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Abstract 

 Global climate change is a major environmental threat to natural and cultural resources in 

low-lying coastal zones and deltas worldwide.  It is expected to have a significant effect on the 

development of coastal wetlands by changing species range expansion.  In fact, recent studies 

have shown that there has been an increasing mangrove encroachment poleward in the Southern 

and Northern Hemispheres into temperate saltmarsh zones due to the lack of freeze events.  This 

phenomenon could have a critical impact on the structure and function of tidal wetlands at 

critical latitudes, especially in carbon sequestration, since mangroves are thought to sequester 

more carbon than marshes due to their extensive roots, leaves, and branches.  To understand this 

likely outcome of climate warming better, a study site was established in Port Fourchon, 

Louisiana, where mangroves are expanding into formerly saltmarsh-dominated habitat.  The aim 

of this study was to estimate the rate and process of the conversion of marsh to mangrove and 

associated carbon sequestration of soils of historically saltmarsh or mangrove dominated cover in 

this locale. A chronosequence approach was used to compare carbon stores between mangrove 

and saltmarsh at different states of mangrove cover.  Moreover, greenhouse experiments were 

conducted to understand the effects of different biotic properties and abiotic factors on propagule 

regeneration success and seedling growth. 

 Results showed that tall Avicennia have higher aboveground biomass than Spartina and 

mixed mangrove/marsh zone.  Tall Avicennia by habitat type also contributed the greater carbon 

storage and elevation compared to Spartina over the past 50 years based on 
137

Cs dating method.  

Propagule size, floating time, and temperature thresholds had significant effects on mangrove 

regeneration, while elevated CO2 and sunlight had no effect on propagule regeneration success.
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1 CHAPTER 1 

Introduction 

 Climate change is one of the effects of potential ecosystem crisis due to the negative 

impact of human activities such as increasing population, deforestation, and fossil-fuels 

consumption and associated greenhouse gas releases to the atmosphere (see Figure 1).  Climate 

change factors of concern for coastal ecosystems include  increasing storm frequency/intensity, 

warming surface air and sea temperature, and rising sea level  (Intergovernmental Panel on 

Climate Change, 2013). Coastal areas may be seriously affected by climate change due to their 

low elevation (< 0.5 m).  Therefore, coastal management and protection is a critical task in the 

21st century.  

 

Figure 1. Global energy-related CO2 emission. (Source: International Energy Agency) 

The present climate change debate focuses on the concentration and regulation of black 

carbon, which is a greenhouse gas released from burning fossil fuels.  There is less information 

about blue carbon, which is carbon sequestered by oceanic- and estuarine-associated ecosystems 

such as sea grass meadows, salt marshes, and mangroves.  Although covering less than 0.5% of 
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the sea bed, these coastal ecosystems are thought to capture more than 55% of all carbon in the 

world (Nellemann et al., 2009).  According to Dr. Achim Striner, UN Under-Secretary General 

and Executive Director of UNEP, they are disappearing faster than anything on land and may be 

lost in a few decades if we do not act immediately to protect them (Nellemann et al., 2009). 

Mangroves are predicted to expand poleward under warming air and sea-surface 

temperature from climate change.  Moreover, they are thought to increase carbon storage due to 

their extensive branch and root systems (Bianchi et al., 2013; Comeaux, Allison, & Bianchi, 

2012; Perry & Mendelssohn, 2009).  Thus, research on the role and process of carbon 

sequestration in mangrove ecosystems and with their potential expansion poleward and 

replacement of saltmarsh-dominated systems is an important research need and task. 

The primary research objective of this study is to estimate the rate and process of the 

conversion of marsh to mangrove and carbon sequestration of historically saltmarsh-dominated 

systems of coastal Louisiana.  The central hypothesis to be tested is that mangrove expansion 

into saltmarsh zones increases carbon gain and storage (i.e., sequestration), helping to mitigate 

the carbon balance aspect of climate change.  There are many technological means to sequester 

carbon, but the ecosystem process provides a natural feedback and accounting that may not be 

fully understood or incorporated in global climate models.  A chronosequence approach will be 

used to compare carbon sequestration between mangrove and saltmarsh at different stages of 

mangrove cover and forest development.  The study objectives were achieved by conducting 

three specific tasks, as outlined below. 

Task 1. Forest Attributes and Aboveground Carbon Stores of Saltmarsh/Mangrove Stage 

The working hypothesis was that there is no difference in forest attributes and 

aboveground carbon stores between saltmarsh/mangrove stages: tall mangrove, short mangrove, 
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marsh only, and a mix of mangrove and marsh.  A gradient of sites from marsh only to different 

cover stages of mangrove encroachment and structure were established.  Differences in tree 

architecture and stem growth were measured by internode lengths of lateral branches from select 

trees and seedlings in each of the saltmarsh/mangrove cover classes.  Differences in internode 

variation of node count, length, and diameter were related to tree and forest age corresponding 

with imagery showing mangrove presence and closure as a function of calendar date. 

Task 2. Soil Accretion, Elevation, and Carbon Stores of Saltmarsh/Mangrove Stage 

The primary hypothesis was that mangrove presence and abundance would account for 

higher soil elevation, accretion rates, and carbon stores than saltmarsh concomitant with degree 

of aboveground structure and associated root systems.  Sediment cores were extracted along 

transects of representative sites of saltmarsh/mangrove stage and cover to account for carbon 

content and accretion.  The 
137

Cs dating method was used to measure the decadal accretion from

1963 peak radioactive fallout to present, a span of 50 years.  Other wetland studies have 

indicated that mangrove reside on higher elevations than adjoining marsh.  It is not known 

whether pre-existing conditions of higher elevation facilitates mangrove regeneration or 

mangrove ingrowth thereafter promotes higher deposition and increased elevation with 

vegetation complexity or stand age.  All sites were surveyed with real-time kinematic (RTK) 

global positioning system (GPS) to determine absolute surface elevation of all sites to relate with 

water level history from nearby tide gages and site-specific water level recorders. 

Task 3. Propagule Regeneration Success for Restoration 

Propagule spread and establishment are the main sources for mangrove expansion into 

saltmarsh-dominated zones.  Their life history includes three stages: floating stage (the mature 

propagule drops from the parent trees floating on the ocean water), stranded stage (the 
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propagules stranded on shore or soil surface), and established seedling stage (successful 

propagules established with new true leaf and upright stem).  It is unclear what factors control 

propagule regeneration success or canopy height and closure in the transition stages from marsh 

to mangrove forest.  The height, density, and condition of saltmarsh and mangrove may restrict 

light attenuation to sustain propagule regeneration success.  Additionally, propagule size, air and 

soil water temperature, and the floating period may affect regeneration success.  Mangrove shrub 

and tree forms above marsh height with and without neighboring shrubs/trees are expected to 

create altered light conditions and growth potential on underlying marsh and mangrove.  High 

and low sea-level anomalies, wet/dry periods, or winter severity are climate conditions that may 

contribute to either marsh or mangrove stress sufficient to promote or inhibit regeneration 

success or stage change.  The working hypothesis was that regeneration success, seedling 

establishment, and growth are influenced by associated cover characteristics and tidal relations 

of inundation and hydroperiod.  To explore this, greenhouse experiments were conducted to 

understand the different biotic properties and abiotic factors controlling propagule regeneration 

and seedling growth as follows: 

• Propagule weight and floating time, 

• Soil heat treatments, 

• Elevated atmospheric CO2, and 

• Sunlight level. 

 Knowledge of how mangroves expand landward and poleward during warming periods 

and under sea level rise is in its infancy, but paramount along the northern Gulf Coast, 

particularly Louisiana, where new mangrove range extensions have been noted in recent years.  

The potential for wholesale conversion of temperate saltmarsh and further mangrove spread 
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along the Gulf Coast and South Atlantic is even more likely under climate change where the 

periodicity of hard freeze events may lessen with projected climate warming.  Self-reproducing 

populations of black mangrove may speed expansion based on the abundance of propagule and 

opportunities for mangrove ingrowth into marsh settings of coastal Louisiana that has only been 

documented with limited mapping studies and little or no accounting of field investigations of 

forest age and structure. 

This dissertation was designed to address the rate and process of mangrove encroachment 

and cover change with specific field and experimental tasks to account for carbon gain and 

sequestration, aboveground and belowground, in relation to surface elevation, tidal range, and 

recent climate.  Results from this investigation are expected to guide coastal restoration when 

considering the choice to plant mangrove for the benefit of blue carbon credits and qualities of 

holding or building shoreline. 

Study Site 

The study was conducted in a mangrove/saltmarsh community in Port Fourchon, LA (see 

Figure 2).  It is located on the southern tip of Lafourche Parish, Louisiana, on the Gulf of Mexico 

and is the state’s southernmost port.  Port Fourchon has significant petroleum industry traffic and 

serves over 90% of the Gulf of Mexico’s deepwater oil production ("Port Fourchon, Louisiana," 

n.d.).  Avicennia germinans and Spartina alterniflora are the two dominant species found in the

area.  Black mangrove (Avicennia germinans) is a subtropical shrub growing with saltmarsh near 

high tide elevation.  The highest recorded individual plant height in the area is 4.0 m, and up to 

2.5 m at the study site.  Black mangrove can be found in pure stands or growing intermixed with 

smooth cordgrass (S. alterniflora).  Over the last few decades, mangroves have been expanding 

into temperate saltmarshes Gulfwide due to the lack of freezing events (Comeaux et al., 2012; 
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Doyle, Krauss, Conner, & From, 2010; Henry & Twilley, 2013; Perry & Mendelssohn, 2009). 

There are four distinctive habitat zones in the study area: tall Avicennia, short Avicennia, 

Spartina, and mixed zone of Avicennia and Spartina.  Tall Avicennia dominated zone across 

study transects was about 5 m in width starting at the edge of the tidal channel grading to short 

Avicennia at the interface or ecotone with interior Spartina marsh.  The highest recorded 

individual tall mangrove was about 2.5 m in height.  The short Avicennia zone was about 3 m 

wide and the highest recorded individual short Avicennia was about 0.7 m tall.  The marsh zone 

is about 21 m wide, but varies by location as to wide or narrow depending on landform 

characteristics.  The mix zone of mangrove and marsh was about 4 m wide starting from the 

marsh zone to the backside tidal creek.  Black mangrove plays an important role in the coastal 

ecosystem; it serves as sediment stabilizer, shore protection, and provides habitat for many 

species including the Louisiana state bird, the brown pelican (Visser, Vermillion, Evers, 

Linscombe, & Sasser , 2005). 

 
Figure 2. Study site - Port Fourchon, LA. 
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2 CHAPTER 2 

Literature Review 

The Ecosystem 

Scientists have raised the potential for environmental crises, such as resource depletion, 

pollution, and lack of clean water and air; biodiversity loss; ozone holes; dangerous diseases, 

rich-poverty polarization, and war; chemical, biological, and nuclear weapons; and the 

greenhouse effect and sea level rise, to name just a few.  It all leads to a local crisis and the entire 

ecosystem recession risk can occur if humanity does not act promptly to “save the earth,” our 

friendly environment! 

An ecosystem includes all of the mutual relations, dependencies, and interactions as a 

combination of factors having the same function in a united system of society and nature.  

Striking features of the ecosystem are metabolic processes, information, energy, and self-

correcting dynamic balance.  Ecosystems are not only different in scale and nature, but also 

intertwined and interlocking.  Except for close ecosystem, the universe, all ecosystems are open 

systems, receiving the material, energy, and information through metabolic processes, self-

adjusting, creating dynamic balance status, food chains; process of genetic variation, adaptive 

process; competitive survival; process of birth, aging, sickness, and death, etc.  

Since the existence of humans, the elements of the ecosystem include producing 

organisms (autotrophic), consuming organisms (heterotrophic), biological saprophytes 

(decompose), people and society, and the inorganic and organic substances necessary for life. 

With the development of science and technology, people have an increasingly strong impact on 

the ecosystem: People—Society and Nature. 
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Louisiana Ecosystem 

Louisiana is located in the southern United States, bordered on the west by Texas; to the 

north by Arkansas; to the east by the state of Mississippi; and to the south by the Gulf of Mexico.  

It has a humid subtropical climate with long, hot, humid summers and short, mild winters.  The 

average temperature is 27.3°C in summer and 10.5°C in winter.  Sometimes snow and ice storms 

happen in northern parts of the state due to cold fronts from the north.  Tropical storms and 

major hurricanes occur once every decade or less affecting coastal areas in the most southern 

extent of the state.  The topography of the state can be split in two parts: the uplands of the north, 

and the alluvial along the coast and Mississippi River.  A large amount of the state’s land was 

created by sediment from the Mississippi River over 7,000 years, making huge deltas and 

immense areas of coastal marsh and swamp.  These deltas can be divided into two parts: the 

Deltaic Plain in the central and southeastern portion of the coast, and the Chenier Plain in the 

southwestern part of the state (see Figure 3).  The Deltaic Plain is a vast expanse of marshland 

with an area of approximately 38,850 km
2 

(Fisk, 1944).  The research site is located in the 

Deltaic Plain.  The Chenier Plain is a Holocene strand plain composed of wooded beach ridges 

(cheniers) and intervening mudflat grassy wetlands with an area of 26,304 km
2 

(Esslinger & 

Wilson, 2001; Owen 2008).  These wetlands act as an environmental filter and protection.  They 

help mitigate storm and wave impact.  Wetland plants help remove heavy metals, sewage, and 

pesticides from polluted water.  In addition, wetlands provide a habitat of rich and diverse fauna 

and flora.  The fauna include fish and shellfish, migratory birds, the American alligator, and 

some endangered species such as the Louisiana black bear, piping plover, and green sea turtles.  

The common floras contain cattails, swamp rose, spider lilies, and cypress trees.  Wetlands also 

play an important role in culture and the economy of the state.  According to Wikipedia, 

http://en.wikipedia.org/wiki/Texas
http://en.wikipedia.org/wiki/Arkansas
http://en.wikipedia.org/wiki/Mississippi
http://en.wikipedia.org/wiki/Gulf_of_Mexico
http://en.wikipedia.org/wiki/Humid_subtropical_climate
http://en.wikipedia.org/wiki/Tropical_cyclones
http://en.wikipedia.org/wiki/Alluvial_deposit
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commercial fishing accounts for more than $300 million of the state’s economy, and more than 

70% of major species such as shrimp, oysters, and blue crabs rely on coastal wetlands as a 

nursery for their young.  There are more than 330,000 hunting licenses and 900,000 fishing 

licenses sold every year ("Wetlands of Louisiana," n.d.).  Other recreational activities in the 

wetlands include boating, swimming, camping, hiking, and photography.  In addition, these 

wetlands provide an ideal environment for scientific research. 

 

Figure 3. Marsh zones of the Louisiana coastal marshes. Source: (Foret, 1997), Figure 1. 

However, wetland loss is currently a major concern.  According to the National Wildlife 

Federation, coastal Louisiana is losing 24 square miles of wetlands each year—roughly 

equivalent to a football field every 30 minutes due to subsidence, wave erosion, and human 

causes ("Mississippi River Delta," n.d.).  The subsidence rate in Deltaic region approaches 1.1 

cm/yr compared to 0.57 cm/yr in Chenier Plain (Penland & Suter, 1989).  Human activities such 



11 

 

 

as building levees, channels, canals, dams, and agriculture disrupt the natural balance of the 

wetland and worsen wetland loss.  Therefore, protecting the wetlands has become a significant 

task today. 

Status and Major Characteristics of the Coastal Louisiana Ecosystem 

Louisiana’s emergent saltwater wetlands include saltmarsh, mangrove, and mixed 

zonation between the two species.  The common mangrove species in Louisiana is black 

mangrove (Avicennia germinans), and the most common species found in saltmarsh is smooth 

cord grass (Spartina alterniflora).  Both species are salt tolerant plants that trap mineral sediment 

and coexist in tropical latitudes globally (Comeaux et al., 2012).  Mangroves are more 

structurally complex and productive than saltmarsh due to their extensive branch and root 

systems.  However, mangrove are freeze intolerant because of xylem embolism and loss of 

hydraulic conductivity occurring under freezing conditions (Comeaux et al., 2012).  Therefore, 

their populations are limited to tropical climates and shorelines of the Gulf Coast with periodic 

and sparse encroachment in Louisiana marshes.  In fact, saltmarshes are the historically 

dominant ecosystem along the subtropical northern Gulf Coast.  Based on historical aerial 

photos, mangrove distribution was very restricted until the early 1990s (Perry & Mendelssohn, 

2009).  Severe freezes of 1983 and 1989 were responsible for eliminating all mangroves 

statewide. 

The major effects of climate change to coastal ecosystems of Louisiana include 

expansion of species’ range, displacement of species, and disruption of community dynamics 

(Walther et al., 2002).  In recent decades, mangrove regrowth and expansion into saltmarsh along 

the northern Gulf Coast, and Louisiana in particular, has been substantial due to relatively mild 

winters and lack of freeze events (Bianchi et al., 2013; Comeaux et al., 2012; Osland et al., 2012; 
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Perry & Mendelssohn, 2009).  As a result, mangrove has made some significant changes to the 

regional ecosystem in recent decades.  

 Perry and Mendelssohn (2009) investigated the ecological effect of mangrove expansion 

on salt marshes in Louisiana.  Their results indicated that mangrove expansion had no major 

effects on the ecosystem in process or degree of sediment accretion, carbon sequestration, and 

carbon stores.  However, they found that where mangroves expanded to marshes, soil moisture 

and porewater salinity were slightly lower, while elevation, redox potential, bulk density, and 

soil ammonium were slightly higher.  Over the long term, they speculated that marsh to 

mangrove conversion might have a measurable impact on wetland structure and function in the 

future.  Two other similar studies were carried out along the Texas coast, where mangrove is 

expanding to temperate saltmarsh.  Comeaux et al. (2012) investigated the change in resistance 

to sea level rise and wave attack during large storms, on organic carbon sequestration, and soil 

geochemistry.  They found that mangrove exhibited higher resistant to sea level rise and wave 

attack because they have a capacity for higher sediment accumulation and higher root volume.  

However, the carbon sequestration and storage aspect of mangrove expansion remained unclear. 

Bianchi et al. (2013), on the other hand, studied the change in the ecosytem with a focus on 

carbon sequestration.  They hypothesized that mangroves increase the storage and carbon 

sequestration in the coastal zone. Their results indicated that mangrove enhanced the carbon 

sequestration and lignin storage rates compared to saltmarsh. They also recommended 

conducting more research on alterations in the overall carbon storages on a regional scale to 

better verify that such coastal margin alterations are influencing local carbon fluxes.  Therefore, 

further investigation on how marsh to mangrove conversion changes carbon sequestration and 

storage on a regional scale is an important task. 
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Mangrove Forest Ecosystems 

The term “mangrove” refers to a tidally influenced wetland ecosystem within the 

intertidal zone of tropical and subtropical latitudes.  Mangroves are marine tidal forests that 

include trees, shrubs, palms, epiphytes, and ferns (Tomlinson, 1986).  Mangrove ecosystems are 

heterogeneous habitats with an unusual variety of animals and plants adapted to the 

environmental conditions typified by highly saline, frequently inundated, and soft-bottomed 

anaerobic mud (Macintosh & Ashton, 2002). 

