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ABSTRACT 

 

Islam, Syed Zahadul. A STUDY ON THERMAL STABILITY OF PALLADIUM-
COMPOSITE MEMBRANE FABRICATED BY SURFACTANT INDUCED 
ELECTROLESS PLATING (SIEP). (Major Advisor: Dr. Shamsuddin Ilias), North 
Carolina Agricultural and Technical State University. 
 

Thermal stability of the palladium membrane is a major challenge in hydrogen 

separation from mixture of gases at high temperature. To study the long term thermal 

stability of palladium membrane, thin, dense, and defect free Pd composite membranes 

on microporous stainless steel (MPSS) substrate were prepared by surfactant induced 

electroless plating (SIEP). Dodecyl trimethyl ammonium bromide (DTAB), a cationic 

surfactant was used in the Pd EP-bath. Permeability tests were carried out with hydrogen 

and nitrogen at temperatures and pressures in the range of 523 - 823 K and 20 - 100 psi 

respectively. The membranes showed good hydrogen flux and selectivity. Pd MPSS 

composite membrane was subject to test for long term performance and thermal cycling 

(573 - 723 - 573 K) at 15 psi pressure drop for 1200 hours. In another test, a Pd MPSS 

composite membrane with an oxide layer as an intermetallic diffusion barrier was tested 

for long term performance and thermal cycling (623 - 723 - 623 K) at 15 psi pressure 

drop for 408 hours. Both Pd membranes showed excellent hydrogen permeability and 

infinite selectivity during the operation period. The physical and morphological features 

of the membranes at pre- and post-annealing, post permeability test, and post long term 

thermal stability test were studied by SEM, XRD, EDS, and AFM analysis.
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CHAPTER 1 

INTRODUCTION 

 

The demand for hydrogen in the application of fuel cells, petroleum refining, 

petrochemical operations, metallurgical processing, and semiconductor processing has 

been rapidly increasing. Hydrogen is used for ammonia synthesis in fertilizer industries. 

Hydrodealkylation, hydrodesulfurization and hydrocraking require hydrogen to upgrade 

the more viscous oil fractions into fuel products. Electronics manufacturing industries 

such as semiconductor processing use high purity hydrogen. One of the major global 

concerns is the impact of carbon dioxide emission on climate change. Hydrogen is an 

important source of energy having no gas emission [1]. Hydrogen has tremendous 

potential to become environmental friendly fuel in the fuel cell technologies.  Electricity 

can be produced at over 50% efficiency in the fuel cell using hydrogen as the fuel 

whereas water is the only by product [2].  For automotive and stand-alone power-

generation applications, PEMFC (Proton-Exchange Membrane Fuel Cell) technology is 

being considered a serious contender. In PEMFC, hydrogen is used as a fuel. In the 

aforementioned application, availability of high-purity hydrogen at a competitive price 

has to be assured. This has intrigued researchers all over the world in developing 

technologies for production and separation of hydrogen with high purity (>99.99%). 

Steam reforming reaction, partial oxidation, electrolysis, and coal gasification 

produce hydrogen. Reforming reactions, such as steam reforming of methane, methanol, 

ethanol and logistic fuels, are considered important reactions for large-scale production of 
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hydrogen. The product of these reactions contains H2, CO, CO2, CH4, and N2 from where 

hydrogen needs to be separated before end use [3]. Various techniques, such as pressure 

swing adsorption (PSA), cryogenic distillation, or membrane separation can be used to 

purify hydrogen. Among those techniques, the commercially available separation 

techniques are PSA and cryogenic distillation processes [4]. However, these membranes 

are energy intensive and expensive. Membrane technology has become one of the most 

promising separation processes for production of ultra-high pure hydrogen (99.9999%) 

[2, 5-8]. Depending upon the purity and scale of production, membrane separation can 

provide an attractive alternative to PSA and cryogenic distillation. One of the most 

important advantages of using membrane separation processes is the consumption of less 

energy with the possibility of continuous operation [4]. 

Membrane can be of different metals such as palladium (Pd), nickel (Ni), 

platinum (Pt) and some other metals from Group III-V of the periodic table. Hydrogen 

can be associated, dissolved and dissociated into these metals. Among them, Pd-based 

membranes show high hydrogen selectivity and permeability because of high solubility 

and diffusivity of hydrogen into Pd lattice over wide range of temperatures [6, 7, 9-11]. 

Palladium membrane can be used as reactor and separator for the hydrogen producing 

reactions such as hydrogenation and dehydrogenation, methoxymethane reforming, 

methane steam reforming, water–gas shift, hydroxylation of benzene, and hydrogen 

peroxide synthesis [10, 12-16]. In this reactor-separator configuration, hydrogen 

productivity can be significantly enhanced by shifting equilibrium. 
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For successful commercial application of palladium based membranes, the 

membrane must meet several requirements. Reasonable membrane cost, high hydrogen 

permeance, high hydrogen selectivity over other gases, and steady and predictable 

performance over a long period of time under harsh conditions, resistance to poisoning by 

hydrogen sulfide, chlorine, carbon monoxide, and hydrocarbons, and thermal stability 

under thermal cycling are the major requirements. It is reported that researchers have 

expended much effort to acquire the requirements for the commercial application of 

various palladium based membranes supported on ceramic and metallic materials with 

high hydrogen permeance and selectivity. According to a National Energy Technology 

Laboratory (NETL) report, Pd membranes are stable for 10 months. Preparation of 

thermally and chemically stable, dense, thin, and defect free Pd-based membranes with 

high hydrogen permeability and selectivity still  remains a challenge [10].  

Many research groups have worked on numerous synthesis procedures over the 

period. However, membranes end up with few defects such as pinholes which reduce the 

hydrogen selectivity. Sometimes the Pd-films peel off from the substrate. Synthesis of 

dense and pinhole free Pd membrane requires thick Pd-film which eventually reduces the 

hydrogen throughput. To address all these issues, the control over the microstructure 

(grain size distribution) of Pd membrane is most important for the future success of 

membrane application in hydrogen production and separation. The control over the 

microstructure will allow one to synthesize pinhole free dense membrane with relatively 

thinner films [3]. Our research group has patented a process called surfactant induced 

electroless plating (SIEP) process in fabricating thin Pd-film in the development of  
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defect free Pd and Pd-alloy membranes for hydrogen separation and membrane reactor 

application [17]. The use of a surfactant in SIEP has provided a superb control on the 

grain size distribution as well as its reproducibility. It is now necessary to test the Pd 

membrane for thermal stability and estimate lifetime of the membrane in hydrogen 

separation applications. The major objectives of this study are: 

Pd composite membranes on MPSS substrate were fabricated using SIEP process. 

The microstructure of the Pd membrane was thoroughly examined in terms of grain 

distribution, grain agglomeration and film characteristics. The use of a surfactant in 

electroless plating enhances the uniformity of the deposited film and produces finer 

grains. It is expected that SIEP process should achieve thinner film thickness for Pd 

membrane than conventional EP process. In this work, the thickness of Pd membrane 

fabricated by SIEP process has been investigated and found thinner in comparison with 

that of Pd membrane fabricated by the conventional EP process.  

1. Fabricate Pd membranes on microporous stainless steel (MPSS) substrate by SIEP  

2. Examine the membrane microstructure at pre- and post-annealing conditions 

using SEM, EDS, XRD and AFM analytical tools. 

3. Test the membranes for hydrogen transport behavior at the temperature range of 

250 – 550 °C and at the transmembrane pressure range of 20 – 100 psi. 

4. Perform long term thermal cycling test to evaluate the membrane performance in 

terms of hydrogen perm-selectivity and membrane stability. 

This thesis is divided into of five chapters with CHAPTER 1 as introduction. A 

critical review of pertinent literature is presented in CHAPTER 2. In CHAPTER 3, 
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materials and methods for membrane synthesis is presented. Results and discussions are 

presented in CHAPTER 4. Conclusions and recommendations for future works are 

presented in CHAPTER 5. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction 

Hydrogen has been a valuable material since first artificially produced by 

Hohenheim via mixing of metals and strong acids and is consumed on the order of 

billions of cubic meters per day in various industrial fields. The use of hydrogen includes 

hydrodealkylation, hydrodesulfurization, and hydrocracking. Recently hydrogen got 

tremendous research interest because of its use as an energy carrier. Environmental 

problems and energy conversion efficiency has shifted the need from using fossil fuel to 

clean energy carrier hydrogen. Proton exchange fuel cell uses hydrogen as raw material 

and produces water as a byproduct which does not have environmental impact. The 

increasing demand of hydrogen is met from various sources such as methane steam 

reforming reaction, water electrolysis, partial oxidation of oil and natural gas and coal 

gasification.  

The trends in global hydrogen production is shown in Figure 2.1 which shows a 

growing demand for the future [10]. Hydrogen needs to be separated from mixture of 

gases before its end use. There are various hydrogen separation technologies such as 

solvent extraction, pressure swing adsorption, cryogenic separation and membrane 

technology. The choice of the separation processes depends on the requirement of 

hydrogen purity, percent recovery, feed gas compatibility and flexibility of processes.  
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Figure 2.1. Annual global production of hydrogen [10]. 
 
 

A comparison of different separation processes is summarized in Table 2.1 [18]. 

Membranes are dominated by palladium and its alloys. Palladium has long been 

recognized to possess the characteristics of a membrane. It is also probably the first well-

studied and documented inorganic membrane. Thomas Graham (1866) first observed the 

unusually high hydrogen-absorption ability of metallic palladium. It is permeable only to 

hydrogen. The most important property that makes palladium unique from the other 

metals is its ability to take large quantity of hydrogen into solid solution. Figure 2.2 

shows the solubility of hydrogen in palladium along with some others [10]. At the same 

time, it retains a high degree of ductility. Most significantly, hydrogen has a very high 

diffusion rate through the lattice of palladium. 



 
 

Table 2.1. Comparison of H2 separation technologies [18] 

Comparison of Hydrogen Purification Techniques 

Technique Principle Typical Feed Gas 

Hydrogen Output 
Percent Scale of Use Comments 

Purity Recovery 

Cryogenic 
Separation 

Partial condensation of gas 
mixture at low temperatures 

Petrochemical and 
refinery off-gases 

90-98 95 Large scale 
Pre purification step 
necessary to remove CO2, 
H2S and water 

Polymer 
Membrane 
Diffusion 

Differential rate of diffusion 
of gases through a permeable 
membrane 

Refinery off-gases 
and ammonia purge 
gas 

92-98 >85 
Small to 

large 
He, CO2 and H2O may also 
permeate the membrane 

Metal Hydride 
Separation 

Reversible reaction of 
hydrogen with metals to form 
hydrides 

Ammonia purge gas 99 75-95 
Small to 
medium 

Hydrogen absorption 
poisoned by O2, N2, CO and S 

Solid Polymer 
Electrolyte 
Cell 

Electrolyte passage of 
hydrogen ions across a solid 
polymer membrane 

Purification of H2 by 
thermochemical 
cycles 

99.8 95 Small 
Sulfur-containing compounds 
poison the electro-catalysts 

Pressure 
Swing 
Adsorption 

Selective adsorption of 
impurities from gas stream 

Any hydrogen rich 
gas 

99.999 70-85 Large 
The recovery is relatively low 
as hydrogen is lost in the 
purging step 

Catalytic 
Purification 

Removal of oxygen by 
catalytic reaction with 
hydrogen 

Hydrogen streams 
with oxygen 
impurity 

99.999 Up to 99 
Small to 

large 

Upgrading electrolytic H2, 
organics, Pb-, Hg-, Cd- and S-
compounds poison the 
catalyst. H2O produced 

Palladium 
Membrane 
Diffusion 

Selective diffusion of 
hydrogen through a 
palladium alloy membrane 

Any hydrogen 
containing gas 
stream 

≥99.9999 Up to 99 
Small to 
medium 

Sulfur-containing compounds 
and unsaturated hydrocarbon 
impair permeability 
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Figure 2.2. Comparison of hydrogen solubility in several metals at a pressure of 1 
atm. Solubility is given in units of standard cm3 of H2 per 100 g of metal [10]. 

 
 

Palladium properties help palladium or palladium based membranes to be used as 

a separation unit for separating hydrogen from mixed process gases. Apart from 

hydrogen permeability in Pd- and Pd-alloy membranes, the permeability of all other 

gases (CO, CO2, CH4, and N2) is so low that they are negligible in practice. Therefore, 

these membranes act as a highly specific filter for the production of ultra-pure hydrogen. 

Hydrogen transport through the Pd membranes takes place via solution diffusion 

mechanism. When H2 comes in contact with the Pd-film of the membrane, Pd acts as a 
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catalyst and H2 dissociates to hydrogen atom. Molecular hydrogen chemisorptions take 

place on the membrane surface followed by reversible dissolution of atomic hydrogen in 

the bulk layers of the metal. Due to the trans-membrane partial pressure gradient atomic 

hydrogen diffuses through the bulk metal to the other side of the membrane and 

reassociates to H2 molecule. The H2 transport mechanism through the membrane is 

depicted in Figure 2.3 [1, 3]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3. Principle of hydrogen separation through a metal membrane [3]. 
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It is very important to understand several aspects of membrane technology, 

namely: I) the metallurgical properties of palladium, II) selection criteria of support 

material, III) the interaction of support material components with H2 perm-selective Pd-

film, IV) the effect of heat treatment on membrane film, V) the role of external mass 

transfer resistance and different approaches to overcome this resistance, VI) the effect of 

grain size on the permeability, and VII) different fabrication approaches and their effect 

on the membrane characteristics. The following sections give a brief discussion on the 

aforementioned topics. 

2.2 Membrane and Membrane Processes 

A membrane process requires two bulk phases physically separated by a third 

phase, the membrane. The membrane is an interphase between the two bulk phases. It is 

either a homogeneous phase or a heterogeneous collection of phases. The membrane 

phase is almost always thinner compared with the dimensions of the bulk phases in at 

least two other directions. The membrane phase controls the exchange of mass between 

the two bulk phases in a membrane process. In membrane separation processes, the bulk 

phases are mixtures of gases or liquids. One of the species in the mixture is allowed to be 

exchanged in preference to others. The membrane is selective to one of the species. One 

bulk phase is enriched in one of the species while the other is depleted of it.  A membrane 

process then allows selective and controlled transfer of one species from one bulk phase 

to another bulk phase separated by the membrane [19]. The current status of membrane 

technology is given in Table 2.2. The merits and demerits of using different types of 

membrane technologies are depicted in this table.  
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Table 2.2. Current status of membrane technology [20]  

Process 
Problems 

Comments 
Major Minor 

Mostly 
Solved 

Microfiltration Reliability 
(fouling) 

Cost Selectivity 
Better fouling controls 
could improve membrane 
lifetime significantly 

Ultrafiltration Reliability 
(fouling) 

Cost Selectivity 

Fouling remains the 
principal operational 
problem. Current fouling 
control techniques are a 
substantial portion of 
process cost. 

Reverse osmosis 
Reliability Selectivity Cost 

Incremental improvements 
in membrane and process 
design will gradually 
reduce costs. 

Gas separation Selectivity 
flux 

Cost Reliability 

Membrane selectivity is 
the principal problem in 
many gas separation 
systems. Higher 
permeation rates would 
help to reduce costs. 

Electro-dialysis 
Fouling 

temperature 
Stability 

Cost 
Selectivity 
Reliability 

Process reliability and 
selectivity are adequate for 
current uses. 
Improvements could lead 
to cost reduction, 
especially in newer 
applications 

Pervaporation 
Selectivity 
Reliability 

Cost - 

Membrane selectivity must 
be improved and systems 
developed that can reliably 
operate with organic 
solvent feeds before major 
new applications are 
commercialized 
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2.3 Organic and Inorganic Membranes 

The advantages of inorganic membranes have been recognized for a long time. 

The thermal stabilities of organic polymers, inorganic polymers and inorganic materials 

as membrane materials can be conveniently classified as <100 - 150 ºC, 100 - 350 °C and 

>350 °C, respectively. The operable temperature limits of inorganic membranes are 

obviously much higher than those of organic polymeric membranes. The majority of 

organic membranes begin to deteriorate structurally around 100 °C. A comparison of 

polymeric and inorganic membranes is placed in Table 2.3 where the current status, and 

advantages and disadvantages of using organic and inorganic membranes are described. 

Inorganic membranes generally can withstand organic solvents, chlorine and other 

chemicals better than organic membranes. Many organic membranes are susceptible to 

microbial attack during applications. This is not the case with inorganic types, 

particularly ceramic membranes. In addition, inorganic membranes in general do not 

suffer from the mechanical instability. It is obvious that in a high temperature or harsh 

chemical environment, inorganic membranes could become the only recourse to many 

challenging separation applications. Some inorganic membranes such as microporous 

alumina membranes and surface treated porous glass membranes are more fouling 

resistant due to their low protein adsorption. Many inorganic membranes are less 

susceptible to biological and microbial degradation. With ceramic and metallic 

membranes, it is possible to apply short bursts of permeate streams in the reverse 

direction through the membrane to dislodge some clogged pores of the membrane. This is 

referred to as backflush [21].  
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Table 2.3. Comparison of polymeric and inorganic membranes [22] 

 
 
2.4 Structure of Inorganic Membranes 

Inorganic membranes have significant potential for use in a variety of processes 

such as gas separation, purification, and membrane reactors [23]. Membranes can be 

divided into two categories according to their structural characteristics which can have 

significant impacts on their performance as separators or reactors shown below: 

1. Dense membranes 

2. Porous membranes 

i) Meso porous 

ii) Micro porous. 

