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ABSTRACT 

Rojanala, Harith Kumar. CHARACTERIZATION OF MSW AS A FEEDSTOCK OF 

THERMOCHEMICAL CONVERSION (Major Professor: Dr. Abolghasem 

Shahbazi), North Carolina Agricultural and Technical State University 

The management of municipal solid waste (MSW) has become a significant 

environmental problem, especially in fast-growing cities. Hence the thermo chemical 

conversion of Municipal solid waste (MSW) has been proven as an attractive method of 

waste management to recover energy from MSW. This would minimize its environmental 

impact and decrease disposal costs. In this thesis, the MSW is characterized to determine 

the feasibility for thermo chemical conversion. The samples are collected from different 

MSW transfer locations across North Carolina. Selected physical and chemical properties 

such as the moisture content, heating value, elemental composition and thermal 

degradation characteristics of the samples are measured to evaluate their feasibility for 

thermo chemical conversion. The moisture content in the samples was determined at 105 

°C and it ranged between 45-55 %. Proximate analyses and Ultimate analysis are 

conducted to determine the contents of volatile, fixed carbon, ash and elemental 

composition of the samples. A TGA is used to determine the contents of volatiles under 

nitrogen for pyrolysis, air for combustion and carbon dioxide for gasification. The 

temperature ranged from 25 °C to 900 °C at a gas flow rate of 20 ml/min. It is observed 

that the maximum weight loss rates of samples increase obviously with the increase of 

heating rate. An adiabatic oxygen bomb calorimeter is used to determine the energy 

contents of the samples. The composition of Carbon, hydrogen, nitrogen and oxygen are 

measured by an elemental analyzer under combustion of the materials at 990 °C.
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CHAPTER 1 

Introduction 

1.1 General Information 

Municipal solid waste (MSW) is defined as household waste, commercial solid 

waste, nonhazardous sludge, conditionally exempt, small quantity hazardous waste, and 

industrial solid waste. It includes food waste, residential rubbish, commercial and 

industrial wastes, and construction and demolition debris. Tchobanoglous et al. [1] lists 

10 main sources of solid wastes: residential, commercial, institutional, industrial (non-

process wastes), construction and demolition, municipal solid waste (MSW), municipal 

services, treatment facilities, industrial and agricultural. Tchobanoglous et al. specify that 

MSW ―is normally assumed to include all the wastes generated in a community, with the 

exception of waste generated by municipal services, treatment plants, and industrial and 

agricultural processes‖. In other words, the term MSW covers the waste produced by 

households and commercial activities and small non-process industries located in urban 

areas. The US Environmental Protection Agency (EPA) simply defines MSW as ―more 

commonly known as trash or garbage – consists of everyday items thrown away by US 

residents, businesses and institutions‖. The importance of MSW originated from other 

sources than households is dependent on the degree to which waste from these sources is 

performed by municipal waste collection and co-collected with household waste. MSW is 

a major issue in today’s society. MSW is generated in enormous amounts, posing a threat 

to the environment and to public health. To make things worse, MSW generation 
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continues to increase. Many countries across are confronted with the problem of how to 

discard large quantities of municipal solid waste (MSW). Municipal solid waste (MSW) 

is a domestic energy resource with the potential to provide a significant amount of energy 

to meet US liquid fuel requirements. Currently, about 220 million tons per year or 0.8 

tons of MSW per capita are generated in the US.  The composition of these wastes can 

vary from one community to the next, but the overall differences are not substantial. 

Currently, landfills are the primary means of MSW disposal taking in 

approximately 60% of the residential garbage generated in the US [2].  However, rising 

landfill tipping fees and their proven negative environmental impacts [3], have led to the 

search for cleaner and less costly alternatives for municipal waste disposal. According to 

the United States Environmental Protection Agency (EPA), the annual national MSW 

production in 2006 totaled more than 251 MM short tons, which equates to greater than 

4.5 lbs/person/day. Of this total, about 45% is recovered via recycling, composting, and 

energy production. This leaves approximately 138 MM short tons of unutilized MSW, 

which has about 1.4 x 10
15

 Btu (1.4 quadrillion Btu) fuel value associated with it. High 

temperature energy recovery from MSW, known as waste-to-energy (WTE), is one such 

alternative.  Waste-to-Energy reduces the amount of materials sent to landfills, can 

prevent air/water contamination, improves recycling rates and lessens the dependence on 

fossil fuels for power generation.  The two most commercially viable forms of large scale 

WTE are pyrolysis, combustion and gasification. Combustion is a well-established 

practice, while gasification is still in its early stages as a large-scale commercial industry.  
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Many researchers have termed MSW is a negatively priced, abundant and 

essentially renewable feedstock. The heat content of raw MSW depends on the 

concentration of combustible organic materials in the waste and its moisture content.  On 

the average, raw MSW has a heating value of roughly 13,000 kJ/kg or about half that of 

bituminous coal [20]. The moisture content of raw MSW is 20% on average.  In the USA, 

the situation is very serious with an increase of 188% in between 1960 and 2007 from 88 

to 254 million tons/year (USEPA, 2008).  Around the world, waste generation is very 

variable. In terms of kg per capita and year, it ranges from 210 in Central Asia and 

Central America to 520 in Southern Europe, 640 in Northern Europe and 650 in the USA.  