Mangroves cover a total of 152,000 square kilometers in 123 countries and territories 

worldwide (Spalding, Kainuma, & Collins, 2010).  They generate some of the highest primary 

production rates among the world forest ecosystems.  Recent research showed that total 

aboveground biomass of the world mangrove forest may be over 3700 Tg of carbon and that 

mangroves could sequester 14-17 Tg of carbon per year (Spalding et al., 2010).  Moreover, 

mangroves provide many ecosystem services including forestry value, fisheries value, hurricane 

protection, and carbon cycling that benefits the local, national, and international community.  In 

fact, tropical mangrove forest ecosystems play an important role in coastal zone protection.  

They are thought to lessen wave impact caused by tropical storms and tsunamis (Tran, 2011).  In 

addition, they provide breeding and nursing grounds for marine and pelagic species, food, 

medicine, fuel, and building materials for local communities (Giri et al., 2011).  Despite covering 

only 0.1% of the earth’s continental surface, mangrove forests have the potential to capture 

approximately 22.8 million metric tons of carbon every year (Giri et al., 2011).  In addition, they 

contribute about 11% of the total input of terrestrial carbon into the ocean (Jennerjahn & 

Ittekkot, 2002) and 10% of the terrestrial dissolved organic carbon (DOC) exported to the ocean 

(Dittmar, Hertkorn, Kattner, & Lara, 2006).  Mangroves play an important role in the economic 
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life of local people through activities such as aquaculture and fishing.  The total economic value 

of mangrove ecosystems per square kilometer has estimated values as much as US$200,000 to 

US$900,000 (Wells, Ravilious, & Corcoran, 2006).  The indirect value of mangroves, including 

hurricane protection, water quality, pollutant uptake, and sediment retention provide valuable 

ecosystem services and cost savings, but do not directly generate income for the management of 

the area.  Since people favor only their direct goods and services, which hold only a very small 

part of the total mangroves’ value, mangrove ecosystems have consistently been undervalued.  

The undervaluing of mangrove conservation compared to alternative uses leads to unwise 

decisions and policies.  

The international community benefits from the subsistence of mangroves.  Nevertheless, 

the management of mangrove conservation depends on national and local implementation.  

Hence, free riding on global public good, such as carbon sequestration and storage, will remain 

unless international payment is provided for local people to encourage them to preserve 

mangroves. 

Carbon Sequestration in Wetland Ecosystems 

Green carbon or biological carbon is a major portion of the global carbon.  It is carbon 

removed by photosynthesis and stored in the plants and soil of natural ecosystems (Nellemann et 

al., 2009).  Over half (55%) of green carbon captured in the world is from marine living 

organisms such as mangroves, marshes and sea grasses (Nellemann et al., 2009).  They capture 

and store carbon in the marine sediment.  Hence, it is called “blue carbon” as related to ocean 

sources. 

 Mangroves and saltmarshes play a vital role in the global blue carbon cycle.  They 

remove CO2 from the atmosphere and store it as carbon in plant structure and soil in the process 
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called carbon sequestration (Suratman, 2008).  Several studies estimated the carbon sequestrated 

by mangrove and marsh habitat.  According to Bridgham, Megonigal, Keller, Bliss, and Trettin 

(2006), tidal marshes with a global area of nearly 22,000 km
2
 could sequester 4.6 Tg of carbon 

per year. This carbon can be divided into soil and plant pools, which are 0.43 and 0.007 Pg (430 

and 7 Tg) of carbon, respectively.  Mangroves are thought to sequester more carbon than 

marshes with their extensive root system that better enables them to hold and store carbon.  Since 

about half of the biomass of mangroves is composed of carbon, they represent the largest stock 

of carbon source in coastal zones.  With an area of  approximately 152,000 square kilometers,  

mangroves could sequester 14-17 Tg of carbon per year (Spalding et al., 2010).  In contrast, 

using an indirect approach for wood production component and assuming a global coverage of 

160,000 square kilometers, Bouillon et al. (2008) estimated that net primary production of 

mangroves was 218 ± 72 Tg of carbon per year.  In addition, Bridgham et al. (2006) thought that 

mangroves with an global area of 181,000 square kilometers could seize 38 Tg of carbon per 

year, which can be divided into soil (4.9 Pg C or 4900 Tg C) and plant (4.0 Pg C or 4000 Tg C) 

pools. According to  Kristensen, Bouillon, Dittmar, and Marchand (2008), the total net primary 

production (leaf litter, wood, and root production) were roughly 149 mol C m
-2

 year
-1 

(1.788x10
-3

 

Tg C km
-2

 year
-1

). 

 One of the important aspects of the mangrove carbon storage is their deposition and 

decomposition with respects to quality and longevity.  McKee, Cahoon, and Feller (2007) 

reported that C-rich deposits of Rhizophora mangle forest in Belize was 10 m deep and over 

6,000 years old.  In contrast, rain forest carbon stores are thought to sequester carbon for 

decades, or even centuries (Chambers, Higuchi, Tribuzy, & Trumbore, 2001).  Over decades and 

centuries, mangroves accumulate carbon in various forms of primary production, which is the 
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process of converting solar energy, CO2, and water to glucose and eventually plant tissue through 

photosynthesis.  Primary production includes aboveground and belowground production.  

Aboveground pools contain the primary production of leaves, stem, and wood.  Belowground 

production, containing coarse and fine roots, builds up and increases the biomass standing stock.  

Litter from trees (dead leaves, propagules, and twigs) fall to the forest floor where they are 

consumed by local fauna, remineralized into the atmosphere, exported to adjacent coastal 

environments, or buried in mangrove sediment (Yee, 2010). 

 Mangrove aboveground (leaf and wood) production.  Leaf production is a commonly 

measured functional aspect of mangrove forest.  It is a major component of carbon cycling and 

nutrients in the mangrove ecosystem (Röderstein, Hertel, & Leuschner, 2005).  Litter fall 

production may represent 31% of total productivity (Alongi, Clough, & Robertson, 2005; 

Bouillon et al., 2008).  As latitude increases, leaf fall biomass tends to decline because of 

changes in solar radiation, temperature, and precipitation (Saenger & Snedaker, 1993).  The 

global average of litter fall rate was estimated to be ~38 mol C m
-2

 year
-1

 (16.73 tCO2/ha year
-1

)
 

(Jennerjahn & Ittekkot, 2002; Twilley, Chen, & Hargis, 1992). 

Wood production accounts for 31% of mangrove productivity (Bouillon et al., 2008).  It 

decreases with increasing latitude.  Twilley et al. (1992) estimated that global average wood 

production was 67 mol C m
-2

 year
-1 

(29.50 tCO2/ha year
-1

).  Global aboveground wood 

production rate was estimated to be 66.4±37.3 Tg C year
-1

(243.688 x 10
 6 

± 136.891 x 10 
6
 tCO2 

year
-1

)
 
(Bouillon et al., 2008). Khan, Suwa, and Hagihara (2007) found that average aboveground 

wood production of a mangrove stand of Kandelia obavata was 67.1 Mg/ha (246.27 tCO2/ha). 

 Mangrove belowground production (roots).  Belowground production is an important 

part of mangrove carbon sequestration.  Roots can hold up to 50% of total biomass of a 
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mangrove forest (Alongi & Dixon, 2000).  Mangroves store about 50% of C in soil (Khan et al., 

2007).  They have unique physiological and structural adaptations to tidal environments with 

complex aerial root systems (Tomlinson, 1986).  These systems account for 38% of primary 

production (Bouillon et al., 2008). 

Carbon accumulation in belowground biomass for Kandelia obovata was estimated to be 

67 Mg/ha (245.89 tCO2/ha) (Khan et al., 2007).  Belowground production for Rhizophora stylosa 

and Avicennia marina ranged from 23.9 to 48.8 t DW/ha (43.85 to 89.54 tCO2/ha) and 12.8 to 

19.4 t DW/ha (23.48 to 35.59 tCO2/ha), respectively (Alongi et al., 2005).  On global scale, 

Kristensen et al. (2008) found rate of belowground root productivity equal to 44 mol C m
-2

 year
-1 

(19.37 tCO2/ha year
-1

) while Bouillon et al. (2008) estimated belowground production to be 82.8 

± 57.7 Tg C year
-1

 (30094 x 10
4 

± 21175.9 x 10
4 

tCO2 year
-1

) 

3  

4  
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5 CHAPTER 3 

Methodology 

 The main objective of this research was to estimate the rate and process of carbon 

sequestration of saltmarsh-mangrove ecotone of coastal Louisiana with the increasing expansion 

of black mangrove into adjoining saltmarsh.  The primary hypothesis was that mangrove would 

increase the carbon storage with their extensive aboveground biomass and root systems 

compared to marsh.  The following three specific tasks were carried out: 

• Forest Attributes and Aboveground Carbon Stores of Saltmarsh/Mangrove Stage. 

• Soil Accretion, Elevation, and Carbon Stores of Saltmarsh/Mangrove Stage.  

• Propagule Regeneration Success for Restoration 

Aboveground Biomass 

 A gradient of sites were established from marsh only to different cover stages of 

mangrove encroachment and structure.  Site location was focused on state and private lands near 

Port Fourchon, Louisiana using historic maps and aerial photography to locate potential 

marsh/mangrove stages of age and development for field survey.  Mangrove structure and 

complexity were quantified with quadrant survey 1 m
2
 plots on a grid network (2 m x 30 m) to 

measure vegetation type, plant canopy cover, tree density, diameter, height, pneumatophore 

density and height, and propagule density and development.  Two random plots from 

representative cover types of tall mangrove, short mangrove, marsh, and mixed habitat were 

harvested for determining plant biomass.  After getting the fresh weights for each plot, samples 

were put in the oven at 60°C for two weeks to obtain dry weight.  Statistical comparison of fresh 

and dry weight biomass was achieved by an analysis of ANOVA where the type 3 error was used 

to test the fixed effect. 
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Tree Architecture 

 Tree internodes reflect the successive growth of mangrove trees.  In Louisiana, 

mangroves are thought to grow faster in spring and summer, and slower in fall and winter.  In 

fact, mangrove leaves and stem cells can embolize when exposed to freezing temperatures below 

0°C leading to tree mortality or partial dieback. 

 Differences in internode patterns by count, length, diameter, and leaf sets present were 

evaluated to predict tree and forest age and to correspond with imagery showing mangrove 

presence and closure by calendar date.  Simple ruler and micrometer measurements of internode 

length and diameter from terminal leaf sets to branch inserts were taken to capture sequential 

growth of branch and stem.  Flags were placed on measured branch and stem structures to allow 

re-measurement every month thereafter to determine growth rate patterns as a function of tree 

architecture, intertree competition, and site conditions. 

Soil Accretion and Carbon Stores of Saltmarsh/Mangrove Stage 

 Soil accretion was identified from the distribution of  
137

Cs in the sediment profile 

(Delaune et al., 1978).  As shown in Figure 4, the atmospheric fallout from nuclear weapons 

testing peaked sharply in 1963.  The 
137

Cs portion of that fallout chemically attaches to the clays 

in the soil or sediment surface.  The 
137

Cs remains with the clays of that surface as new accretion 

covers that surface (Tamura and Jacobs, 1960).  A modern core finds the peak 
137

Cs activity at a 

depth corresponding to the 1963 surface. 

 Cores were taken to depths of 50 cm or more (Meriwether, Sheu, Hardaway, & Beck, 

1996) and subdivided into 2- cm thick, vertical sections.  Each section was dried at 60 
0
C and 

ground to a coarse powder (to insure uniform counting geometry) and weighed. The 
137

Cs 

specific activity in each section was determined using gamma ray spectroscopy.  The high purity 
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germanium detectors (HPGe) were calibrated for energy and intensity with a standard 
137

Cs 

source traceable to NIST (National Institute of Standards and Technology).  The sections were 

counted for at least 11 hours to have reasonable statistical error.  Assuming no mechanical 

mixing of the sediment, the accretion rate is the ratio of the 
137

Cs peak depth divided by the time 

interval between the current year and 1963.  Soil bulk density was determined as a simple dry 

weight to volume ratio (Blake & Hartge, 1986).  Soil organic matter (SOM) were determined via 

loss on ignition (Wang, Li, & Wang, 2011). 

 

Figure 4. Atmospheric fallout of 
137

Cs, with respect to time (Meriwether et al., n.d.). 

Elevation 

 Other wetland studies have indicated that mangroves reside on higher elevations in some 

wetland settings.  It is not known whether pre-existing conditions of higher elevation facilitates 

mangrove regeneration or mangrove ingrowth thereafter promotes higher deposition and 

increased elevation with vegetation complexity or stand age.  All sites were surveyed with RTK 

GPS to determine absolute surface elevation of all sites to relate with water level history from 

nearby tide gages and site-specific water level recorders.  
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Propagule Regeneration Success for Restoration  

 Greenhouse experiments were conducted to understand the different biotic properties and 

abiotic factors influencing propagule regeneration and seedling growth as follows: 

 Propagule weight and floating time for regeneration success. 

 Soil preparation.  Soils were prepared from commercial products of peat moss and sand 

to achieve uniformity among all treatments and a proven medium for regeneration studies of 

woody species. The soil was a tumbled mix of 50% peat moss and 50% sand saturated in fresh 

well water.  All watering thereafter for all experimental treatments used fresh well water; no 

salinity or nutrient amendments were used to prevent any confounding factors for seedling 

success or the lack thereof. 

 Propagule preparation.  Propagule length, width, and weight were measured after they 

were removed from parent trees by hand on November 21 and December 21, 2013.  Collected 

propagules were sorted and counted by size and weight class determined from fresh weight.  The 

most available quantity of propagules was chosen by weight class for experimental purposes as 

follows: 

- Three treatments by weight:  

• Size 1 (weight from 1 g to 1.99 g),  

• Size 2 (weight from 2 g to 2.99 g)  

• Size 3 (weigh from 3 g to 3.99 g).  

All propagules were put in fresh water and Captan 50 Wettable Powder solution for 48 hours in 

the NWRC greenhouse to promote shredding of pericarp and prevent fungus infection.  The 

working hypothesis is that the longer individual propagules float on water, the less chance they 
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have for regeneration success due to expending their maternal reserves and energy, larger 

propagules lasting longer and being more successful over time.  

 Experimental design.  The experiment was designed by random complete design with 14 

propagules for each size class per week (see Figure 5).  The propagules were measured at least 

three times per week for radical extension, establishment, first leaf emergence, and nodal 

development.  Propagules were randomly selected by size class for each of 11 successive weeks 

and tray sets. 

Week 1 (tray 1)  Week 1 (tray 2) ... Week 11 (tray 1)  Week 11 (tray 2) 

S1 S2 S3  S1 S2 S3 ... S1 S2 S3  S1 S2 S3 

S1 S2 S3  S1 S2 S3 ... S1 S2 S3  S1 S2 S3 

S1 S2 S3  S1 S2 S3 ... S1 S2 S3  S1 S2 S3 

S1 S2 S3  S1 S2 S3 ... S1 S2 S3  S1 S2 S3 

S1 S2 S3  S1 S2 S3 ... S1 S2 S3  S1 S2 S3 

S1 S2 S3  S1 S2 S3 ... S1 S2 S3  S1 S2 S3 

S1 S2 S3  S1 S2 S3 ... S1 S2 S3  S1 S2 S3 

Figure 5. Experimental design for size class and floating time. 

 Heat treatments for regeneration success.  Because black mangrove propagule 

development peaks in late fall/early winter in Louisiana and due to mangrove sensitivity to 

freezing temperatures, the effect of soil temperature on regeneration timing and success were 

tested.  In addition to using propagules collected from parent trees, a random grab sample of 

dispersed propagules resting at low and high tide positions was collected at the Port Fourchon 

boat launch site, referred to as LO and HI propagule sets, respectively.  LO propagules were 

collected below low tide level in a submerged condition resting on the tidal basin mud bottom 
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just beyond mangrove shrub cover (see Figure 6).  The date of propagule collection was Dec 21, 

2013.  After washing the collective group of propagules back at NWRC, nearly all floated to the 

surface as opposed to staying submerged.  The condition of lying submerged in the field could be 

the effect of drag and capture of suspended mud accounting for lack of buoyancy.  It is uncertain 

why the cleaned propagules floated after washing whether by reduction of removed mud weight 

or other reason. 

Tray 1: 

CL, 80 

S1 & S2 

 
Tray 2: 

HI, 80 

Root 

 
Tray 3: 

HI, 80, CL 

 
Tray 4: 

LO, 80, CL 

 
Tray 5: 

LO, 80 

CL & OP 

 
Tray 6: 

HI, 80 OP 

           

Tray 7: 

CL, 60, S1 

& S2 

 
Tray 8: 

HI, 60, CL 

 
Tray 9: 

LO, 60, 

OP & CL 

 
Tray 10: 

LO, 60, 

OP & CL 

 
Tray 11: 

HI, 60, OP 

  

Figure 6. Experimental design for heat treatment. 

 HI propagules were collected at the highest stranded elevation at the upper edge of 

mangrove cover.  It is presumed that these are composed of propagules dropped from parent 

trees on the high end of the elevation gradient or floated on high tide and stranded from parent 

trees anywhere.  After washing, these HI propagules sank in the water bath rather than floated.  

Both groups were sorted by size and growth stage (cotyledon closed, open, radical extension, and 

presence of dangling roots).  None of these propagules showed any advanced stage of true leaf or 

stem development.  More than half of all propagules in the LO and HI collection showed signs of 

fungal blemishes demonstrating widespread infection in the wild.   

 Propagule selection for out-planting into the soil heat treatment experiment included 

those without apparent blemish of fungal infection and developmental stages possibly indicative 

of exposure time since drop from parent plant: 

CL: closed condition  
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OP: slightly open cotyledon 

S1: size 1: 1 g to 1.99 g (Dec, 1) 

S2: size 2: 2 g to 2.99 g (Dec, 2) 

Root: radical extension to fully open and long radical with and without root extension. 

 Two soil-heating treatments were applied at 60° F and 80°F. 

 Elevated CO2 for regeneration success.  The working hypothesis is that elevated CO2 

will increase regeneration success.  Four trays, each with 12 propagules of size class 2 after 1 

week floating time, were put in four CO2 greenhouses: greenhouse 1 and 3 with 720 ppm CO2, 

and greenhouse 2 and 4 with 320 ppm CO2 (ambient).  Propagule condition and response was 

monitored at least three times a week for radical extension, establishment, first leaf emergence, 

and survival rate. 