There are two major types of dense inorganic membranes: 

1. Metal membranes 

Membrane Advantages Disadvantages Current Status 

Inorganic 

Long term 
durability 

Brittle (Pd) 
Small scale 
applications 

High thermal 
stability 
(> 200 °C) 

Expensive 
Surface 
modifications to 
improve 
hydrothermal 

Chemical stability 
in wide pH Some have low 

hydrothermal 
stability High structural 

integrity 

Polymeric 

Cheap 
Structurally weak, 
not stable 

Wide applications 
in aqueous phase, 
and some gas 
separations 

Mass production 
(larger scale) 

Temperature limited 

Good quality 
control 

Prone to  denature & 
be contaminated 
(short life) 
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2. Solid electrolyte membranes. 

Structures of inorganic membranes are given in Figure 2.4. By the term dense, it 

is implied that there are no intentional interconnected pores in the membranes other than 

atomic interstices, atomic vacancies and dislocations. Such void spaces are too small to 

accommodate even molecular hydrogen, and dense membranes transport hydrogen only 

in a dissociated form. Dense membranes block transport even of helium, and the absence 

of larger pores gives dense membranes hydrogen selectivity approaching 100 %. 

Transport of hydrogen in a dissociated form implies that dense membranes must possess 

adequate catalytic activity for the adsorption and dissociation of H2 on the feed-side 

surface (retentate) as well as for the subsequent recombination and desorption from the 

permeate-side surface. Dense membranes are free of discrete, well-defined pores or voids 

[24]. The term composite membrane, as defined in membrane technology, refers to 

membranes with two or more distinct layers. Composite membranes have the advantage 

that the separating layer and the support layer(s) can be tailored with different materials. 

When the separating layer and the bulk support designed for mechanical strength 

are indistinguishable and show an integral, homogeneous structure and composition in 

the direction of the membrane thickness, it is called a symmetric or isotropic membrane. 

Since the flow rate through a membrane is inversely proportional to the membrane 

thickness, it is very desirable to make the homogeneous membrane layer as thin as 

possible. However, very thin stand-alone membranes typically do not exhibit mechanical 

integrity to withstand the usual handling procedures and processing pressure gradients 

found in many separation applications.  
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Figure 2.4. Structures of inorganic membranes [23, 25]. 
 
 

A practical solution to the dilemma has been the concept of an asymmetric or 

composite membrane where the thin, separating membrane layer and the open-cell 

mechanical support structure are distinctly different. In this anisotropic arrangement, 

separation of the species in the feed stream and ideally the majority of the flow resistance 

(or pressure drop) also take place primarily in the thin membrane layer. The underlying 

support should be mechanically strong and porous enough that it does not contribute to 

the flow resistance of the membrane element to any significant extent. A porous 

membrane can be asymmetric and symmetric. If a membrane has a graded pore structure 
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but is made in one processing step, frequently from the same material across its thickness, 

it is called an asymmetric membrane. 

2.5 Gas Separation in Membranes 

The transport mechanism of gas through membrane is very important since this 

transport mechanism is one of the determinants of the application of membrane. There 

are generally six possible gaseous mixtures transport mechanisms through membranes as 

summarized below: (a) viscous flow, (b) Knudsen diffusion, (c) surface diffusion, (d) 

multi-layer diffusion, (e) capillary condensation, and (f) molecular sieving. Viscous flow 

through the membrane is not effective for gas separation and basically no separation is 

achieved [22]. Knudsen diffusion is based on the mean free path of the molecules. In this 

mechanism, the pore radius is smaller than the gas molecule’s mean free path [22]. If the 

mean free path of the molecules increases or the pore diameter decreases, lighter 

molecules will move faster than their counter heavier molecules, resulting in separation. 

In practice, when the pore diameter becomes less than 5 to 10 nm under pressure, 

Knudsen diffusion becomes the dominant transport mode. 

Surface diffusion becomes important when the gas molecules are adsorbed into 

the surface in a significant amount. As the surface is being covered by adsorbed 

molecules, the molecules diffuse through the bulk of the surface due to the concentration 

gradients. This phenomenon is dominant when the surface area becomes large. In 

solution diffusion mechanism, gas is separated based on the solubility and diffusivity of 

the gases. Solubility selectivity favors the most condensable molecule and diffusivity 

selectivity favors the smallest molecule. Hydrogen transport through dense metallic 
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membrane follows solution diffusion mechanism. Capillary condensation occurs for some 

gases at relatively low temperatures when gases adjacent to the pore become liquid. If the 

other gases (non-condensed) cannot dissolve in the condensed gases, separation occurs. 

Molecular sieving occurs when the pore size is smaller than the size of any molecules 

present in the gases. Currently, zeolite and some carbon molecular sieves have narrow 

pore sizes that are capable of separating gases that differ by only about 0.02 nm [21]. In 

molecular sieving or activated diffusion, separation is based on the much higher diffusion 

rates of the smallest molecule. However, when the molecular size of the species are 

similar, adsorption capacities become dominant factor [22]. 

2.6 Metallurgical Properties of Palladium  

It is important to understand the metallurgy of metal/alloy-hydrogen system for 

the fabrication and successful application of Pd-based membrane as a commercial 

separation unit. A good understanding of the metallurgy of metal/alloy-hydrogen system 

will lead us to know better about hydrogen diffusion technology for palladium 

membrane. Sieverts and his associates were the earlier researchers who pioneered the 

work to determine isotherms in the palladium-hydrogen system [18]. Sometime later, 

these data were then extended to include higher pressure and lower temperature. More 

recently, Shu et al. studied pressure-composition isotherm in 1991 [26]. The palladium-

hydrogen phase diagram shown in Figure 2.5 describes the equilibrium pressure and 

temperature for bulk Pd as a function of hydrogen content [10, 27]. This Pd-H diagram is 

comprised of two major regions. These regions are of low and high hydrogen 

concentrations, which are defined as the α- and β-phases of the Pd hydride, respectively. 
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In the Pd-H system, α-phase increases with the equilibrium pressure at low hydrogen to 

palladium ratio.  

 
Figure 2.5. Phase diagram of palladium-hydrogen system [10, 27]. 

 
 

The maximum solubility of hydrogen in the α-phase is called αmax which is the 

beginning of another hydride phase, β-phase. Before certain hydrogen concentration, both 

the α- and β-phase co-exist in the invariant pressure region or plateau region where 

transformation from α- to β- phase occurs. In the plateau region, hydrogen vapor pressure 

does not increase with hydrogen to palladium ratio. Co-existing the α-phase and β-phase 

is the miscibility gap of the two phases. Both the hydrides have face center cubic (FCC) 
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crystal structure but differences in lattice parameters. The lattice parameter in β-phase is 

10% larger than the α-phase for hydrogen to palladium ratio of 0.5. 

After the complete transformation from α- to β- phase, equilibrium pressure starts 

to increase with the increase in hydrogen concentration in the solution. The hydrogen 

concentration at or above equilibrium pressure starts to increase with adding more 

hydrogen is called βmin. The miscibility gap disappears where αmax and βmin coincide. In 

this Pd-H system, the critical temperature, critical pressure and H/Pd ratio at which 

miscibility gap disappears are 298 ºC, 20 atmospheres and 0.27, respectively [18]. The 

curve for 310 °C does not have miscibility gap. The increase in lattice parameter due to 

the transformation from α- to β-phase hydrides causes lattice strain. As a result, the Pd-

film goes through distortion, dislocation multiplication and hardening during hydrogen 

permeation through Pd membrane at or below the critical temperature and pressure. This 

phenomenon is called hydrogen embrittlement which makes the membrane loss of 

complete selectivity. The mechanism of occurring hydrogen embrittlement was described 

by various theories such as pressure theory, the reduced surface energy theory, the de-

cohesion theory, the H2 phase change theory and H2 enhanced local plasticity theory [28]. 

Hydrogen embrittlement can be avoided by operating the membrane in single 

phase region. This can be avoided by operating the membrane above 300 °C in hydrogen 

atmosphere or by ensuring that cooling takes place only when it is in a dehydrogenated 

condition. However, this approach will really narrow down its application [18]. 

The other method is to change the metallurgy of the palladium membrane rather 

than changing the operational regulation. It is necessary to suppress the β- to α- phase 
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transition in order to avoid distortion. Adding a number of elements to palladium can 

suppress the transition sufficiently, which significantly reduces or eliminates distortion. 

These elements include transition metals of group VB (tantalum, vanadium and niobium), 

VIIIB (nickel, rhodium, ruthenium, iridium, platinum) and group IB (copper, silver and 

gold) [3, 28]. Figure 2.6 shows the rate of diffusion of hydrogen in palladium and 

different palladium binary alloys at 813 K temperature and 50 psi pressure. Typically 

palladium is alloyed with Ag, Au, Cu, and Ni for hydrogen separation. Palladium with 25 

percent silver shows the maximum permeability and palladium with 5 percent iron shows 

minimum permeability among the palladium binary alloys shown in Figure 2.6. 

 
Figure 2.6. Rate of diffusion of hydrogen in palladium and number of palladium 

binary alloys (T = 813 K and P = 50 psi) [18].  
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2.7 Phase Diagram of Palladium and Stainless Steel 

The understanding of phase diagrams for alloy systems is extremely important 

because there is a strong correlation between microstructure and mechanical properties, 

and the development of microstructure of an alloy is related to the characteristics of its 

phase diagram. In addition, phase diagrams provide valuable information about melting, 

casting, crystallization, and other phenomena [29]. It is of paramount importance to 

understand the phase diagram for palladium and its alloying materials for membrane 

application. An understanding of the phase diagram will allow us to find the limit for the 

annealing temperature. This will furnish a clear pathway for the post fabrication 

treatment for the membrane. The phase diagram of palladium and stainless steel is 

discussed below. 

The binary phase diagram of the Pd/Fe system [30] is given in Figure 2.7. The 

main features of the phase diagram of the Pd/Fe system are characterized by the phase 

separation in the Fe rich region ( >90 wt % Fe) due to the size mismatch among αFe, δFe 

and γFe phases [31] and the appearance of the two ordered phases , namely PdFe and 

FePd3, in the Pd rich region ( >62 wt% Pd). The Pd/Fe binary phase diagram shows a 

continuous region of solid solution with FCC structure existing over the entire 

composition range at high temperatures (>700 °C). However, the FCC phase is still stable 

at lower temperatures above 90 wt% of Pd. 

Detail studies were done on the Pd/PSS, Ag/PSS and Pd/Ag/PSS by Yi Hua Ma et 

al. in 2007. They showed the effect of the annealing temperature on the alloying phases. 

In addition, one important feature they noticed is the impact of the annealing temperature 
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on the lattice size of the Pd-Fe alloy [32]. The lattice parameters for the pure Pd, porous 

stainless steel (PSS, composition in wt %: Cr0.19Fe0.70Ni0.11) and Fe are 3.89, 3.59 and 

2.87 Å, respectively as reported in the powder diffraction data base File Nos. 46-1043, 

33-0397 and 06-0696 [JADE4.0: A program for powder diffraction data analysis; 

Materials Data, Inc.: Livermore, CA, 2001]. 

 
Figure 2.7. Phase diagram of palladium/porous stainless steel system [3]. 
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After annealing the samples at 500 °C, 600 °C and 800 °C, they found the Pd 

lattice parameters as 3.89, 3.87 and 3.76 Å, respectively. Since the intermetallic diffusion 

is a temperature activated process, the Fe diffusion into the Pd layer with the increasing 

temperature apparently reduced the Pd lattice. Since increasing the Fe content would 

shrink the metal lattice and reduce the H2 solubility and diffusivity [33], the intermetallic 

diffusion of the PSS components into the Pd matrix and the formation of undesirable 

alloy phases during the high temperature diffusion treatment might significantly alter the 

hydrogen permeance for Pd/ PSS composite membrane [3]. 

2.8 Membrane Support Materials Selection 

Self-supporting palladium membranes need to be thick enough to have sufficient 

mechanical strength. If the palladium membrane is too thick, it will have a high cost and 

low hydrogen flux. Also exposure of the palladium foil in the H2 environment results in 

severe distortion. Supported membranes can be prepared with much thinner palladium 

layers leading to lower expense, so considerable efforts have been expended to develop 

methods of preparation using supports. Different supports and deposition methods have 

been tried so as to obtain thin palladium films with good membrane integrity along with 

high hydrogen permeance and selectivity [10]. An economical route was chosen by using 

palladium based films on top of a substrate as a composite membrane. This approach 

significantly improved the hydrogen flux and reduced the investment level. In general, 

palladium based composite membranes are composed of a thin palladium film for 

separation and a substrate for its mechanical support. It is not only the mechanical 
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property but there are few other selection criteria for the selection of the desired support 

material. The ideal support materials should have the following features: 

• Support should be chemically inert in reactions with Pd at any operating 

temperatures or pressures. 

• Support should not allow any crystal migration. 

• The pore size and pore size distribution of the support should be very fine and 

narrow, respectively. Significant interconnection of the pores is desirable. 

• There should not be any blind pores present in the support. Pore size and 

morphology should not damage the top surface smoothness. 

Supported palladium membranes are divided into three broad categories based on 

the supporting materials used: vycor glass, ceramics and stainless steel. Every type of 

membrane supports has both performance and commercial tradeoffs. At the early age of 

palladium membrane technology, porous vycor glass was used as support materials in the 

fabrication of composite Pd membranes. Porous vycor glass supports can endure thermal 

shock and are stable at high temperature along with high porosity but are mechanically 

fragile [10]. Porous ceramic supports have been considered as a promise substrate for Pd 

membrane. Ceramic substrate can be formed into a variety of shapes with controllable 

pore sizes. Pd attachment and has high hydrogen permeability. Alumina is used as 

ceramic supports material. Alumina can be formed in different compositions. Alumina is 

thermally and mechanically stable. In addition, alumina can be modified with 

intermediate layer which is very needed for good selective and high throughput 

membrane. 
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Metals are good candidates for substrate for the preparation of Pd membrane. 

These conductive materials can be formed into various shapes with convenient pore size. 

The advantages of using metallic support such as stainless steel are sturdiness and 

weldability. 

The thermal expansion coefficient of stainless steel is very closer to that of 

palladium than ceramic supports. Closer thermal expansion coefficients give less stress 

during long term performance and thermal cycling of palladium membrane on stainless 

steel support [34]. Furthermore, stainless steel can be easily sturdy sealed in industrial 

assemblies than with fragile ceramic supports [35]. Among the porous metals, stainless 

steel is the most frequently used material due to its ease of fabrication, chemical 

resistance, and low cost [10]. Metal properties of film and support are summarized in 

Table 2.4.  

 
Table 2.4. Physical properties of palladium, silver, copper, stainless steel and its 
constituent elements [3] 

Material 
Thermal Expansion 

Coefficient, K-1 
Tamman 

Temperature, ⁰C 
Lattice 

Parameter, Å 
Density, 
gm/cc 

Iron, Fe 1.2×10-5 632 2.87 7.874 

Nickel, Ni 1.3×10-5 590 3.52 8.903 

Chromium, Cr 2.3×10-5 817 2.88 7.19 

SS 316L 1.7×10-5 550 - 560 3.59 8 

Palladium, Pd 1.2×10-5 640 3.89 12.023 

Silver, Ag 1.9×10-5 345 4.08 10.5 

Copper, Cu 1.7×10-5 405 3.6 8.96 
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Although the Pd and Pd/alloy deposition technique on PSS support is popular 

means of synthesis, one of the problems associated with the electroless plating is the 

difficulty in forming uniform alloys. Alloying is most commonly achieved by annealing 

under inert (i.e. He, Ar) or reducing (i.e. H2) atmospheres prior to the hydrogen 

permeation testing. At high temperature (≥ 500 °C), the intermetallic diffusion of support 

metals (Fe, Cr, Ni) takes place into the dense Pd or Pd/alloy separation layer resulting in 

deterioration in hydrogen permeation and non-uniform alloy layer. In order to achieve 

uniform alloy layers with electroless deposition, a substantial amount of studies has been 

done on a wide variety of support material [34, 36-44]. Most of the metallic support leads 

to intermetallic diffusion above 300 °C. Ceramic or vycor glass does not show any 

migration of its constituent element into the film at all. 

In order to avoid metal migrations, many researchers attempted to develop 

intermetallic diffusion barrier in between metal support and membrane layer. Ma et al. 

have introduced a controlled in situ oxidation technique for producing an oxide layer on 

top of porous sintered metal tubes before plating [45]. They oxidize the membrane in air 

at 600 °C for 10-12 hours. It produces very thin stable Cr2O3 and Fe2O3 layer which 

reduces permeability in some extent. The oxide layer formed acts as a diffusion barrier 

between the hydrogen selective dense Pd and the PSS [38]. Membranes produced by 

these methods have been shown to be stable for over 6000 hours in the temperature range 

of 350 – 800 °C. Very negligible amount of iron, chromium and Nickel were found in the 

perm-selective Pd and Pd/Ag layer.  In their recent work, Ma et al. have developed a 

method to produce a porous Pd/Ag intermetallic diffusion barrier layer on the surface of 
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the support by the bimetal multilayer (BMML) deposition technique prior to the 

application of the dense hydrogen selective layer [46]. The BMML acts as an extremely 

effective layer against intermetallic diffusion of the support metals and the membrane 

itself showed to be stable for several hundred hours at temperature 500 °C and above. 

