element model of static test. 

5.4.2 Results of static test simulation. Nodes at different location of the specimen were 

selected to acquire the simulation results. They were located at top/inner side, midlevel/center 

and bottom/outer side of the specimen, namely noted by Nodes, 22, 81, and 11, respectively. 

Also, two other nodes were selected on the inner side at the bottom of the specimen (Node 1) and 

other one at the bottom of the plunger (Node 122). Figure 5.4 shows nodes locations.  

 

Figure 5.4. Nodal selection for monitoring stress and strain. 
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The strain response was not possible to be acquired directly by LS-DYNA. It is believed 

that is because the program was enabling to recognize the elastic strain and plastic strain from 

the information provided by the Modified Low Density Foam. Average total mechanical strain 

for the specimen was derived from displacement response of Nodes 1 and 122 at top and bottoms 

of the specimen. Figure 5.5a shows the displacement response of the two nodes versus time. 

From the displacement deference and specimen length, strain versus time response shown in 

Figure 5.5b was calculated.  The axial stress versus time response for Nodes 22, 81 and 11 was 

acquired directly and plotted in Figure 5.5c. It indicates a uniform axial stress all over the 

specimen. From the last two figures, the axial stress-strain response was determined and plotted 

in Figure 5.5d.  

 

(a)                                                                            (b) 

 

                                         (c)                                                                         (d) 

Figure 5.5. (a) Disp. response, (b) Strain response, (c) Stress response (d) Stress-strain response. 
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LS-DYNA Plot results for the stress and displacement of the model at the last sub-step of 

the loading step are shown in Figures 5.6a and b, respectively. The whole static test simulation 

steps in the form of ANSYS Parametric Design Language format (APDL-Code) are listed in the 

code presented in Appendix D. 

 

                                     (a)                                                                         (b) 

Figure 5.6. (a) Displacement response of Node 22, (b) Stress response of Node22.            

5.4.3 Validation of static test simulation results. The stress-strain response obtained 

from LS-DYNA simulation of the static test was compared to the experimental response and the 

developed constitutive equation as well in Figure 5.7. The last figure shows a very reasonable 

agreement among all. It indicates that the developed LS-DYNA model simulated the static test 

very reasonably.  

5.5 Simulation of Dynamic Test  

5.5.1 Finite element model of dynamic test. The dynamic test apparatus, Split 

Hopkinson Pressure Bar (SHPB) including the test fixture-specimen assembly was simulated. 

The schematic of SHPB is shown in Figure 5.8. A 2-dimensional mechanical model with 

axisymmetric along Y-axis (in horizontal level) is shown in Figure 5.9. It is important to mention 

here that LS-DYNA does not recognize the axisymmetric unless along the Y-axis. 
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Figure 5.7. Comparison of LS-DYNA and experimental results for static test. 

 

 

Figure 5.8. Schematic of SHPB apparatus, test fixture and specimen. 
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Figure 5.9. A 2-dimensional axisymmetric model of SHPB with specimen (hatched section). 

The last figure shows the dimensions of all parts of the system. Specimen dimensions 

d=11 mm and l= 3.2 mm were used in the dynamic test and are used in the simulation. Once 

again element type PLANE 162 with axisymmetric option was used with all components of the 

model. The modified Low Density Foam model was used for Eco-Core with considering all the 

strain rate terms this time. A bilinear Isotropic model was used to simulate the annealed copper 

pulse shaper whereas; a Linear Elastic Isotropic model was used to simulate the rest of the 

components in the model. Area mesh was performed.  

Boundary conditions were imposed on the model represented by constraining the 

displacement in the X-direction for all nodes of X-dimension = 0. In addition the nodes of the 

buffer block were constrained in all directions. 2-dimensional Automatic Surface to Surface 

contact was used among all components. This time load was applied to the model in the form of 

initial velocity acting on the striker bar in the Y-direction. The value of the initial velocity was 

changed every time and the simulation was run to indicate different strain rates. The finite 

element model with magnification of important parts is shown in Figure 5.10. 
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Figure 5.10. Finite element model of SHPB set up with zoomed sections. 

5.5.2 Results of dynamic test simulation. Simulation results for different strain rates 

were obtain by assigning different initial velocities to the striker bar. Initial velocity for the 

desired outcome strain rate can be estimated by Eq. 5.4. Note that for the used specimen 

dimensions the obtained axial stress response was the same in all different locations in the 

specimen. Basically, with such a short specimen that is expected because of the dynamic 

equilibrium. Therefore, results were expressed to just one node located at the center of the 

spacemen. Axial stress versus time was read directly from LS-DYNA result viewer whereas; 

axial strain was derived from the displacement response as before. Strain rate at each sub-step 

was determined by dividing the strain difference during a sub-step by the duration of the sub-

step. Axial stress-strain response was derived from the stress and strain versus time responses. 

Results were obtained at strain rates similar to the experimental ones; 500/s, 1600/s, 

2220/s and 3120/s. Axial strain, axial stress and strain rate verses time responses and 

corresponding axial stress-strain response at 3120/s strain rate are shown in Figures 5.11a, b, c, 

and d, respectively. The results of axial stress-strain responses of Eco-Core at different strain 

rates were derived in the same manner and are plotted all together in Figure 5.12.  
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                                        (a)                                                                            (b) 

 

                                       (c)                                                                          (d) 

Figure 5.11. (a) Strain response at 3120/s, (b) Stress response at 3120/s, (c) Strain rate response 

at 3120/s, (d) Stress-strain response at 3120/s strain rate.      

 

Figure 5.12. LS-DYNA results for different strain rates. 
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LS-DYNA plots for the stress propagation through Eco-Core specimen at 3120/s strain 

rate is shown in Figure 5.13. The figure shows the stress response at four different time-steps. 

The whole dynamic test simulation steps are listed in the APDL-Code presented in details in 

Appendix E. 

 

Figure 5.13. LS-DYNA predicted deformed shapes of specimen at four different time steps. 