 Sunlight level for regeneration success.  The working hypothesis is that sunlight will 

increase the regeneration success.  Three trays, each with 18 propagules of size class 2 were put 

in three different light levels from magnified sunlight level, normal ambient sunlight, and shaded 

condition (50% ambient sunlight).  Propagule condition and response was monitored at least 

three times a week for radical extension, establishment, first leaf emergence, and survival rate. 

Statistical Analysis 

 Propagule regeneration and biomass data were processed in SAS 9.3 and Microsoft Excel 

2010.  Simple ANOVAs were applied for test of differences.  Fixed effect was used to compare 

the effect of vegetation to the aboveground biomass and to compare mean difference between 

floating time and propagule weight.  The fixed effects model is robust to normality.  The 

univariate fixed effects model provided the lsmeans table from SAS output (Montgomery, 1991).  
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In addition, the propagule data were calibrated using an algorithm to fill in missing values for 

floating time and propagule weight.  Then MANOVA was applied (p < 0.05) for analysis.  
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6 CHAPTER 4 

Results 

Aboveground Biomass 

 Results showed that mean biomass (dry wt) by treatment class was significant. ‘Mix’ and 

‘Marsh’ are less than ‘Tall’.  Model error was normal and constant variance.  All comparisons 

were evaluated at α = 0.05 (see Table 1).   

Table 1 

Effect of Vegetation on Aboveground Biomass 

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

Veg 3 4 9.15 0.0290 

 

Least Squares Means 

Effect Veg Estimate Standard Error DF t Value Pr > |t| 

Veg MR 1082.85 523.47 4 2.07 0.1074 

Veg MX 616.97 523.47 4 1.18 0.3039 

Veg SM 2018.07 523.47 4 3.86 0.0182 

Veg TM 4184.25 523.47 4 7.99 0.0013 

 

Differences of Least Squares Means 

Effect Veg _Veg Estimate Standard Error DF t Value Pr > |t| Adjustment Adj P 

Veg MR MX 465.87 740.30 4 0.63 0.5633 Tukey 0.9175 

Veg MR SM -935.22 740.30 4 -1.26 0.2751 Tukey 0.6264 

Veg MR TM -3101.41 740.30 4 -4.19 0.0138 Tukey 0.0456 

Veg MX SM -1401.09 740.30 4 -1.89 0.1314 Tukey 0.3568 

Veg MX TM -3567.28 740.30 4 -4.82 0.0085 Tukey 0.0286 

Veg SM TM -2166.19 740.30 4 -2.93 0.0430 Tukey 0.1332 
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 Tall mangroves on these transects were near 2.5 m in height and more or less typical of 

mature scrub along tidal creeks in this area.  The cumulative stemwood structure and size of this 

tall mangrove habitat accounts for anywhere from 2x to 4x greater standing biomass than 

adjoining “short” mangrove and “healthy” marsh near 1 m in height.  The mixed 

marsh/mangrove zone supports the lowest standing biomass among the habitat classes existing in 

a ponded condition due to its low elevation and having a less than healthy stature and growth 

allowing sufficient light to reach surface to support a surface of algal growth. 

 Mangroves are dominant on the tidal creek berm with the tall form on the highest ground 

and short form on the backside.  In this setting, the ecotone between pure mangrove and marsh 

appears rather distinct and persistent based on poles marking the same boundary a decade earlier.  

However, mangrove ingrowth is evident throughout the open marsh mostly of first year 

seedlings.  Nearly every square quadrat across the landscape gradient from main tidal creek to 

backside tidal inlet contain mangrove seedlings or shrubs indicative of widespread propagule 

dispersal and regeneration, but limiting conditions for mangrove persistence (see Figure 7). The 

presence of isolated and scattered mangrove shrubs throughout the marsh zone suggests that 

periodic anomalies of climate or sea level and recruit hardiness can advance mangrove 

encroachment at lower elevations and more flooded and unconsolidated soil conditions.  

Elevation surveys were more difficult to hold rods at surface due to the saturated soil conditions 

insufficient to hold a person’s weight and feet at surface or the rod bottom without using boards 

for support.  The more prominent the area coverage of algal mat was indicative of degree and 

duration of tidal flooding above surface and likelihood of loose, unconsolidated soil. 
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Figure 7. Number of mangrove seedlings along transect in open marsh zone. 

Tree Growth, Architecture, and Internode Measurement 

 To determine differences in mangrove growth and form from different habitat zones and 

stages, tree samples were collected and measured from different areas from open sunlight to 

shaded condition and different stem forms, seedling, saplings, and re-sprouts to contrast leaf 

morphology and to predict age or disturbance history.  In addition, some trees were tagged to 

track their growth over time to determine how seasonal conditions control growth habits and 

performance by re-measurement once every month. 

 The following are examples of growth measurements and differences from the same plant 

or in different settings.  Figure 8 shows successive internode measurements for four mangrove 

seedlings/saplings collected from the open marsh.  They demonstrate a similar growth pattern 

and internode count.  These four seedlings grew very fast from beginning by using the nutrient 

and energy reserves from the cotyledon and thereafter slower at levels depending on soil and site 

condition. They appeared to be 2-3 years old based on node count and cyclic growth pattern that 

is thought to be driven by seasonality.  These seedlings had about 4-5 sets of green leaves of 
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smaller size and shorter internode lengths presumably due to marsh substrate condition since 

vegetation cover is low with exposure to full sunlight. 

 

Figure 8. Internode lengths of four mangrove saplings growing in open marsh. 

 Re-sprout growth varied considerably within and between select trees perhaps related to 

plant allocation strategies and possible belowground differences in root size and health.  Growth 

rate within a tree among different branches exhibited a highly variable response that can be 

greater than 2x or even become suppressed as a function of resource allocation change or self-

shading (see Figure 9).  Re-sprouts can be of the same age based on node count or subsequent 

year growth start based on the offset.  Saplings with robust growth behavior indicate active 

growth whereas near zero nodal measurements if repeated indicate suppressed growth and the 

likelihood of abandonment if at the branch terminus.  The first or second node at the terminus is 

often in active growth mode and can be small or short simply from recent initiation from the 

meristem.  In many cases, re-sprouts can demonstrate a greater growth rate per node than main 

stem growth or other branch leads benefitting from a developed root system (see Figure 10).   
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Figure 9. Internode measurements of three re-sprout stems from the same root base (main stem 

1). 

 

Figure 10. Internode measurements of two re-sprout stems from the same root base (main stem 

2). 

 Figures 11 and 12 show 4 re-sprouts having a corresponding growth patterns.  They were 

collected from the marsh.  They are estimated to be 4 to 5 years old based on node count of 4-5 
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nodes per year.  Initial growth from propagule reserves are characteristically robust but does not 

sustained effected by soil condition in the marsh and shading in the mangrove zone. 

 

Figure 11. Internode count and lengths for four re-sprouts of main stem 8 with similar growth 

pattern and age. 

  

Figure 12. Internode count and lengths for four re-sprouts of main stem 9 with similar growth 

pattern and age. 
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 Leaf size measurements of ten trees from open and shaded areas showed that there was a 

significant difference in the length and width between leaves with exposure to sunlight and/or 

soil conditions (p = 0.001 < 0.05, see Figure 13).  The results showed that the leaves in the 

shaded area were longer and wider than those in open areas.  Moreover, they appeared to be 

thinner.  

 

Figure 13. Comparison of leaf sets, width and length, between stems from open and shaded 

areas. 

 Ten stems representative of open and shaded areas at transect 1 and 2 were measured for 

differences in node count and size.  Shaded trees had more internodes, and they were very short.  

As a result, they might be older than those in open areas, persisting under lesser conditions.  It is 

thought that they grew slower than those in the open sunlight for lack of sunlight and growing 

space (see Figure 14 and 15).  
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Figure 14. Internode count and lengths from single stems in open area. 

 

Figure 15. Internode count and lengths from single stems under shade. 
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 To track seasonal growth of mangrove, about 100 single stems and branches near the Port 

Fourchon boat launch area were tagged on 16 Jan 2014.  They were visited again about 6 weeks 

later on 8 March to determine the degree of internode growth and additions.  Observations 

showed that most of them did not add any internodes.  This might indicate that temperatures 

were not warm enough yet to stimulate cell growth since it was winter.  

 All tagged trees were re-measured on 22 May to determine any change in internode 

initiation or growth.  Most trees grew at least two internodes as shown by example for 4 trees in 

Figure 16.  This might be because from March to May, the temperature got warmer and there 

was more sunlight (see Figure 17).  

 

Figure 16. Internode growth and remeasurement of select tagged trees and branches. 
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Figure 17. Mean monthly temperature of Port Fourchon, Louisiana (source: 

http://www.weather.com) 

Soil Accretion 

 The 
137

 Cs dating method is an established technique to estimate the soil accretion rate 

from 1963-peak radioactivity fallout to present.  Along the first transect, vegetation cover graded 

over 30 m from tall Avicennia, short Avicennia, Spartina marsh only, to a mixed zone of 

Avicennia and Spartina. Peak 
137

Cs activity  in each vegetation zone occurred at a depth of 47 cm 

in the tall Avicennia core,  39 cm in the short Avicennia and mixed Avicennia and Spartina core, 

and at 31 cm in Spartina only core.  Therefore, tall Avicennia recorded the highest soil accretion 

rate of 0.94 ± 0.37 cm/year.  Short Avicennia and the mixed zone exhibited an intermediate soil 

accretion rate of 0.78 ± 0.36 cm/year.  The Spartina marsh core had the lowest accretion rate of 

0.62 ± 0.34 cm/year. See Appendix C for 
137

Cs profiles for transect 1.  On the 2nd transect, peak 

137
Cs activity was found at a depth of 37 cm in tall Avicennia,  29 cm in the short Avicennia, and  

25 cm in Spartina and mixed Avicennia and Spartina.  Therefore, tall Avicennia along this 
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transect also recorded the highest soil accretion rate of 0.74 ± 0.37 cm/year.  Short Avicennia 

exhibited an intermediate soil accretion rate of 0.58 ± 0.35 cm/year.  The Spartina marsh core 

and mixed zone had the lowest accretion rate 0.50 ± 0.36 cm/year and 0.50 ± 0.31 cm/year, 

respectively.  See Appendix C for 
137

Cs profiles for transect 2. 

Carbon Stores of Saltmarsh/Mangrove 

 Carbon loss on ignition results are shown in Appendix C based on soil depth and by 

cover type along transect 1 from tall mangrove to short mangrove to marsh to a mixed 

marsh/mangrove zone.  Results show an inverse relationship between percent organic matter and 

bulk density (see Appendix C-5).  The bulk density generally increased with depth from the top 

to the bottom of the cores.  In contrast, the organic matter decreased with depth from the top to 

the bottom of the core.  End samples at the top and bottom of core often do not slice uniformly 

due to soil condition and composition affecting an accurate bulk density calculation at these 

depths. 

 Percent of organic matter was converted to carbon concentration in gram relative to 

overall soil weight by depth by multiplying organic matter percent to soil weight by depth.  

Organic matter from the soil surface to the 1963/1963 depth in each core was sum up to get a 

cumulative organic matter from 1963.  The results showed that tall Avicennia recorded the 

highest organic matter of 180.44 g.  Short Avicennia had an intermediate level organic matter of 

170.88 g.  Spartina and mixed zone exhibited the lowest organic matter level of 131.15 g and 

130.60 g, respectively (see Figure 18). 
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Figure 18. Accumulative carbon stores of organic matter by cover type and zone from 1963 to 

present along transect 1. 

 In transect 2, the results demonstrated a similar pattern as transect 1. Tall Avicennia 

recorded the highest organic matter of 134.90 g. Short Avicennia exhibited an intermediate level 

organic matter of 122.66 g. Spartina and mixed zone had the lowest organic matter level of 

78.72 g and 77.78 g, respectively (see Figure 19).  In both transects, tall Avicennia have much 

higher carbon stores of organic matter than Spartina.  Thus, Avicennia helped increase the 

organic matter to the soil.  

 

Figure 19. Accumulative carbon stores of organic matter by cover type and zone from 1963 to 

present along transect 2. 
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Surface Elevation Data Obtained from RTK GPS Surveys of Field Sites 

 Water elevation of the Port Fourchon tide gage was related to a site-specific water level 

record sensor and surface elevation surveys.  A temporary water level recorded was installed in 

the tidal channel at the field site for a period of days to track high and low tide levels 

corresponding to the long-standing tide gage.  The results showed that max water level were at 

1.16 m, lowest were at – 0.5 m and mean range were at 0.369 m. 

 RTK GPS surveys including Dini Laser Survey and MR8 GPS were used to obtain the 

elevation for both transect.  The MR8 GPS gave us the absolute elevation while the Dini Laser 

Survey gave us the relative elevation.  In transect 1, the reference points were set up at SET sites 

that were available in the field.  From these points, elevation for each soil core was calculated.  

The elevations of every meter from the canal edge to soil core in the mixed zone were also 

calculated (see Figure 20). 

 

Figure 20. Elevations for every meter in transect 1. 

 The results showed that the elevation went up from the canal edge to the tall mangrove.  

It reached the highest peak at tall mangrove zone at 0.26 m.  Then, it declined across the short 
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mangrove and marsh zone and slightly up again at the mix zone.   Marsh soils were noticeably 

more saturated or ponded toward the mix zone.  Moreover, algae appeared at this point and there 

was less mangrove regeneration. 

 The current surface elevation decreased with cover type and zone from 0.38 m in tall 

mangrove, 0.24 m in short mangrove, 0.14 m in marsh, and 0.11 m in mix zone.  The 1963 

elevation were obtained by subtracting the current elevation to the 1963 depth at each zone as 47 

cm in tall mangrove zone, 39 cm at marsh zone and 31 cm at short mangrove and marsh zone.  

As a result, the elevations were -0.08 m at tall mangrove, -0.14 m at short mangrove, -0.16 m at 

marsh and -0.27 m at mixed zone (see Figures 21 and 22). 

 

Figure 21. Surface elevation at core sites across cover type and zones of transect 1. 

  

Figure 22. Reconstructed 1963 surface elevation at core sites of transect 1. 
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 In transect 2, elevation for  4 cores sites at tall mangrove, short mangrove, marsh and mix 

zone were taken for replication purpose.  The results showed that  the current surface elevation 

decreased from 0.23 m in tall mangrove, 0.14 m in short mangrove, 0.03 m in marsh and - 0.001 

m in mix zone.  The 1963 elevations were obtained by subtracting the current elevation to the 

1963 depth at each zone as 37 cm in tall mangrove zone, 29 cm at short mangrove and 31 cm at 

marsh zone and marsh zone.  As a result, the elevations were -0.13 m at tall mangrove, -0.14 m 

at short mangrove, -0.21 m at marsh and -0.25 m at mix zone (see Figures 23 and 24). 

 

Figure 23. Surface elevation at core sites across transect 2. 

 

Figure 24. Reconstructed 1963 surface elevation at core sites of transect 2. 
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Propagule Regeneration for Restoration 

 Propagule collection.  Differences were observed in the propagule size and frequency 

data from the Nov. 21 2013 and Dec. 21 2013 collections.  The Nov. 21 propagule data were 

collected when there was an abundance of propagules of larger size.  Unfortunately, a fungus 

infection killed most of our size 4 (4-5 g) propagules within a month affecting the integrity of the 

planned experiment.  One month later, the Dec. 21 collection showed a shift in size class density 

from larger to smaller propagules (see Figure 25).  We hypothesized that larger, more mature, 

propagules from 3g to 6g had dispersed or dropped to the ground between the two collection 

dates.  There was no significant difference or form change between the weight and length of 

collected propagules from the November and December collections (see Figures 25 and 26). 

 

Figure 25. Distribution of collected propagule by sizes (weight). 
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Figure 26. Estimated linear relationship between length (Y) and width (X) of collected 

propagules. 

 Propagule weight and floating time for regeneration success.  Survival rates were 

generally high for all size classes and float times of propagules indicating the hardiness and 

propensity for regeneration success. Results showed that there was no significant difference in 

survival rate for both week and size (p = 0.7643 and 0.068 > 0.05, respectively) based on float 

time and strand date (see Figure 27 and 28).   The lowest survival rates were above 75% and 

most notably low for the smallest propagule class less than 2 g per individual that might be 

expected for least mature and lowest energy reserves. 
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Figure 27. Regeneration rate by week. 

 

Figure 28. Propagule establishment rate by size. 

 There were seven response variables (hypocotyl growth, rooting day, lifting day, 

standing day, true leaf day, number of nodes and sum nodes) and two independent variables (size 

and float time).  To increase the sample size for the MANOVA, missing values were estimated to 

the data.  

 The means were estimated from all of the known values of ‘lifting day - rooting day’ & 

‘true leaf day - standing day.’  As a result, if rooting day was missing, it was estimated with 
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lifting day -19.43.  Likewise, if true leaf day was missing, it was estimated with standing day 

+15.67  (see Table 2). 

Table 2 

SAS Output for Estimation of Missing Values 

Variable M Standard Error N 

lift - root 19.43 1.06 175 

TL - stand 15.67 1.104 379 

 

 For lifting day, the average of root and standing day were taken when both existed.  For 

standing day the average of lifting and true leaf day were taken when both existed.  As a result, 

sample size increased from 166 to 356 points with all seven responses (9% of the missing data 

was estimated to increase the sample size by 124%). 

 Because the MANOVA for the seven variables didn’t follow normality, a nonparametric 

MANOVA ("L test," n.d.) was used.  To do this, the seven variables were ranked from highest to 

lowest and adjusted the Pillai Trace statistic or (n - 1) * (Pillai trace).  This follows a chi-square 

with p * (nd - 1) degrees of freedom (p = 7 or the number of responses & nd is the degrees of 

freedom of either size, float time, or the interaction).  The results are shown in Table 3. 

Table 3 

SAS output for nonparametric MANOVA (L Test) (N = 356) 

L stat  variable P * (nd - 1) p-value 

232.931  size 7 * (3 - 1) = 14 < 0.0001 

435.566  float 7 * (11 - 1) = 70 < 0.0001 

204.664  size*float 7 * (3 - 1) * (11 - 1) = 140 0.0003 

 

 To check for pairwise comparisons, the lsmeans of the two way ANOVA were taken by 

each response variable.  Since both float time and size class are fixed effects (we are comparing 
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the means), the two-way ANOVA is robust to normality.  If the interaction effect was not 

significant, the main effect was considered.  The alpha level (0.05) for the mean comparisons 

were Bonferonni adjusted (size used .05/3, float time used .05/55 and the interaction used 

.05/1980).  The results were as follows (note that only significant comparisons are given; others 

are not significant). 

 Number of nodes had a size effect.  True leaf day had a float effect.  Sum of nodes had a 

size effect and float effect.  The size*float interaction was significant for hypocotyl growth, 

rooting, lifting, and standing day.   

 Mean comparisons. 

 For number of nodes, size class 3 > size class 2 > size class 1.  

 For sum of nodes or the height of seedling, size class3 > size class 2 > size class 1.  Week 

1 smaller than week 4, week 3, week 2, week 6, and week 8.  