Recently, Tong et al. have reported that a 0.3 µm thick electroplated Ag on PSS 

support functions as a diffusion barrier [47]. Nam & Lee, 2001 reported the fabrication of 

Pd-composite membrane with 3 to 4 µm γ-Al2O3 layer as intermetallic diffusion barrier 

[35]. In this work, nickel powder was used to improve the surface smoothness. The pore 

size of the microporous metallic support plays a significant role on the quality of the final 

Pd/Pd-alloy film deposited by EP process. The maximum pore size in a support is 

characterized by pore diameter. The support materials are graded by pore size, such as 

0.1 µm, 0.2 µm, 0.5 µm or so. Mercury porosimetry can be used to determine the pore 

size distribution in support surface. It has been shown theoretically that for a defect free, 

stable film, the Pd-film thickness should be at least three times of the largest pore 

(diameter) on the surface [48]. 

2.9 Electroless Deposition of Palladium  

Pd membrane can be fabricated using various methods. Among them, electroless 

plating (EP), chemical vapor deposition (CVD), physical vapor deposition (PVD), 

electrodeposition (EPD) magnetron sputtering are commonly used methods [10]. The 

most advantageous method in fabricating Pd-composite membranes for high temperature 

H2-separation applications is the electroless plating method [49]. The advantages using 

EP over other methods include the deposition on both conducting and non-conducting 
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surfaces, uniform deposition on complex geometries and large surface areas, simple 

plating bath set-up, strong mechanical strength of  the deposited film, good adhesion to 

the substrate, and low cost [3, 10]. 

Electroless plating (EP) is a method for plating metallic films on a substrate by 

the reduction of metal complex ions in solution with the aid of a reducing agent without 

the application of an external electric field, but using the metal formed as a catalyst [10]. 

Pd electroless plating is comprised of cathodic deposition of metal and anodic oxidation 

of reductant in an immersion potential [49]. The commonly used metal ion sources are 

PdCl2, Pd(NH3)4Cl2, Pd(NH3)(NO3)2 and Pd(NH3)4Br2 and reducing agents are NH2NH2, 

NaH2PO2.H2O, and tri-methyl-amine-borane. The oxidant and reductant used in this work 

were Pd(NH3)4Cl2 and NH2NH2, respectively. Other than oxidant and reductant, a 

complexing agent such as ethylene-di-amine tetra-acetic acid (EDTA), ethylene-di-amine 

(EDA), NH4OH), stabilizer (NH4OH) and accelerators are used in Pd plating bath. In 

order to shorten the induction period for the autocatalytic decomposition reaction of the 

metastable complexes of Pd salts on the target surface and to initiate the electroless 

plating process, the stainless steel substrate was seeded with palladium by being dipped 

successively in acidic SnCl2 solution followed by acidic PdCl2 solution. This activation 

and sensitization step can be described by the following reaction: 

2 2 4Pd Sn Pd Sn+ + ° ++ → +        (2.1) 

The reaction steps for Palladium deposition in electroless plating are shown here: 

2
3 4 32Pd(NH ) +4e 2Pd +8NH+ − °

→       (2.2) 
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- - 
2 2 2 2H NNH +4OH N +4H O+4e→       (2.3) 

3 4 2 2 2 4

2 3 4 2

Overall reaction:  2Pd(NH ) Cl +H NNH +4NH OH  

                            2Pd +N +8NH +4NH Cl+4H O°→
   (2.4) 

NaH2PO2.H2O based plating baths with EDA as the complexing agents have been 

frequently used. But the microstructures of the deposited films were significantly altered 

with the formation of cracks due to the evolving hydrogen gas during the reaction [50]. 

For this reason, hydrazine based electroless plating bath is very attractive. Rhoda was the 

first to develop this type of bath using Pd(NH3)4Cl2 [51]. Rhoda observed a linear 

increase in the plating rate within the temperature range of 40 - 80 ºC and a spontaneous 

precipitation of the bath above 70 °C in the absence of stabilizer EDTA salt. Another 

observation reported by Rhoda was rapid decrease in the plating rate with time, which 

was due to the catalytic decomposition of hydrazine by palladium. Over the years from 

Rhoda onwards, hydrazine based electroless plating was well established and 

successfully employed in the fabrication of dense hydrogen selective Pd-composite 

membrane on various substrate such as porous glass, ceramics, and porous sintered metal. 

In the past two decades, the bath parameters have been established for the effective 

plating of metals. 

2.10 Modifications in Pd Electroless Deposition Techniques 

For the economic viability of the membrane technology, some specific 

requirements such as high hydrogen permeation rates, high selectivity, long term thermal 

and chemical stability, and defect free (pinhole, cracks) film have to be achieved. The 

synthesis procedures for achieving the above mentioned requirements as well as their 
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reproducibility were a long deadlock. For finding a single synthesis procedure that will 

optimize the membrane properties as well as the durability, it is of utter importance to 

understand the solution chemistry, reaction mechanism of the electroless deposition, 

influence of the processing parameters on the properties of the deposited layer, and the 

ways and means for reducing mass transfer resistances. Thus, the effects of temperature, 

initial metal ion concentration and initial reducing agent concentration on electroless 

plating rates of Pd and Ag deposit on porous sintered metal were thoroughly studied [52]. 

It is now well established that the plating rate and conversion are heavily dependent with 

the initial concentration of metal ion and reducing agents. Apart from the metal ion and 

the reducing agent, it has been provided enough evidences on the effect of temperature in 

the plating technique. However, the plating rate and the efficiency differ from metal to 

metal such as the deposition rate for Ag is faster than Pd as well as the efficiency.  

It is interesting that most of the previous investigators ignored the mass transfer 

limitations. Ma et al. observed that external mass transfer has a pronounced effect on the 

deposition kinetics. They found that the electroless plating of both Pd and Ag were 

strongly affected by the external mass transfer in the absence of bath agitation. The 

external mass transfer limitations for Pd depositions have been minimized at or above an 

agitation rate of 400 rpm. The result is a maximum conversion of the plating reaction at 

60 °C and dramatically shortens the plating time. The plating yielded a uniform 

morphology. Ayturk et al. 2007 applied agitation through internal rotation in EP solution 

bath as an external driving force which improved reaction rate as well as grain size [53]. 
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Their experiments demonstrated that plating efficiency can be as high as 90 %, if the 

rotation rate is set at 500 rpm during the electroless deposition process. 

Varma et al. investigated EP of Pd in presence of osmotic pressure field [23, 54]. 

It was reported that osmosis helps to fabricate thinner and denser palladium films in 

shorter period of time. The osmotic pressure field improves metal penetration into the 

pores. The resulting membranes were found to be better quality in terms of mechanical 

and thermal stability compare to conventional EP [54]. This study also showed that 

agglomeration of Pd grains also increases with osmotic pressure. 

The membrane characteristics are strongly influenced by the metal deposition 

methods [55]. In conventional EP process, the resulting Pd-film is formed by columnar 

grain growth [56] and there is little control on the grain size distribution for the deposited 

film. The grain size and its distribution are important parameters for the uniformity of the 

deposited film as well as for making it pinhole free. Apart from that, the grain size 

distribution and microstructure of the deposited film have a pivotal role in the hydrogen 

permeability. According to Kirchhiem et al., the diffusivity of hydrogen in nano-

crystalline Pd is lower than that of single crystal at low hydrogen concentrations [57]. 

The diffusivity of hydrogen is significantly higher in nanocrystalline Pd than its single 

crystal counterpart at higher hydrogen concentrations. According to Gleiter et al., 

nanocrystalline palladium has almost 10 times higher diffusivity than conventional 

polycrystalline Pd [58]. In small nanocrystalline metal, at least 20 to 50 % of its atom 

located in the grain boundaries act as a network for faster diffusion. Therefore, it is of 

absolute importance to achieve the control on microstructure of the Pd-film by gaining 
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control over grain size distribution. The control on grain size distribution will eventually 

make the process reliable and yield a perm-selective film having desired characteristics.  

2.11 Surfactant Induced Electroless Plating (SIEP) 

Chen et al. 2002 studied Effects of added surfactants in the acidic hypophosphite 

plating baths on the properties of the resulting electroless nickel-phosphorus (Ni-P) 

deposits on the brass substrates [59]. It was observed that the addition of suitable 

amounts of surfactants can increase the deposition rate up to twenty five percent and 

reduce the formation of the pores on the surface of Ni-P alloys [59]. During the 

electroless plating process, the released N2 gas bubbles get adsorbed by the support 

surface and eventually create micro-porosity in the deposited film and surfactant helps to 

remove the nitrogen gas bubbles from the substrate surface.  

Ilias et al. investigated the palladium deposition on micro-porous stainless steel 

(MPSS) substrate in presence of anionic, cationic and nonionic surfactants in EP process 

[11, 17, 20, 49]. It was found that cationic surfactant with active polar group participates 

in the reaction or deposition process and effectively activates the process of grain 

nucleation and agglomeration in electro-crystallization. The membranes with 

agglomerated grains fabricated using surfactant possess relatively higher permeability 

and selectivity. To emphasize the role of surfactant in EP, Ilias and coworkers introduced 

the term Surfactant Induced Electroless Plating (SIEP) process which can provide greater 

control of over grain size distribution with enhanced deposition rate [11, 17, 20, 49]. 

A surfactant with suitable charge and concentration can be used to tailor the Pd 

grain size and subsequent agglomeration. Ilias et al. used a balance between micelles 
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collapse and retention as a control to facilitate uniform nucleation and agglomeration of 

Pd grains in dense Pd-film fabrication on MPSS [17]. The presence of surfactant helps in 

continuous removal of the evolved gases (NH3, N2 etc.). The interaction of surfactant in 

solid-liquid and solid-gas interface during grain coarsening helps in removing gas 

bubbles making almost entire substrate surface available for deposition. It was also 

concluded that the surfactant took part in the reduction reaction enhancing the plating 

process. As a result, the equilibrium shifts to the right which increases the rate of 

production of Pd°. The other advantage of this process is the preparation of an extremely 

dense thin film.  

The concentration of the surfactant was chosen as a function of critical micelle 

concentration (CMC). It appears that during electro-crystallization, the driving force 

between newly formed crystallite and original coarse grains depends on the relative size 

and crystalline configuration of the newly formed crystallite. On the other hand, the 

crystallites are affected by the localized over potential, presence of active nucleating 

particles, texture of MPSS surface and operating conditions. The size of the newly 

formed grain is smaller when the concentration of surface active agents is relatively 

higher. It suggests that, surfactant active polar group inherently participates in deposition 

process and effectively activates the process of grain nucleation and agglomeration in 

electro-crystallization. By fabricating Pd membrane with different grain size by using 

different concentrations of surfactant, they have finally proved the control over deposited 

Pd-film microstructure. 
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Surfactants are amphiphilic molecules that possess a hydrophobic hydrocarbon 

tail and a hydrophilic polar head. Surfactants have both polar and apolar group. When 

surfactants are added in different phases, they always tend to accumulate at the interfaces 

of the phases. The accumulation of this surfactant at the interfaces reduces the interfacial 

energy present at the boundaries of the phases. As a result, the liquid in contact with solid 

spreads uniformly over the solid surface [60].  

There are three kinds of surfactant such as cationic surfactant carrying positive 

charge, anionic surfactant carrying negative charge and nonionic surfactant or amphoteric 

surfactant, also known as zwitterionic surfactant which may exhibit either negative or 

positive charges depending on solution conditions but never shows no charge. The 

amount of surfactant added to the solution is expressed in terms of critical micelle 

concentration (CMC). Critical micelle concentration is the concentration of surfactant 

above which micelles which is the aggregation of surfactant molecules are just formed. 

The critical micelle concentration of dodecyl trimethyl ammonium bromide (DTAB) is 

15 mM [61] . Micelles can be in different forms such as laminar, cylindrical and spherical 

with different number of molecules. The criteria for choosing a surfactant are that a 

surfactant should be partially soluble and stable in the medium and possess substantial 

adhesion tension and have good leveling power. The surfactant selection criteria are 

given below. 

The paramount criteria for selecting a surfactant for a solution is the compatibility 

of that surfactant with the solution which means the ability of a surfactant to achieve 

adequate solubility in the solution. The molecular structure of the surfactant determines 
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whether it is compatible with a solution or not. A surfactant consists of a hydrophobic 

group which is a long chain hydrocarbon and hydrophilic group. The longer the 

hydrocarbon chain of surfactant, the surfactant will be more insoluble in the solution. On 

the other hand, if the hydrocarbon chain is smaller, this surfactant becomes more soluble 

in the solution resulting in poor performance due to poor surface activity.  

There is Traube’s rule which states that each methylene unit added will result in a 

reduction of the CMC of the surfactant by a factor of 3 [62]. One of the ways to find a 

suitable surfactant for a solution is the hydrophilic lipophilic balance (HLB) number 

which is used to optimize a compatible surfactant. Temperature is another factor in 

selecting suitable surfactant along with compatibility because the solubility of a 

surfactant depends on temperature. A surfactant may be poorly soluble in a solution at 

low temperature but micelle cannot be formed at that solubility and the surfactant cannot 

perform its job properly. The temperature below which a surfactant ordinarily soluble in a 

solution exhibits poor solubility and cannot form micelles, is known as the Krafft 

temperature [60]. The surfactant needs to be stable in the solution before performing its 

activity. The surfactant has to interact with the solution having charges to be stable in the 

solution. Positively charged cationic surfactants are generally compatible with metallic 

cations. In an electroless plating bath, presence of surfactant promotes the deposition 

reaction between the bath solution and the immersed substrate surface. 
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CHAPTER 3 

MATERIALS AND METHODS 

 

The electroless plating technique was used to obtain a dense Pd layer on the 

porous stainless steel supports. The supports were microporous stainless steel disc of 

grade 0.2 µm average pore size, 1 inch in diameter and 0.062 inch in thickness as per the 

manufacturer, Mott metallurgical Corporation (Farmington, CT). The entire process 

included the following steps: cleaning of the substrate, substrate’s surface activation (pre-

seeding), electroless plating, post plating treatment, and characterization.  

3.1 Cleaning 

The substrates need to be cleaned thoroughly prior to activation. The surface 

cleaning also has certain steps. Firstly, the surface of the substrate was cleaned by a metal 

brush to remove the external dust. Then the substrate was cleaned with alkaline cleaning 

solution (prepared in our lab) kept in ultrasonic bath for 40-60 minutes at 60 °C 

temperature to remove the grease, oil, dirt, corrosion products and other contaminants 

impregnated in the top surface of the substrate [38, 63]. The composition of the alkaline 

cleaning solution is given in Table 3.1. The substrate was washed with de-ionized water 

to make the surface pH 7. The substrate was dipped into isopropanol (Fisher Scientific) 

solution for 10 minutes and then it is dried for 2 hours at 120 °C in an oven. 

3.2 Sensitization and Activation 

The activation procedure consisted of immersion of the substrate for 5 minutes in 

an acidic SnCl2 (Sigma-Aldrich, 98%) bath called sensitization followed by 5 minutes in 
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an acidic PdCl2 (Sigma-Aldrich, 99.9%) bath called activation with rinsing in de-ionized 

water for 4-5 minutes between baths. Rinsing prevented drag out (transfer of activator or 

sensitizer into the plating bath) which caused precipitation of Pd metal particles. The 

composition of the sensitization and activation solutions prepared in our lab is given in 

Table 3.2. The activated substrate was rinsed with 0.01 M HCl in order to prevent 

hydrolysis of Pd2+. From sensitization to rinsing with HCl completes one cycle. This 

cycle was repeated 6-10 times until the substrate surface became completely activated 

when the color of the surface looked like a uniform dark brown [5, 38, 63]. 

 
Table 3.1. Chemical composition of cleaning solution 
Name of Chemicals Supplier Composition 

Na3PO4.12H2O (ACS Reagent grade, 99.4%) Alfa Aesar 45 g/L 

Na2CO3 (ACS Grade, ≥ 99.5%) Alfa Aesar 65 g/L 
NaOH (ACS Grade, 97%) Alfa Aesar 45 g/L 
Industrial Detergent (Liqui-NoxR) Alconox 5 mL/L 

 
 
Table 3.2. Chemical composition of sensitization and activation solutions 

Name of Chemicals Supplier 
Sensitization 

Solution 
Activation 
Solution 

SnCl2.2H2O (ACS Reagent grade, 98%) Sigma-Aldrich 1 g/L - 

PdCl2 (ACS Reagent grade, 99.9%) Alfa Aesar - 0.1 g/L 

HCl (ACS Reagent grade, 37%) Sigma-Aldrich 1 mL/L 1 mL/L 
Temperature  20 °C 20 °C 
Time  4-6 minutes 4-6 minutes 
pH  4-5 4-5 

 
 
3.3 Development of Pd-Bath 

After impregnating the surface with Pd nuclei on the substrate surface, Pd-film 

was deposited by surfactant induced electroless plating (SIEP) process. The deposition 
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was carried out in an electroless plating bath at a constant temperature of 55 °C. The 

membranes were cleaned thoroughly with de-ionized water so that the entrapped salts and 

other chemicals in the Pd-film pores could be removed [64]. The operating condition and 

composition of the Pd plating bath are given in Table 3.3. 

