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Abstract 

Artificial juxtacrine stimulation arises from the covalent attachment of growth factors onto 

biomaterials. Incorporation of growth factors onto cell culture substrates has been found to 

enhance the functionality of cells in vitro. In this study, we describe how the immobilization of 

Gastrin Releasing Peptide (GRP) enhances the viability of hepatocarcinoma cell line, HepG2 up 

to 4 days.  

The biomaterial for immobilization of GRP was prepared using  indium tin oxide (ITO) sputtered 

on polyethylene terephthalate (PET). A self-assembled monolayer (SAM) of 3-aminopropyl 

triethoxysilane (3-APTES) on ITO was covalently attached to GRP. Characterization of the 

substrates before and after immobilization of GRP was carried out using contact angle 

measurements, FTIR and AFM techniques. HepG2 cells were cultured on immobilized GRP-

SAM-ITO substrate for 24, 48, 72 and 96 hours and compared to cell viability of soluble GRP  

under similar conditions. The cell viability on immobilized GRP-SAM-ITO after 48 hours was 

less than that of soluble GRP by 19%. Lactate dehydrogenase (LDH) production after 48 hours 

was significantly reduced by 44% for  immobilized GRP when compared to that with soluble 

GRP. After 96 hours, cell viability increased and cytotoxicity decreased for HepG2 cells on 

GRP-SAM-ITO substrates,  suggesting viability was successfully extended. A similar 

experiment (LDH assay) with immobilized epidermal growth facor (EGF), obtained by covalent 

attachment of EGF shows that the cell viability can be extended  to 5 days. These data may 

provide insight towards the development of bioreactors for drug toxicity screening. 
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CHAPTER 1 

Introduction 

1.1 Extracellular matrix 

Cells play a major role in building tissues and maintaining tissue function in their 

respective microenvironments. Significant advances in cell and tissue engineering have been 

attributed to the successive recreation of the cellular microenvironment in vitro. When cells are 

removed from their microenvironment and placed in an in vitro environment, they lose their 

normal in vivo behavior. Cellular microenvironments play an important role in maintaining cell 

differentiation, cell function, cell aging and cell degradation. One of the principle goals of cell or 

tissue engineering is to understand the factors that control and regulate cell function and 

behavior.  

The extracellular matrix (ECM) plays an important role in regulating a number of cellular 

properties and functions like cell viability and differentiation (Jauregui, 1987). The ECM is made 

up of a complex mixture of structural proteins (collagen, elastin), specialized proteins (fibrin, 

laminin) and proteoglycans. Each of these components has its own specialized function 

contributing to the entirety of the ECM (Jauregui, 1987).  

Development of in vitro models of the ECM is challenging as they require several 

characteristics pertinent in cell biology. These models should be able to present a homogenous 

environment of ligands on the surface and be able to resist non-specific adsorption of proteins, 

which could render the ligand surface inactive (Milan Mrksich, 2000). Also, the surface should 

be compatible with cell culture and studies of cellular response (Richert et al., 2002). Significant 

studies have been carried out to study cell-cell, cell-ECM and cell-substrate interactions (Milan 

Mrksich, 2000). These provide inputs for the development of micro and nano scale technologies, 
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which define and control the in vitro cellular microenvironment. Extensive research is directed 

towards developing biomimetic surfaces, which exert control over spatial properties, defining the 

microenvironment for different cell types (Whitesides, Mathias, & Seto, 1991). An 

understanding of interactions of cells in culture with their environment could help in 

understanding the properties of the surfaces to which the cells are attached. Thus, developing in 

vitro cell culture platforms (CCPs) based on nanofabrication techniques is a promising area of 

research.  

1.2 Cell culture platforms 

The bottom up approach of manipulating cellular environments has brought about a new 

generation of 2D and 3D biomaterials which are useful in various applications. Bioactive and 

biocompatible materials such as ceramics, metals, natural products, composites, and polymers 

have been utilized in blood and tissue compatible applications both internally and externally 

(Whitesides, et al., 1991).  The bioactivity of these materials may be enhanced through the use of 

adhesion peptides (RGD), growth factors (EGF), or genetic material (siRNA). The technique of 

artificial juxtacrine signaling utilizing covalently attached or immobilized growth factors to 

biomaterials has been used to enhance viability, direct differentiation, and support prolonged 

functionality (Sharon & Puleo, 2008). Many studies have shown the value and efficacy of using 

immobilized peptides over the free or soluble growth factors. Recently, researchers have utilized 

a method of  immobilizing nerve growth factor (NGF) to glass cover slips to induce 

differentiation in PC12 cells which also provided prolonged cell culture efficiency (Suk Ho 

Bhang & Yun Hee Kim Kwon, 2009). Various immobilized cell adhesion molecules or CAM, 

such as fibronectin, have been found useful in long term expansion of progenitor cells and 

providing co-stimulatory signals to other growth factors (Qi Feng, 2006).   
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In recent years, isolated rat hepatocytes have been increasingly used as a model in 

various culture systems to study pharmacological and toxicological responses of drugs, 

environmental toxicants, and other compounds (Lee et al., 2008).
 
However, after cells are 

removed from their microenvironment and placed within an in vitro environment, they typically 

lose some or all of their normal in vivo behavior (Hengstler, Godoy, & Bolt, 2009).  Although 

immortalization solves the problem of cell longevity, they suffer in the cell quality. So, it is 

necessary to continue drug screening with primary hepatocytes and it is important to find ways 

of making these primary cells perform longer. Efforts to understand the interaction of cells in 

culture with their environment could benefit from a better understanding of the molecular 

structure of the surface to which the cells are attached (M Mrksich & Whitesides, 1996; 

Scotchford, Cooper, Leggett, & Downes, 1998). Thus, the development of cell culture platforms 

(scaffolds) using micro/nanofabrication is a promising area of research (Milan Mrksich, Dike, 

Tien, Ingber, & Whitesides, 1997).
 
 They are beneficial in the fields of toxicology and drug 

development due to increased accuracy of in vitro predictions, the simplification of testing 

procedures, and reduction of cost.  

In this thesis, the immobilization of an important regulatory peptide, gastrin releasing 

peptide (GRP) to conductive polymer two dimensional substrates was performed using 

conjugation chemistry. The purpose of this study is to evaluate GRP (as a model) and EGF 

immobilized on a conductive substrate that may be useful in development of a bioreactor. 

Previous findings in our lab showed great promise for the employment of a SAM-linker that 

enhances functionality and viability of primary liver cells (Aithal, 2007). Our goal within this 

project is to determine how the immobilized peptides or growth factors would interact with 

seeded hepatocarcinoma cell line, HepG2. In order for most growth factors or peptides to 
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activate or affect the cell’s functioning, the peptide in most cases must be internalized through 

receptor mediated endocytosis. Receptor mediated endocytosis is a mechanism in which ligands 

or peptides are recognized by specific receptors on the cellular surface. This recognition causes a 

series of pathways to become activated and therefore initiating cellular events such as viability or 

apoptosis. We have used immobilized GRP to analyze the effect of inhibiting the uptake and 

internalization of the peptide and monitor the outcome using various cellular based assays. 

Cellular based assays were utilized to observe the effect of immobilized proteins on cellular 

viability (MTT) and cellular cytotoxicity (LDH). 

There are many substrates (gold, silicon, etc..,) that are available for conducting cell 

culture studies. Cell culture studies on SAMs of alkanethiols on gold (Au) surfaces has been 

extensively studies over the decades and studies on other surfaces such as silicon are limited. 

Even though ITO has been extensively studied for different applications in electrical engineering 

fields, the use of ITO for cell culture applications has been limited (Yousaf, 2009). We have 

chosen indium oxide-tin oxide (ITO) because of its transparent and conductive properties that 

make it a very good candidate for development of biosensor. 

 First, indium oxide-tin oxide (ITO) substrates were modified with self assembled 

monolayers (SAMs) containing amino end group (NH2) as shown in Figure 1. These modified 

substrates were characterized using contact angle measuring goniometry, surface infrared (IR) 

spectroscopy and atomic force microscopy (AFM). The modified substrates with the NH2 end 

group were then covalently coupled to GRP. The substrates immobilized with GRP were again 

characterized to confirm immobilization of the peptide. Then, HepG2 cells were cultured on 

GRP immobilized ITO substrates. Cellular activity was measured using spectrophotometric 

assays. The quantitative measurement of the conversion of 3-[4, 5-dimethylthiazol-2-yl]-2, 5-
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diphenyl-tetrazolium bromide (MTT) to formazan by viable cells was used as a quantitative 

measure of HepG2 cells viability and proliferation. Cytotoxicity profiles of HepG2 were 

determined by measuring lactate dehydrogenase (LDH) activity in media. LDH is a stable 

cytoplasmic enzyme, released into the cell culture supernatant by dead or damaged cells.  

The suitable choice of a platform that supports optimal cell viability and culture may be 

useful in understanding the interactions between cell line and immobilized peptide. This will 

give a better understanding for conducting experiments using growth factors and primary 

hepatocytes which will help in the development of artificial liver devices. Thus, CCPs should be 

useful in drug screening and toxicology as they can increase the accuracy of in vitro predictions, 

reduce the costs and simplify testing procedures of those tests. 

 

Figure 1. Schematic representation for immobilization of GRP on SAM-ITO and cell culture 

studies. 
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CHAPTER 2 

Literature Review 

2.1 Cell-substrate interactions  

Extensive research in the areas of drug discovery and toxicity studies has lead to the 

development of CCPs which facilitate a thorough understanding of cell-substrate interactions 

(Pancrazio, Whelan, Borkholder, Ma, & Stenger, 1999). Cell culture platforms control cellular 

attachment and growth as a function of space and time. They are incorporated in developing cell 

based biosensors, which monitor physiological change due to exposure to different antigens 

(Pancrazio, et al., 1999; Wink, J. van Zuilen, Bult, & P. van Bennekom, 1997).  