5.5.3 Validation of dynamic test simulation results. The stress-strain responses of LS-

DYNA simulation results at different strain rates 512/s, 1602/s, 2220/s and 3111/s were 

compared to the experimental and constitutive equation responses. The comparison showed a 

very reasonable agreement among all responses. Figures 5.14, 5.15, 5.16 and 5.17 show the 

comparison of result at 512/s, 1602/s, 2220/s and 3111/s strain rate, respectively. The 

comparison indicated that LS-DYNA simulated the dynamic test of Eco-Core successfully. 
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Figure 5.14. Comparison of LS-DYNA with experiment for 500/s strain rate. 

 

 

Figure 5.15. Comparison of LS-DYNA with experiment for 1574/s strain rate. 
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Figure 5.16. Comparison of LS-DYNA with experiment for 2220/s strain rate. 

 

 

Figure 5.17. Comparison of LS-DYNA with experiment for 3120/s strain rate. 
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5.6 Applications of the LS-DYNA Simulation  

After a finite element model has been developed by LS-DYNA code and was validated 

by the experimental results, it was employed in very useful applications. One of the major 

assumptions in the concept of SHPB testing is the dynamic equilibrium. The reliability of the test 

is pending on equilibrium of stresses all along the specimen. That is to be achieved; it imposes 

limitations in selection of specimen dimensions and geometry. Also it requires multiple trails and 

testes to decide if the selected dimensions are complying with the assumption. As it was 

mentioned before, high strain rate tests require considerable amount of time, cost and efforts. 

Therefore running a simulation program to check the dynamic equilibrium of specimens of 

different dimensions is a very practical approach.  

In this case of study, an assumed Eco-Core specimen of 13.2 mm length and 11 mm 

diameter was used to run the LS-DYNA dynamic test simulation. Strain rate was managed to be 

4000/s. Nodes at different locations in the specimen: N1, N2, N3, N4 and N5 were selected to 

obtain axial stress versus time response as shown in Figure 5.18. They were 3.25 mm apart from 

each other’s. Last figure shows that the axial stresses all along the specimen occurred at the same 

time. That indicates the specimen was under dynamic equilibrium, thereby, specimen dimensions 

are acceptable to perform SHPB dynamic test.  

Also, during the high strain rate tests, stress propagation in the specimen is impossible to 

measure. Besides, the short specimen requirement to achieve dynamic equilibrium makes it even 

harder to acquire any stress variation history of specimen during the test. Once again, an 

assumed Eco-Core specimen with exaggeration in specimen length of 100 mm and diameter of 

11 mm was used to run LS-DYNA dynamic test simulation. Strain rate was managed to be 140/s. 

Five nodes were selected in different locations of specimen, Nodes: N1, N2, N3, N4 and N5. 
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They were 25 mm apart from each other’s. Figure 5.19 shows schematic of the specimen and the 

axial stress versus time response of the five nodes. Last figure shows 15 μs time interval for the 

stress wave to propagate from one node to another. That indicates the stress wave propagates in 

the Eco-Core specimen in a rate of 1666 m/s. Thanks to LS-DYNA simulation, these conclusions 

would not have been possible without it.   

 

Figure 5.18. Axial stress response at different locations of 13.2 mm long specimen at 4000/s. 

 

Figure 5.19. Axial stress propagation in a 100 mm long specimen at 140/s strain rate. 
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5.7 Summary 

LS-DYNA simulation of static and dynamic confined compression tests of Eco-Core was 

conducted. The available “Low Density Foam” material model in LS-DYNA code was used to 

simulate the material properties of Eco-Core. A separate code was written to mimic Eco-Core 

material by the mentioned material model. Both static and dynamic tests at different strain rates 

were simulated. The LS-DYNA predicted stress-strain response was compared with experiment 

and the constitutive equation.  All three results agreed very well with each other’s. 
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6 CHAPTER 6 

Concluding Remarks and Future Work 

6.1 Concluding Remarks 

Eco-Core is a unique fire resistant and non-toxic in fire foam that was conceived and 

developed at North Carolina A&T State University in 2003. The material was well characterized 

for composite sandwich structural applications. Performance of Eco-Core in multi-axial stress 

state, blast and shock conditions was not well understood. The present research fulfills this gap. 

The overall objective of this research was to develop a dynamic constitutive equation of Eco-

Core that is valid for both static (low strain rate) and dynamic (high strain rate) conditions. Then 

validate the model by experiment. The dissertation was divided into four sections: material 

fabrication and specimen preparation; static and dynamic tests; development of constitutive 

model and validation by experiment; and finally implementation and validation by LS-DYNA. A 

summary and conclusions derived in each of those sections are given below. 

Eco-Core panels were molded in two thicknesses, 25.4 mm and 12.7 mm, which are 

suitable for static and dynamic tests respectively. Static test specimen had 25.4 mm length and 

28.5 mm diameter whereas the dynamic test specimen had 3.2 mm length and 11 mm diameter. 

A total 25 static test and 12 dynamic test specimens were prepared. The density of the static test 

specimens ranged from 0.50 to 0.52 g/cm
3
 with an average of 0.507 g/cm

3
. The density of the 

dynamic test specimens ranged from 0.50 to 0.52 g/cm
3
 with average of 0.51 g/cm

3
.  

Static confined compression test of Eco-Core was conducted using five different sleeve 

materials (acrylic, aluminum, copper, steel and rubber) to simulate different confinement stress 

(pressure). The rubber sleeve represents the zero confinement.  The confinement stress was 

calculated from the measured Hoop strain in the sleeve. The axial stress, radial confinement 
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stress and the friction between the specimen and the sleeve were reduced to a net-deviatoric 

stress (net-deviatoric stress = axial stress – friction equivalent stress – confinement stress). The 

net-deviatoric stress versus axial strain was found to be unique and independent of confinement 

stress. From these results, a static axial stress-strain constitutive equation was developed for Eco-

Core under a multi-axial stress state. The equation was validated by experiment.   