 
Table 3.3. Chemical composition of Pd-bath solution 
Name of Chemicals Supplier Pd-bath 

Pd (NH3)4Cl2.H2O (≥ 99.99%) Sigma-Aldrich 4 gm/L 

Na2EDTA (≥ 99%) Acros Organics 40.1 gm/L 

NH4OH (ACS grade, 29.17%) Fisher Scientific 198 mL/L 

NH2-NH2 (1.0 M) Sigma-Aldrich 5.6 mM 

DTAB (~ 99%) Sigma-Aldrich 4×CMC 

Time  1 hour 

Temperature  60 °C 
pH  10-11 

 
 

Sodium salts of EDTA and analytical grade ammonium hydroxide were obtained 

from Acros Organic and Fisher Scientific, respectively. Hydrazine (1.0 M) and tetra-

amine palladium chloride were supplied by Sigma-Aldrich. De-ionized water was 

supplied by Milli-Q purification system (MilliporeTM) with conductivity as high as 18.2 

mho-cm for sample preparation and rinsing of the glassware as well as experimental 

setup.  All chemicals were used as received. The surfactant used in this work was DTAB 

(dodecyl trimethyl ammonium bromide, MW 308.35) obtained from Sigma Aldrich. The 

DTAB concentration was expressed in critical micelle concentration (CMC). In this SIEP 

process, the best performed concentration of DTAB is 4×CMC [49]. In this work, 

4×CMC of DTAB for 5 membrane samples (Pd 26, Pd 28, Pd 30, Pd 31 and Pd 32), 
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1×CMC of DTAB for 2 membrane samples (Pd 21 and Pd 22), and no CMC of DTAB 

for membrane sample Pd 19A were used in the Pd plating bath [65]. The amount of Pd 

deposition was calculated by gravimetric method. The Pd-film thickness was calculated 

using both gravimetric method and from SEM images. The deposition plating process 

was continued until the surface was deactivated. After each cycle, helium leak test was 

carried out and flux was measured. The completion of fabrication was determined when 

the helium flow was found to be zero at room temperature and 20 psi pressure.  

3.4 Post Treatment 

Annealing is the heat treatment in which a material is exposed to a higher 

temperature for an extended time period and then slowly cooled. After the preparation of 

Pd membrane, the membranes were annealed for 18 hours at 500 °C temperature and 15 

psi pressure under hydrogen atmosphere to coalesce the deposited Pd crystals to form a 

continuous, smooth, uniform and impervious membrane [64]. The membranes were first 

heated to 550 °C at a low temperature gradient under nitrogen atmosphere and then 

hydrogen gas was introduced in the membrane removing the nitrogen gas switch. The 

Tamman temperature of a metal is equal to one half of its melting point (in Kelvin) and is 

a temperature at or above which the atoms of the metals start to vibrate in a considerable 

extent [66]. The annealing temperature was chosen based on the tamman temperatures of 

Pd and stainless steel substrate’s constituents. The tamman temperatures are 640 °C for 

Pd, 632 °C for Fe, 817 °C for Cr and 632 °C for Ni. The annealing temperature of the Pd 

membrane should be below enough the tamman temperature of substrate’s constituent so 

that no elements of the substrate can diffuse into the Pd-film and vice versa which is 
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called intermetallic diffusion. Intermetallic diffusion reduces hydrogen flux. After 18 

hours of heat treatment, nitrogen gas was again introduced in the membrane removing the 

hydrogen gas switch and temperature was brought down to room temperature at a very 

slow rate. Annealing for this membranes helps to produce specific microstructure, relieve 

stresses and increase softness, ductility, and toughness [29].  

3.5 Characterization 

Finally, the surface microstructure characterizations of the deposited films were 

conducted using scanning electron microscope (SEM) (HITACHI SU 8000), energy 

dispersive spectroscopy (EDS) (BRUKER AXS Microanalysis Gmbtt XFlash Detector 

5030), X-ray diffractometer (XRD) (Bruker AXS (D8 Discover)) using the 2θ-θ scan 

with CuKα (λ = 1.5405 Å) radiation and atomic force microscopy (AFM) (NT-MDT 

Integra-Prima). Using point to point measurements from SEM images, grain sizes were 

measured. The statistical distributions were estimated considering a minimum 500 no. of 

grains in a constant cross-section area. The membranes were characterized by 

permeability and selectivity tests. The experimental set-up is presented in Figure 3.1. The 

cross-sections of these membranes were investigated by SEM after cutting the 

membranes into pieces. EDS mapping and line scanning were used to investigate the 

composition of the palladium membrane layer to determine if any detectable levels of 

substrate component metals such as Fe, Cr and Ni migrated into the palladium film. Two 

membranes, Pd 31 and Pd 32 were tested for long term thermal stability study. Pd 31 

performed 1200 hours with infinite selectivity at the temperature range of 300 – 450 – 

300 °C and at 15 psi transmembrane pressure.  
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Figure 3.1. Experimental set-up for gas permeation through membrane at high 
temperature (FCV - flow control valve, TC - thermocouple (K - type), GC - gas 

chromatograph, PCV - pressure control valve, RM - rotameter) [3, 20]. 
 
 

Pd 32 was tested for 408 hours at the temperature range of 350 – 450 – 350 °C 

and at 15 psi transmembrane pressure. Pd 32 membrane also showed excellent 

permeability and infinite selectivity throughout the operation period. In this study, each 

of the thermal cycles were in few hours of duration. For example, in 350 – 450 – 350 °C 

cycle, the diffusion cell temperature was ramped from 350 °C to 450 °C (@ 1°C/minute) 

and after three to four hours operation, the temperature was slowly decreased to 350 °C  

and left it overnight or started a new cycle. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

4.1 Introduction 

Pd-composite membranes on microporous stainless steel were fabricated by SIEP 

process. Fabrication of thin, dense, and defect free palladium membrane depends on the 

microstructure of the palladium layer. Microstructure of the palladium film varies with 

several factors such as substrate surface roughness, pore dimension, fabrication 

technique, bath composition and operating conditions.  

In conventional electroless (CEP) plating process, grain size distribution of Pd-

film is controlled by various factors such as agitation and mixing of the plating bath 

solution, rotation of the substrate, osmotic pressure field, etc. To make a dense and defect 

free membrane using CEP process, membrane needs a thick palladium layer which 

reduces the hydrogen throughput. A cationic surfactant, dodecyl trimethyl ammonium 

bromide (DTAB) used in the SIEP process has great influence on the dense film 

microstructure of palladium composite membrane. Surfactant helps to form dense, 

uniform and defect free palladium film on MPSS substrate. Pd-composite membrane 

fabricated by SIEP process gives higher hydrogen throughput and permselectivity than 

that of membrane fabricated by CEP process. Using surfactant DTAB in SIEP process, 

the particle size distribution can be reduced significantly. The reduction of grain size 

helps to make a robust membrane of microstructure having desired grain agglomeration. 
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This was demonstrated by our research group previously. A brief introduction of the 

SIEP process is presented below [3].  

Electroless plating is comprised of cathodic metal deposition and anodic oxidation 

of reductant on MPSS substrate. In conventional electroless plating, reduction of metal 

salt such as palladium tetra ammonium chloride monohydrate produces Pd-film on the 

substrate. Along with Pd° nitrogen and ammonia gases are produced from anodic and 

cathodic reactions. These gas bubbles adhere on the solid-liquid interface. As a result 

these gases hinder further deposition on the solid surface which creates dendrite growth. 

This dendritic growth of Pd crystalline results in non-uniform morphology and pinholes 

in the Pd-film. Pd grains and degree of agglomeration depend on the surface morphology. 

The crystalline distribution and microstructure characteristics of the deposited Pd-film 

have great effect on the long term performance and thermal stability of Pd-composite 

membrane. In SIEP process, surface active agent such as DTAB is added in the plating 

bath solution keeping bath composition, operating conditions same as for conventional 

electroless plating. The surfactant molecules form micelle with bath solution which helps 

to remove adhered gases from the solid-liquid interfaces. Most likely, the active Br- in the 

head group of DTAB participate in the reduction process of the complex salt and 

favorably take part in Pd grain formation and subsequent grain coarsening, which helps in 

formation of uniform, defect free Pd-film on the substrate. The deposited Pd grain size 

and grain agglomeration are controlled by using this surfactant [49]. Our previous studies 

demonstrated that the best suited surfactant for Pd-composite membrane on MPSS 

substrate is dodecyl trimethyl ammonium bromide (DTAB) and the best performed 
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concentration of DTAB is 4×critical micelle concentration (CMC). SIEP process helps to 

enhance both hydrogen permeability and selectivity. In this work, using SIEP process, 

Pd-composite membrane on MPSS substrate has been fabricated, characterized; and long 

term performance and thermal cycling tests were carried out.  

Instrumental analyses such as scanning electron microscopy (SEM), energy 

dispersive spectroscopy (EDS), X-ray diffraction (XRD), and atomic force microscopy 

(AFM) were carried out to characterize the membrane for the structure, grain size 

distribution, grain agglomeration and metal composition. Permeability measures were 

performed for the fabricated membrane. The long term performance of a SIEP membrane 

was observed for 1200 hours at temperatures ranging from 300 to 450 °C and at 15 psi 

pressure. Another SIEP membrane with intermetallic barriers was studied for 408 hours 

at temperatures ranging from 350 to 450 °C and at 15 psi pressure passing pure hydrogen. 

Both membranes showed excellent permeability and infinite selectivity over the 

performance period. 

4.2 Microstructure Analysis  

Pd-composite membrane’s thickness, robustness, permeability, permselectivity, 

durability, and performance depend on the microstructure of the Pd-film on the substrate. 

Researchers have worked on film deposition methods to control grain size, adhesion, and 

film porosity [55]. The substrate surface roughness, fabrication technique, bath 

parameters, and operating conditions have great influence on the microstructure of Pd-

composite membrane. The Pd-film microstructure also depends on the use of different 

reducing agent in different concentration which basically manipulates the reaction 
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kinetics. In this work, Pd-composite membranes were fabricated using SIEP process 

where a surfactant was used along with other parameters such as bath composition, bath 

parameters, operating conditions used in CEP process to demonstrate the role of 

surfactant in grain size, grain agglomeration, microstructure of Pd-film and the long term 

thermal durability and thermal cycling of the Pd-composite membrane. The substrate 

used here is microporous stainless steel from Mott Metallurgical Corporation. According 

to the manufacturer’s data, the average pore size of the substrate was 0.2 µm and the 

physical dimensions of the substrate were 1 inch in diameter and 0.062 inch in thickness. 

4.2.1 Helium Gas-tightness and Thickness Analysis of Pd Membranes 

Pd-composite membranes on MPSS substrate were prepared using the cationic 

surfactant, DTAB at the concentration of 4×CMC, 1×CMC and no CMC. Both 

gravimetric method and SEM analysis of Pd-composite membrane cross section were 

used to measure the thickness of the membranes. Both methods gave consistent results. 

Thinner Pd-composite membrane can be prepared with shorter plating time by using 

surfactant [49]. The gas-tightness of these membranes was performed by passing helium 

gas through these membranes at transmembrane pressure of 20 psi and temperature of 27 

°C. Pd deposition on the MPSS substrate was carried out layer by layer in electroless 

plating bath. When we observed, no helium flow through the membrane in the gas-

tightness test, the membrane fabrication part was assumed to be complete. Helium was 

chosen for gas-tightness testing for being the smaller molecule (2.6 Å) compared to 

hydrogen (2.89 Å). In addition, helium is inert in reaction with palladium. In this work, 

several membranes were fabricated using 1×CMC and 4×CMC of DTAB, and without 
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DTAB. Hydrogen flux and selectivity data of four membrane samples are presented in 

Table 4.1 along with their fabrication processing variability and film thickness. 

 
Table 4.1. Summary of Pd membranes characteristics fabricated by SIEP method 

Membrane 
Sample 

DTAB 
(CMC) 

Film Thickness 
(µm) 

H2 Flux at 823K 
(mol/m2-s) 

Selectivity at 823 K 
(H2 Flux/N2 Flux) 

SEM Analysis 20 psig 100 psig 20 psig 100 psig 

Pd 19A 0 16.5 0.044 0.2202 84 35 

Pd 21 1 12.4 0.0794 0.4722 207 120 

Pd 26 4 11 0.3542 1.7172 330 148 

Pd 31 4 7.5 - - - - 

 
 

Membrane sample Pd 19A is fabricated by conventional electroless plating (CEP) 

method (no surfactant). Samples Pd 21 and Pd 26 were fabricated by SIEP method with 

1×CMC and 4×CMC of DTAB concentrations, respectively. From our study, we 

observed that a thinner Pd-film that is helium gas-tight can be fabricated by SIEP with 

higher DTAB concentration. For example, as given in Table 4.1 the Pd-film thickness 

decreased from 16.5 µm (with no surfactant) to 12.4 µm at 1×CMC DTAB and further 

dropped to 11 µm at 4×CMC DTAB concentration. Our test data showed that with 

increased DTAB concentration (consequently thinner Pd-film), the membranes provide 

higher hydrogen flux with higher H2-selectivity (Table 4.1). At times, Pd membranes 

develop pinholes during heat treatment which require repair-deposition. Sample Pd 31 

was not heat treated and it was used for characterization as a membrane before heat 

treatment. This work also demonstrates the reproducibility of the membrane prepared by 

SIEP process in our lab. It can be seen from the Table 4.1 that the Pd membrane has a 
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thinner film of thickness 7.5 µm which is consistent and compares well with our 

previously reported  Pd-film thickness of 8.5 µm [49]. Shu et al. reported that at least 15 

µm thick Pd-film deposition by  CEP  method is required to obtain a dense and defect 

free film when using 0.2 µm porous stainless steel support [34]. 

4.2.2 Microstructure Analysis of Pd Membranes Fabricated by SIEP Process 

The fabricated Pd-composite membranes were characterized using scanning 

electron microscopy (SEM). The surface topology of Pd-film of membranes was 

analyzed by SEM images. Figure 4.1(a, b & c) shows the top view of the stainless steel 

support with a pore size of 0.2 µm at magnification of 500 X and 1.00 K at two different 

locations at electron beam energy of 5 kV. Pores are seen clearly in the substrate. Figures 

4.2 and 4.3 show the top view of the Pd-composite membrane plated on top of the 

substrate. From the Figure 4.2 and 4.3 , it is obvious that the Pd-film fabricated using 

DTAB at 4×CMC level has finer grains and the diffusion of grain boundaries results in a 

uniform, smooth, continuous and pinhole free surface. The use of nanometer-sized 

palladium grains was reported as an alternative method for minimizing the lattice 

distortion from the α-β Pd hydride phase transition [10]. This occurs because the 

concentration of hydrogen on the grain surface and subsurface significantly increases 

compared to that in the interior sites for the case of nanometer particles. To investigate 

the particle size, surface roughness and grain boundary diffusion, the SEM images were 

taken in different agglomerated site at the magnifications of 1.00 K, 5.00 K, 10.0 K, 15.0 

K, 20.0 K and 50.0 K. The energy of the electron beam was chosen at 5 kV since lower 

beam energy gives finer surface characteristics.  
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Figure 4.1. SEM images at different magnifications of the top surface of bare 316L 
microporous stainless steel (MPSS) substrate. 

  

(a) MPSS substrate at 1.00 K (location 1) (b) MPSS substrate at 1.00 K (location 2)

(c) MPSS substrate at 500 X
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Figure 4.2. SEM images of Pd membrane top surface at 1.00 K and 5.00 K 

magnifications showing uniform agglomeration. 
  

(a) Pd at 1.00 K

(b) Pd at 5.00 K
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Figure 4.3. SEM images of Pd membrane top surface at different resolutions 
showing uniform agglomeration. 

  

(a) Pd at 10.0 K (b) Pd at 15.0 K

(c) Pd at 20.0 K (d) Pd at 50.0 K
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As we gradually move to the higher magnification images, it is clear that there is 

exactly similar grain boundary diffusion just beneath the top particle layer. Figure 4.4 

shows the grain size distribution of Pd Membranes fabricated by SIEP process. From 

Figure 4.4, the average Pd grain size actually reduced to 0.47 µm in presence of DTAB at 

4×CMC from an average particle size of 8 µm when DTAB was absent. The data for 

particle size distribution of Pd-film fabricated using no CMC of DTAB were taken from 

our previous work [49]. This result clearly suggests that the use of surfactant DTAB 

conclusively reduces the grain size considerably [49]. 

Surfactants are amphiphilic molecules that possess a hydrophobic hydrocarbon 

tail and a hydrophilic polar head. Surfactants have both polar and apolar group. When 

surfactants are added in different phases, they always tend to accumulate at the interfaces 

of the phases. The accumulation of this surfactant at the interfaces reduces the interfacial 

energy present at the boundaries of the phases. As a result, the liquid in contact with solid 

spreads uniformly over the solid surface [60]. Surfactant, DTAB is hydrophobic in nature 

and aligns itself around gas-liquid interfaces and forms various cylindrical and spherical 

cages like structure. Surfactant also tends to form meta-stable (cylindrical and spherical) 

structure in the solid - liquid interfaces that helps in finer grain formation and subsequent 

coarsening of the grain which was elucidated over a hydrophobic glass surface shown in 

Figures 4.5 and 4.6 in the scale of 1×1 µm scale and 2.5×2.5 µm scale, respectively. 

