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ABSTRACT 

Tao, Xiaojue. ARTIFICIAL NEURAL NETWORK APPLICATION IN 

ENVIRONMENTAL ENGINEERING. (Major Professor: Dr. Shoou-Yuh Chang), 

North Carolina Agricultural and Technical State University. 

                    

The objective of this thesis research is to apply two artificial neural network 

(ANN) methods, back-propagation neural network (BPN) and radial basis function 

generalized regression neural network (RBFGRNN) in two environmental engineering 

case studies to explore their ability to modeling the complex environmental engineering 

systems. The traditional environmental engineering systems modeling are frequently 

using the physical-based modeling methods. Their performance is decided by the quantity 

of samples and quality of sampling methods, and it is also based on the physical laws 

they obeyed and the system knowledge they explored. But ANN offers a unique and 

alternative solution to bridge the cause and effect without knowing the detailed 

relationship between each other. 

Two case studies are used to verify the performance of ANNs, landfill leachate 

flow rate modeling in Greensboro and total phosphorus concentration modeling in Te-Chi 

reservoir. The testing coefficient of determination R
2 

of BPN applied in landfill leachate 

flow rate modeling is 0.728 and that in total phosphorous concentration modeling is 

0.992. The testing coefficient of determination R
2 

of RBFGRNN applied in landfill 

leachate flow rate modeling is 0.823 and in total phosphorous concentration modeling is 

1. These results proved the ANNs are qualified to model complex environmental 

engineering systems modeling problems. 
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CHAPTER 1 

INTRODUCTION 

 

Modern society requires a highly secure degree of environment safety as a 

prerequisite for sustainable development, and environmental engineering is a key factor 

to meet this demand. However, the knowledge of the environmental system is limited, 

and most of the studies of environmental system modeling methods are based on the 

physical laws, called physically-based modeling.  Generally, environmental engineers 

and researchers applied methods in this category to aid in decision-making, estimation, 

and prediction. However, the performance of the physically-based modeling method is 

dependent on the universal knowledge of study area. It includes climate information, 

geological conditions, human activities, and other related data sets as input parameters. It 

is an inherent issue of applying these physical-based modeling methods. Because of the 

practical difficulties of representing all the natural complexity and available 

measurements, it may not fit the physical law well. The model results are subject to a 

large number of uncertainties. The implication of these uncertainties is particularly 

significant when the models are used in practical applications for prediction or 

extrapolation purposes under varying environmental conditions. Also some physical laws 

are only tenable under some restricted conditions. When the study area expands to a very 

large scale, it is doubtful whether the per-defined physical laws are still tenable or not.  

As a result, using the available pieces of information together with the alternative 

modeling method, which is capable of directly establishing the complex nonlinear 

mapping between input and output without knowing the physical relationship, is crucial 
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and effective for reducing the prediction or extrapolation errors caused by these 

uncertainties.   

Currently, it is impossible to eliminate uncertainties from physically-based 

models due to the difficulties mentioned above, especially the uncertainties caused by 

inherent random process or variability of physical process.  In the past, physically-based 

models were the only qualified modeling methods in environmental engineering fields, 

such as the hydrologic evaluation of landfill performance (HELP) model in landfill 

hydrology studies, MODFLOW in 3D subsurface ground water flow studies, and so on. 

Because of difficulties of measuring the model required data directly, many studies 

conducted research on model calibration and parameter estimation to improve the 

modeling accuracy (Zimmerman et al., 1998; Hill and Tiedeman, 2007).  But statistically-

based model calibration cannot guarantee the modeling accuracy as it may not be aware 

of the potential uncertainties in the system, even if the model bias and predictive 

uncertainties is reduced by using proper model and calibration method.  Furthermore, the 

even a well-calibrated model may be developed based on insufficient samples or 

oversimplification, and it will result in an ‘ill-posed’ problem, which will yield an 

unstable system. With the development of sensoring technology, the sampling methods 

were strengthened, and related physically-based model performance was relatively more 

accurate. This causes another problem, which increases the cost of data collection. 

Meanwhile, it still did not overcome its major disadvantages, which are intensive data 

requirements; need to determine large number of parameters; and difficulties in finding 

the best set of calibration parameters.   
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Compared with the physically-based modeling method, the highlight of data 

driven approaches is the modeling of a desired system output (but not necessarily of the 

mechanics of the system) using historical data.  Such approaches encompass 

“conventional” numerical algorithms, like linear regression or Kalman filters, as well as 

algorithms that are commonly found in the machine learning and data mining categories 

(Goebel and Saha, 2007). The latter data-driven approaches include fuzzy logics, genetic 

algorithms, artificial neural networks, and other approaches. A survey (Schwabacher, 

2005) provides an extensive overview over data-driven methods in the context of 

computational intelligence.    

 The purpose of this master thesis research is to apply artificial neural networks 

(ANNs) as an alternative approach for quantifying the cause-and-effect relationship in 

different environmental systems. As a data-driven based technique, the advantages of 

ANN can be itemized as (Tu, 1996): 

 Requiring less statistical training 

 Ability to implicitly detect complex nonlinear relationships between dependent 

and independent variables 

 Ability to detect all possible interactions between predictor variables 

 The availability of multiple training algorithms 

 ANN is the group name of information processing systems, which mimic the 

metaphor of how biological nervous system operates. Generally, ANNs are composed of 

a large number of highly interconnected processing elements (PEs) working in unison to 
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solve specific problems.  Based on different learning algorithms applied, ANNs can be 

distributed to different taxonomy.  The second chapter of this study will introduce the 

fundamental knowledge and structure of ANN and the single layer proceptron neural 

network (SLPNN) will be presented.  Chapter 3 and 4 will give in depth presentations on 

two advanced neural networks, back propagation neural network (BPN), and the radial 

basis functional generalized regression neural network (RBFGRNN), which will be used 

to testify the ANN abilities of modeling the environmental engineering systems. Also a 

new clustering method for seeking the centers applied in the RBFGRNN will be 

introduced.  After that, two study cases will be presented, which are leachate flow rate 

modeling in a municipal solid waste (MSW) landfill site at Greensboro, NC and total 

phosphorus concentration modeling of Te-Chi reservoir at Taiwan.  Performance 

comparison between two different advanced neural networks will be made and also 

discussion and conclusion of the experiments and findings will be presented in the last 

chapter.  
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CHAPTER 2 

INTRODUCTION TO ARTIFICIAL NEURAL NETWORK (ANN) 

 

 While developing an environmental system model, the features will be assigned 

degrees of importance based on past experience, physical laws, and other known and 

applicable information which has the cause-and-effect relationship with the current task 

and generalizations. Once the system model is derived, it is required to be a generalized 

application, which can be distributed to any similar system or predict the future status of 

the current task.  As a result, the modeling method will be a dynamic and complex 

learning mechanism that utilizes both historical and environmental data. In biological 

level, this mechanism can be fully represented by how human brain operates.  The human 

brain contains trillions of neurons with specific functions, and it can be described as a 

complex and parallel machine composed of trillions of processing elements. The figure 

below shows the structure of a biological neuron and its components.  

 There are four fundamental components that make up the composition of a neuron: 

dendrite, soma, axon, and axon terminal button (synapses). As shown in Figure 2.1, 

dendrites receive the bio-electronic signals and sent to the soma, the nucleus creates the 

response to the input signal and distributes to the synapses via the axon. The neuron is 

capable of achieving acquired knowledge for future use, while obtaining new knowledge 

to be processed.  Massive biological neural networks of immense complexity can be 

created within the brain based on the neuron's capabilities and its simplistic structure. 

