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Abstract 

Concerns for animal welfare, food safety, and security fuel interest in understanding modulators 

of innate immunity.  The accumulation of neutrophils and activation of toll-like receptors (TLRs) 

at infection sites are critical events of innate host defense. The objectives of this study were to 

evaluate the effects of Lipopolysaccaride (LPS), Peptidoglycan (PGN), Nystatin (NYS), and 

Quebracho (Q) extract on bovine neutrophils activation in relation to expression of genes 

encoding TLR2, TLR4, natural resistance-associated macrophage protein 1 (Nramp1), and the 

cytokines TNF-α and IL-10. Genes in genomic DNA were detected from blood samples, except 

IL-10.  Neutrophils were isolated from four Holstein Friesian cows and cultured with LPS 

(100ng), PGN (1μg), NYS (2500U), or ethanol (62%); Q (1.5X) or maintained in PBS at the 

following time intervals: 0, 15, 30 or 60 minutes. Total RNA was extracted and  concentration, 

purity and time of incubation, had an effect on RNA concentration, producing highly significant 

results (p<0.0001).  Specific primers were used to amplify Nramp1, TLR2, TLR4, TNF-α and IL-

10 mRNA using a reverse transcriptase polymerase chain reaction (RT-PCR).  Neutrophils 

suspended in PBS showed basal expression of TLR 2, 4, and TNF-α.  Exposure of neutrophils to 

LPS resulted in induction of Nramp1. Peptidoglycan induced gene expression of TLR 2 at 60 

minutes. Nystatin treatment induced TLR 2 expression but suppressed Nramp1 at 60 minutes. 

Gene modulation with ethanol was seen with TLR 2 and Nramp1. Quebracho suppressed 

NRAMP1 gene expression after 30 and 60 minutes. ELISA results did not show a treatment 

effect, but demonstrated a significant decrease in TNF-α secretion compared to PBS and/or 

ethanol (p <0.05), after 30 minutes of incubation. This study demonstrated modulation of genes 

expressed by treatment with bacterial components and immunomodulators in bovine neutrophils 

in vitro. 
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CHAPTER 1 

Introduction 

  Infections by the bacteria E. coli and S. aureus are two major causes of acute and 

chronic mastitis, respectively (Smith & Hogan, 1993; Sutra & Poutrel, 1994).  Inflammation 

caused by bacterial infections is a protective mechanism used by the host to eliminate disease-

causing pathogens from the body. Elimination of pathogens is often dependent on an efficient 

innate immune system in the host, induction of chemokines, such as IL-8 to attract neutrophils to 

the site of infection, and involves other proinflammatory cytokines (e.g. IL-1β and TNF-α) 

(Mount, Karrow, Caswell, Boermans, & Leslie, 2009).   

Neutrophils are one of the mediators of the host innate immune system. They are among 

the first to encounter pathogens.  Pathogens, like gram-negative and gram-positive bacteria, carry 

pathogen associated molecular patterns (PAMPs) (Akira & Sato, 2003; Razonable, Henault, 

Watson, & Paya, 2005) which are identified by pattern recognition receptors (PRRs) that can be 

found on the membrane of immune cells (i.e. macrophages, neutrophils, and epithelial cells) and 

tissues (i.e. lung, skin and spleen) (Tirumurugaan et al., 2010). Pathogen associated molecular 

patterns activate cell signaling and secretion of proinflammatory cytokines (D. D. Bannerman et 

al., 2004; Mount, et al., 2009).  Lipopolysaccaride (LPS) and peptidoglycan (PGN) are specific 

PAMPs that are recognized by toll-like receptors,(TLRs).  

Bacterial cell well components induce TLRs expression. For example, TLR2 is normally 

activated by peptidoglycan; while TLR4 has been known to respond to lipopolysaccaride (D. D. 

Bannerman, et al., 2004; Fan, Frey, & Malik, 2003).  Activation of these toll-like receptors 

causes secretion of the proinflammatory cytokine TNF-α (Oak, Mandrekar, Catalano, Kodys, & 

Szabo, 2006).   
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Pharmacological drugs, like nystatin, which is a lipid raft inhibitor, have recently been 

shown to utilize PAMPs to induce TLR2 expression and secretion of TNF-α, during host-

pathogen interaction (Razonable, et al., 2005).  Lipid or membrane rafts functional responsibility 

range from viral and toxin entry to cell signaling (Pike, 2006). Lipid rafts are portals for 

pathogens, such as E coli strains, which bind to (glycerophospholipids) GPI-anchored protein 

CD48, as an infection strategy into the host cell (Fantini, Garmy, Mahfoud, & Yahi, 2002).   

It is important to note how pathogens exploit normal cellular function to survive within 

the host, albeit using lipid rafts or sequestering essential metals for microbial replication. The 

uptake of essential metals allows pathogens the ability to survive in the host after phagocytosis.  

Interactions between host and pathogen determine the expression of natural resistance associated 

macrophage protein 1 (Nramp1), a divalent metal transporter that can limit the bacterium’s 

ability to replicate (Forbes & Gros, 2001) in the phagosome.  The presence or absence of 

Nramp1 relates to resistance or susceptibility to bacterial infections (Gomes & Appelberg, 1998).  

This gene has polymorphisms in humans, porcine and mice, which implicate Nramp1 regulates 

the host’s innate immunity against pathogens (Ables, Nishibori, Kanemaki, & Watanabe, 2002; 

G. Zhang, Wu, Ross, Minton, & Blecha, 2000). 

Concerns for animal welfare, food safety and security fuel interest in the use of new plant 

alternatives, such as based extracts, to modulate innate immunity.  Antibiotics are used to 

prevent further spread of diseases, but have some drawbacks, particularly, in food production 

settings (Sutra & Poutrel, 1994).  Currently, the use of antibiotics to treat mastitis in cows is the 

main protocol in farming production, but the frequency of extra label use of antibiotics has 

resulted in bacterial resistance (Raymond, Wohrle, & Call, 2006).  Evidence has pointed toward 

tannin-rich forage plants, like quebracho as a possible alternative to antibiotics in ruminants 
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(Athanasiadou, Kyriazakis, Jackson, & Coop, 2001).   Quebracho, a South American plant, is 

known for its antibacterial promoting effects. The studies showed that the use of tannins might 

help in reducing the use of antibiotics for treating bacterial infections while boosting the immune 

system of ruminants to help prevent further diseases caused by pathogens.  To date, in vivo 

studies have been conducted to investigate the use of quebracho in ruminants, primarily in sheep 

and goat (Athanasiadou, 2001;Brunet, 2008;Villalba, 2010).  

 The objective of this study was to use bovine neutrophils stimulated with components of 

bacterial pathogens (LPS derived E.coli and PGN derived S. aureus),  and immunomodulators, 

such as Nystatin, and a plant extract (quebracho) to determine the expression of Toll like 

receptors 2 and 4, Nramp1, TNF-α, and IL-10 genes.  It is hypothesized that specific pathogens 

and immunomodulators will elicit distinctive patterns of gene expression, associated with the 

neutrophil’s role in host innate immune response. 
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CHAPTER 2 

Literature Review 

2.1 Role of Neutrophils in Dairy Cow Innate Immunity 

The innate immune system is comprised of various cell types such as neutrophils, 

monocytes/macrophages, mast cell, basophils and eosinophils as well as some non-immune cells, 

such as kerantinocytes and hepatocytes (Kasten, Muenzer, & Caldwell, 2010a; Preiss et al., 

2008).  Phagocytic cells have the ability to express cytokines and chemokines.  Neutrophils, also 

known as polymorphonuclear cells (PMN) (Sohn et al., 2007), are the first responders involved 

in innate immunity at the site of infection, when pathogens are present. They are classified as 

polymorphonuclear cells because of the multilobed shape of their nucleus, when compared to 

lymphocytes and monocytes.  Their mechanisms in responding to pathogens have been studied 

for both physiologic and pathologic activities (Witko-Sarsat, Rieu, Descamps-Latscha, Lesavre, 

& Halbwachs-Mecarelli, 2000b).  Neutrophils’ phagocytic properties aid in host defense against 

disease causing pathogens, but  also contribute to the inflammatory pathology of most diseases; 

if they go unregulated (Seely, Pascual, & Christou, 2003).  Neutrophil recruitment process 

consists of migration from the blood to the extravascular tissues, recognition of pathogens and 

necrotic tissues, and removal of the pathogen from the host.  In livestock, the most notable 

disease associated with neutrophil’s pathological state is mastitis (Paape, Miller, & Ziv, 1991).   

Mastitis is inflammation of the mammary gland affecting milk producing animals and is 

usually associated with microorganisms derived from bacteria such as: Escherichia coli, Bacillus 

spp., and Streptococcus spp., which are the most common species found in environmental 

mastitis (Schroeder, 2010).  Previous studies have shown that diverse forms of LPS derived from 

E.coli can impact gene expression (Worku & Morris, 2009).  Other gram negative and gram 
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positive bacteria that are common pathogens in cattle are Mycobacterium tuberculosis, 

Salmonella typhi, and Campylobacter fetus, which live in soil and water and can be transmitted 

to cattle through grazing or drinking devices.  Once the bacteria is in the body this provides an 

optimal condition for replication of the pathogen resulting in disease.     

 Health conditions of dairy cows can be compromised by both environmental (E.coli) and 

contagious (S.aureus) mastitis (National Mastitis Council, 2011), two forms of mastitis that 

progress differently, but provide the same results upon infection.   According to the Dairy Herd 

Improvement Association (DHIA), a scoring system is used to assess subclinical mastitis in 

cows.  This system runs on a 10-point scale (0 to 9), with zero indicating no infection and nine 

highly infected.   The primary indication is an elevated somatic cell count- SCC (neutrophils and 

epithelial cells) in milk that can be attributed to the innate immune system reacting to the 

invasion of bacteria in the mammary.  In addition to bacterial infections leading to elevated SCC; 

trauma and injury are other pathological states that can cause elevated SCC in cows (Geishauser, 

Querengasser, Nitschke, & Sorbiraj, 1999).  

Bacterial infections pose a food safety problem to human health particularly, regarding 

unpasteurized or improperly pasteurized milk because many pathogens or toxins can be 

transferred from infected quarters directly to humans. Such an invasion of microorganisms can 

also translate to decreased milk yield and milk composition (National Mastitis Council, 2011).   

According to the National Mastitis Council (2011), SCC in dairy herds averages 228,000 

cells/ml in 2011 (National Mastitis Council, 2011).  The current legal limit is 750,000 cells/ml 

for Grade A producers in many states, except California where, the legal limit is 400,000 cells/ml 

(National Milk Producers Federation, 2011).  The type or extent of mastitis is usually indicated 

based on these numbers and appearance of milk as being either subclinical or clinical.  
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Subclinical mastitis is classified as “hidden,” caused by S. aureus that can lead to chronic 

infection of the mammary gland, due to the pathogen’s ability to cause false negatives and 

produce no visual signs in milk production; subclinical mastitis is detected upon SCC 

monitoring. Clinical mastitis is usually more apparent, with the appearance of flakes, clots, and 

watery consistency of milk. Sometimes caused by E. coli this infection is typically acute 

infections, because it is easily detected and is treated more efficiently (National Mastitis Council, 

2011)  

Septicemia or septic shock is generally caused by a skin or mucosal wound that has 

undergone a bacterial infection that can be
 
minute and difficult to detect.  Septic shock or toxic 

shock syndrome is a multisystemic
 
disease characterized by rapid onset of fever, hypotension,

 

and multi-organ failure, which often leads to death (Chenier, Leclere, Messier, & Fecteau, 2008).  

Neutrophil recruitment is the key feature in both septic shock and mastitis, due to the 

inflammatory response associated with these diseases.  Pathogenic states usually start as an acute 

inflammatory response initiating neutrophils (PMN) to sites of infection.  If the acute 

inflammation persists it can progress to chronic inflammation, which is characterized by the 

presence of macrophages (Robbins, Cotran, & Kumar, 2010) and neutrophils. 

2.1.1 Neutrophils and mastitis. The release of secreted proteins called cytokines; makes 

it possible for leukocytes to be recruited from the blood to the site of infection or injury.  

Leukocytes migrate across the endothelium after sensing chemoattractants. They use several 

adhesion molecules to bind themselves to the site of injury or where they are needed.  Selectins 

are cell adhesion molecules that are regulated by cytokines and their ligands and consist of three 

types:  L-selectin expressed on neutrophils, P-selectin expressed on platelets and endothelium, 

and E-selectin expressed on endothelium (Robbins, Cotran, et al., 2010).  Neutrophils 
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constitutively express L-selectin on the tips of their microvilli, but also express ligands for P- and 

E-selectins (Doyle et al., 1997).  The ability to firmly bind to the endothelial surface is 

contributed by integrins, a family of heterodimeric leukocyte surface proteins with a high affinity 

for the endothelial surface (Monfardini et al., 2002).  This can be triggered by various agonists 

such as LPS (bacterial), IL-8 (chemoattractants), as well as cytokines and growth factors (Witko-

Sarsat, Rieu, Descamps-Latscha, Lesavre, & Halbwachs-Mecarelli, 2000a).   

A high number of neutrophils present in milk are an indication of a bacterial infection in 

the mammary gland.  Several types of pathogens such as S. aureus, E. coli, and S. uberis (Leigh, 

Egan, Ward, Field, & Coffey, 2010) can alter the overall health of cows and cause SCC in milk 

to be elevated.  Neutrophils predominate the site of infection within the first 6 to 24 hours and 

are replaced by monocytes in 24 and 48 hours (Robbins, Cotran, et al., 2010).  Once neutrophils 

have been activated their life span is short-lived (24 to 48 hours) they undergo apoptosis (Seely, 

et al., 2003).   