 For number of true leaf day, week 9 is smaller than week 3.  Week 9, week 8, week 5, 

and week 2 are smaller than week 11.  

 For hypocotyl growth of week 1 and week 2, size class 1 is smaller than size class 2.  

 In hypocotyl growth of size class 1, week 3 and week 4 are less than week 7, week 6, 

week 8, week 9, week 10, and week 11.  Week 5, week 1, and week 2 are less than week 6, week 

8, week 9, week 10, and week 11.  

 In hypocotyl growth of size class 2, week 1 and week 2 are less than week 5, week 6, 

week 7, week 8, week 9, week 10, and week 11.  Week 4 and week 3 are less than week 6, week 

7, week 8, week 9, week 10, and week 11.  Week 5, week 6, and week 7 are less than week  8, 

week 9, week 10, and week 11.  
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 In hypocotyl growth of size class 3, week 1, week 2, and week 3 are less than week 6, 

week 7, week 8, week 9, week 10, and week 11.  Week 4 is less than week 7, week 8, week 9, 

week 10, and week 11.  Week 5, week 6, and week 7 are less than week 8, week 9, week 10, and 

week 11.  

 For number of root day of size class 2, week 5 and week 1 are less than week 10 and 

week 11.  For number of root day of week 5, size class 2 is less than size class 1.  

 For number of lift day of size class 2, week 5 is less than week 7, week 3, week 11 and 

week 10. 

 For number of stand day of size class 2, week 5 is less than week 3, week 10, and week 

11. 

 Heat treatments for regeneration success.  Because fungus infection was deemed a 

likely factor to inhibit propagule viability, the timing of propagule lift and root implant of any 

propagules was more important to observe when comparing any effect of soil temperature on 

regeneration success.  Within 30 days of placement on soil surface (January 21), propagules 

under soil heating at 80°F were stimulated to initiate root extension and implant for all 

treatments compared to 60°F treatment and for all other regeneration experiments (see Figure 29 

and 30).  This suggests that temperature plays an important role in the start and progression of 

propagule regeneration months in advance of those on field sites and in other greenhouse 

experiments.   
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Figure 29. Number of established propagules after 30 days. 

 

Figure 30. Number of established propagules after 80 days. 

 Elevated CO2 for regeneration success.  Regeneration success was equally high at over 

97% under both ambient (400 ppm) and elevated (720 ppm) atmospheric CO2 concentrations.  

There were four response variables (hypocotyl extension, lifting day, standing day, true leaf 

day).  ANOVA was applied to compare the mean differences of four response variables of the 

different stages of regeneration.  Results showed that the elevated CO2 had no effect on radicle 

extension, lifting day, standing day, or true leaf day, respectively (p = 0.2365, 0.2038, 0.2245 

and 0.6488 > 0.05).   



48 

Sunlight level for regeneration success.  Propagule establishment rates were 22.22%, 

44.44% and 61.11% for control, open and shaded treatments from 26 January to 15 May 2014, 

respectively. Results showed that sunlight had no effect on propagule regeneration success; lift-

up, standing, or true leaf emergence (p > 0.05). More importantly, the date and timing of 

successful propagule establishment was similar for all sunlight levels and the float experiment 

within the same greenhouse space.  Evidence suggests that neither sunlight advanced 

regeneration nor shade (less than 50% PAR) retarded the timing of regeneration (see Figure 31). 

Actual lift up, standing, and true leaf emergence dates were coincident with all other unshaded 

propagules in the greenhouse reinforcing the role of temperature as the primary factor for 

propagule growth and establishment.  

Figure 31. Number of established propagules under different sunlight levels. 
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7 CHAPTER 5 

Discussion and Future Research 

Aboveground Biomass 

 Aboveground biomass and carbon stores for the different stages of marsh/mangrove 

habitat and mixing varied greatly, and was highest for pure mangrove scrub, tall and short, due to 

their extensive leaves, branches, and root systems. Tall mangrove was significantly greater than 

pure marsh or mixed marsh/mangrove zone by more than double the standing biomass.  

 Biomass values corresponded with elevation grade such that the higher elevations 

supported dense vegetation of mangrove and marsh (see Figure 32).  The greater height and 

vertical profile of woody stem growth of tall mangrove accounted for biomass values that were 

2x or greater on average for short mangrove and healthy marsh, and even more so for ponded 

marsh and marsh/mangrove mix at the lowest elevations. As elevation decreased across the grade 

from tidal creek berm to backside inlets, surface flooding from tides was greater in extent and 

frequency while vegetation height and density was less for either marsh or mangrove.  Algal 

mats are prominent in this lower zone for the added flood conditions and sunlight for lack of 

canopy cover.  

 

Figure 32. Correlation between elevation and aboveground biomass. 
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Tree Growth, Architecture, and Internode Measurement 

 Growth behavior and cyclic internode patterns support the study hypothesis that 

mangrove in Louisiana grow faster in spring and slower, if at all, in winter.  By measuring the 

internode development in different settings of open area, shaded area, re-sprouts, seedlings, and 

tagging trees, it was shown that mangrove grew very little or might stop growing in winter.  It 

was evaluated by comparing the growth pattern of the remeasured tagged branch and stems and 

seedlings in the same setting environment.  They grew very long internodes in summer and very 

short internodes in winter.  In extreme weather when the temperature drops below 0°C, 

mangrove leaves, and stem cells can embolize leading to tree mortality or partial dieback.  In 

fact, in this study, most of tagged mangrove did not grow any internodes from January to March 

when the temperature was seasonably cool.  In contrast, tagged branches and stems added from 

two to five internodes from March to May when the air temperature got warmer and daylength 

was greater.  Temperature appears to be a critical factor in mangrove regeneration in the field 

and greenhouse experiments and for stem elongation and growth in the field.  Near freezing 

conditions can cause plant tissue damage and death, and relatively modest seasonal temperatures 

less than 20°C appear to limit growth and regeneration.   

 Leaf size and internode length of seedlings and saplings varied from open and shaded 

positions in marsh and mangrove zones.  Black mangrove is a shade intolerant species growing 

best under full sunlight, but can survive under shade with modification to leaf form, wider, 

longer, and overall larger leaf area.  In contrast, leaf size and internode length between 

comparable open-grown seedlings and saplings of similar internode count and age were much 

shorter in marsh soils than those on higher elevation mangrove zones.  A number of factors may 

account for slower growth between these settings primarily due to the difference in flooding 
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frequency as affected by elevation and likely difference in available soil oxygen.  It was 

observed that mangrove seedlings at lower elevations were coated with sediment and algal 

growth from overtopping by tidal flood that may affect leaf function efficiency and reduce 

photosynthesis. 

 Tree internode measurement and tree architecture are very simple and efficient methods 

of tracking mangrove growth and estimating carbon stores. Osland, Day, Larriviere and From 

(2014) developed aboveground allometric equations which can be used to quantify mangrove 

total aboveground biomass, leaf biomass, stem plus branch biomass, and  leaf area. In this study, 

instead of using such allometric equations, the 1 m
2
 quadrat survey was applied to estimate the 

aboveground biomass for mangrove and marsh because it is simpler and more accurate. 

Understanding cyclic patterns of annual growth can also help determine how old the mangrove 

are and what causes them to grow slow or fast.  Therefore, tree architecture could provide the 

history of establishment of mangrove in a specific area when analyzed or confirmed with aerial 

photography or other personal account or documentation. 

Soil Accretion 

 The yearly increase or addition of  soil material and elevation, known as accretion, 

involves a combination of processes including positive contributions of mineral sedimentation, 

organic matter deposition, and negative components of decomposition and erosion (Foret, 2001).  

These processes connect soil formation to the sustainability of a wetland ecosystem.  The 

conversion of marsh to mangrove in the Gulf of Mexico by some is thought to promote sediment 

trapping and shoreline stability and thereby possibly increase the soil accretion rate (Comeaux et 

al., 2012; Perry & Mendelssohn, 2009). 
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   The results from 
137

Cs dating of soils fully supported the hypothesis that mangrove has 

higher soil accretion rate and carbon stores than marsh in this setting due to their extensive 

leaves, branches and root systems.  In both transects, tall mangrove exhibited the higher 

accretion rates of 0.94 ± 0.37 cm/year and 0.74 ± 0.37 cm/year compared to the marsh zone at 

0.62 ± 0.34 cm/year and 0.50 ± 0.31 cm/year, respectively.  Short mangrove and the mixed zone 

demonstrated an intermediate accretion rate of 0.78 ± 0.36 cm/year on transect 1.  On transect 2, 

short mangrove exhibited an intermediate accretion rate of 0.58 ± 0.35 cm/year.  The mixed zone 

had the lowest accretion rate of 0.50 ± 0.36 cm/year.  These are long-term estimates of net 

accretion over 5 decades showing mangrove, tall and short form, occupied the highest elevations, 

and accumulated the greater soil accretion.   

 Landscape position may prove to be the more important factor of natural berm 

development at tidal creek edge where deposition of mineral and organic debris from marine and 

estuarine tidal circulation falls out or traps most readily, accounting for higher elevation.  Marsh 

and mangrove persist on these berms and both cover types are sufficiently healthy and dense to 

strand floating propagules of mangrove from parent trees local and regional.  Raft lines from 

high tides can often comply with organic debris from marine seagrass, marsh and mangrove leaf 

and stem parts, and mangrove propagules.  The success of mangrove regeneration thereafter is 

not well understood, but likely depends on a number of climate, soil, and biotic interactions.  

Because mangroves are generally found at the highest elevations, it has long been questioned as 

to whether they require or create the higher elevation.  The results of this study demonstrate that 

mangrove regenerate at all elevations, high and low, but succeed more readily at higher 

elevations and contribute higher organic production above- and belowground after establishment.   
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Bulk Density and Carbon Storage 

 Bulk density generally increased with soil depth and inversely in relationship to percent 

organic matter.  When the bulk density was high, there was more clay in the samples.  The bulk 

density often reached near its highest value at the depth of peak 
137

Cs specific activity for nearly 

all sediment cores regardless of cover type.   

 Soil formation is manipulated by both the contribution of biomass production and the loss 

of organic matter through decomposition (Foret, 2001).  Mangroves are thought to increase both 

belowground plant production and deposition rate through their large leaves, branches, and root 

systems.  Therefore, they are thought to have a higher carbon sequestration rate than marshes 

(Bianchi et al., 2013). 

 Study results demonstrated that mangrove accumulate higher soil carbon and storage than 

marsh.  Carbon gain or accumulation from 1963 in both transects confirmed that tall mangrove 

soils sequestered the highest carbon at 180.44 g in transect 1 and 134.90 g in transect 2, Short 

mangrove exhibited an intermediate level of 170.88 g in transect 1 and 122.66 g in transect 2. 

Marsh and mixed zone had the lowest carbon at 131.15 g and 130.60 g in transect 1 and 78.72 g 

and 77.78 g in transect 2, respectively. 

Elevation 

 Mangroves are known to establish on higher elevations than marsh in some wetland 

settings.  Thom (1967) indicated that the primary elements responsible for mangrove species 

zonation are geomorphic features of an area combined with subtle elevational variations.  In 

addition, mangrove is usually found at higher elevations where duration and frequency of 

flooding are relatively low (Chapman, 1976).  Similarly, Patterson (1992) found that the 

elevation was highest in the  Avicennia zone, intermediate in transition zone, and lowest in 
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Spartina zone.  In this study, the working hypothesis was that mangrove ingrowth thereafter 

promoted higher deposition and increased elevation with vegetation complexity or stand age.  

The results supported this hypothesis.  In both site transects, tall mangrove surveyed at higher 

elevations of 0.38 m and 0.23 m (NAVD) compared to 0.14 m and 0.03 m (NAVD) of marsh, 

respectively.  The surface elevation in 1963 based on accretion rate by 
137

Cs dating of soils 

showed little difference of   -0.08 m and -0.13 m (NAVD) in tall mangrove sites and -0.16 m and 

- 0.21 m (NAVD) in marsh, respectively.  As a result, in transect 1, the elevation increased 0.46 

m in tall mangrove zone compared to 0.30 m in marsh zone.  In transect 2, the elevation 

increased 0.36 m in tall mangrove zone compared to 0.24 m in marsh zone.  Elevation clearly 

plays an important role of interaction with tidal flooding that influences the import of 

allocthonous material and generation of greater autocthonous deposition from less flooded and 

healthy marsh or mangrove. 

Propagule Regeneration for Restoration Success 

 Propagule weight and floating time for regeneration success.  The results showed that 

propagule size and floating time have a significant effect on regeneration success and growth of 

seedlings.  Larger propagules by size class accounted for greater height growth after 

establishment, which may be important for survival and persistence in the field where 

subsequent, flooding or submersion can slow growth or cause death.    

 The condition and capacity of propagules to successfully establish after floating in tidal 

waters for different lengths of weeks before becoming stranded was investigated to test whether 

floating time had an effect on both regeneration success and seedling growth.  Overall, floating 

time for a period up to 11 weeks did not inhibit regeneration success showing that greater than 

80% of propagules in all treatments became established under controlled conditions. Regardless 
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of floating time prior to becoming stranded, propagules of small or large mass have the 

propensity to regenerate. 

Temperature effect on regeneration success.  More than any factor, temperature was 

the common factor in the field, greenhouse, or by heat treatment sustained above 20°C that 

stimulated metabolic activity and regeneration start of propagules. In Louisiana, black mangrove 

propagules usually mature and drop in late fall, November and December.  In the field, 

propagules lay dormant on the ground or float in warm Gulf waters exposed to cold air masses 

and temperatures during winter months, January and February.  Pickens and Hester (2010) 

investigated the effect of low temperature on propagule viability in early life state.  They found 

that duration and temperature of exposure decreased propagule survivorship, specifically 24 

hours exposure at ‐6.5°C.  In addition, propagules exposed to −6.5°C were most vulnerable to

fungal infection (Pickens & Hester, 2010).  In this study, soil heating at 80°F advanced 

regeneration success 2 months ahead of constant heating at 60°F or other experiments in same 

greenhouse space. 

Sunlight for regeneration success.  All propagules remained relatively dormant from 

December planting though February, but suddenly and synchronously stood up in March when 

air temperature was warmer and there was greater daylength.  Neither amplified sunlight nor 

shading at 50% PAR advanced or retarded regeneration start different from the control group or 

other treatments sharing the same greenhouse space.  

Elevated CO2 for regeneration success.  Elevated atmospheric CO2 is known to 

increase the nutrient and water use efficiency in many plant species.  McKee and Rooth (2008) 

investigated the effect of elevated atmospheric CO2 concentration (720 ppm) on mangrove and 

marsh species demonstrating above- and belowground production increases above ambient (385 
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ppm).  Similarly,  Adam Langley, Mozdzer, Shepard, Hagerty, and Patrick Megonigal (2013) 

found that elevated CO2  and nitrogen addition directly affected belowground production and soil 

accretion of marsh species to increase surface elevation.  In this study, we exposed mangrove 

propagules to elevated CO2 (720 ppm) to detect any acceleration on regeneration start.  There 

was no difference in regeneration start or establishment between ambient or elevated CO2

environment.  Propagules under both CO2 treatments synchronously began regeneration activity 

in late March along with other greenhouse and field propagules. Except soil heating at 80°F 

where regeneration start was advanced by a month or more, all other treatments of float time, soil 

heating at 60°F, amplified sunlight, deep shade, or elevated atmospheric CO2 significantly 

advanced or retarded regeneration start or establishment.  These collective treatments suggest 

that there is a critical temperature constant that must be reached or sustained to stimulate 

metabolic activity toward seedling establishment. 
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Figure A-1. Primary production (litter fall, wood, and root production) and various sink terms. 

(From Bouillon et al., 2008) 

Table A-1 

Regeneration Data from Floating Time and Size Treatment 

Propagules float_time hrad_grow size nnodes sum_nodes root_day lift_day stand_day TL_day 

1 1 43 1 2 60 . 69 73 93 

2 1 27 1 2 46 57 77 81 113 

3 1 43 1 2 63 72 . 93 103 

4 1 43 1 1 10 72 . 95 107 

5 1 5 1 none . none none none none 

6 1 19 1 2 37 . 93 95 107 

7 1 7 1 sick . 69 sick sick sick 

8 1 5 2 2 69 69 . 97 111 

9 1 13 2 2 50 72 85 87 111 

10 1 9 2 3 93 57 95 97 107 

11 1 9 2 2 55 57 79 87 105 

12 1 15 2 2 75 72 87 89 105 

13 1 5 2 2 65 . 65 73 95 

14 1 29 2 3 80 . 69 73 93 

15 1 5 3 3 112 72 89 91 97 

16 1 7 3 4 116 . 61 63 83 

17 1 23 3 3 83 69 85 91 105 

18 1 17 3 3 105 72 87 91 103 

19 1 5 3 3 106 69 87 91 105 

20 1 43 3 die . die 

21 1 43 3 sick . 

22 1 5 1 2 63 . 69 77 93 

23 1 43 1 2 51 72 87 91 105 

24 1 7 1 2 42 57 59 63 79 
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25 1 5 1 3 82 . 61 63 81 

26 1 5 1 none . 69       

27 1 5 1 0 0 72   130   

28 1 37 1 1 20 72 113 117 130 

29 1 7 2 3 59 57   97 109 

30 1 5 2 3 89 . 61 63 93 

31 1 41 2 none .         

32 1 9 2 3 84 . 57 59 80 

33 1 7 2 2 42 69 75 97 115 

34 1 5 2 2 62 . 67 73 109 

35 1 5 2 1 15 72 79 85 105 

36 1 43 3 2 55 72 99 113 119 

37 1 5 3 0 0 133       

38 1 27 3 2 78 . 69 73 99 

39 1 5 3 2 75 72 91 95 109 

40 1 9 3 3 73 . 65 93 103 

41 1 5 3 2 78 72 99 103 107 

42 1 15 3 4 57 . 63 83 91 

43 2 31 1 0 0 72 125 130   

44 2 27 1 sick .         

45 2 25 1 3 75 . 65 67 87 

46 2 7 1 none .         

47 2 7 1 none .         

48 2 13 1 3 92 . 57 59 74 

49 2 43 1 none .         

50 2 7 2 3 138 57 63 65 87 

51 2 7 2 3 79 . 59 63 81 

52 2 7 2 1 15 72 117 119 133 

53 2 7 2 2 38 72 117 119 123 

54 2 9 2 3 104 69 . 81 104 

55 2 7 2 2 100 72 101 103 115 

56 2 7 2 3 104 72 87 91 103 

57 2 17 3 3 169   69 79 89 

58 2 35 3 4 129 72 81 83 101 

59 2 43 3 3 89 72   97 107 

60 2 7 3 1 50 115   117 130 

61 2 13 3 4 172   57 59 77 

62 2 21 3 3 80 72 77 81 101 

63 2 15 3 4 174 72   97 101 

64 2 43 1 2 67   63 65 87 

65 2 43 1 2 98 72 87 89 105 

66 2 7 1 1 55 72 99 101 116 

67 2 43 1 2 47 72   97 111 

68 2 35 1 2 47   69 75 101 

69 2 17 1 2 58   61 63 93 

70 2 27 1 2 53   69 75 97 

71 2 7 2 3 103 57 59 61 77 

72 2 7 2 3 79 57 75 77 97 
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73 2 27 2 3 87 57 87 91 99 

74 2 7 2 3 86 69 87 91 101 

75 2 35 2 3 112   67 69 87 

76 2 7 2 1 25 72 117 119 130 

77 2 35 2 3 109     95 105 

78 2 35 3 3 131 69 77 81 93 

79 2 21 3 3 121     95 105 

80 2 7 3 2 117 72 77 81 95 

81 2 35 3 none .         