The cellular microenvironment (ECM) plays a major role in controlling cell behavior in 

vivo ensuring proper tissue function (Lampin, Warocquier-Clérout, Legris, Degrange, & Sigot-

Luizard, 1997; Zhang et al., 1999). Cellular attachment is a consequence of protein adsorption on 

substrates, but how the cell receives information about the nature of the substrate is still under 

investigation. Cell attachment on substrates forms an important prerequisite for the development 

of bioimplants, cell culture platforms (CCPs) and cell colonization on tissue engineering 

scaffolds (Zhang, et al., 1999). Mammalian cells are anchorage dependant, requiring an 

underlying matrix to attach and carry out their regular metabolic, proliferative and differentiation 

functions (Williams & Wick, 2005). 

The ECM is made up of three classes of macromolecules: glycosaminogens, 

polysaccharide chains covalently linked to proteins forming proteoglycans and fibrous proteins. 

There are two functional types of fibrous proteins, structural proteins (collagen, elastin) and 

adhesive proteins (laminin, fibronectin). The glycosaminoglycans intermesh and form a hydrated 
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gel like substance, in which the fibrous proteins are embedded (Singhvi et al., 1994; Ulman, 

1996; Williams & Wick, 2005). The collagen fiber provides strength to the matrix while the 

elastin fibers provide resilience. The adhesive proteins help the cells attach to the ECM. These 

proteins provide specific receptor surfaces and ligands, which are identified by the cell surface 

receptors. Without adhesion, cells enter into apoptosis, eventually causing cell death (LeBaron & 

Athanasiou, 2000; Williams & Wick, 2005). 

The need to recreate a suitable microenvironment for cell proliferation, growth and 

viability has resulted in the development of a large number of bioengineered substrates (Itle, 

Koh, & Pishko, 2005; Leoni, Attiah, & Desai, 2002; M. Mrksich, 1998; Milan Mrksich, 2000; T. 

H. Park & Shuler, 2003). As presented in the sections that follow, almost all of these surfaces 

have certain common properties like the ability to adsorb protein, uniformity, consistency in 

surface topography and minimal cytotoxic effect on cells. 

2.2 Bioengineered surfaces  

Cell attachment occurs due to the interaction of cells with the ECM through specific 

interaction sites called focal adhesion sites (X. H. Wang et al., 2003). Cell surface receptors 

identify specific protein domains containing peptide sequences like RGD (Arginine-Glycine-

Aspartic acid) and bind to them. In order to mimic the ECM properties in-vitro, bioengineered 

surfaces coated with ECM components like collagen, fibronectin, vitronectin and fibrinogen 

have been developed to promote cell-surface interactions by spatially directing attachment of 

specific cell lines to substrates.  

2.2.1 ECM modified surfaces. Collagens are a significant component of the ECM and 

collagen coated surfaces support growth and viability of different mammalian cell lines (Zavan 
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et al., 2005). Collagen is a major component of the hepatocyte basal membrane and promotes 

hepatocyte adhesion and growth. Collagen surfaces are preferred for in vitro studies due to their 

biocompatibility, biodegrability, mechanical integrity and widespread availability (Fukuda, 

Sakai, & Nakazawa, 2006; Zavan, et al., 2005). Hepatocytes and epithelia cultured on collagen 

films expressed phenotypes similar to that observed in vivo. Osteoblast culture on patterned 

collagen films to study cellular alignment and viability showed a high degree of phenotypic 

expression and cellular viability when the surfaces were stabilized using calcium phosphate 

deposition (Scotchford, Cascone, Downes, & Giusti, 1998).  

Modification of collagen films by cross linking and blending with other polymer increase 

their mechanical stability for cell culture studies.  Collagen-chitosan matrices have been used to 

culture hepatocytes towards the development of artificial livers and shown to support hepatocyte 

adhesion and division over extended periods of time (X. H. Wang, et al., 2003). 

2.2.2 Polyelectrolyte multilayers. Polyelectrolytes are polymers whose units contain an 

electrolyte group.  These polymers dissociate in solution as charged species. Since 

polyelectrolytes are soluble in water, they have been being investigated extensively for a number 

of biomedical applications like implant coatings, controlled drug release, biosensor fabrication 

and cell culture applications (Jewell & Lynn. 2008).   

Polyelectrolyte multilayers contain alternating layers of oppositely charged 

polyelectrolytes. These multilayers are prepared using the layer-by-layer (LBL) assembly 

technique, where suitable growth substrates are immersed in dilute baths of positive and negative 

charged polyelectrolyte solutions (Mendelsohn, Yang, Hiller, Hochbaum, & Rubner, 2002). 

During every immersion, a small amount of polyelectrolyte is adsorbed onto the surface and 
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charge reversal occurs, thereby allowing the gradual buildup of electrostatically cross linked 

polyanion-polycation films. The thickness of these films can be controlled up to the nanometer 

scale. Various types of polyelectrolytes can be used to make these films, including polypeptides 

(poly-l-lysine), natural polyelectrolytes (chitosan, hyaluronan), proteins and DNA. The 

morphology of the films and thickness largely depend on the buildup conditions like the ionic 

strength and pH. Figure 2 shows the process by which polyelectrolytes of alternating charge are 

deposited on a substrate by the LBL technique. Polyelectrolyte multilayers are ideal candidates 

for biomaterial applications due to their biocompatibility and inert nature, ability to incorporate 

biological molecules and control film composition and thickness. 

 

 

 

 

 

 

Figure 2. Mechanism of layer by layer assembly of polyelectrolytes (Jewell & Lynn, 2008).  

The ability of these multilayers to be patterned effectively using microfabrication 

techniques like soft lithography and micropatterning gives rise to complex 3 D surfaces for 

biomedical applications (Ito, 1999). Cell interactions are influenced by the nature and charge of 

the outermost layer, protein adsorption and thickness of layers (Ito, 1999). Chondrosarcomas 

cultured on alternating layers of poly-l-lysine (PLL) and poly-glycolic acid (PGA) showed 
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increased cellular adhesion on PLL ending films when compared to PGA ending films, upon 

measurement of the adhesive forces. Protein adsorption was observed on PLL terminated films 

(Richert, et al., 2002).  

 Primary hepatocytes, which are selective in their attachment in-vitro, have been reported 

to attach, spread and exhibit differentiated functions on PEM multilayers. The PEM used were 

alternating layers of poly (diallyldimethylammonium chloride) (PDAC) and poly (4-

styrenesulfonic acid (SPS). The hepatocytes exhibited characteristic cell patterns upon adhesion 

on PEM surfaces and showed increased urea and albumin production which are indicators of 

cellular viability (Kidambi, Lee, & Chan, 2004). 

2.2.3 Nanofilms. The LBL technique is used in the assembly of ultrathin films with 

precise control over specific properties like biocompatibility, thickness and surface wettability. 

One can form thin films of specific nature by choosing ideal components for the bilayers. 

Nanoparticle thin films find important applications in material sciences forming corrosion 

resistive surfaces, polymer coatings and biosensors (Vautier et al., 2002).  

 More recently, researchers have investigated cell culture on titanium dioxide nanofilms. 

These nanofilms were prepared by alternating TiO2 nano particles with polystyrenesulfonate 

(PSS) on glass, polydimethylsulphonate (PDMS) and polymethylmethacrylate (PMMA) 

substrates of specific thicknesses. Fibroblasts cultured on these nanofilms showed a higher 

degree of attachment and biocompatibility towards TiO2/PSS surfaces (Kommireddy, Patel, 

Shutava, Mills, & Lvov, 2005).  

2.2.4 Hydrogels. Hydrogels are networks of water soluble polymer chains. They are 

present in the form of colloidal gels having water as the dispersion medium. Hydrogels have 

been widely used for cell culture studies due to their high water content, pliability, and 
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biocompatibility and easily controlled mass transfer properties. These properties of hydrogels 

resemble those of biological tissue (Nettles, Vail, Morgan, Grinstaff, & Setton, 2004; Van 

Vlierberghe, Dubruel, & Schacht, 2011). 

 PEG hydrogels have been used to encapsulate mammalian cells like rat osteoblasts, rat 

cortical neurons and human hepatocytes. These hydrogels can be microfabricated and modified 

using peptide sequences. Rat hepatocytes encapsulated in PEG hydrogels maintained high cell 

viability, indicated by increased protein production over a period of time (Itle, et al., 2005). 

2.3 Microfabrication techniques 

 Microfabrication is a process of constructing physical objects having dimensions in the 

millimeter to micrometer range, incorporating well known procedures in semiconductor 

fabrication to augment processes for microfabrication. Microfabrication technologies have been 

incorporated in the development of cell based biosensors, cell culture analogues and scaffolds for 

tissue engineering applications (Onoe et al., 2012; Voldman, Gray, & Schmidt, 1999). The 

advantages of using microfabrication are the control of size and integration of numerous 

processes on a single substrate. These techniques have been used to understand fundamental cell 

biology by studying cell-cell, cell-substrate and cell-media interactions (T. H. Park & Shuler, 

2003; Voldman, et al., 1999). 

2.3.1 Photolithography. The most predominantly used microfabrication techniques are 

photolithography and microcontact printing. In photolithography, the substrate is illuminated 

with UV light passed through a mask having defined transparent and opaque regions. Upon 

exposure to light, the substrate can be modified accordingly. This technique has been used 

extensively to create monolayers of alkylsiloxanes on the surfaces of glass and silicon dioxide 

(Folch & Toner, 2000; T. H. Park & Shuler, 2003; Pimpin & Srituravanich, 2011). 
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2.3.2 Microcontact printing. Micro contact printing uses a rubber stamp to print a 

patterned monolayer of alkanethiols onto a substrate like gold. In this procedure, a rubber stamp 

is fabricated using photolithography. The material of interest is transferred from the stamp onto 

the substrate. The areas where the stamp has not made contact can be exposed to another coating 

material. Thus, a single substrate can be used for multiple cell growth. The advantages of this 

technique include the casting of multiple stamps from a single master and the long term usage of 

each stamp (Bhatia, Yarmush, & Toner, 1997; T. H. Park & Shuler, 2003). Figure 3 highlights 

the principle of microcontact printing. 