 2.1.2 Recognition, phagocytosis and antimicrobial capacity of neutrophils.  The 

recognition of microbes by neutrophils and other innate immune cells, prevents microbes from 

evading host defense mechanisms. Neutrophil recognition of bacterial pathogens opsonized by 

IgG antibodies, allows Fc receptors to present microbes for phagocytosis.  Alterations in these 

receptors in cattle impede neutrophils’ ability to destroy pathogens (Worku, Paape, Di Carlo, 

Kehrli, & Marquardt, 1995).   

Bacterial infections activate several signaling pathways (i.e kinases, transcription factors, 

lipid membranes, and cytokines) that interact with pathogens through domains on the 

mammalian membrane (Riethmuller, Riehle, Grassme, & Gulbins, 2006).  Leukocytes recognize 

microbial structures based on pathogen associated molecular patterns (PAMPs).  They also 
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recognize molecules secreted from injured or necrotic cells, called danger associated molecular 

patterns (DAMPs) (Robbins, Kumar, & Cotran, 2010).  The cellular recognition receptors called, 

pattern recognition receptors (PRR) seek out and aid in destroying pathogens.  Following 

recognition, activation is signaled by pro-inflammatory cytokines such as: TNF-α (tumor 

necrosis factor-alpha), Interleukin-8 (chemokine), and growth factors (G-CSF and GM-CSF) 

(Douglas D. Bannerman, Chockalingam, Paape, & Hope, 2005; Witko-Sarsat, et al., 2000b).   

Only when the host’s normal physiological state is disrupted, does neutrophil activation 

result in phagocytosis, antimicrobial killing of pathogens by superoxides, and release of 

degradative enzymes.  Upon phagocytosis neutrophils engulf invading microorganisms and form 

phagosomes that secrete reactive oxygen species (ROS).  Superoxide anions, hydrogen peroxide, 

and hydroxyl radicals are major reactive oxygen species that are produced in neutrophils.  The 

physiological function of these ROS in neutrophils and other leukocytes is to modulate 

expression of cytokines, adhesion molecules and chemokines, as part of the inflammatory 

response. To aid in destroying the phagocytized microbe; neutrophils once activated by 

pathogens undergo a short lifespan, this activation can cause tissue damage, due to neutrophils 

radical behavior, if left unregulated (Sohn, et al., 2007).  The regulation of neutrophil destructive 

nature can be attributed to antioxidant mechanisms, such as superoxide dismutases, lactoferrin, 

ferritin, and transferrin, which are all transport proteins that minimize the level of ROS 

formation.   

Neutrophil derived microbicidal molecules are packed in granules that are released upon 

cell activation. The release of soluble antimicrobial proteins destroys invading microorganism 

such as: gram-negative and gram-positive bacteria as well as fungal infections.  These include 

primary granules (azurophilic) which are characterized by defensins, myeloperoxidase, and 
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bactericidal/permeability increasing protein (BPI); secondary granules (specific) such as 

lactoferrin which has bactericidal and fungicidal activity in neutrophil the ability to bind to iron; 

tertiary granules (cathepsin) that are proteases breaking apart other proteins. 

2.2 Role of Nramp1 in Neutrophils 

   Natural resistance associated macrophage protein 1 (Nramp1) is an iron transporter 

protein known to induce susceptibility or resistance to disease, depending on the substitution of 

an amino acid (glutamic acid or aspartic acid) on the 169 position (Ables, et al., 2002).  It is 

expressed exclusively in macrophages and neutrophils and has a membrane protein that shares 

structural characteristics with ion channels and transporters. Its function and mechanism of 

action in relation to bovine neutrophils remains unknown (Worku & Morris, 2009).  Divalent 

metals (Zn
2+

, Cu
2+

, Fe
2+

, and Mn
2+

) are cofactors for many enzymatic reactions in all life forms 

(Forbes & Gros, 2001).  Microbe survival in the host is essential for replication of the 

microorganisms’ species and in that survival it requires iron, which is not readily available.  This 

divalent metal ion is just as essential to the host as it is to pathogens (Gomes & Appelberg, 

1998).  Microbe reliance on the host for nutrients, as well as optimal living conditions is 

paramount to its survival.   

Studies have demonstrated that Nramp1’s role in antimicrobial activity is regulated by 

polymorphonuclear (PMN) leukocytes (Canonne-Hergaux et al., 2002).  In humans, neutrophils 

are the site of Nramp1 messenger RNA expression, which was discovered through subcellular 

fractionation using immunoblotting with granule-specific markers, indicating tertiary granules 

(gelantinase) present in Nramp1. Studies of fungus (Candida albicans) containing phagosomes 

formed in neutrophils indicated that Nramp1 is recruited from the tertiary granules to the 



  12  

     

 

 

 12  

phagosomal membrane upon phagocytosis; thus, providing evidence for the role of Nramp1 as an 

antimicrobial defense of human neutrophils (Canonne-Hergaux, et al., 2002) 

 The mechanism of action for Nramp1 is debatable as a phagosomal membrane (Forbes & 

Gros, 2001).  Some researchers have documented that following phagocytosis by macrophages; 

pathogens are bound to the membrane of phagosomes resulting in Nramp1 recruitment (Forbes 

& Gros, 2003).  While other studies have demonstrated Nramp l presence in neutrophils play an 

important role in antimicrobial properties (Canonne-Hergaux, et al., 2002).   

 Bacteria and fungi synthesize siderophores (a high affinity compound) that captures iron 

from the host protein-ferritin or transferrin (Ratledge & Dover, 2000).   It is suggested that the 

addition of iron, which enters the phagosome by phagocytic cells via Nramp1 is the reason some 

bacterial or fungal infections persist once phagocytized by neutrophils (G. Zhang, et al., 2000).  

Activated Nramp1 produces reactive oxygen species, such as hydroxyl groups and superoxide 

anions, through peroxide, perhaps even nitric oxide by way of the Fenton and Haber/Weiss 

reactions (Forbes & Gros, 2003). 

2.3 Infections and Inflammation 

 Most bacterial infections are produced from either gram-negative or gram-positive 

species.  Lipopolysaccaride (LPS) and peptidoglycan (PGN) are usually associated with gram 

negative and gram-positive bacteria, respectively.    Both types of bacteria are known to induce 

neutrophil diapedesis and cause acute inflammation in the host (Robbins, Cotran, et al., 2010).  

With mastitis, the infection is localized to the mammary gland, and with septic shock or blood 

poisoning the bacterium is secreted in the lumen. 

Lipopolysaccaride (Figure 1), is found in the outer membrane of gram-negative bacteria, 

and acts as an endotoxin to elicit strong immune responses in animals.  LPS protects the 

http://en.wikipedia.org/wiki/Outer_membrane
http://en.wikipedia.org/wiki/Gram-negative
http://en.wikipedia.org/wiki/Immune_response
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membrane from certain chemical attacks, as well as provide structural integrity to the cell wall, 

by binding to the CD14/TLR4/MyD88 receptor complex on phagocytic cells, LPS will induce 

pro-inflammatory cytokines in various cells, especially macrophages (Akira & Sato, 2003). 

 

 

 

 

 

 

 

 

Gram-negative bacteria, such as Escherichia coli have cell walls composed of LPS, 

which is not found in gram-positive bacteria.  The outer membrane contains the 

lipopolysaccharide, known as endotoxin and consists of a lipid portion called lipid A embedded 

in the membrane and a polysaccharide portion extending outward from the bacterial surface 

(Ulevitch & Tobias, 1999). A thin layer of peptidoglycan is present between the inner and outer 

membrane of gram-negative bacteria (Figure 1.) to prevent osmotic lysis of the cell, as well as 

aiding bacteria in evading phagocytosis (Robbins, Cotran, et al., 2010).   

Gram-positive bacteria such as Staphyloccocus aureus are composed of a thick 

peptidoglycan layer, which has lipoteichoic acid embedded through the cell membrane (Figure 

1).  This structural layer functions in the same manner as LPS, in providing strength to the 

bacterial cell wall (Robbins, Cotran, et al., 2010).  The significance of the cell wall whether 

derived from gram-negative or gram-positive bacteria, serves the same purpose with protecting 

Figure 1. Illustration of the cell wall of gram-negative and gram-positive bacteria. 

bacteria. 
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against phagocytosis.  Mastitis associated with gram-positive bacteria is usually classified as 

contagious mastitis, and acts slower than gram-negative mastitis causing pathogens (Schroeder, 

2010).  The latent ability of gram positive bacteria, contributes to its subclinical/ chronic 

appearance in cows. 

2.4 Toll-Like Receptors 

   In mammals, toll like receptors (TLRs), named after the Drosophila protein Toll and 

other cytoplasmic receptors (Tirumurugaan, et al., 2010; Dirk Werling, Piercy, & Coffey, 2006) 

can recognize bacteria, fungi, parasites and viruses to elicit an inflammatory response and induce 

the production of various mediators.  Toll like receptors are proteins that recognize microbes 

once they have breached the natural barrier of the organism such as the skin or intestinal tract 

mucosa, or teat end, and activate immune cells.  The number of known TLRs range from 10 to 

13 (Menzies & Ingham, 2006; Mucha, Bhide, Chakurkar, Novak, & Mikula, 2009; 

Tirumurugaan, et al., 2010) in mammals.  Toll like receptors differ from one another based on 

their expression pattern, target gene expression, and ligand specificities, with 10 TLRs for bovine 

(Menzies & Ingham, 2006).  Research has shown that TLRs can be found in neutrophils, 

macrophages and dendritic cells, as well as epithelial cells (Tirumurugaan, et al., 2010; Vahanan 

et al., 2008; Worku & Morris, 2009).   

The specificity of each TLR is different; however, all contain the same leucin-rich repeat 

extracellular domain and a common intracellular domain to the IL-1R type intracellular signaling 

domain, called the Toll/IL-1R (Dirk Werling, et al., 2006).   

 2.4.1 Toll-like Receptor 4.  Toll-like receptor 4 is a well-known microbial attachment to 

both gram negative and positive bacteria and has enabled a considerable amount of research. Toll 

like receptor 4 is related to destruction of pathogens by the host cells, such as neutrophils, 
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macrophages, and dendritic cells (Dirk Werling & Jungi, 2003). Toll like receptor 4 is part of a 

large family of transmembrane proteins and is linked particularly to bacteria with the 

lipopolysaccaride component (Akashi et al., 2000).  The expression of TLR 4 has been seen in 

goat, water buffaloes, and bovine neutrophils (Tirumurugaan, et al., 2010; Vahanan, et al., 2008), 

bovine macrophages and dendritic cells (D. Werling, Hope, Howard, & Jungi, 2004), and human 

lymphocytes (Blomkalns et al., 2011).  The receptor binds to ligands such as LPS and 

lipoteichioc acid; and has been known to react with PGN in gram positive bacteria (Ulevitch & 

Tobias, 1999).   

 2.4.2 Toll-like Receptor 2.  It has been well documented that TLR 2 is associated with 

recognition of a wide array microbial products such as peptidoglycan (PGN) and lipoteichoic 

acid, which are associated with gram positive bacteria (Hadley, Wang, Foster, Thiemermann, & 

Hinds, 2005b).  Toll like receptor 2 expression can be induced by PGN derived from 

Staphylococcus aureus as well as gram negative bacteria such as LPS derived from Escherichia 

coli (Opal & Esmon, 2003).  Many of these studies investigated the interactions of monocytic 

cell lines and gram negative bacteria for priming effects of PGN and LPS signaling (Hadley, et 

al., 2005b).   

The TLR 2 signaling pathway shares similarities with IL-1/TLR4 signaling (Oak, et al., 

2006).  Toll like receptor 2 dependent NF-κB activation requires the Toll/interleukin 1 receptor 

(Tirumurugaan, et al.) domain, which is the epitope for the interleukin-1
 
(IL-1) receptor-

associated kinase complex (TIR-MyD88-IRAK) that induces TNF receptor associated factor 6 

(TRAF6).  The role of TLR 2 in the innate immune system is to detect pathogens and host 

material that is released during injury. Activation of the nuclear factor kappa β (NF-κβ) pathway 

leads to the production of antimicrobial mediators (Opal & Esmon, 2003). 
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2.5 Cytokines 

Cellular reaction to inflammation caused by mastitis results in releasing of cytokines. 

Inflammation can be acute (rapid or short-lived) or chronic (long-lasting); various microbes or 

trauma can stimulate this.  Here we focus on acute inflammation and the primary leukocyte 

(neutrophils) for orchestrating innate immunity responses to infection.   

There are two categories of cytokines: proinflammatory that promote inflammation and 

anti-inflammatory, which suppress inflammation.  Neutrophils are first to appear at the site of 

infection and release pro-inflammatory cytokines such as TNF-α, IL-8, and IL-1β (Dinarello, 

2000). Tumor necrosis factor- alpha TNF-α, is the primary cytokine present in systemic 

inflammation and responsible for regulating leukocytes; and initiating fever (Paape, Rautiainen, 

Lilius, Malstrom, & Elsasser, 2002).  Studies focusing primarily on milk samples and leukocyte 

(neutrophil and lymphocyte) population changes after bacterial infection, reported that TNF-α 

concentrations increased upon E. coli  intramammary challenge, compared to S. aureus (Douglas 

D. Bannerman, et al., 2005; D. D. Bannerman, et al., 2004). This cytokine has been well 

documented to undergo upregulation of gene expression using various bacterial derived LPS (D. 

D. Bannerman, et al., 2004) and PGN (Chenier, et al., 2008), as well as Nystatin (Razonable, et 

al., 2005).   