Figures 4.5 and 4.6 show that surfactant DTAB is forming a regular cage like structure 

after regular interval throughout the surface. These cages like structures support the idea 

of forming meta-stable structures in the solid-liquid interfaces by surfactant DTAB. 
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Figure 4.4. Pd grain size distribution observed in Pd membrane fabricated by SIEP 
process with DTAB at no CMC and 4×CMC. 
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Figure 4.5. AFM images of Pd solid surface aggregation onto typical hydrophobic 
glass surface with DTAB in 1×1 µm scale. 

  

(a)

(b)
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Figure 4.6. AFM images of Pd solid surface aggregation onto typical hydrophobic 
glass surface with DTAB in 2.5×2.5 µm scale.  

  

(a)

(b)
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It is also noticeable that using DTAB forms thinner layer as well. Figure 4.7 

shows the surface topology of Pd-MPSS membrane examined by AFM study. The Pd-

MPSS surface shows the presence of cage like structures but the grains are diffused one 

into another. Surface roughness is increased for Pd-MPSS top surface. Mean roughness 

of the surface was 16.59 nm. 

One of the instruments for analyzing palladium films is X-ray diffraction (XRD). 

XRD is used to determine grain size, composition, and crystallographic orientation. X-ray 

diffraction was carried out for the structure analysis of the Pd-composite membrane 

fabricated by SIEP process. Figure 4.8 shows the XRD spectra of Pd peaks for Pd 31 

membrane. XRD shows peaks in [111], [200], [220], and [311] characteristics planes, 

which implies the deposition of polycrystalline structure throughout the surface. The 2θ 

& d-spacing values corresponding to the three major reflection peaks in [111], [200] and 

[220] planes are presented in Table 4.2. No peak for the MPSS elements such as Fe, Cr, 

Ni and Mn were found in the XRD spectra. 

Surface elemental analysis was carried out by energy dispersive spectroscopy 

(EDS). Figure 4.9 shows the typical EDS pattern of Pd-film fabricated using DTAB 

surfactant. It is observed from the figure that Pd peaks are intense. An escape peak for Pd 

at approximately 1.5 KeV X-ray energy is always observed when Pd is involved in the 

analysis. The EDS spectra did not show any peak for any elements other than palladium. 

So, the film contains only palladium metal. By adding the surfactant, DTAB in the SIEP, 

no contamination was added to the Pd-film structure as confirmed by the EDS and XRD 

results.  
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Figure 4.7. AFM images of Pd solid surface aggregation onto typical MPSS surface 
with DTAB in 1×1 µm scale. 

  

(a)

(b)
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Figure 4.8. XRD pattern of Pd 31 membrane fabricated by SIEP process (before 
heat treatment). 
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Table 4.2. Comparison of high angle XRD reflection peaks of Pd-film fabricated by 
SIEP method 

 Bravais Lattice Pd (pre-annealed) Pd (post-annealed) 

2-theta 

111 40.159 40.26 

200 46.924 46.693 

220 68.231 68.121 

311 82.212 81.981 

d-spacing 

111 2.2444 2.23885 

200 1.935 1.94428 

220 1.37378 1.37589 

311 1.171945 1.17472 

Lattice parameter, a 3.8826 3.8885 

Lattice Structure FCC FCC 

 

4.3 Heat Treatment of Pd Membranes 

The membranes were annealed for 18 hours at 500 °C temperature and 15 psi 

pressure under hydrogen atmosphere to coalesce the deposited Pd crystals to form a 

continuous, smooth, uniform and impervious membrane [64]. Although the Pd deposition 

technique on PSS support is popular means of synthesis, one of the problems associated 

with the electroless plating is the difficulty in forming uniform Pd-film. Uniform Pd-film 

is the most commonly achieved by annealing under inert (i.e. He, Ar) or reducing (i.e. 

H2) atmospheres prior to the hydrogen permeation testing. At high temperature (≥ 500 

°C), the intermetallic diffusion of support metals (Fe, Cr, Ni) takes place into the dense 

Pd separation layer resulting in deterioration in hydrogen permeation and non-uniform Pd 

layer. Before annealing, the temperature of the membrane needs to rise up to 500 °C from 

room temperature. Cracks are produced during the transformation from α- to β-phase 

palladium hydride at 298 °C. 
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Figure 4.9. Typical EDS spectrum of Pd 31 membrane shows the presence of 
polycrystalline Pd deposition. 
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Pd membrane is heated from room temperature to annealing temperature and 

cooled from annealing temperature to room temperature under inert (e.g. He, Ar, N2) 

atmosphere to avoid cracks. Figure 4.10 shows the change of helium flow rate with 

increasing temperature. For up to 200 °C, the helium flow rate did not increase 

significantly. From 200 to 400 °C, it was increasing to maximum at 80 ml/minute. During 

the increasing temperature, atomic movement of the palladium particles facilitated 

helium to pass through the membrane at an increasing rate. At 500 °C temperature, the 

helium flow rate came down to 26 ml/minute. At higher temperatures, palladium particles 

recrystallize themselves what reduced helium flow rate. It is seen from Figure 4.11 that 

hydrogen flux just immediately hydrogen introduced is very small. Hydrogen flux 

increased rapidly within 10 minutes of hydrogen permeation when hydrogen diffusion 

occurred through the palladium layer faster. After few hours of permeation, hydrogen 

flux decreased because of less permeable Pd-film formation.  

According to Mardilovich et al. the densification occurred at the Pd/stainless steel 

interface [63]. Densification results in a loss of surface area and consequently hydrogen 

flux decreases. Grain agglomeration was promoted at this hydrogen atmosphere [67]. 

When uniform, smooth grain agglomerated Pd-film has been made, hydrogen flux 

became constant. Recrystallization occurs affecting the hydrogen permeability as well as 

membrane strength during annealing because the adsorption enthalpy of hydrogen as well 

as surface diffusion on palladium depends on orientation in some extent [55]. Figure 4.12 

shows the change of helium flow rate during the cooling of the membrane from annealing 

temperature to room temperature.  
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Figure 4.10. Change of helium flow rate during temperature increasing up to 500 °C 
for annealing Pd 20 MPSS membrane fabricated by SIEP process. 
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Figure 4.11. Changes in the hydrogen permeation flux for Pd 20 MPSS membrane 
during the annealing process at 500 °C with transmembrane pressure difference of 

15 psi. 
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Figure 4.12. Change of helium flow rate during cooling from 500 to 30 °C after 
annealing of Pd 20 MPSS membrane. 
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Some hydrogen might be entrapped in the palladium layer during annealing. Once 

helium was introduced into the system, the helium flow rate was small. With running 

time, hydrogen was removed from the Pd layer by the helium pressure gradient resulting 

in increased helium flow rate and eventually helium flow rate became constant. 

Researchers also noted the increase and decrease of hydrogen or nitrogen permeation flux 

during palladium membrane operation [55]. An initial decrease in hydrogen flux that 

attained a steady state value after 80 hours and a decrease in nitrogen flux with increasing 

temperature were found by Wu et al [68]. According to them, the interactions between 

the Pd-film and the titania support or rearrangement of the Pd-film resulting in a decrease 

in the effective membrane area for hydrogen permeation causes these phenomena. 

4.3.1 Effect of Heat Treatment on Microstructures 

One of the major concerns about Pd-composite membrane is the microstructural 

changes in the Pd-film. During high temperatures operation, the thermodynamic 

instability happens due to free energy present in the large volume fraction of grain 

boundaries. As a result, the micro- and nanocrystalline grains of Pd-films sinter and 

conglomerate [68]. Figure 4.13 shows the XRD reflection patterns of Pd membrane 

before and after 18 hours heat treatment at 500 °C and one atmospheric pressure under 

hydrogen atmosphere. The reflection patterns for both before and after annealing of the 

membrane are similar. The characteristic planes found for this palladium in this XRD 

were [111], [200], [220] and [311], and the respective 2-theta values are 40.159, 46.924, 

68.231 and 82.212. The 2-theta values for this membrane after heat treatment decreased 

in a little bit.  
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Figure 4.13. XRD patterns of Pd membrane fabricated by SIEP process at pre- and 
post-heat treatment. 
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After heat treatment, peaks gained more intensity which indicates that the crystals 

are well organized. In the XRD, more sharp peaks (more intensity) mean more 

crystalline. In the presence of hydrogen during heat treatment, crystals of palladium 

organize in a definite way. Grain growth during annealing of the Pd-film is confirmed by 

XRD. The d-spacing values are calculated using Bragg’s law and shown in the Table 4.2 

(as given in page 59) along with 2-theta values and lattice parameter calculated from the 

plane spacing equation. The lattice parameters for before and after heat treatment 

palladium found in the XRD are 3.8826 Å and 3.8885 Å, respectively. The little higher 

lattice parameter of the membrane after annealing than that of the membrane before 

annealing is the result of the migration of minute amount of Fe of the substrate into Pd-

film which is consistent with the literatures [38, 65]. 

In the fabrication of Pd membrane by SIEP, Pd-film is deposited on MPSS 

substrate by multilayer deposition. This Pd-film contains small grains with large grain 

boundaries. This large grain boundaries reduces hydrogen selectivity [3]. Furthermore, 

pinholes originate from grain boundaries resulting in reduced selectivity. In order to 

improve the film quality, the Pd-film needs to be annealed. Upon annealing, Pd grains 

cluster fuses intimately with small grain boundaries. As a result, smooth and uniform Pd-

film is produced. Figures 4.14 and 4.15 depict a representative surface morphology for Pd 

membrane before and after annealing at 1.00 K and 5.00 K magnifications, respectively. 

Clearly, it is recognizable from the images that the smaller grains agglomerated into 

larger grains with recognizable boundaries. Figure 4.16 shows some pinholes in the range 

of diameter of 50 - 200 nm on the surface of the membrane after heat treatment.  
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Figure 4.14. SEM images at 1.00 K magnification showing the effect of heat 
treatment on the Pd microstructure. 

  

(a) Pd at 1.00 K (before heat treatment)

(b) Pd at 1.00 K (after heat treatment)
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Figure 4.15. SEM images at 5.00 K magnification showing the effect of heat 
treatment on the Pd microstructure. 

  

(a) Pd at 5.00 K (before heat treatment) 

(b) Pd at 5.00 K (after heat treatment) 
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Figure 4.16. SEM images at 10.0 K, 15.0 K, 20.0 K and 50.0 K magnifications of Pd 
membrane at post-heat treatment. 

  

(a) Pd at 10.0 K (b) Pd at 15.0 K

(c) Pd at 20.0 K (d) Pd at 50.0 K
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Interstitial space might form during the multilayer deposition and drying steps. In 

the fabrication of the membrane, deposition was carried out by cycle. After each cycle of 

deposition, membrane was dried for 2 hours when an oxide layer might form. This oxide 

layer was reduced during annealing. Reduction of oxide layer formed some pinholes in 

the Pd-film. Reorientation of the crystals also occurs in the annealing period. The metals 

from the top are used up occupying the inter-granular spaces, and the interstitial spaces. 

While cooling starts after heat treatment, recrystalization occurs and diffusion ceases. 

Cooling step plays a significant role in the creation of pinholes. Figure 4.17 shows the 

comparison of surface of Pd-film of membrane before and after annealing at different 

magnifications. It reveals the effects of heat treatment on membrane. The surface 

topology of the permeability tested membrane is shown in Figure 4.18 at different 

resolution. The surface of membranes at pre- and post-heat treatment, post permeability 

test, and post 1200 hours of operation are shown in Figures 4.19, 4.20, 4.21 at 1.00 K, 

10.0 K and 20.0 K magnifications, respectively. 

4.3.2 Studies of Pd Membrane Cross-section 

Several membranes were fabricated in the SIEP process. Among them, four 

membranes were annealed at 500 °C temperature and one atmospheric pressure for 18 

hours under hydrogen environment. Permeability tests were taken for four membranes at 

250 °C, 350 °C, 450 °C and 550 °C temperatures and 20 psi, 40 psi, 60 psi, 80 psi and 

100 psi pressure drops. Then they were cut into pieces and metal polished for the 

investigation of microstructure of the membranes. One freshly prepared membrane 

sample Pd 31 was also cut into pieces and microstructure of the Pd-film was analyzed. 
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Figure 4.17. SEM images at different resolutions of Pd membrane at pre-heat 
treatment (HT) and post-heat treatment (HT), (a) Pd at 10.0 K (pre-HT), (b) Pd at 
10.0 K (post-HT), (c) Pd at 15.0 K (pre-HT), (d) Pd at 15.0 K (post-HT), (e) Pd at 

20.0 K (pre-HT), (f) Pd at 20.0 K (post-HT), (g) Pd at 50.0 K (pre-HT), and (h) Pd at 
50.0 K (post-HT). 

 
 

SEM images were taken for the cross-section of these membranes showed in the 

Figures 4.22 and 4.23. From the Figures 4.22 and 4.23, it is observed that before 

annealing, there is no intrusion of palladium inside the stainless steel but after annealing 

some palladium passed inside the substrate. SEM images also show that there is no 

nanoholes in the membrane before heat treatment but some nanoholes are seen after 

annealing through the cross-section of the membrane. The diffusion of metals into the 

substrate and the film is an important feature of membrane since this diffusion reduces 

the  hydrogen  permeability. 

(a) (b) (c) (d)

(e) (f) (g) (h)
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Figure 4.18. SEM images of Pd membrane after permeability test at different 
resolutions. 

 
 

Film cross-sections were found to have all pores of the substrate surface plugged 

with the Pd metal. A deep penetration of the metals into the pores of the substrate was 

seen as well. A detail study was carried out on a single pore of the film from the pore 

mouth to the very deep inside of the pore to elucidate the behavior of metal deposition. 

Cross-sectional EDS line scans were performed for both membranes after H2 permeation 

tests at temperatures of 250 - 550 °C to confirm the intermetallic diffusion and metal 

distribution.  

(a) Pd at 1.00 K (b) Pd at 5.00 K (c) Pd at 10.0 K

(d) Pd at 15.0 K (e) Pd at 20.0 K (f) Pd at 50.0 K
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Figure 4.19. SEM images at 1.00 K magnification of Pd membrane at pre- and post-
heat treatment (HT), after permeability test (PT), and after 1200 hours test. 

  

(a) Pd at 1.00 K (pre-HT) (b) Pd at 1.00 K (post-HT)

(c) Pd at 1.00 K (after PT) (d) Pd at 1.00 K (after 1200 hours test)
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Figure 4.20. SEM images at 10.0 K magnification of Pd membrane at pre- and post-
heat treatment (HT), after permeability test (PT), and after 1200 hours test. 

  

(a) Pd at 10.0 K (pre-HT) (b) Pd at 10.0 K (post-HT)

(c) Pd at 10.0 K (after PT) (d) Pd at 10.0 K (after 1200 hours test)
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Figure 4.21. SEM images at 20.0 K magnification of Pd membrane at pre- and post-
heat treatment (HT), after permeability test (PT), and after 1200 hours test. 

  

(a) Pd at 20.0 K (pre-HT) (b) Pd at 20.0 K (post-HT)

(c) Pd at 20.0 K (after PT) (d) Pd at 20.0 K (after 1200 hours test)
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Figure 4.22. Typical SEM images at 1.00 K magnification of Pd-film cross-section of 
two different membranes Pd 19A (after-annealing) and Pd 31(before-annealing). 

  

(a) Pd 31 film at 1.00 K (before-annealing)

(b) Pd 19A film at 1.00 K (after-annealing)
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Figure 4.23. SEM images at 1.00 K magnification of Pd-film cross-section of 
different membranes. 

  

(a) Pd 31 at 1.00 K (pre-HT) (b) Pd 21 at 1.00 K (post-HT)

(c) Pd 19A at 1.00 K (post-HT) (d) Pd 26 at 1.00 K (post-HT)
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Cross-sectional EDS line scans were performed for both membranes after H2 

permeation tests at temperatures of 250 - 550 °C to confirm the intermetallic diffusion 

and metal distribution. The cross-sectional EDS line scans also give better understanding 

of the Pd deposition in the pores and on the surface of the substrate. EDS analysis was 

carried out from the pore mouth to a distance of 35 µm inside the interphase. A series of 

line scanning was carried out for Pd-film cross-section showed in Figure 4.24. The line 

scanning shows that in the palladium film, there were little peaks for elements such as Fe, 

Cr, and Ni and the highest peak was for Pd. After a certain level, the Pd peak drops 

sharply and the peaks for Fe, Cr and Ni peaks rise up. Figure 4.24 shows the intermetallic 

diffusion between Pd and MPSS elements dominated by Fe. Fe and Cr diffused into the 

Pd-film and Pd diffused into the stainless steel substrate in some extent. 

EDS mapping was carried out for the Pd membrane cross-section to visualize the 

metal deposition and diffusion shown in the Figures 4.25 and 4.26. EDS mapping for Pd 

31 at pre-heat treatment and Pd 26 at post-heat treatment are shown in Figures 4.25 and 

4.26, respectively. Pd, Fe and Cr of membrane Pd 31 are highlighted in Figure 4.25 (a), 

(b) and (c) respectively. It is observed that Fe, Cr and Ni are found mainly in the 

substrate and a trace amount of these elements are found in the film. Since the cut piece 

of the membrane was needed to be polished before EDS analysis, some stainless steel 

particles containing Fe, Cr and Ni elements doped in the film during metal polishing for 

sample preparation. It is depicted in the EDS mapping shown in Figures 4.25 and 4.26 

that Pd metal went far from the Pd-film and substrate interface inside the substrate. This 

diffused Pd blocked the pores of MPSS.  
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Figure 4.24. EDS line scanning of Pd-film cross-section [Scanning length 35 µm]. 
 