Artificial neural networks are algorithms that mimic the metaphor of the biological 

neuron or its combinations. 
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Figure 2.1 Architectural Graph of Biological Neuron 
 

The single layer proceptron neural network (SLPNN) emulates the biological 

neuron and it is a fundamental sample of artificial neural networks. Figure 2.2 depicts its 

architectural graph.  X represents an input sample with n characteristics, x1, x2,…, xn, and 

a bias,x0≡1. These n+1 features are assessed of their importance by n+1 dimensional 

weight matrix, W, and emerge to a final output by passing through an activation function 

or a linear summation layer, Σ. The whole process can be stated in the mathematic form 

as following equations: 

                                 TI W X                                              (2.1) 

 

 

                         
1

( )
1 I

Y T I
e  

 


 (2.2) 
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Figure 2.2 Architectural Graph of Single Layer Proceptron Neural Network  
 

  The activation function determines whether the neuron will be activated, which 

depends on the momentum, α. It also can be replaced by “IF…THEN” command, and the 

soft limiter switches to a hard limiter as a result. 

 Modeling a dynamic system by using artificial neural networks will required two 

separate portions, training section and testing section. The training section is a learning 

processing, and the testing section is aim to validate the training performance. Different 

samples are applied in two sections to testify its generalization ability.  

 Single layer proceptron neural network applies an error feedback criterion to 

improve the modeling performance by adjusting the existing weights. If error is feedback, 

the old weights will be replaced by new weights as following equations: 

 
 _desired network output

X
W Y Y

X
      (2.3) 

 
new oldW W W    (2.4) 
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where β is the learning rate. Equation 2.4 is called the delta rule, which is often applied in 

artificial neural network training. Once ∆W is significant small or equal to zero, the 

training section of single layer proceptron is finished (Haykin, 1998). Technically, single 

layer proceptron only can solve the linear separable problems unless the input feature 

space is expanded. 

A number of different artificial neural networks have been developed with 

different structures, paradigms, and learning rules. The structures are defined in the ways 

how to connect layers. Layers have different functions and contain one or more neurons 

that process the same input information in parallel.  

In this research, two types of artificial neural networks will be applied to model 

the environmental engineering systems.  First, I will introduce the back-propagation 

neural network (BPN) in chapter 3, which is a supervised multiple layers proceptron 

utilizing the back-propagation algorithm.  Second, the radial basis functional generalized 

regression neural network (RBFGRNN) will be presented in chapter 4, which is a 

generalized linear regression model with nonlinear input space transformation technology 

achieved by supervised selection of centers.  
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CHAPTER 3 

BACK-PROPAGATION NEURAL NETWORK (BPN)  

 

 Werbos (1974) established the back-propagation algorithm and proposed the 

concept of hidden layers. However, this work went largely ignored until the development 

of back-propagation algorithm was reported by Rumelhart et al. (1986).  This report has 

been a major influence in the use of back-propagation learning, which has emerged as the 

most popular learning algorithm for the training of multilayer perceptrons (Haykin, 1998). 

3.1 Bio-directional Signal Flow 

 BPN is a type of multilayer perceptrons that applies the BP algorithm for network 

training. Figure 3.1 shows the architectural graph of a multilayer perception with one 

hidden layer and one output layer. The network shown is fully connected, which means 

any neuron in any layer is connected to all the neurons in the previous layer. The input 

signals are mapped into the input neurons, passed through the hidden neurons via 

different weighted connections at both sides of the hidden layer, and finally emerged to 

an output signal from the output neuron. The structure of an individual neuron in the 

hidden layer and output layer is identical to the processing element in the single layer 

proceptron neural network. Because the multilayer proceptron is able to have more than 

one hidden layers with different number of hidden neurons, its structure is more 

complicated than that of single layer proceptron neural network.  

 Figure 3.2 depicts a portion of the multilayer proceptron and two different signals 

are identified in this network (Parker, 1987): 
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1. The function signals pass through the network from input end to output end, 

called forward pass. The signals will be adjusted by the activated function 

contained in the neurons and the associated weights connecting the neurons. 

Finally, they will emerge as an output signal. 

2. The error signals are the differences between the targets and the network outputs 

originally, and they pass through the network from the output end to the input end, 

called reverse pass. The error signal involves an error-dependent function to 

modify the weights which connect the different neurons in two layers.  

 

Figure 3.1 Architectural Graph of a Multilayer Proceptron with One Hidden Layer 
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Figure 3.2 Illustration of Bio-directional Signal Flows 
 

3.2 Back-propagation Algorithm 

 In this section, the details of BP algorithm will be explained. Figure 3.3 shows the 

architectural graph of a BPN with one hidden layer and one output layer. Compared with 

a standard multilayer proceptron, the fixed inputs (Bias ≡+1)was added in the architecture 

of BPN. 



12 
 

 

Figure 3.3 Architectural Graph of a Back-propagation Neural Network with One 

Hidden Layer and One Output Layer 
 

3.2.1 Forward Pass 

The forward pass is that the given input signals pass through the network and 

emerge to the output signals. As a one hidden layer and one output layer BPN, the hidden 

layer output signals will be calculated first and then act as the input signals of the output 

layer. The input signals of the hidden layer can be calculated by Equation 3.1. 

                              TI W X    (3.1) 

where I is the input signal of hidden layer,  W is the weight matrix between input layer 

and hidden layer,  X  is the input sample, which contains fixed bias and the input features. 

 The output signal of hidden layer will be obtained by Equation 3.2.  
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1

2

3

( )

( )

( ) ( )

( )n

T I

T I
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T I

 
 
 
  
 
 
  

 

  

(3.2) 

where n is the number of  neurons in the hidden layer, T(I) is the activation function in 

the neurons. The graph of activation function is “s-shaped”, also called sigmoid function, 

which is defined as an odd, asymptotically bounded, completely monotone function of 

one variable. Mennon et al. (1996) presented a detailed study of two classes of sigmoids, 

simple sigmoids and hyperbolic sigmoids. In this research, a simple sigmoid function, 

tansig function, is applied as the activation function in the neurons, and its graph is 

shown in Figure 3.4 and the mathematic form is represented in Equation 3.3. 

 
                 

(2 )

2
( ) 1

1 I
T I

e   
 


 

 (3.3) 

where α is the momentum,α˃0.  

 The output signals of hidden layer, H, associated with the weights, V, between 

hidden layer and output layer (Equation 3.4) will act as the input signals, J, of output 

layer.  

                            TJ V H    (3.4) 

The output signal of output layer,Y


, can be calculated by Equation 3.5. 

 
                           ( )Y T J



  
 (3.5) 
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Figure 3.4 Graph of a Tansig Function, α=1 
 

3.2.2 Reverse Pass 

 The reverse pass refers to the back-propagation of the error signal. Equation 3.6 

defines the error signal. 