82 2 17 3 2 80 72   97 107 

83 2 19 3 3 104 72 87 91 105 

84 2 7 3 4 140 57 61 63 81 

85 3 21 1 0 0         

86 3 15 1 2 115 72 77 79 101 

87 3 15 1 sick .         

88 3 15 1 2 55 72 91 93 107 

89 3 15 1 3 101 72 77 81 97 

90 3 15 1 3 75 72 79 81 97 

91 3 27 1 1 20 72 105 107 130 

92 3 15 2 3 118 72 95 97 109 

93 3 15 2 3 111   61 63 91 

94 3 15 2 2 75 72 91 93 111 

95 3 43 2 3 93 72 93 95 109 

96 3 17 2 2 63 72 83 85 107 

97 3 15 2 3 104     61 83 

98 3 35 2 1 45 72   113 123 

99 3 15 3 3 111 72   87 97 

100 3 15 3 2 22 72 117 119 130 

101 3 17 3 2 65 72 97 99 113 

102 3 27 3 0 0 138       

103 3 21 3 0 0 138       

104 3 35 3 none .         

105 3 43 3 3 110 72 83 87 103 

106 3 25 1 1 5 72 125 130 138 

107 3 15 1 none .         

108 3 21 1 none .         

109 3 15 1 2 63 72 97 99 111 

110 3 15 1 3 83 72   91 104 

111 3 43 1 2 55 72   97 111 

112 3 15 1 2 49 72   97 117 

113 3 23 2 3 102 72 85 87 101 

114 3 29 2 3 111 72 85 87 103 

115 3 21 2 1 25 72 111 117 130 

116 3 27 2 3 74   69 75 99 

117 3 15 2 none .         

118 3 15 2 2 71 72 99 103 117 

119 3 15 2 2 92 72 81 83 101 

120 3 21 3 3 106 72 97 99 111 
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121 3 17 3 3 137 72 81 83 97 

122 3 15 3 3 159 72 87 91 101 

123 3 15 3 0 0         

124 3 17 3 3 108 72 85 87 101 

125 3 19 3 3 137 72 77 81 95 

126 3 15 3 3 125 72 77 81 95 

127 4 23 1 0 0         

128 4 43 1 2 46 72 111 113 122 

129 4 35 1 3 71 72 85 87 101 

130 4 21 1 0 0 72   123 138 

131 4 21 1 0 0 72 125 130   

132 4 21 1 2 73 72   87 96 

133 4 21 1 3 51 72 77 81 97 

134 4 21 2 none .         

135 4 21 2 3 95   57 59 79 

136 4 23 2 3 96 72   81 103 

137 4 23 2 2 85 72   105 113 

138 4 21 2 2 98 72 77 81 105 

139 4 35 2 2 85   57 61 83 

140 4 21 2 2 70 72 93 93 103 

141 4 21 3 4 145   63 65 85 

142 4 21 3 4 113   61 65 81 

143 4 21 3 3 133   59 63 83 

144 4 21 3 3 144   59 61 79 

145 4 21 3 3 141     65 81 

146 4 21 3 3 128 72   91 101 

147 4 21 3 3 130 72 77 79 93 

148 4 35 1 2 54 72 95 97 111 

149 4 23 1 2 75   65 67 89 

150 4 43 1 0 0         

151 4 23 1 2 63 72   81 99 

152 4 21 1 1 35 72 111 113 123 

153 4 21 1 2 56 72 91 93 103 

154 4 23 1 2 70 72   97 111 

155 4 21 2 3 77   69 77 105 

156 4 21 2 3 114   69 73 91 

157 4 21 2 2 97 72 77 79 103 

158 4 23 2 2 42 72 105 109 123 

159 4 21 2 2 64 72   81 111 

160 4 21 2 3 95 72 85 87 105 

161 4 35 2 3 83 72 81 85 103 

162 4 32 3 4 152 72 77 79 95 

163 4 32 3 2 80 72   97 117 

164 4 43 3 1 25     119 132 

165 4 23 3 3 110     67 89 

166 4 21 3 3 135 72   81 93 

167 4 23 3 5 150   63 67 81 

168 4 43 3 1 35 72 120 123 130 
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169 5 27 1 2 67     57 75 

170 5 27 1 2 96 72 83 85 97 

171 5 27 1 2 50 72   99 107 

172 5 27 1 3 86 72   97 105 

173 5 27 1 2 43 72   79 97 

174 5 27 1 2 70 72 85 87 97 

175 5 27 1 2 41 72 113 116 126 

176 5 27 2 2 85     61 77 

177 5 27 2 0 0         

178 5 27 2 2 63 72   95 117 

179 5 27 2 2 85   57 61 81 

180 5 27 2 2 85 72 77 79 95 

181 5 27 2 2 88   61 63 87 

182 5 27 2 die .         

183 5 27 3 0 0 72 123 130   

184 5 27 3 0 0 119 125 130   

185 5 27 3 3 145   67 69 87 

186 5 27 3 3 122 72 99 105 113 

187 5 27 3 3 130     57 75 

188 5 27 3 3 142     63 81 

189 5 43 3 0 0         

190 5 27 1 2 75 72 87 91 101 

191 5 27 1 none .         

192 5 33 1 3 77 72   81 96 

193 5 43 1 1 25 72 111 113 124 

194 5 27 1 2 68 72   87 101 

195 5 43 1 2 90 72   77 93 

196 5 35 1 die .         

197 5 27 2 2 85   57 61 77 

198 5 27 2 4 155   61 63 85 

199 5 27 2 3 135   61 63 85 

200 5 43 2 2 70 72   77 101 

201 5 27 2 0 0         

202 5 27 2 2 75   61 63 97 

203 5 27 2 3 85   61 63 87 

204 5 27 3 3 112   59 61 79 

205 5 27 3 3 143     61 83 

206 5 27 3 3 103 72   95 107 

207 5 27 3 3 147     63 85 

208 5 27 3 4 162     57 68 

209 5 27 3 3 102     57 74 

210 5 27 3 3 137   69 73 91 

211 6 35 1 0 0         

212 6 43 1 2 77 72   87 99 

213 6 35 1 2 75     63 85 

214 6 35 1 2 85   59 61 81 

215 6 43 1 1 15 72 115 118 128 

216 6 43 1 0 0         
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217 6 35 1 3 87   63 67 83 

218 6 35 2 2 90 72   75 95 

219 6 37 2 3 92 72 75 79 96 

220 6 35 2 2 64     111 119 

221 6 35 2 1 15 72 113 115 131 

222 6 35 2 3 53 72 81 87 115 

223 6 35 2 2 75     63 87 

224 6 35 2 3 110 72   81 101 

225 6 37 3 0 0 130 138     

226 6 35 3 4 150     63 85 

227 6 35 3 0 0 72 130     

228 6 35 3 none .         

229 6 35 3 3 130 72 99 101 111 

230 6 35 3 3 143   71 75 87 

231 6 35 3 3 144 72   97 103 

232 6 35 1 2 61   61 63 77 

233 6 35 1 2 67     63 77 

234 6 35 1 2 80     75 93 

235 6 43 1 2 76 72 107 109 116 

236 6 43 1 2 37 72 77 81 95 

237 6 43 1 1 5 72 125 130 138 

238 6 43 1 2 90 72 100 102 110 

239 6 35 2 2 102 72 85 87 105 

240 6 35 2 3 100 72   75 101 

241 6 35 2 3 90   57 61 81 

242 6 39 2 0 0 133       

243 6 43 2 2 80 72   75 103 

244 6 43 2 2 88 72 81 83 97 

245 6 35 2 2 91   59 61 82 

246 6 35 3 3 31 72 111 113 121 

247 6 35 3 3 122     95 105 

248 6 35 3 3 130 72 99 101 107 

249 6 35 3 3 172 69 77 79 96 

250 6 41 3 none .         

251 6 43 3 sick .         

252 6 43 3 3 105 72 97 99 109 

253 7 41 1 2 67   69 71 95 

254 7 41 1 2 65   59 61 81 

255 7 41 1 none .         

256 7 41 1 die .         

257 7 41 1 2 73     67 93 

258 7 41 1 2 80 72   83 85 

259 7 41 1 2 50 72   91 104 

260 7 41 2 sick .         

261 7 41 2 3 95   67 69 91 

262 7 41 2 3 110 72   81 96 

263 7 41 2 2 67     87 105 

264 7 41 2 0 0         
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265 7 41 2 die . die       

266 7 41 2 2 85 72 89 91 103 

267 7 43 3 3 99 72   87 99 

268 7 41 3 3 122 72 87 91 99 

269 7 41 3 sick .         

270 7 41 3 3 122 72   92 102 

271 7 41 3 3 131   65 69 82 

272 7 41 3 3 95 72 83 85 97 

273 7 41 3 4 139   63 67 82 

274 7 41 1 2 49 72 103 105 115 

275 7 41 1 2 37   59 61 75 

276 7 43 1 2 54 72   95 113 

277 7 41 1 2 71 72 81 83 97 

278 7 41 1 2 82     63 87 

279 7 41 1 sick .         

280 7 41 1 2 79 72   91 105 

281 7 41 2 3 91 72   94 111 

282 7 41 2 3 78 72 89 91 111 

283 7 41 2 sick .         

284 7 41 2 3 109 72 89 91 101 

285 7 41 2 0 0 72   125 138 

286 7 41 2 3 113     91 101 

287 7 41 2 0 0 72 123 138   

288 7 41 3 3 119   63 67 87 

289 7 41 3 3 105 72   93 95 

290 7 41 3 3 93 72 79 81 97 

291 7 43 3 none .         

292 7 41 3 2 89 72 93 95 103 

293 7 41 3 3 114 72 79 81 96 

294 7 41 3 3 106 72 95 97 109 

295 8 43 1 2 61     67 87 

296 8 43 1 2 68 72 87 89 103 

297 8 43 1 2 64     61 92 

298 8 43 1 2 68   61 63 87 

299 8 43 1 2 87 72 75 77 87 

300 8 43 1 2 70 72 75 77 95 

301 8 43 1 sick .         

302 8 43 2 2 96 72   75 97 

303 8 43 2 2 82 72   77 97 

304 8 43 2 2 73   63 67 93 

305 8 43 2 2 80 72   75 99 

306 8 43 2 2 66     63 87 

307 8 43 2 3 95     63 85 

308 8 43 2 3 114 72   87 103 

309 8 43 3 3 124 72 81 83 95 

310 8 43 3 2 36 72   113 123 

311 8 43 3 2 93 72 93 95 105 

312 8 43 3 3 101 72 77 81 105 
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313 8 43 3 4 128   69 73 91 

314 8 43 3 3 118 72   97 105 

315 8 43 3 3 131 72   95 103 

316 8 43 1 2 40     63 93 

317 8 43 1 2 48 72 77 79 95 

318 8 43 1 2 50   69 73 95 

319 8 43 1 2 61 72   109 116 

320 8 43 1 2 70 72 81 83 97 

321 8 43 1 2 75   69 73 81 

322 8 43 1 sick .         

323 8 43 2 2 90 72   81 105 

324 8 43 2 3 101   59 61 81 

325 8 43 2 2 93   63 67 93 

326 8 43 2 2 104 72   87 105 

327 8 43 2 2 80 72 99 103 115 

328 8 43 2 3 96   69 73 99 

329 8 43 2 3 105 72   95 105 

330 8 43 3 0 0         

331 8 43 3 0 0         

332 8 43 3 2 72 72   83 97 

333 8 43 3 2 100 72 95 97 107 

334 8 43 3 die .         

335 8 43 3 sick .         

336 8 43 3 3 122 72 85 87 95 

337 9 43 1 2 74 72   75 93 

338 9 43 1 0 0 69       

339 9 43 1 2 58 72 75 79 93 

340 9 43 1 2 66 72   75 93 

341 9 43 1 2 50     105 117 

342 9 43 1 2 45 72 75 77 96 

343 9 43 1 2 71   67 69 85 

344 9 43 2 2 61   71 73 97 

345 9 43 2 3 102   69 73 93 

346 9 43 2 2 75   69 73 95 

347 9 43 2 2 97 72   87 103 

348 9 43 2 2 70 72   87 104 

349 9 43 2 2 68 72 79 81 97 

350 9 43 2 2 62   71 75 93 

351 9 43 3 2 87 72 73 75 91 

352 9 43 3 3 82   69 73 87 

353 9 43 3 3 94 72 77 79 93 

354 9 43 3 3 91     81 95 

355 9 43 3 none .         

356 9 43 3 3 86 72 75 77 93 

357 9 43 3 3 107 72 81 83 95 

358 9 43 1 2 67     81 97 

359 9 43 1 none .         

360 9 43 1 0 0 72   116 130 
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361 9 43 1 2 44 72 81 83 103 

362 9 43 1 1 22 72 105 111 125 

363 9 43 1 0 0 72 138     

364 9 43 1 2 50 72 79 81 93 

365 9 43 2 3 105   69 73 87 

366 9 43 2 2 64 72 77 79 97 

367 9 43 2 3 85 72   97 111 

368 9 43 2 3 63 72   81 97 

369 9 43 2 0 0 72 133     

370 9 43 2 2 50 72 111 113 125 

371 9 43 2 0 0         

372 9 43 3 2 57 72 75 77 97 

373 9 43 3 3 118   71 73 93 

374 9 43 3 3 105 72 75 77 87 

375 9 43 3 3 104 72 79 81 95 

376 9 43 3 2 105 72 97 99 111 

377 9 43 3 3 76 72   83 96 

378 9 43 3 3 126 72 89 92 99 

379 10 43 1 2 44 72 81 83 101 

380 10 43 1 2 72 72 91 93 107 

381 10 43 1 2 68 72 83 85 97 

382 10 43 1 2 52 72 89 91 105 

383 10 43 1 2 85 72   87 101 

384 10 43 1 2 67 72 87 89 103 

385 10 43 1 none .         

386 10 43 2 3 82 72   87 105 

387 10 43 2 3 101 72 89 91 99 

388 10 43 2 3 70 72   95 105 

389 10 43 2 3 99 72 101 103 109 

390 10 43 2 2 67 72 85 87 103 

391 10 43 2 2 65 72 87 91 97 

392 10 43 2 2 50 72 109 111 125 

393 10 43 3 3 107 72 101 103 111 

394 10 43 3 2 97 72   87 103 

395 10 43 3 3 110 72 91 93 101 

396 10 43 3 3 82 72 89 91 105 

397 10 43 3 3 93 72   89 101 

398 10 43 3 3 111 72   87 97 

399 10 43 3 3 118 72   87 97 

400 10 43 1 3 65 72   105 117 

401 10 43 1 none .         

402 10 43 1 2 72 72   85 104 

403 10 43 1 3 87 72   81 97 

404 10 43 1 none .         

405 10 43 1 2 52 72 81 85 95 

406 10 43 1 2 47 72 85 87 111 

407 10 43 2 3 114 72   81 97 

408 10 43 2 2 98 72 89 91 111 
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409 10 43 2 3 86 72 93 95 105 

410 10 43 2 2 75 72   87 99 

411 10 43 2 2 62 72 109 111 121 

412 10 43 2 0 0 125       

413 10 43 2 none .         

414 10 43 3 2 70 72   81 97 

415 10 43 3 3 105 72   89 105 

416 10 43 3 3 95 72 85 89 97 

417 10 43 3 3 102 72 85 87 97 

418 10 43 3 3 127 72   87 103 

419 10 43 3 3 85 72   87 99 

420 10 43 3 3 85 72 97 99 116 

421 11 43 1 1 10 72   117 133 

422 11 43 1 3 78 72 91 93 97 

423 11 43 1 2 62 72   87 103 

424 11 43 1 2 85 72   93 101 

425 11 43 1 2 67 72   101 111 

426 11 43 1 1 35 72   119 130 

427 11 43 1 none .         

428 11 43 2 0 0         

429 11 43 2 2 77 72   96 111 

430 11 43 2 2 86 72   93 105 

431 11 43 2 2 90 72 89 91 105 

432 11 43 2 2 83 72   93 105 

433 11 43 2 3 78 72 89 91 105 

434 11 43 2 2 87 72   107 111 

435 11 43 3 3 67 72   97 105 

436 11 43 3 2 80 72   97 107 

437 11 43 3 2 95 72 89 91 103 

438 11 43 3 3 125 72   93 105 

439 11 43 3 3 85 72   97 105 

440 11 43 3 3 127 72   93 105 

441 11 43 3 2 90 72 97 99 111 

442 11 43 1 none .         

443 11 43 1 2 87 72   87 101 

444 11 43 1 2 66 72   109 111 

445 11 43 1 2 72 72 103 105 113 

446 11 43 1 0 0         

447 11 43 1 none .         

