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Abstract  

This research develops a Bayesian Abduction Model for Sensemaking Support (BAMSS) for 

information fusion in sensemaking tasks. Two methods are investigated. The first is the classical 

Bayesian information fusion with belief updating (using Bayesian clustering algorithm) and 

abductive inference. The second method uses a Genetic Algorithm (BAMSS-GA) to search for 

the k-best most probable explanation (MPE) in the network. Using various data from recent Iraq 

and Afghanistan conflicts, experimental simulations were conducted to compare the methods 

using posterior probability values which can be used to give insightful information for 

prospective sensemaking. The inference results demonstrate the utility of BAMSS as a 

computational model for sensemaking.  The major results obtained are: (1) The inference results 

from BAMSS-GA gave average posterior probabilities that were 103 better than those produced 

by BAMSS; (2) BAMSS-GA gave more consistent posterior probabilities as measured by 

variances; and (3) BAMSS was able to give an MPE while BAMSS-GA was able to identify the 

optimal values for kMPEs. In the experiments, out of 20 MPEs generated by BAMSS, BAMSS-

GA was able to identify 7 plausible network solutions resulting in less amount of information 

needed for sensemaking and reducing the inference search space by 7/20 (35%). The results 

reveal that GA can be used successfully in Bayesian information fusion as a search technique to 

identify those significant posterior probabilities useful for sensemaking. BAMSS-GA was also 

more robust in overcoming the problem of bounded search that is a constraint to Bayesian 

clustering and inference state space in BAMSS. 
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CHAPTER 1 

Introduction 

1.1 Background   

In the last decade, asymmetric warfare has evolved into complex multifaceted conflicts in 

all the major trouble spots around the world. The conflicts have involved conventional armies of 

nation states against a proliferation of non-state actors that carry out sustained insurgencies 

against the superior armed forces. The end states of these insurgencies, the motivations, and 

tactics vary from one insurgency to another, introducing a level of complexity into the 

battlespace that requires military strategists to adopt new ways of thinking to cope with the 

complexities. Often, these insurgencies are nested in complex conflicts involving third and fourth 

forces (Metz, 2003) the insurgents themselves, and the regime.  

Consider the most recent military conflicts in Iraq and Afghanistan. The adversary 

environment is known to be complex, “wicked” and completely asymmetric - the adversaries are 

barely known, and their tactics keep changing against the coalition forces. The conventional 

forces have superior weaponry, resources and manpower enabling their domination in ground 

and air maneuvers, while the adversaries have the advantage of superior terrain knowledge, no 

time constraints, and support from the local population making them dominant in guerilla 

maneuvers. The deliberate Military Decision Making Processes (MDMP) with all their linearity 

assumptions collapse immediately when they come in contact with asymmetric information 

environments. Generating courses of action must be progressive and opportunistic - the usual 

analytical models of judgment and choice that fit force-on-force tactics must be recalibrated to 

fight unknown enemies.  
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Traditionally, this kind of problem has been addressed using Boyd’s (1987) Observe, 

Orient, Decide, and Act (OODA) model which cognitively aligns the battle staff’s intuitive 

estimates through a linear space of “Observing” the data, “Orienting,”  “Deciding,” and 

“Acting.”  Usually mentioned anecdotally is the sensemaking aspect of the Orient stage in the 

OODA (Breton & Rousseau, 2005). It is believed here that by improving the sensemaking aspect 

of the OODA with analytical models, the commander’s decision making could be improved 

(Munya, Trevino, & Ntuen, 2005).  

A commander must draw inferences from uncertain data, identify appropriate sequences 

of objectives and optimally assign resources to ensure their attainment (Thoms, 2003). In recent 

decades, information has been obtained by employing sensors, data fusion and communication 

systems that support inferential reduction of uncertainty in battlespaces. In the context of 

asymmetric warfare, the ability of the commander to swiftly decide to counter the enemy’s 

insurgent behavior puts more mental load on the staff and the commander owing to the quantity 

of information to be processed. Making sense of dynamic, multivariate information to establish a 

reasonable, justifiable belief about the adversary’s intent has become a hard, cognitive, analytical 

problem (Ntuen, 2009). 

As noted by Van Creveld (1985), there are four contextual processing regimes which 

influence the commander’s decisions - the organizational, operational, informational and 

inferential components. Organizationally, the commander must deal with the stratified 

hierarchical nature of the military structure at the strategic, operational, and tactical levels. 

Operationally, he must have a complete understanding of the entire theater of war and the spectra 

of mapping one’s forces to counter the enemy’s plans. From an information perspective, the 

commander must align the battle staff to develop the best Courses of Action (COA) estimates 
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using the varied information available. Additionally, in making decisions, the commander must 

be able to deal with the current situations in the field and make probabilistic inferences about the 

future of the battlefield and the adversaries (Thoms, 2003). 

Given the four macro-regimes of the command space, the ability of the battle staff to 

develop a reasonable, but plausible rough estimate of the battle COA depends in part on their 

sensemaking ability under the flux of battlespace information from the many information 

generating mechanisms including humans and technology. The commander’s battle staffs, 

though aided by technology, still rely on their intuition to understand the evolving situation. This 

sensemaking process begins when both the commander and the staff assess the  battle situation 

by extrapolating their apriori knowledge onto the existing information space to understand the 

ground realities.   

1.2 Sensemaking 

Much of the epistemological discussions of sensemaking especially the adoption of the 

sensemaking construct and its impact on research paradigms, theory, and methodology, has 

occurred in the social and management circles (Weick, 1995) which have yielded most of the 

definitions of sensemaking. Weick defines sensemaking as a process involving identity, 

retrospect, enactment, social contact, ongoing events, cues and plausibility (1995).  Huber (1991) 

introduces the concept of “active agents” capable of constructing sensible and sensable events.  

From information fusion discipline, sensemaking involves putting stimuli into some kind 

of framework (Starbuck & Milliken, 1988).When people put stimuli into frameworks, this 

enables them to “comprehend, understand, explain, attribute, extrapolate and predict.” 

Sensemaking is also viewed as a thinking process that uses retrospective accounts to explain 

surprises (Louis, 1980).Thomas, Clark and Gioa describe sensemaking as the “reciprocal 
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interaction of information seeking, meaning ascription and action” (1993, p.240). Sackman 

(1991) talks about sensemaking mechanisms that organizational members use to attribute 

meaning to events, mechanisms that include the standards and rules for perceiving, interpreting, 

believing and acting that are typically used in a given cultural setting (p.33). Feldman and March 

(1988) define sensemaking as an interpretive process that is necessary for “organizational 

members to understand and to  share understandings about such features of the organization as 

what it is about, what it does well and poorly, what the problems it faces are and how it should 

resolve them.”  Ring and Rands (1989) define sensemaking as a “process in which individuals 

develop cognitive maps of their environments” (p.342). In military circles, sensemaking is 

defined as a multidimensional process of developing an operational understanding and awareness 

within a complex and evolving task domain (Leedom, 2004). 

These definitions point to sensemaking as a concept, a process or even a structural 

framework. Conceptually, sensemaking is presented in terms of principles and theories (Ntuen, 

2006). By general definition, a principle refers to an assumption, a basic truth, or law that must 

hold for an entity to be accepted as such in the field of research. As a process, sensemaking is 

defined in terms of situated (contextual) actions, informational or symbolic level of processing, 

and cognitive information processing that is mainly tacit knowledge explication. As a structural 

framework, sensemaking can be viewed as an ontological link of information from individuals or 

organizations for the purpose of discovering intrinsic values for decision making.  

Ntuen, Park, and Kim (2013) note that information is the heart of the sensemaking 

process. In cases where the required information may be completely missing, the sensemaking 

process starts with making guesses using retrospective knowledge. The information may be 

incomplete, in which case the sense-maker becomes an intuitive statistician, mentally estimating 
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and connecting dots. Finally, information may be overwhelmingly too much. For example, in 

military command and control centers, there is a multitude of sensor devices generating 

information in real-time.  

Relevant to knowledge management, Ntuen, Park, and Kim (2013) further observed three 

major characteristics of sensemaking: 

(a). Sensemaking is an aspect of information foraging: Pirolli and Card (1999) define the 

Information Foraging Theory as an approach to understanding how strategies and technologies 

for information seeking, gathering, and consumption are adapted to the flux of information in the 

environment. The theory assumes that people, when possible, will modify their strategies or the 

structure of the environment to maximize absorption of valuable information. Pirolli and Card 

(2005) note that foraging tasks consist of information gathering, representation of the 

information in a schema that aids analyses, the development of insight through the manipulation 

of this representation, and the creation of some knowledge product or direct action based on the 

insight. 

(b). Sensemaking is an information fusion tool: Sensemaking is viewed as a thinking 

process that uses retrospective accounts to explain surprises (Louis, 1980, p.241), and uses new 

information to update prospective states of a situation. Previously, Munya and Ntuen (2007) 

have used this axiom to develop an Information Fusion Model using Bayesian Information 

Updating.  

(c ). Sensemaking supports situation understanding: The overarching goal of 

sensemaking as noted by Starbuck and Miliken (1988) is information interpretation through the 

process whereby stimuli is placed into some kind of framework as a consequence of which, the 

situation is understood. Comprehending the situation supports better judgments, decisions and 
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actions. Klein (2006) describes sensemaking as the set of processes involved in trying to improve 

an individual’s understanding of a situation, often in response to surprise. Malhotra (2001) notes 

that by understanding a situation, we can conceptually link available information and the 

expected result or the anticipation of task outcomes. It helps us understand the gap between 

performance expectations based on information in context (Malhotra, 2001; pp. 120).  

1.3 Challenges in Fusing Information from Asymmetric Battlespace to Support 

Sensemaking 

In the asymmetric battlespace environments, the deliberate MDMP with all their linearity 

assumptions are generally deemed inadequate. COA generated must be progressive and 

opportunistic rather than contextual and analytical. While contextual and analytical models of 

judgment and choice fit force-on-force tactics, they are much less adaptable to asymmetric 

battlespaces. Sensemaking for asymmetric battlespace information management has been 

advocated by Bodnar (2005); Leedom (2004, 2005); Leedom and Eggleston (2005); Ntuen 

(2006, 2008); Klein (2006), and Good et al., (2004). Even among these researchers’, there is a 

consensus that sensemaking is anecdotal and prescriptive because it is governed by expert 

judgment and experience.  

There are also many problems and gaps in the literature with respect to developing 

analytical models to capture sensemaking. These gaps are enumerated and described below: 

(a). Asymmetric information is generally characterized with equivocation, different types of 

uncertainties, ambiguities and surprises, emerging and evolving information, and complexities, 

among others.   

(b). There is a problem of scale related to information complexity in military command and 

control (C2) organizations. For example, there are challenges in applying closed-form 
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mathematical models such as Bayesian Models to a battlespace system even at the brigade and 

lower levels mostly due to the information-handling costs. 

(c). Most analytical models lack the robustness to deal with sensemaking problems arising from 

non-crisp information.  

(d) Lack of cognitive architectures that support the ability to fuse core knowledge and use such 

knowledge in performing meta-reasoning with the available information in novel situations. Core 

knowledge, serves as apriori information to a decision maker and is a key sensemaking input. 

Given the above challenges, some critical issues giving impetus to this research can be 

identified for the analytical modeling of the sensemaking process as: 

 Development of a framework that can computationally represent sensemaking with 

all its tacit dimensions of knowledge as a model of human cognition. 

  A reasoning construct supported by Bayes Theorem that can support the 

sensemaking process. Bayesian Networks are propositional in nature and have 

inherent limitations in their expressive powers.  

 Development of an architecture that can sufficiently combine and represent the 

expressive nature of Bayesian Networks with the ability to handle multiple types of 

uncertain information while increasing information entropy. 

1.4 Research Goals and Objectives  

This research aims to develop a Bayesian Abduction Model for Sensemaking Support 

(BAMSS). The application domain is for the analysis of military Courses of Action. The research 

objectives are broadly defined as: 

1. To develop a sensemaking analytical model to support military commanders in 

integrating information from various sources in asymmetric battlespace. The modeling 
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process is centered on using a Bayesian Network to represent causal relationships among 

the decision variables and perform abduction reasoning to get the most explainable 

causes.  

2. To validate a prototype BAMSS using case situations from asymmetric warfare. 

3. To improve and optimize the BAMSS output by using a genetic algorithm to seed the 

relevant Bayesian data.  

1.5 Intellectual and Broader Impact Contribution 

The research demonstrates the development of a sensemaking analytical model using a 

Bayesian Network. Bayesian Networks are used as knowledge representation and analysis tools. 

A Bayesian Network was chosen because of its robustness to make abduction inference - typical 

of sensemaking in that it looks for the most probable cause-effect relations within the 

information. It is believed that Bayesian algorithms will enable real-time information fusion, thus 

easing the process of sensemaking, especially, testing multiple competing hypotheses from a 

domain-specific large database.  We also demonstrate that the model is robust and scalable and 

can be applied to many different situations that require information fusion. 

 

1.6 Chapter Summary and Thesis Overview 

Chapter 1 introduces the research topic, the problem statement, the research goals and 

objectives, the challenges encountered in the research and the general contribution to the 

scientific body of knowledge. Chapter 2 discusses the contextual framework of sensemaking 

analytics. Chapter 3 presents the Bayesian formalism as a mathematical model for knowledge 

representation in a sensemaking context. A discussion of abductive inference for BAMSS is also 

presented.  Chapter 4 presents the BAMSS information and functional architecture, the 
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computational platform requirements (software and hardware), sample computational algorithms, 

and sample case vignettes. Chapter 5 extends the discussion of the BAMSS model by 

incorporating a Genetic Algorithm to improve and optimize the output. Chapter 6 presents the 

research summary, observations, conclusions, and recommendations for further research.  
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CHAPTER 2 

Sensemaking Analytics 

2.1 Contextual Framing 

Analytical models of sensemaking focus mainly on the micro cognitive aspects of 

sensemaking at the individual level. The underlying theme is to isolate and represent aspects of 

cognition that humans rely on to understand events in uncertain environments. The dominant 

rubric in the development of these models has been to fashion them like linear decision support 

systems whose output is almost always linear. Such systems take the black box approach to the 

problem of sensemaking assuming that any number of inputs to the system can be processed by 

some algorithm to produce the right output. This works well if we are to assume a deterministic 

situation. The reality is that sensemaking is used for situations that are dynamic and complex 

with nonlinear behaviors.  

Models for sensemaking analytics should consider uncertainty, contradiction, ambiguity, 

time-based behaviors, and indeterminacy which extend beyond the deterministic models. 

Anecdotally, the Think Loop Model (Bodnar, 2005) exemplifies these sensemaking 

characteristics by breaking down the analytical process into a nested series of “think loops” 

which indicate how analysts combine “bottom-up” data with “top-down” data to derive useful 

information. Leedom and Eggleston (2005) described a working simulation model of human 

sensemaking and decision-making within a future joint or coalition military Command, Control, 

Intelligence, Surveillance, and Reconnaissance (C2ISR) system. Their sensemaking framework  

uniquely integrated two areas of modeling; i) explicit representation of the knowledge 

framework (abstraction hierarchy) required for decomposing command intent into actionable 

knowledge within each of the Political, Military, Economic, Social, Information and 
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Infrastructure (PMESII) dimensions of the battlespace and ii) explicit representation of the staff 

work flow and patterns of collaboration within the various centers, working groups, cells, and 

teams that build this knowledge framework.  

Other analytic models of sensemaking examine the cognitive and external resource cost 

of sensemaking (e.g. by Russell, Stefik, Pirolli, & Card, 1993), the effects of tools on the 

behavior of people doing rapid large-volume data assessment (Russell, Slaney, Qu, & Houston, 

2005), rapid understanding of large document collection (Russell &Slaney, 2004) and visual 

sensemaking (Chi & Card, 1999; Card, 2004; Russell, 2003). The next section examines 

different approaches to qualitative models of sensemaking. 

2.2 Qualitative Models of Sensemaking 

Several qualitative models have been proposed for sensemaking analyses. However, a 

unifying paradigm for sensemaking is currently lacking.  Additionally, there is no general 

consensus as to how the sensemaking process might be operationally defined, analytically 

modeled, empirically tested, and critically assessed in terms of key constructs and variables, 

process interactions and obstacles, performance dimensions and metrics, and objective criteria 

for assessing the adequacy or sufficiency of outcome (Leedom, 2004).These models have been 

tailored to suit different domains ranging from Mission Command situations to business 

decision- making . 

The OODA model was developed by Boyd and is commonly applied to military 

command and control decision-making situations. In the OODA model, the Orient phase 

attempts to capture the cognitive processes involved in sensemaking. A modified version of the 

model, the Cognitive-OODA (Breton & Rousseau, 2005), was developed in response to the 

military adoption of the Effects Based Operations (EBO) which emphasizes analytical rather 
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than conventional tactics. Endsley’s Model of Situation Awareness (1995) closely mirrors the 

sensemaking process mostly at the level II Situation Awareness (SA). At level II SA, 

sensemaking represents the comprehension of information (transformation of information to 

knowledge).  

Wiig (2002) describes sensemaking as a continuous integration of evolving situation- 

handling activities that are based on cognitive constructs. The model assumes that an individual’s 

sensemaking process is based on four types of mental models: the Situation Recognition Model, 

the Decision-Making and Problem Solving Model, the Execution Method Model and the 

Governance Approach Models. In Shattuck and Millers’ Dynamic Model of Situated Cognition 

(2004), sensemaking is viewed as a sequence of situated acts. Situated action models emphasize 

the emergent, contingent nature of human activity, and the way it grows directly out of the 

particularities of a given situation. A central tenet of the situated action approach is that the 

structuring of activity is not something that precedes it but only grows directly from the 

immediacy of the situation (Lave &Wenger, 1991).  

Klein’s (2004) Data/Frame Analytical Model focuses on the micro-cognitive aspects of 

individual sensemaking. Framing indicates how we structure problems into a particular set of 

beliefs and perspectives that constrain data collection and analysis. The Plan as You Execute 

(PAYE) model (Ntuen, 2006), was developed as a hybrid model incorporating a variety of the 

cognitive models discussed above. The model architecture is dependent on schema-based 

knowledge representation about the world, a question answering (Q-A) sensemaking query 

system, reflexive and reflective cognition models and the dynamic cognitive scripts or meta-

cognition knowledge elements.  
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The non-linearity and complexity of the asymmetric battlespace has been analyzed using 

Complex Adaptive Systems Theory. Kilcullen (2004) defines the asymmetric battlespace as an 

open and complex adaptive system characterized by the non-linear interaction of its subordinate 

elements. Comprised of many dynamically interacting subcomponents, complex adaptive 

systems exhibit coherent behavior despite their highly dispersed and decentralized control 

structure (Kilcullen, 2004).  

The complexity of asymmetric warfare has also been researched by a number of 

researchers (Ryan, 2008; Bar-Yam, 2004; Kilcullen, 2004). Ryan uses the Law of Multiscale 

Variety (Bar-Yam, 2004) to discuss two complex systems ideas (multiscale variety and 

adaptation) that underpin our understanding of asymmetric warfare. For a system with N parts 

that must be coordinated to respond to the external contexts, the scale of the response is given by 

the number of parts that participate in the coordinated response. Second, we assume that under 

(complete) coordination, the variety of the coordinated parts equals the variety of a single part. 

The induced sensemaking process is interpreted to operate on the same axiom of Law of 

Multiscale Variety—where information is subject to serious uncertainties and equally N-order 

entropy.  The generalized Law of Multiscale Variety states that at every scale, the variety 

necessary to meet the tasks, at that scale, must be larger for the system than the task 

requirements. 

The Cynefin Model (Kurtz & Snowden, 2003) emphasizes the effect of problem type and 

environment on the sensemaking and decision-making capabilities. The novelty of this model 

lies in its approach to problem-solving in a realm that encompasses all problematic situations. 

Combining Ryan’s concept of multiscale variety and adaptation with this model of sensemaking, 

we argue that the context of MDMP in asymmetric battlespace spans both the knowable space 
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and the complex space. In the knowable space, also called complicated order or Realm of 

Scientific Inquiry, cause and effect relationships are generally understood, but for any specific 

decision it is imperative to gather and analyze further data to predict the consequences of a COA 

without any uncertainty. Snowden characterizes decision making in this space as {SENSE, 

ANALYZE and RESPOND}. Decision analysis and support require accurate fitting and use of 

models to forecast the consequences of actions with appropriate levels of uncertainty (French, 

2013) 

 

Figure 1. Cynefin Model. Adapted from Kurtz and Snowden, 2003. 

In the complex space, also called the complex unorder or the Realm of Social Systems, 

decision-making situations involve many interacting causes and effects. Knowledge in this space 

is at best qualitative: there are too many potential interactions to disentangle particular causes 

and effects. There are no precise quantitative models to predict system behaviors as seen in 

known and knowable spaces. Decision-making is more focused on exploring judgment and issues 

and on developing broad strategies that are sufficiently flexible to accommodate evolving 

situations. Snowden suggests that in these circumstances, decision making is more of the form 

{PROBE, SENSE and RESPOND} (French, 2013). Analysis begins with informal qualitative 
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models. If quantitative models are used, then they are simple, perhaps linear multi-attribute value 

models (Belton & Stewart, 2002). 

Bodnar (2005) developed a Think Loop Model (TLM) for sensemaking analysis that 

breaks the analytical process down into a nested series of “think loops” which indicate how 

analysts combine “bottom-up” data-driven steps with “top-down” hypotheses-driven steps to be 

able to forage through new data, and then synthesize that data into evidence-based schemas and 

theories. The TLM process considers many back loops within a sensemaking component cycle 

by using one set of activities that cycle around finding information and another that cycle around 

making sense of the information, with multiple interactions between them. Additionally, the 

upward processes fall into a single overall scheme for data-driven analysis while the downward 

arrows fall into a single overall scheme for hypotheses-driven analysis. 

Russell, et al., (1993) developed the Sensemaking Thinking Loop (STL) as a continuous 

evolving state of reasoning about a problem context. The STL has three main processes, namely, 

search for representation, instantiating representation, and shifting representation, respectively. 

Searching for representations is designed to capture salient features of the data in a way that 

supports the use of the instantiated representation.  Instantiating a representation identifies 

information of interest and encodes it in a representation that emerges from the generation loop. 

The instantiated schemas called encodons are created in the data coverage loop. Shift 

representation is designed to cope with contextual information changes and entails forcing a 

change in the representation via a bottom-up or data-driven process. 

 A diversity of efforts exists within the sensemaking community of practice. Therefore, 

Buckingham-Shum and Selvin (1999) note that, “there are not only gaps in the languages, frames 

of reference, and belief systems that people in the different communities of practice have, but 
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also gaps between their respective sensemaking efforts - their concepts in the representational 

situation. In many cases, different communities have mutually unintelligible sensemaking 

efforts, leading to mutually unintelligible representational effort.”  

2.3 Sensemaking Analytics Tools 

The major difference between a Sensemaking Support System (S3) and a Decision 

Support System (DSS) is that S3 supports sensemaking activities, while DSS supports decision 

making activities. DSS has matured in its constructs and theories, and is usually designed to help 

an agent choose from the multiple options. S3s are relatively nascent and universally lack 

acceptable theoretical frameworks and constructs. An S3 will usually target problems in 

information foraging, diagnosis, information fusion, and help the sense-maker understand the 

specific problem situation.  

The S3 is a product developed by Ntuen, Park, and Kim (2013) as a tool for information 

fusion during sensemaking within a military domain. S3 provides the backbone for developing a 

collaborative decision support system since it is designed for multiple users engaged in 

collaborative sensemaking. The tasks are defined at different strata of operational doctrines. The 

user can use maps, whiteboards, annotations, and graphics to illustrate facts or clarify arguments. 

The display model is implemented using the stages of the cognitive abstraction hierarchy which 

maps the requirements of sensemaking stages (Figure 2). S3 enables the users to develop and 

frame the hypotheses, analyze the hypotheses in the experimental domain, and provide cases for 

simulation experiments. The visualization and sensemaking support module in S3 provides a 

user interface and visualization support. 
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Figure 2. Visual analytics screen capture in S3  

Good and his colleagues from PARC AI group (2004) developed the ACH0 as an 

experimental program intended to aid intelligence analysis in sensemaking. ACH0 is a table-

oriented workspace for performing the Analysis of Competing Hypotheses (ACH). By 

accommodating multiple explicit hypotheses and systematic consideration of available evidence, 

the ACH method counteracts confirmation bias and other causes of inaccuracies. ACH0 provides 

two simple algorithms for scoring evidence: an Inconsistency Counting Algorithm and a 

Normalized Algorithm. Both of these are intended only as rough guides for scoring hypotheses. 

The algorithms operate on the same data, but make different trade-offs.  

Figure 3, a screen shot of ACH0, illustrates its table format. The hypotheses under 

consideration in the example are the columns labeled H1, H2, and H3. Six items of evidence are 

present in the example in the rows labeled E1 through E6. In the ACH Method, each piece of 

evidence is assumed to be independent and the hypotheses are exhaustive and mutually 

exclusive. In Figure 3 an entry of “I” signals that this evidence is inconsistent with the 

corresponding hypothesis, and entry of “II” signals that it is very inconsistent with the evidence. 

The “C” and “CC” entries indicate two levels of consistency. Similarly, ACH0 provides three 

levels of weight assigned to evidence. Roughly, this weight is a stand-in for a richer 

representation of the evidence quality. 
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Figure 3. ACH0 interface table (Good et al., 2004) 

More recently, Lebiere et al., (2013) presented a computational cognitive model, 

developed in the ACT-R architecture of several core information-foraging and hypotheses-

updating processes involved in a complex sensemaking task. In the context of an intelligence 

task analysis, the authors view sensemaking as the act of finding and interpreting relevant facts 

amongst the sea of incoming reports, images, and intelligence. They describe the computational 

module as an “explicit, unified, mechanistic and theoretical framework for cognitive biases that 

provides a computational understanding of the conditions under which such biases occur.”  

Using the Cognitive Architecture Model they provide a functional bridge from the 

qualitative theories of sensemaking to detailed neural models of brain functions. Testing the 

model entailed performance of experimental tasks using a task modeling approach for different 

sets of scenarios and human participants. The quantitative prediction of a number of cognitive 

biases by the model was then recorded and analyzed on a trial-to-trial basis. The model correctly 

predicted the presence and degree of four biases: confirmation, anchoring and adjustment, 

representativeness, and probability matching. 
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While there is a growing interest in sensemaking analytics, it is important to discuss the 

histories behind them. Among the first sensemaking support tools developed is the gIBIS 

(Conklin & Begeman, 1988). The gIBIS describes an application-specific hypertext system 

designed to capture early design deliberations. It implements a specific method, called Issue 

Based Information Systems (IBIS), which has been developed for use on large, complex design 

problems. An improvement on gIBIS is Compendium (Shum & Selvin, 1999), a software tool 

providing a flexible visual interface for managing the connections between information and 

ideas.   

The Sensemaking Support Environment by Eggleston, Bearavolu, and Mostashfi (2005) 

is a tool developed to augment an intelligence analyst’s cognitive capabilities. Similarly Sticha, 

Buede, and Rees (2005) have developed APOLLO, a software application that enables the 

analyst to reason through a prediction of a subject’s decision making, to identify assumptions 

and determinant variables, and to quantify each variable’s relative contribution to the prediction, 

by producing a graphical representation of the analysis with explicit levels of uncertainty. 