The role of IL-10 (Interleukin 10), during inflammation has been studied amongst various 

inducers ranging from bacterial infections to parasitic infections (Couper, Blount, & Riley, 

2008).  Different types of cells can produce IL-10, most notably macrophages. Many have 

debated whether neutrophils have the ability to produce certain cytokines such as IL-10, as an 

antagonist to many proinflammatory cytokines, such as TNF-α, IL-1β and IL-4 (Paape, Duenas, 

Wettemann, & Douglass, 2000; Tomita, Wang, Paape, Poultrel, & Rainard, 2000).  The amount 
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of IL-10 production by neutrophils is little in comparison with monocytes/macrophages (Reglier, 

Arce-Vicioso, Fay, Gougerot-Pocidalo, & Chollet-Martin, 1998). However, IL-10 has been 

documented as an important cytokine to regulate inflammation in sepsis using mouse neutrophils 

(Kasten, Muenzer, & Caldwell, 2010b).  Others have reported that high concentrations of IL-10 

could be induced by pathogens as a means of survival; to prevent pathogen clearance (Couper, et 

al., 2008).   

2.6 Nystatin 

  Nystatin is an antifungal agent-lipid raft inhibitor derived from a gram positive bacteria, 

Streptomyces noursei (Brown, Hazen, & Mason, 1953).  The importance of a lipid raft inhibitor 

lies with its ability to inhibit host- bacterial pathogen interactions (Riethmuller, et al., 2006).  

Bacterial invasion of the host is normally associated with caveolae endocytosis or lipid rafts that 

have been found in many phagocytes (i.e neutrophils) (Shin & Abraham, 2001).  Bacterial 

pathogens that are known to use alternative means to infect the innate immune system of the host 

are: E. coli (Duncan, Li, Shin, Carson, & Abraham, 2004), C. jejuni (Wooldridge, Williams, & 

Ketley, 1996), and P. aeruginosa (Grassme et al., 2003); and information regarding neutrophils 

is very scarce.  One study highlights nystatin’s ability to induce inflammatory cytokines such as 

IL-1β, IL-8 and TNF-α, by binding to or activating TLR2 (Razonable, et al., 2005). Studies have 

shown that changes in lipid raft composition rearranges membrane proteins (Riethmuller, et al., 

2006) which may be similar to altered Fc receptors that impede bacterial binding to neutrophils  

(Zaas, Duncan, Rae Wright, & Abraham, 2005).  Literature reports have suggested that lipid or 

membrane rafts are associated with cell signaling and can facilitate receptor clustering, such as 

with TLR 2 and 4 (Oak, et al., 2006).   

http://en.wikipedia.org/wiki/Streptomyces
http://en.wikipedia.org/w/index.php?title=Streptomyces_noursei&action=edit
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Nystatin’s effect on fungal (Volpon & Lancelin, 2002) , bacterial, and parasitic pathogens 

can be attributed to the extraction and destruction of cholesterol from lipid rafts (Riethmuller, et 

al., 2006).  This causes the contents in the cell to leak out and the cell dies, which then sends a 

cascade of signaling to death receptors (Razonable, et al., 2005).  Animal and fungal cells 

contain sterols- cholesterol and ergosterol, respectively, nystatin has a lower affinity for 

cholesterol (Volpon & Lancelin, 2002), which allows for some disruption of cellular signal 

transduction (Fernandes et al., 2006).  Nystatin has been researched for treatment of mastitis 

caused by fungal infections (Kitamura, Anri, Fuse, Seo, & Itakura, 1990).  A complete 

understanding of Nystatin’s mechanistic effects on neutrophils is still unknown.   

2.7 Quebracho 

Quebracho is a South American plant that has been noted to have anti-microbial (Peters, 

Komaragiri, Paape, & Douglass, 2000) and anti-viral (Lupini, Cecchinato, Scagliarini, Graziani, 

& Catelli, 2009) activities.  Quebracho is a condensed tannin derived from polymeric flavanoids 

that are comprised of carbohydrates and proteins (Hagerman et al., 1981).  Condensed tannins 

have been under recent study, due to their ability to reduce fecal egg counts (Ostertagia 

ostertagi, Hemonchus contortus, and Nematodirus filicollis), increase weight gain, and milk 

secretion (Villalba, Provenza, Hall, & Lisonbee, 2010).  Quebracho has been documented to 

decrease the viability of L3 (third stage larval) in parasites in sheep (Athanasiadou, et al., 2001).   

Studies have shown that consumption of tannin rich plants such as Sericea lespedeza, 

sainfoin, and sulla have reduced the number of fecal eggs and host resilience to helminthes when 

given in hay and silage (Brunet, Jackson, & Hoste, 2008).  Some variations have been 

documented that are based on the host, amount of tannin content, parasite species, and level of 

infection (Min et al., 2005).  The use of Quebracho has been identified as tannin forage capable 
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of reducing helminthes populations in the host (Virginie Paolini, Audrey Frayssines, France De 

La Farge, Philippe Dorchies, & Herve Hoste, 2003).  

Many studies have been conducted using tannin-rich plants on small ruminants from an 

in vivo perspective, using sainfoin (Onobrychis viciifolla) extract on the exsheathment of 

infective larvae, species of Haemonchus contortus and Teladorsagia circumcincta, which were 

reduced after 3 hours of treatment.  Confirmation was made by the addition of polyvinyl 

polypyrrolidone, an inhibitor of tannins by the lack of exsheathment of infected larvae in the 

control group (Brunet, Jackson, et al., 2008).  

 Other researchers investigated the prospect of using tannin-rich plants as a means to 

combat parasitic infections and these studies were solely looking at the fecal egg count (Chenier, 

et al.) or exshealthment of larvae in many small ruminants, along with the use of certain tannin-

richs plants to improve host resilience (Brunet et al., 2008).  Studies in dairy cows investigated 

the influence quebracho condensed tannin extract had on fermentation and lactational 

performance (Dschaak, et al., 2011). Benchaar and colleagues studied the effects of quebracho 

extract on digestion, ruminal fermentation characteristics, protozoal populations, and milk 

production in ruminally cannulated lactating cows (Benchaar, et al., 2008).   Unknown to 

researchers is the effect Quebracho, a plant based tannin, has on induction of TNF-α, using 

bovine neutrophils.  Many studies have investigated fecal egg count or larval survival as a cause 

of inflammation in small ruminants (Athanasiadou, et al., 2001; Brunet, Jackson, et al., 2008). 

Other studies have investigated quebracho’s anti-viral effects on poultry enteric viral infections 

(Lupini, et al., 2009). This study investigated the impact of LPS, PGN, Nystatin, and Quebracho 

on gene (TLR 2, TLR 4, NRAMP1, TNF-α and IL-10 ) modulation in using bovine neutrophils. 
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Chapter 3 

Materials and Methods 

3.1 Animals  

 Four clinically healthy Holstein-Freisian cows from the North Carolina Agricultural and 

Technical State University dairy farm were selected for this study.  The University Animal Care 

and Use Committee approved the protocol.  The cows were not under any medical or feeding 

treatment during the period of this study.   

  3.1.1 Blood Collection. Thirty milliliters of blood was collected from the jugular vein of 

each cow into 15-ml BD Vacutainer
®
 tubes (BD Diagnostics, Franklin Lakes,NJ).  All tubes 

contained ~1.0 ml of anti-coagulant acid citrate dextrose (Macdonald, Li, Su, & Pike, 2006).  

Samples were placed on ice immediately following collection.  Blood samples collected from the 

jugular were used for evaluation of packed cell volume (PCV), DNA and RNA isolation, and 

blood smears. 

 3.1.2 Packed Cell Volume (PCV) and Somatic Cell Count (SCC).  Packed cell volume 

was performed using whole blood collected from four cows in this study.  The presence or 

absence of anemia or dehydration was determined by packed cell volume measuring red blood 

cells in a hematocrit. Whole blood collected into ACD tubes filled heparinized capillary tubes 

three quarters of the length of the capillary tube.  Capillary tubes were in triplicate for each cow 

(N=4) in this study.  Excess blood was removed and one end of the tube was sealed with Cha-

seal (Chase Instruments, Corp; Rockwood, TN).  Tubes were placed in a microhemtocrit 

centrifuge (Damon/IEC Division, Needham, MA) and spun for 5 minutes.  After centrifugation, 

tubes were removed and read using a microhematocrit reader (Damon/IEC Division, Needham, 

MA). Somatic cell count (SCC) was recorded according to Dairy Herd Improvement (DHI) 
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records indicating somatic cell scores ranging from 0 to 9, based on the amount of white blood 

cells (WBC) present in the milk.   Cows used in this study had recorded scores ranging from 0 to 

4, indicating that they were mastitis-free.    

 3.1.3 Isolation of genomic DNA.  Isolation of DNA was performed using FTA
®
 cards 

(Whatman, Piscataway, NJ) from whole blood samples.  Briefly using a 3mm Harris Uni-Core 

device (Whatman Cat. No. WB100039), one-3mm (1/8”) a sample disc was removed from the 

center of FTA Elute card and transferred into a 1.5 ml microcentrifuge tube, 500 µl of sterile 

water was added to tubes and immediately pulse vortexed 3 times, for a total of 5 seconds.  

Using a pipette tip, the disc was removed from the wash and gently squeezed against the side of 

the tube and immediately transferred to a 0.5 ml microcentrifuge or PCR tube containing 30 µl of 

sterile water.  The discs were completely immersed in water by briefly centrifuging the tube for 

10 seconds at 700 x g. The tube was then transferred to a water bath at 95°C for 30 minutes.  

Sample solution was pulse vortexed 15 times during the incubation period.  At the end of the 

incubation period, tubes were removed from the water bath and pulse vortexed approximately 60 

times then centrifuged for 30 seconds at 700 x g, to separate the matrix from the eluate, which 

contains purified DNA.  Using a sterile pipette tip FTA Elute matrix disc was removed and 

discarded.   

 3.1.4 Isolation of Neutrophils. Neutrophils were isolated using the modified Carlson and 

Kaneko method (Carlson & Kaneko, 1973), by hypotonic lysis of red blood cells (RBC).  

Briefly, blood samples from each cow were individually pooled into 50 ml polypropylene 

conical tubes and maintained on ice, gently inverted three times, and centrifuged (20 minutes at 

1800 x g at 4°C) in a swing bucket rotor (Eppendorf Model 5810R centrifuge, Hauppauge, NY).   

Red blood cells were removed from each tube with a disposable pipette, down to 5 ml. Tubes 
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were gently inverted to resuspend polymononuclear cells and remaining red blood cells.  

Approximately 20 ml of ice cold DEPC-water was added to tubes and inverted for ~45 seconds 

to lyse red blood cells.  To restore isotonicity, 10 ml of ice cold 2.7% saline was added and 

gently inverted to mix.  Tubes were placed on ice periodically to keep cells cold.  Suspensions 

were centrifuged for 2 minutes at 700 x g at 4°C and supernatant was removed. Cells were gently 

resuspended by adding ten millilters of 0.0132 M phosphate buffered saline (PBS) (pH 7.4) to 

the cell pellet. The process was repeated 2-3 times until a white neutrophil (PMN) enriched pellet 

clear of all RBCwas obtained.  Cells were resuspended in PBS at a volume of 5 or 10 ml 

depending on the pellet size.   

3.2 Viability and Purity of Neutrophils 

 Viability of neutrophils was checked by trypan blue dye exclusion method.  Isolated 

PMN were mixed with trypan blue (Sigma-Aldrich cat#T8154) at a 1:2 dilution rate.  Cell 

suspensions in trypan blue dye were placed in a microfuge tube.  Approximately 10µl of the 

mixture was loaded into each side of the hemacytometer chambers.  Cells were viewed under 

100x magnification and viable and non-viable cells were counted.  Cell counts were done in 

duplicate and an average was taken; cell viability was expressed as a percentage of total viable 

and non-viable cells.  After cell viability and the concentration of PMN was determined.  A 

white blood cell (WBC) differential cell count was determined using Wright’s stain as described 

in the appendix to determine neutrophil’s purity.  Cells were adjusted to 10
7 

cells per ml.  All 

reagents were prepared in diethyl pyrocarbonate (DEPC)-treated lipopolysaccaride (LPS) free 

milli-Q water (Millipore, Billerica, MA). 
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3.3 Stimulation of Neutrophils 

Cells from each of four cows were maintained in PBS at pH 7.4 (Sigma-Aldrich, St. 

Louis, MO), Eschericha coli derived lipopolysaccaride, Staphylococcus aureus derived 

peptidoglycan, Nystatin, Quebracho, and 62% ethanol (Sigma-Aldrich) to assess the expression 

of select genes and cytokines by neutrophils.  Cells suspended (10
7
) in 1 ml of PBS were placed 

into 2.0 ml RNase-free tubes and treated with either 1 ml of 200 ng Lipopolysaccharides from 

E.coli (0111:B4 Cat. No.L3012, Sigma-Aldrich, St. Louis, MO); 2500U Nystatin (Cat. 

No.N1638, Sigma-Aldrich, St. Louis, MO); 2 µg Peptidoglycan Staphylococcus aureus (Cat. No. 