 

(a)

(b)
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Figure 4.25. EDS mapping of Fe, Cr and Pd in Pd membrane fabricated by SIEP 
process showing the metal distribution in the Pd-film and substrate (before heat 

treatment). 
  

(a) X-section for EDS mapping (b) Pd in EDS mapping

(c) Fe in EDS mapping (d) Cr in EDS mapping
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Figure 4.26. EDS mapping of Fe, Cr and Pd in Pd membrane fabricated by SIEP 
process showing the metal distribution in the Pd-film and substrate (after heat 

treatment). 
  

(a) Cross-section for EDS mapping (b) Pd in EDS mapping

(c) Fe in EDS mapping (d) Cr in EDS mapping
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4.4 Permeability Studies of Pd Membranes 

The permeation tests were carried out with a H2/N2 single gas method. Each time, 

the membranes were assembled in a testing cell and sealed with graphite. The pressure on 

the permeate side was always ambient. Before testing, the membrane was heated up to 

250 °C under nitrogen gas environment. The fluxes of pure nitrogen and pure hydrogen 

were measured as a function of their pressures on the membrane retentate side [49, 69]. 

After test, the membranes were thoroughly purged with nitrogen before cooling down to 

room temperature [69]. 

Membrane samples Pd 26 by using 4×CMC of DTAB, Pd 19A by using no 

DTAB, and Pd 21 and Pd 22 by using 1×CMC of DTAB were fabricated. From this 

study, we found that DTAB at 4×CMC was the most effective surfactant in SIEP process 

that enabled us to deposit integrated, defect free Pd-film on MPSS. We tested these Pd-

MPSS membranes for gas-tightness and hydrogen perm-selectivity in our permeability 

measurement set-up shown in Figure 3.1 (as given in page 42). The thicknesses of the Pd-

film on MPSS support were found to be 11.0 µm for Pd 26, 16.5 µm for Pd 19A, 12.4 µm 

for Pd 21 and 13 µm for Pd 22. Basically those membranes were fabricated using less 

thick Pd-film. Some pinholes were produced during heat treatment. To take the 

permeability test of these membranes, the membranes were needed more deposition to 

make it pinhole free again which increased the Pd-film thickness and decreased the 

hydrogen permeability and eventually increased the selectivity. Hydrogen permeance for 

the membrane sample Pd 26 was found to be 27.25 m3/m2-hr at 140 kPa and 550 °C. The 

selectivity of hydrogen with respect to nitrogen was about 330. This suggests the Pd-
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MPSS membrane fabricated by SIEP technique was extremely gas-tight and essentially 

defect free at 11 µm Pd-film thickness. Shu et al. reported that at least 15 µm of metal 

deposited by an EP method is required to obtain a dense and defect free film when using 

0.2 µm porous stainless steel supports [34]. So, the Pd-film thickness of Pd-composite 

membrane fabricated by SIEP process is much smaller than that for Pd-composite 

membrane fabricated by EP process. 

The transport of hydrogen through dense Pd-film is a complex multistep process, 

which involves: (1) reversible dissociative chemisorptions of molecular hydrogen on the 

membrane surface; (2) reversible dissolution of atomic hydrogen in the bulk layers of the 

metal; (3) diffusion of atomic hydrogen through the bulk metal; and (4) association of 

hydrogen into hydrogen molecule. The hydrogen flux through dense Pd-film can be 

expressed in the form of Fick’s first law as follows: 

(  - )n nH
H f p

Q
N P P

t
=        (4.1) 

where QH is the hydrogen permeability (a product of solubility and diffusivity), t is the 

membrane thickness, and  and f pP P  are the partial pressures of hydrogen on the high and 

low pressure sides, respectively. When diffusion through the bulk metal is the rate 

limiting step and hydrogen atoms form an ideal solution in the metal, n is equal to 0.5, 

and then Equation. (4.1) becomes the Sievert’s law. 

The hydrogen permeability measurements were carried out in our permeation 

measurement set-up using pure hydrogen in the temperature range of 250 to 550 °C and 

in the pressure range of 20-100 psi. The measured data as a function of pressure 
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difference (  - )f pP P  are presented in Figures 4.27, 4.28, 4.29 and 4.30 for samples Pd 26, 

Pd 19A, Pd 21 and Pd 22, respectively. The lines drawn in the figures are non-linear 

least-square fit with a power index, n = 0.82 for Pd 26, n = 0.85 for Pd 19A, n = 0.85 for 

Pd 22, and n = 0.84 for Pd 21 whereas for Pd-MPSS, Sievert’s law index n is 0.5. The 

flux data in Figures 4.27, 4.28, 4.29, and 4.30 shows that with increasing temperature, 

hydrogen flux increases for a given transmembrane pressure difference. Further, 

hydrogen flux increases with increased pressure drop across the membrane. A value of n 

greater than 0.5 may result when surface processes influence the permeation rate [70]. 

The hydrogen diffusivity may become dependent on concentration of dissolved hydrogen 

and that may contribute to n values greater than 0.5 [37]. Leakage of hydrogen through 

defects in the metal film or membrane seals may also increase the value of n. Further, 

small resistance of the MPSS membrane support may also slightly increase the value of 

n. The deviation in the observed flux data from the idealized Sievert’s law may be 

attributed to some of the contributing factors just discussed.  Barbieri et al. reported that 

the index value (n) can be deviated from the Sievert’s law for all reasons and the reasons 

cannot be concluded clearly [71]. The hydrogen flux of membrane samples Pd 26, Pd 

19A, and Pd 21 are in the range of 0.161-1.7172 mol/m2-s, 0.0142-0.2202 mol/m2-s, 

0.0601-0.4722 mol/m2-s, respectively at temperatures of 250-550 °C and pressure drop of 

20-100 psi. The flux of Pd 22 is in the range of 0.0.0429-0.1717 mol/m2-s, at 

temperatures of 300 - 450 °C and pressure drop of 20-60 psi. Among all the membrane 

samples, Pd 26 fabricated by SIEP process using 4×CMC DTAB surfactant have shown 

best performance in permeability.  
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Figure 4.27. Hydrogen flux in Pd 26 MPSS membrane fabricated by SIEP process 
using 4×CMC of DTAB at different temperatures. 
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Figure 4.28. Hydrogen flux in Pd 19A MPSS membrane fabricated by CEP process. 
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Figure 4.29. Hydrogen flux in Pd 21 MPSS membrane fabricated by SIEP process 
using 1×CMC of DTAB at different temperatures. 
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Figure 4.30. Hydrogen flux in Pd 22 MPSS membrane fabricated by SIEP process 
using 1×CMC of DTAB at different temperatures. 
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The membrane selectivity was defined as the ratio of hydrogen flux versus the 

nitrogen flux under identical conditions of temperature and pressure. The ability of a 

membrane to separate gases is characterized by the selectivity of the membrane. Ideal 

selectivity (or separation factor) is defined as the ratio of the permeability of the 

penetrants of interest. 

Hydrogen to nitrogen selectivity data of samples Pd 26, Pd 19A, Pd 21 and Pd 22 

are shown in Figures 4.31, 4.32, 4.33, and 4.34, respectively. These selectivity figures 

show that selectivity decreases with increasing pressure drop across the membrane 

exponentially at the same temperature and selectivity increases with increasing 

temperature at the same pressure drop. For all the membrane samples, regardless of 

concentration of used surfactant, selectivity is highest at the maximum temperature and 

minimum pressure drop and vise-versa. In this work, the maximum temperature and 

minimum pressure drop were 550 °C and 20 psi, respectively. The highest selectivity at 

550 °C and 20 psi is 330 for Pd 26, 85 for Pd 19A, 207 for Pd 21 and 267 for Pd 22. 

Among these three membranes, Pd 26 fabricated by SIEP process using 4×CMC DTAB 

surfactant showed best selectivity and Pd 19A fabricated without surfactant showed least 

selectivity. The highest selectivity at 450 °C and 20 psi is 267 for Pd 22. The Pd-film 

thickness of Pd 22 (13 µm) is little higher than that for Pd 21 (12.4 µm) and Pd 26 (11 

µm).  

Grandjean et al. prepared Pd membranes supported on porous stainless steel disks 

by an EP method by modifying the substrates surface by shot peening treatment. They 

found that the H2 permeance of their membranes was 5.8×10−7 molm−2 s−1 Pa−1 [72]. 
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Figure 4.31. Hydrogen-to-nitrogen selectivity in Pd 26 MPSS membrane fabricated 
by SIEP process using 4×CMC of DTAB at different temperatures. 
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Figure 4.32. Hydrogen-to-nitrogen selectivity in Pd 19A MPSS membrane 
fabricated by CEP process. 
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Figure 4.33. Hydrogen-to-nitrogen selectivity in Pd 21 MPSS membrane fabricated 
by SIEP process using 1×CMC of DTAB at different temperatures. 

 
  



 
 

94 
 

Pf
0.75-Pp

0.75 (psi0.75)

0 5 10 15 20

S
el

ec
ti

vi
ty

 (
H

2 
F

lu
x/

N
2 

F
lu

x)

0

200

400

600

800

1000

523 K
623 K
723 K

 
 

Figure 4.34. Hydrogen-to-nitrogen selectivity in Pd 22 MPSS membrane fabricated 
by SIEP process using 1×CMC of DTAB at different temperatures. 
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Tong et al. prepared Pd membranes with thickness of 2–3 µm by electroless 

plating of Pd or Pd/Ag layers with a thin diffusion barrier of silver by electro plating on a 

stainless steel substrate filled with aluminum hydroxide gel. Their best membrane 

showed H2 permeance of 1.7×10−6 molm−2 s−1 Pa−1 with no N2 permeance at 673 K [73]. 

Huang et al. produced Pd membranes on PSS by an EP method. Before coating they 

modified the substrate surface by coating with a porous yttria stabilized zirconia layer by 

atmospheric plasma spray. Huang group reported that the H2 permeance of their 

membrane was 7.5×10−7 molm−2 s−1 Pa−1 at 673K with a H2/N2 selectivity of 700 [74]. 

Shi and Szpunar reported the fabrication of Pd membranes which showed a H2 

premeance of 6.5×10−7 molm−2 s−1 Pa−1 at 773K but did not mention the H2 selectivity 

[75]. Ma et al. reported a preparation of Pd membrane on PSS with a chromium oxide 

layer as a diffusion barrier. Their best membrane showed H2 permeance of 3.5×10−7 

molm−2 s−1 Pa−1 with a very high H2/He selectivity at 723 K [76]. Zhang et al. fabricated 

a Pd membrane of 11 µm thickness on PSS substrate modified with yttria stabilized 

zirconia layer as a diffusion barrier. This Pd membrane showed a permeance of 9.8×10−7 

molm−2 s−1 Pa−1 at 773K with thermal stability to 923K [66]. A Pd membrane of 12 µm 

thickness on PSS with WO3 intermediary layer was reported by Zahedi et al. [77]. They 

claimed that the membrane has permeance of 2.1×10−8 molm−2 s−1 Pa0.5 with an exponent 

n = 0.5 and a N2/H2 selectivity of 10,000 at 723 K. Cornaglia and coworkers prepared a 

Pd membrane of 19 µm thickness on PSS with an effective diffusion barrier, NaA zeolite 

[78]. The membrane has permeance of 1.6×10−6 molm−2 s−1 Pa−1 with an exponent n = 

0.5 and a N2/H2 selectivity of 608 at 723 K. Our Pd membrane fabricated by SIEP 
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method offers better H2 flux data, with a film thickness of 11 µm over MPSS support. So 

fundamentally, this study is consistent with literature. From gas-tightness experiment, we 

are inclined to conclude that the Pd-MPSS (7.5 µm pd-film thickness) fabricated by 

DTAB induced SIEP is very much defect free. But, heat treatment produces pinholes. For 

the use of the membrane, repair deposition is required. So, the Pd-film thickness 

increases in some extent. 

To illustrate the intrinsic membrane behavior of the SIEP Pd membranes, we 

computed the permeability coefficients QH using an Arrhenius plot (QH vs. 1/T). The 

Arrhenius plots of the four sample membranes are given in Figures 4.35, 4.36, 4.37 and 

4.38. The data fits very well with the Arrhenius equation: 

( )exp /H HoQ Q E RT= −        (4.2) 

where HoQ is the reference permeance, E is the activation energy, T is the absolute 

temperature and R is the universal gas constant. We found, E = 8.83 KJ/mol for Pd 26 

fabricated by SIEP using 4×CMC DTAB whereas E = 13.62 KJ/mol for Pd 19A 

fabricated by CEP process. The activation energy for Pd-film is lower than the reported 

results in literature. For Pd membrane, previously the reported activation energy was 

14.45 KJ/mol for 17 µm Pd-film on ceramic substrate [70], and 19.7 KJ/mol was reported 

for a different membrane [63].  

Table 4.3 shows different properties of the membranes such as membrane 

thickness, Sieverts’law index, activation energy, and pre-exponential index. The Pd-film 

thickness, Sieverts’law index and activation energy for Pd 26 is less than that for Pd 19A. 
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Figure 4.35. Arrhenius plot of H2 permeability coefficients of Pd 26 MPSS 
membrane fabricated by SIEP process using 4×CMC of DTAB. 
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Figure 4.36. Arrhenius plot of H2 permeability coefficients of Pd 19A MPSS 
membrane fabricated by CEP process. 
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Figure 4.37. Arrhenius plot of H2 permeability coefficients of Pd 21 MPSS 
membrane fabricated by SIEP process using 1×CMC of DTAB. 
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Figure 4.38. Arrhenius plot of H2 permeability coefficients of Pd 22 MPSS 
membrane fabricated by SIEP process using 1×CMC of DTAB. 

  



 
 

101 
 

Table 4.3. Comparison of values of activation energy, Sieverts’s law and Pre-
exponential factor of different membranes fabricated by SIEP method 

Membrane 
DTAB 
(CMC) 

Thickness by 
SEM (µm) 

Sieverts’ Law 
Power Index 

Pre-exponential 
Factor Qo 

Activation 
Energy 
KJ/mol 

Pd 19A 0 16.5 0.85 0.045 13.62 

Pd 21 1 12.4 0.84 0.013 3.5 

Pd 22 1 13 0.85 0.08 15.27 

Pd 26 4 11 0.82 0.124 8.83 

Pd 30 4 7.5 - - - 

Pd 31 4 11.6 - - - 

Pd 32 4 13.49 - - - 

 
 

The pre-exponential index is greater than that for Pd 19A. From the values of the 

activation energy (E), we see that with increase in film thickness of membranes, value of 

activation energy decreases, which suggests that the surface phenomena of dissociative 

adsorption and recombinative desorption do not provide significant influence on 

permeation process of our fabricated Pd membranes. Activation energy for diffusion can 

be increased because of lattice defects, grain boundaries, and micro voids [55]. 

Membranes Pd 21 and Pd 22 did not give consistent results of different properties. So 

they could not be compared.  

4.5 Long Term Performance 

The long term stability of Pd-MPSS composite membranes was examined in H2 

and N2 gases as a function of temperature. Defects may develop in the thin Pd-film at 

high temperatures [79, 80]; membrane Pd 30 was intentionally prepared with a relatively 
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thick film than usual pinhole-free membrane. This membrane needed 11.6 µm thick Pd-

film to be helium gas tight. Pd 30 membrane was subjected to thermal cycling to check 

its performance. For a period of 1200 hours, H2 flux of the membrane was recorded under 

thermal cycling of 300 – 450 – 300 °C, and at 15 psi pressure in our permeability test set-

up. On each day of testing, the membrane underwent a couple of thermal cycles. During 

the 1200 hours hydrogen gas permeation test of the membrane, nitrogen leak test was 

carried out almost every 72 hours by switching hydrogen gas to nitrogen gas to check the 

integrity of the Pd membrane. During continuous operation, the membrane showed a 

good stability while the N2 leakage was zero.  

The Figure 4.39 shows that the hydrogen fluxes at 300 °C and 450 °C were 

0.0150 and 0.0215 mol/(m2-s), respectively. The hydrogen flux was increasing till almost 

850 hours. After almost 850 hours of operation, flux became 0.0301 and 0.0365 mol/(m2-

s) at 300 °C and 450 °C temperatures, respectively. The increase in hydrogen flux up to 

850 hours operation is attributed to the peeling off certain layer of the Pd-film. This 

peeling off made the Pd-film thinner, resulting in increasing hydrogen flux. As of 1200 

hours of permeability test, the membrane remained stable. Over the period of 1200 hours 

of operation, there was no leakage of nitrogen indicating that H2/N2 permselectivity was 

infinite. However, after 1200 hours, the N2 flux became 0.00215 mol/m2-s, and the 

selectivity came to almost 18, based on the H2 flux, 0.0365 mol/m2-s at 450 °C. This 

indicates that in the temperature range of 300 – 450 °C, up to the 1200 hours test, there 

was no pinhole in the Pd-film. So, it can be assumed that some layers of the Pd-film were 

peeled off and all of a sudden, some of these peeled off spots became pinholes. 
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Figure 4.39. H2 and N2 flux data of Pd 30 composite MPSS membrane fabricated by 
SIEP method under thermal cycling at 15 psi transmembrane pressure. 
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Another membrane Pd 32 was fabricated by SIEP process, but an oxide layer as 

an intermetallic diffusion barrier was produced on the substrate surface prior to the 

application of the dense hydrogen selective Pd skin layer. For the oxide layer, the cleaned 

stainless steel substrate was heated at 600 °C for 12 hours in the presence of air. 