CoSen (Furnas, Qu, &Sharma 2003) provides an integrated workspace for information 

gathering and sensemaking. It examines sensemaking activities across different levels of social 

aggregation and focuses on technological support of representations for sensemaking to improve 

knowledge enhancement in the context of information sourced from the web. A user with a 

sensemaking task searches the information on the web and organizes it into a hierarchical tree 

structure.   

DECIDE (Cluxton & Eick, 2005) is an analytical engine for hypothesizing and 

visualizing structured arguments. The tool enables analysts to construct arguments, associate 

evidence with conjectures, sub-hypotheses, and hypotheses, set evidence credibility and 
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relevance, and score the arguments. WORKING BY WIRE (Gundry & Metes, 1996) is a 

software program that equips distributed team members to “work together apart”. Going beyond 

the usual level of tool skills, WORKING BY WIRE addresses the behaviors, methods, 

approaches and protocols required to support distributed team work. A similar approach to 

sensemaking is seen in Livenet (Rura-Polley, Hawryszkiewycz, & Baker, 2000). DISCOVER 

(Milligan & Ahmed, 2005) and Battlesense (Klein, Long, Hutton, & Shafer 2004) have been 

developed specifically to support sensemaking in the battlefield environment.  

COLAB (Morrison & Cohen, 2005) is a laboratory for studying tools that facilitate 

collaboration and sensemaking among groups of human analysts as they interpret unfolding 

situations based on accruing intelligence data. The laboratory has three components. The Hats 

Simulator provides a challenging problem domain involving thousands to millions of agents 

engaged in individual and collective behaviors, a small portion of which are terrorists. The 

second component, the AIID Bayesian Blackboard, is an instrumented working environment 

within which, analysts collaborate to interpret the problem domain. The third component is a 

web-based user interface that integrates the Trellis hypothesis authoring and management tool 

with a query language to allow human analysts to interact with AIID and each other. 

Collaboration Envelope (Nosek, 2005) follows a similar approach. In particular Collaboration 

Envelope develops architectures that support individual and group sensemaking. 

SSIGS (Qu, 2003) is a sensemaking-supporting information gathering system whose 

workspace offers features that not only facilitate information search but also, a representation 

search and representation shift that are crucial for sensemaking tasks. ClaimSpotter (Sereno, 

Shum, & Motta, 2004) is a text-driven interface that facilitates the creation of argument maps 

expressing, for instance, the position of multiple annotators over a particular problem. Such 
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concept maps could be used to represent the perspective taken on a domain, according to the 

different annotators (and potentially authors) of the documents being connected. A critical look 

at the tools developed points to the gradual shift from decision support tools to sensemaking 

support tools. The latter focuses on augmenting the cognitive capability of the sensemaker during 

the whole process of sensemaking. 

2.4 Chapter Summary 

Chapter two reviews both, the qualitative and the analytical models of sensemaking. 

From qualitative analyses, most researchers focus on cognition where the primary sensemaking 

task is to construct a meaningful mental representation of the problem space. Schema-driven 

representation, mental models, and other cognitive constructs dominate the process models of 

sensemaking that are discussed. These models give an understanding of the meta-cognitive and 

cognitive acts that inform the sensemaking process and how they may be applied to understand 

and overcome the cognitive limitations of the human mind. The limitations of this approach lie 

primarily in the lack of a unifying paradigm of sensemaking. An additional challenge exists in 

the way this information may be used to develop a unifying framework or standardized guidance 

for the development of better sensemaking support systems. 

  Research on sensemaking analytics is presented as a tool to support the sensemaking 

process. In this approach, sensemaking models are defined as computational cognitive models 

whose primary task is to enable processing of information to achieve an understanding of the 

problem space and facilitate effective analysis process. Most of the models discussed have been 

developed for the fields of intelligence analysis, information foraging and knowledge 

management. The tools developed indicate a gradual shift from decision support tools to 



23 

 

 

sensemaking support tools which focus on augmenting the cognitive capability of the 

sensemaker during the whole process of sensemaking. 

This research uses the tool-based approach to model the sensemaking process for two 

reasons: First, the advances in Computational Intelligence have led to the development of 

powerful and efficient algorithms and methods that can be used to computationally simulate 

some processes in sensemaking. For example, it is possible to represent sensemaking models in 

software and cognitive architectures. The algorithms also enable better user interaction with the 

models, thus simplifying the process of task performance and analysis in scenarios where 

sensemaking is required. Second, through the use of computational techniques such as Bayesian 

Networks and Abductive Inference, both the qualitative and quantitative approaches can be 

combined to provide a better representation of the sensemaking process. 
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CHAPTER 3 

Bayesian Models for Sensemaking 

3.1 Bayes Theory and Abductive Inference 

Any situation in which we have to make decisions often  necessitates hypothesizing from 

a sample space H, given some observed data D. Bayes Theorem provides a way of calculating  

the probability of a hypothesis based on its prior probability, the probabilities of observing 

various data given the hypothesis and the observed data itself. To define Bayes Theorem 

precisely, we first need to define the notations used. Let P(h) denote the initial probability that 

hypothesis h holds, before we incorporate any new data. P(h) is the prior probability of h and 

may reflect any background knowledge we have about the chance that h is a correct hypothesis. 

If no such prior knowledge exists, let P(D) denote the probability that  evidence data D  will be 

observed. P(D) represents the probability of evidence  D given  no knowledge about which 

hypothesis holds. Let P(D|h) denote the probability of observing data D given a situation where 

hypothesis h holds. We are interested in the probability P(h|D) that h holds given the observed 

data D. P(h|D) is called the posterior probability  of h because  it reflects our confidence that h  

holds after we have seen  some evidence D.  

Bayes Theorem provides a way to calculate the posterior probability  P(h|D), from prior 

probability  P(h),together with P(D) and P(D|h). This is mathematically stated as, 
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In this formalism, propositions are given numerical parameters signifying the degree of belief 

accorded to them under some body of knowledge, and the parameters are combined and 

manipulated according to the rules of the Probability Theory. For example, if h  stands for the 
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statement “ An attack on the subway is imminent ”, then P(h|w) stands for an individuals’ 

subjective belief in h given a body of knowledge w, which might include that in the individuals  

assumptions about security in the city, specific threats were made by terror groups along with an 

assessment of the threat level. 

 In defining belief expressions, it is common to denote P(h) or P(h), leaving out the 

constant w. This abbreviation is justified when w remains constant, since the main purpose of the 

quantifier P is to summarize w without explicating it. In situations where background 

information undergoes changes, there is a need to specifically identify the assumptions that 

account for our beliefs and articulate explicitly w or some of its elements. In Bayesian 

Formalism, belief measures obey the three basic axioms of Probability Theory: 

 0 P (A)  1 

 P(Certain proposition) = 1 

 P(A or B) = P(A) +P(B) if A and B are mutually exclusive. 

The third axiom states that the belief assigned to any set of events is the sum of the beliefs 

assigned to its nonintersecting components.  

The basic expressions in the Bayesian formalism are statements about conditional 

probabilities, for example,  P (A|B) - which specify the belief in A under the assumption that B is 

known with absolute certainty. A and B are independent if P(A|B) =P(A). If P(A|B,C) =P(A|C) 

then A and B are conditionally independent given C. Bayesian philosophers see the conditional 

relationship as more compatible with the organization of human knowledge. In this view, B 

serves as a pointer to a context of the frame of knowledge, and A|B stands for an event A in the 

context specified by B. Thus factual knowledge invariably is encoded in conditional probability 
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statements, while belief in joint events, if it is ever needed is computed from those statements via 

the product rule: 

        P(A,B)=P(A|B)P(B)                (2)                                                                       

The probability of any event A can be computed by conditioning it on any set of 

exhaustive and mutually exclusive events Bi, i=1,2…,n: 
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                 (3) 

This decomposition provides the basis for hypothetical or assumption-based reasoning in the 

Bayesian Formalism. It states that the belief in any event A is a weighted sum over the beliefs in 

all the distinct ways that A might be realized.  

3.2 Related Sample Applications of Bayesian Networks in the Military Domains 

Dynamic Bayesian Networks (Pearl, 1988; Pfeffer, 2000) have been used for military 

plan recognition. The translation of context independent (sensor) data to context dependent data 

(information) with respect to knowledge incompleteness has been successfully implemented with 

context-based navigation of troops (Su, Bai, Du, & Feng, 2011).  The task of tactical engagement 

of entity agents is described by means of a Behavior Definition Frame and task allocation entails 

using a Task Allocation Processing Bayesian Network Module (Li et al., 2010)  

Johansson and Falkman (2008) have used Bayesian Networks (BNs) and a ground target 

simulator to predict enemy intent for battle command. Expert elicitation was used to identify 

general parameters to predict the enemy’s tactical intention in different ground combat scenarios. 

Such parameters include enemy intention, distance between the enemy and different targets, 

enemy type and target type, direction, targets protection value, and attraction. 
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Suzic (2003) used dynamic belief networks as a method for representing knowledge 

about the enemy and performing inference based on sensor data. In this case, the BN was used to 

solve a dynamic, stochastic policy recognition problem with the task characterized a s “an on-

line multi-agent stochastic policy recognition.” It aimed at detecting the policies an agent or a 

group of agents would execute by observing their actions and using apriori knowledge about 

them in a noisy environment. Inferencing was undertaken to derive belief measures for the 

enemy plans.  

The BN is presented as a hierarchical model of a hostile tank company consisting of three 

tank platoons with each platoon containing three tanks as shown in Figure 4. For each level there 

is a certain set of policies invoked by the higher level. The simplest policies, their atoms, consist 

only of a set of actions. 

 

Figure 4. A BN representing the policy hierarchy model of a hostile company (Suzic, 2003), 

redrawn. 

In this instance, the policy for each agent (hostile unit) is represented as a BN node with the 

simplest policy being on the tank (group) level, k=0. The variable π0,i  represents Tank i’s policy 
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variable  with various  discrete states  that define directional movement (π0,i,), policy of the tank 

platoon;  (π 1,i)  and policy of the tank company (π 2,i). The network is then used to predict 

opponents behaviors based on observations, knowledge about the opponents’ doctrines and 

terrain data. 

Das (1999) describes the use of BNs to represent and update uncertainties encountered in 

the process of situation assessment using scenarios in naval anti-surface warfare. A set of 

hypotheses that adequately represent possible enemy intentions is generated with clarifying states 

- Passive, Defensive, Offensive and Not Modelled. Enemy intention directly influences enemy 

activity which may be Logistics, Reconnaissance of a restricted zone, Mounting naval attack, 

Enemy vessel type, Position of the enemy unit, Mobility of the enemy unit or Communication 

activities of the enemy unit. 

 Figure 5 shows the BN developed for situation assessment in a naval anti-surface 

warfare. Evidence to the network is supplied through the sensor and reconnaissance nodes. The 

network uses the evidence to update the probability distribution over the states of the position 

node. The parameters: vessel type, position and mobility are also detected through sensors and 

reconnaissance.  
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Figure 5. A BN for situational assessment in naval-anti-surface warfare (Das, 1999). 

Santos (2003) used BNs to develop an adversary model that could capture goals, 

intentions, biases, beliefs and perceptions based on a dynamic cognitive architecture that evolved 

over time. The basic adversary intent architecture comprised three core components: Goals/Foci, 

Rationale and Action. The Goal component was a probabilistically prioritized short- and long-

term goal list representing adversary intents, objectives or foci. The Rationale component was a 

probabilistic network representing what influences the adversary’s beliefs, about himself, the 

Blue Forces, their goals, and certain high level actions associated with these goals. The Actions 

component was a probabilistic network, representing the detailed relationships between 

adversary goals and the actions they were likely to perform to realize them. 
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Bayesian Networks were developed for the Rationale and Action networks. Each random 

variable in the network was classified into one of four classes: axioms, beliefs, goals and actions. 

Adversary axioms represented the underlying beliefs of the adversary about himself and served 

as inputs or explanations to the other random variables. Adversary beliefs represented the 

adversary’s beliefs regarding the Blue Forces. Adversary goals represented the goals or desired 

end-states of the adversary.  Adversary actions represented the actions of the adversary that 

could typically be observed by friendly forces.  

A computational framework for adversarial modeling and inferencing of adversary intent 

was developed as part of the Air Force Research Laboratory’s Intelligence Preparation of the 

Battlespace (Bell, Santos, & Brown, 2002). Bayesian Networks and Bayesian Knowledge Bases 

were implemented in an adversary Intent Inferencing Module for COA prediction, explanation 

and inference of adversary intent. Simulation and proof-of-concept used scenarios from the battle 

of al Khafji - during the Operation Desert Storm. This simulation included a stream of direct 

enemy observables as they unfolded in the battlefield. The initial intent of the adversary (not to 

attack across the Saudi border into al Khafji) was known apriori. As the situation unfolded in the 

simulation, the adversary model evolved the underlying intent dynamically based on the 

observables and predicted enemy actions in accordance with the actions taken during the battle. 

With this simulation, the authors were able to demonstrate the viability of probabilistic network 

modeling approach to capturing such scenarios. 

Falzon and Priest (2004) used Bayesian Networks in the development of the Center of 

Gravity (COG) Network Effects Tool (COGNET). COGNET provides a modeling framework 

and a generic database to aid knowledge reuse and knowledge transfer.  The modeling 

framework is then used as a basis for the construction, population and analysis of Bayesian 
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Networks to support a rigorous and systematic approach to the COG analysis. The BN developed 

is a causal probabilistic network that represents the functional decomposition of the key concepts 

used by operational planners in COA development: end-state, center of gravity, critical 

vulnerabilities, decisive points and lines of operations.   

Evans et al., (2003) used Dynamic Bayesian Nets to represent  the causal relationship 

between lower-level friendly tasks and higher-level effects on adversary systems in order to 

guide plan generation and analyze the observed  impact of planned military actions during plan 

execution. Pate-Cornell (2002) used a BN in intelligence analysis within tactical situations by 

developing a probabilistic method of assessing the intent and location of terrorists, their weapons 

and other enablers, as input to “local risk” analyses, in support of risk management decisions in 

the context of an unfolding crisis. McLaughlin and Pate-Cornell (2005) used Bayesian 

techniques to analytically illustrate Iraq’s nuclear program intelligence. 

3.3 Abduction in Bayesian Belief Networks  

 3.3.1 Abduction as the Most Probable Explanation (MPE) of Events  

Gelsema (1995) notes that “a special class of problems in Bayesian belief networks is 

abductive reasoning, inference from effects to the best explanations of the effects.”  Similarly, 

Lacave and Diez (2002) note that explanations of evidence consist of determining which values 

of the unobserved variables justify the available evidence. This process is usually called 

abduction, and is based on the (usually implicit) assumption that there is a causal model. In this 

context, an explanation is a configuration of the unobserved variables, and the goal of the 

inference process is to obtain the Most Probable Explanation (MPE) or the k Most Probable 

Explanations (kMPEs). In general, the variables that take the value “present” or “positive” in the 

MPE are considered the causes that explain the evidence. This kind of explanation is basically to 
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offer a diagnosis for a set of observed anomalies. For instance, in medical expert systems, an 

explanation determines the disease or diseases that explain the evidence: symptoms, signs, test 

results, etc. 

Lacave and Diez (2002), consider an explanation w which is an assignment of values to 

all the variables in a certain subset W of the variables of the network. Since the values of 

observed variables are known with certainty, only unobserved variables are the object of scrutiny 

in abductive methods. Abduction intends to find the MPE with the configuration w with the 

maximum a-posteriori probability P (w| e), where e is the available evidence. When W includes 

all the unobserved variables, the process is known as total abduction; else, it is partial abduction. 

In general, given an observation o, a hypothesis h and the knowledge that h causes o, it is an 

abduction to hypothesize that h occurred. Abduction tries to synthesize a composite hypothesis 

explaining the entire observation from elementary hypotheses. 

Pierce (1877) first described abductive inference by providing two intuitive 

characterizations: given an observation d and the knowledge that h causes d, it is an abduction to 

hypothesize that h occurred; and given a proposition q and the knowledge that pq, it is an 

abduction to conclude p. In either case, abduction is uncertain because something else might be 

the actual cause of d, or because the reasoning pattern is the classical fallacy of “affirming the 

consequent” and therefore, formally invalid. Additional difficulties can exist because h might not 

always cause d, or because p might imply q only by default. Generally, we can say that h 

explains d and p explains q and we shall refer to h and p as hypotheses and d and q as data. 

Peirce (1877) further defines the process of inquiry or discovery as including three fundamental 

inference processes: 

1) Abduction generates hypotheses to explain new anomalous data. 
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2) Deduction performs the function of making a prediction as to what would occur if the 

hypotheses were to turn out to be the case. 

3) Induction finds the ratio of the frequency by which the necessary results of deduction do in 

fact occur. 

Abduction is then, a reasoning process that forms plausible explanations for abnormal 

observations. It is distinct from deduction and induction in that it is inherently uncertain since 

information or data supporting the abduction process is dynamic, leading to human construction 

of multiple and often competing hypotheses. It takes as input a set of data and yields as output a 

hypothesis that can best explain the input data. Consider the example from Bhatnagar and Kanal 

(1993); 

“The surprising fact C is observed. However, if A were true, C would be a matter of course. 

Hence, there is reason to suspect that A is true. Here, C is an observed fact. The second sentence 

states the relationship, which is available from the domain knowledge, that the presence of A 

explains the presence of C. In the third statement, A is an abductively inferred hypothesis. The 

content of the inference is the premise "If A were true, C would be a matter of course” (pp.233) 

The existing models of abduction are purely from the logical approach (Konolige, 1992). 

In the context of logic-based abduction, Eiter and Gottlob (1995) note that the main decision 

problems are: 

(i) To determine whether an explanation for the given manifestations exists at all; 

(ii) To determine whether an individual hypothesis h Є H is relevant, that is, whether it is part of 

at least one acceptable explanation; and 

(iii) To determine whether an individual hypothesis is necessary, that is, whether it occurs in all 

acceptable explanations. 
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3.3.2 Abduction Reasoning from Bayesian Belief Networks 

The relationship between Bayesian reasoning and abduction is governed by the assertion 

that issues affecting reasoning for example semantics are abductive in nature. Our interest is in 

the probabilistic models of uncertainties that enable some explanation to occur in a sensemaking 

information network. A set of plausible explanations of a proposition characterizing the context 

of interest (Prakken, 2004) can be derived as follows: 

Let P(w) =  P(E)                                                                                          (4) 

Where E is an explanation of world w  

 


Eh
hPEP )()(  (Assuming independent events E)                                    (5) 

)(

)&(
)|(

EP

EwP
EwP                                                             (6) 

The numerator term P(w&E) explains the conjunction of w and E while the denominator explains 

E. P(w|E) may represent, say, a mass demonstration by Iraqi citizens because of a mosque being 

bombed by the coalition force. The abduction problem in sensemaking is: given P(E), explain E, 

then try to explain w from these explanations. The difference between deduction and abduction is 

illustrated in Figures 6 a and b below. Abduction has been the principal model-based technique 

for diagnostic problem solving using models of abnormal behavior in terms of cause-effect 

relationships (Peng & Reggia, 1990).   
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Figure 6. a) Deduction and b) Abduction (adopted from Josang, 2008). 

In abductive reasoning, diagnostic problem solving consists of establishing a diagnosis 

using cause-effect relationships with a set of observed findings (effects) as the starting point. 

This is illustrated by three instances below: 

1. Abduction inference makes “backward” inferences based on known causal relations, to 

explain or justify a conclusion. Here, the system reasons from effects to causes, instead of causes 

to effects. It is a reasoning process that is a reverse of deduction as shown in definition A1. 

A1.  Given: the truth of proposition Q 

Given:  P Q 

Infer:  P explains Q  

Note that in definition A1, P can be background knowledge (also a theory) that describes a 

problem domain; Q represents an observation (or a set of observations). We want a hypothesis H 

that assumes that P is an abductive explanation for Q. 

2. The main issue of abduction is to synthesize a composite hypothesis explaining the entire 

observation from elementary hypotheses. Abduction also supposes implicitly that a relationship 

is available between hypothesis and observations in the form of rule A2. 

P(x)

P(y|x) P(y|¬x)   

P(y)

P(x)

P(x|y) P(x|¬y)

P(y)

Parent=antecedent

Conditionals

Child=consequent

Parent=antecedent

Conditionals

Child=consequent

xˇ  
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A2.  Given: P Q 

Given : Observation  Q 

Explain hypothesis H  

Here, Q may be a fuzzy characterization of the situation. 

3. Abduction is a type of reasoning that derives a set of hypotheses (causes) which explain a 

given set of events (symptoms) using causal knowledge (relational maps) of the system 

functionality. This can be represented in rule A3.  

A3.  Given:   Observation, Q 

Given:   Hypothesis (H) of disorders  

Infer:   the knowledge of H causes or explains Q  

As shown in rules A1-A3 above, the main issue of abduction is to synthesize a composite 

hypothesis explaining the entire observation from elementary hypotheses. In the sensemaking 

process, we tend to seek explanations to unexpected situations. Broadly speaking, abduction 

aims at finding explanations for, or causes of, observed phenomena or facts; it is an inference to 

the best explanation, a pattern of reasoning that occurs in such diverse places as medical 

diagnosis, scientific theory formation, accident investigation, language understanding, and jury 

deliberation.  

Figure 7 (with only analysis of the left-hand side) illustrates a simple MPE. We define an 

end state of the network as a composite hypothesis H0 and to this we assign a prior probability. 

The prior probability can be assumed based on the level of past information possessed about a 

particular situation that is of interest. For example, H0 could be disrupting stability and support 

operations in an urban center. The estimated probability could be from the news media, 

intelligence briefings, or simply the commander’s estimate.  
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Figure 7. A Sample hierarchical network with different levels of evidence nodes for hierarchical 

Bayesian inference. 

We can write, P(Ho) =0.4. This means that we are only 40% confident of the plausibility 

of our chosen hypothesis. By the axioms of probability, the probability of an alternative 

hypothesis P(¬H0) representing any other end state is therefore, P(¬H0)= 0.6 and this need not 

be explicitly stated. Similarly we can assign apriori probabilities for the conditional probabilities 

of interest representing the probabilities of the children events Xi and Si given the parents, hi and  

Xi  respectively.  

Assume for illustration, the following database is available: 

P(h1|H0) = 0.9; P(h1|¬H0)= 0.8; P(x1|h1)= 0.7; P(x1|h2)= 0.4; P(S1|x1)= 0.5; P(S1|x2)=0.6 

Next, we compute the prior probabilities of all the instantiated variables as follows:  

P(h1)= P(h1|H0)P(H0) +P(h1|¬H0)P(¬H0)= (0.9)(0.4)+(0.8)(0.6)=0.84 ;P(h2)=0.16 

P(x1)= P(x1|h1)P(h1) + P(x1|h2)P(h2)=(0.7)(0.84)+(0.4)(0.16) =0.652 ;P(x2)=0.348 

P(S1)=P(S1|x1)P(x1) +P(S1|x2)P(x2)=(0.5)(0.652) +(0.6)(0.348) =0.5348 

 

H0

h1

h2

X1 X2

S1 S2

X3

S3
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Considering the network shown in Figure 7,  


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                                                                    (7)                                        

Because of the independence of {S1, S2, S3...Sr}, we can write 
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     (9) 

Clearly, there is a complexity arising from the computation, even for a relatively simple 

network. When new evidence is introduced, the analyst is interested in determining the possible 

effects on his most probable hypothesis, H0. Suppose the new evidence points to a new target to 

be exploited by the insurgents, the new target may be a coalition Command and Control (C2) 

post in a previously secured part of the country. This would definitely require a level of 

sophistication, challenging the analyst’s previous hypothesis about the end state of the 

insurgency.  

Using Bayesian Abduction Inference, we can compute the state of the network with 

variable Xi instantiated as follows:  
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3.3.3 An Application to Sensemaking Analytics  

Case 1: Prospective (or Predictive) Sensemaking Analyses: 

Based on Pearl (1988) we define a model of recursive Bayesian learning with data updates as 

follows: Let H denote a hypothesis, dn = d1, d2,..dn denote a sequence of data observed in the 

past ,and d denote a new fact. A brute force way to calculate the belief in H,P(H|dn, d) would be 

to append the new  datum  d to the past data dn and perform a global computation of the impact 

on H of the entire data set dn+1={dn,d}. Under certain conditions, this computation can be 

significantly curtailed by incremental updating; once we have computed P(H|dn),we can discard 

the past data and compute the impact of the new datum by the formula 

)|(

),|(
)|(),|(

n

n

nn
ddP

HddP
dHPddHP 

                                   (11) 

Comparing equation (10) and (11), it is easy to see that the old belief P(H|dn) assumes the 

role of the prior probability in the computation of new impact; it completely summarizes the past 

experience and for updating need only be multiplied by the likelihood function P(d|dn, H),which 

measures the probability of the new datum d, given the hypothesis and past observations. 

The likelihood function is independent on the past data and involves only d and H. For 

example, the likelihood that a patient will develop a certain symptom, given that he definitely 

suffers from a disease H, is normally independent of what symptoms the patient had in the past. 

This conditional independence assumption allows us to write 𝑃(𝑑|𝑑𝑛 , 𝐻) = 𝑃(𝑑|𝐻) 

and 𝑃(𝑑|𝑑𝑛, ¬𝐻) = 𝑃(𝑑|¬𝐻). After dividing equation (11) by the complementary equation for 

H, we obtain: 

).|()|()|( 1 HdLdHOdHO nn                                       (12)                                                                         
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Equation (12) describes a simple recursive procedure for updating the posterior odds. Upon the 

arrival of each new datum d, we multiply the current posterior odds O (H|dn) by the likelihood 

ratio of d.  This is a prediction model which replicates the behavior of a prospective sensemaking 

on datum dn+1. 

Case 2: Retrospective Sensemaking Analysis:  

Let H represent a set of hypotheses, Hi each of which is equally likely. We can modify Pearl’s 

(1988) model to capture retrospective sensemaking as follows: Define an m x n matrix Mk, where 

m and n are the number of values that H and Dk might take, respectively; and the (i,j)-th entry of 

Mk stands for   𝑀𝑘𝑖𝑗
= 𝑃(𝑑𝑘𝑗

|𝐻𝑖). Then, 





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k

ikiNi HdPHPddHP
1

1 )]|()[(),...,|( 
                                  (13) 

Equation (13) can be rewritten as: 

).|()|()|( 1 niin dHLHdnOHdO                                               (14) 

3.4 Bayesian Belief Networks  

A sensemaking problem often requires an eliciting of beliefs from experts. These beliefs 

can be framed as a set of hypotheses. For example, assume there is a bomb attack on a football 

stadium in a major university campus. A group of intelligence analysts is asked to build a 

sensemaking process model of the bomb attack. Assume also that the analysts start by suggesting 

three likely suspicious entities for the bomb attack. Let this be H = {ℎ1, ℎ2, ℎ3}. The analysts 

will take on each assumption ℎ𝑖  and identify major issues, suspected causes, and the likely 

effects. For the present discussion, ignore the effect and concentrate on the issues (I) and causes 

(C). Figure 8 is used to illustrate the analyst’s belief tree about the problem with their associated 

belief values estimated to be a number between 0 and 1. 
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Figure 8. Belief tree representing a set of hypotheses about a bomb attack. 

In Figure 8, the nodes H, I, and C represent a single analyst assessment of the situation by 

speculating on a set of hypotheses (H), the issues related to each hypothesis (I), and the possible 

causations (C).If beliefs are converted to probability values in the belief network, then a 

probability space can be modeled as a Bayesian Belief Network of propositional variables 

(nodes) which may be connected by directed arcs, pairwise. For example, if an arc exists from 

node I1 to node C1, the probability of node C1 assuming a given state ci depends on the actual 

state of node I1 (I1 is a direct cause of C1). The absence of an arc between two nodes implies that 

there is no such direct dependence. If in a Bayesian Belief Network, for all states of the root 

nodes the prior probabilities are known, and in addition, for all non-root nodes the conditional 

probabilities given the parent states are known, the joint probability distribution is completely 

known. This is not the case with the belief network in which only event or causal nodes are 

estimated by experts.       