77140, Sigma-Aldrich, St. Louis, MO) or Aspidosperma quebracho-blanco (3X, Herb Pharm, 

Williams, OR).  Aliquots of cells suspended in 1 ml PBS or 62% ethanol were used as negative 

controls.  Peptidoglycan was used as a positive control in this study.  Cells were incubated at the 

following timepoints: 0, 15 minutes, 30 minutes, or 1 hour at 37°C with ~85% humidity and 5% 

CO2.  After incubation, tubes were placed on ice and samples centrifuged at 1700 x g at 4°C for 

~ 5 minutes to pellet cells.  The supernatant was collected and stored at-70°C to detect TNF-α 

cytokine secretion.  Pellets were washed with PBS 2X by centrifuging 1700 x g at 4°C for 2 

minutes.  Cells were then used for RNA isolation 

 3.3.1 RNA Isolation. All samples from both unstimulated and stimulated bovine 

neutrophils underwent RNA extraction according to Ambion manufacturer’s instruction.  One ml 

of TRIzol reagent (Invitrogen Life Technologies Corp, Carlsbad, CA) was sadded to each 

microcentrifuge tube for RNA isolation. All samples were checked for RNA purity and 

concentration using a Nanodrop Spectrophotometer 1000 (Thermo Scientific Inc, Waltham, 

MA).  
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 3.3.2 Evaluation of nucleic acid (DNA and RNA) Concentration and Purity. 

Concentration and purity of DNA and RNA were assessed using a Nanodrop Spectrometer 1000 

(Thermo Scientific Inc, Waltham, MA).  Optical densities were read at A260/280 for nucleic 

acid purity.  Concentrations were measured as nanograms per microliter (ng/µl). 

3.4 Primers  

All primers were synthesized by MWG Biotech Inc (Huntsville,AL).  The following 

genes were evaluated in isolated genomic DNA and RNA isolated from neutrophils. Primers for 

TLR 2, TLR 4 (Menzies & Ingham, 2006), NRAMP1 (Ables, et al., 2002), TNF-α (Cludts, 

Cleuter, Kettmann, Burny, & Droogmans, 1993), IL-10 and GAPDH (housekeeping gene) 

(Vieira et al., 1991) were used (Table 1). 

 3.4.1 Multiplex PCR to Detect Genes in Genomic DNA.  The Multiplex PCR kit 

(Qiagen) was used according to manufacturer’s instructions.  A 50µl reaction was made in 0.2 ml 

PCR tubes using 50 ng of DNA.   

Table 1 

 

Primer sequences and PCR product size 

 

Gene Primer sequence Expected Primer 

Length (bp) 

GAPDH Forward:5’GTCTTCACCACCATGGAG 3’ 

Reverse: 3’CTCCATGGTGGTGAAGAC 5’ 

198 

TLR 2 Forward:5’GTTGGAGGCCGGTGGCAACA 3’ 

Reverse: 3’TGTTGCCACCGGCCTCCAAC5’ 

501 

TLR 4 Forward:5’AACCACCTCTCCACCTTGATACTG 3’ 

Reverse: 3’CCAGAAAGACCTTGAATACAGG5’ 

410 

NRAMP1 Forward:5’CATGAAGCCAACTGCCAAGG3’ 

Reverse:3’GAAGCCTGCAAGATGACCAACA5’ 

433 

TNF-α Forward:5’CTGCACTTCGGGGTAATCGG3’ 

Reverse:3’CAGGGCGATGATCCCAAAGTA5’ 

549 

IL-10 Forward:5’GCCAAGCCTTGTCTGAGATGATC3’ 

Reverse:3’ CTCCCTGGTTTCTCTTCCTAAGA3’ 

800 
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 Multiplex components consisted of 25µl PCR master mix, 2µM each primer, and RNase-

free water.  The conditions for PCR reactions were as follows: 95°C for 15 minutes (activation), 

94°C for 30 seconds, 60°C annealing temperature and 30 cycles for specific genes; 72°C for 90 

seconds, and 72°C for 10 minutes in a thermocycler (MWG Biotech, Foster City, CA). 

 3.4.2 Evaluation of gene expression using reverse transcriptase polymerase                

chain reaction (RT-PCR).   The Qiagen One-Step RT-PCR kit (Qiagen,Valencia,CA) was used 

to detect transcription of selected genes in neutrophils exposed to different compounds.  A 25-µl 

reaction was made in a 0.2 ml PCR tube using 1000 ng of RNA, 5 µl buffer, 1µl dNTP , 1µl 

Enyzme Mix, 0.6 µM primer and RNase-free water.  Amplified products were stored at ~4°C for 

immediate analysis or ~20°C for future analysis of RT-PCR products. 

 3.4.3 Detection of amplified genes.  Amplified products were run on a 1.7% agarose gel 

with PCR markers (Promega, Madison, WI) for approximately 25 minutes.  Molecular weight 

markers were used to identify molecular weights of genes based on published size (Table 2).  

Amplification of gapdh, a housekeeping gene was used as a loading control.  Gels were stained 

with 1µg/ml ethidium bromide, washed and visualized using a Bio-Rad
©

 Gel documentation 

system (Bio-Rad Laboratories, Hercules, CA).   

3.5 Evaluation of Cytokine TNF-α Secreted in Supernatants from Neutrophils 

  Secretion of TNF-α was measured using cell supernatant collected and stored at -70˚C.  

The concentration of TNF-α was determined using a DuoSet
© 

Bovine TNF-α sandwich ELISA 

kit (R&D Systems, Minneapolis, MN).  A flat bottom 96 well plate (Nalge Nunc International) 

was coated overnight with 100 µl per well of goat anti-bovine TNF-α capture antibody at a 

working dilution of 0.8 μg/ml. Following overnight incubation, each well was aspirated and 

washed with wash buffer (400 μl) three times by hand.  The plate was inverted onto a towel after 
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the final wash to ensure the removal of excess liquid.  Plates were blocked with 300 μl of 

blocking buffer and incubated at room temperature for 2hours.  Blocking buffer was then 

aspirated and washed with wash buffer three times.  Cell supernatant samples and TNF-α 

standard were added at 50 μl per well in triplicate and incubated for 2 hours at room temperature.  

Standards ranged from 0 pg/ml to 1pg/ml. Detection antibody (100 μl) containing 72 μg/ml 

biotinylated goat anti-bovine TNF-α was added to each well and incubated for 2 hours at room 

temperature.  A working dilution of 1:200 of Streptavidin-HRP (100 μl) was added to each well 

and incubated for 20 minutes at room temperature.  Plates were aspirated and washed as 

described before with wash buffer three times and inverted on a towel to remove excess liquid.  

A 100 μl of TMB substrate solution (ThermoScientific,  Rockford, IL) was added to each well 

and incubated for 20 minutes at room temperature, out of direct light.  Afterwards, 50 μl of stop 

solution (2N H2 SO4) was added to each well.  Optical density was read at an absorbance of 450 

nm using a MR600 micro plate reader (Dynatech Laboratories Inc., Chantilly, VA).  A standard 

curve was generated to identify optical density of unknown samples. Unknown sample 

concentrations were quantified by interpolating the optical density from the standard curve and 

GraphPad Prism (GraphPad Software, LaJolla, CA) generated the line of best fit.   

3.6 Statistical Analysis 

 Statistical analyses were performed using SAS 9.1 (SAS Institute Inc. Cary, NC, USA). 

A repeated measurement analysis (Proc GLM) was performed to identify main effects of time 

and treatment, as well as their interactions.  Least squares mean was used for paired comparison 

to differentiate significance between treatments and control.  A probability of P < 0.05 was 

chosen as the level of significance.  Calculations are presented as mean ± SD (standard 

deviation) for purity and concentration of DNA.  Mean neutrophil viability and PCV data were 
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calculated using Microsoft Excel.  Gel data was tabulated to summarize the presence and 

absence of the expected molecular weight bands. 
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Chapter 4 

Results and Discussion 

 

4.1 Packed Cell Volume (PCV) and Somatic Cell Counts (SCC) 

 Somatic cell scores for all four cows are represented in Table 2.  The test is a useful way 

to detect mastitis. Somatic cells present in milk are white blood cells, most importantly; 

neutrophils.  According to the Dairy Herd Improvement Association (DHIA) a somatic cell count 

below 750,000 cells per ml, represents the legal federal limit for good quality milk (National 

Federation of Milk Producers, 2011).  Overall, SCC levels for all cows tested in this study were 

within acceptable range for mastitis-free status as seen in Tables 2 and 3.   

The presence or absence of anemia or dehydration was determined by evaluating the 

packed cell volume measuring red blood cells in a hematocrit.  A normal packed cell volume for 

the bovine is between 24-46% (Epperson, Hoblet, Smith, Hogan, & Todhunter, 1993).  An 

increase in this percentage is an indication of dehydration and a decrease is associated with 

anemia.  In Table 2, the mean PCV of 28.5% (N=4) calculated for animals studied showed no 

indication of anemia or dehydration.  Thus animals used in this study were mastitis-free and not 

anemic (Epperson, et al., 1993) based on these criteria. 

Table 2 

Mean somatic cell score and packed cell volume  

Animal No. Somatic Cell Score (SCC) Packed Cell Volume  

(PCV %) 

1788 3.7 ± 0.3 31.0  ± 0.1 

2965 2.3 ± 0.3 29.0 ± 0.2 

3000 0.0 ± 0.0 27.0 ± 0.9 

3001 1.0 ± 0.0 27.0 ± 0.3 

Mean 1.7 ± 0.2 28.5 ± 0.4 
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Table 3 

Relationship between somatic cell score and somatic cell count 

Somatic Cell Score Approximate Range (cells/ml) 

0 0 to 17,000 

1 18,000 to 34,000 

2 35,000 to 70,000 

3 71,000 to 140,000 

4 141,000 to 282,000 

5 283,000 to 565,000 

6 566,000 to 1,130,000 

7 1,131,000 to 2,262,000 

8 2,263,000 to 4,525,000 

9 4,256,000 + 

(Source: National Mastitis Council, 2011) 

4.2 Viability and Purity of Isolated Neutrophils 

 The average viability and purity of isolated neutrophils after isolation from whole blood 

samples was 98.0 and 96.4%, respectively.  Bovine neutrophil purity levels averaged ~96% as 

determined by Wright’s stain method for all the samples (N=4).  Contaminating leukocytes were 

lymphocytes and monocytes  (Table 4).  Cell membrane impairment was determined by trypan 

blue exclusion, this method allows one to see the extent of cell membrane impairment by the 

amount of blue dye the neutrophil has taken up.  Cell viability determined by trypan blue 

exclusion was 98%. 

Table 4  

Differential cell count after neutrophil isolation 

Animal No. Neutrophil Lymphocyte Monocyte 

1788 97.0 ± 0.6 3.0 ± 0.3 0.0 ± 0.0 

2965 96.0 ± 0.6 2.0 ± 0.3  2.0 ± 0.5 

3000 94.3 ± 0.9 5.0 ± 0.3 1.0 ± 0.1 

3001 98.3 ± 0.3 2.0 ± 0.6 0.0 ± 0.0 

Mean 96.4 ± 0.6 3.0 ± 0.7 0.7 ± 0.1 
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4.3 Concentrations and Purity of DNA Isolation  

 The Whatman FTA Elute card was used to isolate DNA from whole blood.  Once DNA 

was extracted, it was measured using a nanodrop spectrophotometer for concentration and purity 

of DNA.   The absorbance for nucleic acid measurements was read at 260 nm; the reported 

wavelength reading was A260/280, with a value of 1.8 indicating a good sample quality.  All 

DNA samples from cows (N=4) studied averaged a reading of 1.8 and an average concentration 

of 0.9 μg of DNA present (Table 5).  Samples of DNA from all four cows were used for TLR 2, 

TLR 4, NRAMP1, TNF-α and IL-10 detection in genomic DNA. 

Table 5  

  DNA purity and concentration 

Animal No. DNA Purity (A260/280) DNA Concentration (μg) 

1788 1.5 ± 0.04 1.7 ± 0.4 

2965 1.8 ± 0.05 0.8 ± 0.1 

3000 2.2 ± 0.01 0.6 ± 0.1  

3001 1.8 ± 0.02 0.5 ± 0.0 

Mean 1.8 ± 0.03 0.9 ± 0.2 

 

In Figure 2, the presence of GAPDH, TLR 2, TLR 4, TNF-á and IL-10 were visualized on 

a 1.7% agarose gel using 50 ng of DNA, and stained with 1µg ethidium bromide. All genes were 

present in genomic DNA, as represented in Figure 2.  Gene expression for interleukin 10 was not 

represented at the expected 800 bp marker but was seen at 200 bp.  Primers used were specific to 

bovine genes except for IL-10, which was based on a goat specific sequence ( Ables et al., 2002; 

Cludts et al., 1993 ; Menzies et al., 2006; Vieira et al., 1991)   Expected molecular weights 

(MWT) for genes are: GAPDH (198bp), TLR 2 (501bp), TLR 4 (410bp), NRAMP1 (433bp), 

TNF-α (549bp), and IL-10 (800bp).  Thus all cows used in this study had the genes for GAPDH, 

TLR 2 TLR 4, IL-10 and NRAMP1. 
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                                  (a)                                                                  (b) 

                                                              
               (c)                                                                  (d) 

 

Figure 2.  Genomic DNA from cow number (a) 1788, (b) 2965, (c) 3000, and  (d) 3001.   

4.4 Concentration and Purity of Isolated RNA  

The concentration and purity of isolated RNA was measured from bovine neutrophils to 

determine the treatment effect on mRNA transcription.  Neutrophils isolated from whole blood 

samples suspended in PBS or 62% ethanol (quebracho control), LPS, PGN, nystatin, or 

quebracho.  Neutrophils suspended in PBS were used as negative controls to determine a 

baseline gene expression for bovine neutrophils.  Ethanol was used as a control for quebracho, 

due to the manufacturer’s (Covenant Health, Brevard, NC) use of 62% of ethanol as an 

extraction solvent in the preparation of the quebracho extract.  This was used to differentiate 
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between the effects of gene expression patterns by ethanol and quebracho. Extraction of total 

RNA using TRIzol
©

 reagent and quantification and purity of RNA was performed using BioRad 

nanodrop spectrometer.  For comparison of samples with controls, the hash (#) and asterisk (*) 

signs indicate highly significant (P<0.0001) or significant (p<0.05), respectively, for RNA purity 

and concentration in Figures 3 and 4.  A lack of either one indicates no significance was seen for 

both RNA purity and concentration amongst treatment groups. 