The potential for MSW recycling is very high, both in terms of biodegradable and 

inert materials. However, most of the MSW is still disposed in landfill. In North America 

it is around 58% [4]. Landfills are waste management structures which present high risks 

to the environment, with the potential to pollute soils, water and air [5,6].The 

biodegradable fraction of MSW, mainly composed by food waste, paper and yard waste, 

is one of the most problematic when disposed to landfill, because its degradation 

generates high quantities of methane and leachate [7-10]. This problem is aggravated by 

the fact that this is the biggest fraction of MSW. It accounts for around 58% in the USA 

(USEPA, 2008). These waste management practices represent a disturbance to the natural 

functioning of the carbon cycle. This cycle is partially interrupted, because carbon is 

being stored, and its return to the ecosystems is being delayed. This represents one more 

negative factor to the already much destabilized carbon cycle. Thus, given its weight and 

polluting potential, the biodegradable fraction of MSW is an important matter of concern.  
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1.2. The Carbon Cycle 

As previously mentioned, MSW biodegradable fraction has three main 

components - food waste, paper and yard waste – which, as a whole, usually represent 

more than a half of the total. These components are thus a major issue in MSW 

management and, as also mentioned, a large percentage of these components, after being 

utilized by man and becoming a residue, is disposed in landfills. In reality, the whole 

process is one of concentration: food waste, paper and yard waste are actually produced 

in wide land extensions but, after becoming waste, these are concentrated in landfills. In 

their turn, landfills are waste management infrastructures specifically prepared to receive 

huge amounts of waste, and store it for extended time periods. In terms of the 

biodegradable components, and although part of the organic matter is released mainly in 

the form of carbon dioxide and methane, a significant part of it is retained in the landfills. 

These waste management practices represent a disturbance to the natural functioning of 

the carbon cycle. This cycle is partially interrupted, because carbon is being stored, and 

its return to the ecosystems is being delayed. This represents one more negative factor to 

the already much destabilized carbon cycle [11].  

1.3. Desertification of Soils  

In line with the rationale of the previous section, and in addition to the fact that 

organic matter has been harvested from wide land extensions, some of these soils have 

been subject to highly intensive agricultural practices. This has been taken to an extent 

that is causing the depletion of organic matter in the soils, potentiating erosion and 
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desertification [11-16]. Other soils are naturally poor in organic matter. This problem 

may be partly solved by returning organic matter to soils in the form of compost, 

provided this is not a vector of contamination by substances like heavy metals or organic 

pollutants. Compost, being a source of stabilized organic matter and microorganisms, has 

the ability to contribute to the health of soils and combat erosion and desertification 

problems [16, 17]. Portuguese soils, in this respect, are generally poor in organic matter, 

and hence any measures that are taken to mitigate this problem are urgent. It was 

estimated [18] that the increase in the organic matter content up to 1.85 % in deficient 

Portuguese soils would require the application of more than 116 million tons (dry matter) 

of MSW compost. This is a huge number, which illustrates well the organic matter 

requirement of a large part of Portuguese soils.  

Municipal solid waste (MSW) has a negative cost at present because 

communities, businesses, and institutions pay a waste management facility to dispose of 

their refuse. This characteristic makes MSW a potentially interesting feedstock for fuels 

production. Hence the thermo chemical conversion of Municipal solid waste (MSW) has 

been proven as an attractive method of waste management to recover energy from MSW. 

This would minimize its environmental impact and decrease disposal costs. 
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CHAPTER 2 

Literature Review 

In this section, the historical background of municipal solid waste (MSW) 

management options and the possibility and essentiality of producing energy from 

municipal solid wastes were thoroughly reviewed. It was understood that depending on 

the different technical, socio-economic and environmental factors of the situation in 

question, one or combination of some treatment techniques could be integrated to 

alleviate the environmental problems caused by municipal solid wastes and to make use 

of resources within it. 

2.1. Overview 

2.1.1. What is MSW? 

MSW is defined by the U.S. Environmental Protection Agency (EPA) as solid 

wastes that are "durable goods, nondurable goods, containers and packaging, food waste, 

yard wastes, and miscellaneous inorganic wastes from residential, commercial, 

institutional, and industrial sources‖ (U.S. Environmental Protection Agency, Office of 

Solid Waste Management Programs). This includes household trash like appliances, 

clothing, newspaper, etc. According to the EPA, municipal solid waste is only one of the 

several subcategories of wastes defined by Subtitle D of the Resource Conservation and 

Recovery Act (RCRA), which deals with the management of non-hazardous wastes. 

Agricultural, construction, and industrial wastes are not defined as MSW, but they are 
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often discarded in the same disposal facilities along with MSW. Therefore, given the 

ambiguity of the EPA definition, resource assessments of MSW must be clear in defining 

what is included in the estimates. Municipal solid wastes characterized in the following 

Table 2.1 come from residential, commercial, institutional, or industrial sources.  