 

Figure 3. Microcontact printing (www.chem.wuslt.edu). 
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2.4 Self-assembled monolayers 

Molecular self assembly is the spontaneous assembly of molecules under specific 

conditions to form stable aggregates. Self- assembled monolayers (SAMs) are ordered molecular 

assemblies of an active surfactant in the liquid phase or gaseous phase onto solid or liquid 

surfaces (Milan Mrksich, 2000). These adsorbates organize themselves into crystalline or semi-

crystalline structures containing specific head groups. Substrates show affinity to specific head 

groups. These monolayers can displace previously adsorbed materials (Whitesides, et al., 1991).   

The field of self-assembled monolayers (SAMs) has seen tremendous growth in synthetic 

sophistication and characterization, over the past 20 years. This field began when Zisman and 

coworkers published the formation of a monolayer by adsorption ofaa surfactant on a clean metal 

surface in 1946 (Bigelow, Pickett, & Zisman, 1946). The real interest in this field started when 

Nuzzo and Allara published their work in 1983 on preparation of alkanethiolates on gold (Nuzzo 

& Allara, 1983), even though many other works were done after 1946. SAMs can be prepared 

with different types of molecules on different substrates. Examples are alkylsiloxane 

monolayers, fatty acids on oxidic materials, alkanethiolate monolayers. Some of the typical 

applications of SAMs have in molecular recognition, development of biomimetic surfaces to 

study cell-substrate interactions, optical coatings, development of biosensors and optoelectronic 

devices (Milan Mrksich, 2000; Whitesides, et al., 1991).  

The first monolayer formation, observed in 1983 was the assembly of disulphides on 

gold, followed by adsorption of alkanethiolates on gold. The high affinity of thiols for noble 

metal surfaces forms uniform monolayers whose physical and chemical properties can be altered 

accordingly (M Mrksich & Whitesides, 1996). SAMs are highly ordered and can be formed 

easily by dipping the substrates in solutions of desired composition. Patterning of SAM 
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deposited substrates create localized areas for manipulation (Milan Mrksich, et al., 1997). SAM 

functionality can be altered according to need, by simply modifying their end group (Figure 4) 

(Cooper et al., 2000). These properties make SAMs an ideal choice for development of cell 

culture platforms. Figure 5 shows the molecular organization of surfactants on the substrate 

forming a uniform monolayer. 

 

Figure 4. A typical molecular self-assembly (www.ipfdd.de). 

Alkanethiols, fatty acid derivatives, organosilicon and organosulphur derivatives and 

alkyl monolayers are commonly used in preparation of self-assembly. Alkylchlorosilanes, 

alkylaminosilanes and alkyloxysilanes need the presence of hydroxylated surfaces for monolayer 

formation (Ulman, 1996). These molecules arrange themselves by forming polysiloxane in situ 

which connects to surface silanol groups through Si-O-Si bonds. SAMs of organosilicon 

derivatives have successfully been prepared on gold, silicon oxide and glass substrates 

(Faucheux, Schweiss, Lützow, Werner, & Groth, 2004).Controlling the amount of water in 

solution and temperature are important requisites for self-assembly. 

http://www.ipfdd.de/
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Figure 5. A general scheme for steps involved in the formation of self-assembled monolayers on 

gold (http://soft-matter.seas.harvard.edu/index.php/Insoluble_monolayers). 

2.4.1 Cell culture on SAM modified surfaces. Cellular adhesion on substrates follows 

the interaction of specific substrate molecules with surface patterns. In a biological environment, 

cells attach and spread on the ECM. As with polymeric resins, hydrogels, nanofilms, lipids and 

self-assembled monolayers have been used to mimic ECM properties in-vitro to facilitate cell 

attachment (Hudalla & Murphy, 2011). Recently, it has been reported that SAMs can be used to 

model ECM (Milan Mrksich, 2009). SAMs are preferred since they have a well defined 

structure, and permit a wide range of ligands to attach (Pulsipher & Yousaf, 2011). The terminal 

or end group of the molecules (Figure 4) from which the monolayer is derived, controls the 

nature of the SAM surface (Faucheux, et al., 2004).  

SAMs are also well studied in nanoscience and nanotechnology because 1) they are easy 

to prepare and do not require any specialized equipment, 2) they can be formed on surfaces of all 

shapes and sizes and are critical components for stabilizing and adding function to nanometer-

scale objects such as thin films, nanowires, colloids, and other nanostructures, 3) they can couple 

http://soft-matter.seas.harvard.edu/index.php/Insoluble_monolayers
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the external environment to the electronic and optical properties of metallic surfaces, and 4) they 

link molecular-level structures to macroscopic interfacial phenomena like  as wetting, adhesion 

and friction. In addition, SAMs also provide necessary flexibility both at molecular and material 

levels on the surface and stability of two-dimensional assemblies can be later applied to three-

dimensional structures (S. S. Kim et al., 1998). The simple process involved in the preparation of 

SAMs makes it attractive for surface engineering and building superlattices. SAMs also help in 

understanding the fundamentals of self-organization, structure-property relationships and 

interfacial phenomena. The ability to tailor both head and tail groups of the molecules makes 

SAMs an excellent system in understanding intermolecular, molecule-substrate and molecule-

solvent interactions. 

Two main groups of SAMs have been used in cell culture studies: a) alkanethiols on gold 

and b) alkylsiloxanes on hydroxylated surfaces (Milan Mrksich, 2002). Alkylsiloxanes are 

preferred due to their ability to adsorb on a number of surfaces, including glass and other 

polymers. However, they do not form ordered monolayers. Monolayer formation is difficult and 

a limited number of end groups are available (Schwartz, 2001).  Cellular attachment on SAMs is 

governed by the nature of the terminal end group and length of the alkyl chain (Milan Mrksich, 

2002; Stenger, Pike, Hickman, & Cotman, 1993). Fibroblasts, neuroblastoma cells, osteoblast 

viability and endothelial cell growth have been studied on SAMs. Variations in cellular response 

have been attributed to surface wettability, charge and variable protein adsorption (Lampin, et 

al., 1997). 

Human Dermal Fibroblasts (HDFs) cultured on SAM modified surfaces having different 

wettabilities showed that the cells attached and spread on SAMs terminating with –NH2  and –

COOH groups are better  than to –CH3, PEG and –OH groups. Cell viability was significantly 
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higher on –NH2 and –COOH as compared to the rest. Increased cell attachment and growth was 

attributed to enhanced integrin activity, which was confirmed by the analyses of focal adhesion 

complexes (Faucheux, et al., 2004). Human corneal epithelial cells cultured on SAM modified 

glass substrates showed better adhesion on amine and carboxylic acid terminated SAMs as 

compared to other end groups. Cell viability was more on –COOH terminated end groups 

(Franco, Nealey, Campbell, Teixeira, & Murphy, 2000).  

Murine 3T3 fibroblasts and osteoblasts cultured on alkanethiol modified gold substrates 

to study the effect of chain length and nature on cellular attachment, showed better cell 

attachment and spreading on carboxylic terminated SAMs. Short chain methyl terminated SAMs 

showed less cell attachment and lower growth. Fibroblasts showed poor attachment on hydroxyl 

terminated SAMs, while osteoblasts grew well on them, showing preferences to SAMs having a 

longer chain (Cooper, et al., 2000). These studies show that the presence of a higher surface 

energy contributes to better cellular attachment as in the case of carboxyl and amine terminated 

end groups. It is commonly observed that cell proliferation, attachment and viability largely 

depend on the nature, end group and chain length of the deposited monolayer. Some of the 

properties like ordering, growth, wetting, adhesion, lubrication and corrosion have been studied 

previously.  

2.5 Co-cultures 

In recent years, isolated rat hepatocytes have been increasingly used as a model in 

various culture systems to study pharmacological and toxicological responses of drugs, 

environmental toxicants and other compounds. However, after cells are removed from their 

microenvironment and placed within in vitro environment, they typically lose some or all of their 

normal in vivo behavior (Bhandari et al., 2001). Co-culturing of hepatocytes with different cell 
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types has been studied extensively for toxicology as a means of maintaining specific hepatocyte 

functionality.  

The liver is one of the most important organs of the body performing a number of 

metabolic and endocrine functions. Hepatocytes form the primary parenchymal cells of the liver 

and constitute 75-80% of the total liver volume (Peter & Nikolaus, 2003). Isolated hepatocytes 

closely model the liver, as they have been shown to exhibit specific liver functions, including 

drug metabolism under specific chemical conditions (Gomez-Lechon, Donato, Castell, & Jover, 

2003). However, these cells are affected by significant loss of functionality and hepatocyte 

specific function over long term cultures in vitro (Gomez-Lechon, et al., 2003; Peter & Nikolaus, 

2003). Hydrogels (Itle, et al., 2005), biodegradable polymer films (Kidambi, et al., 2004) and 

natural ECM components (Y. J. Wang, Liu, Guo, Wen, & Liu, 2004) have been studied as 

platforms for hepatocyte attachment and growth. Hepatocytes have distinct characteristics such 

as presence of binucleate cells and cell aggregation to form clusters. 

Hepatocytes have been co-cultured with fibroblasts, stellate cells, liver endothelial, liver 

epithelial cells. Co-cultures aid in retaining the polymeric shape of isolated hepatocytes upon 

adherence. Hepatocyte co-cultures have been shown to express high levels of liver specific 

proteins like albumin. However, the exact mechanism of cell-cell interaction in these co-cultures 

is not yet understood and is being investigated by a number of research groups (Kaji, Camci-

Unal, Langer, & Khademhosseini, 2011; Kang, Kim, Kwon, & Ito, 2004). 