 
                                de Y Y



   
 (3.6) 

       In the reverse pass, the goal is to adjust all weights in the network to reduce the 

error of the training process iteratively.  The definition of the error energy of the output 

neuron is: 

 
                               

21

2
e    

 (3.7) 
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 The back-propagation algorithm applies a partial derivative 
V




to correct the 

weight matrix, V. According to the chain rule, this gradient can be expressed as: 

 
                         

e H J

V e J VY

 


    
   

   

 
 (3.8) 

 After calculating the single terms in right side of Equation 3.8, Equation 3.8 

yields: 

 
                         

'( )e T J H
V


   


 

 (3.9) 

 By using the delta rule, the adjustment of weight matrix V will be: 

 
                       0V H

V


  


      


 

 (3.10) 

Where β is the learning rate and δ0 is the local gradient of output layer defined by:  

                        
'

0 ( )e T J     (3.11) 

then 

                        new oldV V V     (3.12) 

 To update the weights between the input layer and hidden layer, it is required to 

calculate the equivalent local gradient. Because the error signals fed back to the hidden 

layer associated with the weights between hidden layer and output layer. The local 

gradient for updating the weight matrix W is defined as: 

                                                         
'( )h o V T I      (3.13) 

 By using the delta rule, the adjustment of weight matrix W will be: 
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                           hW X       (3.14) 

then 

                           new oldW W W     (3.15) 

 The weight matrices W and V will be adjusted iteratively until the stopping 

criteria were met.  

3.2.3 Stopping Criteria 

 Generally, back-propagation algorithm was not guaranteed to be converged after 

the iterative training. Some previous studies formulate sensible convergence criterions as 

follows: 

1. The back-propagation algorithm is considered to have converged when the 

Euclidean norm of the gradient vector reaches a sufficiently small gradient 

threshold. (Kramer and Sangiovanni-Vincentelli, 1989) 

2. The back-propagation algorithm is considered to have converged when the 

absolute rate of change in the average squared error per epoch is sufficiently small. 

(Haykin, 1998) 

3. The back-propagation algorithm is considered to have converged when the 

maximum training epoch is reached. 

4. The back-propagation algorithm is considered to have converged when the 

maximum training time is reached. 
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5. The back-propagation algorithm is considered to have converged when the rate of 

change in the average squared error per epoch is increasing; in other words, the 

validation check fails. 

 In this research, the author applied all of the stopping criteria to detect whether 

the training of back-propagation neural network is converged for keeping the network 

from over-training. 
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CHAPTER 4 

RADIAL BASIS FUNCTION GENERALIZED REGRESSION NEURAL 

NETWORK (RBFGRNN) 

 

 The RBFGRNN is a modification of the traditional Generalized Regression 

Neural Network (GRNN) that was developed by Specht (1991) (an adaptation of the 

Nadaraya-Watson kernel regression approximator (Nadaraya, 1965)), and the figure 

below shows its three-layer structure.  

 

Figure 4.1 RBFGRNN Structure 
 

 This network is akin to the Radial Basis Functional (RBF) network in which there 

is a hidden unit centered at each cluster center. These RBF units in the hidden layer are 

called Gaussian displacement units (GDUs) and correspond to kernels functions in the 

Nadaraya-Watson kernels regression approximator. The GDUs require the sample 

covariance matrix from the training data as well as the input cluster centers.  
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 The computation of the GDUs is governed by the Gaussian distribution function 

as following: 
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where xi is the ith input vector, t is localized centers representing clusters of the input 

vectors, C is the covariance matrix of the input samples in cluster k (Haykin, 1998), and 

σk is the spread parameter of kth cluster, estimated by the Equation 4.2: 
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where xi and xj is any pair of the p samples in cluster k, and n is the dimension of a sample. 

Figure 4.2 depicts 3D graph of the Gaussian distribution function with spread = 0.2 and 

center = (0, 0).  The center is located at [0 0], represented by the red peak point displayed 

in Figure 4.2. 

         The spread or called standard deviation σ is defined as the width of the cluster 

whose center is located at (0, 0) and it shows how much variation exists from the mean. 

A low standard deviation indicates that the data points tend to be very close to the mean, 

whereas high standard deviation indicates that the data points are spread out over a large 

range of values. 

            Ideally, the centers and spreads in Equations 4.1 and 4.2 can be acquired by 

unsupervised clustering methods, such as K-means, C-means, Divisive Analysis 

(DIANA), Kohonen self organized mapping (KSOM), and so on. However, these 

approaches need to fix the number of centers and may require a large training set for a  
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Figure 4.2 3D Graph of the Gaussian Distribution Function with Spread = 0.2 and 

Center = [0, 0] 
 

satisfactory level of performance. If the training set is not large enough, it limits that the 

RBFGRNN and can only achieve a local optimum solution that depends on the initial 

choice of cluster centers. For this reason, a supervised selection of centers will be applied 

in this research. The centers and spreads of the radial-basis functions undergo a 

supervised learning procedure and it will be discussed at the end of this chapter. 

 The output from the Gaussian displacement layer is then fed into a linear 

regression network in order to map the GDU outputs to target training data. Allowing x to 

be a set of input vectors and y to be the corresponding target output, a relationship can be 

established such that a set of weights, w, can be found that represent the mathematical 

connection between the input and output.  



21 
 

 

    

1 1 1 2 1

2 1 2 2 2

1 2

1 ( , ) ( , ) ( , )

1 ( , ) ( , ) ( , )

1 ( , ) ( , ) ( , )

m

m

p p p m

g X T g X T g X T

g X T g X T g X T
G

g X T g X T g X T

  

  

  

 
 
 
 
 
 

 (4.3) 

where ( , )p mg X T  is the GDU with thp sample and thm center, and the original p-by-n 

input space is expanded to a p-by-m space with the bias in the first column, n m . The 

linear relationship is established as following equation. 
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  (4.4) 

where 0 mw w  are the linear associate weights, and 0d dmy y  is the desired output. The 

weight vector is obtained by taking the inverse of Gaussian matrix and multiplied by the 

desired output dY . If the inverse of Gaussian matrix does not exist, pseudo-inverse of the 

Gaussian matrix is an alternative.  

                            
1( ) dW G Y    (4.5) 

                              
1( )T T

dW G G G Y   (4.6) 

The predicted results will be obtained by 

                         ( , )pred textY G x T W    (4.7) 

where ( , )textG x T is the GDU with testing samples and trained centers, T. 

The supervised center selection method is a mechanism which selects the centers 

and equivalent spread based on RBFGRNN testing performances through trial-and-error 
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processes. However, it is different from conventional error-feedback algorithms, because 

the test performance evaluated by the mean square error of the test samples of each 

attempt is only mapping of a number of centers and a unified spread, which means the 

clusters created have different centers but the same width. By varying the number of 

centers and value of spread, the near globe optimal, decided by the step size between 

pervious value of spread and current value of spread, but an acceptable solution will be 

found. 

The first step in the development of such a supervised center selection method is 

to select a training sample as the initial center with a large spread. The larger the spread is, 

the smoother the function approximation. Too large a spread means a lot of neurons are 

required to fit a fast-changing function. Too small a spread means many neurons are 

required to fit a smooth function, and the network might not generalize well.  

After the selection of initial center and spread, perform the RBFGRNN training 

and testing by using equations 4.1, 4.3-4.7, and calculate and record the mean square 

error between network outputs and desired outputs of the testing section. Then build up a 

linear regression model of network outputs and target outputs in the training section as 

shown in figure 4.3.The point ( , )j jY T  has the maximum distance fromY T , so the thj  

training sample will be selected as another center.  

Keep finding the training samples whose pair of (Y, T) has the maximum distance 

form Y = T until all the training samples are selected as the centers. Then a profile of 

mean square errors of each attempt has been recorded.  
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Reduce the value of the spread by a small step size, and repeat the steps above, 

and then another profile of networks’ performances will be obtained. Implement the 

iterative operations above until the spread is reduced to zero, and find the number of 

centers and value of spread which are mapped to the minimum mean square error in the 

testing section. It will be the parameters which lead to the optimal modeling solution.  