Statistical analysis indicated that incubation time had an effect on RNA concentration, 

showing highly significant results (p<0.0001) and an interaction between time and group 

(p=0.0013) using the least squared mean of all four cows.    In Figure 3, increased highly 

significant results (p<0.0001) was seen for PGN and ethanol, while increased significant results 

(p<0.05) was seen for all other treatment groups compared to control seen at 15 minutes.  We see 

a slightly lower significant level (p<0.05) for ethanol compared to control at 30 minutes.  

Quebracho increased RNA concentration from 15 to 30 minutes, but still displayed an increase in 

significance (p<0.05) compared to control.  Lower RNA concentrations are measured at 60 

minutes for all treatment groups.  Nystatin and ethanol produced increased significant results 

(p<0.05), while quebracho produced increased significance (p<0.0001) against the control group.  

The only requirement for RNA concentration is that the reading from the spectrophotometer 

represents positive numbers, indicating the presence of RNA, while a negative number, indicate 

the lack of RNA presence in the sample (Hogan et al., 1993).  In this study, time and treatment 

can change the RNA concentration of cells exposed to compounds.  This is an indicator of 

overall cell activation due to time of incubation or concentration of treatment. Overall, these 

results indicated RNA transcription is increased in the presence of immunomodulators. 
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Figure 3. Concentration of RNA extracted from bovine neutrophils at different timepoints. 

 

No significant difference was observed on RNA purity, in relation to the effect of time 

(p>0.05) in Figure 4.  However, RNA purity significance (p<0.001) is seen for interaction 

between time and group using SAS analysis.  Increased RNA purity was highly significant 

(p<0.0001) at 15 minutes for all treatment groups compared to control.  Total RNA purity for 

LPS and PGN showed decreased significance (p<0.05) after cell exposure of 30 and 60 minutes, 

respectively, in relation to control.  In the present study, quebracho and ethanol decreased 

significance (p<0.05) at both 30 and 60 minutes  

Using an absorbance reading is the most common method to determine purity of DNA 

and RNA samples.  Nucleic acids absorb light at a wavelength of 260 nm, so the absorbance or 

optical density of DNA and RNA are often reported at this wavelength.  For RNA, a pure sample 

will have an A260/A280 value of ~2.0.    The purity of an RNA at a value of 2.0 is optimal to 
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avoid protein contamination in the sample. These results indicated RNA transcription is 

increased in the presence of immunomodulators at the earlier timepoint of 15 minutes. 
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Figure 4. Purity of RNA extracted from bovine neutrophils at different timepoints. 

 

4.5 Gene Expression in Bovine Neutrophils Suspended in PBS 

 Bovine neutrophils were suspended in PBS to determine a baseline for gene expression 

when compared to other treatment groups in this study.   Neutrophils were isolated and incubated 

at 0, 15, 30, and 60 minutes in PBS and were evaluated for mRNA transcript by RT-PCR.  Gene 

expression was observed for GAPDH, a loading control, in all animals (N=4). Expression of TLR 

2  and NRAMP1 was seen for animal 1788 at 0 minutes in Figure 5.  Animals 2965 and 3000 

showed gene expression for TLR 4 and TNF-α at 0 minutes.  While animal 2965 showed 

expression of NRAMP1 at 0 minutes.  No gene expression was seen for IL-10 (N=4) for 

unstimulated cells at 0 minutes.  Here the study showed TNF-α gene expression for animals 
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(2965 and 3000) in untreated neutrophils, which could be an example of polymorphism amongst 

same breeds of cattle.   

      
(a)           (b) 

       
                                       (c)                                                      (d) 

Figure 5. Gene expression in untreated bovine neutrophils incubated at 37°C in 5% CO2 and 

85% humidity for 0 minutes; cows used (a) 1788, (b) 2965, (c) 3000, and (d) 3001.   

In Figure 6, TLR 4 gene expression was seen for animals 1788 and 3001 while animal 

3001 expressed TLR 2 compared to the zero timepoint.  There was no change in gene expression 

for animals 2965 and 3000 from zero to 15-minute timepoint, except with TNF-α.  Only one 

animal (3000) displayed Nramp1 at the 15 minute timepoint.  There was no gene expression for 

TNF-α seen after 15-minutes exposure time interval in Figure 5.  Comparing Figures 4 and 5, 

toll-like receptor-2 expression was only seen in animal 3001 at 15-minute time interval, 

indicating possible cow variability.   
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                (a)                            (b) 

     
(c) (d) 

Figure 6. Gene expression in untreated bovine neutrophils incubated at 37°C in 5% CO2 and 

85% humidity for 15 minutes; cows used (a) 1788, (b) 2965, (c) 3000, and (d) 3001.   

No change in gene expression for TLR 4 was seen for half of the animals, except for 

animal 1788 and 3001 as illustrated in Figure 5.  The lack of gene expression for animal 3001 at 

0 time interval could be due to gene variability for this cow, compared to the others.  Only two 

animals remained unchanged for TLR 4 expression after 15 minutes of incubation in PBS, 

indicating a stress-induced gene expression trend (Wang et al.), or some other stimuli to induce 

expression of the TLR 4 transcript in Figure 5. Transcription of TNF-α was not seen at the 

mRNA level after 15 minutes of incubation in PBS.  The lack of amplification of TNF-α 
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transcript amongst the 15-minute group could be attributed to the cell’s adaptation to its 

environment or individual genetic characteristics.     

Gene expression variability was seen for TLR 2, and TLR 4 in untreated neutrophils, at 

the 30-minute time interval (Figure 7).  Transcription for TLR 2 was seen in two out of four 

animals at the 30 minute time interval, and TLR 4 expressions was observed in only one animal 

(#3001) in the same treatment group.  Nramp1 was transcribed in three animals, but not seen for 

animal 3001.  No expression was seen for TNF-α for all four animals.  Results with unstimulated 

bovine neutrophils demonstrate that time and cow genetics could play a synergistic role on 

transcription of selected genes.    

Nramp1, a divalent transporter, has been linked to host susceptibility or resistance to 

pathogens in bovine, murine, and porcine (Ables, et al., 2002).  The gene for Nramp1 is 

expressed mainly in macrophages, spleen, and lungs (Feng et al., 1996). 

      
                                       (a)                                                                   (b) 

 

Figure 7. Gene expression in untreated bovine neutrophils incubated at 37°C in 5% CO2 and 

85% humidity for 30 minutes; cows used (a) 1788, (b) 2965, (c) 3000 and (d) 3001.   
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    (c)                      (d) 

 

Figure 7. (cont).   

 Previous studies were done (Worku & Morris, 2009) as well as the current study have 

shown that bovine neutrophils are capable of expressing the NRAMP1 gene.  The mechanism of 

gene expression is unclear for Nramp1 induction in mice and porcine; however, it is known that 

LPS produces induction in the same animals (G. Zhang, et al., 2000).     

At the 1-hour interval (Figure 8), TLR 2 was not expressed when compared to zero 

timepoint PBS.  A time effect was seen with a down regulation of TLR 2 in unstimulated bovine 

neutrophils (N=1).  However, there appeared to be an expression of TLR 4 in unstimulated 

bovine neutrophils (N=2).  Cow variability was not seen for the one-hour timepoint when 

comparing transcription of selected genes of unstimulated cells.   

      
                                              ( a)                                               (b)  

 

Figure 8. Gene expression in untreated bovine neutrophils incubated at 37°C in 5% CO2 and 

85% humidity for 60 minutes; cows used (a) 1788, (b) 2965, (c) 3000 and (d) 3001.   
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                                                   (c)                                                 (d) 

 

Figure 8. (cont).      

All four animals tested did not express TNF-α at the one-hour timepoint.  Toll-like 

receptor 4 was expressed in only half of the animals tested at the 60-minute time interval, this 

could indicate a time dependent gene expression for TLR 4 and induction of Nramp1 in 

neutrophils.  The differences in gene expression can be possibly due to cow variation linked to 

polymorphisms that affect gene expression and resistance and susceptibility to disease as 

previously proven in bovine and buffaloes (Ables, et al., 2002).   

4.6 Expression of TLR2, TLR4, Nramp1, TNF-α , and IL-10 in neutrophils treated with 

Eschericha coli  derived lipopolysaccharide. 

 Lipopolysaccaride is a component of gram-negative bacteria.  It produces a different 

response by the innate immune system compared to gram-negative bacteria (Ulevitch & Tobias, 

1999).   To evaluate transcription of TLR 2, TLR 4, NRAMP1, TNF-α, and IL-10 at the mRNA 

level, bovine neutrophils collected from four cows were treated with E.coli derived 

lipopolysaccharide (100 ng) and incubated at 15, 30 and 60 minutes.  A previous study 

demonstrated that NRAMP1 could be expressed at the 30-minute timepoint for PMN treated with 
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LPS at 10ng (Worku & Morris, 2009).  In this study, we investigated the effects of LPS (100ng) 

on bovine PMN at 15, 30 and 60-minute timepoints (Figures 9, 10, and 11) for expression of TLR 

2 TLR 4, NRAMP1, TNF-α, and IL-10.  There was no animal-to-animal variation seen at the 

mRNA level for selected genes in Figure 9.   

 Modulation of gene expression in bovine neutrophils stimulated with LPS for 15 minutes 

in Figure 9, shows expression of TLR 2 in 3 out of four animals tested.  Expression of NRAMP1 

was seen in all animals tested when compared to the 15-minute time interval for PBS.  No 

change was seen for TLR 4, TNF-α, or IL-10.  

      
         (a)                (b) 

        
           (c)                                                           (d) 

 

Figure 9.  Gene expression in bovine neutrophils treated with 100 ng of E.coli derived 

lipopolysaccaride serotype 0111:B4 for 15 minutes at 37°C in 5% CO2 and 85% humidity; cows 

used (a) 1788, (b) 2965, (c) 3000, and (d) 3001.   
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A treatment effect was seen for LPS stimulated neutrophils, particularly with 

transcription of TLR 2, TLR 4, and NRAMP1 seen in Figure 10 compared to PBS.  In Figure 10, 

neutrophils stimulated with LPS, produced a more consistent pattern of gene expression at the 30 

minute time interval, in comparison with untreated bovine neutrophils at the same time point.  

Therefore we concluded that gene modulation was produced in LPS stimulated bovine 

neutrophils. 

            
  (a)                              (b) 

                         
(c) (d) 

 

Figure 10.  Gene expression in bovine neutrophils treated with 100 ng of E.coli derived 

lipopolysaccride serotype 0111:B4 for 30 minutes at 37°C in 5% CO2 and 85% humidity; cows 

used (a) 1788, (b)2965, (c) 3000, and (d) 3001.   
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   To measure gene expression in bovine neutrophils treated with LPS (100ng), cells were 

incubated for 60 minutes at 37°C, 5% CO2 and 85% humidity.  In Figure 11, extraction of RNA 

from bovine neutrophils resulted in transcription of TLR 2 in all animals tested (N=4).  Animal 

variation was seen for Nramp1 gene expression in 2 out of 4 animals and only one (animal 3000) 

expressed TNF-α when compared to PBS.  No animals tested expressed IL-10 at the 60-minute 

time interval (N=4) at the mRNA level.  Tumor necrosis factor- alpha gene expression was has 

been reported in milk samples stimulated with LPS stimulated from 16 to 32 hours (D. D. 

Bannerman, et al., 2004; Shuster, Kehrli, Rainard, & Paape, 1997).  Here, bovine neutrophils 

stimulated with LPS elicited transcription of TLR 2 and TNF-α.   While TLR2 gene expression is 

seen early in Figure 8, its activation has been noted in papers associated with LPS extracted from 

Porphyromonas gingivalis or Leptospira interrogans (Teixeira, Almeida, & Gazzinelli, 2002).   

 Expression of Nramp1 is associated with leukocytes, but with greater abundance in 

macrophages as demonstrated in Zhang’s study there is a time dependent induction of Nramp1  

by LPS (G. Zhang, et al., 2000).  In this study, Nramp1 was seen at earlier time intervals with 

neutrophils in PBS and when stimulated with LPS (100ng).  Studies have looked at bovine 

neutrophils and various immunodulators for short time intervals, in relation to the innate immune 

system (Worku & Morris, 2009).  A previous study investigated the effect of different forms of 

LPS on bovine neutrophils in certain genes (TLR4, Nramp1, and CD14) and cytokines (IL-8, IL-

1β, and TNF-α) under earlier time intervals.  It is known, that LPS induces proinflammatory 

cytokines such as TNF- alpha and IL-1β in a dose dependent manner in bovine neutrophils 

(Worku & Morris, 2009). 
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                                 (a)         (b) 

             
                                            (c)                                                    (d) 

 

Figure 11.  Gene expression in bovine neutrophils treated with 100 ng of E.coli derived 

lipopolysaccride serotype 0111:B4 for 60 minutes at 37°C in 5% CO2 and 85% humidity; cows 

used (a) 1788, (b) 2965, (c) 3000, and (d) 30001.   

4.7 Expression of TLR2, TLR4, Nramp1, TNF-α and IL-10, in neutrophils treated with 

Staphylococcus aureus derived peptidoglycan. 