High strain rate confined compression testing of Eco-Core material was conducted for a 

strain rate ranged from 500/s to 3120/s using an aluminum sleeve confined compression test 

fixture in a SHPB apparatus. A special test fixture was developed to apply and measure both 

radial and axial stresses simultaneously. The designed specimen had 11 mm diameter and 3.2 

mm length. The test instrumentation and data analysis were validated by comparing the 

measured stress-strain response of polycarbonate, nylon 6/6 and Eco-Core materials with data in 

literature. Test results showed that, like unconfined test results, the stress-strain response consists 

of three domains: linear (semi-linear), nonlinear or plateau (crushing) and densification. Unlike 

unconfined test, the stress-strain response and confined compression strength of Eco-Core are 

dependent on strain rate.  Furthermore, the confined compression strength of Eco-Core increased 

with the increased strain rate.  

An empirical dynamic axial stress-strain constitutive equation for Eco-Core was 

developed and is given by: 
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Where a  is axial stress, a is axial strain, c  is compression strength (20MPa), c  is 

compression yield strain (0.02),  is strain rate, μ is coefficient of friction, l is specimen length 

and d is specimen diameter. This equation is valid for both static and dynamic conditions. The 

equation has two parts: One for initial semi-linear part ( ca   , strain at compression strength) 

and non-linear part for ca   . The developed stress-strain equation was verified by experiment.  

The dynamic energy absorption per unit volume of Eco-Core was found to be far superior 

to Balsa wood (more than 2 times) and other commercial polymer foams like PVC foam and 

Rohacell foam. The energy absorption per unit mass of Eco-Core is marginally better than other 

commercial materials.   

LS-DYNA finite-element simulation of static and dynamic confined compression tests of 

Eco-Core was performed. The available “Low Density Foam” material model in LS-DYNA code 

was used to simulate the material properties of Eco-Core. A separate code was written to mimic 

Eco-Core properties by the above-mentioned material model. Both static and dynamic tests at 

different strain rates were simulated. The LS-DYNA predicted stress-strain response was 

compared with experiment and the developed constitutive equation.  All three results agreed very 

well with each other’s. In conclusion, the present research developed a dynamic multi-axial 

constitutive equation for Eco-Core that can be used in a commercial code like LS-DYNA to 

analyze real life problems. 

6.2 Future Work 

Working on the static and the dynamic characterization of Eco-Core draw the attention to 

a few areas of possible development in the test methodology. These areas are: 

o Conduct static test of Eco-Core or other syntactic foams under hydrostatic confinement. This 

method allows for applying constant level of confinement pressure on the specimen all 
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through the test and study the response of the material at that particular confinement 

pressure. Unlike, the sleeve confinement method where the confinement stress develops as 

the material is compressed. By using the hydrostatic confinement at different pressure levels, 

an alternate static constitutive equation can be developed. 

o Direct measurement of the dynamic deformation of the specimen is proposed for the SHPB 

testing. Load cells (piezoelectric force sensors) can be installed on the incident and the 

transmitter bars for direct measurement of the forces acting on both sides of the specimen. 

Also, displacement laser sensors can be used with fixed marks on the bars to measure the 

displacement on both sides of the specimen for the entire period of impact, thereby the strain 

and the strain rate can be directly measured. This method will improve and develop the high 

strain testing since it overcomes the limitation of the narrow specimen configurations 

allowed by traditional SHPB testing. 

o Material models in LS-DYNA need to be expanded to include materials like syntactic foams.    

 

 

 

 

 

 

 

 

 



104 

 

 

References 

1. Shivakumar, K. and H. Chen. Eco-core and its performance in sandwich structural 

applications. in 17th ICCM Techical Confernce. 2009. Edinburgh, UK. 

 

2. Bardella, L. and F. Genna, On the elastic behavior of syntactic foams. International 

Journal of Solids and Structures, 2001. 38(40): p. 7235-7260. 

 

3. Wright, M.T., et al., Composite material in aircraft mishaps involving fire 2003, Naval 

Air Warfare Center Weapons USA, California. 

 

4. NFPA. An over view of the U.S. fire problem. 2012  [cited 2012 January, 02]; Available 

from: http://www.nfpa.org/assets/files/pdf/fireoverview.pdf.  

 

5. Sorathia, U., Improving the fire performance characterizatic of composite materials for 

naval applications. 2003, Naval Surface Warfare Center: West Bethada, MD. 

 

6. Shivakumar, K., et al., Processing and properties of a lightweight fire resistant core 

material for sandwich structures. Journal of advanced materials, 2006. 38(1): p. 32-38. 

 

7. Shivakumar, K., M. Sharpe, and U. Sorathia. Modification of eco-core material for 

improved fire resistance and toughness. in SAMPE05 International Conference. 2005. 

Long Beach, California. 

 

8. Sadler, R.L., et al., Water immersion effect on swelling and compression properties of 

cco-core, PVC foam and balsa wood. Composite Structures, 2009. 90(3): p. 330-336. 

 

9. Hossain, M.M. and K. Shivakumar, Compression fatigue performance of a fire resistant 

syntactic foam. Composite Structures, 2011. 94(1): p. 290-298. 

 

10. Hossain, M.M. and K. Shivakumar, Flexural fatigue failures and lives of Eco-Core 

sandwich beams. Materials & Design, 2014. 55: p. 830-836. 

 

11. Hossain, M.M., Fatigue characterization of fire resistant syntactic foam core material. 

2013, NORTH CAROLINA AGRICULTURAL AND TECHNICAL STATE 

UNIVERSITY. 

 

12. Shivakumar, K. and H. Chen, Structural performance of eco-core sandwich panels, in 

Major Accomplishments in Composite Materials and Sandwich Structures. 2010, 

Springer. p. 381-406. 

 

13. Panduranga, R., L. Russell Jr, and K.N. Shivakumar. Fracture toughness enhancement of 

fly ash based cco-core by glass fiber reinforcement. in 22nd ASC Technical Conference. 

2007. Seattle, Washington. 

http://www.nfpa.org/assets/files/pdf/fireoverview.pdf


105 

 

 

14. Panduranga, R., K. Shivakumar, and L. Russell Jr. Energy absorption of eco-core a 

syntactic foam. in 48th AIAA/ASME/ASCE/AHS/ASC Structural, Structural Dynamic and 

Material Confernce. 2007. Waikiki, Hawaii. 