 

H: Bomb Attack

h1 h2 h3

I1 I2 I3 I

c c c c c

0.5 0.2 0.3

0.5 0.5 0.7 0.3

0.8 0.2 0.5 0.1 0.9
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As postulated by Pearl (1988) a belief network also referred to as Bayesian Belief 

network (BBN), probabilistic network, or causal network is a directed acyclic graph in which 

each node represents a random variable or uncertain quantity which can take two or more 

possible values. Arcs signify the existence of direct causal influences between the linked 

variables and the strengths of these influences are quantified by conditional probabilities. A BBN 

is an augmented directed acyclic graph, represented by a pair (V, E), where, V is a set of 

vertices; E is a set of directed edges joining the vertices; and no loops are allowed. Formally, the 

structure of the BN is a representation of the factorization of the joint probability distribution 

over all the states of the random variable (Heckerman, 1997).  

For a BN consisting of n variables   X1, X2,..Xn, the overall joint distribution over the 

variables is given by the product  





n

i

Xin i
xPXXXP

1

21 )|(),...,,(

                                (15) 

where ПXi represents parent variables of Xi. An advantage of network representation is that it 

allows people to express directly the fundamental qualitative relationship of direct dependency. 

The network then displays a consistent set of additional direct and indirect dependencies and 

preserves it as a stable part of the model, independent of the numerical estimates. The 

directionality of the arrows is essential for displaying non transitive dependencies. It is this 

computational role of identifying what information is relevant or not in any given situation that is 

attributed to the mental construct of causation (Zhaoyu &D’ambrosio, 1993).  

In general, a BN consists of the following (Russell &Norvig, 2003):  

a) A set of random variables (either discrete or continuous) that constitutes the nodes of the 

directed graph. 
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b) A set of directed edges (arrows) that connects pairs of nodes. If there is an edge from 

node Y to node X, Y is called the parent to X and X is referred to as the child to Y. 

For every node Xi, there is a conditional probability distribution that quantifies the effect that any 

parent nodes have on the node in question. The graph is not allowed to have any directed cycles 

and from this, it follows that it is a directed acyclic graph.  

According to Onisko (2002), a BN consists of a qualitative part, encoding the existence 

of probabilistic influences among a domain’s variables in a directed graph, and a quantitative 

part, encoding the joint probability distribution over these variables. The quantification of a 

Bayesian Network consists of prior probability distributions over those variables that have no 

predecessors in the network and conditional probability distributions over those variables that 

have predecessors. These probabilities can easily incorporate available statistics and, where no 

data are available, expert judgment. 

The most important type of reasoning in Bayesian Networks is belief updating, which 

amounts to computing the probability distribution over variables of interest conditional on other 

observed variables. For example, in a battle command situation, the commander might receive 

intelligence reports about rioting by the population in a contested area. He would be fairly certain 

of it being a civil unrest and so refrain from sending in a suppressive force. If in the next instance 

however, a routine patrol in the area of unrest did come under sustained fire, then, the probability 

of civil unrest would be lowered and his belief would be updated. The hypothesis “insurgent 

attack” gets more support and the probability density function over the hypothesis space changes. 

In the network situation of Figure 8, drawing such a conclusion is referred to as evidence 

propagation. The essence of the Bayesian approach is therefore to provide a formalism 

explaining how a person’s existing beliefs can change  in the light of new evidence. Depending 
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on the complexity of the network, belief updating in Bayesian Networks is considered NP-hard 

(Heckerman, 1997), meaning its solution (if it exists) cannot be verified in the polynomial space.   

 Using the example in Figure 9, we can show some derivations and representations of 

conditional probabilities. Consider a simple case of the example network where the variables 

have only binary true or false states. For forward inference, consider that the variables S1 and S2 

are the variables of interest. 

 

Figure 9. Example BN of a battle command situation. 

S1 is High Level Attrition Attack such as a Suicide Bombing while S2 is a variable 

representing a Mob Protest. Variable X1 represents Sectarian Violence while X2 represents 

Threat Forces. The composite hypothesis H0 (Disrupting Stability and Support Operations) is 

informed by a set of hypotheses h1 (Resistance and Liberation) and h2 (Law and Order 

Breakdown).  

 

H0: Disrupting stability 
and support operations

h1:Resistance and 
liberation

h2: Law and order 
breakdown

X1: Sectarian 
violence

X2: Threat forcesS1: Suicide attack

S2: Mob protest
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By abductive inference: 

𝑃(𝑆1 , 𝑆2)

= ∑ ∑ ∑∑ ∑ 𝑃(𝐻0)𝑃(ℎ1|

𝑋2𝑋1ℎ2ℎ1𝐻0

𝐻0)𝑃(ℎ2|𝐻0)𝑃(𝑋1|ℎ1, ℎ2)𝑃(𝑋2|ℎ1 , ℎ2)𝑃(𝑆1|𝑋1, 𝑋2)𝑃(𝑆2|𝑋1, 𝑋2) 

It is not reasonable to estimate P(S1,S2|H0). That is, we cannot reasonably compute the 

probability of Suicide Bombing or Mob Protest even if we are certain both events are linked to an 

attempt to disrupt stability and support operations in the area of interest. In order to infer 

correctly and with a reasonable degree of confidence, we would like to assess more evidence 

such as whether the observed actions are a part of wider resistance and liberation movement or 

simply a result of a breakdown in law and order. If the evidence points to a wider resistance, 

then, we would be interested in knowing whether it is being perpetuated by sectarian militias or 

not. 

 If however, more evidence supports the hypothesis that it’s a law and order breakdown, 

then, we would like to know, with a degree of confidence, whether the breakdown is being 

caused by threat forces and criminal elements or by organized sectarian militias. To assess this, 

we first have to assume some probability distributions for all the parent nodes and the prior 

conditionals for all the variables. Consider the data below as an example: 

For node H0 

P( H0=T) P( H0=F) 

   0.4 0.6 

 

For nodes h1, h2                                                               

 
h1 H0=T H0=F 

 T 0.7 0.3 

F 0.2 0.8 

h2 H0=T H0=F 

T 0.5 0.5 

F 0.7 0.3 
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For nodes X1, X2  

h1 h2 P(X1=T|h1,h2) P(X1=F|h1,h2) 

T T 0.2 0.8 

T F 0.8 0.2 

F T 0.3 0.7 

F F 0.6 0.4 

 

For nodes S1, S2 

 

We can generalize the following  from the examples above: The child node X1  having 

states { xi,1, xi,2…xi,j} , j ≥ 1 is influenced by  n parent nodes  ,Y2…Yn (Das,2006). Any parent node 

Yi  has states {yi,1,y1,2…yi,k}, k≥ 2. The parent nodes represent n random variables Y1..Yn  while the 

child node represents a random variable X .The network will consist of k1 x….x kn  such parental 

configurations requiring a Conditional Probability Table (CPT) with as many probability 

distributions over the child node X. Such a parental configuration will have a distribution of the 

form 

{𝑃(𝑥𝑖,1|𝑦𝑖1, … . , 𝑦𝑖𝑘), 𝑃(𝑥𝑖,2|𝑦𝑖1, … . , 𝑦𝑖𝑘), …𝑃(𝑥𝑖,𝑗|𝑦𝑖1, … . , 𝑦𝑖𝑘)} 

Where 𝑃(𝑥𝑖,1|𝑦𝑖1, … . , 𝑦𝑖𝑘)  is the conditional probability 𝑃(𝑋1 = 𝑥𝑖,𝑗|𝑌1=𝑦𝑖1, … , 𝑌𝑛 = 𝑦𝑖𝑘). Let π 

denote the parental configuration, then, the conditional probability may be written as 𝑃(𝑥𝑖,𝑗|𝜋).  

 We extend the simple network of Figure 9 into a multi-variable multi-attribute 

hierarchical network of Figure 10. Representative of a real world situation, the network will have 

many levels to account for the different types of observable evidence in the problem space. Each 

h1 h2 P(X2=T|h1,h2) P(X2=F|h1,h2) 

T T 0.6 0.4 

T F 0.1 0.9 

F T 0.8 0.2 

F F 0.3 0.7 

X1 X2 P(S1=T|X1,X2) P(S1=F|X1,X2) 

T T 0.6 0.4 

T F 0.2 0.8 

F T 0.7 0.3 

F F 0.4 0.6 

X1 X2 P(S2=T|X1,X2) P(S2=F|X1,X2) 

T T 0.5 0.5 

T F 0.9 0.1 

F T 0.4 0.6 

F F 0.2 0.8 
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level in the hierarchy will have a large but finite number of variables, each of which may have 

more than one state.  

 

Figure 10. Hierarchical BN illustrating the research problem. 

The following definitions are provided for the variables in the network displayed in 

Figure 10: H0 is a composite hypothesis representing an analyst’s apriori belief about a situation 

before new evidence arrives. It is the end state for which the analyst would like to make an 

inference. To account for multiple types of uncertainty in the problem domain, H0 is an 

aggregation of sub-hypotheses h1, h2, h3...hn   each of which has a defined apriori belief. The 

variables X1, X2, X3…Xj define the first level of evidence variables. Variables S1, S2, S3…Sk 

represent the second level of evidence variables directly influenced by the level one variables.  

Depending on the complexity of the problem, the network could have more levels of 

evidence or informational variables, sometimes referred to as intermediate or step variables, to 

support the correct inference. Variables M1, M2, M3…Mr represent the target variables which are 

typically directly observable evidence variables or variables of some specific significance to the 

analyst. Causal representation and the assumption of conditional independence make the 
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computation of the conditional probabilities of the evidence variables relatively straightforward. 

Table 1 shows the conditional probability values for the network of Figure 10 where each 

random variable has several states as shown below. The variable h1 has states h11, h12…h1n. 

Table 1 

Conditional Probability Tables for the Network of Figure 10 

h1 h11 

h2 h21 h22 

h3 h31 h32 h33 h31 h32 h33 

hn hn1 hn2 hn3 hn1 hn2 hn3 hn1 hn2 hn3 hn1 hn2 hn3 hn1 hn2 hn3 hn1 hn2 hn3 

X1 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 

X2 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 b17 b18 

X3 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18 

Xj d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16 d17 d18 

 

 Let the conditional probabilities of variable Xi for each state of hi be denoted by {ai.,bi,..di 

}.Then, we can write   

𝑎𝑖 =

𝑃(𝑋1|ℎ11 , ℎ21, ℎ31, ℎ𝑛1), 𝑃(𝑋1|ℎ11, ℎ21 , ℎ31,ℎ𝑛2), 𝑃(𝑋1|ℎ11, ℎ21 , ℎ31,ℎ𝑛3),

𝑃(𝑋1|ℎ11 , ℎ21, ℎ32, ℎ𝑛1), 𝑃(𝑋1|ℎ11, ℎ21 , ℎ32,ℎ𝑛2), 𝑃(𝑋1|ℎ11, ℎ21 , ℎ32,ℎ𝑛3),

𝑃(𝑋1|ℎ11 , ℎ21, ℎ33, ℎ𝑛1), 𝑃(𝑋1|ℎ11, ℎ21 , ℎ33,ℎ𝑛2), 𝑃(𝑋1|ℎ11, ℎ21 , ℎ33,ℎ𝑛3) 

𝑃(𝑋1|ℎ11 , ℎ22, ℎ31, ℎ𝑛1), 𝑃(𝑋1|ℎ11, ℎ22 , ℎ31,ℎ𝑛2), 𝑃(𝑋1|ℎ11, ℎ22 , ℎ31,ℎ𝑛3) 

𝑃(𝑋1|ℎ11 , ℎ22, ℎ32, ℎ𝑛1), 𝑃(𝑋1|ℎ11, ℎ22 , ℎ32,ℎ𝑛2), 𝑃(𝑋1|ℎ11, ℎ22 , ℎ32,ℎ𝑛3) 

𝑃(𝑋1|ℎ11 , ℎ22, ℎ33, ℎ𝑛1), 𝑃(𝑋1|ℎ11, ℎ22 , ℎ33,ℎ𝑛2), 𝑃(𝑋1|ℎ11, ℎ22 , ℎ33,ℎ𝑛3)  

Where 𝑃(𝑋1|ℎ11 , ℎ21, ℎ31, ℎ𝑛1) =   𝑃(ℎ11&ℎ21&ℎ31&ℎ𝑛1|𝑋1)𝑃(𝑋1)/𝑃(ℎ11&ℎ21&ℎ31&ℎ𝑛1) 

= 𝑃(ℎ11|𝑋1)𝑃(ℎ21|𝑋1)𝑃(ℎ31|𝑋1)𝑃(ℎ𝑛1|𝑋1)𝑃(𝑋1)/ 𝑃(ℎ11&ℎ21&ℎ31&ℎ𝑛1)  

Similarly, we compute conditional probabilities bi and ci. In general, for the jth state of the 

random variable X, the conditional probability di is given by  
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𝑑𝑖 =

 𝑃(𝑋𝑗|ℎ11, ℎ21, ℎ31, ℎ𝑛1), 𝑃(𝑋𝑗|ℎ11 , ℎ21, ℎ31,ℎ𝑛2), 𝑃(𝑋𝑗|ℎ11 , ℎ21, ℎ31,ℎ𝑛3),

𝑃(𝑋𝑗|ℎ11 , ℎ21, ℎ32, ℎ𝑛1), 𝑃(𝑋𝑗|ℎ11 , ℎ21, ℎ32,ℎ𝑛2), 𝑃(𝑋𝑗|ℎ11 , ℎ21, ℎ32,ℎ𝑛3),

𝑃(𝑋𝑗|ℎ11 , ℎ21, ℎ33, ℎ𝑛1), 𝑃(𝑋𝑗|ℎ11 , ℎ21, ℎ33,ℎ𝑛2), 𝑃(𝑋𝑗|ℎ11 , ℎ21, ℎ33,ℎ𝑛3) 

𝑃(𝑋𝑗|ℎ11 , ℎ22, ℎ31, ℎ𝑛1), 𝑃(𝑋𝑗|ℎ11 , ℎ22, ℎ31,ℎ𝑛2), 𝑃(𝑋𝑗|ℎ11 , ℎ22, ℎ31,ℎ𝑛3) 

𝑃(𝑋𝑗|ℎ11 , ℎ22, ℎ32, ℎ𝑛1), 𝑃(𝑋𝑗|ℎ11 , ℎ22, ℎ32,ℎ𝑛2), 𝑃(𝑋𝑗|ℎ11 , ℎ22, ℎ32,ℎ𝑛3) 

𝑃(𝑋𝑗|ℎ11 , ℎ22, ℎ33, ℎ𝑛1), 𝑃(𝑋𝑗|ℎ11 , ℎ22, ℎ33,ℎ𝑛2), 𝑃(𝑋𝑗|ℎ11 , ℎ22, ℎ33,ℎ𝑛3) 

Variables with no predecessors are marginally independent while variables that have one or more 

common parents but no arc connecting them are conditionally independent of each other, given 

their common parents. 

3.5 Chapter Summary 

This chapter presented a Bayesian Formalism for representing sensemaking information. 

The belief network reflects a person’s belief about the state of a variable in the real world 

through the use of joint probability distributions over the variables. Bayesian Networks are 

presented as normative cognitive models that support sensemaking under uncertainty. The 

networks are shown to support reasoning about evidence and actions not easily handled by other 

competing computational models. In Bayesian Belief Networks, the inference is done by 

abduction, meaning that we infer from effects to the best explanation of those effects. This 

reflects the behavior of a sensemaking problem. Forward (top-down) inference was shown to 

support information fusion in prospective sensemaking, while backward (bottom-up) inference 

implied support of information fusion in retrospective sensemaking. 
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CHAPTER 4 

The BAMSS Model 

4.1 BAMSS Description 

The Bayesian Abduction Model for Sensemaking Support (BAMSS) is developed as an 

analytical model to support sensemaking information fusion. The model is validated with 

military COA that involves understanding adversary intent. BAMSS can be considered a 

knowledge management tool since it allows one to capture and represent knowledge about a 

sensemaking context as well as provide analytics for information fusion in the same context. 

BAMSS is developed with the Bayesian Network (knowledge construction) while abduction 

reasoning is used for inference via a belief network of expert information. 

4.1.1. System Software Architecture Description 

Figure 11 shows the system software architecture and components of BAMSS. 

 

Figure 11. BAMSS software architecture and components. 
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The Structural Modeling, Inference and Learning Engine (SMILE) library of C++ classes 

provides the library of functions that are used to implement the Bayesian Network inference 

algorithm. SMILE is embedded in the BAMSS model through the use of an Application 

Programming Interface (API) that allows the C++ classes to be called within the model. The 

model creates a dynamically loadable library (.dll) file of the SMILE libraries called Jsmile.dll in 

the Java programming language. Jsmile.dll is configured to provide all the functionality 

necessary to implement the build and reasoning process of the Bayesian Network.    

Using the Jsmile.dll, an executable file (BAMSS.jar) that stores the computational logic 

of the Bayesian inference algorithm is created within the NetBeans Integrated Development 

Environment (IDE). The executable BAMSS.jar is called by the user through a simple graphical 

user interface (GUI) command line. The .dll file interacts with the executable file in a read/write 

mode as shown in Figure 11. The network module is created through the GeNIe graphical user 

interface. GeNIe is accessed through a web browser on the client side of a client-server model 

and contains all the functionality necessary to create a network with nodes and arrows 

representing variables and causal linkages respectively. The networks developed in GeNIe are 

loaded into the model by a simple command on the BAMSS GUI. 

BAMSS GUI facilitates user interaction with the main building blocks of the model in a 

read-only mode. The GUI is implemented in Java with the Java file ProbabilityUI.java and hosts 

command lines for all the model functionalities as well as the data input fields. The 

BayesianNetworkFitness.java is compiled to create the Java class that contains the subroutine for 

calculating the genetic algorithm fitness function. It interfaces with the SMILE library using the 

Java API for Genetic Algorithms (JAGA). JAGA API is an extensible API for implementing 

genetic algorithms in Java and contains a range of genetic algorithms, genotype representations 
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and genetic operators. UpdateBayesGA.java contains classes for the algorithmic implementation 

of the Bayesian Genetic Algorithm. GAResults.java is a Java bean class which contains the final 

results of the Fitness subroutine after evaluation. 

The sensemaking database can be regarded as a repository of conditional probability 

tables that represent the knowledge base for the sensemaker. Initially, the database is loaded with 

apriori beliefs about the hypothesis variables and apriori conditionals for all the other evidence 

variables. The results of the BAMSS.jar executable file run are the posterior probabilities of a 

network loaded in the model and represent the updated beliefs of the sensemaker. These results 

are added into the database using a GUI command line and form the apriori beliefs for the next 

round of computation in read/write format. The results are saved and made available to the user 

for analyses. 

Software development for the model was implemented in a dedicated Java IDE known as 

NetBeans. An IDE is a software application that provides a comprehensive build environment for 

software development. The NetBeans IDE consists of a source code editor, build automation 

tools and a code debugger. Currently, the network module is implemented and hosted in GeNIe; 

the graphical interface to SMILE. The web-based interface to the network module resides on the 

client-server model hosting the GeNIe software. The computational module and the GUI are 

standalone applications developed in the NetBeans IDE. Open Source code for the Bayesian 

Clustering Algorithm and the Genetic Algorithm was downloaded and configured in the IDE 

using a Java API. An API specifies how the software components should interact with each other 

to produce the desired functionality. The final result of the build process is an executable .jar file 

which contains the business logic of the computational module, a library of functionalities, the 
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GUI, and is operable on the Windows suite of Operating Systems (98/NT/2000/XP). BAMSS is 

supported by a suite of software and hardware systems as shown in Table 2. 

Table 2 

Supporting Hardware and Software Suite for BAMSS 

Software Description As used in 

BAMSS 

Advantage Disadvantages Manufacturer 

Java  Java 

programming 

language 

Graphical user 

interface  and 

computational 

algorithm 

implementation 

Class based, object-

oriented and platform 

independent. Has few 

implementation 

dependencies, is 

dynamic and robust 

Longer execution 

times as it runs first 

on JVM (Java 

Virtual Machine). 

Also requires  

larger memory 

allocation than 

other languages 

Oracle 

Network 

Corporation 

JRE Java Runtime 

Environment 

Development of 

the Java 

applications 

Combines the Java 

virtual machine, 

platform core classes 

and supporting 

libraries 

 

  

JRE requires a 

substantial memory 

allocation. 

Oracle 

Corporation 

Java API Application 

Programming 

Interface 

Facilitates 

interaction with 

the SMILE C++ 

libraries 

Allows easy use of 

C++ libraries using 

inbuilt callable 

functions, portable 

and platform 

independent 

Slower and takes 

more memory 

space  

Oracle 

Corporation 

NetBeans 

IDE 

NetBeans 

Integrated 

Development 

Environment 

Development 

environment for 

BAMSS 

algorithm source 

codes 

Extensible and easy 

modular design .Also 

has a large library of 

most  commonly used 

APIs 

 Oracle 

Corporation 

Python 2.7 Interactive 

object-

oriented 

programming 

language 

Genetic algorithm 

implementation. 

 Platform 

independent, easy 

modular design, 

extensible in C++ 

and for applications 

that need API.  

Slower 

computation  time 

compared to C++ 

or Java, user has to 

maintain external  

library 

dependencies 

Python 

Software 

Foundation 

PySide 

1.2.2 

A Python 

Software for 

generating 

bindings to 

the  cross 

platform GUI 

toolkit QT4 

Implementing the 

graphical library 

of the genetic 

algorithm 

Platform independent 

and simple to use 

when creating menus 

Gets complicated 

to debug. Not too 

much 

documentation to 

support 

development 

Qt Project 

JAGA Java API for 

Genetic 

Algorithms 

Genetic algorithm 

implementation in 

Java 

Free and open source, 

contains an extensive 

library of  GAs, GA 

operators and  

genotype  

representations  

None University 

College 

London, 

available at  

www.jaga.org 
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Table 2 

Cont. 

GeNIe Graphical 

Network 

Interface 

Windows user 

interface to 

SMILE; network 

module 

development 

Open source 

software, intuitive 

and easy to learn and 

use 

Too much bugs; 

Exception  

handling is difficult 

 

Decision 

Systems 

Laboratory 

University of 

Pittsburg 

SMILE Structural 

Modeling, 

Inference, 

and Learning 

Engine 

C++ libraries of 

hierarchical 

Bayesian network 

inference 

algorithms 

Open source, 

platform independent 

and  can be 

implemented in Java 

and Python 

The software is 

provided as is, lack 

of development 

documentation. 

Decision 

Systems 

Laboratory, 

University of 

Pittsburg 

 

Hardware Laptop (PC)  

Bandwidth Operates on 2.4 GHz and 5.0 GHz radio 

frequencies (RF) bands 

 802.11g : < 54 Mbps 

 802.11n : < 150 Mbps 

 

Processor  Intel Core 2 Dual Core  (2.93 GHz)  

Operating 

System 
 Windows (98,NT,2000,XP) 

 Red Hat Linux 

 Mac OS X 

 

Scalability  Dual Band : < 64 (32 for the 2.4 GHz and 32 

for the 5.0 GHz) 

 

 

BAMSS is implemented using Open Source software freely available under the GNU 

General Public License, the most widely used free software license. It consists of three modules: 

A network module, a computational module and a GUI for user interface. The modular 

architecture and the Open Source implementation ensure that the model can be modified with 

additional modules or developed further to address new challenges.  

The BAMSS Network module uses the existing GeNIe library and allows the user to 

develop a Bayesian Network representation of the problem domain. This module is important 

because it allows users to define causal relations among the domain variables of interest. The 

user develops a Bayesian Network which qualitatively represents the problem domain to be 

modeled from these relations and by using directed acyclic graphs (DAG). Quantitatively, the 

user defines the network nodes and assigns prior probabilities which serve as inputs to the 



55 

 

 

computational module. Prior conditionals and marginal probability distributions are all input by 

the user based on his apriori knowledge of the problem domain. The user can develop several 

networks based on his/her core knowledge of the problem domain and store such networks in a 

repository on the client side of the network. 

The Computational module takes the input data from the Network and performs belief 

updating and abductive inference using two inference algorithms. The Clustering Algorithm 

(Lauritzhen & Spiegenhalter, 1988; Jensen et al, 1990) is implemented to perform Bayesian 

belief updating. The Clustering Algorithm is an exact algorithm that works by compiling the 

DAG into a junction tree and then, updating the probability there. The Genetic Algorithm (GA) 

introduced by Goldberg (1989) and Mengshoel (1999) is an evolutionary search and optimization 

algorithm for quick variable classification and identification of complete solution sets. In the 

Bayesian Network module, abductive inference using the GA is accomplished by computing the 

MPE or kMPE of events in the Bayesian Network. Both algorithms in the main user interface 

have been implemented in Java.  

 The GUI module enables user interaction with BAMSS. It integrates the network module 

and the computational module and allows the user to manipulate inputs (evidence) while 

observing the changes in the outputs. The textual and graphical output helps in the analysis of the 

effects of the new evidence on the hypotheses or target variables. The interface is the front-end 

to the computational module and enables easy and intuitive data input into it while the 

visualization of the output makes it easier to for the user to understand. It enables the user to 

directly input values for new evidence or load a network from file. The GUI for the 

computational module has been designed as a standalone application to be hosted on the client 

PC and runs on Windows or Linux Operating Systems. 
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An example code for BAMSS implementation in Java is shown in Figure 12. 

 

Figure 12. Sample BAMSS implementation in Java. 

ntw.setBayesianAlgorithm(Network.BayesianAlgorithmType.Lauritzen);

                ntw.updateBeliefs();

                logger.info("Network initialisation completed.............");

            } catch (Error ex) {

                this.showMessage("SMILE", ex.getMessage());

                logger.debug(ex.getMessage(), ex);

            }

        }

……………………………………………………………………………………………………

……………………………………….

       private void updateBeliefbayesActionPerformed(java.awt.event.ActionEvent evt) {//

GEN-FIRST:event_updateBeliefbayesActionPerformed

        if (fileChooserTextField.getText().equals("")) {

            this.showMessage("SMILE- XDSL file not found", "Please select Model file first");

            return;

        }

        double xd = 0, x12 = 0, x13 = 0, x21 = 0, x22 = 0, x23 = 0, x24 = 0, x31 = 0, x32 = 0, 

x33 = 0;

        double md = 0, m12 = 0, m13 = 0, m21 = 0, m22 = 0, m23 = 0, m24 = 0, m31 = 0, m32 = 

0, m33 = 0, m41 = 0, m42 = 0, m43 = 0, m44 = 0;

        double td = 0, t12 = 0, t13 = 0, t21 = 0, t22 = 0, t23 = 0, t31 = 0, t32

……………………………………………………………………………………………………

…………………………………

 this.updateBayes(xd, x12, x13, x21, x22, x23, x24, x31, x32, x33, yd, y12, y13, y14, y21, 

y22, y31, y32, y33, y41, y42, y43, md, m12, m13, m21, m22, m23, m24, m31, m32, m33, 

m41, m42, m43, m44, td, t12, t13, t21, t22, t23, t31, t32);

        } catch (Exception ex) {

            this.showMessage("SMILE", ex.getMessage());

            logger.debug(ex.getMessage(), ex);

            ex.printStackTrace();

        }

    }//GEN-LAST:event_updateBeliefbayesActionPerformed

    private void x31InputActionPerformed(java.awt.event.ActionEvent evt) {//GEN-

FIRST:event_x31InputActionPerformed

        // TODO add your handling code here:

    }//GEN-LAST:event_x31InputActionPerformed

……………………………………………………………………………………………………

……………………………...
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4.1.2 Informational Flow Architecture in BAMSS     

A generic representation of the architecture and information flow in the BAMSS model is 

shown in Figure 12. Initially, a user defined domain specific BBN is created and loaded into the 

model from file or any other linked database.  