Table 2.1. Sources of different waste and their example products 

Sources and Examples Example Products 

Residential (single-and multi-

family homes) 
Newspapers, clothing, disposable tableware, food 

packaging, cans and bottles, food scraps, 

yard trimmings 
 

Commercial (office buildings, 

retail and 

wholesale establishments, 

restaurants) 
 

Corrugated boxes, food scraps, office papers, 

disposable tableware, paper napkins, yard 

trimmings 
 

Institutional (schools, libraries, 

hospitals, 

prisons) 
 

Cafeteria and restroom trash can wastes, office 

papers, classroom wastes, yard trimmings 
 

Industrial (packaging and 

administrative; not 

process wastes) 
 

Corrugated boxes, plastic film, wood pallets, 

Lunchroom wastes, office papers. 
 

Since MSW resource estimates and composition studies are mostly taken from actual 

landfills, incinerators, and recycling centers, they include solid wastes that are not 

considered MSW by the EPA definition. To be consistent with most of the available data, 

MSW is defined in this thesis as the solid wastes that are handled in MSW processing 

facilities. 
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2.1.2. Definition of Terms. 

Some frequently used terms associated with MSW are generation, recovery and 

disposal. Generation is defined as the MSW that is produced before any of it is 

recovered or combusted. Generated MSW is also referred to as "gross discards" in past 

literature. Recovery is defined as the MSW that is recovered for recycling or 

composting. Recovered material does not equal the amount of recycled and composted 

material because recovery processes usually produce some residues. Disposed MSW, 

also referred to as the "net discards," is the MSW that is not recovered, which is 

essentially all the MSW that goes to the landfill or incinerator. Incinerating MSW to 

generate process steam or electricity is not considered recovery (U.S. EPA, 1992). 

2.2. MSW Composition and Disposal Estimates 

2.2.1. Methods of Estimating MSW. 

Two primary methodologies are reported in the literature for estimating the 

quantities and composition of the MSW generated, recovered, and disposed. The first 

methodology is based on taking samples, sorting and weighing the various components of 

MSW, which provides an estimate of the MSW composition. Records of the weigh 

stations at MSW disposal facilities gives the total weight of waste disposed. This 

methodology is good for site-specific cases and is necessary for a local waste 

management projects. Many samples, however, are necessary to prevent skewed results. 

For estimates on a national or state-wide scale, it would be very costly to take consistent 
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samples from various places around the country over an entire year and gather weigh 

station data from every MSW disposal facility. 

The second method is known as the material flows methodology, which has been 

used and developed by the EPA and Franklin Associates, Ltd. for over 20 years to 

estimate national MSW disposal trends (US EPA, 1992). This method uses a model 

based on production and end use data from the Department of Commerce, trade and 

manufacturing associations, and elsewhere. After adjusting for product lifetimes, imports 

and exports, and other factors, the model determines the total quantity of MSW 

generated and the average composition for a given year. MSW recovery and disposal are 

estimated on a material-by-'Illaterial and product-'by'-product basis and aggregated for 

total findings. The model results have been corroborated with various sampling studies 

and have shown close agreement (US EPA, 1992). 

2.2.2. Composition of Feedstock. 

The MSW combustible fraction mainly consists of cellulosic matter (paper, wood 

and wet organic fraction) and different plastics. The cellulosic matter has been divided 

into three different components, namely hemicellulose, cellulose and lignin, which all 

have different thermal decomposition characteristics. The plastic fraction constitutes of 

several different types with varying composition. The most common plastic types are the 

pure hydrocarbon plastics such as high density polyethylene (HDPE), low density 

polyethylene (LDPE), polystyrene (PS) and polypropylene (PP) and the chlorine 

containing polyvinylchloride (PVC).  



10 

 

On average, a pound of MSW contains an average heating value of 5,100 BTUs. 

However, in actuality; the amount of BTUs that can be extracted from a waste stream is 

dependent on the composition of the waste. MSW is a heterogeneous mixture of 

materials from diverse sources.  

Depending on the composition of the mixture and whether and how it is 

separated, it will have varying biogenic content and heat value. Although there are great 

quantities of MSW available, only the biogenic portion (e.g., wood, yard trimmings, 

paper, and food wastes) would qualify as a renewable fuel source according to the 

amended Renewable Fuel Standard (RFS2) [19] . Biogenic wastes will vary in 

composition (i.e., volumes and sizes, energy, moisture, and chemical content). These 

characteristics will determine the energy input products. Thorough mixing of the refuse 

can alleviate this local irregularity, and is practiced in modern incinerators to make the 

MSW feedstock more homogeneous. 

2.3. MSW as an Energy Feedstock  

MSW is a negatively priced, abundant and essentially a renewable feedstock. 

Currently, about 220 million tons per year or 0.8 tons of MSW per capita are generated 

in the US.  The composition of these wastes can vary from one community to the next, 

but the overall differences are not substantial. The heat content of raw MSW depends on 

the concentration of combustible organic materials in the waste and its moisture content.  