 

15. Panduranga, R. and K. Shivakumar. The high strain rate compression response of a fire 

resistant syntactic foam. in 27th ASC Technical Conference. 2012. Arlington, Texas. 

 

16. Panduranga, R., High strain rate response of eco-core and its modification, in 

Mechanical Engineering. 2010, NC A&T State University: Greensborro, North Carolina. 

 

17. Ramberg, W. and W.R. Osgood, Description of stress-strain curves by three parameters. 

1943: National advisory committee for aeronautics. 

 

18. Cowper, G. and P.S. Symonds, Strain-hardening and strain-rate effects in the impact 

loading of cantilever beams. 1957, DTIC Document. 

 

19. Johnson, G.R. and W.H. Cook. A constitutive model and data for metals subjected to 

large strains, high strain rates and high temperatures. in Proceedings of the 7th 

International Symposium on Ballistics. 1983. The Netherlands. 

 

20. Zerilli, F.J. and R.W. Armstrong, Dislocation‐mechanics‐based constitutive relations for 

material dynamics calculations. Journal of Applied Physics, 1987. 61(5): p. 1816-1825. 

 

21. Gibson, L. and M.F. Ashby, Cellular solids structure and properties. 2nd ed. 1997, 

Cambridge, UK. 

 

22. Song, B., et al., Confinement effects on the dynamic compressive properties of an epoxy 

syntactic foam. Composite Structures, 2005. 67(3): p. 279-287. 

 

23. Subhash, G. and Q. Liu, Quasistatic and dynamic crushability of polymeric foams in 

rigid confinement. International Journal of Impact Engineering, 2009. 36(10-11): p. 1303-

1311. 

 

24. Rittel, D., E. Hanina, and G. Ravichandran, A Note on the Direct Determination of the 

Confining Pressure of Cylindrical Specimens. Experimental Mechanics, 2007. 48(3): p. 

375-377. 

 

25. Rittel, D. and A. Brill, Dynamic flow and failure of confined polymethylmethacrylate. 

Journal of the Mechanics and Physics of Solids, 2008. 56(4): p. 1401-1416. 

 

26. Forquin, P., et al., Experimental study of the confined behaviour of PMMA under quasi-

static and dynamic loadings. International Journal of Impact Engineering, 2012. 40-41: p. 

46-57. 

 



106 

 

 

27. Huang, C. and G. Subhash, Influence of lateral confinement on dynamic damage 

evolution during uniaxial compressive response of brittle solids. Journal of the 

Mechanics and Physics of Solids, 2003. 51(6): p. 1089-1105. 

 

28. Bentayeb, F., K. Ait Tahar, and A. Chateauneuf, New technique for reinforcement of 

concrete columns confined by embedded composite grid. Construction and Building 

Materials, 2008. 22(8): p. 1624-1633. 

 

29. Chun, B.S., et al., Development of a hyperbolic constitutive model for expanded 

polystyrene (EPS) geofoam under triaxial compression tests. Geotextiles and 

Geomembranes, 2004. 22(4): p. 223-237. 

 

30. Fits and clearances pocket guide, M.a.C. NSK, Editor. 2006: England. 

 

31. Chen, W. and G. Ravichandran, Dynamic compressive behaviour of ceramics under 

lateral confinement. Le Journal de Physique IV, 1994. 4(C8): p. C8-177-C8-182. 

 

32. Hanina, E., D. Rittel, and Z. Rosenberg, Pressure sensitivity of adiabatic shear banding 

in metals. Applied Physics Letters, 2007. 90(2): p. 021915. 

 

33. Hoek, E. and J.A. Franklin, A simple triaxial cell for field or laboratory testing of rock. 

1967: Imperial College of Science and Technology, University of London. 

 

34. Hoek Triaxial Cell Model HTC, R. Limited, Editor. 2012: USA. 

 

35. Chen, W., Dynamic failure behavior of ceramics under multiaxial compression. 1995, 

California Institute of Technology. 

 

36. DIAB, A., Sandwich Handbook. 2003, Sandwich Concept. 

 

37. Muthyala, V.D., Composite sandwich structure with grid stiffened core. 2007, Faculty of 

the Louisiana State University and Agricultural and Mechanical College In partial 

fulfillment of the requirements for the degree of Master of Science in Mechanical 

Engineering in The Department of Mechanical Engineering By Venkata Dinesh Muthyala 

BE, Osmania University. 

 

38. Anon., Testing at High Strain Rate, A.P. Inc., Editor.: Miami/USA. 

 

39. Timoshenko, S. and S. Woinowsky-Krieger, Theory of Plates and Shells. 2nd ed. 1959, 

New York, Toronto, London: McGraw-Hill Book Company. 

 

40. Kully, R. and K. shivakumar. Constitutive Equation of Syntactic Foam under Lateral 

Constraint. in 29th ASC Techical Confernce. 2014. San Diego, California, USA. 

 

41. Chen, W., B. Zhang, and M. Forrestal, A split Hopkinson bar technique for low-

impedance materials. Experimental Mechanics, 1999. 39(2): p. 81-85. 



107 

 

 

42. Meyers, M., Dynamic behavior of materials. 1994, New York, NY: John Wiley & Sons 

Inc. 

 

43. Salisbury, C., Spectral analysis of wave propagation through a polymeric Hopkinson bar, 

in Mechanical Engineering. 2001, University of Waterloo: Waterloo, Ontario, Canada. 

 

44. Chou, S., K. Robertson, and J. Rainey, The effect of strain rate and heat developed 

during deformation on the stress-strain curve of plastics. Experimental Mechanics, 1973. 

13(10): p. 422-432. 

 

45. LSTC. LS-DYNA. 2011  [cited 2014 May 05]; Available from: 

http://www.lstc.com/products/ls-dyna. 

 

46. Sirijaroonchai, K., S. El-Tawil, and A.E. Naaman, Numerical simulation of the Split 

Hopkinson Pressure Bar test technique for concrete under compression. International 

Journal of Impact Engineering, 2010. 37(2): p. 141-149. 

 

47. Lu, Y., Z. Song, and Z. Tu. Numerical simulation study of the strain rate effect on 

concrete in compression considering material heterogeneity. in DYMAT-International 

Conference on the Mechanical and Physical Behaviour of Materials under Dynamic 

Loading. 2009. EDP Sciences. 