 

Figure 13. Information flow architecture in BAMSS. 

Problem definition is undertaken in the network module during the development of the 

Belief Network. This involves defining the domain state space, identifying all the critical causal 

variables and their relationships, and establishing discretization states for all the identified 

variables. The network topology is also defined at this stage. New evidence such as observed 

data from the field or user defined prior probabilities of the parent nodes and the prior 

conditional probabilities of the child nodes are input into the developed network through the 

Graphical 
User 

Interface

Network 
Module Computational 

Module

Problem Definition
1. Define the domain state 
space
2.Identify critical variables
3.Establish discretization states 
for the variables

Input Evidence 
Values, P(h),P(e)

1. Observed data
2. Apriori knowledge
a)Prior probabilities 
of parent nodes
b)Prior conditionals of 
child nodes

 Probability 
values from 
the user

 Updated BBN

Belief network 
with CPT 
initialized

Updated 
BBN

1.Bayesian Clustering 
Algorithm
2. Genetic Algorithm
a)Belief Updating
b)Belief Revision
c)Abductive inference

Output Results
P(h|e);P(e|h)

Load BBN from File

Posterior probabilities for 
model inference
1. P(h|e):Prospective 
Sensemaking
2. P(e|h):Retrospective 
sensemaking



58 

 

 

GUI. The prior probabilities are obtained from expert judgment based on the user’s tacit 

knowledge or historical records which document similar cases and their outcomes. In a 

collaborative work setting, the choice of priors may be a simple case of conjecture where several 

analysts brainstorm and agree on values that may be deemed representative of the domain-

specific problem. 

In the topology of the Network, the user defines the hypothesis variables, the evidence 

variables and the target variables of interest. A fully defined BBN with a defined topology and 

CPTs is then, loaded into the model through the GUI functionality. With the network loaded and 

initialized, evidence in the form of probabilities is input into the model through the GUI. The 

network module retrieves the input evidence from the user and initializes the appropriate BBN. 

The Belief Network with the initialized CPTs is then loaded into the computational module. The 

computational module is the inference engine of the model and undertakes updating of the 

Network Beliefs, Belief Revision, and Abductive Inference.  Two algorithms are defined for this 

module; a clustering algorithm which is the fastest exact algorithm for the hierarchical Bayesian 

Network inference and a GA which is an approximate fast search and optimization algorithm for 

performing the Abductive Inference.  

The GUI provides the option of selecting one or both of the algorithms and inputting 

parameters that are appropriate for each algorithm.  The results of the computation are received 

as output by the user through the GUI and comprise of textual output of the posterior 

probabilities of the variables in the Belief Network and a graphical display of the updated Belief 

Network. The updated Belief Network is also loaded and stored in the Network module and can 

be retrieved by the computational module for the next iteration of Belief updating. Updated 

Beliefs form the prior probabilities for the network when the new evidence arrives.  
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The user can draw inferences through the posterior probability output derived from the 

computational module, concerning the best (most probable hypothesis) variable by Abductive 

Inference and this is referred to as prospective sensemaking. In the domain of asymmetric 

warfare, the “probability of attack| evidence” requires the best COA selection P(h|e) from among 

all the hypotheses variables H in the updated Network. The user may also designate target nodes 

in the evidence variables and compute the probability P(e|h) in the case of retrospective 

sensemaking. In the problematic domain under study, the “probability of attack” is known or set 

to a certain value by the user and the change in the value of the target nodes “probability of 

evidence|attack” is observed. In this case, the analyst is interested in finding out the most 

probable causal variable(s) that could produce the selected hypothetical outcome.   

4.1.3 Inference Algorithm in BAMSS 

   To draw the Bayesian Network inference, the Bayesian Clustering Algorithm is used for 

data classification (Lauritzen & Spiegelhalter, 1988; Jensen et al., 1990). The algorithm works 

by first transforming the hierarchical Bayesian Network into a clique tree where each node in the 

tree corresponds to a subset of variables in the original graph. Message propagation is done over 

the clique tree. By transmitting information between the variables in the local clique rather than 

the full joint probability, one can realize and make tractable an efficient inference algorithm and 

inference in complex Bayesian Networks. The choice of the algorithm may be made based on the 

requirements for exact and efficient solution using BAMSS. These requirements, as first 

discussed by Lauritzen and Spiegelhalter (1988), for a hierarchical Bayesian network are 

described below: 

1) Initialization: Generating internal representations of beliefs from which the marginal 

distributions on individual nodes may be easily obtained. 
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2) Absorption of evidence: The effect of multiple pieces of evidence should be independent  

of the order of their arrival 

3) Global propagation: The algorithm should enable the propagation of the effects of the 

evidence received through the Network and enable for Belief revision in the nodes that 

are still not established. 

4) Hypothesizing and propagating single items of evidence:  The algorithm should allow for 

the ability to condition on a node taking on a particular value and observe its effect 

throughout the network. 

5) Planning: For nodes of particular interest, the algorithm should provide for the ability to 

efficiently assess the informational value in eliciting the response to nodes corresponding 

to potentially obtainable data. 

6) Influential findings: After the data are in, the algorithm should have an ability to retract 

their effect in order to identify the strong causal factors. 

    The clustering algorithm satisfies these requirements for BAMSS. The algorithm works 

hierarchically starting with the nodes at the top of the network and randomly (depending on the 

node distribution) selecting a state. This state will then be set and will influence the probabilities 

of all the nodes that have that node as a parent. The algorithm moves through all the nodes this 

way, randomly selecting states and setting them as evidence. The sampling is complete when a 

state is assigned to all the nodes and Belief updating is then performed.  

    According to the second requirement, BAMSS uses information from multiple sources of 

uncertainty as input. The evidence variables are informational variables since they reveal 

information about hypothesis variables. The process of computationally combining these 

informational variables to perform inferences on some target variable (usually a hypothesis 
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variable) is referred to as information fusion. The pseudo code for BAMSS inference algorithm 

is shown in Figure 14. 

 

 

Figure 14. Bayesian inference algorithm for BAMSS. 

4.1.4 BAMSS Working Memory 

Figure 15 shows a screen capture of the GUI for the BAMSS working memory. In the 

first operation, the domain specific BBN from a file residing on the client computer is loaded 

into the module. With the BBN loaded, the user can use the GUI to perform other required 

functions such as inputting new evidence, using commands for computing posterior probabilities, 

performing inference and so on. The interface can be divided into four quadrants. The first 

quadrant contains the input fields for all the random variables defined in the Network module. 

The Network residing on the client side database is loaded into the GUI using the “Select Model 

File” command line. Evidence in the form of numeric probabilities is then typed into the 

evidence input fields. The fields are grouped according to the defined network hierarchical levels 
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with the topmost level containing fields for hypothesis variables, followed by fields for Level 1 

evidence variables, Level 2 evidence variables, Level 3 evidence variables and Level 4 evidence 

variables. The evidence input fields are non-mandatory, that is, the user can input evidence for a 

single variable or can select multiple variables on different levels. 

 

Figure 15. Graphical user interface for the BAMSS model. 

To perform computational inference, the appropriate algorithm is selected from the 

command buttons at the bottom of the first quadrant. Selecting “Update Belief-Bayes” will 

enable the computation of the posterior beliefs of the Network variables given new evidence 

using the clustering algorithm. The algorithm gets the query and goes through the cyclic process 

of hierarchically sampling the nodes and assigning states until all the nodes in the network have 

an assigned state. Belief updating is then undertaken and the completed results are compiled and 

output by the appropriate function in the ProbabilityUI.java subroutine. Selection of the GA 

requires input of a fitness value and some optional GA parameters such as the probability of 

mutation. The results for both algorithms can be exported into a text file format using the 

appropriate “Export” command button.  
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The second and third quadrants show the results of the Belief updating process for the 

selected algorithm, both textually and graphically. The GA textual results fields display the 

gene/variable combination that constitutes a network solution for the input data. The last 

quadrant on the bottom right shows the graphical plots of the GA search process for all the 

network variables for the specified number of generations until the stop criterion is met. The 

“Clear Evidence” command button allows the user to clear the input and output fields of the GUI 

and input new evidence at any point of time.  

4.2 Sample Application: Sensemaking in Asymmetric Warfare Domain 

4.2.1 Identification of Domain Variables 

The US Army led invasion of Iraq − Operation Iraqi Freedom (OIF, Iraq, 2003-2009) 

and Afghanistan, − Operation Enduring Freedom (OEF, Afghanistan, 2001-2014) and the Arab-

Israeli conflict − particularly the Israeli-Hezbollah War (Lebanon, 2006) were used as case 

studies for domain understanding, variable identification and extracting the BAMSS data set. 

The identified domain variables and their relationships were iteratively refined following 

interactions with the domain experts before the final set of variables and links was selected to 

create the Network structure. By expert consensus, four key effects that supported a 

commander’s asymmetric battlespace analysis were also identified. 

The first level variables identified were Strategic Effects. In the Network topology, these 

were defined as the level 1 hypotheses variables representing the end states, target states, or 

goals of the adversary that the Blue Force commander would have to correctly infer for 

successful counterinsurgency operations. These effects could be both short-term and long-term. 

These top level effects informed the commander of the adversary’s strategies and were key for 

effective COA planning.  Strategic effects were directly influenced by Political Operational 
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Effects which constituted level 2 evidence variables. Political Operational Effects were defined 

as informational variables that represented the Political, Military, Economic, Social, Information 

and Infrastructural (PMESII) variables of the battlespace. The operational environment would 

need to integrate the PMESII variables to fully define the battlespace. The PMESII variables 

were identified as causal mechanisms that could influence the Strategic Effects. 

Military Operational Effects were informational variables that the adversary could exploit 

to achieve the desired end state or target state. In the Network topology, these variables 

constituted level 3 evidence variables that commanders and their staffs would need to analyze to 

correctly infer the desired end state of the adversary. The adversary could aim at generating and 

exploiting fine scale complexity and seek to prevent the counterinsurgents from acting at the 

scale they were organized for: large scale but limited complexity environment (Ryan, 2008). 

These effects could be deemed dynamic variables that changed constantly depending on changes 

in both the internal and external factors of a group. These variables could also directly influence 

the Political Operational Effects. 

Tactical effects were identified as informational variables that represented the tactical 

effects of the battlespace and constituted level 4 evidence variables in the Network topology. 

These were sensor observable and represented actions taken by the insurgents to influence 

certain outcomes in the battlespace. Depending on the choice of targets, the range of Tactical 

Effects was considered to be very extensive and diverse. Most of these effects were kinetic and 

their strategic outcome was usually second order and not necessarily a direct outcome. 

Destruction of a key military installation for example, could have value not in the physical 

destruction of the target but in the psychological impact the COA would generate among the 
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population. Figure 16 shows an example network to represent the levels of information discussed 

in the preceding section.  

 

Figure 16. BN topology for adversary intent inference in asymmetric battlespace. 

4.2.2 Discretization of the Bayesian Network Variables 

The variables in the Network as shown in Figure 16 are discretized into nonnumeric sub 

factors so as to use the exact search algorithm implemented in BAMSS. The discretization is 

based on factors obtained from literature review as well as expert judgment. The states of each 

node in the Network are sub-factors, and they represent all the possible indicators each variable 

can take within the domain state space. With the Network topology defined and all the variables 

discretized, we can fully specify its parameters.  

Network parameterization is completed by learning the prior probabilities of all the nodes 

without parents and the conditional probabilities of all the nodes with parents, conditional on 
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these parents. A description of all the Network variables along with their discrete states or 

indicators is provided in Appendix A. With the discretization of the variables and the discrete 

states defined, the next step is to perform simulation with the model. 

4.3 Experimental Evaluation 

4.3.1 The Simulation Process 

A simulation experiment was used to validate BAMSS using historical data. Initial 

probabilities for the parent nodes were obtained from intensive research of databases and reports 

on insurgency and counterinsurgency operations in the Middle East. An example of a  database 

used is the RAND Database of Worldwide (RDWTI), available at 

http://www.rand.org/nsrd/projects/terrorism-incidents.html  (web accessed on 12/16/2013). The 

RDWTI is a compilation of data from 1968 through 2009 and is free and publicly accessible for 

research and analysis.  

Although the database deals primarily with terrorism incidents, these data were 

considered relevant because terrorism is always used as an operations tactic by insurgents. The 

attributes of terrorism considered relevant to this study are available in the RDWTI and include 

factors such as its use as a military tactic, psychological intentions to cause fear and alarm 

among the population, targeting of civilians and the military forces, group dynamics, and 

political motivation. More apriori data was obtained from the Global Terrorism Data base 

(GTD), an Open Source database hosted by the University of Maryland and the Brookings 

Institution (http://www.start.umd.edu/gtd/ web accessed on 12/16/2013). Other information from 

the databases was derived based their proportion (percentage) of occurrences. Where 

appropriately defined, these data provided initial prior probabilities.  Tables 3, 4, and 5 contain 

data obtained from these available databases. The data are summarized and reformatted to focus 

http://www.rand.org/nsrd/projects/terrorism-incidents.html
http://www.start.umd.edu/gtd/
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only on the key variables in the problem domain. Table 3 gives the range of targeted actions used 

by insurgents in the region. In the asymmetric battlespace domain, we have focused on some of 

these targeted actions to inform our range of adversary Tactical Effects. Table 4 lists the 

weapons used to implement the targeted actions, an important part of the Tactical Effects 

modelling. 

Table 3 

The RAND Database of Worldwide Terrorism Incidents, Middle East Region: Targeted Actions 

2003-2007 

Tactic Count Percentage 

Bombing 6261 52.23 % 

Armed Attack 4248 35.44 % 

Kidnapping 816 6.81 % 

Assassination 435 3.63 % 

Unknown 140 1.17 % 

Arson 42 0.35 % 

Other 21 0.18 % 

Unconventional Attack 9 0.08 % 

Barricade/Hostage 8 0.07 % 

Other 5 0.04 % 

Hijacking 2 0.02 % 

 

Table 4 

The RAND Database of Worldwide Terrorism Incidents, Middle East Region: Weapons, 2003-

2007 

Weapon Count Percentage 

Explosives 6103 50.91 % 

Firearms 4850 40.46 % 

Unknown 455 3.8 % 

Remote-detonated explosive 349 2.91 % 

Fire or Firebomb 115 0.96 % 

Knives & sharp objects 67 0.56 % 

Other 40 0.33 % 

Chemical Agent 8 0.07 % 
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Table 5 

The RAND Database of Worldwide Terrorism Incidents, Middle East Region: Targets, 2003-

2007 

Target Count Percentage 

Police 3827 31.93 % 

Private Citizens & Property 2589 21.6 % 

Government 1773 14.79 % 

Other 1123 9.37 % 

Religious Figures/Institutions 705 5.88 % 

Utilities 458 3.82 % 

Business 418 3.49 % 

Transportation 220 1.84 % 

Educational Institutions 216 1.8 % 

Journalists & Media 198 1.65 % 

Diplomatic 146 1.22 % 

Unknown 130 1.08 % 

Military 70 0.58 % 

NGO 47 0.39 % 

Telecommunication 29 0.24 % 

Airports & Airlines 16 0.13 % 

Terrorists/Former Terrorists 12 0.1 % 

Tourists 5 0.04 % 

Food or Water Supply 4 0.03 % 

 

The data were input into the BAMSS model and a simulation run was performed. CPTs 

for all nodes conditional on the predecessor nodes were also populated. For the CPT elicitation, a 

Noisy-Max canonical model function built in GeNIe was used to provide a logarithmic reduction 

in the complexity of parameter estimation in the BN (Pradhan et al., 1994; Onisko et al., 2000). 

In this canonical model, the presence of one causal factor in the parent node was sufficient to 

produce an impact in the child node. This canonical model was especially useful for the BAMSS 

network because the influence of each parent node on the child node needed to be considered 

independent of the other parents. Additionally, we did not need to specify all the causal factors 

necessary to produce an outcome in order to define the CPTs because this could be difficult for 
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the experts and computationally intractable to learn from datasets. Therefore, the Noisy-Max 

model was deemed best applicable to real life problems. The use of this canonical model for 

multi-valued variables has been advocated by Zagorecki and Druzdzel (2006) Zagorecki, 

Voortman and Druzdzel (2006), and Dietz (1993). Figure 17 shows a complete 14 node network 

developed for the simulation .As an example, Table 6 defines the nodes and the states for each 

level 2 (Political Operational Effects) variable node used in the CPT computation. 

 

Figure 17. BAMSS course of action analysis network. 

An example of the populated CPTs for the Political Operational Effects variables X1, X2 

and X3 conditional on the Strategic Effects nodes Y1,Y2, Y3 and Y4 is shown in Tables 6 - 9.  

 

 

Y2:Establish political 
Infrastructure

Y4: Promotion of 
fundamentalist  ideologyY1: Resistance and 

liberation from 
occupation

Y3: Control of 
political space

X2: Disruption of 
Stability and Support 

Operations

X1:Ethnic and 
sectarian  supremacy

X3:Exploiting the 
battlespace 
asymmetry

M1:Targeted 
assassinations and 

attacks on institutions M2:Sectarian and 
religious violence

M4:Projecting 
military 

capability

T1:High level 
attrition attacks

T2:Low level 
attrition attacks

M3:Undermining the 
legitimate government 

structures

T3: Attacks on Critical 
infrastructure 
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Table 6 

Complete CPT Elicited for Level 2 Nodes of the BAMSS COA Analysis Network 

Y1 y11= Resistance and liberation 

Y2 y21=Sectarian Governance Structures y22=Insurgent Ideology 

Y3 y31=Political 

opposition 
y32=Control of 

security Space 
y33=Disruption 

of civic 

processes 

y31=Political 

opposition 
y32=Control of 

security space 
y33=Disruption of 

civic processes 

Y4 y41 y42 y43 y41 y42 y43 y41 y42 y43 y41 y42 y43 y41 y42 y43 y41 y42 y43 

x11 0.43 0.43 0.43 0.44 0.44 0.44 0.43 0.43 0.43 0.41 0.41 0.44 0.42 0.42 0.42 0.41 0.41 0.41 

x12 0.32 0.33 0.32 0.31 0.31 0.31 0.32 0.33 0.32 0.33 0.34 0.33 0.32 0.32 0.32 0.33 0.33 0.33 

x13 0.23 0.23 0.23 0.24 0.23 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.25 0.24 0.25 

x21 0.23 0.23 0.19 0.23 0.23 0.19 0.19 0.19 0.14 0.19 0.19 0.15 0.19 0.19 0.15 0.15 0.15 0.10 

x22 0.44 0.44 0.47 0.44 0.44 0.47 0.47 0.47 0.49 0.46 0.46 0.49 0.46 0.46 0.49 0.49 0.49 0.52 

x23 0.15 0.15 0.16 0.15 0.15 0.16 0.16 0.16 0.17 0.16 0.16 0.17 0.16 0.16 0.17 0.17 0.17 0.18 

x24 0.15 0.15 0.16 0.15 0.15 0.16 0.16 0.16 0.17 0.16 0.16 0.17 0.16 0.16 0.17 0.17 0.17 0.18 

x31 0.47 0.48 0.47 0.44 0.44 0.44 0.44 0.44 0.44 0.47 0.48 0.47 0.44 0.44 0.44 0.44 0.44 0.44 

x32 0.36 0.36 0.36 0.39 0.38 0.39 0.39 0.38 0.39 0.32 0.32 0.32 0.34 0.34 0.34 0.34 0.34 0.34 

x33 0.15 0.15 0.15 0.16 0.16 0.16 0.16 0.16 0.16 0.19 0.19 0.19 0.20 0.20 0.20 0.21 0.20 0.21 

 

Table 7 

Complete CPT Elicited for Level 2 Nodes of the BAMSS COA Analysis Network 

Y1 y12=Law and order breakdown 

Y2 y21=Sectarian governance structures y22=Insurgent ideology 

Y3 y31=Political 

opposition 
y32=Control of 

security space 
y33=Disruption 

of civic 

processes 

y31=Political 

opposition 

y32=Control of 

security space 
y33=Disruption of 

civic processes 

Y4 y41 y42 y43 y41 y42 y43 y41 y42 y43 y41 y42 y43 y41 y42 y43 y41 y42 y43 

x11 0.40 0.40 0.40 0.41 0.41 0.41 0.40 0.40 0.40 0.38 0.38 0.38 0.39 0.39 0.39 0.38 0.38 0.38 

x12 0 20 0.20 0.20 019 0.19 0.19 019 0.19 0.19 0.21 0.21 0.21 0. 19 0.19 0.19 0.19 0.20 0.19 

x13 0.39 0.38 0.39 0.39 0.39 0.39 0.40 0.39 0.40 0.40 0.39 0.40 0. 40 0.40 0.40 0.41 0.40 0.41 

x21 0.23 0.23 0.19 0.23 0.23 0.19 0.19 0.19 0.14 0.19 0.19 0.15 0.19 0.19 0.15 0.15 0.15 010 

x22 0.44 0.44 0.47 0.44 0.44 0.47 0.47 0.47 0.49 0.46 0.46 0.49 0.46 0.46 0.49 0.49 0.49 0.52 

x23 0.15 0.15 0.16 0.15 0.15 0.16 0.16 0.16 0.17 0.16 0.16 0.17 0.16 0.16 0.17 0.17 0.17 0.18 

x24 0.15 0.15 0.16 0.15 0.15 0.16 0.16 0.16 0.17 0.16 0.16 0.17 0.16 0.16 0.17 0.17 0.17 0.18 

x31 0.47 0.48 0.47 0.44 0.44 0.44 0.44 0.44 0.44 0.47 0.47 0.47 0.44 0.44 0.44 0.44 0.44 0.44 

x32 0.36 0.35 0.36 0.38 0.38 0.38 0.38 0.38 0.38 0.31 0.31 0.31 0.33 0.33 0.33 0.33 0.33 0.33 

x33 0.16 0.16 0.16 0.17 0.17 0.17 0.17 0.16 0.17 0.20 0.20 0.20 0.22 0.21 0.22 0.22 0.22 0.22 
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Table 8 

Complete CPT Elicited for Level 2 Nodes of the BAMSS COA Analysis Network 

Y1 y13=Population control 

Y2 y21=Sectarian governance structures y22=Insurgent ideology 

Y3 y31=Political 

opposition 
y32=Control of 

security space 
y33=Disruption 

of civic 

processes 

y31=Political 

opposition 
y32=Control of 

security space 
y33=Disruption of 

civic processes 

Y4 y41 y42 y43 y41 y42 y43 y41 y42 y43 y41 y42 y43 y41 y42 y43 y41 y42 y43 

x11 0.50 0.50 0.50 0.51 0.51 0.41 0.50 0.50 0.50 0.48 0.49 0.48 0.49 0.49 0.49 0.48 0.49 0.48 

x12 0 20 0.20 0.20 019 0.19 0.19 019 0.19 0.19 0.20 0.21 0.20 0. 19 0.19 0.19 0.20 0.20 0.20 

x13 0.29 0.29 0.29 0.29 0.29 0.29 0.30 0.29 0.30 0.30 0.29 0.30 0. 30 0.30 0.30 0.30 0.30 0.30 

x21 0.23 0.23 0.19 0.23 0.23 0.19 0.19 0.19 0.14 0.19 0.19 0.15 0.19 0.19 0.15 0.15 0.15 010 

x22 0.44 0.44 0.47 0.44 0.44 0.47 0.47 0.47 0.49 0.46 0.46 0.49 0.46 0.46 0.49 0.49 0.49 0.52 

x23 0.15 0.15 0.16 0.15 0.15 0.16 0.16 0.16 0.17 0.16 0.16 0.17 0.16 0.16 0.17 0.17 0.17 0.18 

x24 0.15 0.15 0.16 0.15 0.15 0.16 0.16 0.16 0.17 0.16 0.16 0.17 0.16 0.16 0.17 0.17 0.17 0.18 

x31 0.32 0.33 0.32 0.28 0.29 0.28 0.28 0.29 0.28 0.32 0.33 0.32 0.28 0.29 0.28 0.28 0.29 0.28 

x32 0.50 0.50 0.50 0.53 0.53 0.53 0.53 0.53 0.53 0.45 0.45 0.45 0.48 0.48 0.48 0.48 0.48 0.47 

x33 0.16 0.16 0.16 0.17 0.17 0.17 0.17 0.17 0.17 0.21 0.21 0.21 0.22 0.22 0.22 0.22 0.22 0.22 

 

Table 9 

Complete CPT Elicited for Level 2 Nodes of the BAMSS COA Analysis Network 

Y1 y14=Excessive force 

Y2 y21=Sectarian governance structures y22=Insurgent ideology 

Y3 y31=Political 

opposition 
y32=Control of 

security space 
y33=Disruption 

of civic 
processes 

y31=Political 

opposition 
y32=Control of 

security space 

y33=Disruption 

of civic 
processes 

Y4 y41 y42 y43 y41 y42 y43 y41 y42 y43 y41 y42 y43 y41 y42 y43 y41 y42 y43 

x11 0.40 0.40 0.40 0.41 0.41 0.41 0.40 0.40 0.40 0.38 0.38 0.38 0.39 0.39 0.39 0.38 0.38 0.38 

x12 0 20 0.20 0.20 019 0.19 0.19 019 0.19 0.19 0.21 0.21 0.21 0. 19 0.19 0.19 0.19 0.20 0.19 

x13 0.39 0.38 0.39 0.39 0.39 0.39 0.40 0.39 0.40 0.40 0.39 0.40 0. 40 0.40 0.40 0.41 0.40 0.41 

x21 0.18 0.18 0.14 0.18 0.18 0.14 0.14 0.14 0.09 0.14 0.14 0.09 0.09 0.14 0.09 0.09 0.09 0.04 

x22 0.47 0.47 0.50 0.47 0.47 0.50 0.50 0.50 0.53 0.49 0.49 0.52 0.52 0.49 0.52 0.52 0.52 0.55 

x23 0.16 0.16 0.17 0.16 0.16 0.17 0.17 0.17 0.18 0.17 0.17 0.18 0.18 0.17 0.18 0.18 0.18 0.19 

x24 0.16 0.16 0.17 0.16 0.16 0.17 0.17 0.17 0.18 0.17 0.17 0.18 0.18 0.17 0.18 0.18 0.18 0.19 

x31 0.31 0.32 0.31 0.27 0.28 0.27 0.27 0.28 0.27 0.31 0.32 0.27 0.28 0.27 0.27 0.27 0.28 0.27 

x32 0.46 0.46 0.46 0.49 0.49 0.49 0.49 0.49 0.49 0.40 0.40 0.43 0.43 0.43 0.43 0.43 0.43 0.43 

x33 0.21 0.21 0.21 0.22 0.22 0.22 0.22 0.22 0.22 0.27 0.27 0.28 0.28 0.28 0.28 0.28 0.28 0.28 
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Belief update was undertaken after the CPT computation and the resultant posterior probabilities 

for all the nodes were displayed. Figure 18 shows this in a forward inference scheme. The output 

displayed on the right side of the GUI is both graphical and textual.  