2.6 Model biological surfaces 

A primary challenge in developing in vitro surfaces is to develop methods that will allow 

precise control of the composition and structure of the surface while permitting natural biological 



21 

 

interactions to occur. These interactions should be helpful in interpreting the results in relation to 

those in vivo.  

SAM-modified surfaces are one of the useful systems for studying biological and 

biochemical processes because, like biological surfaces, they are nanostructured and are formed 

by self-assembly. They present a wide range of organic functionalities like the ones that can 

resist the adsorption of the proteins. SAM functionalized with large, delicate ligands needed for 

biological studies is easy to prepare just by either synthesizing molecules with the ligands 

attached to form the SAM or, more commonly, by attaching the ligands to the surface of a 

preformed SAM. These prepared SAMs are also compatible with a number of techniques such as 

surface plasmon resonance (SPR) spectroscopy (Milan Mrksich, Sigal, & Whitesides, 1995), 

optical ellipsometry (Tengvall, Lundström, & Liedberg, 1998), RAIRS (Reflectance-absorption 

infrared spectroscopy) (Tengvall, et al., 1998), QCM (Quartz crystal microbalance) (Marx, 

2003), and mass spectroscopy (Min, Tang, & Mrksich, 2004), for analyzing the composition and 

mass coverage of surfaces as well as the thermodynamics and kinetics of binding events. 

One disadvantage of SAMs is the static nature of the structure of SAM. This 

characteristic differs from that of biological membranes, which rearrange dynamically. 

Langmuir-blodgett films (Bhaumik et al., 2004) and bilayers of lipids on solid supports present 

two alternative technologies for creating dynamic models of biological surfaces. Instrument 

complexity and non-reproducibility makes this area of study limited. Studies have shown the 

patterning of lipid regions on solid supports but, thses are in the beginning stages (Burridge, 

Figa, & Wong, 2004). 

The first method of attaching cells on surfaces is the use of mixed SAMs composed of a 

ligand-presenting molecule and a SAM-forming molecule, where on terminatal with functional 
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group can resist protein adsorption. The variation in type, density, and accessibility helps in 

understanding the interactions taking place at the surface and also at the cell (Kato & Mrksich, 

2004; Roberts et al., 1998). A second method for attaching cells on surfaces is provided by 

SAMs prepared by microcontact printing. These patterned surfaces make it possible to study the 

biochemical responses of cells to mechanical stimuli (Parker et al., 2002). Electrochemical 

methods have also been utilized to modify SAMs to relate the cells from the confinement 

originally imposed by the pattern of the SAM. 

The structure and properties of SAMs immersed in a solvent are not clearly understood 

compared with that of SAMs in vacuum or in air. The use of SAMs as substrates for studies in 

biology requires extended contact between SAMs and an aqueous environment containing high 

concentrations of salts and biomolecules (J. C. Love, Estroff, Kriebel, Nuzzo, & Whitesides, 

2005). The structure and dynamics of the exposed surface of a SAM under these conditions have 

not been studied completely. Also the effect of physiological conditions on long-term stability of 

SAMs is not clearly understood. Langer and co-workers have shown that SAMs terminated with 

EG develop substantial defects after immersion in phosphate buffer solution or in calf serum in 

4-5 weeks (Flynn, Tran, Cima, & Langer, 2003). The presence of cells at the surface also 

accelerates the process and ability of EG-terminated SAMs to prevent cell adhesion (Jiang, 

Bruzewicz, Thant, & Whitesides, 2004).  

The flexibility in using SAMs along with the advantages make them ideal to be used as 

model biological surfaces even though, many factors have to be considered and studied before 

SAMs can be used for tissue engineering with full potential. The robustness, order and 

homogenous assembly, flexibility to modify both, head and tail, ability to couple a growth factor 
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or peptide depending on the end group make SAM a good candidate for developing cell culture 

platforms for toxicity screening (Whitesides, et al., 1991).   

2.7 Cell culture platforms 

Cell culture platforms (CCPs) have been developed to study cell interactions within their 

in vitro microenvironment. This provides opportunities to obtain a thorough understanding of the 

properties of the surface to which the cells are attached (Wu, Huang, & Lee, 2010). This offers a 

valuable area of research for engineering biomedical devices (Leoni, et al., 2002). CCPs would 

be useful in the fields of toxicology and drug testing as they can reduce costs and simplify testing 

procedures (Pancrazio, et al., 1999). Researchers have studied the use of ECM proteins 

(Jauregui, 1987), biodegradable polymers (Richert, et al., 2002), hydrogels (Koh, Revzin, & 

Pishko, 2002) and nanofilms (Kommireddy, et al., 2005) to develop CCPs. Microfabrication 

techniques like microcontact printing and photo-lithography have also been employed to control 

cell-cell and cell-substrate interactions and define specific areas for cell growth and attachment 

(Singhvi, et al., 1994). However, most of these methods have been limited in controlling 

prolonged cell viability and functionality. 

2.7.1 SAMs on gold. SAMs of alkanethiolates on noble metals form ordered and uniform 

monolayers and have been widely used as models for cell culture studies (J. Christopher Love et 

al., 2003). Mammalian cell lines cultured on SAM modified surfaces have indicated higher cell 

viability, maintenance of functionality and expression of cell specific functions (M. Mrksich et 

al., 1996; Schreiber, 2004).  The end group of the monolayer plays an important role in defining 

its surface properties. Wettability, charge and cell adhesion are associated with the nature of the 

end group (M. Mrksich, 1998). Growth of cells on SAMs of alkanethiols on gold (Au) surfaces 

has been extensively studies over the decades. Previous studies on fibroblast cell growth on 
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SAMs modified Au have indicated that SAMs with carboxylic end group are more favorable for 

cell attachment followed by methyl and hydroxyl groups. Similarly, the effect of the length of 

alkyl chain on cell attachment has been studied, and it has been indicated that cell attachment 

decreases with increase in alkyl chain length (Cooper, et al., 2000). 

2.8 Indium tin oxide 

In contrast to the various cell culture studies done on SAM-modified Au surfaces, very 

few studies have been done on other surfaces such as indium tin oxide, silicon and gallium 

arsenide. The focus of theis thesis is conducting cell culture studies on modified ITO substrates. 

ITO has been widely used as an electrode for studying electrochemistry of biomolecules due to 

its conductive and transparent properties (Yousaf, 2009). Indium Tin Oxide is a mixture of 

Indium (III) Oxide [In2O3] and Tin (IV) Oxide [SnO2] typically 9:1 ratio by weight. Although, 

the common applications of ITO are coatings for electronic displays, gas sensors, and anti-static 

windows, ITO is also used as an electrode for biochemical studies, due to its transparent and 

conductive nature (Yang & Kleijn, 1999). This dual nature and the stability that ITO offers under 

physiological conditions make it ideal for tissue engineering.  

It has already been shown that acids, amines and proteins specifically adsorb on ITO. 

Interdigitated microelectrodes made of ITO were also used for synapse formation by neuronal 

differentiation of rat pheochromocytoma cell and murine embryonic stem cells (Yousaf, 2009). 

ITO is of considerable interest in SAM studies, since monolayer formation on ITO has been 

relatively less investigated. The transparency of ITO makes it easier to observe and image cell 

attachment. The surface chemistry of ITO is similar to that of silicon; therefore alkyloxysilanes 

are used for monolayer formation (Oh, Yun, Kim, & Han, 1999).  
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Surface properties of the deposited monolayer are obtained by its characterization. The 

presence and nature of the monolayer is determined by measuring this angle. SAMs vary in their 

wettability from hydrophilic (water loving) to hydrophobic (water hating) surfaces. Hydrophobic 

surfaces are produced by SAMs containing –CH3, bromine end groups while hydrophilic 

surfaces are produced by SAMs containing hydroxyl and amine groups. Hydrophobic surfaces 

form contact angles which are greater than 90°, and contact angles formed by hydrophilic 

surfaces are less than 90° (Lampin, et al., 1997).  

2.9 Different scaffolds used for hepatocyte culture 

A variety of culture methods have been developed to retain most of the hepatocytic 

functions such as culture on basement membrane gels. Co-culture with other liver-derived 

(Begue, Guguen-Guillouzo, Pasdeloup, & Guillouzo, 1984) and non-liver cell types (Hirose et 

al., 2000), culture in collagen gel sandwiches and polymers. Collagen is an important component 

of the hepatocyte basal membrane and promotes attachment of hepatocytes in vitro. Cells 

cultured on collagen-coated surfaces demonstrated increase in urea production and low LDH 

release (Y. J. Wang, et al., 2004). Collagen was observed to provide the closest alternative to 

hepatocyte architecture in vitro.  

However, biodegradability and cross-link formation are some of the limitations of using 

ECM modified surfaces. High molecular weight polymers like polyethylene glycol (PEG) (K.-H. 

Park et al., 2005), polyglycolic acid (PGA) (Fiegel et al., 2004) and polylactic acid (PLA) (K.-H. 

Park, et al., 2005) were used to develop scaffolds for hepatocyte culture. However, these 

polymers lose their strength upon long culture periods. Primary rat hepatocyte culture on porous 

poly-tetrafluoroethylene (PTFE) showed increased protein secretion and polygonal morphology 
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over culture periods varying from 24-49 h. The lack of stability of polymer scaffolds over 

extended culture periods make them ineffective for cell culture (S. S. Kim, et al., 1998). 

Other alternatives used to increase hepatocyte viability include culture on polyelectrolyte 

multilayers (Kidambi, et al., 2004), hydrogels (Itle, et al., 2005), gold substrates (Gu et al., 

2004)and culture as spheroids (Dilworth, Hamilton, George, & Timbrell, 2000). Primary rat 

hepatocytes cultured on polyelectrolyte multilayer films with poly(4-styrenesulfonic)acid as the 

topmost layer attached and spread on the PEM surface and liver specific functions like urea and 

albumin production showed an increase with time in culture (Kidambi, et al., 2004). Porcine 

hepatocytes immobilized on gold colloids showed increased protein and albumin production 

upon culture. The LDH release was minimal which indicated that the cells suffered limited 

damage upon culture (Gu, et al., 2004).  