Peptidoglycan is a component of the cell wall of gram-positive bacteria. The delayed 

effect of S. aureus derived peptidoglycan, maybe relevant to patterns of gene expression in cases 

of subclinical mastitis and TNF-α cytokine production (Riollet, Rainard, & Poutrel, 2000), in 

milk.   

 To evaluate gene expression of bovine neutrophils stimulated with peptidoglycan (PGN) 

Polymorphonuclear cells were incubated for 15 minutes with PGN and RNA was extracted to 
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determine transcription of TLR 2, TLR 4, Nramp1, TNF-α, and IL-10.  Results showed that S. 

aureus derived peptidoglycan (1µg) modulated expression of TLR 2 (N=1) at the 15 minute time 

interval (Figure 12).   Transcription of TLR 4, Nramp1, TNF-α and IL-10 was not observed in all 

of the animals tested (N=4) at this timepoint (Figure 11) compared to PBS.   

Cow variation was not detected at the 15 minute time interval.  The expression of TLR 2 

and 4 has been documented for neutrophils (Fan, et al., 2003; Kurt-Jones et al., 2002; Sabroe et 

al., 2003; Tsuda et al., 2004), in murine and humans for stimulation with PGN at earlier time 

intervals.  This study appears to be the first to investigate the stimulation of TLR 2 in bovine 

neutrophils stimulated with PGN at time intervals under one hour.  Although there was no 

change detected for TLR 2 at 15 minutes when compared to PBS.  We noticed a constant 

expression of TLR 4 in all animals tested, particularly with control samples; which could be due 

to stress endured by the animals from restraint during blood collection.  However, the lack of 

change in gene modulation does eliminate possible contamination during culturing of bovine 

neutrophils. 

     
(a) (b) 

 

Figure 12.  Gene expression in bovine neutrophils stimulated with 1µg of S.aureus derived 

peptidoglycan and incubated for 15 minutes at 37°C in 5% CO2 and 85% humidity; cows used 

(a) 1788, (b) 2965, (c) 3000, and (d) 3001.   
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            (c)                                                     (d)  

 

Figure 12. (cont). 

 

 Gene expression was seen for TLR 2 (animal 3000) and TLR 4 (animals 1788 and 2965); 

while NRAMP1 (animal 3000) lacked gene expression at the 30-minute time interval in bovine 

neutrophils (Figure 13) when compared to PBS.  Here animal variation is observed, due to the 

effect of genetics.  This may be a contributing (PGN) to the slow acting effect of S.aureus in 

bovine neutrophils (Teixeira, et al., 2002).  Nramp1 expression in animals 1788 and 2965 

remained unchanged compared to PBS for the 30 minute timepoint. 

                       
(a) (b) 

 

Figure 13. Gene expression in bovine neutrophils treated with 1µg of S.aureus derived 

peptidoglycan at 30-minute time interval at 37°C in 5% CO2 and 85% humidity; cows used (a) 

1788, (b) 2965, (c) 3000, and (d) 3001.   
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                      (c)                                                        (d) 

 

Figure 13. (cont). 

  

Nramp1 is less abundant in neutrophils, as opposed to macrophages (G. Zhang, et al., 

2000).  In the current study, we have demonstrated that Nramp1 expression was not modified by 

PGN in 3 out of 4 animals; however, gene expression in neutrophils can be seen as early as 30 

minutes when compared to PBS at the same time.  Peptidoglycan induction of TLR 2 remains 

consistent with published literature (Hadley, et al., 2005b); however, here we see induction of 

TLR 4, usually associated with LPS (gram-negative bacteria) that presents more questioning 

regarding, TLR4’s specificity to LPS.   

 To evaluate bovine neutrophils stimulated with PGN (1µg) after 60 minutes of incubation 

at 37°C, 5%CO2 and 85% humidity.  Cells were processed for RNA extraction to determine 

transcription of TLR 2, TLR 4, Nramp1, TNF-α, and IL-10.  Figure 14 results showed gene 

expression of TLR 2 (N=4) and Nramp1 (N=3) at 60 minutes of incubation with PGN compared 

to PBS.  Expression of TNF-α was not seen at the 60-minute time interval for all animals tested 

(N=4).  When compared to PBS at the same time interval TLR 4 (N=4) remained unchanged, as 

well as Nramp1 (animal 3001).     
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 Similar results have been reported on the regulation of human monocyte surface 

expression of CD 14, TLR 2 and 4 in whole blood (Hadley, et al., 2005b).  The results of this 

study are in agreements with Hadley, et al. (2005) indicating that TLR 4 responses to stimulation 

by PGN over a time range of 0 to 24 hours (Hadley, et al., 2005b).  These results show that 

stimulation of neutrophils with PGN induces expression of both TLR 2 and TLR 4 at 60 minutes 

in bovine neutrophils.   

     
(a)                       (b) 

      
(c)         (d) 

 

Figure 14. Gene expression in bovine neutrophils treated with 1µg of S.aureus derived 

peptidoglycan for 60 minutes at 37°C in 5% CO2 and 85% humidity; cows used (a) 1788, (b) 

2965, (c)3000, and (d) 3001.   
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This study demonstrated that PGN exposure results in TLR 2 and Nramp1 gene 

expression when compared to untreated cells at the same time point.  Some researchers have 

debated that PGN, only modulates TLR 2, while others claimed activation of both TLR 2 and 4 

when cells are exposed to PGN (Akira & Sato, 2003; Hadley, et al., 2005b; Wang, et al.; Wang 

et al., 2011; Dirk Werling, et al., 2006).   Thus PGN can serve as a positive control for TLR 2 

activation. 

Literature search for such an interaction of TLR 4 and PGN resulted in a study using 

human monocytes stimulated with LPS alone, PGN alone, and LPS plus PGN.  In all three 

treatments, there was a transient TLR 4 expressions on human monocytes after 1 to 3 hours. 

(Hadley, Wang, Foster, Thiemermann, & Hinds, 2005a).   

4.8 Expression of TLR2, TLR4, Nramp1, TNF-α and IL-10, in Neutrophils treated with 

Nystatin. 

 Gene expression of neutrophils stimulated with Nystatin, an antifungal agent, known as a 

lipid raft inhibitor induced TLR4 expression. To evaluate the effect of Nystatin on bovine 

neutrophils, cells were stimulated at 15, 30 and 60 minute timepoints in the presence of 5% CO2, 

37°C, and 85% humidity.    Reverse transcriptase polymerase chain reaction (RT-PCR) was 

performed on all RNA samples. 

In this study, two out of four cows used expressed Nramp1 gene expression (N=2) in 

bovine neutrophils stimulated with Nystatin (2500U) compared to expression in untreated 

neutrophils at the 15-minute time interval (Figure 15).  Expression of TLR 2 was seen in only 

three animals (N=3), two animals expressed Nramp1 and one out of 3 animals expressed TLR 4 

at the 15-minute time interval compared to PBS.  The lack of TNF-α gene expression in this 

study could be due to the amount and time effect of Nystatin used to stimulate neutrophils.  A 
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study using TLR2 expressing cells and TLR deficient cells demonstrated secretion of IL-1β, IL-

8, and TNF-α after 24 hours and 5µg/ml of treatment with Nystatin (Razonable, et al., 2005).  In 

this study, expression was not seen possibly, due to time of incubation and treatment 

concentration differences.   

     
(a)     (b) 

    
                                            (c)                                                         (d) 

 

Figure 15. Gene expression in bovine neutrophils stimulated with Nystatin (2500U) at 15 minute 

time interval at 37°C in 5% CO2 and 85% humidity; cows used (a) 1788, (b) 2965, (c) 3000, and 

(d) 3001.  

 Cells were immediately placed in PGN after isolation, RNA extraction was performed, 

and mRNA gene expression was visualized using a 1.7% agarose gel. Extracted RNA was used 

in RT-PCR to identify gene expression of TLR 2 (501bp), TLR 4 (410bp) and Nramp1(433bp).  
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At the 30 minute (Figure 16) timepoint TLR 2 (N=1) and TLR 4 (N=2) were expressed, however, 

no expression for Nramp1 (N=3) was observed for neutrophils stimulated with Nystatin 

compared to PBS. 

     
(a)                                                   (b) 

    
                                   (c)                                                      (d) 

  

Figure 16. Gene expression in bovine neutrophils treated with 2500U of Nystatin for 30 minutes 

at 37°C in 5% CO2 and 85% humidity; cows used (a) 1788, (b) 2965, (c) 3000, and (d) 3001.   

 Comparing Nystatin and PBS at the 30 minute time interval, there appears to be no 

change or alteration in TLR 2 expression, except with animal 3000.  Expression of TLR 4 was 

seen in animals 1788 and 2965.  However, the consistency is seen with Nystatin expressing both 

TLR 2 and 4 in all animals, whereas PBS produced a variegated pattern amongst cows in this 

study.   

1500 

500 

200 
50 



  51  

     

 

 

 51  

 Results for bovine neutrophils stimulated with NYS at 60 minutes induced expression of 

TLR 2 in all animals compared to PBS in Figure 17.  Expression of TLR4, TNF-α, and IL-10 

(N=4) in all animals remained unchanged in PBS of the same time interval.  There was a lack of 

gene expression for Nramp1 when comparing PBS and NYS treated samples at 60 minutes.  

Expression of TNF-α and IL-10 was not seen at the 60-minute time interval in response to 

nystatin. These results should be validated by more studies.   

 Biological membranes consisting of cholesterol, sphingolipids, and other phospholipids, 

are mainly associated with lipid rafts (Fantini, et al., 2002).  Nystatin’s weak affinity to 

cholesterol in animal cells is enough to destroy these membranes (Fantini, et al., 2002).  Lipid 

rafts are composed of cholesterol, and glycosphingolipids; intracellular pathogens use these rafts 

to evade phagocytosis by leukocytes (Pike, 2006).  Evidence has shown that bacterial, viral, and 

parasitic pathogens utilize endocytosis of lipid rafts as a way to enter the host (Zaas, et al., 2005).   

The destruction of these membranes and added toxicity produces an inflammatory affect to 

animal cells (Hac-Wydro, Kapusta, Jagoda, Wydro, & Dynarowicz-Latka, 2007; Ramanathan, 

Minton, Ross, & Blecha, 2004).   

In the study conducted by Razonable and colleagues, it was proposed that Nystatin is a 

PAMP and activates secretion of TNF-α in TLR2 expressing cells (Razonable, et al., 2005).  

However, in the current study, Nystatin maybe acting as a PAMP by activation of TLR 2 and 

TLR 4 transcription; due to the lack of TNF-α expression, perhaps due to either time or dose 

dependent limitations.  Recognition of nystatin by TLRs maybe attributed to the homologous 

nature of TLR and its ability to bind with MyD88 alone with CD14, which is utilitzed by many 

TLRs (Robbins, Cotran, et al., 2010; Tirumurugaan, et al., 2010; Dirk Werling & Jungi, 2003).   

CD14, an adaptor molecule, has a GPI-linked protein, that resides in lipid rafts and mediates cell 
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signaling by interacting with TLR2 and TLR4 (Szabo, Dolganiuc, Dai, & Pruett, 2007). Changes 

in receptor expression have been associated with disruption of lipid rafts impacting signaling 

through TLR and secretion of cytokines (Pike, 2006) 

 For neutrophils suspended in PBS at the 60 minute time interval, Nramp1 was expressed 

(Figure 7), however, expression was not seen in Figure 17 using bovine neutrophils., possibly 

due to earlier time intervals or lower dose concentration used in this study.   Nystatin treatment 

can disrupt lipid rafts and may impact bacterial-host interaction contributing to evasion of host 

response mechanisms by pathogens (D. D. Bannerman, et al., 2004; Fantini, et al., 2002).   

      
                                                    (a)         (b) 

       
                                              (c)                                              (d) 

 

Figure 17.  Gene expression in bovine neutrophils treated with Nystatin (2500U) at 60 minute 

time interval at 37°C in 5% CO2 and 85% humidity; cows used (a) 1788, (b) 2965, (c) 3000 and 

(d) 3001.   
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4.9 Expression of TLR2, TLR4, Nramp1, TNF-α and IL-10, in Neutrophils treated with 

62% Ethanol (Quebracho Control). 

Bovine neutrophils exposed to 62% ethanol expressed TLR 2, and TLR 4 at 15, 30, and 

60-minute timepoints at the RNA level in Figures 18, 19, and 20 compared to PBS.  The 

following genes were not expressed under these conditions: Nramp1, TNF-α, and IL-10 at the 

RNA level.  Since ethanol was used in the extraction process of quebracho, we investigated 

transcription caused by ethanol for comparison against quebracho treated neutrophils and PBS.  

To determine the effects of stimulation with ethanol, bovine neutrophils were incubated at 15, 

30, and 60 minutes at 37°C and RNA extracted from treated cells then amplified.  Incubation in 

PBS induced TLR 4, while ethanol induced expression of TLR 2 in neutrophils.  The induction of 

TLR 2 in Figure 19, is similar to what is observed for the same two cows effects of Nystatin in 

neutrophils at 30 minute time intervals.  Animals 2965 and 3000 were not used to supply limits. 

         
                                         (a)                      (b) 

 

Figure 18.  Gene expression in bovine neutrophils treated with 62% Ethanol at 15 minute        

time interval at 37°C in 5% CO2 and 85% humidity; cows used (a)1788, (b) 2965, (c) 3000, and 

(d) 3001.  

   Although the mechanism of ethanol’s activity is undefined, many researchers have 

speculated that like Nystatin, ethanol alters lipid rafts and inhibits TLR signaling (Szabo, et al., 
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2007).  It has been documented that in low doses, ethanol reduced proinflammatory cytokine 

synthesis of TNF-α against response to pathogenic stimuli (Nelson, Bagby, Bainton, & Summer, 

1989).  Bacterial pathogens use this same mechanism to alter lipid rafts to enter the host to 

induce bacterial infections (Zaas, et al., 2005).   