 

Figure 4.3 A Linear Regression Model of Network Outputs and Target Outputs in 

RBFGRNN Modeling 
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CHAPTER 5 

CASE STUDIES 

 

5.1 Model Performance Validation Methods 

 In this section, three model validation methods will be introduced to check the 

modeling performance, which are mean square error MSE, coefficient of correlation R, 

and coefficient of determination R
2
.  

 The mean square error measures the average of the squares of errors. The error is 

the difference between which the value implied by the estimator and the quantity to be 

estimated. The mathematic form of mean square error is described by Equation 5.1. 
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Where ,pred iY  is the thi  predicted output, ,desied iY is the thi  desired output, and 1i n , n is 

the length of the output vector.   

The value of the coefficient of correlation R is such that -1 ≤ R ≤ +1. An R value 

of exactly +1 indicates a perfect positive fit, and an R value of exactly -1 indicates a 

perfect negative fit. If there is no linear correlation or a weak linear correlation, R is close 

to 0. The mathematic form of coefficient of correlation is described by Equation 5.2. 
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
 (5.2) 

Where ( , )R i j is the correlation coefficient of vector i and vector j, and ( , )Cov i j is the 

covariance matrix of vector i and vector j. Vector i represents the predicted outputs of 

sub-network testing and vector j represents the desired outputs of sub-network testing.  
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To evaluate the performance of the designed model, the coefficient of 

determination, R
2 

test, is introduced. The R
2
 test is a statistical indicator that compares the 

accuracy of the proposed model and is described in Equation 5.3. 
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Where ,pred iY  is the thi  predicted output, ,desied iY is the thi  desired output, and 1i n , n is 

the length of the output vector.  The R
2
 test gives the proportion of the variance of one 

variable that is predictable from the other variable. A perfect fit would result in R
2
=1, 

while R
2
=0 indicating a very poor fit. 

5.2 Case 1: Leachate Flow Rate Prediction in Greensboro, North Carolina 

5.2.1 Introduction 

 Landfill is the oldest and most common method of solid waste disposal by 

burying the collected municipal solid waste (MSW).  Early landfills were put in 

convenient and on the least expensive land. As rain washes through the waste tip, it 

dissolves some of the solids and mixes the liquids. The water can become acidic and eat 

into the waste in containers and produces a contaminated fluid called leachate. Leachate 

escapes from most old landfills, contaminates the surface and underground water systems, 

and threatens the drinking water supply and other water uses. Modern landfills are 

designed to protect the environment from pollution. More recently, landfills have had 

barriers designed to keep the leachate within the landfill systems. Engineers line the 

landfill with clay or synthetic materials to prevent the pass through of leachate. Pipes are 

then used to collect the leachate for storage in tanks and for special treatment. However, 
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the USEPA has stated that the barriers "will ultimately fail," while the site remains a 

threat for "thousands of years," suggesting that modern landfill designs delay but do not 

prevent ground and surface water pollution. Based on these facts, it is important and 

significant to estimate the leachate flow rate at the bottom of a MSW landfill to prevent 

the mixing of leachate with the streams which flow towards the major ground water 

systems. Many previous studies indicate that artificial neural network methods are the 

effective approaches to modeling different types of nonlinear systems. Burke, et al. (1994) 

proved the back-propagation neural network can perform as well as the best traditional 

methods for the breast cancer outcome prediction, and that they can capture the power of 

non-monotonic predictors and discover complex genetic interactions. Khoa, et al. (2006) 

introduced a neural network based method to forecast the stock price, and demonstrated 

the ability of back propagation neural network to model a nonlinear process without a 

prior knowledge about the nature of the processing. A back propagation neural network 

was proposed for modeling the leachate flow-rate in a municipal solid waste (MSW) 

landfill site (Ferhat and Bestamin ,2006). In this thesis, the radial basis functional 

generalized regression neural network based leachate flow rate estimator has been 

developed, and a case study was performed to validate the proposed model. 

5.2.2 Data Selection  

 Most of the neural network model for leachate flow rate prediction in previous 

studies cannot capture all of the features which affect the leachate flow rate, both the 

peak and average.  Ferhat and Bestamin (2006) selected 11 input features of Back 

Propagation Neural Network (BPN), including pH value (collected leachate), temperature 
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(collected leachate), conductivity (collected leachate), months, temperature 

(meteorological parameter), pressure, cloudiness, relative humidity, precipitation, 

maximum temperature and minimum temperature. Chang and Wang (2009) selected 

porosity, field capacity, wilting points, saturated hydraulic conductivity and the layer 

thickness among 23 available parameters of Hydrologic Evaluation of Landfill 

Performance (HELP) model as the input features of their back propagation neural 

network. The sensitivities of these five parameters affecting the leachate flow rate were 

analyzed individually. In this study, leachate flow rate prediction modeling is also based 

on these five parameters, but this thesis will focus on the synthesis effect on the leachate 

flow rate caused by these five parameters. The data generation process is based on the 

well-known computer program that computes estimates of water balances for municipal 

landfill, HELP. The input features are generated randomly in a qualified range and are 

able to be implemented by the HELP model. 

 Once the samples are generated, a normalization method is applied to scale the 

values of input and output from 0 to 1 by using Equation 5.4. 

 ( )

( ) ( )
Normalized

Data Min Data
Data

Max Data Min data





 

 (5.4) 

 After the normalization, 75% data sets will be randomly selected as the training 

samples and the rest 25% data set will be the testing samples. 

 Once the predicted output is obtained, it will also be de-normalized by Equation 

5.5. 

  ( ) ( ) ( )NormData Data Max Data Min Data Min Data     (5.5) 
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 For illustrating and validating the application of the RBFGRNN model, a case 

study is performed under the simulated environment in Greensboro, North Carolina. This 

simulated environment is based on the parameters of general climate data, daily 

climatologic data, soil characteristics, and design specifications from the HELP model, 

and the annual leachate flow rate was carried out by iterative calculation by the HELP 

model, which is the desired output for the network training and network testing. 

 The HELP model has a default evapotranspiration database for 183 U.S. cities, 

containing data for latitude, evaporative zone depths, leaf area indices, growing season, 

average wind speed, and average quarterly relative humidity. A default precipitation 

database is included, containing 5 years of daily values for 102 cities throughout the 

United States. This model also has a synthetic weather generator with coefficients for 139 

cities for daily precipitation data generation and for 183 cities for daily temperature and 

solar radiation data generation. The model contains a default soil database of 

characteristics for 42 types of materials (soils, waste, and geosynthetics). In this case 

study, the essential landfill design parameter and the climate data set are listed in Table 

5.1. The monthly mean temperature and monthly precipitation are shown in Figure 5.1 

and Figure 5.2. A snapshot of the data set containing input and output samples is listed in 

Table 5.2.  

5.2.3 BPN Model Description and Results in Case 1 

  As mentioned in chapter 3, there are a number of key parameters in the back 

propagation neural network with one hidden layer and one output layer. First of all is the 

size of hidden layer that implicates the number of hidden neurons in the hidden layer. 
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However, there is no efficient approach to determine the optimal number of hidden 

neurons. Hence, the back-propagation model will vary the number of hidden neurons 

from 10 to 50, called initial screen.  