Murine hepatocytes entrapped within PEG hydrogels were assessed for cell viability and 

total protein production over a period of seven days. The results indicated that the cellular 

viability was not affected by the hydrogel concentration, but total protein production decreased 

with increase in PEG concentration. The use of growth factors and cytokines like hepatocyte 

growth factor (HGF) (Michalopoulos & Zarnegar, 1992), epidermal growth factor (EGF) 

(Mitaka, Mikami, Sattler, Pitot, & Mochizuki, 1992), transforming growth factor (TGF)-alpha 

and beta (Nakamura et al., 1985) and norepinephrine (Cruise & Michalopoulos, 1985) have been 

shown to promote cellular viability, but the cells eventually de-differentiate and lose their 

functionality.  

2.10 Growth factors 

Growth factors are commonly present in soluble form during in vitro cell cultivation 

experiments. They provide signals for stimulation of viability, migration, and differentiation. 
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Several factors, including the EGF (Nakamura, et al., 1985), have been reported to regulate cell 

function in the transmembrane form by “juxtacrine stimulation” (Ito, Chen, & Imanishi, 1998). 

This phenomenon has led researchers to develop what is called “artificial juxtacrine stimulation” 

through the covalent coupling of growth factors to artificial substrates. This method to simulate 

the cell’s natural environment would provide a controlled and sustainable influence on cell 

behavior over that of soluble or slow released proteins. A study utilizing these techniques 

reported that an immobilized growth factor induced a different signal transduction compared to a 

soluble growth factor (Ogiwara, Nagaoka, Cho, & Akaike, 2006).  

2.10.1 Hepatocyte growth factor (HGF). HGF is an important growth factor which is a 

crucial cytokine during liver development and important for mechanisms of liver regeneration 

(Nakamura & Mizuno, 2010). It is produced primarily by mesenchymal cells and interacts with 

its receptor c-MET, a proto-oncogene gene product, which is present on most epithelia.  HGF is 

a multifunctional polypeptide with morphogenic, motogenic, angiogenic, and proliferative 

capabilities (Hengstler, et al., 2009). HGF has the ability to induce several effects such as 

stimulation of reepithialization during wound healing, angiogenesis stimulation, extracellular 

matrix deposition, and modulates immune function (Jones et al., 2010). In fact, HGF was found 

to have dual purposes of initiating early viability of hepatocytes and liver progenitor cells (LPCs) 

as well as differentiation of LPCs into hepatocytes (Lee, et al., 2008).  

Other studies report that HGF has cytoprotective, mitogenic and anti-apoptotic effects on 

hepatocytes in culture (Riehle, Dan, Campbell, & Fausto, 2011). In 2010, Revzin and coworkers 

investigated non-covalent immobilization of HGF on ECM where HGF was mixed in solution 

with ECM proteins which suggests that non-covalent matrix-bound HGF is sufficient to enhance 

and maintain phenotype expression of primary hepatocytes for a long period of time (Jones, et 
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al., 2010).  Several systems such as hollow fiber systems, collagen films, collagen sandwiches, 

liver spheroids, and three-dimensional bioreactors are under development as a means to extend 

viability and improve cell functionality for isolated liver cells or hepatocytes in culture (Griffith 

& Naughton, 2002).  

However, these systems lack smoothness and precise control of the surface for cell 

viability studies. Our choice of ITO for SCCP is unique for several reasons. ITO has been widely 

used as an electrode for studying electrochemistry of biomolecules
 
due to its transparent and 

conductive properties (D. W. Kim, Sung, Park, & Yeom, 2001).  This dual property and stability 

under physiological conditions make them ideal for clinical applications (Brewer, Brown, & 

Franzen, 2002; D. W. Kim, et al., 2001). Further, SAMs on ITO are well packed, homogeneous 

and can precisely control the surface properties for cell adhesion. The ability to covalently link 

the terminal group of SAM to EGF, HGF and GRP, a model protein, allows the bioactive 

substrate interacting and influencing cells at the molecular level. 

In this study, we have studied the culture of HepG2 cells on SAM modified and GRP 

modified substrates in an attempt to mimic the cellular microenvironment. The long term 

objective of this study is the development of SAMs based CCPs using primary hepatocyes and 

immobilized growth factors like hepatocyte growth factor (HGF) and epidermal growth factor 

(EGF). The experiments done using HepG2 cell line and a model peptide, GRP, will provide a 

preliminary understanding on the ability of the cells to proliferate and be viable in presence of 

immobilized peptides, which can further be used to do studies with immobilized growth factors 

in order to build a bioreactor for drug toxicity screening. The use of a cell line (HepG2) 

eliminates the expenses and complication involved with the use of primary hepatocytes. 
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CHAPTER 3 

Materials and Methods 

3.1 Materials 

3.1.1 ITO substrates. The ITO substrates with a resistance of 45 Ω were purchased from 

Sigma-Aldrich. These substrates are prepared by sputtering ITO on one side of a polyethylene 

terephthalate (PET) film. The side with ITO will be conductive and the other side is non-

conductive. The side with ITO was modified with APTES and subsequently with GRP. During 

characterization and experiments the conductive side was always identified using a potentiostat. 

3.1.2 3-APTES. 3-APTES (Structural formula NH2-(CH2)3-Si (OC2H5)3) is a silanizing 

agent used to modify surfaces using layer by layer assembly. It was purchased from sigma-

aldrich. It is highly hygroscopic. 3-APTES binds to ITO by the formation of siloxane bonds 

leaving a free –NH2 end group. This causes the SAM coated surface to be hydrophilic. This free 

amine –NH2 can be coupled to the carboxyl terminus of a peptide or growth factor. 

SiO O

O

H2N

3-APTES
 

Figure 6. Structure of 3-aminopropyl triethoxysilane. 

3.1.3 Gastrin releasing peptide (14-27). GRP (14-27) is a peptide derived from amino 

acid residues 14 to 27 of porcine and human GRP with a length of 14.8 nm.  It is involved in the 
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regulation of numerous functions of gastrointestinal and the central nervous systems. Some of 

the other functions of GRP (14-27) include the release of gastrointestinal hormones, smooth 

muscle contraction and epithelial cell viability. GRP (14-27) is widely used as model peptides in 

cell culture studies due to its mitotic ability. It was purchased from American Peptide (Product 

No. 46-4-32). GRP can be immobilized to various SAMs on different surfaces suing different 

techniques, one of which is the immobilizing the carboxylic terminus of GRP to an amino end 

group of a SAM (which is 3-APTES in the study).  

3.2 Methods 

3.2.1 SAM deposition on ITO substrates. 3-APTES binds to ITO by the formation of 

siloxane bonds leaving a free –NH2 end group. This causes the SAM coated surface to be 

hydrophilic. The ITO substrates were cleaned by sonication in toluene, acetone and ethanol for 

five minutes each and 30 minutes in DI water. The substrates were dried using dry N2 gas, 

following which they were dipped in a 5 % 3-APTES solution in ethanol for 2-24 hours followed 

by rinsing in ethanol and N2 drying. The substrates were sterilized in 100% ethanol for a day 

prior to use. The reaction by which SAM of 3-APTES in formed on ITO is shown below. 

ITO-OH + NH2-Si(OEt)3              ITO-O-Si-NH2 

3.2.2 Immobilization of gastrin releasing peptide on ITO-SAM. The amine modified 

ITO substrate was derivatized by using crosslinkers, EDC (carbodiimide) and NHS (N-

hydroxysuccinimide). GRP (14-27) (10 µg/ml) was dissolved in a 2:5 molar ratio of EDC and 

NHS in 0.1M MES Buffer at pH 6. The amine-ITO substrates were then placed into the growth 

factor solution for 24 hours at 4°C. Prior to cell culture studies, the substrates were rinsed four 

times with 1X phosphate buffered saline (PBS). Figure 8 shows the schematic representation of 

the process of immobilization of GRP on ITO.  
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Figure 7. Schematic representation for immobilization of GRP on ITO substrate. 

3.3 Characterization of modified ITO substrates 

3.3.1 Contact angle measurements. It is necessary to characterize molecules on 

different surfaces before their use for cell culture studies. SAM on metal and semiconductor 

surfaces can be characterized by different techniques. Contact angle offers an easy-to-measure 

indication of the modification of the uppermost surface layers of a solid. The measurement 

determines wettability and adhesion and also allows prediction of coating properties and 

detection of trace surface contaminants. Contact angle is a physical manifestation of the more 

fundamental concepts of surface tension and surface energy. This technique is easy and is also 

used in determining the hydrophilic or hydrophobic nature of a SAM. The instrument used for 

these purposes is called a goniometer. 
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When a tangent line is drawn from the surface of the droplet to the solid surface, the 

contact angle (Өc), as shown in Figure 9, is the angle between the tangent line and the solid 

surface. If the contact angle is acute (Ө < 90
0
), the surface is considered hydrophilic and, if it 

obtuse (Ө > 90
0
), the surface is considered as hydrophobic. 

 

Figure 8. Definition of contact angle (Kwok & Neumann, 1999).  

The operation of a goniometer is very simple. A droplet of a liquid is dispersed onto the 

surface, and a CCD camera is used to capture the image of the droplet. The software calculates 

the tangent to the shape of the droplet and then calculates the contact angle. All this process can 

be done both manually and automatically on the same instrument. Data and images are collected 

at various points, as required, analyzed and stored in a computer.  

Contact angle measurements of liquids on SAM modified ITO is used to measure its 

wettability and adhesive properties by calculating the solid-vapor surface tension (Giannoulis & 

Desai, 2002). Further investigations have shown specific adsorption of amines and proteins on 

ITO coated surfaces (King, Hawkridge, & Hoffman, 1992; Margalit & Vasquez, 1990). The 

contact angle is the angle produced by drawing a tangent to the curvature of the water droplet 

positioned on the surface. Figure 9 shows experimental data of a contact angle formed by 

positioning a water droplet on the surface of a substrate. 
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Figure 9. Micrograph of water contact angle on SAM surface (experimental data). 