448 11 43 1 0 0         

449 11 43 2 die . 121       

450 11 43 2 3 95 72 93 95 105 

451 11 43 2 3 83 72   93 101 

452 11 43 2 2 70 72   87 105 

453 11 43 2 0 0         

454 11 43 2 3 72 72 105 109 115 

455 11 43 2 2 42 72   99 125 

456 11 43 3 3 99 72   87 101 
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457 11 43 3 2 91 72 93 95 103 

458 11 43 3 3 103 72   97 111 

459 11 43 3 2 97 72   87 101 

460 11 43 3 2 98 72   105 117 

461 11 43 3 1 45 72   111 125 

462 11 43 3 2 75 72   97 109 

 

Survival rate of floating time and size class from Microsoft Excel 

Anova: Two-Factor Without Replication    

       

SUMMARY Count Sum Average Variance   

Row 1 3 35 11.66667 1.333333   

Row 2 3 37 12.33333 4.333333   

Row 3 3 33 11 3   

Row 4 3 39 13 1   

Row 5 3 36 12 1   

Row 6 3 36 12 1   

Row 7 3 33 11 1   

Row 8 3 36 12 4   

Row 9 3 38 12.66667 0.333333   

Row 10 3 37 12.33333 2.333333   

Row 11 3 34 11.33333 6.333333   

       

Column 1 11 122 11.09091 1.090909   

Column 2 11 137 12.45455 1.672727   

Column 3 11 135 12.27273 2.418182   

       

       

ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Rows 12.54545 10 1.254545 0.638889 0.764332 2.347878 

Columns 12.06061 2 6.030303 3.070988 0.068694 3.492828 

Error 39.27273 20 1.963636    

       

Total 63.87879 32         
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Results from SAS analysis (some important statistical points) 

 
The GLM Procedure 

Class Level Information 

Class Levels Values 

size 3 1 2 3 

float_time 11 1 2 3 4 5 6 7 8 9 10 11 

 

Number of Observations Read 394 

Number of Observations Used 357 

 

 
The GLM Procedure 

  
Dependent Variable: rhrad_grow Rank for Variable hrad_grow 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 32 3421953.518 106936.047 35.24 <.0001 

Error 324 983297.756 3034.870     

Corrected Total 356 4405251.275       

 

R-Square Coeff Var Root MSE rhrad_grow Mean 

0.776790 27.86583 55.08965 197.6961 

 

Source DF Type I SS Mean Square F Value Pr > F 

size 2 53046.800 26523.400 8.74 0.0002 

float_time 10 3227600.264 322760.026 106.35 <.0001 

size*float_time 20 141306.454 7065.323 2.33 0.0012 

 

Source DF Type III SS Mean Square F Value Pr > F 

size 2 59570.343 29785.171 9.81 <.0001 

float_time 10 3119960.435 311996.043 102.80 <.0001 

size*float_time 20 141306.454 7065.323 2.33 0.0012 

 

 
The GLM Procedure 

  
Dependent Variable: rnnodes Rank for Variable nnodes 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 32 1098346.107 34323.316 4.17 <.0001 

Error 324 2668306.666 8235.514     

Corrected Total 356 3766652.773       

 

R-Square Coeff Var Root MSE rnnodes Mean 

0.291597 45.77783 90.74973 198.2395 

 

Source DF Type I SS Mean Square F Value Pr > F 

size 2 919293.6778 459646.8389 55.81 <.0001 

float_time 10 95138.7886 9513.8789 1.16 0.3206 

size*float_time 20 83913.6405 4195.6820 0.51 0.9622 
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Source DF Type III SS Mean Square F Value Pr > F 

size 2 910411.5688 455205.7844 55.27 <.0001 

float_time 10 87523.6737 8752.3674 1.06 0.3907 

size*float_time 20 83913.6405 4195.6820 0.51 0.9622 

 

 
The GLM Procedure 

  
Dependent Variable: rsum_nodes Rank for Variable sum_nodes 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 32 1881999.164 58812.474 7.38 <.0001 

Error 324 2581975.942 7969.062     

Corrected Total 356 4463975.106       

 

R-Square Coeff Var Root MSE rsum_nodes Mean 

0.421597 45.34708 89.26960 196.8585 

 

Source DF Type I SS Mean Square F Value Pr > F 

size 2 1552114.106 776057.053 97.38 <.0001 

float_time 10 226929.548 22692.955 2.85 0.0021 

size*float_time 20 102955.511 5147.776 0.65 0.8766 

 

Source DF Type III SS Mean Square F Value Pr > F 

size 2 1517656.929 758828.464 95.22 <.0001 

float_time 10 213637.370 21363.737 2.68 0.0036 

size*float_time 20 102955.511 5147.776 0.65 0.8766 

 

 
The GLM Procedure 

  
Dependent Variable: rroot_day Rank for Variable root_day 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 32 582719.927 18209.998 3.41 <.0001 

Error 324 1729832.266 5338.988     

Corrected Total 356 2312552.193       

 

R-Square Coeff Var Root MSE rroot_day Mean 

0.251981 40.56419 73.06838 180.1303 

 

Source DF Type I SS Mean Square F Value Pr > F 

size 2 49539.1921 24769.5960 4.64 0.0103 

float_time 10 333095.2378 33309.5238 6.24 <.0001 

size*float_time 20 200085.4974 10004.2749 1.87 0.0137 

 

Source DF Type III SS Mean Square F Value Pr > F 

size 2 37734.6074 18867.3037 3.53 0.0303 

float_time 10 336193.2776 33619.3278 6.30 <.0001 

size*float_time 20 200085.4974 10004.2749 1.87 0.0137 
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The GLM Procedure 

  
Dependent Variable: rlift_day Rank for Variable lift_day 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 32 803136.603 25098.019 2.73 <.0001 

Error 324 2983763.397 9209.146     

Corrected Total 356 3786900.000       

 

R-Square Coeff Var Root MSE rlift_day Mean 

0.212083 53.61134 95.96430 179.0000 

 

Source DF Type I SS Mean Square F Value Pr > F 

size 2 37346.8084 18673.4042 2.03 0.1333 

float_time 10 374028.6512 37402.8651 4.06 <.0001 

size*float_time 20 391761.1434 19588.0572 2.13 0.0037 

 

Source DF Type III SS Mean Square F Value Pr > F 

size 2 34084.6369 17042.3185 1.85 0.1588 

float_time 10 369017.9674 36901.7967 4.01 <.0001 

size*float_time 20 391761.1434 19588.0572 2.13 0.0037 

 

 
The GLM Procedure 

  
Dependent Variable: rstand_day Rank for Variable stand_day 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 32 923622.883 28863.215 2.87 <.0001 

Error 324 3258080.449 10055.804     

Corrected Total 356 4181703.332       

 

R-Square Coeff Var Root MSE rstand_day Mean 

0.220872 49.17138 100.2786 203.9370 

 

Source DF Type I SS Mean Square F Value Pr > F 

size 2 51552.4426 25776.2213 2.56 0.0786 

float_time 10 462930.0751 46293.0075 4.60 <.0001 

size*float_time 20 409140.3648 20457.0182 2.03 0.0060 

 

Source DF Type III SS Mean Square F Value Pr > F 

size 2 48034.1489 24017.0744 2.39 0.0934 

float_time 10 454212.0878 45421.2088 4.52 <.0001 

size*float_time 20 409140.3648 20457.0182 2.03 0.0060 
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The GLM Procedure 

  
Dependent Variable: rTL_day Rank for Variable TL_day 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 32 764737.723 23898.054 2.23 0.0003 

Error 324 3473505.203 10720.695     

Corrected Total 356 4238242.926       

 

R-Square Coeff Var Root MSE rTL_day Mean 

0.180437 50.83311 103.5408 203.6877 

 

Source DF Type I SS Mean Square F Value Pr > F 

size 2 27788.5699 13894.2850 1.30 0.2750 

float_time 10 435055.4917 43505.5492 4.06 <.0001 

size*float_time 20 301893.6612 15094.6831 1.41 0.1156 

 

Source DF Type III SS Mean Square F Value Pr > F 

size 2 20321.8840 10160.9420 0.95 0.3887 

float_time 10 407182.4394 40718.2439 3.80 <.0001 

size*float_time 20 301893.6612 15094.6831 1.41 0.1156 

 

 
The GLM Procedure 

Multivariate Analysis of Variance 

Characteristic Roots and Vectors of: E Inverse * H, where 
H = Type III SSCP Matrix for size 

E = Error SSCP Matrix 

Characteristic Root Percent 

Characteristic Vector V'EV=1 

rhrad_grow rnnodes rsum_nodes rroot_day rlift_day rstand_day rTL_day 

0.87662033 79.19 -0.00020043 0.00018958 0.00059778 -0.00006273 -0.00011489 0.00027437 0.00022710 

0.23040060 20.81 0.00032379 0.00000703 -0.00007919 0.00028069 -0.00013282 0.00128894 -0.00129456 

0.00000000 0.00 -0.00003114 -0.00012304 0.00007994 -0.00016436 -0.00150573 0.00149035 0.00010658 

0.00000000 0.00 0.00001027 0.00004384 -0.00004381 -0.00075873 0.00081072 -0.00001391 0.00001675 

0.00000000 0.00 -0.00022607 0.00014839 -0.00010176 0.00071297 -0.00000566 -0.00031318 0.00037689 

0.00000000 0.00 0.00092638 0.00004630 0.00015762 -0.00002141 -0.00000771 -0.00042622 0.00051292 

0.00000000 0.00 -0.00000830 -0.00079261 0.00061013 0.00000101 0.00000036 0.00002010 -0.00002419 

 

MANOVA Test Criteria and F Approximations for the Hypothesis of No Overall size Effect 
H = Type III SSCP Matrix for size 

E = Error SSCP Matrix 
 

S=2 M=2 N=158 

Statistic Value F Value Num DF Den DF Pr > F 

Wilks' Lambda 0.43308890 23.60 14 636 <.0001 

Pillai's Trace 0.65438374 22.16 14 638 <.0001 

Hotelling-Lawley Trace 1.10702093 25.09 14 505.45 <.0001 

Roy's Greatest Root 0.87662033 39.95 7 319 <.0001 

NOTE: F Statistic for Roy's Greatest Root is an upper bound. 

NOTE: F Statistic for Wilks' Lambda is exact. 
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The GLM Procedure 

Multivariate Analysis of Variance 

Characteristic Roots and Vectors of: E Inverse * H, where 
H = Type III SSCP Matrix for float_time 

E = Error SSCP Matrix 

Characteristic Root Percent 

Characteristic Vector V'EV=1 

rhrad_grow rnnodes rsum_nodes rroot_day rlift_day rstand_day rTL_day 

3.36893487 86.60 0.00100284 -0.00004551 0.00001643 0.00013031 -0.00003760 0.00009907 -0.00023147 

0.22221030 5.71 -0.00005358 0.00016082 0.00041526 0.00024595 0.00025563 -0.00001067 0.00025832 

0.14743021 3.79 0.00009278 -0.00016976 0.00014589 -0.00060634 -0.00091597 0.00135462 0.00002599 

0.09118603 2.34 -0.00000350 -0.00057916 0.00076255 -0.00013670 -0.00028063 0.00006898 0.00011106 

0.03580785 0.92 0.00015806 0.00032822 0.00002443 -0.00079493 0.00093209 -0.00047432 0.00003560 

0.02074072 0.53 0.00011501 0.00003580 0.00005753 -0.00012231 0.00008065 -0.00133939 0.00140808 

0.00374664 0.10 -0.00000780 0.00045195 -0.00000021 0.00028900 -0.00104672 0.00060787 0.00016590 

 

MANOVA Test Criteria and F Approximations for the Hypothesis of No Overall float_time Effect 
H = Type III SSCP Matrix for float_time 

E = Error SSCP Matrix 
 

S=7 M=1 N=158 

Statistic Value F Value Num DF Den DF Pr > F 

Wilks' Lambda 0.14094013 10.62 70 1861.1 <.0001 

Pillai's Trace 1.22359666 6.86 70 2268 <.0001 

Hotelling-Lawley Trace 3.89005662 17.59 70 1248.2 <.0001 

Roy's Greatest Root 3.36893487 109.15 10 324 <.0001 

NOTE: F Statistic for Roy's Greatest Root is an upper bound. 
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The GLM Procedure 

Multivariate Analysis of Variance 

Characteristic Roots and Vectors of: E Inverse * H, where 
H = Type III SSCP Matrix for size*float_time 

E = Error SSCP Matrix 

Characteristic Root Percent 

Characteristic Vector V'EV=1 

rhrad_grow rnnodes rsum_nodes rroot_day rlift_day rstand_day rTL_day 

0.24613830 37.19 -0.00053519 0.00031375 -0.00011025 -0.00000345 0.00035679 0.00060273 -0.00048363 

0.14366001 21.70 0.00074625 -0.00001413 -0.00001577 -0.00046708 0.00056268 0.00041615 -0.00071112 

0.12086468 18.26 0.00031386 0.00012196 -0.00000552 0.00095187 0.00004301 -0.00022145 -0.00021959 

0.07091326 10.71 0.00028569 0.00006802 0.00027391 -0.00017277 -0.00029219 -0.00013725 0.00098780 

0.04291323 6.48 0.00000145 -0.00002977 0.00056625 -0.00002001 -0.00092875 0.00114644 -0.00022636 

0.02718789 4.11 -0.00003860 0.00035147 0.00013438 -0.00019137 0.00115415 -0.00149236 0.00057414 

0.01021957 1.54 -0.00017468 -0.00068036 0.00059432 -0.00005563 0.00047924 -0.00030384 -0.00001936 

 

MANOVA Test Criteria and F Approximations for the Hypothesis of No Overall size*float_time Effect 
H = Type III SSCP Matrix for size*float_time 

E = Error SSCP Matrix 
 

S=7 M=6 N=158 

Statistic Value F Value Num DF Den DF Pr > F 

Wilks' Lambda 0.54015139 1.47 140 2123.3 0.0004 

Pillai's Trace 0.57491623 1.45 140 2268 0.0006 

Hotelling-Lawley Trace 0.66189693 1.50 140 1576.2 0.0003 

Roy's Greatest Root 0.24613830 3.99 20 324 <.0001 

NOTE: F Statistic for Roy's Greatest Root is an upper bound. 

 

Elevated CO2 regeneration results 

Obs Elevco hdradgrow Liftday Standday TLday 

1 a 39 79 85 91 

2 a 39 71 75 85 

3 a 7 65 71 85 

4 a 39 63 69 78 

5 a 39 54 64 75 

6 a 39 72 78 89 

7 a 39 57 64 73 

8 a 39 58 64 78 

9 a 9 48 54 71 

10 a 21 39 43 66 

11 a 21 66 69 78 

12 a 31 41 45 69 

13 a 8 54 64 75 

14 a 7 54 59 73 

15 a 7 71 75 82 

16 a 27 78 80 85 

17 a 29 63 69 75 

18 a 39 63 69 85 

19 a 21 64 66 78 

20 a 39 63 69 73 
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Obs Elevco hdradgrow Liftday Standday TLday 

21 a 7 . . . 

22 a 39 64 69 75 

23 a 39 59 61 75 

24 a 39 63 69 78 

25 b 39 48 54 73 

26 b 7 45 59 78 

27 b 39 73 78 82 

28 b 39 33 37 54 

29 b 39 51 61 78 

30 b 9 48 54 71 

31 b 27 33 37 61 

32 b 39 85 91 105 

33 b 7 51 59 78 

34 b 39 64 66 75 

35 b 7 51 64 80 

36 b 27 63 69 80 

37 b 7 69 71 78 

38 b 21 65 71 85 

39 b 7 63 69 78 

40 b 9 69 71 85 

41 b 39 78 80 85 

42 b 9 58 64 71 

43 b 39 63 69 78 

44 b 7 64 66 75 

45 b 13 66 69 78 

46 b 13 27 33 69 

47 b 27 27 33 69 

48 b 39 58 64 78 

 

Dependent Variable: hdradgrow 

Source DF 
Sum of 

Squares Mean Square F Value Pr > F 

Model 1 275.520833 275.520833 1.44 0.2365 
Error 46 8810.958333 191.542572   
Corrected Total 47 9086.479167    

 

Dependent Variable: Liftday 

Source DF 
Sum of 

Squares Mean Square F Value Pr > F 

Model 1 285.168054 285.168054 1.66 0.2038 
Error 45 7717.768116 171.505958   
Corrected Total 46 8002.936170    
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Dependent Variable: Standday 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 1 240.325663 240.325663 1.52 0.2245 
Error 45 7130.610507 158.458011   
Corrected Total 46 7370.936170    

 

Dependent Variable: TLday 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 1 13.691644 13.691644 0.21 0.6488 
Error 45 2931.159420 65.136876   
Corrected Total 46 2944.851064    

 

Sunlight regeneration results 

The SAS System 
 

Obs light Liftday Standday TLday 

1 Control 32 36 56 

2 Control 25 36 56 

3 Control 25 36 63 

4 Control 51 58 68 

5 Open 47 58 66 

6 Open 66 77 90 

7 Open 66 70 81 

8 Open 26 32 47 

9 Open 47 58 89 

10 Open 63 66 72 

11 Open 57 68 85 

12 Open 60 65 80 

13 Shaded 61 63 79 

14 Shaded 36 47 68 

15 Shaded 56 58 74 

16 Shaded 47 58 70 

17 Shaded 49 54 68 

18 Shaded 61 74 79 

19 Shaded 22 32 49 

20 Shaded 63 74 91 

21 Shaded 70 81 95 

22 Shaded 63 66 89 

23 Shaded 36 47 58 
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The SAS System 
 

The GLM Procedure 

Class Level Information 

Class Levels Values 

light 3 Control Open Shaded 

 

Number of Observations Read 23 

Number of Observations Used 23 

 

 

The SAS System 
 

The GLM Procedure 
  

Dependent Variable: Standday 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 1207.381423 603.690711 3.28 0.0588 

Error 20 3685.227273 184.261364     

Corrected Total 22 4892.608696       

 

R-Square Coeff Var Root MSE Standday Mean 

0.246777 23.76017 13.57429 57.13043 

 

Source DF Type I SS Mean Square F Value Pr > F 

light 2 1207.381423 603.690711 3.28 0.0588 

 

Source DF Type III SS Mean Square F Value Pr > F 

light 2 1207.381423 603.690711 3.28 0.0588 
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The SAS System 
 

The GLM Procedure 
  

t Tests (LSD) for Standday 
 

Note: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. 

Alpha 0.05 

Error Degrees of Freedom 20 

Error Mean Square 184.2614 

Critical Value of t 2.08596 

 

Comparisons significant at the 0.05 level are indicated by ***. 

light 
Comparison 

Difference 
Between 

Means 95% Confidence Limits 

  

Open - Shaded 2.295 -10.862 15.453   

Open - Control 20.250 2.910 37.590 *** 

Shaded - Open -2.295 -15.453 10.862   

Shaded - Control 17.955 1.422 34.487 *** 

Control - Open -20.250 -37.590 -2.910 *** 

Control - Shaded -17.955 -34.487 -1.422 *** 
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The SAS System 
 

Obs light Liftday Standday TLday 

1 Control 32 36 56 

2 Control 25 36 56 

3 Control 25 36 63 

4 Control 51 58 68 

5 Open 47 58 66 

6 Open 66 77 90 

7 Open 66 70 81 

8 Open 26 32 47 

9 Open 47 58 89 

10 Open 63 66 72 

11 Open 57 68 85 

12 Open 60 65 80 

13 Shaded 61 63 79 

14 Shaded 36 47 68 

15 Shaded 56 58 74 

16 Shaded 47 58 70 

17 Shaded 49 54 68 

18 Shaded 61 74 79 

19 Shaded 22 32 49 

20 Shaded 63 74 91 

21 Shaded 70 81 95 

22 Shaded 63 66 89 

23 Shaded 36 47 58 
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The SAS System 
 

The GLM Procedure 

Class Level Information 

Class Levels Values 

light 3 Control Open Shaded 

 

Number of Observations Read 23 

Number of Observations Used 23 

 

 

The SAS System 
 

The GLM Procedure 
  

Dependent Variable: Liftday 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 1248.894269 624.447134 3.18 0.0634 

Error 20 3932.931818 196.646591     

Corrected Total 22 5181.826087       

 

R-Square Coeff Var Root MSE Liftday Mean 

0.241014 28.56782 14.02307 49.08696 

 

Source DF Type I SS Mean Square F Value Pr > F 

light 2 1248.894269 624.447134 3.18 0.0634 

 

Source DF Type III SS Mean Square F Value Pr > F 

light 2 1248.894269 624.447134 3.18 0.0634 
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The SAS System 
 

The GLM Procedure 
  

t Tests (LSD) for Liftday 
 

Note: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. 