Instrumental analysis was not carried out for the confirmation of forming of the oxide 

layer. This membrane needed 13.49 µm thick Pd-film to be helium gas tight. The oxide 

surface is rougher. The Pd membrane needed thicker Pd-film to be helium gas tight due 

to having rougher oxide surface on the substrate surface. After heat treatment, Pd 32 

membrane was tested for thermal cycling to check its performance and thermal stability. 

For a period of 408 hours, H2 flux of the membrane was recorded under thermal cycling 

of 350 – 450 – 350 °C, and at 15 psi pressure in our permeability set-up.  

Hydrogen and nitrogen flux data of Pd 32 composite MPSS membrane fabricated 

by SIEP method under thermal cycling are placed in the Figure 4.40. The Figure 4.40 

shows that the hydrogen fluxes at 350 °C and 450 °C were 0.062 and 0.0773 mol/ (m2-s), 

respectively after 408 hours. The hydrogen flux of membrane Pd 32 is about double than 

that of membrane 30. Over the 408 hours testing period, nitrogen flux was found to be 

zero. So the Pd 32 membrane performed thermal cycling for 408 hours with infinite 

selectivity. As of 408 hours of permeability test, the permeability remained stable. 

Though the thickness of the Pd 32 membrane is higher than that of the Pd 30 membrane, 

the hydrogen flux of membrane Pd 32 is about double than that of membrane Pd 30. 

Because Pd 32 membrane had an oxide film as a diffusion barrier on the substrate what 

prevented the metal diffusion.  
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Figure 4.40. H2 and N2 flux data of Pd 32 composite MPSS membrane fabricated by 
SIEP method under thermal cycling at 15 psi transmembrane pressure. 
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Metal such as Fe, Cr or Ni of stainless steel diffuses into the Pd-film during 

annealing at 500 °C temperature under hydrogen atmosphere. In the absence of diffusion 

barrier, Pd-film and stainless steel elements produce a less permeable alloy during 

annealing. From Figures 4.39 and 4.40, it can be observed that both Pd 30 and Pd 32 have 

shown similar behavior in permeability and selectivity during the long term thermal 

stability test. The horizontal blue dashed line merged with abscissa in Figures 4.39 and 

4.40 refers the introduction of N2 for several minutes to check the integrity of the Pd 

membrane during H2 permeation tests. No N2 gas was observed passing through the 

membrane, indicating the absence of defects formed during performance tests. Once H2 

gas was introduced again in the system, H2 flux decreased for both membranes but 

returned back to normal in few hours. 

Lin et al. fabricated a Pd membrane with oxidized porous stainless steel. It was 

found that the minimum thickness of Pd membrane required for gas-tightness was 25 µm 

on oxidized PSS support [66]. Lin et al. also reported the fabrication of Pd membrane of 

20 µm thickness on PSS support [81]. The final selectivity (H2/N2) and H2 permeance of 

this membrane were 4000 and 5.0 m3/m2-h-bar0.5, respectively after 900 hours test. 

Shirasaki et al. fabricated Pd/rare earth membrane of less than 20 µm thickness on PSS 

support [82]. This membrane showed selectivity (H2/N2) greater than 10000 after 3300 

hours of test. Yi Hua Ma et al. claimed that they prepared Pd membrane of 4 µm 

thickness on hastelloy [83]. This membrane was tested for 2200 hours and the final 

selectivity (H2/He) and H2 permeance were found 22000 and 42.8 m3/m2-h-bar0.5, 

respectively. 90%Pd/10%Cu membrane of 1.5 µm thickness on ZnO2/porous alumina 
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support was reported by J. Douglas Way et al. [84]. The membrane prepared by J. 

Douglas Way et al. showed 7000 selectivity (H2/N2) and 12.6 m3/m2-h-bar H2 permeance 

after 4100 hours operation. J. Douglas Way’s group also reported fabrication of Pd 

75%/Cu 25% membrane of 3 µm thickness on ZnO2/porous alumina support [85]. Pd 

75%/Cu 25% membrane performed 340 hours with 8.85 m3/m2-h-bar H2 permeance and 

end selectivity 11 (H2/N2). Ronald hughes et al. reported the preparation of Pd/Ag 

membrane of 5.5 µm thickness on porous alumina support having 15.4 m3/m2-h-bar0.61  

H2 permeance  and 4500 selectivity (H2/N2) after 960 hours of testing period [86]. X.L. 

Pan et al. claimed that they prepared 3 µm thick Pd membranes which showed 16.4 

m3/m2-h-bar H2 permeance and 1300 selectivity (H2/N2) after 800 hours of testing period 

[87]. H. Li et al. reported the preparation of 10.9-13.8 µm thick Pd membrane on porous 

alumina substrate [88]. This Pd membrane performed 120 hours with 18 m3/m2-h-bar H2 

permeance whereas selectivity of this membrane was not mentioned. From the literature 

review, it is seen that no author reported any membrane performed long term thermal 

stability test with infinite selectivity. Our membranes fabricated by SIEP showed 

excellent long term thermal stability with comparable H2 flux and infinite selectivity. 

4.5.1 Post Process Characterization 

The Pd 30 membrane fabricated by SIEP process using 4×CMC of DTAB was 

tested for thermal cycling (300 - 450 - 300 °C) for 1200 hours. After 1200 hours of 

performance, nitrogen gas started to leak, indicating some pinholes were created in the 

Pd-film of the membrane. This tested membrane was characterized by SEM analysis. 

Post-process characterization shows a considerable grain growth and micro-strain 
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relaxation in the Pd membrane after the prolonged permeation experiment. Changes in 

surface area are relatively small. The formation of pinholes is identified as the main 

source of the N2 leakage during the testing at higher temperature. 

Figures 4.41 and 4.42 show SEM images at 600 X, 1.00 K, 5.00 K, and 10.0 K 

and at 15.0 K, 20.0 K, 50.0 K, and 100 K magnifications, respectively of the surface 

topology of Pd 30 membrane at post 1200 hours performance and thermal stability test. It 

is seen from the SEM images taken after 1200 hours of operation that there are some 

pinholes on the surface of the membrane. In Figures 4.41 and 4.42, the morphology of the 

tested membrane shows that pinholes are over the whole membrane surface, indicating 

that pinhole formation is not a localized phenomenon but affects the whole surface. The 

pits have the average diameter about 0.67 µm. From the SEM images, it is seen that all of 

the pinholes did not penetrate the palladium layer with same diameter. Although 

selectivity came down all of a sudden, it is clear from the SEM image that all of the 

pinholes have not been created suddenly but these pinholes did not penetrate through the 

Pd-film. Peeling of the Pd layer occurred during the thermal cycling. The peeling made 

the Pd-film thinner. After 1200 hours of operation, some spots of the peeled off area 

passed through the Pd-film and became pinholes.  Since 0.2 – 0.4 times of the melting 

point of nanocrystalline metal is the sintering temperature, sintering plays an important 

role in the formation of leak and leak growth [89]. Pd cluster sintering is one of the 

reasons for leak formation. Increased surface roughness is observed by SEM for which 

there may be several possible causal roots; lattice stress relaxation, BCC/FCC phase 

transition in the Pd alloy, Pd grain coalescence, or Pd grain sintering.  
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Figure 4.41. SEM images at 600 X, 1.00 K, 5.00 K and 10.0 K magnifications of Pd 
30 membrane after 1200 hours of operation in the temperature range of 300 – 450 

°C at 15 psi transmembrane pressure. 
  

(a) Pd at 600 X (b) Pd at 1.00 K

(c) Pd at 5.00 K (d) Pd at 10.0 K
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Figure 4.42. SEM images at 15.0 K, 20.0 K, 50.0 K, and 100 K magnifications of Pd 
30 membrane after 1200 hours of operation in the temperature range of 300 - 450 

°C at 15 psi transmembrane pressure. 
  

(e) Pd at 15.0 K (f) Pd at 20.0 K

(g) Pd at 50.0 K (h) Pd at 100 K
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Figures 4.41 and 4.42 show that some grains of the membrane top surface took 

shape of cauliflower. It looks like that the cauliflower shaped Pd grain was about to get 

off the membrane surface. It can be guessed that before peeling off, the Pd grain takes the 

cauliflower shape for some reasons. 

The Pd 32 membrane with a diffusion barrier fabricated by SIEP process using 

4×CMC of DTAB was tested for thermal cycling (350 – 450 – 350 °C) for 408 hours. 

Nitrogen gas did not leak through the membrane over the testing period. After 408 hours 

thermal stability test, the membrane was characterized by SEM analysis. Figures 4.43 and 

4.44 show SEM images at 700 X, 1.00 K, 5.00 K, and 10.0 K and at 15.0 K, 20.0 K, 25.0 

K, and 50.0 K magnifications, respectively of the surface topology of Pd 32 membrane at 

post 408 hours performance and thermal stability test. Figures 4.43 and 4.44 show that no 

significant number of pinholes has been created in the Pd-film of the membrane. Pd 

membrane permeating hydrogen gas is prone to have pinholes or defects operated below 

350 °C temperature. Since Pd 32 membrane was not operated below 350 °C temperature, 

pinholes could not form. Though some very micropits are seen on the top surface of the 

Pd-film, these micropits did not go through the whole Pd layer to allow nitrogen gas to 

pass the membrane. The Pd 32 membrane contains infinitesimal sized and white colored 

spots over the whole surface area and some black spots in the agglomerated and clustered 

Pd grain boundaries. These spots might come from impurities present on the Pd layer. 

Pinholes might originate from the black spots. Figure 4.45 shows the SEM images at the 

resolutions of 5.00 K, 10.0 K and 15.0 K of Pd membranes at pre-heat treatment, after 

408 hours test, and after 1200 hours test.  
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Figure 4.43. SEM images at 600 X, 1.00 K, 5.00 K and 10.0 K magnifications of Pd 
32 membrane after 408 hours of operation in the temperature range of 350 – 450 °C 

at 15 psi transmembrane pressure. 
  

(a) Pd at 700 X (b) Pd at 1.00 K

(c) Pd at 5.00 K (d) Pd at 10.0 K
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Figure 4.44. SEM images at 15.0 K, 20.0 K, 25.0 K and 50.0 K magnifications of Pd 
32 membrane after 408 hours of operation in the temperature range of 350 – 450 °C 

at 15 psi transmembrane pressure. 
  

(a) Pd at 15.0 K (b) Pd at 20.0 K

(c) Pd at 25.0 K (d) Pd at 50.0 K
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Figure 4.45. SEM images of Pd membranes at pre-heat treatment (HT), and after 
408 and 1200 hours test (T). 

  

(a) Pd at 5 K (pre-HT) (b) Pd at 5 K (after 408 hours T) (c) Pd at 5 K (after 1200 hours T) 

(d) Pd at 10 K (pre-HT) 

(g) Pd at 15 K (pre-HT) 

(e) Pd at 10 K (after 408 hours T) (f) Pd at 10 K (after 1200 hours T) 

(i) Pd at 15 K (after 1200 hours T) (h) Pd at 15 K (after 408 hours T) 
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CHAPTER 5 

CONCLUSIONS 

 

This work encompasses the fabrication of Pd-composite membrane on MPSS 

substrate by SIEP process as well as the investigation of thermal stability of the 

fabricated membranes. Membrane structure has a significant effect on hydrogen 

permeance and selectivity of Pd membranes [10]. In this study, we used a cationic 

surfactant, DTAB at different concentrations, which enables the deposition of a robust 

thin-film of Pd with excellent grain structures on stainless steel substrate. The surfactant, 

DTAB at concentration of 4×CMC controls the Pd grain size and grain size distribution 

effectively. The particle sizes were found in the range of 0.05-1.00 µm. Addition of 

DTAB in Pd plating bath helped the Pd membrane become helium gas tight with shorter 

plating time and relatively smooth, uniform, and thinner Pd-film. Upon heat treatment, 

excellent grain agglomeration was observed in the SIEP membrane with significant grain 

fusion. Cross-sectional EDS analysis of the SIEP Pd membrane shows deep penetration 

of metals in the pores of up to 25 µm. XRD spectra confirmed the polycrystalline 

structure of the Pd-film after 18 hours of annealing at 500 °C under a hydrogen 

environment. Pd-composite membranes showed excellent permeability and selectivity for 

hydrogen with thermal stability under operation at 250 - 550 °C temperature. Moreover, 

one membrane, Pd 30, had undergone the thermal durability tests for over 1200 hours 

under H2 atmosphere for temperature cycles at 300 - 450 °C and 15 psi transmembrane 

pressure drop. N2 gas was introduced periodically to check whether any pinhole has 
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formed in the membrane. Up to 1200 hours, the membrane performed with infinite 

selectivity, but all of a sudden, the membranes selectivity came down to 18. Post process 

characterization was carried out with SEM analysis, which showed some pinholes on the 

membrane surface. Another membrane, P 32 with a diffusion barrier on the substrate 

surface performed 408 hours with good hydrogen permeability and infinite selectivity. 

SEM images of post tested Pd 32 membrane show that there is no pinhole on the surface 

of the Pd-film. 

5.1 Future Works and Recommendations 

Membranes fabricated by SIEP technique give better permeability, selectivity, 

and long term thermal stability. These membranes require thinner Pd-film. SIEP process 

also requires considerable reduced fabrication cost. It is time now to identify the actual 

surfactant concentration which will provide the optimum surface activity. To demonstrate 

the technical viability of the Pd membrane, the following works are suggested to be 

carried out: 

1. Fundamental studies on bath kinetics would be helpful to choose suitable 

complexing agent, operating conditions and appropriate bath recipe during Pd 

membrane development, which will ultimately results a thin film Pd membrane 

with superior selectivity under extreme process conditions. Co-ordination of 

Pd+2/EDTA could be extended to understand the actual grain growth kinetics in 

presences of different complexes during surfactant induced electroless process. It 

is also necessary to reveal the role of pH on complexation and further bath 

stabilization process. Study of bath kinetics for Pd-bath will give important clues 
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how the surfactant interacts with other chemicals during deposition period. 

Intermediate SEM and XRD analysis of Pd membrane morphology deposited at 

shorter time intervals would further explain the effect of complex on in-situ grain 

formation and grain distribution.  

2. The SIEP process can be applied to the Pd-alloy films, such as, Pd-Ni and Pd-Au 

and some tertiary palladium alloys such as Pd-Ru-In, Pd-Ag-Ru and Pd-Ag-Rh 

should be fabricated with proper alloy compositions that would be thermally 

stable and resist H2 embrittlement during long term thermal cycling operation in 

extreme conditions. 

3. Gas transport mechanism of the membrane can be modeled using Aspen plus 

software. 

4. The determination of cause of pinhole formation and leak growth rates under pure 

H2 testing is essential for the Pd membrane. Molecular simulation can be applied 

to investigate the pinhole formation with time in the Pd-film of the membranes. 

5. Monte Carlo simulations can be used to observe the grain growth of thin Pd-films. 

6. Finally, scale up of our work has to be under taken for proto type development. 

  



 
 

118 
 

REFERENCES 

 

[1] Chen, C. and Gobina, E., "Ultra-thin palladium technologies enable future 
commercial deployment of PEM fuel cell systems," Membrane Technology, 2010, 
8 (2010). 

[2] Kitiwan, M. and Atong, D., "Effects of porous alumina support and plating time 
on electroless plating of palladium membrane," Journal of Materials Science & 
Technology, 26, 1148 (2009). 

[3] Rahman, M. M., "Fabrication of Pd and Pd-Ag membranes by surfactant induced 
electroless plating (SIEP)," MS Thesis, Chemical and Bioengineering, North 
Carolina A & T State University, Greensboro, NC (2010). 

[4] Adhikari, S. and Fernando, S., "Hydrogen membrane separation techniques," 
Industrial & Engineering Chemistry Research, 45, 875 (2006). 

[5] Ayturk, M. E., Mardilovich, I. P., Engwall, E. E., and Ma, Y. H., "Synthesis of 
composite Pd-porous stainless steel (PSS) membranes with a Pd/Ag intermetallic 
diffusion barrier," Journal of Membrane Science, 285, 385 (2006). 

[6] Yan, H. and Roland, D., "Preparation and characterization of palladium alloy 
composite membranes with a diffusion barrier for hydrogen separation," Journal 
of Membrane Science, 282, 15 (2006). 

[7] Gao, H., Lin, Y. S., Li, Y., and Zhang, B., "Chemical stability and its 
improvement of palladium based metallic membranes," Industrial & Engineering 
Chemistry Research, 43, 11 (2004). 

[8] Timothy, L. and Ward, T. D., "Model of hydrogen permeation behavior in 
palladium membranes," Journal of Membrane Science, 153, 21 (1999). 

[9] Li, X., Liu, T. M., Huang, D., Fan, Y. Q., and Xu, N. P., "Preparation and 
characterization of ultrathin palladium membranes," Industrial & Engineering 
Chemistry Research, 48, 5 (2009). 

[10] Yun, S. and Oyama, T. S., "Correlations in palladium membranes for hydrogen 
separation: A review," Journal of Membrane Science, 375, 28 (2011). 

[11] Islam, M. S., Rahman, M. M., and Ilias, S., "Characterization of Pd–Cu 
membranes fabricated by surfactant induced electroless plating (SIEP) for 
hydrogen separation," International Journal of Hydrogen Energy, 37, 3477 
(2012). 