On an average, raw MSW has a heating value of roughly 13,000 kJ/kg or about half that 

of bituminous coal [20]. While the moisture content of raw MSW is 20% on average 
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[21]. Moist food and yard wastes have the lowest heating value and are better suited for 

composting, rather than for combustion or gasification [22]. It has a negative cost at 

present because communities, businesses, and institutions pay a waste management 

facility to dispose of their refuse. This characteristic makes MSW a potentially 

interesting feedstock for fuels production. High temperature energy recovery through 

thermo chemical conversion of MSW has been proven as an attractive method of waste 

management to recover energy. High temperature energy recovery from MSW, known as 

waste to-energy (WTE), is one such alternative. The three most commercially viable 

forms of large scale WTE are:  

Gasification: Gasification is a thermochemical conversion process where a solid 

fuel is transformed into a gaseous fuel that mainly contains H2, CO and CH4 (Syn 

gas). This gas can be used for electricity and heat production. 

Combustion: Combustion means oxidation of the fuel for the production of heat at 

elevated temperatures without generating useful intermediate fuel gases, liquids, or 

solids. Incineration can be done at generation site.  

Pyrolysis: Pyrolysis is a thermochemical conversion process where a solid fuel is 

heated in the absence of an oxidizing agent (in an inert atmosphere).Two 

technologies exist and differ on the method of heat transfer: fast pyrolysis for 

production of bio-oil and slow pyrolysis for production of charcoal.  

The following Table 2.2 tells about the generation and recovery of materials in MSW in 

2009. 
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Table 2.2. Generation and recovery of materials in MSW, 2009 ((in millions of tons 

and percent of generation of each material) 

Material Weight 

Generated 

Weight 

Recovered 

Recovery As 

Percent Of 

Generation 

Paper and paperboard 68.43 42.50 62.10 

Glass 11.78 3.00 25.50 

Metals    

Steel 15.62 5.23 33.5 

Aluminum 3.40 0.69 20.3 

Other nonferrous metals 1.89 1.30 68.80 

Total metals 1.89 1.30 68.80 

Plastics 29.83 2.12 7.1 

Rubber and leather 7.49 1.07 14.30 

Textiles 12.73 1.90 14.90 

Wood 15.84 2.23 14.10 

Other materials 4.64 1.23 26.50 

Total materials in products 171.65 61.27 35.70 

Food, others 34.29 0.85 2.50 

Yard trimmings 33.20 19.90 59.90 

Miscellaneous inorganic wastes 3.82 Negligible Negligible 

Total other wastes 71.31 20.75 29.10 

Total municipal solid waste 242.96 82.02 33.8 
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The following Figure 2.1 gives us the information about the heating values of various 

fuels. 

 

 

 

 

 

 

 

Figure 2.1. Heating values of various fuels (Source: ECN website 2002) 

2.3.1. Gasification. 

Gasification is a special case of pyrolysis where pyrolysis is the destructive 

decomposition of waste - using heat - into charcoal, oils, tars and a burnable gas. Oils and 

tars are produced when pyrolysis takes place at temperatures below 1,100 °F. In the case 

of gasification, all the solid wood waste is intrinsically converted into a combustible gas; 

there are no oil, tar or charcoal byproducts, unlike combustion where oxidation is 

substantially complete in one process. The burnable components of the gas are, typically, 

carbon monoxide, hydrogen and methane. A common name for this gas is "producer gas" 
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or the ―synthesis gas‖ or simply ―syn gas‖. The producer gas can be standardized in its 

quality and easier and more versatile to use than the original biomass in the power gas 

engines and gas turbines, or used as a feedstock in the production of liquid fuels. 

Even though incineration of MSW with energy recovery, air emission control and 

proper waste disposal (ash, particles, waste water) is the overwhelmingly used thermal 

treatment, two other thermal techniques are promising and currently under 

development/early stage of industrial scale use and interesting alternatives for MSW or at 

least some selected/sorted MSW fractions. Gasification is one of them. Gasification is a 

thermochemical conversion process where a solid fuel is transformed into a gaseous fuel 

that mainly contains H2, CO and CH4. This gas can be used for electricity and heat 

production. The following equations summarize the principle of gasification; the 

produced gas then could be used for electricity and heat production through turbine, 

engine or boiler. 

Gasification reactions:  

C + H2O + heat  CO + H2             (2.1) 

C + CO2 + heat 2CO             (2.2) 

The design principles of the gasifier unit are of three main kinds: fixed-bed gasifier 

(updraft or downdraft), fluidized bed gasifier (bubbling or circulating) and pressurized 

(fluidized bed) reactor which can be connected to gas turbine [23]. Waste can be used for 

gasification, it does not need specific sorting but it must be crushed and pelletized to 

increase the energy density. Produced gas composition depends on the biomass type and 

the gasifiying conditions (and the eventual presence of catalysts for reforming). 



15 

 

Gasification is of particular interest for the biomass fraction of MSW but also 

biomass residues and woody biomass after pre-treatment (drying, particle size, 

pelletizing) but mostly on a small to medium scale. However several constraints 

associated with gas conditioning make gasification difficult and still not very attractive: 

hot gas cleaning (particle and H2S removal, etc), H2/CO ratio (quality of gas), CH4 and 

tar reforming and first and foremost efficient and economical removal of tar [18]. 