Alpha 0.05 

Error Degrees of Freedom 20 

Error Mean Square 196.6466 

Critical Value of t 2.08596 

 

Comparisons significant at the 0.05 level are indicated by ***. 

light 
Comparison 

Difference 
Between 

Means 95% Confidence Limits 

  

Open - Shaded 2.727 -10.865 16.319   

Open - Control 20.750 2.837 38.663 *** 

Shaded - Open -2.727 -16.319 10.865   

Shaded - Control 18.023 0.943 35.102 *** 

Control - Open -20.750 -38.663 -2.837 *** 

Control - Shaded -18.023 -35.102 -0.943 *** 
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The SAS System 
 

Obs light Liftday Standday TLday 

1 Control 32 36 56 

2 Control 25 36 56 

3 Control 25 36 63 

4 Control 51 58 68 

5 Open 47 58 66 

6 Open 66 77 90 

7 Open 66 70 81 

8 Open 26 32 47 

9 Open 47 58 89 

10 Open 63 66 72 

11 Open 57 68 85 

12 Open 60 65 80 

13 Shaded 61 63 79 

14 Shaded 36 47 68 

15 Shaded 56 58 74 

16 Shaded 47 58 70 

17 Shaded 49 54 68 

18 Shaded 61 74 79 

19 Shaded 22 32 49 

20 Shaded 63 74 91 

21 Shaded 70 81 95 

22 Shaded 63 66 89 

23 Shaded 36 47 58 
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The SAS System 
 

The GLM Procedure 

Class Level Information 

Class Levels Values 

light 3 Control Open Shaded 

 

Number of Observations Read 23 

Number of Observations Used 23 

 

 

The SAS System 
 

The GLM Procedure 
  

Dependent Variable: TLday 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 709.457510 354.728755 2.02 0.1592 

Error 20 3516.977273 175.848864     

Corrected Total 22 4226.434783       

 

R-Square Coeff Var Root MSE TLday Mean 

0.167862 18.23063 13.26080 72.73913 

 

Source DF Type I SS Mean Square F Value Pr > F 

light 2 709.4575099 354.7287549 2.02 0.1592 

 

Source DF Type III SS Mean Square F Value Pr > F 

light 2 709.4575099 354.7287549 2.02 0.1592 
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The SAS System 
 

The GLM Procedure 
  

t Tests (LSD) for TLday 
 

Note: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. 

Alpha 0.05 

Error Degrees of Freedom 20 

Error Mean Square 175.8489 

Critical Value of t 2.08596 

 

Comparisons significant at the 0.05 level are indicated by ***. 

light 
Comparison 

Difference 
Between 

Means 95% Confidence Limits 

  

Open - Shaded 1.705 -11.149 14.558   

Open - Control 15.500 -1.439 32.439   

Shaded - Open -1.705 -14.558 11.149   

Shaded - Control 13.795 -2.355 29.946   

Control - Open -15.500 -32.439 1.439   

Control - Shaded -13.795 -29.946 2.355   
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Appendix B 

137
Cs and Organic Matter Results for Transect 1 

 
FC a Mangrove       Energy: 1468 keV 661.7 keV     

Detector: Ge6         Efficiency: 0.0174   0.024       

Aug-13           B. Ratio 0.107   0.846       

Depth Mean Mass +cup (g) Mass Bulk Den. counting K-40 K-40 Cs-137 Cs-137 Cs-137 Cs-137   

  Depth       time net cts spec act net cts +/- spec act +/-   

(cm) (cm)   (g) (g/cm3) (s)   (Bq/kg)     (Bq/kg) (Bq/kg) POM(%) 

                          

0-2 -1 121.05 68.4 0.435 47143 2056 342.7 61 88.0 0.9 1.4 12.09 

2-4 -3 129.27 76.6 0.487 41374 1409 238.9 74 84.0 1.2 1.3 10.31 

4-6 -5 123.39 70.7 0.450 43849 1592 275.9 76 86.0 1.2 1.4 9.95 

6-8 -7 137.34 84.6 0.538 42111 2140 322.5 142 83.0 2.0 1.2 9.67 

8-10 -9 151.18 98.5 0.626 41652 3458 452.8 223 83.0 2.7 1.0 9.58 

10-12 -11 148.45 95.8 0.609 36501 3342 513.6 142 81.0 2.0 1.1 8.83 

12-14 -13 144.29 91.6 0.583 49907 4607 541.3 215 93.0 2.3 1.0 9.04 

14-16 -15 151.86 99.2 0.631 37177 3399 495.2 287 78.0 3.9 1.0 9.36 

16-18 -17 143.5 90.8 0.578 46628 4463 566.2 229 91.0 2.7 1.1 8.55 

18-20 -19 143.96 91.3 0.581 36239 3476 564.5 221 78.0 3.3 1.2 9.12 

20-22 -21 144.79 92.1 0.586 46469 4322 542.5 246 89.0 2.8 1.0 9.28 

22-24 -23 136.71 84.0 0.534 37743 3226 546.5 234 78.0 3.6 1.2 9.68 

24-26 -25 139.24 86.5 0.551 49917 4348 540.6 339 90.0 3.9 1.0 10.47 

26-28 -27 148.29 95.6 0.608 38014 3277 484.4 338 78.0 4.6 1.1 8.70 

28-30 -29 148.61 95.9 0.610 45235 4135 511.9 374 86.0 4.3 1.0 9.16 

30-32 -31 141.76 89.1 0.567 41281 3814 557.2 321 81.0 4.3 1.1 8.00 

32-34 -33 155.26 102.6 0.652 45742 4307 493.1 237 92.0 2.5 1.0 7.76 

34-36 -35 146.66 94.0 0.598 40811 3352 469.5 119 88.0 1.5 1.1 7.31 

36-38 -37 144.93 92.2 0.587 46268 3951 497.3 139 94.0 1.6 1.1 7.61 

38-40 -39 143.15 90.5 0.575 41740 3392 482.6 207 88.0 2.7 1.2 7.67 

40-42 -41 139.28 86.6 0.551 42619 3639 529.7 305 87.0 4.1 1.2 7.57 

42-44 -43 144.95 92.3 0.587 81950 7366 523.3 554 122.0 3.6 0.8 6.69 

44-46 -45 164.85 112.2 0.713 38888 3843 473.3 354 99.0 4.0 1.1 6.52 

46-48 -47 160.03 107.3 0.683 50288 4904 488.0 779 114.0 7.1 1.0 6.53 
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48-50 -49 155.38 102.7 0.653 35136 3181 473.6 505 81.0 6.9 1.1 6.52 

50-52 -51 151.29 98.6 0.627 50144 4569 496.4 371 92.0 3.7 0.9 7.06 

52-54 -53 157.87 105.2 0.669 36468 3584 501.9 273 78.0 3.5 1.0 6.84 

54-56 -55 160.13 107.4 0.683 43488 4363 501.6 259 85.0 2.7 0.9 6.12 

56-58 -57 154.67 102.0 0.649 40878 3722 479.6 231 83.0 2.7 1.0 6.08 

58-60 -59 159.36 106.7 0.678 41223 3821 466.8 92 85.0 1.0 1.0 6.12 

60-62 -61 169.73 117.0 0.744 38854 3689 435.8 3 84.0 0.0 0.9 6.26 

62-64 -63 162.47 109.8 0.698 45545 3997 429.4 1 91.0 0.0 0.9 6.02 
       Volume of segment 157.2 cm

3
           

 

FC c Short  mangrove (transition)   Energy: 1468 keV   661.7 keV       

Detector: Ge7       Efficiency: 0.0174   0.0252         

13-Aug         B. Ratio 0.107   0.846         

Depth Mean Mass + cup (g) Mass Bulk Den. counting K-40 K-40 Cs-137 Cs-137 Cs-137 Cs-137   

  Depth       time net cts spec act net cts +/- spec act +/-   

(cm) (cm)   (g) (g/cm3) (s)   (Bq/kg)     (Bq/kg) (Bq/kg) POM (%) 

0-2 -1 95.21 42.5 0.270 41700 2331 706.3 186 36.0 4.9 1.0 14.17 

2-4 -3 133.07 80.4 0.511 36487 3702 678.1 63 44.0 1.0 0.7 10.91 

4-6 -5 133.17 80.5 0.512 49913 4601 615.3 226 47 2.6 0.6 11.20 

6-8 -7 131.96 79.3 0.504 37182 3462 631.0 177 41.0 2.8 0.7 12.29 

8-10 -9 141.67 89.0 0.566 46624 4757 616.0 139 50.0 1.6 0.6 10.89 

10-12 -11 152.29 99.6 0.634 36192 3795 565.5 105 45.0 1.4 0.6 10.83 

12-14 -13 137.26 84.6 0.538 46606 4691 639.3 243 50.0 2.9 0.6 11.50 

14-16 -15 137.69 85.0 0.541 37793 3616 604.7 286 40.0 4.2 0.6 11.70 

16-18 -17 131.5 78.8 0.501 49935 4605 628.6 174 54.0 2.1 0.6 12.06 

18-20 -19 126.78 74.1 0.471 38044 3341 636.7 213 42.0 3.5 0.7 13.27 

20-22 -21 133.22 80.5 0.512 45227 3957 583.6 267 49.0 3.4 0.6 13.24 

22-24 -23 133.91 81.2 0.517 41293 3712 594.6 337 43.0 4.7 0.6 12.20 

24-26 -25 123.11 70.4 0.448 45762 3683 613.9 259 47.0 3.8 0.7 10.76 

26-28 -27 127.63 74.9 0.477 40793 3605 633.5 284 45.0 4.4 0.7 11.24 

28-30 -29 132.2 79.5 0.506 46265 4290 626.5 372 50.0 4.7 0.6 11.37 

30-32 -31 127.22 74.5 0.474 41725 3758 649.2 398 44.0 6.0 0.7 10.64 

32-34 -33 125.3 72.6 0.462 42608 3512 609.8 249 48.0 3.8 0.7 10.18 

34-36 -35 135.08 82.4 0.524 81917 7508 597.6 669 68.0 4.7 0.5 9.44 

36-38 -37 141.81 89.1 0.567 38800 3923 609.4 574 47.0 7.8 0.6 8.57 
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38-40 -39 147.23 94.5 0.601 50321 5267 594.7 817 51.0 8.1 0.5 7.98 

40-42 -41 144.11 91.4 0.581 35151 3751 627.0 526 44.0 7.7 0.6 8.25 

42-44 -43 143.69 91.0 0.579 50156 5281 621.5 587 53.0 6.0 0.5 7.95 

44-46 -45 150.78 98.1 0.624 36479 3955 593.7 444 45.0 5.8 0.6 7.62 

46-48 -47 156.01 103.3 0.657 43497 4919 588.0 491 48.0 5.1 0.5 7.51 

48-50 -49 150.96 98.3 0.625 40886 4513 603.4 313 48.0 3.7 0.6 7.43 

50-52 -51 150.55 97.9 0.622 41234 4474 595.6 310 46.0 3.6 0.5 7.33 

52-54 -53 150.66 98.0 0.623 38873 4280 603.7 232 42.0 2.9 0.5 7.87 

54-56 -55 146.66 94.0 0.598 45533 4953 621.8 140 46.0 1.5 0.5 7.61 

56-58 -57 153.29 100.6 0.640 53765 5899 585.9 153 50.0 1.3 0.4 7.36 

58-60 -59 146.6 93.9 0.597 35816 3875 618.9 111 40.0 1.5 0.6 8.12 

60-62 -61 170.26 117.6 0.748 44537 5225 536.0 113 44.0 1.0 0.4 7.54 

        Volume of segment 157.2 cm
3
           

 

FC Marsh 1    Energy: 
1468 
keV  

661.7 
keV     

Detector: Ge4    Efficiency: 0.0174  0.0321     

Aug-13     B. Ratio 0.107  0.846     

Depth Mean 

Mass+cup 
(g) 

Mass 
Bulk 
Den. counting K-40 K-40 Cs-137 Cs-137 Cs-137 Cs-137  

 Depth   time net cts 
spec 
act net cts +/- 

spec 
act +/-  

(cm) (cm) (g) (g/cm3) (s)  (Bq/kg)   (Bq/kg) (Bq/kg)  

            POM (%) 

0-2 -1 140.06 87.36 0.556 42224 4537 660.6 407 101.0 4.1 1.0 9.38 

2-4 -3 135.26 82.56 0.525 43684 4746 706.8 335 108.0 3.4 1.1 9.22 

4-6 -5 129.1 76.40 0.486 41315 4072 692.9 216 104.0 2.5 1.2 8.14 

6-8 -7 142.45 89.75 0.571 46480 4928 634.5 180 116.0 1.6 1.0 8.33 

8-10 -9 141.33 88.63 0.564 38110 4174 663.7 295 103.0 3.2 1.1 8.23 

10-12 -11 133.43 80.73 0.514 44961 4596 680.1 323 110.0 3.3 1.1 9.18 

12-14 -13 130.52 77.82 0.495 84340 8534 698.4 672 148.0 3.8 0.8 8.83 

14-16 -15 120.12 67.42 0.429 43675 3947 720.0 353 104.0 4.4 1.3 8.61 

16-18 -17 127.3 74.60 0.475 41266 4039 704.7 253 103.0 3.0 1.2 9.20 

18-20 -19 128.03 75.33 0.479 39800 3899 698.5 508 93.0 6.2 1.1 10.43 

20-22 -21 119.09 66.39 0.422 42298 3964 758.2 354 107.0 4.6 1.4 10.34 

22-24 -23 124.47 71.77 0.457 42859 4675 816.3 559 105.0 6.7 1.3 8.41 
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24-26 -25 134.34 81.64 0.519 50145 5270 691.4 459 138.0 4.1 1.2 8.29 

26-28 -27 139.07 86.37 0.549 35056 3787 671.8 472 106.0 5.7 1.3 8.13 

28-30 -29 135.21 82.51 0.525 49974 5126 667.7 850 116.0 7.6 1.0 7.43 

30-32 -31 153.26 100.56 0.640 36338 4709 692.2 837 105.0 8.4 1.1 6.84 

32-34 -33 154.62 101.92 0.648 43335 5229 635.9 778 122.0 6.5 1.0 6.57 

34-36 -35 157.82 105.12 0.669 40734 4996 626.7 651 117.0 5.6 1.0 6.93 

36-38 -37 146.83 94.13 0.599 41075 4601 639.2 500 116.0 4.8 1.1 8.00 

38-40 -39 122.2 69.50 0.442 38727 3705 739.4 348 104.0 4.8 1.4 9.41 

40-42 -41 131.54 78.84 0.502 45403 4291 643.9 199 116.0 2.0 1.2 9.37 

42-44 -43 133.33 80.63 0.513 53672 5211 646.8 428 119.0 3.6 1.0 9.33 

44-46 -45 124.29 71.59 0.455 35679 3284 690.6 120 100.0 1.7 1.4 9.79 

46-48 -47 126.36 73.66 0.469 44374 4446 730.6 50 117.0 0.6 1.3 9.61 

48-50 -49 133.08 80.38 0.511 88756 8746 658.5 227 158.0 1.2 0.8 9.21 

50-52 -51 140.12 87.42 0.556 82644 8807 654.7 207 156.0 1.1 0.8 8.60 

52-54 -53 141.27 88.57 0.563 37687 4172 671.3 189 103.0 2.1 1.1 8.10 

54-56 -55 148.15 95.45 0.607 44106 4793 611.5 84 114.0 0.7 1.0 7.68 

56-58 -57 90.33 37.63 0.239 43092 2793 925.1 171 101.0 3.9 2.3 7.95 

    Volume of segment 157.2 cm
3
      

 

FC b Mangrove + Marsh       Energy: 1468 keV 661.7 keV     

Detector: Ge6         Efficiency: 0.0174   0.024       

Aug-13           B. Ratio 0.107   0.846       

Depth Mean Mass +cup (g) Mass Bulk Den. counting K-40 K-40 Cs-137 Cs-137 Cs-137 Cs-137   

  Depth       time net cts spec act net cts +/- spec act +/-   

(cm) (cm)   (g) (g/cm3) (s)   (Bq/kg)     (Bq/kg) (Bq/kg) POM (%) 

                          

0-2 -1 130.78 78.1 0.497 53805 3345 427.7 180 94.0 2.1 1.1 10.77 

2-4 -3 137.1 84.4 0.537 35801 2242 398.5 108 77.0 1.8 1.3 9.93 

4-6 -5 123.75 71.1 0.452 44523 2823 479.3 95 85 1.5 0.9 10.43 

6-8 -7 119.38 66.7 0.424 89052 6583 595.5 240 121.0 2.0 1.0 10.61 

8-10 -9 122.65 70.0 0.445 82877 6378 590.9 342 112.0 2.9 1.0 10.79 

10-12 -11 113.57 60.9 0.387 37825 2707 631.5 119 76.0 2.6 1.6 12.46 

12-14 -13 112.5 59.8 0.380 44233 2896 588.1 190 79.0 3.6 1.5 13.34 

14-16 -15 104.43 51.7 0.329 37056 2245 629.0 162 74.0 4.2 1.9 12.76 

16-18 -17 106.58 53.9 0.343 52971 3331 626.9 208 90.0 3.6 1.6 11.51 



1
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18-20 -19 109.67 57.0 0.362 39422 2723 651.2 110 80.0 2.4 1.8 11.90 