 

Figure 18. Belief updating (posterior probabilities) of the nodes in the network after new 

evidence is introduced. 

 For illustration purposes, assume that the evidence for the hypotheses variables Y1,Y2, Y3 

and Y4 is set as follows: Let the probability of node Y1 being in state y11= 0.4 represent the belief 

that  there is a 40% chance that the objective of the insurgency is resistance and liberation of the 

country from occupation. Node Y1 = y12 is ascribed a probability of 0.3, meaning there is a 30% 

chance that a breakdown in law and order to disrupt counterinsurgent control of the local security 

situation is the effect under observation. Less belief Y1 = y13= 0.2 is given to probability that the 

insurgent’s intent is to exercise local population control. By the axioms of probability, the 

complement  Y1 = y14 = 0.1 represents our belief that the effect under observation is simply an 

intent by the insurgents to provoke excessive raids by the counterinsurgent forces and use the 

second order effects of that action as a strategy for resistance. 
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To account for multiple sources of information, the input fields are not mutually 

exclusive and the values for nodes Y2, Y3 and Y4 may be input. Assume that there is reason to 

believe that the end state of the insurgency is to establish some form of political infrastructure to 

legitimize the armed struggle (Y2). If this hypothesis is chosen, then, it is believed that the effect 

under observation is related to the development of sectarian governance structures with a 

probability Y2 = y21 = 0.8. The complement Y2 = y22 = 0.2 is attributed to the hypothesis that the 

insurgency political agenda is driven purely by radical ideologies to which the followers 

subscribe. Variables Y3 (y31 = 0.5, y32 = 0.1, y33 = 0.4) and Y4 (y41 = 0.6, y42 = 0.2, y43 = 0.1) are 

similarly defined. 

Next, we input the evidence values for level 2 evidence variables, the Political 

Operational Effects X1, X2 and X3. This is evidence that is obtainable by direct observation of 

battlefield conditions or by analyzing information from various sources. It is known that a major 

influencing factor for conflict in the Middle East is ethnic and sectarian supremacy (X1). By 

analyzing reports, the indicators are weighted such that fundamentalist ideology X1 = x12 is most 

probable at 50%. Equally probable is the legitimacy of Jihad or armed struggle against non-

believers X1|x13 = 0.4. Sectarian identity (X1 = x11), though a dominant concept in insurgencies, is 

weakly supported with a 0.1 probability. For factor X2, evidence for disruption of the ability to 

carry out nation-building and stability operations is assessed. To this, there is slightly more 

evidence of operational modularity (X2 = x22 = 0.4), than the exploitation of local environment 

and feedback mechanisms (X2 = x21 = 0.3). Little evidence supports the notion of ad hoc threat 

forces, criminal networks or part time forces (X2 = x23 = 0.1) while direct force projection to send 

a message of capability to the population (X2 = x24 = 0.2) is marginally better. Similarly, evidence 
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values for variable X3 (x31 = 0.6, x32 = 0.2, x33 = 0.2) are input. More evidence may be entered for 

level 3 (Military Operational Effects) and level 4 (Political Operational Effects) variables. 

The right hand side of Figure 18 shows the textual and graphical output of the computed 

posterior beliefs of all the network variables after Belief Update in the light of new evidence is 

performed. For the input evidence values discussed above, the computed posterior beliefs 

(correct to three decimal places) are as follows: For variable  Y1, y11 = 0.335, y12 = 0.457, y13 = 

0.178, y14 = 0.030. The net effect of the new evidence was to decrease our belief in hypothesis Y1 

= y11 from 40% to 34% and increase our belief in hypothesis Y1 = y12 from 30% to 46%. For 

variable Y2, y21 = 0.840 and y22 = 0.150. In this case, the new evidence did not significantly 

change our belief concerning the variable. The same conclusion may be drawn for variables Y3 

and Y4, whose posterior beliefs are y31 = 0.476, y32 = 0.082, y33 = 0.441, y41 = 0.558, y42 = 0.252, 

y43 = 0.189.  

The computed posterior beliefs for the Political Operational Effects nodes X1, X2 and X3 

are:  X1[ x11 = 0.126, x12 = 0.376, x13 = 0.497], X2[x21 = 0.203, x22 = 0.629, x23 = 0.056, x24 = 0.112] 

and X3[x31 = 0.652, x32 = 0.234, x33=0.114]. The computed posterior probabilities for the Military 

Operational Effects nodes M1, M2, M3 and M4 are: M1[m11 = 0.480, m12 = 0.386, m13 = 0.134], 

M2[m21 = 0.283, m22 = 0.198, m23 = 0.296, m24 = 0.223], M3[m31 = 0.408, m32 = 0.295, m33 = 

0.297] and M4 [m41 = 0.418, m42 = 0.103, m43 = 0.114, m44 = 0.365]. Posterior distribution results 

for the Tactical Effects nodes T1, T2 and T3 are: T1[ t11 = 0.576, t12 = 0.112, t13 = 0.312], T2[t21 = 

0.409, t22 = 0.311, t23 = 0.280], and T3[t31 = 0.692, t32 = 0.308]. Posterior beliefs for the entire 

Network are displayed in graphical format under the “Bayesian Graphs” data field as displayed 

as shown in Figure 18. The posterior probability of each state of variable (textual result) is 

displayed by a bar chart under the variable node. 
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Several simulation runs were performed to test the model. A simulation run consisted of 

mapping of the level 1 Strategic Effects (Y), the level 2 Political Operational Effects (X), the 

level 3 Military Operational Effects (M), and the level 4 Tactical Effects (T). Dimensionally, the 

simulation space was an Y * X* M * T design. The complexity of the Network was determined 

by the number of elements in Y, X, M, and T respectively.  In this case Y = 12, X = 10, M = 14, 

and T = 8, there were 13,440 possible trial runs by the BAMSS model. However, the mappings 

were also realized through probabilistic decision nodes. The minimum number of experiments 

were then equal to 1 (assume Y = 1, X = 1, M = 1, T = 1). Hence, the probabilistic (expected) 

number of experiments depended on the user’s input and could be constrained by 1 ≤ NE ≤ #E 

where, #E = Y * X * M * T, and at least one Y, X, M, or T had elements greater than 1. For the 

simulation runs discussed in the next section new evidence was introduced to nodes selected 

randomly for each variable level. Belief Updating was performed and the results of the updating 

for all the nodes were recorded. Four simulations were conducted, one for each level of network 

variables for a total of 44 simulation experiments. 

4.3.2 Evidence Propagation in the Bayesian Network 

Posterior distributions were obtained for different variables in the Network using random 

input evidence for different simulated scenarios. The hierarchical BBN was initialized with prior 

probabilities for the parent nodes and prior conditional probabilities for all the child nodes at 

each Network level and loaded into the model. A node was randomly in the Network was 

randomly selected and used as an input node for new evidence introduced into the model. With 

the input evidence varying from 0.1 to 0.9 in the range [0, 1], several simulation runs were 

performed on the model and the posterior belief distribution for each value of input evidence 

recorded. With these simulations experimental data were collected and used to evaluate the 



76 

 

 

robustness of the model as well as validation for accuracy. Some simplifications were made for 

purposes of demonstration such as the completeness of the CPT specification in the model. In 

practice however, it is extremely difficult to fill the CPTs with appropriate numbers. With large 

datasets, it is possible to learn the CPTs from real world data (Neapolitan, 2004).  

In the asymmetric warfare domain, such data is difficult to access because of restrictions 

imposed by national security concerns. Tables 10-17 show the posterior belief distributions from 

the experimental simulation. These distributions represent the updated Beliefs for the nodes in 

the Network as new evidence is introduced. The propagation of the new evidence at all levels of 

the network nodes is shown graphically in Figures 19, 20, and 21. Sample statistics are displayed 

for each simulation run showing the mean belief accrual and the standard deviation per value of 

input evidence for all the variables at the selected level.  

Table 10 

Belief Update in Level 1(Strategic Effects) Nodes 

Simulation 

Run 

Posterior Belief  

Strategic Effects 

Input  

Variable 

X1=x11 

y11 y12 y13 y14 y21 y22 y31 y32 y33 y41 y42 y43 

0.1 0.19 0.46 0.26 0.09 0.60 0.40 0.30 0.30 0.40 0.30 0.40 0.30 

0.2 0.19 0.45  0.27 0.09 0.60 0.40 0.30 0.30 0.40 0.30 0.40 0.30 

0.4 0.20 0.42 0.29 0.10 0.60 0.40 0.30 0.30 0.40 0.30 0.40 0.30 

0.5 0.20 0.40 0.30 0.10 0.60 0.40 0.30 0.30 0.40 0.30 0.40 0.30 

0.7 0.21 0.36 0.32 0.11 0.60 0.40 0.30 0.30 0.40 0.30 0.40 0.30 

0.8 0.21 0.34 0.34 0.11 0.59 0.40 0.30 0.30 0.40 0.30 0.40 0.30 

0.9 0.21 0.32 0.35 0.12 0.61 0.39 0.29 0.30 0.40 0.30 0.40 0.30 

 

In Table 10, variables Y3 and Y4 exhibit steady state values of posterior probabilities for 

all values of the input variable X1. To explain this behavior, we examine the CPTs and in 

particular, the priors of Y3 and Y4 and prior conditionals such as P(X1 = x11|Y3 = y33) or P(X1 = 
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x11|Y4 = y41). X1 = x11 represented the factor Sectarian Identity while Y4 = y41 represented the 

factor Nationalism. The expression P(X1 = x11|Y4 = y41) or P(Nationalism| Sectarian Identity) 

could not be defined in the context of the problem. These inadmissible combinations led to 

oversampling by the algorithm resulting into steady state values of posterior probabilities and 

incompatible hypotheses. Table 11 shows a statistical analysis of the posterior belief distribution. 

The sample size refers to the total state space in Table 10 while the mean evidential accrual and 

the standard deviation are derived from the posterior distribution of Table 10.  

Table 11 

Statistical Analysis of Posterior Belief Distribution of Level 1 Nodes 

Simulation Run Posterior Belief 

Input Variable 

X1=x11 

Sample Size Mean Std. Deviation 

0.1 12 0.333 0.125 

0.2 12 0.333 0.124 

0.4 12 0.334 0.119 

0.5 12 0.333 0.117 

0.7 12 0.333 0.113 

0.8 12 0.332 0.111 

0.9 12 0.332 0.113 

 

Table 12 shows the posterior belief distribution for the level 2 (Political Operational Effects) 

evidence nodes with the statistical analysis in Table 13.The variable X2 = x24 exhibits steady state 

values for all the simulation runs. During network development, the prior conditional P(X2 = x24| 

M2 = m22) was set at 20%. Contextual analysis showed that the expression P(X2 = x24| M2 = m22) 

= 0.20 was not admissible contributing to the steady state values for the variable. 
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Table 12 

Belief Update in Level 2(Political Operational Effects) Nodes 

Simulation 

Run 

Posterior Belief 

Political Operational Effects 

Input 

Variable 

M2=m22  

x11 x12 x13 x21 x22 x23 x24 x31 x32 x33 

0.1 0.38 0.27 0.35 0.24 0.41 0.22 0.13 0.51 0.20 0.29 

0.2 0.40 0.24 0.37 0.24 0.40 0.22 0.13 0.51 0.20 0.29 

0.4 0.42 0.19 0.40 0.25 0.40 0.23 0.13 0.51 0.21 0.28 

0.5 0.43 0.16 0.41 0.25 0.40 0.23 0.13 0.50 0.21 0.28 

0.7 0.45 0.12 0.43 0.25 0.39 0.23 0.13 0.50 0.21 0.28 

0.8 0.45 0.10 0.44 0.25 0.39 0.23 0.13 0.50 0.22 0.28 

0.9 0.46 0.09 0.45 0.25 0.39 0.23 0.13 0.50 0.22 0.28 

 

Table 13 

Statistical Analysis of Posterior Belief Distribution in Level 2 Nodes 

Simulation Run Posterior Belief 

Input Variable 

M2=m22 

Sample Size Mean Std. Deviation 

0.1 10 0.301 0.107 

0.2 10 0.300 0.110 

0.4 10 0.302 0.116 

0.5 10 0.300 0.119 

0.7 10 0.299 0.128 

0.8 10 0.299 0.131 

0.9 10 0.300 0.135 

 

Table 14 shows the posterior belief distribution for the level 3 (Military Operational Effects) 

nodes. Evidence in the input variable T3 = t31 was varied from 0.1 to 0.9 and the posterior 

probabilities for all the M nodes, recorded. The posterior belief for node M2 = m22 and M2= m23 

did not change with variations in the input variable. Table 15 shows the statistical analysis with 

the mean evidential accrual at 0.29 for all the simulation runs.  
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Table 14 

Belief Update in Level 3 (Military Operational Effects) Nodes 

Simulation 

Run 

 Posterior Belief 

 Military  Operational Effects 

Input 

Variable 

T3=t31 

m11 m12 m13 m21 m22 m23 m24 m31 m32 m33 m41 m42 m43 m44 

0.1 0.60 0.25 0.15 0.94 0.02 0.03 0.02 0.47 0.26 0.27 0.44 0.13 0.20 0.23 

0.2 0.55 0.28 0.17 0.93 0.02 0.03 0.02 0.47 0.27 0.27 0.43 0.13 0.20 0.25 

0.4 0.47 0.33 0.20 0.93 0.02 0.03 0.02 0.46 0.27 0.27 0.41 0.12 0.19 0.28 

0.5 0.44 0.35 0.21 0.93 0.02 0.03 0.02 0.46 0.27 0.27 0.41 0.12 0.19 0.29 

0.7 0.39 0.38 0.23 0.93 0.02 0.03 0.02 0.45 0.27 0.27 0.40 0.12 0.18 0.30 

0.8 0.37 0.39 0.24 0.93 0.02 0.03 0.02 0.45 0.27 0.28 0.39 0.12 0.18 0.31 

0.9 0.35 0.40 0.25 0.93 0.02 0.03 0.02 0.45 0.28 0.28 0.39 0.12 0.18 0.32 

 

Table 15 

Statistical Analysis of Posterior Belief Distribution in Level 3 nodes 

Simulation Run Posterior Belief 

Input Variable 

T3=t31 

Sample Size Mean Std. Deviation 

0.1 14 0.286 0.246 

0.2 14 0.287 0.238 

0.4 14 0.286 0.231 

0.5 14 0.286 0.229 

0.7 14 0.285 0.227 

0.8 14 0.286 0.227 

0.9 14 0.287 0.226 

 

Table 16 shows the posterior belief distribution for the level 4 (Tactical Effects) nodes. Evidence 

in the input variable M4 = m41 was varied from 0.1 to 0.9 and the posterior probabilities for all 

the T nodes recorded. Table 17 shows the statistical analysis of the posterior belief distribution. 

 



80 

 

 

Table 16 

Belief Update in Level 4(Tactical Effects) Nodes 

Simulation 

Run 

Posterior Distribution 

Tactical Effects 

Input 

Variable 

M4=m41 

t11 t12 t13 t21 t22 t23 t31 t32 

0.1 0.57 0.11 0.32 0.41 0.31 0.28 0.70 0.30 

0.2 0.57 0.11 0.32 0.41 0.31 0.28 0.70 0.30 

0.4 0.56 0.11 0.32 0.41 0.31 0.29 0.70 0.30 

0.5 0.56 0.11 0.32 0.41 0.31 0.29 0.70 0.30 

0.7 0.56 0.11 0.33 0.40 0.31 0.29 0.69 0.31 

0.8 0.58 0.11 0.30 0.40 0.32 0.28 0.69 0.31 

0.9 0.56 0.11 0.32 0.39 0.31 0.28 0.69 0.31 

 

Table 17 

Statistical Analysis of Posterior Belief Distribution in Level 4 Nodes 

Simulation Run Posterior Belief 

Input Variable 

M4=m41 

Sample Size Mean Std. Deviation 

0.1 8 0.375 0.172 

0.2 8 0.375 0.172 

0.4 8 0.375 0.170 

0.5 8 0.375 0.170 

0.7 8 0.375 0.166 

0.8 8 0.374 0.171 

0.9 8 0.371 0.167 

 

 The posterior probabilities of randomly selected network variables were plotted against 

the probability of evidence of a select input variable to show the propagation of evidence through 

the network. For each plot, a random variable from each level of the hierarchical network was 

selected and its posterior probability plotted for each simulation run. 
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The results of the evidence propagation (belief revision) for the selected variables in the network 

are shown and discussed below. 

 

Figure 19. Belief revision in nodes Y1 = y11, X1 = x11 and T3 = t32 after new evidence is introduced 

in node M1 = m11. 

In this sensemaking vignette, the hypothesis variable is Y1 = y12 (Law and Order 

Breakdown) and the informational variables are X1 = x11 (Sectarian Identity) and T3= t32 

(Infrastructure Sabotage). New evidence was introduced in node M1 = m11, the Insurgent 

Security Target Engagement. Figure 19 shows the posterior probability distribution of nodes 

after seven simulation runs. We noted the strong positive correlation (r = 0.883) between the 

evidence of attacks on security targets (Insurgent Security Target Engagement) and the targeted 

action (Infrastructure Sabotage). By inspection, as there was more evidence on security target 

engagement, there was an observable marginal increase in breakdown in law and order, 

increasing sabotage of infrastructure, and a decreasing trend in sectarian identity. The last node 

indicated the possibility of no evidence of the groups responsible for sabotage to national 

infrastructures. The minor variability in the posterior distribution for variable Y1 = y12 (Law and 
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Order Breakdown) would seem to indicate that evidence introduced in the variable node M1 = 

m11 was non informative, meaning that it did not significantly impact the hypothesis variable Y1. 

 

Figure 20. Belief revision in nodes Y2 = y22, M1 = m11 and T2 = t21 after new evidence is 

introduced in node X3 = x33. 

 For the second sensemaking vignette, the hypothesis variable was selected as Y2 = y22 

(Insurgent ideology) and the informational variables were M1 = m11 (Insurgent Security Target 

Engagement) and T2 = t21 (Insurgent Small Arms Attacks). New evidence was introduced in node 

X3 = x33 (Intelligence Asymmetry). Figure 20 shows the posterior probability distribution of the 

variables after 7 simulation runs. We observed that when evidence for the input variable (X3 = 

x33) was set to 70%, the posterior probabilities for nodes M1 = m11, Y2 = y22, and T2 = t21 

converged supporting the hypothesis of an attack on security targets such as police and military 

leaders using small arms. Increasing the advantage of intelligence asymmetry was non- 

informative on the selected variables. In addition, it seemed that as the reliability of intelligence 

increased (x33), security target engagement decreased (r = -0.987). Under the same scenario, 
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support for the insurgent ideology remained fairly constant. Correlation analysis for the selected 

variables is shown in appendices B, C, and D. 

 

Figure 21. Belief revision in nodes X2 = x22, Y4 = y41 and M2 = m23 after new evidence is 

introduced in node T3 = t32. 

In the last sensemaking vignette, we considered the hypothesis variable Y4 = y41 the 

insurgent concept of Nationalism. For informational variables, we set X2 = x22 (Insurgent 

Modular Operations) and M2 = m23 (Civilian Shelters). New evidence was introduced into 

variable T3 = t32 (Arson). Figure 21 shows the posterior probability distributions after 7 

simulation runs. The hypothesis variable Y4 = y41 recorded the highest evidential accrual as new 

evidence was introduced to T3 = t32. The wider implication of this was to identify most arson 

attacks and property destruction in that particular area of operations as being carried out by the 

local population angered or motivated by nationalistic feelings. It was also easy to conclude that 

the probability distributions for X2 = x22 (Insurgent Modular Operations) and M2 = m23 (Civilian 

Shelters) were almost non-informative, or had no effect on whether arson occured or not.   
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4.3.3 Inference and Courses of Action Analysis 

To analyze the potential courses of action, we consider the results from sensemaking 

vignettes discussed in section 4.3.2. 

1. Insurgent Security Target Engagement (M1=m11). 

a) By examining the evidence propagation in Figure 19, P(Law and Order Breakdown) remains 

relatively stable at 40% with increasing evidence of the adversary targeting of the 

counterinsurgent security personnel. P(Law and Order Breakdown) refers to the probability 

of disrupting counterinsurgent control of the local security situation by limiting their ability 

for military maneuvers and restricting interaction with the population in stability and support 

operations. The relative stability of the posterior belief distribution implies that the causal 

effect of this variable is limited hence it does not carry much weight as a course of action.  

b) The probability that the Insurgent Security Target Engagement as a mode of operation is 

influenced by Sectarian Identity (X1= x11) decreases from 50% to 30% as evidence of 

Insurgent Security Target Engagement increases from 0.1 to 0.9. This implies that operations 

against security personnel cannot be attributed to a particular group. Infact focusing on the 

sectarian identity of the group is detrimental to the course of action selection because of the 

negative correlation. This effect should therefore be discarded. 

c) P(Infrastructure Sabotage| Insurgent Security Target Engagement) increases from 20% to 

40% as the evidence of Insurgent Security Target Engagement increases from 0.1 to 0.9. 

Increase in infrastructure sabotage is the most likely tactical effect of the increase in 

Insurgent Security Target Engagement probably due to the vacuum created by this particular 

military operational effect. The COA would require the commander to increase protection for 

critical infrastructure and security targets 
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2. Insurgent Intelligence Asymmetry (X3 = x33). 

a) P(Insurgent Security Target Engagement| Intelligence Asymmetry) decreases from 60% 

to 35% as evidence for intelligence asymmetry increases from 0.1 to 0.9. Intelligence 

asymmetry refers to insurgents evolving new tactics that strain or defeat the 

counterinsurgent Intelligence, Surveillance and Reconnaissance (IS&R) assets. This 

implies that better intelligence by the insurgent group may not directly influence this 

mode of operation. The insurgents may in fact be using the intelligence to select soft less 

protected targets instead of security personnel. The commanders COA is to invest more 

resources in recruiting intelligence assets to counteract the asymmetry. 

b) P(Small Arms Attacks| Intelligence Asymmetry) shows minor variability at 40% similar to 

the P(Insurgent Ideology|intelligence asymmetry). The tactical effect Small Arms Attacks 

is not significantly influenced by the insurgent intelligence assets. Both these effects are 

inadmissible as COA. 

3. Tactical Effect Arson (T3 = t32). 

a) P(Insurgent Modular Operations| Arson) decreases from 50% to 40% (approximately) 

with increase in evidence of Arson as a tactical effect from 0.1 to 0.9. Probability of the 

insurgent concept of Nationalism increases from 30% to 40% while the P(Civilian 

Shelters| Arson) remains constant at 30%. Most arson attacks and property destruction in 

a particular area of are carried out by the local population .The commanders’ COA   

should be to consider the tactical effect  as a reflection of nationalistic feelings and take 

appropriate measures in the PMESII spectrum to address this effect. The first and the last 

probability expressions are inadmissible for COA analysis. 
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Table 18 gives a summary of the Network’s inferential conditions and the supportable courses of 

action for the evidence propagation results. 

Table 18 

Summary of Inferential Conditions and Courses of Action for Sample Sensemaking Tasks 

Inferential Condition Conditional 

Probability 

of Evidence 

(%) 

Course of 

Action 

Results Interpretation 

P(Law and order| Insurgent 

Security Target Engagement) 

40 Not 

supported 

Insufficient evidence to show that 

insurgent attacks on coalition 

security targets are the cause of the 

breakdown in law and order 

P(Sectarian 

Identity|Insurgent Security 

Target Engagement) 

50→30 Not 

supported 

Operations against coalition 

security targets cannot be 

attributed to a particular group 

P(Infrastructure Sabotage| 

Insurgent Security Target 

Engagement) 

20→40 Weakly 

supported 

Increase in infrastructure sabotage 

may be a second order effect of 

targeting security because of the 

security gaps created. 

P(Insurgent Security Target 

Engagement| Intelligence 

Asymmetry) 

60→35 Strongly 

supported 

Insurgents may be using the 

intelligence advantage to select  

soft targets and avoid the hard 

security targets 

P(Small Arms Attacks| 

Intelligence Asymmetry) 

40 Not 

admissible 

The inferential condition is 

incompatible with the hypothesis 

P(Insurgent ideology| 

Intelligence Asymmetry) 

40 Not 

admissible 

The inferential condition is 

incompatible with the hypothesis 

P(Insurgent Modular 

Operations| Arson) 

50→40 Weakly 

supported  

Consider incidents of arson as 

effects of operational modularity 

by the insurgents. 

P(Nationalism|Arson) 30→40 Strongly 

supported  

Consider the tactical effect arson 

as a reflection of nationalistic 

feeling by the local population. 

P(Civilian Shelters|Arson) 30 Not 

admissible 

The inferential condition is 

incompatible with the hypothesis 

 

4.3.4 Discussion 

The probability distributions for Strategic Effects provide an insight into the end state of 

the adversary. By performing the inference at this level, an analyst can reasonably draw 
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conclusions about both the short term and long term objectives or goals of an adversary. For 

example, considering Figure 19, the correlation between an increase in attacks on the security 

targets (Security Target Engagement) and the targeted action (Infrastructure Sabotage) should 

prompt more defensive resource allocations for critical infrastructures. Additionally, the 

observable marginal increase in the breakdown in law and order may imply the necessity to 

deploy more security forces in the affected areas with the resultant effects on manpower 

requirements.  

The probability distributions for Operational Effects (Military and Political) give the 

analyst inference on the areas of focus that will enable the adversary to achieve their desired 

Strategic Effects. From the simulation experiment (Figure 20), the strong evidence of small arms 

attacks (a targeted action) against security targets may require a change in force protection 

conditions, for example necessitating convoy protection and reduced foot patrols in the affected 

areas. 

 Probability distributions for Tactical Effects provide inference into the actual methods, 

techniques, tactics, and procedures that the adversary may employ to attack selected targets. In 

Figure 21, the analyst may note the rise in nationalistic or sectarian sentiment and the 

corresponding increase in cases of arson. Arson as a weapon is more effectively employed by the 

local population. It can be inferred then, that this tactical effect is being carried out by segments 

of the population sympathetic to the insurgent goals by linking them to nationalist ideals.  

Depending on the complexity of the asymmetric battlespace, the potential range of 

Tactical Effects is quite extensive and diverse. For purposes of simplicity only a few effects were 

modelled in the Network. With these probabilities, the analyst could infer the likelihood of a 

specific attack mode, target type, whether or not the target would be attacked based on its 
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symbolic or iconic value, whether it would be a single attack or a set of coordinated attacks and 

the relative location of the attack. It should be emphasized that the importance of these posterior 

belief distributions lies in the threat levels posed by each variable and not so much the specificity 

of the actual numbers.  

4.4 Model validation 

4.4.1 Sensitivity Analysis 

Sensitivity analyses were performed on BAMSS to demonstrate its robustness and 

efficacy in responding to probability changes in information.  The purpose of sensitivity analysis 

in this research is to enable the analyst to see the various effects of high influence variables or 

events based on their occurrence probabilities on the overall battlefield information. A good 

discussion on the methodology for sensitivity analysis in Bayesian Networks can be found in 

Woodberry et al. (2004; 2007). For the BAMSS Network, target nodes representing Tactical 

Effects were selected and the probability of each of the parent nodes representing the Strategic 

Effects was varied over the [0,1] probability space by directly introducing evidence while 

keeping all the other nodes fixed. Changes in the target nodes were then observed and plotted 

graphically.  