Association of a gasifier to a turbine is particularly difficult as a turbine is intricate and 

delicate machinery that require a very clean gas with low levels of contaminants (alkali, 

etc). Furthermore other technical problems are to be expected such as feeding difficulties, 

ash slagging and corrosion. Environmental aspects comparable to the one faced with 

combustion are also to be expected [24]. 

2.3.2. Combustion.  

Combustion means oxidation of the fuel for the production of heat at elevated 

temperatures without generating useful intermediate fuel gases, liquids, or solids. 

Combustion normally employs excess oxidizer (air) to ensure maximum fuel conversion. 

Products of combustion processes include heat, oxidized species (e.g. CO2, H2O), 

products of incomplete combustion (e.g. CO and hydrocarbons), other reaction products 

(most as pollutants), and ash. Electricity can be produced using boilers and steam-driven 

engines and turbo generators, or through organic Rankine, Brayton (gas turbine), and 

combined cycles [25]. Separation of the hazardous substances before the process will be 

an issue in this method. 
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2.3.3. Pyrolysis. 

Pyrolysis is a thermochemical conversion process where a solid fuel is heated in 

the absence of an oxidizing agent (in an inert atmosphere). It is the initial step in 

combustion and gasification processes and can therefore bring useful information about 

the primary products of these processes. Pyrolysis, as a conversion process, yields 3 

products: (i) a gas mixture; (ii) a liquid (bio-oil/tar); (iii) a solid residue (char). The 

proportion and composition of the various fractions will depend on a variety of 

parameters. Each fraction may have a commercial potential in spite of some 

limitations/constraints. Pyrolysis is of particular interest for the biomass fraction of 

MSW. Two technologies exist and differ on the method of heat transfer: fast pyrolysis for 

production of bio-oil and slow pyrolysis for production of charcoal. 

2.3.4. Biological Treatment of MSW. 

Biological treatment will require longer time than thermal conversion as 

biological processes takes days, weeks or even months to be carried out fully. These 

processes may be particularly suited for some MSW fractions i.e. niche applications and 

will therefore contribute to the expansion of the MSW treatment arsenal. 

2.3.5. Composting. 

Composting of MSW has been defined as ―the biological decomposition of the 

biodegradable organic fraction of MSW under controlled conditions to a state sufficiently 

stable for nuisance-free storage and handling for a safe use in land applications‖ [1]. 
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Several specificities of composting are immediately arising from this definition: (1) this 

process is limited to the organic fraction of MSW and separation of other fractions is a 

prerequisite; (2) this process is carried out under controlled conditions and is not a mere 

dump; (3) the resulting decomposition product, i.e. compost or humus, has to comply 

with safety and quality standards before further agricultural use [1]. This technology will 

therefore achieve a twofold goal: reduction of waste volume and mass, and production of 

a valuable by-product. 

Practically, various microorganisms (bacteria, fungi, etc) break down the organic 

matter to produce CO2, water, heat and a stable and nutrient-rich organic product useable 

for soil amendment. The decomposition process goes through different phases with 

change in the microorganisms’ population and activity of decomposition. The different 

phases can be followed by the temperature profile in the composting matter. To optimize 

the process (i.e. fast process), many parameters are of importance: C/N ratio (nutrition of 

the microorganisms), particle size/surface area exposed (the smaller the particle, the 

easier for microorganisms to work), oxygen/aeration, moisture content, pH level, 

temperature. 

Different technical solutions exist for composting of vast amounts of waste. 

Traditionally, windrow systems (outdoor row of protected/unprotected waste) were used 

but today preference is given to in-vessel systems (i.e. large incubators) as they allow 

easier and more efficient control of the process. To ensure fast, efficient and safe 

decomposition, ―active (or fast, hot) composting‖ operation is preferred to passive 
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composting where no maintenance is applied. Active composting requires the follow-up 

and optimization of aeration, moisture and C/N ratio throughout the composting matter. 

On top of the care required for the optimization of the process by providing ideal 

conditions for the microbial activity several problems are to be expected. The main 

challenges associated will be: pre-processing of the MSW, pathogen control (health 

hazard posed by the propagation of microorganisms into the air), leaching to underground 

water (need for an impermeable surface), odor control, fly and rodent attraction, fire risks 

(spark or self-ignition), contaminants presence (heavy metals). Health and safety 

constraints are therefore a hindrance for the establishment of vast composting systems 

and their commercial viability. However, ―backyard‖ composting remains a good waste 

treatment for organic wastes such as yard clippings or food scraps. 

2.3.6. Anaerobic Digestion. 

Anaerobic digestion can be described as composting in the absence of oxygen and 

therefore require a closed reactor system, i.e. a digester. Anaerobic digestion is especially 

well adapted for high-moisture wastes. The products of anaerobic digestion are a biogas 

(CH4, CO2 and acid gases), a liquid (―oil‖) and a solid residue (mostly lignin and chitin). 