20-22 -21 105.84 53.1 0.338 45429 2820 627.4 247 82.0 5.1 1.7 13.75 

22-24 -23 108.01 55.3 0.352 39222 2645 654.9 309 78.0 7.0 1.8 13.00 

24-26 -25 110.96 58.3 0.371 46886 3230 635.1 328 87.0 5.9 1.6 11.97 

26-28 -27 112.78 60.1 0.382 36273 2570 633.4 271 74.0 6.2 1.7 11.16 

28-30 -29 111.27 58.6 0.373 48697 3602 678.3 539 87.0 9.3 1.5 10.21 

30-32 -31 116.76 64.1 0.408 37627 2854 636.0 381 78.0 7.8 1.6 9.75 

32-34 -33 110.67 58.0 0.369 47485 3603 703.0 450 89.0 8.1 1.6 9.54 

34-36 -35 125.48 72.8 0.463 38166 3083 596.1 541 79.0 9.6 1.4 8.96 

36-38 -37 133.74 81.0 0.516 53657 4542 561.0 931 94.0 10.6 1.1 7.46 

38-40 -39 146.65 94.0 0.598 81092 7635 538.3 2623 120.0 17.0 0.8 6.97 

40-42 -41 125.75 73.1 0.465 39412 3155 588.6 933 83.0 16.0 1.4 9.04 

42-44 -43 121.8 69.1 0.440 45285 3579 614.3 684 85.0 10.8 1.3 10.01 

44-46 -45 120.67 68.0 0.432 39809 3013 598.1 217 82.0 4.0 1.5 9.88 

46-48 -47 126.27 73.6 0.468 45472 3715 596.5 166 86.0 2.5 1.3 9.15 

48-50 -49 132.46 79.8 0.507 42560 3592 568.4 275 78.0 4.0 1.1 9.10 

50-52 -51 128.41 75.7 0.482 43673 3469 563.5 182 82.0 2.7 1.2 9.61 

52-54 -53 126.41 73.7 0.469 37009 2922 575.3 138 75.0 2.5 1.4 10.79 

54-56 -55 120.29 67.6 0.430 48091 3711 613.2 104 85.0 1.6 1.3 11.97 

56-58 -57 116.27 63.6 0.404 40948 2789 575.5 47 80.0 0.9 1.5 13.34 

58-60 -59 117.7 65.0 0.413 43305 2967 566.2 129 80.0 2.3 1.4 13.31 

60-62 -61 116.14 63.4 0.404 84705 5813 581.0 246 110.0 2.3 1.0 13.88 

62-64 -63 125.65 73.0 0.464 41542 3010 533.5 2 83.0 0.0 1.4 13.70 

64-66 -65 140.31 87.6 0.557 44090 3766 523.7 132 81.0 1.7 1.0 14.29 

Volume of segment 157.2 cm
3
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137
 Cs and organic matter results for transect 2 

FC a - tall mangrove 1    Energy: 1468 keV  661.7 keV     

Detector: Ge4    Efficiency: 0.0174  0.0324     

Feb-14     B. Ratio 0.107  0.846     

Depth Mean 

Mass+cup 
(g) 

Mass Bulk Den. counting K-40 K-40 Cs-137 Cs-137 Cs-137 Cs-137  

 Depth   time net cts spec act net cts +/- spec act +/-  

(cm) (cm) (g) (g/cm3) (s)  (Bq/kg)   (Bq/kg) (Bq/kg) 
POM 
(%) 

             

0-2 -1 135.06 82.36 0.524 49400 5371 709.1 147 120.0 1.3 1.1 8.88 

2-4 -3 140.62 87.92 0.559 41644 4824 707.7 247 104.0 2.5 1.0 9.00 

4-6 -5 143.45 90.75 0.577 47320 5596 699.9 226 113.0 1.9 1.0 8.78 

6-8 -7 138.03 85.33 0.543 50101 5882 739.0 190 123.0 1.6 1.0 8.45 

8-10 -9 161.04 108.34 0.689 47675 6017 625.7 313 116.0 2.2 0.8 7.54 

10-12 -11 165.11 112.41 0.715 43127 5618 622.4 88 123.0 0.7 0.9 7.48 

12-14 -13 147.72 95.02 0.604 36015 4169 654.3 139 108.0 1.5 1.2 8.34 

14-16 -15 135.69 82.99 0.528 53163 5782 703.9 305 124.0 2.5 1.0 8.77 

16-18 -17 145.32 92.62 0.589 66542 8159 711.1 126 149.0 0.7 0.9 7.97 

18-20 -19 154.17 101.47 0.645 36490 4266 618.8 224 105.0 2.2 1.0 7.37 

20-22 -21 162.24 109.54 0.697 47673 6191 636.8 431 119.0 3.0 0.8 7.58 

22-24 -23 145.42 92.72 0.590 36181 4453 713.0 150 109.0 1.6 1.2 7.78 

24-26 -25 151.67 98.97 0.630 45556 5793 690.1 470 120.0 3.8 1.0 7.41 

26-28 -27 136.52 83.82 0.533 37656 4235 720.7 381 103.0 4.4 1.2 8.27 

28-30 -29 142.35 89.65 0.570 37143 4492 724.6 301 107.0 3.3 1.2 8.21 

30-32 -31 142.51 89.81 0.571 36706 4261 694.3 406 104.0 4.5 1.2 7.80 

32-34 -33 139.29 86.59 0.551 46170 5242 704.3 353 123.0 3.2 1.1 8.02 

34-36 -35 137.95 85.25 0.542 61250 6927 712.5 738 127.0 5.2 0.9 8.35 

36-38 -37 136.9 84.20 0.536 35993 3906 692.3 540 93.0 6.5 1.1 8.27 

38-40 -39 143 90.30 0.574 36408 4447 726.5 187 109.0 2.1 1.2 7.57 

40-42 -41 143.98 91.28 0.581 36855 4005 639.4 247 106.0 2.7 1.1 7.37 

42-44 -43 150.88 98.18 0.625 46765 5452 637.8 505 111.0 4.0 0.9 7.39 

44-46 -45 143.28 90.58 0.576 38837 4375 668.0 269 104.0 2.8 1.1 7.33 

46-48 -47 146.25 93.55 0.595 44033 5365 699.5 213 119.0 1.9 1.1 6.95 

48-50 -49 147.34 94.64 0.602 39668 4807 687.7 181 113.0 1.8 1.1 6.88 

50-52 -51 152.88 100.18 0.637 48492 5699 630.1 188 126.0 1.4 0.9 6.96 
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52-54 -53 145.85 93.15 0.593 40154 4721 677.9 189 109.0 1.8 1.1 6.79 

54-56 -55 166.64 113.94 0.725 42069 5330 597.2 243 111.0 1.8 0.8 6.37 

56-58 -57 151.62 98.92 0.629 36006 4545 685.4 124 106.0 1.3 1.1 6.16 

58-60 -59 163.02 110.32 0.702 38548 5098 643.9 136 115.0 1.2 1.0 5.85 

60-62 -61 158.72 106.02 0.674 47479 6336 676.1 301 120.0 2.2 0.9 6.09 

62-64 -63 148.04 95.34 0.606 47102 5827 696.9 325 114.0 2.6 0.9 6.15 

    Volume of segment 157.2 cm
3
      

 

FC c short mangrove       Energy: 1468 keV 661.7 keV     

Detector: Ge6         Efficiency: 0.0174   0.024       

Feb-14           B. Ratio 0.107   0.846       

Depth Mean Mass +cup (g) Mass Bulk Den. counting K-40 K-40 Cs-137 Cs-137 Cs-137 Cs-137   

  Depth       time net cts spec act net cts +/- spec act +/-   

(cm) (cm)   (g) (g/cm3) (s)   (Bq/kg)     (Bq/kg) (Bq/kg) POM (%) 

                          

0-2 -1 142.11 89.4 0.569 49513 2805 340.3 13 91.0 0.1 1.0 7.85 

2-4 -3 129.71 77.0 0.490 47221 3685 544.3 183 87.0 2.5 1.2 10.90 

4-6 -5 162.05 109.4 0.696 36177 2012 273.2 20 78 0.2 1.0 8.16 

6-8 -7 131.87 79.2 0.504 47725 2280 324.1 58 91.0 0.7 1.1 11.25 

8-10 -9 125.78 73.1 0.465 48708 3612 545.0 237 90.0 3.3 1.2 13.09 

10-12 -11 111.58 58.9 0.375 53184 1958 335.8 204 91.0 3.2 1.4 13.68 

12-14 -13 129.91 77.2 0.491 39792 3107 543.2 267 80.0 4.2 1.3 12.34 

14-16 -15 132.7 80.0 0.509 46259 2818 409.0 305 87.0 4.0 1.1 11.40 

16-18 -17 131.68 79.0 0.502 66746 3189 324.9 499 106.0 4.6 1.0 10.98 

18-20 -19 127.15 74.5 0.474 41830 2867 494.5 487 81.0 7.6 1.3 11.28 

20-22 -21 129.72 77.0 0.490 36185 2202 424.4 263 77.0 4.6 1.3 10.86 

22-24 -23 134.54 81.8 0.521 36860 2791 496.9 382 77.0 6.2 1.2 10.38 

24-26 -25 139.17 86.5 0.550 43372 2952 422.8 453 88.0 5.9 1.1 10.11 

26-28 -27 161.01 108.3 0.689 39030 1877 238.5 656 83.0 7.6 1.0 8.73 

28-30 -29 146.07 93.4 0.594 36336 3316 525.0 834 78.0 12.0 1.1 8.60 

30-32 -31 129.08 76.4 0.486 61370 3268 374.5 1072 102.0 11.2 1.1 9.42 

32-34 -33 132.25 79.6 0.506 37354 2523 456.0 492 80.0 8.1 1.3 9.31 

34-36 -35 129.39 76.7 0.488 36625 2475 473.3 192 78.0 3.3 1.4 10.88 

36-38 -37 114.22 61.5 0.391 45633 3274 626.4 203 82.0 3.5 1.4 12.84 

38-40 -39 112.48 59.8 0.380 47406 3239 613.9 50 87.0 0.9 1.5 12.53 
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40-42 -41 119.23 66.5 0.423 37742 2707 579.0 32 77.0 0.6 1.5 12.35 

42-44 -43 119.67 67.0 0.426 50259 2624 418.7 55 90.0 0.8 1.3 12.17 

44-46 -45 121.55 68.9 0.438 36058 1950 421.9 54 76.0 1.1 1.5 11.78 

46-48 -47 121.76 69.1 0.439 44094 1788 315.4 229 82.0 3.7 1.3 11.28 

48-50 -49 119.85 67.2 0.427 36553 2785 609.4 36 77.0 0.7 1.5 10.38 

50-52 -51 135.72 83.0 0.528 47900 3777 510.1 273 82.0 3.4 1.0 9.21 

52-54 -53 133.8 81.1 0.516 47680 3829 531.9 201 84.0 2.5 1.1 9.23 

54-56 -55 133.07 80.4 0.511 42107 3266 518.4 46 80.0 0.7 1.2 9.95 

56-58 -57 129.75 77.1 0.490 40241 2381 412.5 43 82.0 0.7 1.3 11.10 

58-60 -59 131.1 78.4 0.499 38847 2866 505.4 24 79.0 0.4 1.3 9.58 

       Volume of segment 157.2  cm
3
           

 

FC b  Marsh       Energy: 
1468 
keV   661.7 keV       

Detector: Ge7       Efficiency: 0.0174   0.0249         

20-Feb         B. Ratio 0.107   0.846         

Depth Mean 
Mass + cup 
(g) Mass 

Bulk 
Den. counting K-40 K-40 

Cs-
137 

Cs-
137 Cs-137 Cs-137   

  Depth       time net cts 
spec 
act net cts +/- 

spec 
act +/-   

(cm) (cm)   (g) (g/cm3) (s)   (Bq/kg)     (Bq/kg) (Bq/kg) POM (%) 

0-2 -1 120.66 68.0 0.432 49541 2931 467.6 183 41.0 2.6 0.6 8.48 

2-4 -3 102.02 49.3 0.314 38075 2112 604.1 79 36.0 2.0 0.9 10.51 

4-6 -5 121.17 68.5 0.436 46288 2711 459.4 244 39 3.7 0.6 11.31 

6-8 -7 123.32 70.6 0.449 47431 3295 528.4 214 42.0 3.0 0.6 10.77 

8-10 -9 114.86 62.2 0.395 47753 3033 548.8 176 45.0 2.8 0.7 9.38 

10-12 -11 120.6 67.9 0.432 37789 1997 418.0 228 37.0 4.2 0.7 11.02 

12-14 -13 106.2 53.5 0.340 36311 2000 553.0 211 34.0 5.2 0.8 11.12 

14-16 -15 122.34 69.6 0.443 36153 2116 451.4 206 39.0 3.9 0.7 10.8 

16-18 -17 111.15 58.5 0.372 36087 2335 594.6 369 40.0 8.3 0.9 10.75 

18-20 -19 109.67 57.0 0.362 36039 2223 581.6 311 42.0 7.2 1.0 9.83 

20-22 -21 115.86 63.2 0.402 37236 2569 586.7 422 46.0 8.5 0.9 10.18 

22-24 -23 116.64 63.9 0.407 61346 3810 521.7 965 58.0 11.7 0.7 9.69 

24-26 -25 124.85 72.2 0.459 36877 2203 444.7 887 44.0 15.8 0.8 9.56 

26-28 -27 116.74 64.0 0.407 41808 2468 495.1 572 45.0 10.1 0.8 10.42 

28-30 -29 119.56 66.9 0.425 53246 3586 541.0 443 47.0 5.9 0.6 11.08 
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0
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30-32 -31 110.49 57.8 0.368 66728 3815 531.4 450 53.0 5.5 0.7 11.45 

32-34 -33 116.95 64.3 0.409 39761 2343 492.6 221 39.0 4.1 0.7 10.83 

34-36 -35 120.63 67.9 0.432 36581 2036 440.1 2 39.0 0.0 0.7 11.64 

36-38 -37 112.06 59.4 0.378 43320 2452 512.2 77 37.0 1.4 0.7 13.21 

38-40 -39 104.93 52.2 0.332 36128 1362 387.7 4 34.0 0.1 0.9 12.76 

40-42 -41 111.09 58.4 0.371 47874 2638 506.9 8 45.0 0.1 0.8 12.45 

42-44 -43 108.21 55.5 0.353 47644 2538 515.4 58 40.0 1.0 0.7 14.04 

44-46 -45 103.96 51.3 0.326 50229 2358 491.9 25 39.0 0.5 0.7 13.55 

46-48 -47 104.37 51.7 0.329 42232 2488 612.4 70 36.0 1.5 0.8 13.26 

48-50 -49 118.06 65.4 0.416 45668 2453 441.4 51 41.0 0.8 0.7 13.42 

50-52 -51 116.47 63.8 0.406 48693 2880 498.2 24 45.0 0.4 0.7 11.34 

52-54 -53 109.89 57.2 0.364 40268 2273 530.1 44 37.0 0.9 0.8 10.28 

54-56 -55 116.69 64.0 0.407 37531 2544 569.0 16 38.0 0.3 0.8 9.26 

56-58 -57 119.02 66.3 0.422 39002 2281 473.7 18 37.0 0.3 0.7 9.48 

58-60 -59 123.32 70.6 0.449 47209 3382 544.9 89 38.0 1.3 0.5 9.62 

60-62 -61 161.22 108.5 0.690 44117 3387 380.0 22 42.0 0.2 0.4 7.25 

        Volume of segment 157.2 cm
3
           

 

FC d Mix         Energy: 1468 keV 661.7 keV     

Detector: Ge6         Efficiency: 0.0174   0.024       

Aug-14           B. Ratio 0.107   0.846       

Depth Mean 
Mass +cup 
(g) Mass 

Bulk 
Den. counting K-40 K-40 

Cs-
137 

Cs-
137 Cs-137 Cs-137   

  Depth       time net cts 
spec 
act net cts +/- 

spec 
act +/-   

(cm) (cm)   (g) (g/cm3) (s)   (Bq/kg)     (Bq/kg) (Bq/kg) POM (%) 

                          

0-2 -1 77.9 25.2 0.160 37812 1156 651.6 82 74.0 4.2 3.8 9.747 

2-4 -3 91.72 39.0 0.248 41436 2187 726.5 120 76.0 3.6 2.3 10.916 

4-6 -5 104.56 51.9 0.330 47569 914 199.0 98 86 1.9 1.7 12.582 

6-8 -7 116.64 63.9 0.407 39373 2718 579.9 250 76.0 4.9 1.4 10.863 

8-10 -9 119.57 66.9 0.425 45113 3550 632.1 431 80.0 7.0 1.3 10.649 

10-12 -11 116.45 63.8 0.406 46884 2504 450.0 127 89.0 2.1 1.5 10.232 

12-14 -13 110.68 58.0 0.369 39179 2771 655.2 289 77.0 6.2 1.7 10.869 

14-16 -15 113 60.3 0.384 36028 1098 271.5 28 79.0 0.6 1.8 11.512 

16-18 -17 109.79 57.1 0.363 37542 2576 645.6 251 77.0 5.7 1.8 11.915 
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18-20 -19 109.91 57.2 0.364 51474 646 117.8 471 91.0 7.8 1.5 10.476 

20-22 -21 110.04 57.3 0.365 42437 2839 626.7 732 85.0 14.7 1.7 11.748 

22-24 -23 117.37 64.7 0.411 47339 1449 254.2 919 89.0 14.7 1.4 10.871 

24-26 -25 107.75 55.1 0.350 38040 1478 379.1 731 75.0 17.1 1.7 11.989 

26-28 -27 108.34 55.6 0.354 45481 3084 654.6 633 86.0 12.2 1.7 12.034 

28-30 -29 104.12 51.4 0.327 45570 929 212.9 482 84.0 10.0 1.8 11.684 

30-32 -31 107.66 55.0 0.350 41633 1897 445.3 319 79.0 6.8 1.7 12.144 

32-34 -33 111.2 58.5 0.372 38524 2725 649.5 93 78.0 2.0 1.7 12.337 

34-36 -35 113.11 60.4 0.384 44763 2963 588.5 110 85.0 2.0 1.5 11.747 

36-38 -37 106 53.3 0.339 37361 560 560.9 82 76 1.7 1.9 13.465 

38-40 -39 107.5 54.8 0.349 46882 1899 397.0 224 81.0 4.3 1.5 13.883 

40-42 -41 104.72 52.0 0.331 37310 2446 676.9 256 70.0 6.4 1.8 13.019 

42-44 -43 110.81 58.1 0.370 45640 1740 352.4 107 85.0 2.0 1.6 12.832 

44-46 -45 110.98 58.3 0.371 37826 1196 291.4 136 73.0 3.0 1.6 13.342 

46-48 -47 111.43 58.7 0.374 36543 2034 509.0 68 76.0 1.5 1.7 12.965 

48-50 -49 111.61 58.9 0.375 46967 3280 636.7 21 84.0 0.4 1.5 11.677 

50-52 -51 116.62 63.9 0.407 44646 3266 614.7 314 77.0 5.4 1.3 10.952 

52-54 -53 111.33 58.6 0.373 46895 1472 287.6 139 84.0 2.5 1.5 11.339 
       Volume of segment 157.2 cm

3
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Appendix C 

137
Cs Profiles and Transect 1's organic matter profiles 

 

 

 
 

Figure C-1. 
137

Cs profiles from tall Avicennia, short Avicennia, Spartina, and mixed zone from  

 

transect 1. 
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Figure C-2. 
137

Cs profiles from tall Avicennia and Spartina from transect 1. 
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Figure C-3. 
137

Cs profiles from tall Avicennia, short Avicennia, Spartina, and mixed zone from  

 

transect 2. 
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Figure C-4. 
137

Cs profiles from tall Avicennia and Spartina from transect 2. 
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Figure C-5. Organic matter profile of tall Avicennia, short Avicennia, Spartina, and mixed zone 

from transect 1. 
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Appendix D 

Soil cores location 

 

 
 

Figure D-1. Soil core locations near Fourchon. 
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Figure D-2. Soil core sites (transect 1). 

Figure D-3. Soil core sites (transect 2). 
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