                                                                                
(a) (b) 

 

Figure 19.  Gene expression in bovine neutrophils treated with 62% Ethanol at 30 minute        

time interval at 37°C in 5% CO2 and 85% humidity; cows used (a)1788, (b) 2965, (c) 3000, and 

(d) 3001.   

Expression of TLR 4 remained unchanged at the 60-minute time interval compared to 

PBS; however, cow variation is detected in animal 3001, as gene expression can be seen for TLR 

2 in Figure 20.  Expression for Nramp1 was not detected at the same time interval in Figure 20 

compared to PBS.  To my knowledge, no studies have been conducted investigating gene 

expression by bovine neutrophils stimulated with ethanol, therefore; more studies are needed to 

explain the similar effects seen between ethanol and PBS. 
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          (a)                                                        (b) 

Figure 20.  Gene expressio in bovine neutrophils treated with 62% Ethanol at 60 minute        

time interval at 37°C in 5% CO2 and 85% humidity; cows used (a)1788, (b) 2965, (c) 3000, and 

(d) 3001.  

4.10 Expression of TLR2, TLR4, Nramp1, TNF-α and IL-10, treated with Quebracho. 

 Quebracho treatment modulated gene expression in bovine neutrophils.  Cow variation 

was seen at this time interval for stimulation with quebracho extract.  No gene expression was 

observed for TLR 2 and TLR4 in one animal.    Most published data investigates its use as an 

alternative to control gastrointestinal parasites in sheep and goats. Many studies in cows were 

conducted for the effects of condensed tannin extract from quebracho trees to reduce methane 

emissions from cattle (Beauchemin, McGinn, Martinez, & McAllister, 2007),  the effects of 

supplementing condensed tannin extract on intake, digestion, ruminal fermentation, and milk 

production of lactating dairy cows (Dschaak et al., 2011), as well as digestion, ruminal 

fermentation, protozoal populations, and milk production from dairy cows fed quebracho 

condensed tannins (Benchaar, McAllister, & Chouinard, 2008).  Little information is available 

about the mechanism and cell signaling actions of quebracho in vitro in bovine neutrophils. 

One study investigated the population of Trichostrongylus colubriformis and 

Teladorsagia circumcincta ; and measuring pathophysiological effects of inflammatory cells 
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(mast cells, globular leukocytes, and eosinophils) in goats (V. Paolini, A. Frayssines, F. De La 

Farge, P. Dorchies, & H. Hoste, 2003).  Results for Paolini’s study showed that there was a 

significant effect of Quebracho on mast cells in the small intestine of goats.  This is relevant to 

this study due to the use of ruminants (i.e. cows) and the effect of quebracho on innate immune 

cells.  Treatment with quebracho compared to ethanol and PBS showed no expression of TLR 2 

at the 15-minute time interval (Figure 21).  Transcription of TNF-α was seen for animal 1788 at 

15 minute timepoint when compared to ethanol and PBS. 

                         
(a) (b) 

Figure 21. Gene expression in bovine neutrophils treated with Quebracho (1.5x) at 15 minute        

time interval at 37°C in 5% CO2 and 85% humidity; cows used (a)1788, (b) 2965, (c) 3000, and 

(d) 3001. 

 Bovine neutrophils stimulated with quebracho extract (1.5x) for 30 minutes incubation 

showed a change in TLR2 (animal 1788) gene expression compared to PBS in Figure 22.   The 

use of 1.5X concentration of quebracho was randomly chosen, due to lack of information 

pertaining to in vitro studies using quebracho.  Quebracho extract is commercially available at 

3X concentration, however, due to its small amount.  The product was diluted to 1.5X for this 

study and 1 ml aliquots were added to cells.  No gene expression was seen for TNF-α, and IL-10 

(N=2) in animals tested at the 30-minute time interval when compared to both ethanol and PBS.  
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However, animal 1788 did show a lack of gene expression for Nramp1 when compared to PBS.  

Also, animal 1788, did not express TLR 4 when compared to PBS, but did express TLR 4 when 

compared to ethanol. Animal 3001 did show expression of TLR 4 when compared to both ethanol 

and PBS.  The evaluation of quebracho at 30 minutes allowed some transcription of TLR 2 

(Figure 22) to be induced.  The lack of gene expression for TNF-α proves some insight into 

quebracho’s ability to suppress proinflammatory production.  However, more studies would need 

to be conducted to gain a better understanding of quebracho’s role in innate immunity regarding 

neutrophils due to the use of two animals used in this study. 

     
(a) (b) 

 

Figure 22.  Gene expression in bovine neutrophils treated with Quebracho (1.5x) at 30 minute        

time interval at 37°C in 5% CO2 and 85% humidity; cows used (a)1788, (b) 2965, (c) 3000, and 

(d) 3001. 

      Stimulation of bovine neutrophils with quebracho extract for one hour resulted in no 

gene expression of TLR 4 (animal 3001) and Nramp1.  Only change detected for TNF-α, was at 

the one-hour time interval, but no change in IL-10 for animals tested (N=2) in Figure 23 

compared to PBS and earlier time points.  It is possible that quebracho’s effect on bovine 

neutrophils at the 60-minute time interval could be caused by a longer incubation period.  

Comparing quebracho and ethanol at the 60-minute time interval remain unchanged for gene 
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expression, except with animal 3001 for TLR 2.  It appears the one hour time interval has an 

effect on gene expression, similar to ethanol for TLR 4 and Nramp1 indicating an effect of 

ethanol.  Studies on alcohol consumption have shown Szabo’s study using humans and animal 

cells treated with ethanol, suppressed innate immunity and inflammation (Szabo, et al., 2007).  It 

is unclear whether quebracho or ethanol is responsible for gene suppression at the 60-minute 

time interval in control or treated samples. 

       
(a) (b) 

 

Figure 23. Gene expression in bovine neutrophils treated with Quebracho (1.5x) at 60 minute        

time interval at 37°C in 5% CO2 and 85% humidity; cows used (a)1788, (b) 2965, (c) 3000, and 

(d) 3001.  

Table 6 provides an overall summary of gene expression in bovine neutrophils stimulated 

with various immunomodulators.  Transcription of TLR 2, TLR 4 and TNF-α was seen in 

unstimulated neutrophils at zero hour timepoint.  No transcription was seen for Nramp1 or IL-10 

in the animals tested at the same time interval.   Unstimulated bovine neutrophils showed 

transcribed genes for TLR2, TLR4 and Nramp1 for both 15 and 30-minute time intervals.  

However, one-hour incubation, unstimulated neutrophils transcribed for TLR 4 and Nramp1.  

GAPDH was expressed constitutively in all samples, however, transcription of IL-10 was not 

 1500 

 200 

 500 

   50 



  59  

     

 

 

 59  

seen in all treatment groups tested, this may be due to primer sequence specificity; and therefore, 

other primers should be tested.   

              Table 6 

              Summary of Gene Expression 
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Treatment    

PBS + + + - + -  + + + + - - 

LPS NC NC NC NC NC NC  + + + + + - 

PGN NC NC NC NC NC NC  + - + - - - 

Nystatin NC NC NC NC NC NC  + + + + + - 

62% 

Ethanol 

NC NC NC NC NC NC  + + + + - - 

Quebracho NC NC NC NC NC NC  + - - - - - 

30 minutes 1 hour 
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Nystatin + + + - - -  + + + - - - 
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4.11 Effect of treatment on TNF-α secretion from bovine neutrophils 

 

The detection of proinflammatory cytokine TNF-α is one key indication of inflammation 

that aids in host defense against pathogens. To investigate the effects of LPS, PGN, Nystatin, 

ethanol, and quebracho treatment of secretion of the cytokine TNF-α from neutrophils, cell 
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supernatant extracted from bovine neutrophils stimulated with phosphate buffered saline, 

lipopolysaccaride, peptidoglycan, Nystatin , 62% ethanol, and quebracho were pooled and used 

in an ELISA.  This assay was used to measure translation of TNF-α at the 30-minute time 

interval for all treatment groups and PBS.  A standard curve was generated ranging from 0 to 

1000 ng/ml to measure concentration of the cytokine in cell supernatant samples in relation to 

standards. Effects of PGN and LPS on cytokine secretion are known and can be used as positive 

controls for a gram negative and gram positive effect (Mount, et al., 2009).  All treatment 

samples were normalized by subtracting PBS from LPS, PGN, Nystatin, and ethanol was 

subtracted from quebracho to represent negative TNF-α concentrations in Figure 24. Pooled 

supernatants from four cows from all treatment groups did not show a treatment effect, but 

demonstrated a significant decrease in TNF-α secretion compared to PBS and/or ethanol (p 

<0.05), after 30 minutes of incubation in Figure 24.  
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Figure 24. ELISA results of TNF-α cytokine secretion by bovine neutrophils treated  

with various immunomodulators.  

The TNF-α cytokine has been detected in milk samples after intramammary infections 

with both E. coli and S. aureus (D. D. Bannerman, et al., 2004), bovine neutrophils stimulated 

with LPS (Gilbert, Poutrel, & Sutra, 1994), and  in TLR 2- expressing human monocyte-derived 
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THP1 cells using Nystatin (Razonable, et al., 2005). In the present study, there was more TNF-α 

secretion in the PBS and ethanol treated samples compared to samples treated with LPS, PGN, 

Nystatin, or quebracho.  We could rule out contamination of control samples by treatment 

groups, due to samples being separately incubated and the same stock of PBS was used to dilute 

LPS, PGN and Nystatin.   

The decrease in measured TNF-α did not produce a treatment effect for bovine cell 

supernatants stimulated with compounds over baseline. Although, this same trend is not seen in a 

previous study investigating bovine neutrophils stimulated with higher concentrations of LPS 

ranging from 1μg to 100μg and longer incubation times (Gilbert, et al., 1994), we can infer that 

increasing these parameters could provide the same desired effects in bovine neutrophils.  

 Bovine neutrophils stimulated with PGN demonstrated in the current study had similar 

effects of TNF-α level to LPS, but lower cytokine secretion than PBS in Figure 23. Other studies 

that investigated S. aureus intramammary infection showed that TNF-α was not up regulated in 

milk and increased in production after 24 hrs (Riollet, et al., 2000).  This could be an indication 

that increased TNF-α response may require longer incubation times of peptidoglycan to have an 

effect on bovine neutrophils.  

In this study, concentration of TNF-α in cell supernatant after stimulation of bovine 

neutrophils with Nystatin did not produce similar effects to Razonable’s research, which showed 

TNF-α production over unstimulated cells (Razonable, et al., 2005); although, there were 

differences between this study and Razonable’s, which used monocytes, lower concentration of 

nystatin and an incubation time of 24 hours.  However, comparing Nystatin with Quebracho did 

produce highly negative significance (p<0.0001) for TNF-α secretion. It is possible that 

differences in these factors could have contributed to the effect seen here in this study.   
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From this study it is clear that TNF-α cytokine can be produced with stimulation of 

ethanol, but the cytokine was seen expressed over ethanol when subtracted from background of 

quebracho.  It has been documented that acute ethanol exposure in human neutrophils can alter 

TNF-α production with ethanol in a concentration dependent manner, with amounts ranging from 

0.1% above and 0.3 - 1.5% below basal levels after 24hrs of culturing human neutrophils (Taïeb 

et al., 2002).  In addition, another study identified the effects of acute ethanol on the inhibition of 

PMN migration to inflammation sites (P. Zhang et al., 2002). Thus ethanol in various 

concentrations using neutrophils and exposure times can alter TNF-α secretion.   Further studies 

using more animals may be needed to better understand the effects produced by quebracho in the 

production of TNF-α over ethanol.  A study using RAW 264 cells (mouse leukemic monocytes) 

were treated with ginger extract, soluble and insoluble ethanol for 18 hrs and supernatant was 

assayed for TNF-α production.  Cells treated with ginger extract secreted more TNF-α over both 

types of ethanol, and concluded that active molecules from ginger may not be inhibiting 

production of TNF-α (Ueda, Ippoushi, & Takeuchi, 2010).  None of the treatments resulted in 

secretion of TNF-α in this study above that observed in controls. More studies will need to be 

conducted, however, the concern here is that LPS, NYS and PGN also inhibited TNF-α 

production and quebracho caused transcription of TNF-α.   
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CHAPTER 5 

Conclusion 

   The findings of this study will provide a better understanding of the neutrophil’s 

role in innate immunity.  Transcription of TLR2, TLR4, Nramp1, and TNF-α mRNA was 

observed in bovine neutrophils treated with PBS, LPS, PGN, Nystatin, quebracho, or ethanol at 

various time intervals.  Gene expression was seen as early as 15 minutes at the transcription level 

in all treatment groups and with PBS.  Ligand-induced stimulation of TLR 2, 4 and Nramp1 was 

observed.  This study, allows some insight to the use of bacterial agents, such as LPS, PGN, and 

Nystatin for modulation of gene expression in neutrophils.   

Further studies are recommended to evaluate the impact of modulators on TNF-α 

secretion and the effect on the innate immune system. Variation was observed between cows in 

gene expression.  The research supports the importance of genetic resistance and susceptibility, 

in relation to breed selection.   Selective breeding could provide optimal results for the resistance 

of common disease affecting the dairy industry.   