 

48. Rong, Z., W. Sun, and Y. Zhang, Dynamic compression behavior of ultra-high 

performance cement based composites. International Journal of Impact Engineering, 

2010. 37(5): p. 515-520. 

 

49. Dong, S., Y. Wang, and Y. Xia, A finite element analysis for using Brazilian disk in split 

Hopkinson pressure bar to investigate dynamic fracture behavior of brittle polymer 

materials. Polymer testing, 2006. 25(7): p. 943-952. 

 

50. Challita, G. and R. Othman, Finite-element analysis of SHPB tests on double-lap 

adhesive joints. International Journal of Adhesion and Adhesives, 2010. 30(4): p. 236-

244. 

 

51. Majzoobi, G., et al., Determination of materials parameters under dynamic loading. Part 

I: Experiments and simulations. Computational Materials Science, 2010. 49(2): p. 192-

200. 

 

52. Wang, Z., L. Wu, and J. Wang, A study of constitutive relation and dynamic failure for 

SFRC in compression. Construction and Building Materials, 2010. 24(8): p. 1358-1363. 

 

53. Adrian, R., B. Mihai, and C. Tudor. Finite elements method in split Hopkinson pressure 

bar developing process. in Proceedings of the 6th WSEAS international conference on 

System science and simulation in engineering. 2007. World Scientific and Engineering 

Academy and Society (WSEAS). 

 

http://www.lstc.com/products/ls-dyna


108 

 

 

54. Lacy, J., et al. A Method for Selecting Software for Dynamic Event Analysis I: Problem 

Selection. in Transactions 19th International Conference on Structural Mechanics in 

Reactor Technology. 2007. 

 

55. Gupta, S. and S. Moulick, Study the Effect of Different SHPB Test Parameters Using 

Numerical Simulation Technique. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



109 

 

 

Appendix A 

Measurement of Coefficient of Friction Between Eco-Core and Sleeves 

This appendix describes the measurement of coefficient of friction between Eco-Core and 

four different types of sleeve materials (acrylic, aluminum, copper and steel) used in this study. 

Test set up: 

Test setup appears in Figure A1. Sleeve tubes of 20 cm long and 28.5 mm diameter were 

cut and held at an angle as an inclined plane using a stand. A protractor was used to measure the 

angle of inclination (θ). Inner sides of the metal tubes were polished with sand paper grade 600-

grit. Same type of polishing was done in the confined compression test. Cylindrical Eco-Core 

specimen with 12.7 mm diameter and 12.7 mm length was prepared by turning a larger specimen 

on the lathe machine in the same manner of preparing static confined test specimens. The 

specimen was inserted inside the tube and inclination of the tube was varied until the specimen 

was about to slide down. This initiation of sliding angle was noted. The experiment was repeated 

five times for all sleeve tubes. The critical sliding angle (    of sliding was recorded and are 

listed in Table A1.  

Test results: 

The critical sliding angles varied from 9
0
 to 11

0
 for acrylic and aluminum tubes where as 

it varied from 10
0
 to 11

0
 for copper and steel tubes. The average critical angle is found to be 10

0
. 

The corresponding coefficient of friction (μ) is calculated from the equation )( 0

cTan   . The 

result is μ= 0.18 with an error of less than 2%. 
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Table A 1 

Critical friction angle  

  Angle of sliding )( c , deg. 

Test no. Acrylic Aluminum Copper Steel 

1 10 11 11 10 

2 11 10 11 10 

3 9 11 10 10 

4 10 10 10 10 

5 10 9 10 11 

Ave. 10 10 10 10 

STD 0.6 0.7 0.5 0.4 

 

 

 

(a) 

 

(b)  

Figure A 1. (a) Photograph of friction test setup, (b) Schematic of friction test setup. 
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Appendix B 

Calibration of Confinement and Friction Stresses versus Axial Strain 

The effect of confinement stress )(q and the effect of the equivalent friction stress 

between the specimen and the sleeve in the axial direction )(  from the experimental data were 

added together as ( q ). The value of ( q ) is not effected by the strain rate. But, it differs 

for different sleeve types. The )( q versus a response of the used aluminum sleeve of d=11 

mm and h=0.9 mm and specimen of d=11 mm and l=3.2 mm is plotted in Figure B1. A fourth 

order polynomial equation was found to be the best fit to the experimental curve of )( q for

02.0a . The curve fitting equation is denoted by Eq. B1.  

)1(7.29732.26213.7095.212.4)( 432 Bq a    

 

 

Figure B 1. Experimental and curve fitting for )( q versus a response. 
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Appendix C 

Calibration of Strain Rate versus Impact Velocity and Specimen Length 

The modified material model (Low Density Foam Material Model) has become a 

strain rate dependent after it was defined by the strain rate sensitive constitutive equation. 

Therefore the strain rate of the test has to be determined for the material model. The 

strain rate can be related to impact velocity of the striker bar and determined accordingly 

by the following procedure:    

o LS-DYNA simulation code for the SHPB dynamic test was prepared using specimen length 

of 3.2 mm. Initially the material model (developed by constitutive equation) is a function of a 

strain rate. 

o A 500/s strain rate value was substituted in the strain rates of the material model in the code. 

o  The impact velocity imposed on the striker bar was assigned low value and then the code 

was run and outcome strain rate of the specimen was determined and compared to the 500/s 

strain rate. 

o The velocity of impact was increased gradually until the outcome strain rate matched 500/s. 

That impact velocity was found to be 3.3 m/s as shown in Figure C1a.  

o Same steps were repeated to 1574/s, 2220/s and 3120/s strain rates and every time the impact 

velocity was determined as shown in Figures C1b, c and d, respectively. 

o The values of the impact velocities and the outcome strain rates were listed in Table C1. 

o Strain rate was plotted versus impact velocities as shown in Figure C2. The correlation 

equation between strain rate and impact velocity (V) for the specimen length (l) of 3.2 mm 

was found to be: 

)1(480299 CV   
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o Since the strain rate varies inversely proportional with the length of the specimen, general 

strain rate equation as a function of velocity and specimen length was approximated as: 

)2(
0032.0

)480299( C
l

V   

o This equation was checked for very high speed and very long specimen and the results 

agreed very well with the equation (see Table C2). 