Advanced contact angle measurements are carried on SAM coated substrates using the 

sessile drop method on a contact angle goniometer. 

3.3.2 Infrared spectroscopy. Infrared spectroscopy is one of the powerful tools for 

identifying types of functional groups. The wavelength of IR-light absorbed is characteristic of 

the chemical bond. By interpreting the infrared absorption spectrum, the chemical bonds in a 

molecule can be inferred. IR spectra of pure compounds are generally unique in that they behave 

like a molecular fingerprint of the molecule. Table 1 shows an illustration of IR absorbance of 

common organic functional groups. Alcohols and amines display strong broad O-H and N-H 

stretching bands in the region 3400-3100 cm
-1

 as shown in the figure. Carbonyl stretching bands 

wich are generally strong and broad occur in the region of 1800-1700 cm
-1

. Carbon-carbon 

double bond stretching occurs in the region around 1650-1600 cm
-1

. The bands are generally 

sharp and of medium intensity. Aromatic compounds will typically display a series of sharp 

bands in this region. Carbon-oxygen single bonds display stretching bands in the region of 1200-

1100 cm
-1

 and these bands are generally strong and broad. Attenuated Total Reflectance Infrared 

(ATR-IR) Spectroscopy technique was used to characterize the ITO substrates. Table 1 shows 

characteristic IR absorption frequencies in molecules 
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Table 1 

Characteristic infrared absorption frequencies of some common organic functional groups 

Bond Compound Frequency Range,  

cm
-1 

C-H Alkanes 2850-2960 

1350-1470 

C-H Alkenes 3020-3080 

675-1000 

C-H Aromatic ring 3000-3100 

675-870 

C-H Alkynes 3300 

C=C Alkenes 1640-1680 

C-O Alcohols, ethers, carboxylic acids, esters 1080-1300 

C=O Aldehydes, ketones, carboxylic acids, esters 1690-1760 

O-H Alcohols, phenols 3610-3640 

3200-3600 

N-H Amines 3300-3500 

C-N Amines 1180-1360 

 

ATR-IR spectroscopy also known as internal reflection spectroscopy works on the 

principle that by pressing small pieces of membrane against an internal reflection element (IRE), 

e.g., zinc selenide (ZnSe) or germanium (Ge) mid-infrared spectra spectra can be obtained. IR 

radiation is focused onto the end of the IRE. Light enters the IRE and reflects down the length of 

the crystal. At each internal reflection, the IR radiation actually penetrates a short distance (1 

mm) from the surface of the IRE into the polymer membrane. It is this unique physical 

phenomenon that enables one to obtain infrared spectra of samples placed in contact with the 

IRE. RAIRS is also employed to characterize SAM deposition on ITO. The principle of RAIRS 

involves the study of molecular vibration on a surface using infrared light incident on it. The 
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presence of a dipole causes the molecule to absorb infrared at fixed frequencies. Thus, an 

infrared spectrum of light incident on the surfaces exhibits characteristic peaks of absorption 

which are specific to a molecule and its nature of binding (Roucoules, Gaillard, Mathia, & 

Lanteri, 2002). The IR spectra obtained for this thesis were obtained using ATR FT-IR. The 

nanometer size of molecules attached on the substrates results in very low signal due to which 

the ATR chamber has to purged with nitrogen. 

3.3.3 Atomic force microscopy (AFM). Atomic force microscope was used to measure 

the roughness of the SAM- modified ITO and GRP- modified ITO surfaces. The AFM (NT-

MDT, Japan) available at IRC was used for all the experiments. It has a profiler unit, an 

electronics interface, computer to run the software and store the data, and a heating unit for the 

substrate. The probe has a silicon cantilever at its end, and the stylus tip is at the bottom of the 

cantilever. The profiler unit has a stepper motor for downward and upward movements. A 

feedback signal stops the unit from crashing onto the substrate at a minimum distance. The stylus 

moves from left to right laterally during scanning of the sample. A laser in the profiler unit hits 

the cantilever and is reflected back. The profiler unit and the sample stage are placed in the 

vibration-free chamber. For all the samples, the scan head of imaging was initiated at the lowest 

magnification. 

The imaging was performed in the non-contact mode or wave mode with a NSC16 silicon 

cantilever. Initially, the scan head was brought down towards the sample and the region of 

interest was brought into the camera view. Then the scan parameters were set using the SPM 

configuration menu. An integral gain of 250 and a proportional gain of 300 were used throughout 

the imaging process. For the initial scans, a scan size of 5µm x 5µm, a scan rate of 3 Hz and a 

scan resolution of 500 lines per scan were used. Once these large area scans were complete and 
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the images were stored, a smaller region of interest was chosen with the previously scanned 

region using the hard zoom option.  

 The roughness of the samples were measured (using already stored image) using the 

histogram analysis window in AFM. The height of the histogram shows the statistical 

distribution of Z-heights of all the points in the image and, in addition, calculates several 

measure of surface roughness from different measurements and displays them in the surface 

characterization panel. We are interested in the average roughness (Ra): average deviation from 

the mean surface plane. 

3.4 Cell culture studies 

3.4.1 Sterile techniques for cell culture. Sterile technique refers to procedures by which 

cultures may be manipulated without infecting the worker or contaminating the cultures or the 

laboratory environment. Good sterile technique is the first and most important step in ensuring 

consistent results with cell culture. Working with cells take place within a laminar flow hood, 

either Class I (use with animal tissues), or Class II (use with human tissues). The purpose of 

these hoods is to minimize the risk of infection entering from the outside environment, as well as 

protect the user against potential pathogens being transmitted from the culture into their 

environment. Some of the common sterile techniques followed in the labs are wiping the work 

area and hands with 70% ethanol before starting the experiments, keeping sterile pipettes in their 

wrappers prior to use and not using the same pipette to draw media from different bottles. 

3.4.2 Cell line and culture conditions. HepG2 liver hepatocarcinoma cell line was 

purchased from American Type Culture Collection (Rockville, MD). The cells were maintained 

in Eagle’s Minimum Essential Media (EMEM) (Cellgro) supplemented with 10% fetal bovine 

serum, 2% penicillin/streptomyocin, and 1 % amphotericin. Cells were fed every two-three days 
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and subcultured every 5 days. Cells were seeded at a density of 1 x 10
5 

cells
 
per well on each 

experimental surface in EMEM supplemented with 1% fetal bovine serum. Soluble growth 

factors were added after initial seeding and evaluated after 24 hours. HepG2 cells were cultured 

on various test surfaces which could be divided into four separate groups: (i) HepG2 cells 

cultured on polystyrene (control) (ii) HepG2 cells cultured on amine modified ITOP (APTES-

ITOP) (iii) HepG2 cells cultured on covalently coupled GRP and iv)  HepG2 cells cultured with 

soluble GRP  

3.4.3 Cell morphology. Morphological observations of cell culture were performed using 

Miotic inverted microscope. The cells observed periodically for any changes in morphology and 

visual indications of cellular damage. Observations were recorded using the connected digital 

camera. The images were captured in a computer attached to the microscope using Miotic 

software for further image analysis. 

3.4.4 Cell viability analysis. MTT assay was used to quantitatively evaluate the cell 

viability of HepG2 cells. The principle of MTT assay is the conversion of (3-(4,5-

Dimethylthiazol)-2,5-diphenyltetrazolium bromibe) to purple formazan crystals in the presence 

of mitochondrial reductase enzyme which is present in viable cells. The amount of formazan 

produced is thus directly proportional to cell viability and can be measured using a 

spectrophotometer. 

The MTT assay kit was purchased from Promega. HepG2 cells were seeded with 

densities of 100,000/substrate. The cells were treated with MTT reagent and incubated for four 

hours. After four hours, purple formazan crystals were formed. The crystals were dissolved using 

the MTT solvent and the absorbance was measured at 590 nm. MTT activity was measured after 
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48 hours of seeding. A standard curve was established by measuring MTT activity as a function 

of cell density. 

3.4.5 Cellular cytotoxicity analysis. LDH assay was used to evaluate the cellular 

cytotoxicity of HepG2 cells cultured on different substrates. Cytotoxic responses of hepatocytes 

cultured on these substrates were evaluated by measuring the amount of Lactate Dehydrogenase 

leakage from seeded cells. Lactate Dehydrogenase (LDH) is a stable cytoplasmic enzyme present 

in most cell types. LDH catalyses the oxidation of lactate to pyruvate reducing nicotinamide 

adenine dinucleotide (NAD) to NADH. The activity of LDH is determined by measuring the 

absorbance at 340 nm to analyze the amount of LDH present in the cell culture media.  

HepG2 cells were seeded on ITO-APTES and ITO-APTES-GRP modified substrates at 

densities of 100,000 cells/substrate. The substrates were maintained at 95% 02 and 5% CO2 

under normal humidified conditions. The media was removed after specific intervals of time over 

a 48 hour period and the LDH reagent was added to it. 

3.4.6 Absorbance measurements. Absorbance is defined as the negative logarithm of 

the ratio of transmitted light intensity through a sample to incident light intensity on the sample. 

                                          

                                         

Where Aλ= Absorbance of the sample. 

I= Intensity of light transmitted through the sample. 

I0= Intensity of light incident on the sample.  

Absorbance measurements is based on the principle of Beer-Lambert law which states 

that, when light passes through a particular sample, the absorbance is proportional to the 

concentration of light-absorbing molecules in the sample at a given wavelength. Spectroscopy 

Aλ = − log10(I / I0) 
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techniques are used to measure the absorbance of the given samples. The absorbance plate reader 

and the UV vis spectrophotometer was used to measure the absorbance of the sample. 