However, the energy density of the gas has to be increased (removal of CO2) as well as to 

be cleaned before eventual use for electricity generation. The liquid fraction may be used 

as a fertilizer if it does not concentrate contaminants (pesticides, heavy metals), while the 

solid residue may be further composted. The obvious limitations make this technique 
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little appealing and economically viable except in some specific niche applications such 

as waste water treatment (sludge digestion) and farm slurries [23]. 

2.3.7. Fermentation. 

Fermentation is of interest for the biomass fraction of MSW and more generally 

biomass residues. This process includes two steps: (1) lignocellulosic materials are first 

hydrolyzed to sugars with the help of enzyme and/or acid hydrolysis [26] and thereafter 

(2) converted into ethanol through fermentation. Ethanol production from lignocellulosic 

materials (not only corn but woody biomass) is a hot topic as development of a car fuel 

blend including 85% of ethanol and 15% gasoline known as E85 is a serious alternative 

to conventional gasoline. The trend now is for the production of Flexible Fuel Vehicles 

that can function either on gasoline or on E85. An overview of ethanol production 

(potentials, constraints and technologies) from waste and biomass residues can be found 

in [27]. 

2.4. Previous Research 

Unlike single material such as coal and wood, the fundamental study of MSW has 

received less attention due to its complexity. Some studies [28-32] on single materials 

have been reported. These Studies were mostly concerned with the thermal 

decomposition of single composition, such as paper, plastics and so on. There have been 

some researchers who studied the combustion characteristics of MSW and had mixed 

conclusions. Yong-hua Li et al. as said that combustion of MSW mixed with coal would 
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change its characteristics. It would increase the ignition point of the MSW with 

percentage of mixed coal but apparently the average activation energy would decrease. 

Some of the previous studies mostly focus on the larger devices and the processing for 

thermochemical treatment of MSW [33, 34]. Only few studies were carried out on the 

fundamental Thermochemical reaction and kinetic parameters. 

During MSW combustion the reaction mechanism with different MSW 

compositions is not the same. Some composition such as waste plastics, paper and cotton 

complies with the two step kinetics model; the activation energy (E) and pre exponential 

factor (A) within higher temperature range are much greater than that within lower 

temperature range, while other six MSW compositions can be expressed with certain one 

step model [35]. Garcia et al. also studied the pyrolysis of MSW by TGA and a 

correlation model which considered independent reactions was applied to simulate the 

process [35]. There are little errors between the experimental and predicted value of 

sample weight loss during the combustion. It is easier for high volatile MSW composition 

to burn than that one with lower volatile content. Dwi Aries Himawanto et al. in his paper 

[36] has concluded that even though there are many kinetic equations which can be used 

to calculate the pyrolysis activation energy, his method has found a global kinetic method 

that can be applied to calculate the pyrolysis activation energy. Lin et al. calculated the 

global pyrolysis reaction rate from key component fractions paper, LDPE, HDPE, PS, 

and PVC of RDF using the weighed sum method. Jin et al. made a detailed analysis on 

the pyrolysis of the single component of MSW [37]. These researches revealed that 
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pyrolysis may be complicated by the fact that the MSW is a poor thermal conductor and 

heterogeneous material. 

There are numerous papers that complement the fact that complex hydrocarbon 

structures such as the Styrofoam have high thermal stability when compared to other 

compounds such as lignocellulosic blends and organic wastes. Even the activation energy 

of the latter compounds is very low when compared to complex hydrocarbon structures 

such as Polyvinyl chloride (PVC), High density polyethylene (HDPE), Polyethylene 

terephthalate (PET), Low density polyethylene (LDPE), Linear Low density polyethylene 

(LLDPE), Polypropylene (PP), Polystyrene (PS) and others [36, 38]. 

Researchers have also looked into the effect of heating rate on the reactions and 

have concluded that it has very little effect on pyrolysis, but the increase in terminal 

temperature will cause the pyrolysis percentage to rise [26]. But higher heating rates 

would lead to ―Thermal lag‖. Szabo et al. [39] have sorted out the discrepancies in TG 

kinetics due to the differences in measured and actual sample temperature. ―Thermal 

lag‖, as that difference is called, has attributed to the heat and mass transfer resistance as 

well as to the endothermic characteristics of pyrolysis reactions. The use of small samples 

and low heating rates is hence generally recommended to limit this phenomenon. This 

paper has provided a platform to even understand them at a broader prospect. Generally, 

it has been observed that the earlier the volatile matter is released, the lower will be the 

ignition temperature and the greater will be the time lag between the two temperatures. 
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The lack of value in many cases can be related to the mixed and often, unknown 

composition [40] of the waste. Separating the materials in waste generally leads to a 

value increase for these potential recovering substances.  

2.5. Foreword 

Combustion, pyrolysis and gasification are the three main thermo chemical 

methods. A lot of attention is being given to gasification technology as one of the most 

efficient methods for utilizing woody biomass [41, 42] since the usage of CO2 has been 

leading to many global issues. Gasification is a robust proven technology that can be used 

to convert a low value and highly distributed solid biomass to a uniform gaseous mixture. 