 

 

                                           (a)                                                                     (b) 

 

                                                (c)                                                                    (d)  

Figure C 1. (a) Strain response of 3.2 mm long specimen at 3.3 m/s impact velocity, (b) Strain 

response at 7 m/s impact velocity, (c) Strain response at 9 m/s impact velocity, (d) Strain 

response at 12 m/s impact velocity.  
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Table C 1 

Strain rate versus impact velocity (L=3.2 mm) 

Velocity of Impact (V), m/s Output strain rate ( ̇), 1/s 

3.3 512 

7 1602 

9 2220 

12 3111 

 

 

Figure C 2. Calibration of strain rate versus impact velocity for 3.2 mm long specimen. 

 

Table C 2 

Strain rate responses of Eq. C2 and LS-DYNA for different l and V 

Specimen length (l), 

mm 

Impact velocity (V), 

m/s 

Strain rate, Eq. C2  

( ̇),1/s 

Strain rate, LS-DYNA  

( ̇),1/s 

3.2 3.3 512 512 

13.2 50 3600 4000 

100 15 130 140 
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Appendix D 

APDL Code for Static Test Simulation  

FINISH 

/CLEAR            

/TITLE, Static Test for Eco-Core 

/FILNAM, EC-Dy 

!!!!!!!Define units!!!!!!! 

!N,m,pascal 

 /NOPR   ! Entering dynamic solver 

KEYW,PR_SET,1 

KEYW,PR_STRUC,1 

KEYW,LSDYNA,1 

KEYW,PR_DYNA,1 

/PREP7   ! Entering preprocessing 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Define element type!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

ET,1,PLANE162 

KEYOPT,1,3,1  ! For element 1 Key option K3 is option #1 "Axisymmetric" 

KEYOPT,1,2,1  ! For element 1 Key option K2 is option #1 "volume weight" 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Define materials properties!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! LOW DENSITY FOAM MODEL!!!! 

*DIM,SN,,51   ! Strain 

*DIM,SS,,51   ! Stress 

*DIM,CF,,51   ! Confinement stress + friction stress 

*DIM,A,,51   ! Part A of the polynomial equation for (Conf+fric)   

*DIM,B,,51   ! Part B of the polynomial equation for (Conf+fric) 

*DIM,C,,51   ! Part C of the polynomial equation for (Conf+fric) 

*DIM,D,,51   ! Part D of the polynomial equation for (Conf+fric) 

*DIM,E,,51   ! Part E of the polynomial equation for (Conf+fric) 

*SET,SN(1),0 

*SET,SS(1),0 

*SET,CF(1),0 

*Do,I,2,51,1 

*SET,SN(I),(I-1)*0.02 

*SET,A(I),2973.7*(SN(I))**4 

*SET,B(I),2621.2*(SN(I))**3 

*SET,C(I),709.33*(SN(I))**2 

*SET,D(I),21.519*(SN(I)) 

*SET,E(I),4.1922 

*SET,CF(I),A(I)-B(I)+C(I)-D(I)+E(I) 

*SET,SS(I),((5.5*SN(I))**2.5+21*EXP(-5*SN(I))+CF(I))*1000000  !Constitutive. Eq. 

*ENDDO 

EDCURVE,ADD,1,SN,SS ! Define curve 1 of Eco-Core by strain stress 

MP,DENS,1,500  ! Density of Eco-Core 

MP,EX,1,1E9   ! Modulus of Eco-Core 
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MP,NUXY,1,0.16  ! Poisson's ratio of Eco-Core 

TB,FOAM,1,,,2  ! Foam model type 2 "Low Density Foam" 

TBDATA,1,1   ! Use curve 1 

TBDATA,2,6.5E6  ! Tension strength of Eco-Core 

TBDATA,5,0.15  ! Viscous coeff. 

MP,DENS,2,8050  ! Steel density 

MP,EX,2,200E9  ! Steel modulus of elasticity for material 1 in Pascale 

MP,NUXY,2,0.33  ! Poisson's ratio for material 1 

MP,DENS,3,2810  ! Aluminum density 

MP,EX,3,69E9  ! Aluminum modulus of elasticity for material 1 in Pascale 

MP,NUXY,3,0.3  ! Poisson's ratio for material 1 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Define key points!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!EC 

k,1,0,0 

k,2,0.0127,0 

k,3,0.0127,0.0127        

k,4,0,0.0127   

!PLUNGER 

K,5,0,0.0127 

K,6,0.0127,0.0127 

K,7,0.0127,0.0327 

K,8,0,0.0327 

!SLEEVE 

k,9,0.0127,0 

K,10,0.0144,0 

K,11,0.0144,0.0254 

K,12,0.0127,0.0254 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Define lines by joining key points!!!!!!!!!!!!! 

L,1,2 

L,2,3 

L,3,4 

L,4,1 

L,5,6 

L,6,7 

L,7,8 

L,8,5 

L,9,10 

L,10,11 

L,11,12 

L,12,9 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Define areas!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

A,1,2,3,4 

A,5,6,7,8 

A,9,10,11,12 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Define line divisions!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

LESIZE,1,,,10 
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LESIZE,2,,,10 

LESIZE,3,,,10 

LESIZE,4,,,10 

LESIZE,5,,,10 

LESIZE,6,,,10 

LESIZE,7,,,10 

LESIZE,8,,,10 

LESIZE,9,,,3 

LESIZE,10,,,10 

LESIZE,11,,,3 

LESIZE,12,,,10 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Meshing!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

TYPE,1                   ! Define aluminum elements 

MAT,1 

AMAP,1,1,2,3,4  ! Map meshing area 1 determined by nodes 1, 2, 3 and 4 

ASEL,S,,,1 

NSLA,S,1 

CM,EC,NODE 

ALLS 

TYPE,1 

MAT,2 

AMAP,2,5,6,7,8  ! Map meshing area 2 determined by nodes 4, 5, 6 and 7 

ASEL,S,,,2 

NSLA,S,1 

CM,BAR,NODE 

ALLS 

TYPE,1 

MAT,3 

AMAP,3,9,10,11,12  ! Map meshing area 2 determined by nodes 4, 5, 6 and 7 

ASEL,S,,,3 

NSLA,S,1 

CM,SLEEVE,NODE 

ALLS 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Applying symmetry conditions!!!!!!!!!!!!!!!!!!!!!!! 