 
 

119 
 

[12] Roland, D., Volker, H., and Kristian, D., "Membrane reactors for hydrogenation 
and dehydrogenation processes based on supported palladium," Journal of 
Molecular Catalysis A, 173, 50 (2001). 

[13] Gimeno, M. P., Wu, Z. T., Soler, J., Herguido, J., Li, K., and Menéndez, M., 
"Combination of a two-zone fluidized bed reactor with a Pd hollow fibre 
membrane for catalytic alkane dehydrogenation," Chemical Engineering Journal, 
155, 298 (2009). 

[14] Bi, Y., Xu, H., Li, W., and Goldbach, A., "Water–gas shift reaction in a Pd 
membrane reactor over Pt/Ce0.6ZrO.4O2 catalyst," International Journal of 
Hydrogen Energy, 34, 2965 (2009). 

[15] Shi, L., Goldbach, A., Zeng, G., and Xu, H., "Direct H2O2 synthesis over Pd 
membranes at elevated temperatures," Journal of Membrane Science, 348, 160 
(2010). 

[16] Tong, J., Matsumura, Y., Suda, H., and Haraya, K., "Experimental study of steam 
reforming of methane in a thin (6 µm) Pd-based membrane reactor," Industrial & 
Engineering Chemistry Research, 44, 12 (2005). 

[17] Ilias, S. and Islam, M. A., "Methods of preparing thin films by electroless 
plating," United States Patent, (2010). 

[18] Grashoff, G. J., Pilkington, C. E., and Corti, C. W., "The purification of 
hydrogen," Platinum Metals Review, 27, 157 (1983). 

[19] Ho, W. S. W. and Sirkar, K. K., Membrane Handbook, New York, Chapman & 
Hall, (1992). 

[20] Islam, M. A., "The development of improved electroless plating in fabricating Pd-
based membrane and membrane reactor application for hydrogen separation," 
PhD Dissertation, Energy and Environmental Studies, North Carolina A & T State 
University, Greensboro, NC (2008). 

[21] Hsieh, H. P., Inorganic Membranes for Separation and Reaction, New York, 
ELSEVIER, (1996). 

[22] Lu, G. Q., Costa, J. C. D. D., Duke, M., Giessler, S., Socolow, R., Williams, R. 
H., and Kreutz, T., "Inorganic membranes for hydrogen production and 
purification: a critical review and perspective," J Colloid Interface Sci, 314, 589 
(2007). 



 
 

120 
 

[23] Razima, S. S., Alexander, S. M., and Arvind, V., "Pd-composite membranes 
prepared by electroless plating and osmosis: synthesis, characterization and 
properties," Separation and Purification Technology, 25, 18 (2001). 

[24] Bose, A. C., Inorganic membranes for energy and fuel applications, Springer, 
(2009). 

[25] Ismail, A. F. and David, L. I. B., "A review on the latest development of carbon 
membranes for gas separation," Journal of Membrane Science, 193, 18 (2001). 

[26] Shu, J., Grandjean, B. P. A., Neste, A. V., and Kaliaguine, S., "Catalytic 
palladium-based membrane reactors: A review," The Canadian Journal of 
Chemical Engineering, 69, 1036 (1991). 

[27] Lewis, F. A., The Palladium Hydrogen System, New York, Academic Press, 
(1967). 

[28] Ayturk, M. E., "Synthesis, annealing strategies and in-situ characterization of 
thermally stable composite thin Pd/Ag alloy membranes for H2 separation," PhD 
Dissertation, Department of Chemical Engineering, Worcester Polytechnic 
Institute, Worcester, MA 01609 (2007). 

[29] William D. Callister, I., Materials science and engineering an introduction, John 
Wiley & Sons, (1994). 

[30] Massalski, T. B., Okamoto, H., Subramanian, P. R., and Kacprzak, L., in Binary 
Alloy Phase Diagrams. vol. 3, ed: ASM International, (1990). 

[31] Chen, Y., Atago, T., and Mohri, T., "First-principles study for ordering and phase 
separation in the Fe-Pd system," Journal of Physics: Condensed Matter, 14, 1903 
(2002). 

[32] Ayturk, M. E., Engwall, E. E., and Ma, Y. H., "Microstructure analysis of the 
intermetallic diffusion-induced alloy phases in composite Pd/Ag/porous stainless 
steel membranes," Industrial and Engineering Chemistry Research, 46, 4295 
(2007). 

[33] Bryden, K. J. and Ying, J. Y., "Nanostructured palladium-iron membranes for 
hydrogen separation and membrane hydrogenation reactions," Journal of 
Membrane Science, 203, 29 (2002). 

[34] Shu, J., Adnot, A., Grandjean, B. P. A., and Kaliaguine, S., "Structurally stable 
composite Pd-Ag alloy membranes: introduction of a diffusion barrier," Thin 
Solid Films, 286, 72 (1996). 



 
 

121 
 

[35] Nam, S. E. and Lee, K. H., "Hydrogen separation by Pd alloy composite 
membranes: introduction of diffusion barrier," Journal of Membrane Science, 
192, 177 (2001). 

[36] Rosenthal, P. A., Duncan, W. M., and Woollam, J. A., "In situ process diagnostics 
and intelligent materials processing. symposium," in In Situ Process Diagnostics 
and Intelligent Materials Processing. Symposium,, Warrendale, PA, USA, (1998). 

[37] Uemiya, S., Sato, N., Ando, H., Kude, Y., Matsuda, T., and Kikuchi, E., 
"Separation of hydrogen through palladium thin film supported on a porous glass 
tube," Journal of Membrane Science, 56, 303 (1991). 

[38] Ma, Y. H., Mardilovich, I. P., Engwall, E. E., Ceylan, A. B., Ayturk, M. E., and 
Guazzone, F., "Characterization of intermetallic diffusion barrier and alloy 
formation for Pd/Cu and Pd/Ag porous stainless steel composite membranes," 
Industrial and Engineering Chemistry Research, 43, 2936 (2004). 

[39] Uemiya, S., Matsuda, T., and Kikuchi, E., "Hydrogen permeable palladium-silver 
alloy membrane supported on porous ceramics," Journal of Membrane Science, 
56, 315 (1991). 

[40] Shu, J., Bongondo, B. E. W., Grandjean, B. P. A., Adnot, A., and Kaliaguine, S., 
"Surface segregation of Pd-Ag membranes upon hydrogen permeation," Surface 
Science, 291, 129 (1993). 

[41] Li, A., Liang, W., and Hughes, R., "Characterisation and permeation of 
palladium/stainless steel composite membranes," Journal of Membrane Science, 
149, 259 (1998). 

[42] Cheng, Y. S. and Yeung, K. L., "Palladium-silver composite membranes by 
electroless plating technique," Journal of Membrane Science, 158, 127 (1999). 

[43] Keuler, J. N. and Lorenzen, L., "Developing a heating procedure to optimise 
hydrogen permeance through Pd-Ag membranes of thickness less than 2.2 µm," 
Journal of Membrane Science, 195, 203 (2002). 

[44] Huang, T. C., Wei, M. C., and Chen, H. I., "Preparation of hydrogen-
permselective palladium-silver alloy composite membranes by electroless co-
deposition," Separation and Purification Technology, 32, 239 (2003). 

[45] Ma, Y. H., Mardilovich, P. P., and She, Y., "Hydrogen gas-extraction module and 
method of fabrication," United States Patent, (2000). 

[46] Ma, Y. H., Mardilovich, I. P., and Engwall, E. E., "Composite gas separation 
modules having intermediate porous metal layers," United States Patent, (2007). 



 
 

122 
 

[47] Tong, J., Shirai, R., Kashima, Y., and Matsumura, Y., "Preparation of a pinhole-
free Pd-Ag membrane on a porous metal support for pure hydrogen separation," 
Journal of Membrane Science, 260, 84 (2005). 

[48] Ma, Y. H., Mardilovich, I. P., and Engwall, E. E., "Thin composite palladium and 
palladium/alloy membranes for hydrogen separation," Annals of the New York 
Academy of Sciences, 984, 346 (2003). 

[49] Islam, M. A. and Ilias, S., "Characterization of Pd-composite membrane 
fabricated by surfactant induced electroless plating (SIEP): Effect of grain size on 
hydrogen permeability," Separation Science and Technology, 45, 1886 (2010). 

[50] Mallory, G. O. and Hajdu, J. B., Electroless plating: fundamentals and 
applications, New York, William Andrew Publishing/Noyes, (1990). 

[51] Rhoda, R. N. and Madison, A. M., "Palladium plating by chemical reduction," 
United States Patent, (1959). 

[52] Ayturk, M. E. and Ma, Y. H., "Electroless Pd and Ag deposition kinetics of the 
composite Pd and Pd/Ag membranes synthesized from agitated plating baths," 
Journal of Membrane Science, 330, 233 (2009). 

[53] Ayturk, M. E., Mardilovich, I. P., Engwall, E. E., and Ma, Y. H., "Synthesis of 
composite Pd-porous stainless steel (PSS) membranes with a Pd/Ag intermetallic 
diffusion barrier," Journal of Membrane Science, 285, 385 (2006). 

[54] Yeung, K. L., Sebastian, J. M., and Varma, A., "Novel preparation of Pd/Vycor 
composite membranes," Catalysis Today, 25, 231 (1995). 

[55] Paglieri, S. and Way, J., "Innovations in palladium membrane research," 
Separation & Purification Methods, 31, 1 (2002). 

[56] Muller, K. H., "Dependence of thin-film microstructure on deposition rate by 
means of a computer simulation," Journal of Applied Physics, 58, 2573 (1985). 

[57] Kirchheim, R., Muetschele, T., Kieninger, W., Gleiter, H., Birringer, R., and 
Koble, T. D., "Hydrogen in amorphous and nanocrystalline metals," Materials 
science and engineering, 99, 457 (1988). 

[58] Gleiter, H., "Nanocrystalline materials," Progress in Materials Science, 33, 223 
(1989). 

[59] Chen, B. H., Hong, L., Ma, Y., and Ko, T. M., "Effects of surfactants in an 
electroless nickel-plating bath on the properties of Ni-P alloy deposits," Industrial 
and Engineering Chemistry Research, 41, 2668 (2002). 



 
 

123 
 

[60] Nwosu, N., Davidson, A., Hindle, C., and Barker, M., "On the influence of 
surfactant incorporation during electroless nickel plating," Industrial & 
Engineering Chemistry Research, 51, 5635 (2012). 

[61] Koji, O. and Shigeru, T., "Micellar electrokinetic chromatography," Bull. chem. 
Soc. Jpn, 71, 17 (1998). 

[62] Aixing, F., Somasundaran, P., and Turro, N. J., "Adsorption of 
alkyltrimethylammonium bromides on negatively charged alumina," Langmuir, 
13, (1997). 

[63] Mardilovich, P. P., She, Y., Ma, Y. H., and Rei, M. H., "Defect-free palladium 
membranes on porous stainless-steel support," AIChE Journal, 44, 310 (1998). 

[64] Li, A., Grace, J. R., and Lim, C. J., "Preparation of thin Pd-based composite 
membrane on planar metallic substrate," Journal of Membrane Science, 306, 159 
(2007). 

[65] Ayturk, M. E., Engwall, E. E., and Ma, Y. H., "Microstructure analysis of the 
intermetallic diffusion-induced alloy phases in composite Pd/Ag/porous stainless 
steel membranes," Industrial & Engineering Chemistry Research, 46, 4295 
(2007). 

[66] Zhang, K., Gao, H., Rui, Z., Liu, P., Li, Y., and Lin, Y. S., "High-temperature 
stability of palladium membranes on porous metal supports with different 
intermediate layers," Industrial & Engineering Chemistry Research, 48, 1880 
(2009). 

[67] Okazaki, J., Ikeda, T., Tanaka, D. P., Sato, K., Suzuki, T. M., and Mizukami, F., 
"An investigation of thermal stability of thin palladium–silver alloy membranes 
for high temperature hydrogen separation," Journal of Membrane Science, 366, 
212 (2011). 

[68] Wu, L. Q., Xu, N., and Shi, J., "Preparation of a palladium composite membrane 
by an improved electroless plating technique," Industrial & Engineering 
Chemistry Research, 39, 7 (2000). 

[69] Hu, X., Yu, J., Song, J., Wang, X., and Huang, Y., "Toward low-cost Pd/ceramic 
composite membranes for hydrogen separation: A case study on reuse of the 
recycled porous Al2O3 substrates in membrane fabrication," International Journal 
of Hydrogen Energy, 36, 15794 (2011). 

[70] Collins, J. P. and Way, J. D., "Preparation and characterization of a composite 
palladium-ceramic membrane," Industrial and Engineering Chemistry Research, 
32, 3006 (1993). 



 
 

124 
 

[71] Caravella, A., Barbieri, G., and Drioli, E., "Modelling and simulation of hydrogen 
permeation through supported Pd-alloy membranes with a multicomponent 
approach," Chemical Engineering Science, 63, 2149 (2008). 

[72] Jemaa, N., Shu, J., Kaliaguine, S., and Grandjean, B. P. A., "Thin palladium film 
formation on shot peening modified porous stainless steel substrates," Industrial 
& Engineering Chemistry Research, 35, 5 (1996). 

[73] Tong, J., Shirai, R., Kashima, Y., and Matsumura, Y., "Preparation of a pinhole-
free Pd–Ag membrane on a porous metal support for pure hydrogen separation," 
Journal of Membrane Science, 260, 84 (2005). 

[74] Huang, Y. and Dittmeyer, R., "Preparation of thin palladium membranes on a 
porous support with rough surface," Journal of Membrane Science, 302, 160 
(2007). 

[75] Shi, Z. and Szpunar, J. A., "Synthesis of an ultra-thin palladium membrane for 
hydrogen extraction," Rev.Adv.Mater.Sci.  , 15, 9 (2007). 

[76] Samingprai, S., Tantayanon, S., and Ma, Y. H., "Chromium oxide intermetallic 
diffusion barrier for palladium membrane supported on porous stainless steel," 
Journal of Membrane Science, 347, 8 (2010). 

[77] Zahedi, M., Afra, B., Mobarake, M. D., and Bahmani, M., "Preparation of a Pd 
membrane on a WO3 modified porous stainless steel for hydrogen separation," 
Journal of Membrane Science, 333, 45 (2009). 

[78] Bosko, M. L., Ojeda, F., Lombardo, E. A., and Cornaglia, L. M., "NaA zeolite as 
an effective diffusion barrier in composite Pd/PSS membranes," Journal of 
Membrane Science, 331, 57 (2009). 

[79] Peters, T. A., Tucho, W. M., Ramachandran, A., Stange, M., Walmsley, J. C., 
Holmestad, R., Borg, A., and Bredesen, R., "Thin Pd–23%Ag/stainless steel 
composite membranes: long-term stability, life-time estimation and post-process 
characterisation," Journal of Membrane Science, 326, 572 (2009). 

[80] Bosko, M. L., Miller, J. B., Lombardo, E. A., Gellman, A. J., and Cornaglia, L. 
M., "Surface characterization of Pd–Ag composite membranes after annealing at 
various temperatures," Journal of Membrane Science, 369, 267 (2011). 

[81] Lin, Y. M. and Rei, M. H., "Study on the hydrogen production from methanol 
steam reforming in supported palladium membrane reactor," Catalysis Today  67, 
8 (2001). 



 
 

125 
 

[82] Shirasaki, Y., Tsuneki, T., Ota, Y., Yasuda, I., Tachibana, S., Nakajima, H., and 
Kobayashi, K., "Development of membrane reformer system for highly efficient 
hydrogen production from natural gas," International Journal of Hydrogen 
Energy, 34, 4482 (2009). 

[83] Guazzone, F. and Ma, Y. H., "Leak growth mechanism in composite Pd 
membranes prepared by the electroless deposition method," AIChE Journal, 54, 
487 (2008). 

[84] Roa, F. and Way, J. D., "Influence of alloy composition and membrane 
fabrication on the pressure dependence of the hydrogen flux of palladium-copper 
membranes," Industrial & Engineering Chemistry Research, 42, (2003). 

[85] Kulprathipanja, A., Alptekin, G. O., Falconer, J. L., and Way, J. D., "Effects of 
water gas shift gases on Pd-Cu alloy membrane surface morphology and 
separation properties," Industrial & Engineering Chemistry Research, 43, 4188 
(2004). 

[86] Hou, K., "Preparation of thin and highly stable Pd/Ag composite membranes and 
simulative analysis of transfer resistance for hydrogen separation," Journal of 
Membrane Science, 214, 43 (2003). 

[87] Pan, X. L., Stroh, N., Brunner, H., Xiong, G. X., and Sheng, S. S., "Pd/ceramic 
hollow fibers for H2 separation," Separation and Purification Technology, 32, 265 
(2003). 

[88] Li, H., Pieterse, J. Z., Dijkstra, J. W., Haije, W. G., Xu, H. Y., Bao, C., Van Den 
Brink, R. W., and Jansen, D., "Performance test of a bench-scale multi-tubular 
membrane reformer," Journal of Membrane Science, 373, 43 (2011). 

[89] Koch, C. C., Nanostructured materials processing, properties and potential 
applications, Willian Andrew publishing, (2006). 

 
 


	A Study On Thermal Stability Of Palladiumcomposite Membrane Fabricated By Surfactant Induced Electroless Plating (Siep)
	Recommended Citation

	Microsoft Word - Syed Islam MS Thesis