     Table 5.1 Landfill Design Parameters for HELP Model at Greensboro, NC 

Type of Data Parameters Value 

General Climate 

Data 

Start of Growing Season 90 days 

End of Growing Season 305 days 

Average Wind Speed 7.6 MPH 

First Quarterly Relative Humidity 66.00% 

Second Quarterly Relative 

Humidity 
68.00% 

Third Quarterly Relative Humidity 74.00% 

Fourth Quarterly Relative Humidity 70.00% 

Daily Weather 

Data 

Evaporative Zone Depth 35 in 

Maximum Leaf Area Index 3.5 

Latitude 35.13 

Average Temperature 57.875 F  

Precipitation and Mean 

Temperature 

See Figures 5.1 and 

5.2 

Porosity 0.671 

Soil Characteristics 

Field Capacity 0.292 m
3
 

Wilting Point 0.077 kg/m
3
 

Sat. Hydr. Conductivity 0.01 cm/day 

Initial Moisture Storage 0.300 m
3
 

Runoff Curve Number 82.2 

Design 

Specifications 

Landfill Area 15 acres 

Municipal Waste Specific Weight 900 lb/yd
3
 

Slope 3.00% 

Soil Texture 9 

% of Area Where Runoff is Possible 100% 
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 The sub-network with minimum mean square error and coefficient of 

determination will be chosen as the candidate for further experiment.  The stopping 

criteria in the initial screen are: 

1. Maximum number of epochs to train is 5000. 

2. Performance goal (mean square error of the training result) is 0. 

3. Minimum performance gradient is 1×10
-10

. 

4. Maximum validation failures equal to 1.  

Table 5.2 Generated Data Set Snap Shot by Using HELP Model 

Layer 

Thickness 

(in) 

Porosity Field 

Capacity  

Wilting 

Point  

Sat. Hydr. 

Conductivity(cm/s) 

HELP 

(in/yr) 

150 0.671 0.292 0.077 0.001 7.328 

300 0.671 0.292 0.077 0.001 7.298 

182 0.671 0.292 0.077 0.001 7.34 

300 0.736 0.292 0.077 0.001 7.004 

300 0.363 0.292 0.077 0.001 8.961 

300 0.671 0.419 0.077 0.001 8.418 

300 0.671 0.587 0.077 0.001 11.259 

300 0.671 0.448 0.077 0.001 8.549 

300 0.671 0.292 0.017 0.001 9.064 

300 0.671 0.292 0.026 0.001 8.507 

300 0.671 0.292 0.077 0.004 8.614 

300 0.671 0.292 0.077 0.007 9.266 

 

At each training epoch, the testing samples will be applied to validate the network 

training performance. If the mean square error is increased, the validation fails. It 

prevents the network over training. Once the candidate is chosen after the initial screen, 

this network will be initialized and pass through the training process again without the  
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Figure 5.1 Monthly Mean Temperatures in City of Greensboro, NC 
 

 

Figure 5.2 Monthly Mean Precipitation in City of Greensboro, NC 
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 limitation of criterion 1 listed above. Secondly, the initial weights in matrices W and V   

are generated within the interval, (0,1), by a uniform random generator.  The tansig 

function is applied as the activation function in the processing elements with α=1. The 

learning rate β is fixed as 0.25. 

Figure 5.3 displayed the test performances of the initial screen of 41sub-BPNs 

with 10 to 50 hidden neurons in the hidden layer, evaluated by mean square errors 

between the predicted outputs and desired outputs of different sub-network testing. The 

 

Figure 5.3 Performances of the Initial Screen of 41Sub-BPNs with 10 to 50 Hidden 

Neurons in the BPN Training Procedure of Leachate Flow Rate Modeling 
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 x-coordinate represented the sub-networks with different hidden neurons from 10 to 50, 

and the y-coordinate represented their related mean square errors, evaluated by Equation 

5.1. The little text block indicated the BPN with 34 hidden neurons in the hidden layer 

has the minimum testing mean square error 3.716 inch
2
/year

2
.   

Figure 5.4 shows their correlation coefficients (Rs), evaluated by equation 5.2, 

which measure the strength and the direction of a linear relationship between the network 

outputs and the desired outputs. The x-coordinate represented the sub-networks with 

different hidden neurons from 10 to 50, and the y-coordinate represented their related  

 

Figure 5.4 Correlation Coefficients of the Initial Screen of 41Sub-BPNs with 10 to 50 

Hidden Neurons in the BPN Training Procedure of Leachate flow Rate Modeling 
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correlation coefficients. The little text block indicated the BPN with 34 hidden neurons 

has the maximum testing correlation coefficients 0.873. 

Based on Figures 5.3 and 5.4, the best candidate will be the back-propagation 

neural network with 34 hidden neurons, which has the minimum mean square error 3.716 

and the maximum linear correlation coefficient 0.873 among all 41 sub-BPNs. Figure 5.3 

and 5.4 also implicated that increasing the number of hidden neurons will not improve 

the network performance directly. It is possible that there is a better solution when more 

than 50 hidden neurons are applied in the hidden layer, but it will enlarge the size of 

network, create more connections between each layer, increase the network training time 

and consume huge computation capacity. The candidate BPN with 34 hidden neurons 

will be initialized and retrained without the limitation of maximum training epochs. At 

9704
th

 training epoch, the validation check failed which means the mean square error of 

testing results kept decreasing until it reached the 9704
th

 epoch. The local gradient δ at 

the output layer was decreasing to 0.001. As a result, the best normalized validation 

(testing) performance of the network (mean square error) is 0.009 at epoch 9703. These 

facts are demonstrated in Figures 5.5 and 5.6. 

Figure 5.7 shows the normalized linear regression plots of leachate flow rate 

modeling by using BPN. The upper left plot indicates the linear regression model in the 

training section with R = 0.952, and _ 0.84 0.066net train trainY Y   . The upper right plot and 

lower left plot are the same, because the validation and test samples are identical. The Rs 

= 0.853, and the linear regression model can be represented asYnet_test ≈0.74 · Ytest + 0.11. 

The lower right plot is a summary of three previous cases, the overall  
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Figure 5.5 Training State Plots in the BPN Training Procedure of Leachate Flow 

Rate Modeling 
 

 

Figure 5.6 Performance Plot in the BPN Training Procedure of Leachate Flow Rate 

Modeling 
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correlation coefficient is 0.920, and _ 0.79 0.086net all allY Y   . After de-normalization, 

the testing network outputs were re-scaled, and the testing regression model was changed 

to _ 0.74 2.1net test testY Y   , as shown in figure 5.8, but the coefficient of correlation is 

same as the one before it was re-scaled. 

 

Figure 5.7 Regression Plots of Leachate Flow Rate Modeling by using BPN 
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Figure 5.9 depicts the test performance of the back propagation neural network in 

original scale. The dash line curve with circle marker represented the desired leachate 

flow rate and the dash line curve with square marker represented the BPN predicted 

leachate flow rate. The dash line curve with triangle marker represented the error 

calculated by desired leachate flow rate minus BPN predicted leachate flow rate. The x 

coordinator represented 25 testing samples, and the y coordinator represented the related 

leachate flow rate. The model successfully predicted the peak and valley values of the 

leachate flow rate within ±2 in/year. The largest error happened at 17
th

 testing sample 

may due to the similar sample or samples in the training section less excited or no similar 

sample or samples were trained in the training section. As a result, the network did not 

learn such information contained in 17
th

 testing sample. 