The ELX 800 plate reader was used to conduct cell viability and cytotoxicity analyses on 

HepG2 cells cultured on GRP modified ITO substrates as it involves the measurement of 

absorbance at a particular wavelength. Initially, the necessary measurement and reference filters 

were selected and fitted in the filter carriage. The samples were taken in 6 well plates and 

absorbance measurements were carried out using the quick mode where the measured optical 

density was printed on the printer. 
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CHAPTER 4 

Results and Discussion 

4.1 Surface characterization 

4.1.1 Contact angle measurements. The contact angle of amine modified and growth 

factor modified surfaces were determined to verify the presence of amine functional groups 

using an optical contact angle measuring device (OCA15) purchased from Future Digital 

Scientific Corporation (Bethpage, NY). Pre-cleaned bare or unmodified ITO substrates were 

used as control. The contact angle of each substrate was analyzed at three different regions to 

generate an average contact angle for each substrate. The sessile drop method provided a contact 

angle measurement of 74.1
0
 on bare unmodified ITO substrates. After modification with APTES, 

the substrates exhibited significantly lower contact angles 40.1
0
 + 5

0
 which indicates the 

hydrophilicity of the amine end group of the SAM (3-APTES). These amine modified substrate 

contact angle values correlate with values reported in literature (Aithal, 2007). 

            

 

 

Figure 10. Contact angle measurement on a) ITO substrate and b) ITO modified with APTES.  

Contact angle of ITO substrate – 76.9
0 Contact angle of amine modified 

ITO substrate – 40.1
0 

a) b) 
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4.1.2 ATR FT-IR spectroscopy. To confirm surface modification further, ATR-FT-IR 

was carried on all the substrates. FT-IR was utilized to identify the functional groups created by 

the conjugation of GRP to the amine surface.   

Figure 11 shows the IR spectrum of APTES on ITO in the range of 1800-700 cm
-1

. The 

strong to medium peak at 1578 cm
-1

 corresponds to the primary amine N-H bending. The peak at 

972 cm
-1

 in Figure 11 indicates the stretching of Si-O bond representing the siloxane part of 

APTES. The weak band at 1685 cm
-1

 is due to primary amide stretching indicating the covalent 

bond between the amino end group of APTES and carboxylic end group of GRP. The 

asymmetric and symmetric bands of methylene (CH2) are observed at 1470 cm
-1

 in Figure 11. 

The peak at 968 cm
-1

 in Figure 11 indicates the stretching of Si-O bond. 

 

 Figure 11. ATR FT-IR spectrum of APTES on ITO in the range of 1800-700 cm
-1

. 
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Figure 12 shows the IR spectrum of APTES on ITO in the range of 3800-2800 cm
-1

. The 

strong to medium peaks observed between 3500 and 3300 cm
-1

 correspond to primary amine N-

H stretching. The asymmetric and symmetric bands of methylene (CH2) are observed at 2966 

and 2906 cm
-1

, respectively.    

 

Figure 12. ATR FT-IR spectrum of APTES on ITO in the range of 3800-2800 cm
-1

. 

Figure 13 shows the IR spectra of GRP coupled to APTES on ITO in the range of 2250 to 

700 cm
-1

. The medium peaks at 1612 and 1577 cm
-1

 in Figure 13 correspond to the primary 

amine N-H bending. The strong peak at 790 cm
-1

 in Figure 13 represents N-H wagging. The 

2800 2900 3000 3100 3200 3300 3400 3500 3600 3700 3800 
Wavenumber - 1/cm 

-15 

-7.5 

0 

7.5 

15 

22.5 

30 

37.5 

45 

52.5 

%T 

 

3545.17 

3429.44 

3333.00 
3298.3 3232.70 

 

2966.52 

2904.80 

2804.50 



43 

 

asymmetric and symmetric bands of methylene (CH2) observed between 1485 and 1444 cm
-1

 in 

Figure 13 indicate the propyl chain of APTES. The peaks between 1475 and 1435 cm
-1

 

correspond to the asymmetric bending of alkanes.  

 

Figure 13. ATR FT-IR spectrum of GRP immobilized on ITO in the range of 2250-700 cm
-1

.       

Figure 14 shows the IR spectra of GRP coupled to APTES on ITO in the range of 3700-

2250 cm
-1

. The strong to medium peaks observed between 3500 and 3300 cm
-1

 correspond to 

primary amine N-H stretching. The asymmetric and symmetric bands of methylene (CH2) are 

observed at 2968 and 2906 cm
-1

, respectively. The peaks between 1475 and 1435 cm
-1

 

correspond to the asymmetric bending of alkanes. 
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Figure 14. ATR FT-IR spectrum of GRP immobilized on ITO in the range of 3700-2350 cm
-1

. 

4.1.3 AFM analysis. Atomic force microscopy (AFM) was used to confirm the presence 

of immobilized molecules on ITO substrates microscopically. AFM of the substrates shows the 

difference in the size of molecules on ITO substrates after each modification.   

A NT-MDT AFM was used to confirm the presence of immobilized APTES and GRP on 

ITO substrates. Figure 15 shows the 2D images of cleaned ITO substrates showing a 

characteristic roughness between 0.8 to 1.2 nm which is observed on ITO sputtered over a PET 

substrate (Lin, Li, & Yen, 2008).   
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Figure 15. AFM image of a cleaned ITO substrate. 

Figure 16 shows AFM image of amine-modified ITO substrate showing the distribution 

of crests and troughs ranging mainly between 2 to 4 nm. The length of molecules on APTES 

modified ITO is a lot higher than indicated in literature which could be attributed to 

accumulation of 3-APTES rather than forming a monolayer.  

 

Figure 16. AFM image of ITO modified with 3-APTES. 

Figure 17 represents the distribution of molecules mainly between 14-17 nm suggesting 

the presence of a longer molecule, GRP, compared to APTES on ITO. The length of GRP in 14.8 
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nm as indicated in the literature. The length of molecules in case of GRP modified on ITO 

substrate shows a good indication of the immobilization of GRP on ITO. 

 

Figure 17. AFM image of GRP immobilized on ITO substrate. 

 AFM images suggest the presence of expected molecules and GRP on ITO. The increase 

in height of molecules after each attachment is clearly observed (Table 2). The abrupt height in 

molecules observed in Figure 16 with APTES on ITO could be attributed of agglomeration. The 

height of molecules ranging from 14-17 nm in Figure 17 in case of GRP immobilized on ITO 

indicates the length of GRP (14.8 nm). 

Table 2 

Height of SAM and immobilized GRP molecules on ITO from AFM analysis 

Substrate Height observed (nm) 

ITO substrate 0.8-1.3  

ITO with APTES 2-4 

ITO with immobilized GRP 14-17 
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4.2 Cell culture studies 

4.2.1 Cellular morphology. Cells are observed under the microscope at a magnification 

of 40x at regular intervals to record and study cellular morphology. Figure 18a) shows the 

morphology of the cells phase contrast images of HepG2 cells on the control. Figure 18b) shows 

the morphology of HepG2 cells seeded with soluble growth factor after 24 hours of seeding and 

Figure 18c) shows the HepG2 cells seeded with soluble growth factor after 48 hours of seeding. 

A few number of cells can be observed in case of the Figure18b) compared to Figure18c) as it 

should be expected in case of soluble growth factor showing good viability. Moreover, the 

morphology of HepG2 cells is also maintained after 24 and 48 hours of seeding. HepG2 cells 

after 48 hours of seeding with soluble GRP (Figure 18c) display increase in size which could be 

because of accumulation and cellular contact that most cell types tend to have in order to 

facilitate growth of each other by mutual sharing of growth facotrs and other components 

responsible for differentiation and maintaining cell functionality. 

                a)                                                  b)                                               c) 

       

Figure 18. Morphology of HepG2 cells a) on a control 24 hours after seeding, b) seeded with 

soluble GRP 24 hours after seeding and c) seeded with soluble GRP 48 hours after seeding. 

Figure 19 shows the phase contrast images of HepG2 cells that are seeded on GRP 

modified ITO substrates at 24 hours of seeding (Figure 19a) and 48 hours of seeding (Figure 
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19b). The cell density is higher for cells after 48 hours of seeding in Figure 19a) when compared 

to cells after 24 hours of seeding in Figure 19b). This indicates that the cell viability is 

maintained in cells seeded on GRP modified ITO substrates. There is change in morphology of 

HepG2 cells cultured with immobilized GRP when compared to those cultured with soluble GRP 

and on control which could be because of change in cell functionality. This could be a reason for 

immobilized GRP to show similar cytotoxicity as soluble GRP, shown in the results that follow. 

                                    a)                                                                               b)     

              

Figure 19. Morphology of HepG2 cells on immobilized GRP a) 24 hours after seeding and b) 48 

hours after seeding. 

4.2.2 Cell viability analysis. HepG2 cell viability was evaluated by performing the MTT 

assay on cells seeded on immobilized GRP substrates, cells seeded with soluble GRP and cells 

seeded on amine modified surfaces, each seperately. The principle of MTT assay is based on the 

conversion of yellow colored MTT to purple formazan crystals by mitochondrial reductase 

present in viable cells. The absorbance of formazan at 590 nm is the measure of viable cells in 

culture and it is directly proportional to the number of cells during the experiment.  

Initially, cells with a density of 100,000 cells per substrate were seeded in each well. The 

cells were maintained under normal humidified conditions of 95% moisture and 5% CO2 for a 

period of 24 hours to allow the cells to attach to the surfaces and the wells. The cells were treated 
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with the MTT reagent and incubated for four hours during which the purple formazan crystals 

were produced. These purple crystals were dissolved using a MTT solvent and the absorbance 

was measured at 590 nm and a reference absorbance at 630 nm. The viability of the HepG2 cells 

was assessed after 24, 48, 72 and 96 hours of culture. A calibration curve of variation in 

absorbance as a function of cell density was first obtained. Figure 20 shows the plot of optical 

density versus HepG2 cell density. The optical density increased with increase in cell density.  