ALLSEL 

NSEL,S,LOC,X,0,0 

D,ALL,Ux,0    

ALLS 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Applying boundary conditions!!!!!!!!!!!!!!!!!!!!!!!!! 

ALLSEL 

NSEL,S,LOC,Y,0     

D,ALL,UY,0 

ALLS 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Applying contacts!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

EDCGEN,ASS2D,,,0.15,0.15 

ALLS 
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!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Applying displacement!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

*DIM,TIME,ARRAY,2 

*DIM,DISP,ARRAY,2 

TIME(1)=0 

TIME(2)=0.1 

DISP(1)=0 

DISP(2)=-0.007 

EDLOAD,ADD,UY,,BAR,TIME(1),DISP(1) 

/SOLU    ! Entering solution mode 

TIME,0.1 

EDRST,100 

EDHT,100 

NSEL,S,,,22 

CM,OP,NODE 

EDHIST,OP 

ALLS 

SAVE 

/STATUS,solu 

SOLVE 
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Appendix E 

APDL Code for Dynamic Test Simulation 

FINISH 

/CLEAR            

/TITLE, Dynamic Test for Eco-Core 

/FILNAM, EC-Dy 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Define units!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!N,m,pascal 

/NOPR    ! Entering dynamic solver 

KEYW,PR_SET,1 

KEYW,PR_STRUC,1 

KEYW,LSDYNA,1 

KEYW,PR_DYNA,1 

V=12    ! Velocity of impact 

l=0.0032   ! SPC thickness in m 

SR=299*V-480*(0.0032/l) ! Strain rate 

/PREP7   ! Entering preprocessing 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Define element type!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

ET,1,PLANE162 

KEYOPT,1,3,1  ! For element 1 Key option K3 is option #1 "Axisymmetric" 

KEYOPT,1,2,1  ! For element 1 Key option K2 is option #1 "volume weight" 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Define materials properties!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! LOW DENSITY FOAM MODEL!!!! 

*DIM,SN,,51   ! Strain 

*DIM,SS,,51   ! Stress 

*DIM,CF,,51   ! Confinement stress + friction stress 

*DIM,A,,51   ! Part A of the polynomial equation for (Conf+fric)   

*DIM,B,,51   ! Part B of the polynomial equation for (Conf+fric) 

*DIM,C,,51   ! Part C of the polynomial equation for (Conf+fric) 

*DIM,D,,51   ! Part D of the polynomial equation for (Conf+fric) 

*DIM,E,,51   ! Part E of the polynomial equation for (Conf+fric) 

*SET,SN(1),0 

*SET,SS(1),0 

*SET,CF(1),0 

*Do,I,2,51,1 

*SET,SN(I),(I-1)*0.02 

*SET,A(I),2973.7*(SN(I))**4 

*SET,B(I),2621.2*(SN(I))**3 

*SET,C(I),709.33*(SN(I))**2 

*SET,D(I),21.519*(SN(I)) 

*SET,E(I),4.1922 

*SET,CF(I),A(I)-B(I)+C(I)-D(I)+E(I) 

*SET,SS(I),((5.5*SN(I))**(2.5+0.0007*SR)+(21+0.0056*SR)*EXP(-5*SN(I))+CF(I))*1000000 

*ENDDO 
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EDCURVE,ADD,1,SN,SS ! Define curve 1 of Eco-Core by strain stress 

MP,DENS,1,500  ! Density of Eco-Core 

MP,EX,1,1E9   ! Modulus of Eco-Core 

MP,NUXY,1,0.16  ! Poisson's ratio of Eco-Core 

TB,FOAM,1,,,2  ! Foam model type 2 "Low Density Foam" 

TBDATA,1,1   ! Use curve 1 

TBDATA,2,6.5E6  ! Tension strength of Eco-Core 

TBDATA,5,0.15  ! Viscous coeff. 

MP,DENS,2,2810  ! Aluminum 7075 density 

MP,EX,2,71.7e9  ! Aluminum modulus of elasticity for material 1 in Pascale 

MP,PRXY,2,0.33  ! Poisson's ratio for material 1 

MP,DENS,3,8890  ! Annealed copper density 

MP,EX,3,115E9  ! Annealed copper modulus of elasticity for material 1  

MP,NUXY,3,0.33  ! Poisson's ratio for material 1 

TB,BISO,3 

TBDATA,1,210E6  ! Bi-linear model 

TBDATA,2,0 

MP,DENS,4,2810  ! Aluminum 6061 density 

MP,EX,4,69e9   ! Aluminum modulus of elasticity for material 1 in Pascale 

MP,PRXY,4,0.33  ! Poisson's ratio for material 1 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Define key points!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!STRIKE 

K,1,0,0 

K,2,0.0095,0 

K,3,0.0095,0.76 

K,4,0,0.76 

!PULSE SHAPER 

K,5,0,0.7601 

K,6,0.0024,0.7601 

K,7,0.0024,0.7616 

K,8,0,0.7616 

!INC BAR 

K,9,0,0.7616 

K,10,0.0095,0.7616 

K,11,0.0095,4.4217 

K,12,0,4.4217 

!INC PLUG 

K,13,0,4.4217 

K,14,0.0055,4.4217 

K,15,0.0055,4.4283 

K,16,0,4.4283 

!ECO-CORE 

K,17,0,4.4283 

K,18,0.0055,4.4283 

K,19,0.0055,4.4315 

K,20,0,4.4315 
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!TRANS PLUG 

K,21,0,4.4315 

K,22,0.0055,4.4315 

K,23,0.0055,4.438 

K,24,0,4.438 

!SLEEVE 

K,25,0.0055,4.4269 

K,26,0.0064,4.4269 

K,27,0.0064,4.4329 

K,28,0.0055,4.4329 

!TRANS BAR 

K,29,0,4.438 

K,30,0.0095,4.438 

K,31,0.0095,6.268 

K,32,0,6.268 

!BLOCK 

K,33,0,6.269 

K,34,0.05,6.269 

K,35,0.05,6.299 

K,36,0,6.299 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Define lines by joining key points!!!!!!!!!!!!!!!!!!!!! 