Table 19 

Probability of New Evidence Introduced in the Network 

Simulation 

Run 

Input evidence  

Strategic Effects 

Run # y11 y12 y13 y14 y21 y22 y31 y32 y33 y41 y42 y43 

1 0.2 0.4 0.6 0.1 0.99 0.8 0.2 0.1 0.7 0.5 0.9 0.7 

2 0.4 0.5 0.8 0.2 0.7 0.7 0.4 0.4 0.8 0.4 0.1 0.8 

3 0.6 0.1 0.5 0.3 0.6 0.6 0.6 0.5 0.9 0.8 0.4 0.2 

4 0.8 0.7 0.4 0.4 0.5 0.4 0.8 0.7 0.2 0.3 0.5 0.6 

5 0.9 0.8 0.3 0.5 0.4 0.3 0.9 0.9 0.1 0.2 0.3 0.5 

 



89 

 

 

Table 20 

Posterior Probability of Target Nodes 

Simulation 

Run 

Posterior belief 

Tactical Effects 

Run# t11 t12 t13 t21 t22 t23 t31 t32 

1 0.57 0.11 0.32 0.41 0.31 0.29 0.7 0.30 

2 0.56 0.09 0.31 0.40 0.30 0.28 0.69 0.30 

3 0.54 0.13 0.28 0.42 0.30 0.28 0.72 0.28 

4 0.55 0.10 0.25 0.39 0.32 0.26 0.66 0.34 

5 0.53 0.08 0.29 0.36 0.33 0.31 0.74 0.26 

 

 

Figure 22. Sensitivity of posterior probabilities for Tactical Effects T1 = t11, T1 = t12 and T1 = t13: 

Parent node Y1 = y12 is varied. 

In the sensitivity analyses of the Tactical Effects node T1 (t11, t12, and t13) it was observed 

that the BAMSS model did not significantly respond to changes in parent variable Y1 = y12 (Law 

and Order Breakdown). It is simplistic to argue that the Tactical Effects (t11, t12 and t13) have 

very little influence on the breakdown in the security situation as the sensitivity charts portray. A 

reasonable explanation would be that the causal linkage is tenuous and needs to be redefined 

during the development of the network topology. Further examination of the sensitivity analysis 
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charts indicates that the posterior distributions of the effects t11, t12 and t13 are mutually exclusive 

on the effect y12. The posterior probability of T1 = t11 is the highest for every level of input  

peaking at 58% implying that civilian suicide bombing is the most prevalent tactical effect for 

the insurgent group. With evidence for law and order breakdown greater than 70%, there is a 

marked increase in incidents of remotely detonated IEDs (T1 = t12). Correspondingly, there is a 

drop in the probability of firing RPGs (T1 = t13). 

 

Figure 23. Sensitivity of posterior probabilities for Tactical Effects T2 = t21, T2 = t22 and T2 = t23: 

Parent node Y4 = y42 is varied. 

In the second simulation, a sensitivity analysis was applied to the node Y4 = y42 (Sectarian 

Violence) by varying the input (evidence) to the node, keeping all the other nodes fixed and 

observing the variations in the posterior distributions of the target nodes. In the results shown in 

Figure 23, node T2 = t22 (Coercive Threats) and T2 = t23 (Convoy Ambushes) displayed low 

sensitivity to the evidence variation while node T2 = t21 (Small Arms Attacks) showed an increase 

in the posterior probabilities accompanied by steeper changes. An examination of the sensitivity 

charts revealed that the posterior distributions of effects Coercive Threats (T2 = t22) and Convoy 
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Ambushes (T2 = t23) co-existed indicating the possibility of some interaction effects. The most 

significant changes occurred in the effect Small Arms Attacks which recorded the highest 

posterior probability (0.43) for the input variable. 

 Lastly, sensitivity analysis was done for target nodes T2 = t23 (Convoy Ambushes), T3 = t31 

(Infrastructure sabotage), and T3 = t32 (Arson), varying the inputs and keeping all the other nodes 

fixed. The results were plotted in Figure 24. The posterior distribution for Infrastructure 

Sabotage recorded the highest sensitivity (0.75) to the input variable Y2 = y22 (Insurgent 

Ideology). 

 

Figure 24. Sensitivity of the posterior probabilities for Tactical Effects node T2 = t23, T3 = t31 and 

T3 = t32: Parent node Y2 = y22 is varied. 

Additional examination of Figure 24 also revealed that the posterior distribution for effects 

Infrastructure Sabotage and Arson were mutually exclusive, indicating some interaction effects 

between the two factors. The response trajectory for t23 and t31 is the same for changes in y22 

although the magnitude was different. This could imply strong causal linkages between the two 

effects. When the input evidence was varied between 0.1 and 0.4, both effects showed a negative 
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gain response. When the input range increased beyond 0.4, both displayed a positive gradient, 

peaking at 0.72 for t31 and 0.29 for t23. 

4.4.2 Inference and Courses of Action Analysis 

Sensitivity analysis allows the commander to infer about the levels of uncertainty for the 

select hypothesis variables. It also allows analysts to perform a what-if analysis to assess the 

effects of the likelihood of the target variables. In the sensemaking vignettes used in this 

simulation, we varied the hypothesis nodes and observed the uncertainty concerning the tactical 

effects nodes. P(Law and Order |High Level Attrition Attacks) did not show significant variation 

to changes in input evidence from 0.1 to 0.9. P(Civilian Suicide Bombing) showed the highest 

posterior belief  accrual peaking at 58% demonstrating that the new evidence on this variable 

could confirm the most likely posteriori hypothesis (Y1 = y12). On average, P(Remotely 

Detonated IEDs|Law and Order Breakdown) was 10% while P(Rocket Propelled Grenades|Law 

and Order Breakdown) was 28%. Summarizing from these statistics, the commander should 

consider variables with posterior distributions that exhibit the greatest variation in response to 

changes in the input variable for additional analysis. 

From Figure 23, P(Small Arms Attacks| Sectarian Violence) recorded the highest 

aposteriori probability at 44%. A COA analysis by the commander requires a closer examination 

of the differences between t22 (Coercive Threats, 30%) and t23 (Convoy Ambushes, 30%) which 

seemed to exhibit interaction effects. From Figure 24, Infrastructure Sabotage recorded the 

highest variations and posterior belief at 75% as evidence in the input variable Y2 = y22 

(Insurgent Ideology) was varied from 0.1 to 0.9. The high degree of sensitivity to the variation in 

input should prompt the commander to perform additional what-if analyses to identify additional 

causal factors. Similar analysis could be extended to P(Convoy Ambush| Sectarian Violence) and 
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P(Arson| Sectarian Violence),  both with average aposteriori probability of 30% since they 

exhibit mutually exclusive behavior. Table 21 gives a summary of the inferential conditions and 

the courses of action for the sensitivity analysis results. 

Table 21 

Summary of Sensitivity Analysis Inferential Conditions and Courses of Action  

Inferential Condition Conditional 

Probability of 

Evidence (%) 

Course of 

Action 

Results Interpretation 

P(Civilian Suicide 

Bombing|Law and order 

Breakdown) 

55 Strongly 

supported 

Law and order breakdown is likely 

to occur 55% of the time because 

of suicide bombing of civilian 

targets 

P(Remotely Detonated 

IEDs|Law and Order 

Breakdown 

10 Weakly 

supported 

Remotely denotated IEDs are not a 

major contributing factor to the law 

and order breakdown (only 10% of 

the time) 

P(Rocket Propelled 

Grenades|Law and 

Order Breakdown 

28 Weakly 

supported 

Rocket Propelled Grenades is not a 

significant contributory factor to 

law and order breakdown 

P(Small Arms Attacks| 

Sectarian Violence) 

44 Strongly 

supported 

Evidence supports the increase in 

the use of small arms as a targeted 

action in sectarian violence 

P(Coercive Threats| 

Sectarian Violence 

30 Additional 

analysis 

No conclusive evidence to support 

this COA. Additional analysis 

needed. 

P(Convoy 

Ambushes|Sectarian 

Violence) 

30 Additional 

analysis 

No conclusive evidence to support 

this COA. Further analysis is 

needed to isolate the causal factors 

P(Infrastructure 

sabotage|Sectarian 

Ideology) 

75 Strongly 

supported 

Strong evidence to show that the 

ideology of the insurgents is linked 

to attacks on certain critical 

infrastructure. 

P(Convoy 

Ambush|Sectarian 

Ideology) 

30 Additional 

analysis 

No conclusive evidence to support 

this COA. Further analysis is 

needed to isolate the causal factors 

P(Arson |Sectarian 

Ideology) 

30 Additional 

analysis 

No conclusive evidence to support 

this COA. Further analysis is 

needed to isolate the causal factors 
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4.5 Chapter Summary 

This chapter presented experiments and validations of the BAMSS model using a case 

study in asymmetric warfare. Some examples on using BAMSS for sensemaking in the context 

of the simulation experiment were presented. We developed and analyzed different vignettes 

representative of the asymmetric warfare domain. In the first vignette, the sensemaking task 

required an analyst to create a hypothesis variable Y1 = y12 where y12 represented Law and Order 

Breakdown. New evidence was then introduced in the node M1 = m11, where m11 was an indicator 

for the Security Target Engagement by varying the input data from 0.1 to 0.9. Results from seven 

simulation runs were then analyzed for select informational variables X1 = x11 (Sectarian Identity) 

and T3 = t32 (Infrastructure Sabotage). 

By examining the evidence propagation in the first vignette, the probability of (Law and 

Order Breakdown) remained relatively stable at 40% with increasing evidence of adversary 

targeting of the counterinsurgent security personnel. The relative stability of the posterior belief 

distribution implied that the causal effect of this variable was limited hence did not carry much 

weight as a COA. The probability that the Insurgent Security Target Engagement as a mode of 

operation as influenced by Sectarian Identity (X1= x11) decreased from 50% to 30% implying 

that operations against security personnel could not be attributed to a particular group. In fact, 

focusing on the sectarian identity of the group could be detrimental to the course of action 

selection because of the negative correlation and this effect ought to be discarded. Probability of 

(Infrastructure Sabotage| Insurgent Security Target Engagement) increased from 20% to 40%. 

Increase in infrastructure sabotage was the most likely tactical effect of the increase in Insurgent 

Security Target Engagement probably due to the vacuum created by this particular military 
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operational effect. This COA would require the commander to increase protection for critical 

infrastructure and security targets.  

For the second vignette, the hypothesis for the sensemaking task was changed to Y2 = y22 

(Insurgent ideology). Evidence was introduced in node X3 = x33 (Intelligence Asymmetry) and the 

posterior probabilities for informational variables M1 = m11 (Security Target Engagement) and T2 

= t21 (Small Arms Attacks) were computed. Probability of (Insurgent Security Target 

Engagement| Intelligence Asymmetry) decreased from 60% to 35% as evidence for intelligence 

asymmetry increased from 0.1 to 0.9. This implied better intelligence by the insurgent group did 

not directly influence this mode of operation. The commander’s COA would be to invest more 

resources in recruiting intelligence assets to counteract the asymmetry. Probability of (Small 

Arms Attacks| Intelligence Asymmetry) showed minor variability at 40% similar to the 

P(Insurgent Ideology|intelligence asymmetry). The tactical effect Small Arms Attacks was not 

significantly influenced by the insurgent intelligence assets. Both these effects were inadmissible 

as COA. 

In the last sensemaking vignette, we considered the hypothesis variable Y4 = y41, the 

insurgent concept of Nationalism. For informational variables we set X2 = x22 (Insurgent Modular 

Operations) and M2 = m23 (Civilian Shelters). New evidence was introduced into variable T3 = t32 

(Arson). The probability of (Insurgent Modular Operations| Arson) decreased from 50% to 40% 

(approximately) with an increase in evidence of Arson as a tactical effect from 0.1 to 0.9. The 

probability of Nationalism increased from 30% to 40% while the P(Civilian Shelters| Arson) 

remained constant at 30%.The commanders’ COA would then be to consider the tactical effect  

as a reflection of nationalistic feelings and take appropriate  measures in the PMESII spectrum to 
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address this effect. P(Insurgent Modular Operations| Arson) and P(Civilian Shelters| Arson) 

were not admissible for COA analysis. 

 A sensitivity analysis was performed on the model output for the second sensemaking 

problem using three simulation experiments. The first experiment entailed the selection of target 

nodes representing Tactical Effects variable T1 (t11, t12, and t13). The probability of (Law and 

Order |High Level Attrition Attacks) did not show significant variation to changes in input 

evidence from 0.1 to 0.9. P(Civilian Suicide Bombing) showed the highest posterior belief  

accrual peaking at 58% demonstrating that the new evidence on this variable could confirm the 

most likely aposteriori hypothesis (Y1 = y12). On average, P (Remotely Detonated IEDs|Law and 

Order Breakdown) was 10% while P(Rocket Propelled Grenades|Law and Order Breakdown) 

was 28%. The commander would consider the variable Civilian Suicide Bombing  for additional 

analysis since it exhibited the greatest variation in response to changes in the input variable.  

In the second simulation, a sensitivity analysis was performed on variable T2 (t21, t22, t23), 

varying the input to node Y4 = y42 (Sectarian Violence). P(Small Arms Attacks| Sectarian 

Violence) recorded the highest aposteriori probability at 44%. A COA analysis by the 

commander would require a closer examination of the differences between t22 (Coercive Threats, 

30%) and t23 (Convoy Ambushes, 30%) which seemed to exhibit interaction effects. Lastly, 

sensitivity analysis was done for target nodes T2 = t23 (Convoy Ambushes), T3 = t31 (Infrastructure 

sabotage), and T3 = t32 (Arson). Infrastructure Sabotage recorded the highest variations and 

posterior belief at 75% as evidence in the input variable Y2 = y22 (Insurgent Ideology) was varied 

from 0.1 to 0.9. Additional analysis could be extended to P(Convoy Ambush| Sectarian Violence) 

and P(Arson| Sectarian Violence) both with average aposteriori probability of 30% since they 

exhibited mutually exclusive behavior. 
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CHAPTER 5 

Optimizing Abductive Inference in BAMSS with Genetic Algorithm 

5.1 Genetic Algorithms  

The Bayesian Clustering Algorithm (Lauritzen &Spiegelhalter, 1988) described in 

Chapter 4 has limitations in terms of resource utilization and the bounded search space. The 

BAMSS model overcomes these limitations by using the GA, thereby increasing its efficiency, 

scalability and robustness. A  GA is a variable search procedure that is based on the principle of 

evolution by natural selection (Goldberg, 1989). The procedure works by evolving sets of 

variables (Chromosomes) that fit certain criteria from an initial random population via cycles of 

differential replication, recombination and mutation of the fittest chromosomes. 

GAs have several advantages over other methods. Conventional search methods are not 

robust, as discussed in Goldberg (1989). GAs improve over the local scope of traditional 

methods by searching in parallel many subspaces in multidimensional spaces with complex 

topologies. Under time constraints, enumerative approaches are often not feasible or too slow. 

Goldberg notes that GAs differ from other methods in the following ways: 1) GAs work with a 

coding of the parameter set, not the parameters themselves; 2) GAs search from a population of 

points, not from a single point; 3) GAs use an objective function without any auxiliary 

knowledge;  and 4) GAs use probabilistic transition rules, not deterministic rules. A population 

representing candidate solutions is evaluated for fitness using a fitness function. Genetic 

operators such as crossover and mutation then create a new population from the old population. 

The probability of transfer of the genetic material of an individual is a function of its fitness.  
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Previous research on the use of GAs for BN inference has been done by Rojas-Guzman 

and Kramer (1993, 1996); Gelsema (1995); Lin et al., (1990); Santos, Shimony and Williams 

(1996); and Welch (1996). de Campos et al., (1999, 2002) did extensive research on partial 

abductive inference in Bayesian Belief Networks using GAs. By focusing only on a subset of 

network variables (partial abduction) known as the explanation set, de Campos et al. were able to 

solve the maximum a posteriori (MAP) probability problem using approximate GA algorithms. 

Mengshoel (1998) used GA in function optimization (finding the most probable explanation) 

focusing particularly on the role of niching and scaling to solve the problems of premature 

convergence and diversity preserving. This was followed by research in using GAs with 

probabilistic crowding replacement for fast and efficient search to perform Network inference 

(1999). A good review of evolutionary algorithms in Bayesian network learning and inference 

tasks is provided by Larranaga, et al., (2013)  

5.1.1 Representation 

In GAs, a solution or individual is conventionally represented by a string of integers or 

chromosomes which encodes the individual genotype. Each position or gene in the string 

corresponds to one variable in the belief network. Each gene can take a number of values 

(alleles) from a finite discrete alphabet which may be different for each gene and corresponds to 

the number of discrete values that the variable can assume in the Belief Network. 

GAs require the existence of a metric in the space of possible solutions. In this case, a 

clearly defined metric is the absolute probability of each possible solution (or point in the search 

space or system state in the BN space).Within the Belief Network framework, performing this 

calculation is straightforward for the special case in which all the nodes have been instantiated. 

The fitness metric corresponds to the individual phenotype and is a product with one factor for 
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each node. Each factor is either a prior probability for parent nodes or a conditional probability 

(for child nodes). These probabilities are efficiently retrieved using multidimensional arrays. A 

phenotype (fitness metric or probability) corresponds to each genotype (set of variable-value 

assignments). 

5.1.2 Parameters 

  BAMSS requires the specification of two GA parameters; the probability of Crossover 

and the probability of Mutation. Crossover (reproduction) is the GA operator that enables 

reproduction between two parents to create new members of the population from the previous 

generation. Two parents can create one or two children in the case where a choice is necessary to 

avoid losing useful new individuals in the resultant population. The genotype of each new 

individual is made up by combining the genotypes of the parents. In traditional GAs, where two 

parents are copied into two children, two positions are randomly chosen in the new strings and 

the genes located between the two positions are interchanged. 

The mutation operator introduces random changes in one allele of the genotype of one 

individual. The mutation frequency is usually very low and its goal is to maintain diversity in the 

population to avoid premature convergence. A BN can be used for predictive reasoning or 

diagnostic abductive inference in which case, any arbitrary subset of variables may be 

instantiated during the inference process. The instantiated values are not changed by the mutation 

to guarantee that all individuals retain legal and meaningful genotypes.  

5.1.3 Fitness Function 

The Bayesian Network Inference Algorithm computes the probability density over a 

variable H given new evidence D formally denoted as P(H|D).The two abductive inference tasks 

in the BN are belief updating and belief revision. Belief updating computes the posterior belief 
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over a hypothesis node H given instantiated evidence nodes D1, D2…Dm as identified by  

P(H|D1=d1,D2=d2,…Dm=dm). Belief revision computes the posterior belief over a set of 

hypothesis nodes H1,H2..Hk given the evidence nodes D1, D2…Dm, more formally written as 

P(H1,H2…Hk|D1=d1,D2=d2,…Dm=dm). For the case where all nodes are instantiated, belief 

revision is known as computing an explanation and the task of computing the Most Probable 

Explanation (MPE) or the k Most Probable Explanations (kMPE) is referred to as abductive 

inference in the model. The following definitions related to the BAMSS model are made: 

Definition 1 

The posterior probability P(h|D) of a network variable as defined by equation(1)  in Chapter 3 is 

computed as follows: 

)(
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)|(

DP

hPhDP
DhP 

 

The fitness function to be used then is based on the posterior probability P(h|D) of the Network 

as defined above. Let all the explanations be ordered according to their posterior probability:  

P(h1|d)≥ P(h2|d)≥P(h3|d)≥…..P(hn|d)                                   (16) 

 Here, the most probable explanation (MPE) is h1. The k most probable explanations (k-MPE) are 

h1, h2,…hk (k≤n). The experimental population consists of a set of explanations or chromosomes 

{ h1, h2,…hn} where n is the population size. The objective is to obtain the posterior probabilities 

of a set of variables (X1,X2,..Xn ) that can be regarded as influencing a particular effect, for 

example, the probability that insurgents adopt certain Tactical effects given that we can infer 

their Sectarian Identity and the Fundamentalist Ideology they adhere to. The overall joint 

probability of the set of variables is given by the product  
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The fitness function is a simple look-up function that computes the overall joint probability of 

the network (known as the network solution) for different combinations of variables and returns 

MPE for the Network based upon a user selected fitness value. Formally, the fitness function for 

BAMSS model can be represented as:  





n

i

XiXii i
xPXfitness

1

)|(maxarg)(

                                  (18) 

where 𝑋𝑖  is the set of all the variables in the network and the right hand side returns the 

maximum argument of the product term. Owing to the ability of the GA to undertake parallel 

search, multiple network solutions compliant with the fitness value (kMPE) may be generated 

and its left to the analyst to evaluate the probability profile of each of the solutions for the best 

COA selection. The combination of variables in the network solution (MPE) constitutes the 

phenotype of interest to the analyst. 

Definition 2 

Since a BN is a directed acyclic graph, a topological sort can be used to linearly order the 

nodes in a BN and a GA string (chromosome) is organized according to the linear order. Let 

𝑋𝑗 = 𝑥𝑗 be the assignment to node j in the BN. If all the nodes are binary, i.e  𝑥𝑗 ∈  {0, 1} then the 

one to one  mapping from the random variable Xj to the chromosome aj in position j is fully 

defined by the vector aj where aj is a string of zeros and ones  for example [10011011101]. In the 

case of the BAMSS model, the random variables have cardinality greater than 2 i.e, 𝑥𝑗 ∈

{0,1,2. . 𝑛} where n represents the nth state of the higher cardinality alphabet hence, more 

appropriately we define the vector string aj as a string of real valued integers. 

[0112211220102112] is an example of a string where the nth state of alphabet is represented by 

the integer 2 in a string of cardinality 3.  
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5.2 Implementing the Genetic Algorithm in BAMSS  

A schematic representation of the information flow and processing in GA is shown in 

Figure 25. 

 

Figure 25. The canonical GA procedure as applied to the BAMSS model. 

The initial step involves a generation of a population of chromosomes (random variable sets). 

Each chromosome in the population is then evaluated according to a user selected fitness value. 

If the chromosome has a score higher than a set threshold value (τ
*
), this chromosome is selected 

and the procedure stops. The chromosome is then decoded for its real value (phenotype) and 

output by the model as the MPE for the set of random variables. 

If the chromosome has a lower score than τ
*
, the chromosomes are reproduced 

proportional to their fitness to create a new population. Chromosomes with a higher fitness score 

will reproduce more numerous offspring. In the crossover stage, the genotype of the replicated 

parents is combined by randomly selecting two parent chromosomes and swapping their genetic 



103 

 

 

information. In this way, two new chromosomes are created adding to the range of possible 

solutions to the Network. To avoid premature convergence of the solutions, mutations are 

introduced in the chromosomes randomly to diversify the gene pool. Mutation also ensures that 

the entire state space is searched. The newly created population is then re-evaluated again using 

the fitness function and the fittest individuals selected. This cycle (also called a generation) is 

repeated until a predefined threshold is met.  

The pseudo code for the canonical genetic algorithm or Simple Genetic Algorithm 

(Goldberg, 1989; Mengshoel, 1999) is described below: 

 

Figure 26. A simple genetic algorithm (Mengshoel, 1999). 

Note that maxgen is the iteration threshold and the outermost loop is repeated until this 

threshold is reached. For each generation, the GA functions select, crossover, mutate and the 

objective function objfunc are iterated. select(pop) selects an individual from the input 

population. P(crossover) takes chromosomes chrom1 and chrom 2 as input  and creates new 

chromosomes  as output  by crossing over with a probability  P(crossover). P(Mutation) mutates 
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each allele in the chromosome (chrom) and then returns a mutated chromosome. Objfunc refers 

to the objective function which is used for computing the fitness of the two new individuals. 

Decode maps the genotype to a phenotype (real value) of the chromosome. The fitness function 

objfunc takes a value from the phenotypic space and assigns it a fitness value. 

5.3 BAMSS Analysis with GA 

5.3.1 Data Encoding and Input for Simulation 

Chromosomes in a BBN network are represented using real integers instead of binary 

encodings. The reason for selecting higher order cardinality alphabet is because of:  1) The 

complex nature of the problem which makes binary encodings infeasible and 2) Research by 

Antonise (1989), Bhattacharyya and Koehler (1994), and Davis (1991) which shows that higher 

cardinality alphabets provide better results. We used the BAMSS COA Analysis network 

developed in the GeNIe Network module to evaluate the model GA. The node probabilities were 

obtained by querying the Bayesian Inference module while belief updating was done using the 

Bayesian Clustering Algorithm implementation. Discrete states of each node in the network 

corresponding to the states of a selected random variable and their corresponding prior and 

conditional probabilities were encoded as shown in Tables 22-25. 

Since Level 1 nodes are parent nodes, Table 22 gives the marginal distribution of all the 

variables that constitute that level.  

Table 22 

Level 1 Nodes Chromosome Encoding 

Y1 P(Y1) Y2 P(Y2) Y3 P(Y3) Y4 P(Y4) 
1 0.5 1 0.6 1 0.3 1 0.2 

2 0.3 2 0.4 2 0.3 2 0.6 

3 0.2   3 0.4 3 0.2 
4 0.1       
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Tables 23-25 give the conditional distribution of the rest of the informational variables in the 

Network. Since all Level 2, Level 3 and Level 4 variables are child nodes, the conditional 

dependencies must be encoded as shown. For ease of computation, it is assumed that all the 

variables have non-zero conditional probabilities and non-zero mutual information. 