   

Figure 5.8 Testing Regression Plots of Leachate Flow Rate Modeling by using BPN 
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Finally the coefficient of determination R
2
 is applied to evaluate the performance 

of the linear regression. Because R of the test section is 0.853, R
2
 = 0.728, which means 

72.8% of the total variation in the desired test output can be explained by the linear 

relationship between the desired test output and the BPN test output (Ynet_test ≈ 0.74 · Ytest 

+ 2.1), the other 27.2% of the total variation of the desired test output remains 

unexplained. The mean square error of the final BPN leachate flow rate modeling is 

3.644inch
2
/year

2
. 

 

Figure 5.9 De-normalized BPN Test Performance, Desired Leachate Flow Rate vs. 

BPN Predicted Leachate Flow Rate 
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5.2.4 RBFGRNN Model Description and Results in Case 1  

The structure of RBFGRNN is different from that of BPN, as well as the learning 

algorithm. A RBFGRNN with defined centers and spread is a one-pass network, which 

means there is no iterative weight updating or calculations. As mentioned in Chapter 4, 

the iterative process created for RBFGRNN is only aim to locate the optimal centers and 

spread. Definitely, testing performance decides the generalization ability of the proposed 

network and evaluates how well the network is learning the information given by the 

training samples. In this section, the training performance will be ignored and the testing 

performance will be amplified. Figure 5.10 shows the testing performances (mean square 

error) of a cluster of sub radial basis functional generalized regression neural networks. 

These subnets are varied by different number of centers and spread values. The mean 

square errors of different subnets are represented by different colors. Red color indicates 

high mean square error and blue indicates low mean square error. Based on recorded 

RBFGRNN testing performances, the RBFGRNN with 24 centers and spread=1has the 

best testing performance MSE = 2.430 inch
2
/year

2
.  

Figure 5.11 shows the plot of linear regression model of the desired leachate flow 

rate and RBFGRNN predicted leachate flow rate in testing section. The circle represented 

point which is in the form of ( , ,,desired i predicted iY Y ), where  1,25i . The dash line 

represented , ,desired i predicted iY Y , and the blue line represented the fitting curve, which is

, , 1.3predicted i desired iY Y  with the correlation coefficient R = 0.907.  
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            Figure 5.12 depicts the test performance of the radial basis functional generalized 

regression neural network. The dash line curve with circle marker represented the desired 

  

Figure 5.10 3D Plot of RBFGRNN Testing Performance with Different Spread and 

Centers in the Leachate Flow Rate Modeling 

 

 leachate flow rate and the dash line curve with square marker represented the 

RBFGRNN predicted leachate flow rate. The dash line curve with triangle marker 

represented the error calculated by desired leachate flow rate minus RBFGRNN predicted 

leachate flow rate. The x coordinator represented 25 testing samples, and the y 

coordinator represented the related leachate flow rate. The model successfully predicted 

the peak and valley values of the leachate flow rate within ±1 in/year. The largest error 
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happened at 17
th

 testing sample may due to the similar sample or samples in the training 

section less excited or no similar sample or samples were trained in the training section. 

As a result, the network did not learn such information contained in 17
th

 testing sample. 

The mean square error between the desired leachate flow rate and the RBFGRNN 

predicted leachate flow rate is 2.430inch
2
/year

2
. The coefficient of determination R

2
 is 

equal to 0.823, which means 82.3% of the total variation in the desired test output can be 

explained by the linear relationship between the desired test output and the RBFGRNN 

predicted output ( _ 0.85 1.3net test testY Y   ). 

 

 

Figure 5.11 Regression Plots in the RBFGRNN Testing Procedure of Leachate Flow 

Rate Modeling 
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Figure 5.12 De-normalized test performance, Desired Leachate Flow Rate vs. 

RBFGRNN predicted Leachate Flow Rate 
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correlation, and higher coefficient of determination. The R
2
=0.823 in the RBFGRNN 

modeling stated  that 82.3% of the total variation in the desired test output can be 
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explained by the linear relationship between the desired test output and the RBFGRNN 

predicted output. 

Table 5.3 Testing Performances of Two Neural Network Applications in Case 1 

Networks 
MSE 

inch
2
/year

2
 

Coefficient of  Correlation 
Coefficient of  

Determination 

RBFGRNN 2.430 0.907 0.823 

BPN 3.644 0.853 0.728 

 

5.3 Case 2: Total Phosphorus Concentration Prediction in Te-Chi Reservoir,   

Taiwan  

5.3.1 Background Information 

 Nutrients are important because they are required for growth of the 

microorganisms used in wastewater treatment processes and because, if not removed, 

they can lead to excess algal growth, particularly in lakes. The principal external sources 

of nutrient inputs are: municipal wastes; industrial wastes; agriculture runoff; forest 

runoff; urban and suburban runoff; and atmospheric fallout (Ray, 1994). Phosphorus, the 

primary controllable nutrient load, is one of the key elements necessary for growth of 

plants and animals and in lake ecosystems it tends to be the growth switch. The presence 

of phosphorus is often scarce in the well-oxygenated lake waters and importantly, the low 

levels of phosphorus limit the production of freshwater systems. Phosphates are not toxic 

to people or animals unless they are present in very high levels.  

Phosphate supports and excites the growth of plankton and aquatic plants, which 

provide food for larger organisms, including: zooplankton, fish, humans, and other 
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mammals.   Plankton represents the lowest level of the food chain.  Initially, this 

increased productivity will cause an increase in the fish population and overall biological 

diversity of the system.  But as the phosphate loading continues and there is a build-up of 

phosphate in the lake or surface water ecosystem, the aging process of lake or surface 

water ecosystem will be accelerated.  The overproduction of lake or water body can lead 

to an imbalance in the nutrient cycling process. Eutrophication is enhanced production of 

primary producers resulting in reduced stability of the ecosystem.  Phosphate has been 

shown to be the main cause of eutrophication over the past 30 years. This aging process 

can result in large fluctuations in the lake water quality and trophic status and in some 

cases periodic blooms of cyanobacteria.  Figure 5.13 displays the green algae booming in 

Dian Chi Lake, Yunnan, China, 2007. The picture is cited from the China Economic Net. 

According to the report from China News Net, the causation of the continuous green 

algae booming is the water contained the phosphorus from the life waste water, 

agricultural chemicals flows into the lake, and the high temperature. 

Based on the negative side affection of massive green algae outbreak, it is 

significant to build an accurate total phosphate (TP) concentration prediction model. The 

main factors which appear to determine the development of plank-tonic populations are 

light, temperature, pH, nutrient concentrations and the presence of organic solutes. 
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Figure 5.13 Green Algae Blooming in Dianchi Lake, Yunnan, China, 2007 
 

In this case study, BPN and RBFGRNN will be applied in TP concentration 

prediction modeling, based on the historical water quality information of Te-Chi 

Reservoir and downstream of Ta-Chia Creek in central Taiwan.  

5.3.2 Study Area Profile 

 The Te-Chi Reservoir is located in the downstream of Ta-Chia Creek in central 

Taiwan as shown in Figure 5.14, captured from Google map.  It is the fourth largest (in 

terms of storage volume) reservoir in Taiwan with a maximum water surface area of 4.54 

km
3
 and initial design storage volume of about 232×106m

3
. The annual inflow is about 

1.2×109m
3
, about five times the reservoir volume, but over three-fourth comes during the 

wet season. The watershed area is 592km
2
. The watershed altitude varies from 3884 

meter (highest mountain) to 1408m (normal water level)—a drop of over 2400 m. The 

slope of main branches in this field is mostly over 50% and the average slope usually 
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exceeds 30%. The Environmental Protection Administration of Executive Yuan, R. O. C. 

has established five sampling stations in this reservoir area, as shown in Figure 5.15, 

captured from Google map.  