Future studies are recommended to broaden the understanding of the neutrophil’s role in 

innate immunity and to investigate whether other livestock, such as sheep and goats are capable 

of producing similar results as the bovine and the impact of genetic variability within the same 

breeds.  Reagents specific for bovine and LPS free could correct any deficiencies that were seen 

in this study.   Such studies are needed to provide a better understanding of the neutrophils role 

in innate immunity for breed selection.  The findings will help to understanding the mechanism 

of bacterial infections associated with mastitis, primarily in the dairy industry to aid farmers in 

selective breeding management practices to aid in developing more disease resistant livestock. 
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Appendix A 

Reagents 

1.  Acid Citrate dextrose  

For 500ml: 

22g trisodium citrate (anhydrous) 

8g citric acid 

25g dextrose 

 

Bring up to 500 mls with sterile water, autoclave and store at4°C.  This should be used in 

the following proportion: 1ml ACD: 9ml blood. 

 

2. 1.7% Agarose Gels 

 

0.86g agarose 

50ml 0.5X TAE buffer 

 

Agarose was dissolved in 50mls of 0.5X TAE buffer in microwave until no particles were 

present. 

 

3. DEPC-treated Water 

 

1ml of DEPC was added to 1 liter of distilled water, mixed vigorously and let stand 

overnight than autoclave. 

 

4. 2.7% Saline 

 

27g NaCl 

 

Bring volume up to 1 liter with DEPC-treated water, autoclave and store at 4°C. 

 

 

5. 0.0132 M Phosphate Buffered Saline (PBS), pH7.4 

 

For PMN Isolation Procedure 

 Potassium Monobasic, KH2PO4 

 Formula Weight = 136.09 

  136.09 x 0.0132 = 1.796 g/L 

 

 Potassium Phosphate Dibasic, K2HPO4 

Formula Weight = 174.183 

174.183 x 0.0132 = 2.299 g/L 
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 Make 2 liters of K2HPO4   and 1 liter of KH2PO4 in 0.85% saline to make 1500 ml of 

buffer at a time.  Use the KH2PO4  to bring pH down to 7.4. 

 

6. 0.85% Saline  

 

8.5g NaCl into 800 ml of DEPC treated water,  mix on stirplate until completely 

dissolved, than add remaining DEPC treated water to 1000 ml.  

 

7. Wash Buffer 0.05% Tween 20 in PBS, pH 7.4 

 

2223g Potassium Phosphate Dibasic, K2HPO4 

 5.62g Potassium Phosphate Monobasic, KH2PO4 

                       11.68g Sodium Chloride 

 

Dissolve all contents into 2 liters of DEPC treated water and adjust pH.  Add 0.5 ml of 

Tween 20.  Autoclave and store at 4˚C. 

 

8. Blocking Buffer 5% Tween 20 in PBS with 0.05% NaN3 

 

  5g Tween 20 

  100 ml of PBS 

  50 ul Sodium azide 

 

 Dissolve all contents thoroughly and store at 4˚C. 

 

9. Reagent Diluent 5% Tween20 in PBS, pH 7.2 

 

Mix 50 mls of Tween 20 to 1 liter of PBS, mix thoroughly and store at 4˚C.   
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Appendix B 

Protocols 

Wright’s Staining Procedure 

 Differential cell counts were assessed by applying a thin smear of whole blood collected 

from the jugular vein of the cow.  Neutrophils isolated as per the procedure in materials and 

methods section were resuspended in PBS.  Differential cell counts before and after neutrophil 

isolation were conducted as followed: 

1. Place a drop of blood or isolated neutrophil suspension toward the frosted edge of the 

glass slide. 

2. Take a second glass slide and slide it up against the blood or neutrophil suspension 

droplet and push the second slide at a 30º angle and let dry at room temperature.   

3. Dip air dried slide in wright’s stain for approximately 10 seconds. 

4. Decolorize stained slide with deionized water for 10 seconds to wash off excess stain. 

5. Rinse slide in deionized water, if necessary for additional 10 seconds and air dry slide 

prior to reading. 

6. Smears were observed under oil immersion microscope for cell counts. 

Differential cells were counted up to 100 for numerical representation of various cells present in 

whole blood sample.    The total number of isolated neutrophils present out of 100 cells was 

counted based on cellular morphology and staining characteristics and the value was used to 

obtain purity and concentration of total isolated neutrophil population.  

Cell viability 

 To aid in determining the cell viability and concentration of cells in a suspension, the use 

of a vital dye, trypan blue solution (Sigma-Aldrich, St. Louis, MO cat.#T8154), to determine 
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viable vs. nonviable cells (the dye is excluded from viable cells).   Note: Always wear protective 

clothing, gloves, and eyewear.   

1. Obtain a clean hemacytometer with cover slip for the procedure. 

2. Obtain a uniform suspension of isolated neutrophils.  Pipette the cell suspension up and 

down gently in the 50 ml conical tube 5-7 times. 

3. Prepare a 1:2 dilution of the cell suspension in trypan blue.   Approximately 20µl of 

isolated PMN is needed to load 10µl onto each chamber of the hemacytometer.   

4. Take ~15 µl of isolated PMN from the 50 ml conical tube containing isolated PMN and 

place the cell suspension into the 1.5 ml RNase-free microcentrifuge tube. 

5. Add 15µl of trypan blue solution to the 1.5 ml microcentrifuge tube combining the cell 

suspension and gently swirl the contents.   

6. Pipette up and down several times to ensure a uniform cell suspension and place on ice. 

7. Load both sides of the counting chambers with 10 µl of cell suspension and place a 

coverslip over the counting chambers. 

8. Determine the number of cells (total and viable) in the cell suspension by viewing cells 

under a microscope at 100x magnification.   

9. Count the cells in all four x 1mm
2
 areas of the chamber.   

10. Calculate the cell concentration by using the following formula for total (or viable) cells.  

Read both sides of the chamber and average both sides. 

Total (or viable) cells in 4mm
2 
/ 4 = cells per mm

2   

Cells per mm
2 

/ Dilution Factor (DF) = cells/10
-4

 ml x 10
4
 = Cells/ml 

Cells/ml x total volume of cell suspension = Total (or viable) cells recovered 

Total (or viable) cells recovered x cell purity of PMN Wright’s stain = number of 
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total (or viable) PMN 

11. Clean the hemacytometer as soon as possible after use.  Clean with dilute bleach solution 

followed by 70% isopropanol.  Air dry hemacytometer and dispose ot trypan blue 

contaminated article in biohazard waste. 

 

Qiagen
©
 Multiplex PCR  

For a 50μl reaction: 

Component Volume per reaction Final Concentration 

2x Qiagen Multiplex PCR 

Master Mix 

25 μl 3mM MgCl2 

10x Primer Mix, 2μM each 

primer Mix 

5μl 0.2μM 

RNase-free water Variable N/A 

DNA Template Variable ≤ 1μg DNA/50μl 

Total Volume 50 μl  

 

CR Thermal cycler conditions 

Steps Time or Cycles Temperature 

Initiation 15 minutes 95º C 

Denaturation 30 seconds 94ºC 

Annealing 40 seconds 57-63ºC 

Extension 90 seconds 72ºC 

Number of Cycles 33 cycles N/A 

Final Extension 10 minutes 72ºC 

 

Procedure 

1. Thaw template DNA, primer solutions, dNTP Mix, 2x Qiagen Multiplex PCR Master 

Mix, and RNase-free water.  Mix thoroughly before use. 

2. Prepare a reaction mix according to the 50μl reaction table. 

3. Mix the reaction mix thoroughly, and dispense appropriate volumes into PCR tubes. 

4. Add template DNA to individual PCR tubes containing reaction mix. 
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5. Program thermal cycler according to program outlined above for conditions. 

6. Place the PCR tubes in the thermal cycler and start the cycling program.   

 

Qiagen
©
 OneStep RT-PCR 

For a 50μl reaction: 

Component Volume per reaction Final Concentration 

5x Qiagen OneStep RT-

PCR Buffer 

10 μl 1x 

Forward Primer 3 μl 0.6μM 

Reverse Primer 3 μl 0.6μM 

DNTP Mix (containing 

10mM of each dNTP) 

2μl 400μM of each dNTP 

Qiagen OneStep RT-PCR 

Enzyme Mix 

2.0 μl N/A 

RNase-free water Variable N/A 

RNA Template Variable 1pg – 2 μg/reaction 

Total Volume 50 μl N/A 

 

RT-PCR Thermal cycler conditions 

Steps Time or Cycles Temperature 

Reverse transcription 30 minutes 50º C 

Initiation 15 minutes 95ºC 

Denaturation 1 minute 94˚C 

Annealing 1 minute 50-68ºC 

Extension 1 minute 72˚C 

Number of cycles 33 N/A 

Final Extension 10 minutes 72º C 

 

Procedure 

1. Thaw template RNA, primer solutions, dNTP Mix, 5x Qiagen OneStep RT-PCR Buffer, 

and RNase-free water, and place them on ice. 

2. Prepare a master mix according to the 50μl reaction table. 

3. Mix the master mix thoroughly, and dispense appropriate volumes into PCR tubes. 

4. Add template RNA to individual PCR tubes. 

5. Program thermal cycler according to program outlined above for conditions. 
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6. Start the RT-PCR program while PCR tubes are still on ice.  Wait until the thermal cycler 

has reached 50˚C.  Then place the PCR tubes in the thermal cycler. 

 

Procedure for TNF-α ELISA 

 

1. A flat bottom 96 well plate (Nalge Nunc International) coated overnight with 100 μl per 

well of goat anti-bovine TNF-α capture antibody at a working dilution of 0.8 μg/ml.   

2. Plates were washed with wash buffer containing 0.05% Tween 20 in PBS (400μl) three 

times.   

3. Plates were blocked with 300μl of blocking buffer containing 5% Tween 20 in PBS with 

0.05% NaN3 and incubated at room temperature for ~2hours.   

4. Afterwards, plate was aspirated and washed with wash buffer three times.   

5. Samples and standard was added at 50μl per well in triplicate and incubated for 2 hours at 

room temperature.   

6. Generation of a standard curve was created to identify optical density of unknown 

samples standards ranged from 0 pg/ml to 1pg/ml.   

7. Plates were washed again three times with wash buffer. 

8. Detection antibody (100μl) containing 72μg/ml biotinylated goat anti-bovine TNF-α was 

added to each well and incubated for 2 hours at room temperature.  

9. Working dilution of 1:200 of Streptavidin-HRP (100μl) was added to each well and 

incubated for 20 minutes at room temperature.   

10. Plates were aspirated and washed as before with wash buffer three times. 

11. A 100μl of substrate solution containing 1:1 mixture of Color Reagent A and B (R&D 

systems) was added to each well and incubated for 20 minutes at room temperature, out 

of direct light.   
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12. Stopping solution (2N H2 SO4) of 50μl was added to each well.   

13. Optical density was read at an absorbance of 450nm using a MR600 micro plate reader 

(Dynatech Laboratories Inc., Chantilly, VA). 
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Appendix C 

Summary of Gene Expression by Cow 

PBS 0 hour 

Animal Numbers 1788 2965 3000 3001 

GAPDH + + + + 

TLR2 + - - - 

TLR4 - + + - 

Nramp1 + - - - 

TNF-α - - - - 

IL-10 - - - - 

 

15 minutes 
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3001  

G
A

P
D

H
 

T
L

R
2

 

T
L

R
4

 

N
ra

m
p
1

 

T
N

F
-α

 

IL
-1

0
 

 
G

A
P

D
H

 

T
L

R
2

 

T
L

R
4

 

N
ra

m
p
1

 

T
N

F
-α

 

IL
-1

0
 

 

G
A

P
D

H
 

T
L

R
2

 

T
L

R
4

 

N
ra

m
p
1

 

T
N

F
-α

 

IL
-1

0
 

 

G
A

P
D

H
 

T
L

R
2

 

T
L

R
4

 

N
ra

m
p
1

 

T
N

F
-α

 

IL
-1

0
 

Treatment    

PBS + - + - - -  + - + + - -  + + + - - -  + - + - - - 

LPS + + + + + -  + + + - + -  + - + + - -  + + + + - - 

PGN + - + - - -  + - + - - -  + - + - - -  + - + - - - 

Nystatin + + + - - -  + + + + + -  + + + + - -  + + + + - - 

62% 

Ethanol 

+ + + + - -  NC NC NC NC NC NC  NC NC NC NC NC NC  + + + + - - 

Quebracho + - - - - -  NC NC NC NC NC NC  NC NC NC NC NC NC  + + + - - - 

 NC= Not Conducted 
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 60 minutes 

 Animal Numbers                          1788 2965                     3000 3001  
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  Treatment    

PBS + - + + - -  + - + + - -  + - + + - -  + - + + - - 

LPS + + + + - -  + + + + + -  + + + + + -  + + + - - - 

PGN + + + - - -  + + + - - -  + + + - - -  + + + + - - 

Nystatin + + + - - -  + + + - - -  + + + - - -  + + + - - - 

 62% Ethanol + + + - - -  NC NC NC NC NC NC  NC NC NC NC NC NC  + + + - - - 

Quebracho + + + - - -  NC NC NC NC NC NC  NC NC NC NC NC NC  + - - - - - 

NC=Not Conducted 
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  Treatment    

PBS + + - + - -  + + - + - -  + - - + - -  + + + - - - 

LPS + + + + + -  + - + + - -  + + + + - -  + + + + - - 

PGN + + + + - -  + + + + + -  + + + - - -  + + + - - - 

Nystatin + + + - - -  + + + - - -  + + + - - -  + + + - - - 

 62% 

Ethanol 

+ + + - - -  NC NC NC NC NC NC  NC NC NC NC NC NC  + + + - - - 

Quebracho + + - - - -  NC NC NC NC NC NC  NC NC NC NC NC NC  + + + - - - 

  30 minutes 
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