Table 23 

Level 2 Nodes Sample Chromosome Encoding 

X1 Y1 Y2 Y3 Y4 P(X1|Y1Y2Y3Y4) X2 Y1 Y2 Y3 Y4 P(X2|Y1Y2Y3Y4) 

1 1 1 1 1 0.45 1 1 1 1 1 0.50 

2 1 1 1 1 0.30 2 1 1 1 1 0.80 
3 1 1 1 1 0.62 3 1 1 1 1 0.60 

1 2 1 1 1 0.80 4 1 1 1 1 0.35 

2 2 1 1 1 0.78 1 2 1 1 1 0.80 
3 2 1 1 1 0.19 2 2 1 1 1 0.70 

1 3 1 1 1 0.55 3 2 1 1 1 0.37 

2 3 1 1 1 0.45 4 2 1 1 1 0.23 

3 3 1 1 1 0.88 1 3 1 1 1 0.40 
1 4 1 1 1 0.34 2 3 1 1 1 0.20 

2 4 1 1 1 0.70 3 3 1 1 1 0.92 

 

Table 24 

Level 3 Nodes Sample Chromosome Encoding 

M1 X1 X2 X3 P(M1|X1X2X3) M2 X1 X2 X3 P(M2|X1X2X3) 

1 1 1 1 0.60 1 1 1 1 0.22 
2 1 1 1 0.40 2 1 1 1 0.43 

3 1 1 1 0.54 3 1 1 1 0.60 

1 2 1 1 0.90 1 2 1 1 0.50 
2 2 1 1 0.62 2 2 1 1 0.88 

3 2 1 1 0.10 3 2 1 1 0.15 

1 3 1 1 0.33 1 3 1 1 0.23 
2 3 1 1 0.85 2 3 1 1 0.54 

3 3 1 1 0.70 3 3 1 1 0.34 

1 1 2 1 0.30 1 1 2 1 0.65 

2 1 2 1 0.85 2 1 2 1 0.45 
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Table 25 

Level 4 Nodes Sample Chromosome Encoding 

T1 M1 M2 M3 M4 (P(T1|M1M2M3M4) T2 M1 M2 M3 M4 P(T2|M1M2M3M4) 
1 1 1 1 1 0.45 1 1 1 1 1 0.20 

2 1 1 1 1 0.30 2 1 1 1 1 0.67 

3 1 1 1 1 0.62 3 1 1 1 1 0.32 
1 2 1 1 1 0.80 1 2 1 1 1 0.89 

2 2 1 1 1 0.78 2 2 1 1 1 0.45 

3 2 1 1 1 0.19 3 2 1 1 1 0.60 

1 3 1 1 1 0.55 1 3 1 1 1 0.55 
2 3 1 1 1 0.45 2 3 1 1 1 0.70 

3 3 1 1 1 0.88 3 3 1 1 1 0.10 

1 1 2 1 1 0.34 1 1 2 1 1 0.50 
2 1 2 1 1 0.70 2 1 2 1 1 0.45 

 

The complete state of the Network can thus be represented by a chromosome of 50 genes, 

each gene representing a network variable. The chromosome is a configuration of all the network 

variables, represented as a string of integers and it encapsulates the conditional probability of a 

variable in a given state. Considering the rows in Tables 22-25, a sample population of five 

chromosomes representing the complete state of the network is represented as follows:  

[
 
 
 
 
 

 

    
𝒀𝟏    𝒀𝟐    𝒀𝟑    𝒀𝟒    𝑿𝟏    𝑿𝟐     𝑿𝟑    𝑴𝟏    𝑴 𝟐    𝑴𝟑     𝑴𝟒     𝑻𝟏    𝑻𝟐     𝑻𝟑

1111 11111 11111 11111 1111 1111 1111 1111 11111 11111 11111
  2111 21111 21111 21111 2111 2111 2111 2111 21111 21111 21111 
 3111 31111 31111 31111 3111 3111 3111 3111 31111 31111 12111
 4111 12111 41111 12111 1211 4111 1211 4111 12111 12111 22111
1211 22111 12111 22111 2211 1211 2211 1211  22111 22111 13111 ]

 
 
 
 
 

 

 Note that the gene position in the chromosome array represents the actual order of the variable 

nodes in the topology of the network. The phenotype for these chromosomes is decoded to the 

following linearly ordered array: 
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[
 
 
 
 
 

𝒀𝟏    𝒀𝟐    𝒀𝟑    𝒀𝟒    𝑿𝟏    𝑿𝟐     𝑿𝟑    𝑴𝟏    𝑴 𝟐    𝑴𝟑     𝑴𝟒     𝑻𝟏    𝑻𝟐     𝑻𝟑

0.5   0.6   0.3   0.2   0.45   0.5   0.8   0.6   0.22   0.47   0.75   0.5   0.2   0.8
0.3   0.6   0.3   0.2   0.3   0.8   0.6   0.4   0.43   0.82   0.62   0.8   0.67   0.15
0.2   0.6   0.3   0.2  0.62   0.8   0.5   0.54   0.6  0.23   0.9   0.33   0.32   0.88
0.1   0.6   0.3   0.2   0.8    0.35   0.6    0.9  0.5   0.7    0.4   0.45  0.89    0.55
0.5   0.4   0.3   0.2   0.78  0.8   0.6   0.62  0.88  0.2    0.7    0.65   0.45    0.8]

 
 
 
 
 

 

Considering only the first two levels of the model with seven nodes (Level 1 and Level 2 nodes) 

the search space comprises of {(𝑌1)
4 ∗ (𝑌2)

2 ∗ (𝑌3)
3 ∗ (𝑌4)

3 ∗ (𝑋1)
3 ∗ (𝑋2)

4 ∗ (𝑋3)
3} =2592 

points .With each gene having two or more discrete values (alleles) the search space for all 

possible combinations of variables in the Network is exponentially large making abductive 

inference in such a network to be considered an NP-hard problem (Shimony, 1994).  

The GA used in the BAMSS model development was implemented in Java using the 

JAGA API. JAGA runs on Java version 1.4 and higher and is freely available under the GNU 

General Public License Version 2.0. After downloading the appropriate libraries, an executable 

.jar file was developed in the NetBeans IDE and modified for the fitness function and other 

problem-specific GA operators. For the standalone GA module, the original version was 

developed in the Python 2.7 programming language in order to better capture the graphical 

results of the GA. The graphical library used is Pyside, a python version of QT4. The jpype 

library was used to interface with the smile.jar library in the main BAMSS model. The plot 

graphing was done using pyqtgraph, which required NumPy and SciPy as dependencies. All 

development was done in the IDE.  

5.3.2 Experimental Evaluation 

The BAMSS Network described in Chapter 4 is used to evaluate the model using the 

BAMSS- GA. The Network consists of 14 variables each of which has 2, 3 or 4 different states. 

The pseudo code for the BAMSS GA algorithm is described in Figure 27 and a sample Java-

based implementation algorithm is given in Figure 28. 
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Figure 27. BAMSS genetic algorithm.  

 

Figure 28. Sample Java code for BAMSS-GA implementation.  

//  GA algorithm work

            

             Configuration gaConfig=new DefaultConfiguration();

               DefaultConfiguration.reset();

               // Adding mutation and crossover

               GeneticOperator gcr=new CrossoverOperator(gaConfig,pcr, true);

               GeneticOperator gmr=new GaussianMutationOperator(gaConfig,pmt);

               gaConfig.addGeneticOperator(gcr);

               gaConfig.addGeneticOperator(gmr);

               

             IChromosome chromosome=new Chromosome(gaConfig,new DoubleGene(gaConfig,0, 

1),14);

             gaConfig.setSampleChromosome(chromosome);

             gaConfig.setPopulationSize(populationSize);

             gaConfig.setFitnessFunction(new ByesianNetworkFitness(fitnessValue));

             

             Population pop=new Population(gaConfig, populationSize);

             for(int c=0;c<populationSize;c++)

             {

             Gene[]gene=chromosome.getGenes();

              Gene[]newGene=new Gene[gene.length];

              for(int j=0;j<gene.length;j++)

              {

                  newGene[j]=gene[j].newGene();

                  newGene[j].setAllele(cbMatrix[c][j]);                  

              }

              IChromosome chrom = new Chromosome(gaConfig);

              chrom.setGenes(newGene);

              pop.addChromosome(chrom);

             }

          logger.info("Gene initialisation completed");

           // Now we need to construct the Genotype.

             Genotype genotype=new Genotype(gaConfig, pop);
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The termination condition is a user-defined fitness value which specifies the probability 

of the Network solutions that we are interested in or the maximum number of generations that is 

set for algorithmic computations. Any solution that does not meet the stopping criterion is 

discarded by the model and does not appear in the output results. For BAMSS simulation 

experiments, a fitness value of 70% was used for all the experimental configurations. A common 

problem with GA is that it does not provide a window into the piecewise examination of the 

output. This makes the interpretation of the results challenging. To overcome this challenge, a 

decode function was added to convert the genotype to the phenotype for output interpretation. . 

This is shown in the algorithm in Figure 29. 

 

Figure 29. Sample Java code for decoding the BAMSS-GA genotype. 

public class GAResult
{
    private int generation;
    private double fitnessValue;
    private String geneCombination;
    public int getGeneration() {
        return generation;
    }
    public void setGeneration(int generation) {
        this.generation = generation;
    }
    public double getFitnessValue() {
        return fitnessValue;
    }
    public void setFitnessValue(double 
fitnessValue) {
        this.fitnessValue = fitnessValue;
    }
    public String getGeneCombination() {
        return geneCombination;
    }
    public void setGeneCombination(String 
geneCombination) {
        this.geneCombination = geneCombination;
   }
  
}
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5.3.3 Simulation Results 

Three simulation runs were performed, varying the algorithm parameters for each run. 

For each simulation, the GA parameters were set as shown in Table 26. 

Table 26 

GA Parameters for Three Simulation Experiments 

 

The initial population was entirely randomized for a faster convergence to a good solution. 

Following de Campos et al. (1999) we added a parameter for probability of transition (selection) 

to ensure the diversity of the population and avoid convergence to local optima. By setting the 

probability to 50%, we ensured that the best 50% of the chromosomes were carried over from the 

initial population to the population at the next generation. The probability of crossover ensured 

that 49% of the new population is selected by crossover. The choice of the parent to be selected 

for crossover was proportional to the fitness of that parent. The final 1% of the new population 

was selected by mutation. The chromosomes to be mutated were selected randomly from the 

initial population, mutated with a given probability of mutation and copied into the new 

population.  

 The algorithm terminated when the stopping criterion (20 generations) had been reached. 

The desired number of network solutions (k) was set to 20 so that the model would output 20 

MPEs for the network. Figure 30 shows the interface for the GA standalone module of BAMSS 

with the parameter input menu displayed. 
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Figure 30. Graphical user interface for the BAMSS-GA module. 

The complete GA processing returned a table with the k most probable network states as 

shown in Figure 31. The first column here, represents the probability of the selected MPE 

defined as the probability that the network will be in the chosen state. The second column is the 

genotype, a string representation of the MPE where each gene represents a specific node in the 

network (random variable) and the outcome of that node. The third column is the graphical 

representation of the phenotype, showing all the nodes in the appropriate state. Each node has the 

state of the random variable set according to the genotype of the MPE.  

Belief Updating and Abductive Inference is performed when the user selects the 

phenotype of the MPE. The resultant Network and posterior probabilities are displayed as shown 

in Figure 32. The kMPEs are stored in a sensemaking database and when appropriately selected 

are loaded into BAMSS by the “Select Model File” command in the BAMSS GUI. When new 

evidence is available, inference is performed using the Bayesian Clustering Algorithm as 

described in Chapter 4. 
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Figure 31. The kMPE output of the BAMSS-GA module. 

Figure 32 shows the network view of the phenotype of the selected MPE. Clicking on the view 

button shows one global view of the MPE. 

 

Figure 32. Network view of the phenotype of a selected MPE. 

The BAMSS-GA GUI allows the user to plot and graphically evaluate the evolution of 

the fitness value of the selected solution(s) in each generation. Figure 33 shows the evolution of 

probabilities over all the generations for the best, the worst and the average solutions. The green 

line represents the best solutions while the red line represents the worst solutions. The average of 
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the two populations represents the convergence trend towards an optimal solution and is 

represented by the blue line. This is a graphical representation of how the algorithm search 

process refines the results pool over each generation and how fast it converges towards the 

optimal result.  

The best solution follows a logarithmic growth curve, increasing rapidly for the first 10 

generations before flat lining to a constant level. The maximum probability is reached at the 10
th

 

generation. The average solution asymptotically approaches the best solution, converging after 

15 generations. The worst solution of the network is a non-monotonic with oscillations of 

significant amplitude especially after 10 generations. The oscillations of the fitness (probability) 

of the solutions in each generation indicate that the algorithm is sampling from a diverse 

population and this is a desirable feature for the model to achieve better results. The probability 

of the MPE is plotted on the y-axis while the iteration or generation number is plotted on the x-

axis. 

 

Figure 33. Evolution of fitness for the best, average and worst solutions of the BAMSS COA 

Analysis network for experiment 1.Green = best solution, Blue = average, Red = worst solution. 
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The effects of varying the GA parameters for the second and third simulations are shown 

in Figure 34. The most significant effect is the faster convergence to an optimal Network 

solution. The population diversity is increased due to an increase in the probability of mutation 

and hence, the convergence of the algorithm to an optimal solution is faster. The behavior of the 

worst individuals is also significantly improved with fewer oscillations due to the diverse 

sampling population. The probability of the MPE is plotted on the y-axis while the iteration or 

generation number is plotted on the x-axis. 

 

Figure 34. Effects of varying the GA parameters on the network solution probability for 

experiment 2(top) and experiment 3(bottom).Green = best solution, Blue = average solution, Red 

= worst solution.  

Table 27 is a summary of the probability of the best, average, and worst network 

solutions obtained for each of the three trials. A result for only the first 10 generations are shown 

since convergence to the best solution occurs after about 10 generations. The genotype for the 

kMPEs is [02110110000000] which is decoded to the phenotype [Y1 = y12, Y2 = y21, Y3 = y33, Y4 = 

y42; X1 = x11, X2 = x22, X3 = x32; M1 = m11, M2 = m21, M3 = m31, M4 = m41; T1 = t11, T2 = t21, T3 = t31]. 
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Table 27 

Probability of MPE for the Simulation Experiments 

Experiment 1 Experiment 2 Experiment 3 

P (MPE) P(MPE) P(MPE) 

Gen

# 

Best Average Worst Gen

# 

Best Average Worst Gen

# 

Best Average Worst 

0 3.44E-06 1.03E-09 1.65E-07 0 2.25E-06 1.87E-09 1.83E-07 0 3.89E-06 3.76E-09 1.65E-07 

1 4.01E-06 4.90E-09 2.48E-07 1 4.50E-06 3.20E-09 2.98E-07 1 3.89E-06 2.73E-09 2.59E-07 

2 5.73E-06 3.40E-08 5.19E-07 2 4.50E-06 4.31E-08 5.91E-07 2 3.89E-06 3.23E-08 5.20E-07 

3 5.73E-06 1.15E-07 9.39E-07 3 4.50E-06 9.19E-08 1.04E-06 3 4.00E-06 1.02E-07 9.42E-07 

4 5.73E-06 2.00E-07 1.61E-06 4 1.02E-05 2.20E-07 1.69E-06 4 5.76E-06 1.49E-07 1.51E-06 

5 6.30E-06 6.24E-07 2.64E-06 5 1.02E-05 2.65E-07 2.61E-06 5 9.81E-06 2.09E-07 2.29E-06 

6 7.59E-06 1.48E-06 3.65E-06 6 1.02E-05 7.17E-07 3.75E-06 6 9.81E-06 3.92E-07 3.32E-06 

7 1.12E-05 2.06E-06 4.62E-06 7 1.12E-05 8.38E-07 5.19E-06 7 9.81E-06 6.79E-07 4.45E-06 

8 1.12E-05 2.62E-06 5.74E-06 8 1.12E-05 8.94E-07 6.50E-06 8 9.81E-06 1.51E-06 5.78E-06 

9 1.12E-05 3.45E-06 7.03E-06 9 1.19E-05 2.23E-06 7.71E-06 9 1.19E-05 1.51E-06 6.90E-06 

10 1.19E-05 5.27E-06 8.31E-06 10 1.19E-05 1.52E-06 8.89E-06 10 1.19E-05 1.23E-06 8.06E-06 

 

Table 28 shows the comparison of performance gains for BAMSS-GA compared to BAMSS for 

the three experiments. Seven simulations were performed for each experiment and the MPE for 

each run selected. The corresponding genotype of each MPE is shown in the second column. For 

all the simulation runs, each variable of the network was set to a specific state which was held 

constant across all the trials. The probability of evidence for BAMSS (Bayesian Clustering 

Algorithm) and BAMSS-GA was then computed.  

Table 28 

Performance Comparison for BAMSS and BAMSS-GA 

 Experiment 1 Experiment 2 Experiment 3 

P (MPE) MPE  P(MPE) MPE P (MPE) MPE P(MPE)) 

BAMSS Genotype BAMSS-
GA 

Genotype BAMSS-
GA 

Genotype BAMSS-
GA 

1.508E-08 02110110000000 1.193E-05 02110110000000 1.193E-05 02120110000000 8.951E-06 

8.639E-09 10000100000000 4.789E-05 10000100000000 4.789E-05 10000100300000 3.369E-05 

7.999E-09 10000100000000 4.543E-05 10000100000000 4.543E-05 10000101000000 3.724E-05 

7.251E-09 10002100200000 4.227E-05 10000100000000 4.693E-05 10002110000000 3.672E-05 

7.504E-09 10000100000000 5.602E-05 10000100200000 5.038E-05 10000110000000 4.866E-05 

5.823E-09 10002100300000 4.849E-05 10000100300000 5.385E-05 10000110300000 4.678E-05 

8.446E-09 10000100300000 4.873E-05 10000100300000 4.874E-05 10000110000000 3.963E-05 
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The results of these simulations are displayed graphically in Figures 35-38.To make the 

charts readable, a logarithmic scale was used for the probability of the network solution denoted 

as P(MPE) or simply as P(e). 

 

Figure 35. Comparison of performance gains for BAMSS-GA for Experiments 1, 2 and 3. 

 

Figure 36. Performance gains for BAMSS-GA compared to BAMSS for Experiment 1. 
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Figure 37. Performance gains for BAMSS-GA compared to BAMSS for experiment 2. 

 

Figure 38. Performance gains for BAMSS-GA compared to BAMSS for experiment 3. 

5.4 Discussion 

The results shown in the preceding section show that the BAMSS-GA is able to find the 
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probabilities are also displayed in the first column of Figure 31. For each experiment, the 

probabilities of 10 Network solutions are presented along with the optimal solution. To each 

solution, there exists a specific genotype corresponding to the combination of variables that can 

produce the solution as displayed in the second column of Figure 31. The genotype for the 

kMPEs is [02110110000000] which is decoded to the phenotype [Y1 = y12, Y2 = y21, Y3 = y33, Y4 = 

y42; X1 = x11, X2 = x22, X3 = x32; M1 = m11, M2 = m21, M3 = m31, M4 = m41; T1 = t11, T2 = t21, T3 = t31]. 

From the phenotype, the extracted hypotheses for the MPE are Y1 = y12 (Law and Order 

Breakdown); Y2 = y21 (Sectarian Governance Structures), Y3 = y33 (Disruption of Civic and 

Governance Processes) and Y4 = y42 (Sectarian Violence). 

 A comparison of performance gains obtained by using BAMSS-GA is shown in Table 

28. Using the Bayesian Clustering Algorithm (Chapter 4), each simulation can only return one 

probability of the Network solution. An advantage of using GA, as shown in Tables 27 and 28 is 

that each simulation returns more than one Network solution as well as the optimal Network 

solutions based on the user defined parameters. If the analyst is interested in 20 solutions with a 

fitness value of, say 70%, the only input needed is the parameter specification. The output results 

will contain 20 Network solutions with a 70% probability of occurring given the evidence as 

well as the probability and genotype of the optimal Network solution.  

For COA analysis, the states of the variables for the three experimental configurations in 

the simulation were set as follows: The hypothesis variable Y1 was set to state y13 (Insurgent 

Control of the Population).Similarly Y2 = y21 (Sectarian governance structures), Y3 = y32 

(Insurgent control of the security space), and Y4 = y41 (Nationalism).The informational variables 

were set as follows: X1 = x11, X2 = x23, X3 = x32, M1 = m12,M2 = m23,M3 = m33,M4 = m42, T1 = t12, T2 

= t23 and T3 = t32.  For experiment 1, using BAMSS-GA, the probability of obtaining an MPE is 
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4.227E-05 with the genotype [10002100200000] corresponding to phenotypes: Y1 = y12, Y2 = y21, 

Y3 = y31, Y4 = y41; X1 = x13, X2 = x22, X3 = x31; M1 = m11, M2 = m24, M3 = m31, M4 = m41; T1 = t11, T2 = 

t21, T3 = t31. 

 For illustration purposes, assume that the following hypotheses are under consideration 

by the commander:  Y1 = y13 (Insurgent Control of the Population), Y2 = y21 (Sectarian 

Governance Structures), Y3 = y32 (Insurgent Control of the Security Space) and Y4 = y41 

(Insurgent Nationalism).  From the simulation results, considering only the Y1 hypothesis 

variable, the MPE is Y1 = y12 (breakdown in law and order) and not the initial hypothesis state y13 

(Insurgent Control of the Population). The change in the hypothesis state is supported by 

explanatory variables X3|x32→x31 (Unbounded Battlespace), M1|m12→m11 (Insurgent Security 

Target Engagement). For experiment 2, the probability of the MPE is 4.693E-05 with a 

corresponding genotype, [10000100000000]. The informational variable changes from X1 = x13 to 

X1 = x11 meaning the most probable state of the Network is to be reached if we consider the 

insurgent political operational effect to be Sectarian Identity (X1 = x11) rather than the Legitimacy 

of Jihad (X1 = x13). Additionally the tactical effect changes from T3 = t32 (Infrastructure 

Sabotage) to T3= t31 (Arson).  The commander will therefore have to give more weight to this 

evidence variable for detail planning by, for example, increasing force levels in areas where 

critical infrastructure such as dams or power stations are located or deploying surplus units.  

For experiment 3, the probability of the MPE is 3.672E-05 with a genotype, 

[10002110000000].The evidence variable X3 = x31 (Unbounded Battlespace) changes to X3 = x32 

(Techniques, Tactics and Procedures). In this case a change in the counterinsurgent force tactics 

may be required to counteract the insurgents who operate with highly dispersed and 
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decentralized command and control structures. The commander may have to consider these 

changes in the Political Operational Effects to inform the select hypotheses.  

 Using the Bayesian Clustering Algorithm, the probability for getting an MPE with the 

Network evidence set as previously described is 7.251E-09. Note that the probability of 

obtaining the Network solution, P(MPE) decreases by an order of magnitude (103) due to the 

inherent limitations of the clustering algorithm. In general, from the kMPEs output from 

BAMSS-GA, the analyst can select an MPE for a COA analysis. When new evidence is 

introduced in the evidence variables of the network, the Bayesian Clustering Algorithm is then 

applied and the posterior belief distribution of the hypothesis variables or the target variables of 

interest is computed as discussed in Chapter 4. 

5.5 Chapter Summary 

This chapter described the optimization of abductive inference in BAMSS using a 

Genetic Algorithm. The problem of Abductive Inference was presented as one of finding the 

most probable explanation or the MPEs of a Bayesian Network. Three simulation runs were 

conducted, varying the GA parameters for each run. For the first experiment, the probability of 

crossover was set to 0.49 while the probability of mutation was set at 0.01. The probability of the 

best network solution (MPE) was 1.19E-0.5 for the genotype [02110110000000] with a 

corresponding phenotype [Y1 = y12, Y2 = y21, Y3 = y33, Y4 = y42; X1 = x11, X2 = x22, X3 = x32; M1 = 

m11, M2 = m21, M3 = m31, M4 = m41; T1 = t11, T2 = t21, T3 = t31] 

For the second experiment, the parameters were varied with the probability of crossover 

= 0.4 and the probability of mutation = 0.1.  By comparing the best results for each experiment in 

Table 27 using the P(MPE) or P(e) as the comparison metric, this experimental configuration 

yielded 30% better network solutions due to the population diversity introduced by the increase 
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in the probability of mutation. The third simulation experiment with P(Crossover) = 0.35 and 

P(Mutation) = 0.15 did not show much improvement in the quality of the solutions implying that 

the best parameter setting had been exceeded.  

For COA analyses, the states of the variables  for all the experimental configurations in 

the  simulation were set as follows: The hypothesis variable Y1 was set to state y13 (Insurgent 

Control of the Population).Similarly Y2 = y21 (Sectarian governance structures), Y3 = y32 

(Insurgent control of the security space), and Y4 = y41 (Nationalism).The informational variables 

were set as follows: X1 = x11, X2 = x23, X3 = x32, M1 = m12, M2 = m23, M3 = m33, M4 = m42, T1 = t12, 

T2 = t23 and T3 = t32.  Tables 29-31 give the summary and comparisons of the outcomes of the 

experiments. The most probable hypothesis and the explanatory variables are highlighted.  

Table 29 

Experiment 1: Probability of Crossover = 0.49, Probability of Mutation = 0.01, Number of 

Generations=20, k MPEs=20 

Genotype Input Hypothesis 
Input nodes 

Input 
Informational 

Variables 

Output 
Hypothesis 

nodes 

Best 
Explanatory 

Variables 

Network 
Efficiency 

Comments 

10100211221121 Y1 = y13 
Y2 = y21 
Y3 = y32 
Y4 = y41 

X1 = x11 
X2 = x23  
X3 = x32 
M1 = m12 
M2 = m23 
 M3 = m33 

M4 = m42 
T1= t12,  
T2 = t23,  
T3 = t32 

Y1 = y12 
Y2 = y21 
 Y3 = y31 
 Y4 = y41 

X1 = x11, 
X2 = x23,  
X3 = x31, 
M1= m11, 
M2 = m24 
M3 = m31 

M4 = m41  
T1 = t11, 
T2 = t21, 
T3 = t31 

85% →17 
out of 20 
plausible 
network 
solutions 
better than 

BAMSS 

Most 
probable 
hypothesis 
is 
Breakdown 
in Law and 

Order, y12 

not 
Insurgent 
Control of 
the 
Population, 
y13. 
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Table 30 

Experiment 2: Probability of Crossover = 0.40, Probability of Mutation = 0.10, Number of 

Generations=20, k MPEs=20 

Genotype Input Hypothesis 

Input nodes 

Input 

Informational 
Variables 

Output 

Hypothesis 
nodes 

Best 

Explanatory 
Variables 

Network 

Efficiency 

Comments 

10100211221121 Y1 = y13 
Y2 = y21 
Y3 = y32 

Y4 = y41 

X1 = x11 
X2 = x23  
X3 = x32, 

M1 = m12  
M2 = m23 
M3 = m33 
M4 = m42  
T1= t12  
T2 = t23  
T3 = t32 

Y1 = y11 
Y2 = y22 
Y3 = y31 

Y4 = y41 

X1 = x13 
X2 = x22  
X3 = x31 

M1= m11 
M2 = m21 
M3 = m31 
M4 = m41  
T1 = t11  
T2 = t21  
T3 = t31 

95%→ 19 
out of 20 
plausible 

network 
solutions 
better than 
BAMSS 

X1 = x13 to 
X1 = x11: the 
insurgents 

are using 
Sectarian 
Identity (X1 

= x11) rather 
than the 
Legitimacy 
of Jihad (X1 

= x13) as the 
political 
operations 
effect. 

 

Table 31 

Experiment 3: Probability of Crossover = 0.35, Probability of Mutation = 0.15, Number of 

Generations=20, k MPEs=7 

Genotype Input Hypothesis 

Input nodes 

Input 

Informational 
Variables 

Output 

Hypothesis 
nodes 

Best 

Explanatory 
Variables 

Network 

Efficiency 

Comments 

10100211221121 Y1 = y13 
Y2 = y21 

Y3 = y32 
Y4 = y41 

X1 = x11 
X2 = x23 

 X3 = x32 
M1 = m12 
M2 = m23  
M3 = m33 
M4 = m42  
T1= t12 
T2 = t23 

T3 = t32 

Y1 = y11 
Y2 = y22  

Y3 = y31  
Y4 = y41 

X1 = x12 
X2 = x22  

X3 = x32 
M1= m11 
M2 = m21  
M3 = m31 

M4 = m41  
T1 = t11  
T2 = t21  

T3 = t31 

70%→14 
out of 20 

plausible 
network 
solutions 
better than 
BAMSS 

X3 = x31 
Unbounded 

Battlespace
changes to 
X3 = x32 
Techniques, 
Tactics and 
Procedures
. Probable 

COA is to 
consider 
changes in 
coalition 
TTPs  
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Comparison of performance gains for BAMSS-GA and BAMSS was performed using the 

same experimental setup. Using P(MPE) as the comparison metric, the results showed that 

Bayesian Network inference using BAMSS-GA produced better network solutions than BAMSS 

by an order of magnitude (103). The network view of the computed MPE gave a representation 

of the network nodes with evidence set to the state of the solution. The phenotype of this 

representation was a network with a global state of the computed posterior probabilities. When 

the network was loaded into BAMSS, the computed posterior probabilities became priors and 

prior conditionals. When new evidence was introduced into the network, the Bayesian Inference 

algorithm was applied and the updated posterior beliefs of the hypothesis variables or target 

variables of interest were computed. 
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CHAPTER 6 

Observations, Conclusions and Future Research 

6.1 Summary 

Chapter one offers a general introduction to the research topic, the problem statement, the 

research goals and objectives, the challenges encountered in the research and the general 

contribution to the scientific body of knowledge. Chapter two reviews both the qualitative and 

analytical models of sensemaking. From the qualitative analyses, most researchers have focused 

on the aspect of cognition where the primary sensemaking task is to construct a meaningful 

mental representation of the problem space. Schema-driven representation, mental models, and 

other cognitive constructs dominate the process models of sensemaking that have been 

discussed. These models give an understanding of the meta-cognitive and cognitive acts that 

inform the sensemaking process and determine how they may be applied to understand and 

overcome the cognitive limitations of the human mind. The limitations of this approach lie 

primarily in the lack of a unifying paradigm of sensemaking. An additional challenge exists in 

knowing how to use information gained from these models to develop a unifying framework or 

provide standardized guidance for the development of better sensemaking support systems. 