 

Figure 5.14 Location of the Te-Chi Reservoir 
 

 

Figure 5.15 Sampling Stations in the Reservoir Area 
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5.3.3 Input Features Selection 

Kuo, et al. (2007) performed a pre-screen of the potential input features through 

trial and error processes, and selected the PO4 and Suspended Solid (SS) as the variables 

of their Total Phosphorus neural network model . In 2008,J. Możejko and R. Gniot 

selected 14 observations as their input features, which include Water Temperature, Air 

Temperature, pH Value, Total Kjeldahl Nitrogen, Nitrate-N (N-NO3, N-NO2), Total 

Phosphorus, Orthophosphate, Dissolved Oxygen, Biochemical Oxygen Demand, 

Chemical Oxygen Demand, Sulphate Concentration, Chloride Concentration, and Total 

Suspended Concentration (Możejko and Gniot, 2008). In this case study, a combination 

of these features mentioned above will be used as the input variables based on the 

available recorded historical observations and they are listed in the Table 5.4 as well as 

the output. 

The samples used in this case study are recorded from 5 stations from December 

1993 to August 2010, and downloaded from the website of Environmental Protection 

Administration of Executive Yuan, R. O. C.  There are 52 qualified samples will be used 

in the artificial neural network TP concentration modeling. 

5.3.4 BPN Model Description and Results in Case 2 

  As mentioned in Chapter 3, there are a number of key parameters in the back 

propagation neural network with one hidden layer and one output layer. First of all is the 

size of hidden layer that implicates the number of hidden neurons in the hidden layer. 

However, there is no efficient approach to determine the optimal number of hidden 

neurons. Hence, the back-propagation model will vary the number of hidden neurons 
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from 10 to 50, called initial screen. The network with minimum mean square error and 

coefficient of determination will be chosen as the candidate for further experiment. 

Table 5.4 Neural Network Input and Output Variables of Total Phosphorus Case  

Division Variable Units 

Input 

Water Temperature 
0
C 

Air Temperature 
0
C 

Suspended Solid mg/L 

Nitrate-N (N-NO3) mg/L 

Nitrite-N (N-NO2) mg/L 

Chemical Oxygen Demand mg/L 

Dissolved Oxygen mg/L 

Total Kjeldahl Nitrogen mg/L 

Orthophosphate μg/L 

Output Total Phosphorus μg/L 

 

The stopping criteria in the initial screen are: 

1. Maximum number of epochs to train is 5000. 

2. Performance goal (mean square error of the training result) is 0. 

3. Minimum performance gradient is 1×10
-10

. 

4. Maximum validation failures equal to 1.  

 At each training epoch, the testing samples will be applied to validate the network 

training performance. If the mean square error is increased, the validation fails. It 

prevents the network over training. Once the candidate is chosen after the initial screen, 

this network will initialized and pass through the training process again without the 
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limitation of criterion 1 listed above. Secondly, the initial weights in matrices W and V 

are generated within the interval, (0, 1), by a uniform random generator.  The tansig 

function is applied as the activation function in the processing elements with α=1. The 

learning rate β is fixed as 0.25.  

Figure 5.15 displayed the test performances of the initial screen of 41sub-BPNs 

with 10 to 50 hidden neurons in the hidden layer, evaluated by mean square errors 

between the predicted outputs and desired outputs of different sub-network testing. The 

x-coordinate represented the sub-networks with different hidden neurons from 10 to 50, 

and the y-coordinate represented their related mean square errors. The little text block 

indicated the BPN with 29 hidden neurons in the hidden layer has the minimum testing 

mean square error 9.265μg
2
/L

2
. 

Figure 5.16 shows their correlation coefficients (Rs), evaluated by Equation 5.2, 

which measure the strength and the direction of a linear relationship between the network 

outputs and the desired outputs. The value of R is such that -1 ≤ R ≤ +1. An R value of 

exactly +1 indicates a perfect positive fit, and an R value of exactly -1 indicates a perfect 

negative fit. If there is no linear correlation or a weak linear correlation, R is close to 0. 

The x-coordinate represented the sub-networks with different hidden neurons from 10 to 

50, and the y-coordinate represented their related correlation coefficients. The little text 

block indicated the BPN with 29 hidden neurons has the maximum testing correlation 

coefficients 0.994. 
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Figure 5.16 Testing Performances of the Initial Screen of 41sub-BPNs with 10 to 50 

Hidden Neurons in the BPN Training Procedure of TP Concentration Modeling 
 

Based on Figures 5.16 and 5.17, the best candidate will be the back-propagation 

neural network with 29 hidden neurons, which has the minimum mean square error 9.265 

μg
2
/L

2 
and the maximum linear correlation coefficient 0.994 among all 41 sub-BPNs. 

Figure 5.16 and 5.17 also implicated that increasing the number of hidden neurons will 

not improve the network performance directly. It is possible that there is a better solution 

when more than 50 hidden neurons are applied in the hidden layer, but it will enlarge the  
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Figure 5.17 Correlation Coefficients of the Initial Screen of 41sub-BPNs with 10 to   

50 Hidden Neurons in the BPN Training Procedure of TP Concentration Modeling 
 

 size of network, create more connections between each layer, increase the network 

training time and consume huge computation capacity. The candidate BPN with 29 

hidden neurons will be initialized and retrained without the limitation of maximum 

training epochs. At 10102
th

 training epoch, the validation check failed which means that 

the mean square error of testing results kept decreasing until reached the 10102
th

 epoch. 

The local gradient δ at the output layer was decreasing to 2.313×10
-4

. As a result, the best 

normalized validation (testing) performance of network (mean square error) is 5.502×10
-

4
at 10101

th
 epoch. These facts are demonstrated in Figure 5.18 and 5.19. 
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Figure 5.18 Training State Plots in the BPN Training Procedure of TP 

Concentration Modeling  
 

 

Figure 5.19 Performance Plot in the BPN Training Procedure of TP Concentration 

Modeling 
 

 Figure 5.20 shows the normalized linear regression plots of leachate flow rate 

modeling by using BPN. The upper left plot indicates the linear regression model in the 
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training section with R = 0.989, and _ 0.95 0.0064net trian trianY Y   . The upper right plot 

and lower left plot are same, because the validation and test samples are identical. The Rs 

= 0.996, and the linear regression model can be represented as _0.96test net testY Y  +0.014. 

The lower right plot is a summary of three previous cases, the overall correlation 

coefficient is 0.995, and _ 0.96 0.0087net all allY Y   . 

 

Figure 5.20 Regression Plots of TP Concentration Modeling by using BPN 
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 After de-normalization, the testing network outputs were re-scaled, and the testing 

regression model was changed to _ 0.96 1.5net test testY Y   , as shown in Figure 5.21,  

  but the coefficient of correlation is same as the one before re-scaled. 