It can be further used as an industrial feedstock for heat and power generation, H2 

generation and synthesis of liquid fuels. 

A design of an ideal gasifier requires understanding of the influence of fuel and 

operating parameters on plant performance namely the biomass type, gasification 

medium, the producer-gas composition, gas efficiency and the gasification temperature 

and pressure. Thermo gravimetic Analyzer (TGA) has been used as an ideal gasifier. A 

TGA measures the changes in weight of a body as a function of temperature and time, 

under controlled atmosphere. The main use of a TGA is the measurement of thermal 

stability of a particular body.  

In order to understand pyrolysis, combustion and gasification of MSW at a 

broader prospect, this thesis studies the thermal decomposition of MSW with the 

objective to obtain the characteristics and kinetics of the MSW under different conditions 
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using different equipment, to understand the effects of the heating rate and components 

on MSW pyrolysis, combustion and gasification and to obtain basic data which can be 

applied in practice. The motivation for the TGA experiments was to try to establish a 

relationship between chemical kinetics and the chemical composition of MSW 

components. The Differential Scanning Calorimetry (DSC) is helpful as an auxiliary 

technique since it provides abundant information about some phenomena that do not lead 

to the mass losses.  
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CHAPTER 3 

Materials and Methods 

In this study, the MSW and the simulated waste samples were thermally degraded 

in a combined Thermo gravimetric Anlayser (TGA) & Differential Scanning Calorimeter 

(DSC), Q-600 from TA instruments. In addition to the TGA, a bomb calorimeter and a 

CHN elemental analyzer were used to find out the different engineering properties and 

elemental composition of the MSW samples respectively. 

3.1. Physical and Chemical Characteristics of the MSW and Simulated Waste 

Samples 

3.1.1. MSW Samples. 

The MSW samples are collected from different MSW transfer locations situated 

in Greensboro, Highpoint and Winston-Salem across North Carolina. Two samples are 

taken from each place for obtaining best experimental values. These six samples are later 

dried at 105 °C for two days in order to take out the moisture content in them. The 

samples are weighed before and after the drying to calculate the percentage of moisture. 

The moisture content ranges between 39-55 % as shown in the Table 3.1. Each sample is 

then segregated into different components namely paper, metals, plastics, glass, wood, 

textile and sand and their individual weights are also recorded as shown in Table 3.2. 

Glass, metals and sand are not considered for the experiments since they do not carry any 

caloric value in them.  
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Table 3.1. Moisture content of each sample 

City Name of the Sample Moisture Content, % 

Greensboro 
1 

2 

46.43 

55.74 

High Point 
1 

2 

42.75 

39.74 

Winston Salem 
1 

2 

42.74 

39.00 

 

Table 3.2. Percentages of Individual components in each sample 

 

Sample -1 Sample-2 Sample-3 Sample-4 Sample-5 Sample-6 

Paper 38.82 54.40 31.87 28.27 39.30 75.63 

Metals  5.09 1.51 9.25 15.44 2.08 1.86 

Plastics 20.41 21.16 26.09 20.41 49.58 15.62 

Glass 15.38 7.03 23.37 32.47 2.44 0.73 

Textile 2.74 8.55 4.27 1.05 6.59 0.87 

Wood 2.12 2.06 5.15 2.37 0.00 5.29 

Sand 15.44 5.30 
    

 

 

The following Figure 3.1. is of a transfer station in Greensboro where all the waste from 

the city is collected. Paper, plastics, textile and organics (wood and food material) have 

been taken into consideration for the characterization and a mixture of these four 

compounds has been considered to calculate the calorific value for comparison with the 

individual compounds. 
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Figure 3.1. Transfer station in Greensboro 

 

 

 

 

 

 

 

Figure 3.2. MSW collected into cans           Figure 3.3. MSW being segregated into    

samples  
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Figure 3.4. MSW samples after segregation  

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Simulated waste 
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3.1.2. Simulated Waste. 

Eleven different samples from our daily use namely biomass, yard grass, vegetable peels, 

packaging paper, banana peels, textile, low density plastics, high density plastics, 

cardboard, printed paper, newspaper were collected from households and used as a 

simulated waste. These samples are also dried at 105
 
°C for two days to take out the 

moisture content. 

 

Figure 3.6. IKA M-20 Universal batch mill 

The above Figure 3.6. is of a batch mill which is used in the experiment. It is suitable for 

dry grinding of hard and brittle substances. The advantage of this equipment over others 

is its double-walled grinding chamber which can be cooled with water through two hose 

adapters. There are two hose couplings located at the rear of the grinder in order to 

connect the cooling brine. Cooling with tap water is usually sufficient for substances 

which become hot as a result of the grinding operation and are thus given to smearing or 

those that produce oil. Two grinding chambers can be alternately operated using one 

drive. 
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Table 3.3 Moisture content of simulated MSW samples 