  Research on sensemaking analytics is presented as a tool to support the sensemaking 

process. In this approach, sensemaking models are defined as computational cognitive models 

whose primary task is to enable processing of information to achieve an understanding of the 

problem space and facilitate an effective analysis process. Most of the models discussed have 

been developed for the fields of intelligence analysis, information foraging and knowledge 

management. The diversity of approaches advocated provides challenges in developing a unified 

sensemaking process. A critical look at the tools developed does point to one aspect: the gradual 
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shift from decision support tools to sensemaking support tools. Sensemaking support tools focus 

on augmenting the cognitive capability of the sense-maker during the whole process of 

sensemaking. 

This research uses the tool-based approach for two reasons:  First, advances in the field of 

Computational Intelligence have led to the development of powerful and efficient algorithms and 

methods that can be used to computationally simulate some processes in sensemaking. For 

example, it is possible to represent sensemaking models in software and cognitive architectures. 

The algorithms can simplify the process of sensemaking tasks in context. Second, through the 

use of computational techniques such as Bayesian Networks and Abductive Inference, both the 

qualitative and quantitative approaches can be combined to provide a better representation of a 

sensemaking process. 

Chapter three discusses Bayesian Formalism for representing sensemaking information. 

The Bayesian Belief Network reflects a person’s belief about the state of a variable in the real 

world through the use of joint probability distributions over the variables. Bayesian Networks are 

presented as normative cognitive models that support sensemaking under uncertainty. The 

networks are shown to support reasoning about evidence and actions not easily handled by other 

competing computational models. In a Bayesian Belief Network, inference is undertaken by 

abduction. This means that we infer from effects to the best explanation of those effects. This 

reflects the behavior of a sensemaking problem. A forward (top-down) inference was shown to 

support prospective sensemaking, while a backward (bottom-up) inference supported 

information fusion in retrospective sensemaking. 

Chapter four discusses the development experiments and validations of the BAMSS 

model using a case study in asymmetric warfare. Vignettes representative of a sensemaking task 
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in the asymmetric warfare domain were developed and used for analyses. In the first vignette, the 

sensemaking task required an analyst to create a hypothesis variable Y1 = y12 where y12 

represented Law and Order Breakdown. New evidence was then introduced in the node M1 = 

m11, where m11 was an indicator for the Security Target Engagement by varying the input data 

from 0.1 to 0.9. Results from seven simulation runs were then analyzed for the informational 

variables X1 = x11 (Sectarian Identity) and T3 = t32 (Infrastructure Sabotage). 

Examining the evidence propagation in the first vignette, the probability of (Law and 

Order Breakdown) remained relatively stable at 40% with increasing evidence of adversary 

targeting of the counterinsurgent security personnel. The relative stability of the posterior belief 

distribution implied that the causal effect of this variable was limited hence does not carry much 

weight as a COA. The probability that the Insurgent Security Target Engagement as a mode of 

operation was influenced by Sectarian Identity (X1= x11) decreased from 50% to 30% .This 

would imply that operations against security personnel could not be attributed to a particular 

group. In fact, focusing on the sectarian identity of the group could be detrimental to the course 

of action selection because of the negative correlation and this effect then, ought to be discarded. 

The probability of (Infrastructure Sabotage| Insurgent Security Target Engagement) increased 

from 20 to 40%. An increase in infrastructure sabotage was the most likely tactical effect of the 

increase in insurgent security target engagement probably due to the vacuum created by this 

particular military operational effect. This COA would require the commander to increase 

protection for critical infrastructure and security targets.  

For the second vignette, the hypothesis for the sensemaking task was changed to Y2 = y22 

(Insurgent ideology). Evidence was introduced in node X3 = x33 (Intelligence Asymmetry) and the 

posterior probabilities for informational variables M1 = m11 (Security Target Engagement) and T2 
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= t21 (Small Arms Attacks) were computed. The probability of (Insurgent Security Target 

Engagement| Intelligence Asymmetry) decreased from 60 to 35% as evidence for intelligence 

asymmetry increased from 0.1 to 0.9. This implied that better intelligence by the insurgent group 

was not a direct influence on this mode of operation. The commander’s COA could likely invest 

more resources in recruiting intelligence assets to counteract the asymmetry. Probability of 

(Small Arms Attacks| Intelligence Asymmetry) showed minor variability at 40% similar to the 

P(Insurgent Ideology|intelligence asymmetry) . The tactical effect Small Arms Attacks was not 

significantly influenced by the insurgent intelligence assets. Both these effects were however, 

inadmissible as courses of action. 

In the last sensemaking vignette, we considered the hypothesis variable Y4 = y41, the 

insurgent concept of Nationalism. For the informational variables we set X2 = x22 (Insurgent 

Modular Operations) and M2 = m23 (Civilian Shelters). New evidence was introduced into 

variable T3 = t32 (Arson). The probability of (Insurgent Modular Operations| Arson) decreased 

from 50 to 40% (approximately) with an increase in evidence of Arson as a tactical effect from 

0.1 to 0.9. The probability of Nationalism increased from 30 to 40% while the P(Civilian 

Shelters| Arson) remained constant at 30%. The commanders’ COA could be to consider the 

tactical effect as a reflection of nationalistic feelings and take appropriate measures in the 

PMESII spectrum to address this effect. P(Insurgent Modular Operations| Arson) and P(Civilian 

Shelters| Arson)  were not admissible for COA analyses. 

 A sensitivity analysis was performed on the model output for the second sensemaking 

support demonstration using three simulation experiments. In the first experiment, target nodes 

representing Tactical Effects variable T1 (t11, t12, and t13) were selected. The probability of (Law 

and Order |High Level Attrition Attacks) did not show significant variation to changes in input 
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evidence from 0.1 to 0.9. P(Civilian Suicide Bombing) showed the highest posterior belief  

accrual peaking at 58% demonstrating that the new evidence on this variable could confirm the 

most likely aposteriori hypothesis (Y1 = y12). On average, P(Remotely Detonated IEDs|Law and 

Order Breakdown) was 10% while P(Rocket Propelled Grenades|Law and Order Breakdown) 

was 28%. In general, the commander could consider the variable Civilian Suicide Bombing for 

additional analysis since it exhibited the greatest variation in response to changes in the input 

variable. 

In the second simulation, a sensitivity analysis was performed on variable T2 (t21, t22, t23), 

varying the input to node Y4 = y42 (Sectarian Violence). P(Small Arms Attacks| Sectarian 

Violence) recorded the highest aposteriori probability at 44%. A COA analysis by the 

commander required a closer examination of the differences between t22 (Coercive Threats, 

30%) and t23 (Convoy Ambushes, 30%) which seemed to exhibit interaction effects. Lastly, 

sensitivity analysis was done for target nodes T2=t23 (Convoy Ambushes), T3=t31 (Infrastructure 

sabotage), and T3= t32 (Arson). Infrastructure Sabotage recorded the highest variations and 

posterior belief at 75% as evidence in the input variable Y2 = y22 (Insurgent Ideology) was varied 

from 0.1 to 0.9. The high degree of sensitivity to the variation in input could prompt the 

commander to perform additional what-if analyses to identify more causal variables. Similarly, 

for P(Convoy Ambush| Sectarian Violence) and P(Arson| Sectarian Violence), both had an 

average aposteriori probability of 30% since they exhibited mutually exclusive behaviors. 

Chapter five described an optimization of Abductive Inference in BAMSS using a 

Genetic Algorithm(GA)  and simulation experiments to find the most probable explanations 

(MPEs). Three simulation runs were conducted, varying the GA parameters for each run. For the 

first experiment, the probability of crossover was set to 0.49 while the probability of mutation 
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was set at 0.01. The probability of the best network solution (MPE) was 1.19E-0.5 for the 

genotype [02110110000000] with a corresponding phenotype [Y1 = y12, Y2 = y21, Y3 = y33, Y4 = y42; 

X1 = x11, X2 = x22, X3 = x32; M1 = m11, M2 = m21, M3 = m31, M4 = m41; T1 = t11, T2 = t21, T3 = t31] 

For the second experiment the parameters were varied with the probability of crossover = 

0.4 and the probability of mutation = 0.1. By comparing the best results for each experiment in 

Table 27 using the P(MPE) as the comparison metric, this experimental configuration yielded 

30% better network solutions due to the population diversity introduced by the increase in the 

probability of mutation. The third simulation experiment with the probability of crossover = 0.35 

and the probability of mutation = 0.15 did not show much improvement in the quality of the 

solutions implying that the best parameter setting had been exceeded. 

For COA analysis, the states of the variables for the three experimental configurations in 

the simulation were set as follows: The hypothesis variable Y1 was set to state y13 (Insurgent 

Control of the Population). Similarly, Y2 = y21 (Sectarian governance structures), Y3 = y32 

(Insurgent control of the security space), and Y4 = y41 (Nationalism). The informational variables 

were set as follows: X1 = x11, X2 = x23, X3 = x32, M1 = m12,M2 = m23,M3 = m33,M4 = m42, T1 = t12, T2 

= t23 and T3 = t32.  For experiment 1, using the BAMSS-GA, the probability of obtaining an MPE 

was 4.227E-05 with the genotype [10002100200000] corresponding to phenotypes: Y1 = y12, Y2 = 

y21, Y3 = y31, Y4 = y41; X1 = x13, X2 = x22, X3 = x31; M1 = m11, M2 = m24, M3 = m31, M4 = m41; T1 = t11, 

T2 = t21, T3 = t31. 

For illustration purposes, assume that the following hypotheses are under consideration 

by the commander:  Y1 = y13 (Insurgent Control of the Population), Y2 = y21 (Sectarian 

Governance Structures), Y3 = y32 (Insurgent Control of the Security Space) and Y4 = y41 

(Insurgent Nationalism).  From the simulation results, considering only the Y1 hypothesis 
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variable, the MPE supports Y1 = y12 (breakdown in law and order) and not the initial hypothesis 

state y13 (insurgent control of the population). The change in the hypothesis state is supported by 

explanatory variables X3|x32→x31 (Unbounded Battlespace), M1|m12→m11 (Insurgent Security 

Target Engagement).  

For experiment 2, the probability of the MPE is 4.693E-05 with a corresponding 

genotype, [10000100000000]. The informational variable changes from X1 = x13 to X1 = x11 

meaning the most probable state of the network is to be reached if we consider the insurgent 

political operational effect as using Sectarian Identity (X1 = x11) rather than the Legitimacy of 

Jihad (X1 = x13). Additionally the tactical effect changes from T3 = t32 (Infrastructure Sabotage) 

to T3= t31 (Arson).  The commander will therefore have to give more weight to this evidence 

variable for detail planning in the form of perhaps increasing force levels in areas where critical 

infrastructure such as dams or power stations are located or deploying surplus units. For the third 

experiment, the probability of the MPE is 3.672E-05 with a genotype, [10002110000000]. The 

evidence variable X3 = x31 (Unbounded Battlespace) changes to X3 = x32 (Techniques, Tactics 

and Procedures). In this case a change in the counterinsurgent force tactics may be required to 

counteract the insurgents who operate with highly dispersed and decentralized command and 

control structures. The commander then, has to consider these changes in the Political 

Operational Effects to inform the select hypotheses. 

 Comparisons of performance gains for BAMSS-GA as compared to BAMSS were 

performed using the same experimental setup. Using P(MPE) as the comparison metric, the 

results showed that Bayesian Network Inference using BAMSS-GA produced better network 

solutions than BAMSS by an order of magnitude (103). A direct comparison with BAMSS was 

done using network efficiency as the metric. In this case, network efficiency refers to the 
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“throughput” or the ability of the model to generate plausible network solutions under the 

influence of various variables. For the first experiment, a network efficiency of 85% was 

achieved with BAMSS-GA. When the probability of crossover and mutation were varied for the 

second experiment, a network efficiency of 95% was realized. Additional variation in the GA 

parameters resulted in a network efficiency of 70%.  

As per the experimental results, this means that the best configuration for BAMSS-GA is 

achieved when the probability of crossover is set to 40% and the probability of mutation is set at 

10%. The network view of the computed MPE gives a representation of the network nodes with 

evidence set to the state of the solution. The phenotype of this representation is a network with a 

global state of the computed posterior probabilities. When new evidence is introduced into the 

network, the Bayesian Inference Algorithm is applied and the updated posterior beliefs of the 

hypothesis variables or target variables of interest are computed. 

6.2 Observations and Conclusions 

Belief Updating and Abductive Inference have been demonstrated using a BAMSS 

prototype, a sensemaking support tool. Two algorithms were implemented for BAMSS, the 

Bayesian Clustering Algorithm for Bayesian Abductive Inference and the Genetic Algorithm to 

optimize  Abductive Inference in the model. Experimental simulation was used to test BAMSS 

and BAMSS-GA using sensemaking vignettes from an asymmetrical battlespace domain. A 

summary comparison of the major performance parameters for BAMSS and BAMSS-GA is 

presented below. 

a) Problem Representation: The clustering algorithm used in BAMSS takes direct probability 

values as input without any need for extra data massaging. Some effort is needed to develop 

the network topology and populate the conditional probability tables with prior probabilities 
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for the parent variables and prior conditionals for the children variables. BAMSS-GA 

requires the input data to be encoded in a format that is compatible with GA operators. This 

requires additional computational resources to massage the data into GA format before it can 

be used as input to the BAMSS model. 

b) Computational complexity: BAMSS uses a clustering algorithm, an exact search algorithm 

to perform inference in a Bayesian Network. For simple networks, the algorithm does not 

consume much computing resources. However, its search becomes limited as the network 

grows and more computation time is required.  As the network grows, the clustering 

algorithm defaults to the use of hierarchical search through a top-down processing to reveal 

structures of interest at different levels in its divisive hierarchical clustering process. 

Divisive clustering, however, does not produce an optimal solution. Additionally, as the 

network complexity increases, inference using the clustering algorithm becomes intractable, 

exponentially increasing resource utilization. The space complexity is O(n
2
 ) because of the 

space required for adjacency matrix (where they are n items to cluster). The time complexity 

is O(kn2  ) because of there is one iteration for each level in the dendogram hence the matrix 

(or subset of it) must be accessed multiple times. BAMSS-GA uses a Genetic Algorithm to 

perform inference. GA has a parallel search capability which leads to a fast and efficient 

convergence to optimal network solution. Additionally, GAs search from a population of 

points and use a coding of the parameter sets as compared to the parameters themselves. GA 

can handle networks of varying complexity without significant resource utilization.  

c) Quality of network solutions: BAMSS-GA can be configured to output k network solutions 

or kMPEs for each simulation run. Additionally, BAMSS-GA output can be configured to 

display the best (optimal), average and worst solutions. Without additional significant 
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computation, the output of BAMSS cannot be determined to be optimal on any input. 

Comparison of performance gains for BAMSS-GA as compared to BAMSS using the 

probability of MPE as the comparison metric showed that inference using BAMSS-GA 

produced better network solutions by an order of magnitude (103). 

In order to obtain better solutions for BAMSS, two issues have to be considered: Foremost, an 

algorithm for CPT elicitation and computation should be incorporated. A CPT elicitation 

requires a considerable input time from the user and if not done right, can lead to outputs with 

spurious results. Algorithms with the capacity to filter inadmissible and/or conflicting CPT 

expressions have been developed. Inadmissible expressions often result into incompatible 

hypotheses or the wrong chains of evidence propagations through the network being output to 

the user. Secondly, the use of hybrid exact search algorithms to replace the clustering algorithm 

is found to speed up computation and output better and accurate results. Hybrid algorithms will 

produce better results than those produced by the clustering algorithm and in the case of some 

networks will produce results that are an order of magnitude more precise.  

 Although the asymmetric battlespace domain has been used for network development   

simulation experimentation, BAMSS is a sensemaking support tool and can used for any 

problem domain where causal reasoning and Abductive Inference is desired. With appropriately 

defined networks, BAMSS can be used for diagnostic assistance in the medical field, fault 

detection and isolation in engineering, as well as problem solving and data mining in education. 

The Open Source software used in its prototype development creates opportunities for further 

tailored development. 

BAMSS is a standalone application, currently not hosted on the web server. To run the 

tool, the software listed in Table 2 has to be installed and run on the client machine. However, 
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the executable BAMSS files are easily portable and are readily available to the user. The only 

component of the BAMSS accessible on the web is GeNIe which is used for network 

development as described in Chapter 4.   

This research represents a successful step in developing a proof of concept sensemaking 

support system that combines the qualitative and quantitative approaches of sensemaking with 

asymmetric battlespace as the problem domain. The use of Genetic Algorithms for sensemaking 

support has not been widely explored. We have demonstrated through experimental simulations 

that the use of GA for Abductive Inference can produce better results. This technique is useful 

for computational search for changes in a network due to belief revisions. 

6.3 Lessons Learned and Recommendations for Future Research in BAMSS 

The BAMSS developed in this research is a proof of concept in computational 

sensemaking, especially in extracting conditional evidences that support a set of hypotheses. 

Prior probabilities and prior conditionals for the BAMSS COA Analysis network were obtained 

from existing and historical databases of asymmetric wars in the Middle East. No empirical 

validation was performed. Additionally, empirical research needs to be done to test the model 

with real world data and military expert assessment. The experimental participants need to be 

given representative scenarios, be presented with evidence, and then, select a COA without the 

use of BAMSS. In the next iteration, the same participants should be required to use the tool, 

compare the COA selection in terms of accuracy (with or without the tool) and time needed to 

make the correct inference, and select a COA.  

With regards to the BAMSS future development, a lot of software development work still 

remains to be done in order to seamlessly integrate the GA and the Bayesian Algorithm. The 

most important and immediate tasks to be accomplished are: 
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i) Since BAMSS requires a user to define the Belief Network, an additional task is to 

develop the Network module as a standalone application in order to remove the 

requirement for expert knowledge needed develop the N.etwork structure.  

ii) A dedicated data parsing and formatting subroutine needs to be developed within the 

model to convert the output (posterior) probabilities into a format that is suitable for 

genetic algorithm application. The challenge is in developing automatic encoding 

functions to convert the Bayesian output (phenotype) to GA input (genotype). This 

will significantly increase the BAMSS functionality. 

iii) A  GUI front end is needed to support BAMSS. This can include the development of 

user manuals, an interactive help menu, and a function to enable the user to create 

new data fields.   

iv) A further significant enhancement would be to add functionality to BAMSS so that it 

can perform sensitivity analysis automatically to reduce the manual COA selection 

from kMPEs 

A web version of BAMSS that operates in a client-server model will enhance distributed access 

for multiple sensemakers who are distributively co-located or geographically dispersed. 
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Appendix A: Description of Insurgent Asymmetric Battlespace Variables  

Node Name Definition States (Indicators) 

Y1 Resistance and liberation from 

foreign occupation.  

y11: Resistance and liberation- liberate the 

country or region from the militarily stronger 

occupation force by engaging in asymmetric 

warfare 

y12: Law and order breakdown-Disruption of 

counterinsurgent control of the local security 

situation by limiting their ability for military 

maneuvers and restricting interaction with 

the population in stability and support 

operations. 

y13: Control of the population- Discouraging 

the local population from cooperating with 

the counterinsurgents through instability, 

chaos, conflict and fear. 

y14: Excessive force projection- provoking   

excessive raids by the counterinsurgent 

forces and use the second order effects of 

that action as a strategy for resistance 

Y2 Establishment of political 

infrastructure to legitimize the 

insurgency 

y21: Sectarian governance structures 

y22: Fundamentalist insurgent ideology based 

on radical tenets 

Y3 Control of the political space by 

the insurgent force 

y31: Political opposition to the ruling regime 

y32: Control of the security space 

y33: Disruption of civic and governance 

processes 

Y4 Promotion of fundamentalist 

ideologies 

y41: Nationalism 

y42: Sectarian  and inter-faith conflicts by 

insurgent groups 

y43: The conceptual Islamic state (Caliphate). 

X1 Ethnic and sectarian supremacy 

by the insurgent force 

x11: Sectarian identity and influence on 

insurgent mode of operation 

x12: Use of  fundamentalist ideologies such as 

Salafism as a motivating factor for some 

forms of battlespace operations 

x13: Legitimacy of the Jihad-jihad used in the 

context of armed struggle against non-

believers. 

X2 Disruption of the ability to carry 

out nation building and stability 

operations by the 

counterinsurgent forces 

x21: Local environment and feedback 

mechanisms 

x22: Operational modularity-modular 

operations make it difficult for the rigid 

counterinsurgent Techniques, Tactics and 

Procedures 
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x23:Threat forces, criminal elements and part 

time forces 

x24: Direct attacks on counterinsurgent forces  

to influence the perception of the population 

regarding capability 

X3 Exploiting  the vulnerabilities in 

the counterinsurgent force 

structure 

x31: Unbounded battlespace- the forward 

edge of the battlespace is unbounded 

introducing a complexity that supports the 

insurgents asymmetrical tactics 

x32:Techniques, tactics and procedures- 

coherent  but highly dispersed and 

decentralized command and control 

structures  

x33: Intelligence asymmetry- evolving new 

tactics that strain or defeat the 

counterinsurgent Intelligence, Surveillance 

and Reconnaissance (IS&R) assets. 

M1 Targeted assassinations and 

attacks on counterinsurgent forces 

and institutions  

m11: Security target engagement-attacks on 

military and security leaders considered hard 

targets. 

m12: Political target engagement-attacks on 

government officials, political party leaders 

and religious leaders. 

m13: Symbolic target engagement-Attacking 

symbolic or iconic targets that represent the 

best opportunities to achieve a desired 

reaction in the psychological target 

M2 Promotion of sectarian and 

religious violence 

m21: Civil war- Instability due to the second 

order effects of the sectarian and religious 

conflict 

m22: Sanctuary cities- areas where the local 

population is sympathetic to and supportive 

of the insurgent objectives 

m23: Civilian shelters- Insurgents shelter in 

mosques, shrines, and other high value 

targets as well as targets with high cultural 

impact. 

m24: Information operations-use of mass 

media and internet to disseminate 

information quickly and polarize public 

opinion. 

M3 Undermining the formation of 

legitimate government structures 

m31: Armed militias- formation of militias by 

the insurgent groups tasked with the 

responsibility to provide protection to the 

population and ensure law and order in the 

regions controlled by insurgents 



151 

 

 

m32: Propaganda warfare- The process of 

democratization and nation building is 

portrayed as a project of the occupying force 

and its implementation as the root cause of 

violence  

m33: Criminal networks- emergence of 

ungovernable areas outside the central 

government’s control, smuggling networks, 

or tribal or sectarian based militias 

M4 Insurgent force projection of  

military capability 

m41: Counter maneuver- employing 

unconventional means and methods to 

prolonging the conflict through a low level 

war of attrition 

m42: Foreign fighters- Linking national 

insurgencies a wider global conflict, pitting 

nation states against transnational insurgent-

terrorist networks. 

m43: Force structure- insurgent groups 

decentralize and compartmentalize to avoid 

presenting an easy massive strike target to 

the counterinsurgents. 

m44: Informal networks- networks of 

informers and sources act as reliable sources 

of actionable intelligence on 

counterinsurgent maneuvers, targets and 

locations. 

T1 High level attrition attacks by 

Insurgents 

t11: Civilian suicide bombing- A high priority 

targeted action within the military structure 

of a number of organized insurgent groups. 

t12: Remotely detonated IED- The massive 

casualty rate of this tactic makes it highly 

popular among insurgent groups. 

t13: Rocket propelled grenades: non- line of 

sight munitions give insurgents the ability to 

attack undetected, a wide target selection and 

limited engagement with counterinsurgent 

force 

T2 Low level attrition attacks by 

insurgents 

t21: Small arms attacks- A combination of 

low intensity kinetic effects, kidnappings and 

executions, usually of high value targets 

t22: Coercive threats- Threats against the 

population seen as cooperating with the 

counterinsurgent force. 

t23: Convoy ambushes- guerilla type ambush 

and disperse attacks on soft units such as 

lightly armed logistics and personnel 
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transport units 

T3 Critical infrastructure attacks by 

insurgents 

t31: Infrastructure sabotage- Sabotage of 

critical infrastructure to paralyze the 

operations of the government and disrupt 

counterinsurgent SASO operations. 

t32: Arson- Burning of houses in residential 

neighborhoods in a form of “cleansing” 

operation. A tactic widely used especially in 

the Iraqi Insurgency 
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Appendix B: Correlation Analysis of the Posterior Distributions for the Variables of Figure 19 

 

The SAS System 

 
The CORR Procedure 

4 Variables: m11 y11 x11 t32 

 

Simple Statistics 

Variable N Mean Std Dev Sum Minimum Maximum Label 

m11 7 0.51429 0.30237 3.60000 0.10000 0.90000 m11 

y11 7 0.20143 0.00900 1.41000 0.19000 0.21000 y11 

x11 7 0.42714 0.02928 2.99000 0.38000 0.46000 x11 

t32 7 0.30429 0.00535 2.13000 0.30000 0.31000 t32 

 

Pearson Correlation Coefficients, N = 7  

Prob > |r| under H0: Rho=0 
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m11 

m11 
 

1.00000 

  
 

0.97144 

0.0003 
 

0.98438 

<.0001 
 

0.88388 

0.0083 
 

y11 

y11 
 

0.97144 

0.0003 
 

1.00000 

  
 

0.96715 

0.0004 
 

0.89113 

0.0071 
 

x11 

x11 
 

0.98438 

<.0001 
 

0.96715 

0.0004 
 

1.00000 

  
 

0.83680 

0.0189 
 

t32 

t32 
 

0.88388 

0.0083 
 

0.89113 

0.0071 
 

0.83680 

0.0189 
 

1.00000 

  
 

 

  



154 

 

 

Appendix C: Correlation Analysis of the Posterior Distributions for the Variables of Figure 20 

 

 

The CORR Procedure 

4 Variables: x33 y22 m11 t21 

 

Simple Statistics 

Variable N Mean Std Dev Sum Minimum Maximum Label 

x33 7 0.51429 0.30237 3.60000 0.10000 0.90000 x33 

y22 7 0.39857 0.00378 2.79000 0.39000 0.40000 y22 

m11 7 0.45286 0.09394 3.17000 0.35000 0.60000 m11 

t21 7 0.40429 0.00787 2.83000 0.39000 0.41000 t21 

 

Pearson Correlation Coefficients, N = 7  

Prob > |r| under H0: Rho=0 
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Appendix D: Correlation Analysis of the Posterior Distributions for the Variables of Figure 21 

 

The SAS System 

 
The CORR Procedure 

4 Variables: t32 x22 y41 m23 

 

Simple Statistics 

Variable N Mean Std Dev Sum Minimum Maximum Label 

t32 7 0.51429 0.30237 3.60000 0.10000 0.90000 t32 

x22 7 0.39714 0.00756 2.78000 0.39000 0.41000 x22 

y41 7 0.30000 0 2.10000 0.30000 0.30000 y41 

m23 7 0.27000 0.00577 1.89000 0.26000 0.28000 m23 

 

Pearson Correlation Coefficients, N = 7  

Prob > |r| under H0: Rho=0 
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