             

Figure 5.21 Testing Regression Plots of TP Modeling by using BPN 

 

Figure 5.22 depicts the test performance of the back propagation neural network 

in original scale. The dash line curve with circle marker represents the desired TP 

concentration and the dash line curve with square marker represents the BPN predicted 

TP concentration. The dash line curve with triangle marker represents the error calculated 

by the desired TP concentration minus the BPN predicted TP concentration. The x 

coordinator represents 13 testing samples, and the y coordinator represents the total 

phosphorus concentration.  The model successfully predicted the peak and valley values 

of the leachate flow rate within ±2 μg/L. The largest error happened at 12
th

 testing sample 
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may due to the similar sample or samples in the training section less excited or no similar 

sample or samples were trained in the training section. As a result, the network did not 

learn such information contained in 12
th

 testing sample. 

Finally the coefficient of determination R
2
 is applied to evaluate the performance 

of the linear regression. Because R of the test section is 0.996, R
2
= 0.992, which 

means99.2% of the total variation in the desired test output can be explained by the linear 

relationship between the desired test output and the BPN test output ( _ 0.96net test testY Y 

+1.5), The other 0.8% of the total variation in of the desired test output remains 

unexplained. The mean square error of the final BPN total phosphorus concentration 

modeling is 5.075μg
2
/L

2
.

 

Figure 5.22 De-normalized Test Performance, Desired TP vs. BPN Predicted TP 
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5.3.5 RBFGRNN Model Description and Results in Case 2 

The structure of RBFGRNN is different from that of BPN, as well as the learning 

algorithm. A RBFGRNN with defined centers and spread is a one-pass network, which 

means there is no iterative weight updating or calculations. As mentioned in chapter 4, 

the iterative process created for RBFGRNN is only aim to locate the optimal centers and 

spread. Definitely, testing performance decides the generalization ability of the proposed 

network and evaluates how well the network is learning the information given by the 

training samples. In this section, the training performance will be ignored and the testing 

performance will be amplified. Figure 5.23 shows the testing performances (mean square 

error) of a cluster of sub radial basis functional generalized regression neural networks. 

These subnets are varied by different number of centers and spread values. The mean 

square errors of different subnets are represented by different colors. The red color 

indicates high mean square error and the blue color indicate low mean square error. 

Based on recorded RBFGRNN testing performances, the RBFGRNN with 16 centers and   

spread=41 has the best testing performance MSE= 1.091×10
-7

μg
2
/L

2
. 

          Figure 5.24 shows the linear regression plots. It indicates the linear regression 

model in the testing section with correlation coefficient R = 1, and _net test testY Y +0.0073. 

Figure 5.25 depicts the test performance of the radial basis functional generalized 

regression neural network. The dash line curve with circle marker represented the desired 

TP concentration and the dash line curve with square marker represented the RBFGRNN 

predicted TP concentration. The dash line curve with triangle marker represented the  

error calculated by desired TP concentration minus RBFGRNN 
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 Figure 5.23 3D plot of RBFGRNN Testing Performance with Different Spreads and 

Centers in the TP Concentration Modeling  
 

predicted TP concentration. The x coordinator represented 13 testing samples, and the y 

coordinator represented the TP concentration. The model successfully predicted the peak 

and valley values of the TP concentration. 

The mean square error between the desired TP and the RBFGRNN predicted TP 

is1.091×10
-7

μg
2
/L

2
.  The coefficient of determination R

2
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between the desired test output and the RBFGRNN predicted output ( _net test testY Y

+0.0073).  

 

Figure 5.24 Linear Regression Plots in the RBFGRNN Testing Procedure of TP 

Concentration Modeling 

 

5.3.6 Case Study 2 Summary 

 In this total phosphorus concentration modeling case, BPN and RBFGRNN are 

applied. Table 5.5 shows a performance summary of two networks. Compared with the 

BPN, RBFGRNN performed better evaluated by a lower mean square error, higher 

coefficient of correlation, and higher coefficient of determination. The R
2
=1 in the 

RBFGRNN modeling stated that 100% of the total variation in the desired test output can 

be explained by the linear relationship between the desired test output and the 

RBFGRNN predicted output. In a short word, it works perfectly. 
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Table 5.5 Testing Performances of Two Neural Network Applications in Case 2 

Networks MSE μg
2
/L

2
 

Coefficient of  

Correlation 

Coefficient of  

Determination 

RBFGRNN 1.091×10
-7

 1 1 

BPN 5.075  0.996 0.992 

 

Figure 5.25 De-normalized RBFGENN Test Performance, Desired TP vs. 

RBFGRNN Predicted TP 
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CHAPTER 6 

CONCLUSION 

 

In this study, two different artificial neural networks, BPN and RBFGRNN, were 

applied to modeling two different environmental engineering systems synchronously. 

Based on the testing performances displayed in Table 5.3 and 5.5, the results of artificial 

neural networks applied in modeling of total phosphorus concentration is better than 

those of landfill leachate flow rate modeling. The major causations are concluded as 

following: 

1. In the data collection section, the samples used in TP modeling are the real 

observations, recorded by 5 sampling stations in Te-Chi reservoir area; the 

samples used in landfill leachate flow modeling are generated by HELP model 

under randomly adjusting the values of 5 features and fixed others, which caused 

the difficulties to capture the universal underlying patterns in the Greensboro area. 

2.  In the data randomization, the patterns of samples used in testing section of TP 

modeling are well captured in the training section TP modeling, compared with 

the landfill leachate flow modeling. In other words, all of the special events are 

experienced or learned in the training section. It implicates that the variance of the 

samples used in TP modeling is smaller than that of samples used in leachate flow 

rate modeling. This issue may be solved by enlarging the size of data set. 

 In general, the major portion of the test error is caused by the unknown features 

which affect the corresponding environmental systems. However, environmental 
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engineering systems are complex and associated with different biological, chemical, and 

other processes, so it is difficult to find out all of the features as the input elements for the 

network training. In case 1, there is 27.2% of the total variation in the desired test output 

cannot be explained by the linear relationship between the desired test output and the 

BPN test output and 17.7% of the total variation in the desired test output cannot be 

explained by the linear relationship between the desired test output and the RBFGRNN 

predicted output. Using different network is capable of reducing the prediction errors, but 

it can’t overcome the lack of knowledge of the systems.  In case 2, the testing results are 

much better, only 0.8% of the total variation in the desired test output remains 

unexplained by the linear relationship between the desired test output and the BPN test 

output, and 0% of the total variation in the desired test output remains unexplained by the 

linear relationship between the desired test output and the RBFGRNN test output.  It 

proves that the 9 features selected as the input elements of two neural networks can fully 

represent the cause-and-effect of total phosphorus concentration in the Te-Chi Reservoir. 

 During implementing the RBFGRNN in study cases, the proposed supervised 

center selection method offers a large convenience for seeking the centers and spread 

which are needed in the Gaussian displacement functions. Compared with conventional 

unsupervised clustering method, the supervised center selection method reunited the 

center selection portion with RBFGRNN, and the next center and new spread are only 

decided by the network performance based on current centers and spread.   
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During implementing the BPN in study cases, it is important to find near optimal 

number of hidden neurons. As shown in Figure 5.3 and 5.16, the performances of 

different number of hidden neurons applied are dynamic. Even adding another hidden 

neuron in the hidden layer, the performance will upgrade or downgrade a lot in some 

scenarios. In this research, a trial-and-error process was applied to find the near optimal 

configuration of the BPN.   

In this research, both of two networks performed successfully in modeling the 

environmental engineering systems. It verified the potential of artificial neural network 

methods in the application of complex systems, especially the environmental engineering 

systems.  
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