L,1,2 

L,2,3 

L,3,4 

L,4,1 

L,5,6 

L,6,7 

L,7,8 

L,8,5 

L,9,10 

L,10,11 

L,11,12 

L,12,9 

L,13,14 

L,14,15 

L,15,16 

L,16,13 

L,17,18 

L,18,19 

L,19,20 

L,20,17 

L,21,22 

L,22,23 

L,23,24 

L,24,21 

L,25,26 
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L,26,27 

L,27,28 

L,28,25 

L,29,30 

L,30,31 

L,31,32 

L,32,29 

L,33,34 

L,34,35 

L,35,36 

L,36,33 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Define areas!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

A,1,2,3,4 

A,5,6,7,8 

A,9,10,11,12 

A,13,14,15,16 

A,17,18,19,20 

A,21,22,23,24 

A,25,26,27,28 

A,29,30,31,32 

A,33,34,35,36 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Define line divisions!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

LESIZE,1,,,7 

LESIZE,2,,,150 

LESIZE,3,,,7 

LESIZE,4,,,150 

LESIZE,5,,,5 

LESIZE,6,,,5 

LESIZE,7,,,5 

LESIZE,8,,,5 

LESIZE,9,,,7 

LESIZE,10,,,600 

LESIZE,11,,,7 

LESIZE,12,,,600 

LESIZE,13,,,4 

LESIZE,14,,,5 

LESIZE,15,,,4 

LESIZE,16,,,5 

LESIZE,17,,,8 

LESIZE,18,,,5 

LESIZE,19,,,8 

LESIZE,20,,,5 

LESIZE,21,,,4 

LESIZE,22,,,5 

LESIZE,23,,,4 

LESIZE,24,,,5 
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LESIZE,25,,,3 

LESIZE,26,,,10 

LESIZE,27,,,3 

LESIZE,28,,,10 

LESIZE,29,,,7 

LESIZE,30,,,300 

LESIZE,31,,,7 

LESIZE,32,,,300 

LESIZE,33,,,10 

LESIZE,34,,,10 

LESIZE,35,,,10 

LESIZE,36,,,10 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Meshing!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

TYPE,1                   

MAT,2 

AMAP,1,1,2,3,4  ! Map meshing area 1"striker"determined by nodes 1, 2, 3 and 4 

ASEL,S,,,1 

NSLA,S,1 

CM,STRIKE,NODE 

ALLS 

TYPE,1 

MAT,3 

AMAP,2,5,6,7,8  ! Map meshing area 2 "PS" determined by nodes 5, 6, 7 and 8 

ASEL,S,,,2 

NSLA,S,1 

CM,PS,NODE 

ALLS 

TYPE,1                  

MAT,2 

AMAP,3,9,10,11,12  ! Map meshing area 3 "Inc. Bar"  

ASEL,S,,,3 

NSLA,S,1 

CM,INC,NODE 

ALLS 

TYPE,1                   

MAT,2 

AMAP,4,13,14,15,16  ! Map meshing area 4"Inc. Plug"  

ASEL,S,,,4 

NSLA,S,1 

CM,INCPLUG,NODE 

ALLS 

TYPE,1                   

MAT,1 

AMAP,5,17,18,19,20  ! Map meshing area 5 "Eco-Core"  

ASEL,S,,,5 

NSLA,S,1 
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CM,EC,NODE 

ALLS 

TYPE,1                 

MAT,2 

AMAP,6,21,22,23,24  ! Map meshing area 6 "Trans. Plug" 

ASEL,S,,,6 

NSLA,S,1 

CM,TRANSPLUG,NODE 

ALLS 

TYPE,1              

MAT,4 

AMAP,7,25,26,27,28  ! Map meshing area 7 "Sleeve" 

ASEL,S,,,7 

NSLA,S,1 

CM,SLEEVE,NODE 

ALLS 

TYPE,1                  

MAT,2 

AMAP,8,29,30,31,32  ! Map meshing area 8 "Trans Bar" 

ASEL,S,,,8 

NSLA,S,1 

CM,TRANS,NODE 

ALLS 

TYPE,1                   

MAT,2 

AMAP,9,33,34,35,36  ! Map meshing area 9 "Block" 

ASEL,S,,,9 

NSLA,S,1 

CM,BLOCK,NODE 

ALLS 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Inc. strain gauge N 1696 - Trans. strain gauge N 6376 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Define coupled nodes!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

CP,1,UY,1853,6053 

CP,2,UY,1859,6055 

CP,3,UY,1858,6056 

CP,4,UY,1857,6057 

CP,5,UY,1856,6054 

CP,6,UY,6147,6211 

CP,7,UY,6150,6213 

CP,8,UY,6149,6214 

CP,9,UY,6148,6215 

CP,10,UY,6142,6216 

!EDPART,CREATE  ! Create parts 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Apply symmetry conditions!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

ALLSEL 

NSEL,S,LOC,X,0,0 
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D,ALL,Ux,0    

ALLS 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Apply boundary conditions!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

ALLSEL 

NSEL,S,LOC,Y,6.298,6.299    

D,ALL,ALL 

ALLS 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Apply contacts!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

EDCGEN,ASS2D,,,0.15,0.15   ! 2D Auto surf to surf contact  

ALLS 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Applying initial velocity!!!!!!!!!!!!!!!!!!!!!!!!! 

EDVE,VELO,STRIKE,0,V 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Enter solution mode!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

/SOLU       

TIME,0.0015 

EDRST,300 

EDHT,100 

NSEL,S,,,360 

CM,OP,NODE 

EDHIST,OP 

ALLS 

sAVE 

/STATUS,SOLU 

SOLVE 
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