 

Figure 20. Calibration curve for MTT assay. 

Figure 21 shows a plot of absorbance at different time intervals (24, 48, 72 and 96 hours) 

obtained from the MTT assays. The absorbance measured at 590 nm is a measure of comversion 

of MTT (yellow colour) to formazan crystals (purple) in the presence of mitochondrial reductase 

present only in viable cells. So, the absorbance due to foramzan formation directly represents 

number of viable or living cells. These cell densities were obtained by comparing the 

corresponding absorbances (mean of 3 values) with the standard curve (Figure 20). The results 

reveal that cell viability on GRP modified substrates after 48 hours was less than soluble GRP by 

19%. In contrast, after 96 hours, cell viability increased in case of cells seeded on GRP modified 

y = 2E-06x + 0.1807 
R² = 0.9977 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0 50000 100000 150000 200000 250000 300000 

A

b

s

o

r

b

a

n

c

e

 

Number of HepG2 cells 



50 

 

surfaces when compared to cells seeded with soluble GRP. This suggests that cell viability was 

successfully etended in case of immobilized GRP up to 96 hours.    

 

Figure 21. Cell viability studies of HepG2 cells on immobilized GRP after 24, 48, 72 and 96 

hours of cellular culture. 

Measurement of HepG2 cell viability on SAM modified surfaces provided quantitative 

validation of the influence of the immobilization of GRP on cellular properties. Even though 

there are no reports on the immobilization of GRP, soluble form of GRP has been reported to 

stimulate lung cancer cells (Carney, Cuttitta, Moody, & Minna, 1987). MTT conversion 

indicated that cell viability on GRP modified substrates after 48 hours was less than soluble GRP 

by only 19% which is an indicative of effect of complete availability of GRP in soluble form, 

unlike in immobilized form. However, MTT activity was observed to increase at 96 hours in case 

of immobilized GRP where as it decreased in case of soluble GRP indicating that 

biocompatibility was extended in case of immobilized GRP. 

4.2.3 Cellular cytotoxicity analysis. The substrate influence on cellular cytotoxicity is 

assessed by measuring the LDH release by dead or damaged cells. LDH release was measured as 
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a function of duration in culture. The results obtained were expressed as mean of 3 independent 

trials. Control cultures were always established on tissue culture plastics (TCPS) and bare ITO 

surfaces. 

Figure 22 shows a plot of LDH activity at different time intervals (24, 48, 72 and 96 

hours) obtained from assays conducted on HepG2 cells seeded with SAM-modified substrate, 

GRP-modified substrate and soluble or free GRP. LDH production or plasma membrane damage 

after 48 hours was significantly reduced by 44% using growth factor modified substrates as 

compared to soluble growth factor, which suggests good biocompatibility. The study of LDH 

activity (Figure 22) indicated a decrease in LDH activity with increase in time in culture. LDH 

activity was higher initially due to cytotoxicity caused by placing cells in a foreign environment. 

Subsequent adaptation to the new environment resulted in decreased cytotoxicity as reflected by 

LDH activity. 

 

Figure 22. Cellular cytotoxicity of HepG2 cells on immobilized GRP compared to soluble GRP 

(10 µg/ml) and amine modified surface after 24, 48, 72 and 96 hours of cell culture.  

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

A
b

so
rb

a
n

ce
 a

t 
3
4
0
 n

m
 

Cellular cytotoxicity analysis 



52 

 

The cytotoxicity analysis using immobilized GRP indicated that LDH production or 

plasma membrane damage after 48 hours was significantly reduced by 44% using growth factor 

modified substrates as compared to soluble growth factor, which suggests good biocompatibility. 

After 48 hours, LDH production decreased in case of soluble GRP and immobilized GRP 

substrates where as it increased in case on amine modified substrate. 

 4.2.4 Cellular cytotoxicity analysis using immobilized EGF. The results obtained from 

the experiments using immobilized GRP substrates encouraged us the investigate the culture of 

HepG2 cells on immobilizaed EGF substrates. The immobilization of EGF on ITO was carried 

out in the same way as immobilization of GRP (mentioned in chapter 3). Limited cell culture 

experiments were carried out with immobilized EGF. Cytotoxicity of soluble EGF is used to 

compare the cytotoxicity of immobilized EGF as in case of GRP. Cells cultured on ITO-SAM of 

3-APTES and on tissue culture plastic were used as controls. The EGF modified substrates were 

placed in ethanol for 24 hours prior to cell culture studies. HepG2 cells were seeded on ITO-

APTES and EGF-modified ITO substrates at densities of 100,000 cells/substrate.  

LDH production or plasma membrane damage after 48 hours decreased by 26%  in case 

on EGF-modified substrates, where as for both soluble EGF and amine modified substrate the 

cytotoxicity increased, indicating good biocompatibility of immobilized EGF at 48 hours. The 

study of LDH activity (Figure 23) indicated a decrease in LDH activity with increase in time in 

case of soluble and immobilized EGF where as LDH activity increased in case of amine-

modified substrate indicating that biocompatibility further extended with immobilized EGF up to 

5 days. 
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Figure 23. Cytotoxicity analysis of HepG2 cells using immobilized EGF substrates up to 5 days 

of cell culture. 
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CHAPTER 5 

Conclusion 

The experiments presented in this thesis were carried out with an objective of evaluating 

cellular response of HepG2 cells upon culture mainly on GRP modified ITO substrates. GRP 

was coupled to the amino end group of 3-APTES SAM immobilized on ITO by using standard 

deposition techniques. The modified substrates were characterized using contact angle 

measurement, ATR FT-IR, and AFM techniques. The characterization using ATR FT-IR  

showed the immobilization of 3-APTES SAM and the immobilization of GRP on the amino end 

group showing amine-carboxy linkage. The AFM images provided evidence for immobilization 

of 3-APTES SAM followed by GRP coupling on ITO. 

 A study of HepG2 cell morphology on SAM modified ITO surfaces showed that cells 

exhibited characteristic cell clustering, which increased with increase in culture period. HepG2 

cell viability was evaluated using MTT assay at intervals of 24, 48, 72 and 96 hours. 

Spectrophotometric measurement of MTT conversion indicated that cell viability on GRP 

modified substrates after 48 hours was less than soluble GRP by 19%. A study of cellular 

cytotoxicity by measuring LDH release from cultured hepatocytes verified the same. LDH 

production or plasma membrane damage after 48 hours was significantly reduced by 44% using 

immobilized GRP substrates as compared to soluble GRP, which suggests extended 

biocompatibility.   

Cells cultured on GRP modified ITO substrates showed similar cytotoxicity profile when 

compared to soluble GRP and less cytotoxicity when compared to amine modified ITO 

substrates after 96 hours. These results show that the influence of immobilizing GRP does not 

have a significant decrease in the cellular response after 96 hours when compared to soluble 
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GRP. However, after 96 hours, cell viability increased and cytotoxicity decreased for HepG2 

cells cultured on GRP modified substrates suggesting that viability was extended.  

The studies with GRP were extended to cytotoxicity analysis of HepG2 cells on EGF-

modified surfaces. Preliminary results with EGF modified ITO substrates showed similar trends 

in LDH activity as GRP-modified substrates when compared with soluble and immobilized 

forms of EGF. The results obtained from these experiments would be used to design and 

fabricate SAM based CCPs.   
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CHAPTER 6 

Future Recommendations 

 Immobilization of peptides and growth factors on SAMs is a promising area of research 

to develop a cell culture platform for drug toxicity screening. However, several studies need to 

be conducted to have a better understanding of immobilized growth factors to mimic ECM in 

vitro. Western blot analysis and enzyme-linked immunosorbent assay may be done to investigate 

active cellular pathways responsible for cellular interactions in the above mentioned systems. 

Studies on immobilization of EGF and HGF should be done by immobilization on SAMs for 

enhanced cell viability. Cell culture studies should be done with primary cells (like primary 

hepatocytes) to investigate the effect of immobilized growth factors. This will provide an 

understanding to mimic the components of the ECM and will help in developing artificial 

juxtacrine stimulation. This will aid in the cultivation of primary cells in vitro for prolonged 

periods of time. These systems can then be used for dug toxicity screening in the preclinical 

stages of drug development.  

 The change in morphology of HepG2 cells cultured on immobilized GRP may result in 

change in functionality. This is another aspect of the thesis that could be addressed. The 

immobilized GRP system could be used to study the effect of cell death intiators on cancer cell 

lines to investigate whether it has any effect on cell death.  
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Appendix 

Protocols employed 

Immobilization of GRP on ITO 

1) Trace and cut the ITO-PET (ITO sputtered on polyethyleneterephthalate) sheet into 2 cm 

diameter circular pieces. 

2) The ITO substrates are cleaned by sonication in toluene, acetone and methanol for five 

minutes each and 30 minutes in DI water.  

3) Dry the substrates using N2 gas. 

4) Dip the ITO substrates in a solution of 5% 3-APTES in ethanol for 24 hours followed by 

rinsing in ethanol and N2 drying to yield the SAM of APTES on ITO.  

5) Sterilize the substrates in 100% ethanol for a day prior to immobilization of GRP. 

6) Place the ITO-SAM substrates in a solution containing 2:5 molar ratio of EDC:NHS in 0.1 

M MES buffer for 24 hours at refrigerated conditions (4
0 

C). 

7) Sterilize the ITO-GRP substrates in 100% ethanol for a day prior to cell culture and then dry 

them using N2 gas. 
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Contact Angle Measurements to measure Hydrophilicity or Hydrophobicity of substrates 

1) Suspend a drop of water (0.5µL) using a microliter syringe positioned above the sample 

stage. 

2) Move the syringe towards the stage so that the water droplet makes contact with it. 

3) Retract the syringe, leaving the sample on the substrate. 

4) Record the image is recorded using a CCD camera. 

5) Measure the contact angle using the SCA20 software provided. 
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