Name of the 

Material 

Before Drying After Drying 
Mois-

ture 

% 

Weight 

of the 

Pan 

Weight of 

the Pan + 

Material 

Weight 

of the 

Material 

Weight of 

the Pan + 

Material 

Weight 

of the 

Material 

Packaging 

paper  
11.23 26.50 15.27 25.48 14.25 6.68 

Print paper 11.11 61.71 50.60 58.86 47.75 5.64 

Cardboard 11.29 23.32 12.03 22.55 11.25 6.42 

Newspaper 11.18 41.34 30.16 38.56 27.38 9.21 

Low density 

Plastics 
11.27 16.62 5.35 16.59 5.31 0.64 

High density 

Plastics 
11.15 20.10 8.95 19.89 8.74 2.33 

Textile 11.06 56.49 45.42 34.80 23.73 47.75 

Vegetable 

peels 
11.255 35.701 24.446 13.684 2.429 90.06 

Banana peels 11.16 167.55 156.39 31.682 20.522 86.88 

Yard grass 11.19 28.97 17.78 14.523 3.333 81.25 

Woody 

biomass 
11.105 44.424 33.319 42.016 30.911 7.23 

 

The vegetable peels, banana peels and the yard grass have lost almost 80-90% of their 

total weight and textile, about 48% during the process of drying. The samples are then 

crushed and powdered with the help of IKA M-20 Universal batch mill for obtaining a 

homogeneous mixture.   
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Figure 3.7. The different parts of the TA instruments Q-600 

 

 

 

 

 

 

 

Figure 3.8. Loading of the samples into the instrument 

(3.8) 

(3.7) 
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3.2. Thermal Analysis 

The samples are thermally degraded in a Thermo Gravimetric Analyzer (TGA), 

Q-600 by QA instruments shown in the Figure 3.7. Small samples of weight 13-16 mg 

were placed in the microbalance of the TGA for each analysis. Nitrogen, carbon dioxide 

and air were used as the purging gases for pyrolysis, gasification and combustion, 

respectively. An alumina crucible is used in the experiments in order to get the best 

possible heat transfer between the thermocouples and the crucibles and also to reduce the 

emissivity of the sample. The heating rate of 10 °C/min was maintained for all the 

samples. The gas flow rates were maintained constant at 20 ml/min. The temperature 

range was between 25 °C – 900 °C. The residual weights of all the biomass samples after 

gasification (CO2), pyrolysis (N2) and combustion (air) were 7-10%, 15-20% and 4-6% of 

the original dry mass, respectively. The TGA and DSC data are analyzed for their 

kinetics and heat, and are discussed in the results and discussion chapter.  

3.3. Heat of Combustion 

The heat of combustion is the energy released as heat when a compound 

undergoes complete combustion in the presence of oxygen under standard conditions. 

The heat of combustion, Q was determined using a 1341 Oxygen Bomb calorimeter by 

Parr instruments. The value is conventionally measured with a bomb calorimeter or 

calculated as the difference between the products and the reactants in a chemical reaction. 

The following Tables 3.4 and 3.5 show us the average Q values of three set of 

experiments. 
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Figure 3.9. 1341 Oxygen bomb calorimeter 

The 1341 Calorimeter has a high strength, molded fiberglass jacket formed with 

double walls and a double cover to provide an oval chamber for the calorimeter bucket 

which is completely surrounded by sealed, dead air space. This simple yet effective 

insulating system allows very little heat transfer between the calorimeter and its 

surroundings. A stirring shaft and thermistor are attached to the cover and are removed 

with the cover when the calorimeter is opened. Stirring is provided by a small motor 

attached to the jacket but sufficiently removed so that it does not add heat to the system. 

A pair of wires with banana plugs carries the firing circuit to terminals on the bomb head. 

An additional ignition unit which supplies the proper electric current for firing the 

oxygen bomb calorimeter. If observed closely, the heat of combustion is high for the 

plastics due to the presence of complex hydrocarbons of Polyvinyl chloride (PVC), High 

density polyethylene (HDPE), Polyethylene terephthalate (PET), Low density 

polyethylene (LDPE), Linear Low density polyethylene (LLDPE), Polypropylene (PP), 

Polystyrene (PS) and others. 
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Table 3.4. Heat of combustion data for the MSW samples 

Sample Name of the Compound Average Heat of Combustion, cal/g 

Sample 1 

Plastics 

Textile 

Organics 

Paper 

7108.81 

5117.80 

4994.34 

6629.30 

Sample 2 

Plastics 

Textile 

Organics 

Paper 

7057.40 

3718.27 

3918.86 

4691.75 

Sample 3 

Plastics 

Textile 

Organics 

Paper 

7405.89 

4138.41 

3510.54 

4210.94 

Sample 4 

Plastics 

Textile 

Organics 

Paper 

6109.85 

4889.77 

4828.12 

4113.14 

Sample 5 

Plastics 

Textile 

Paper 

6151.20 

4361.07 

5296.04 

Sample 6 

Plastics 

Textile 

Organics 

7691.55 

4018.40 

3454.10 
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In the above Table 3.4, it is observed that the heat of combustion is very high for plastics 

when compared to other compounds. And the rest of all them has the same range of 

3500-5500 KJ/Kg. 

Table 3.5. Heat of combustion data for the simulated MSW samples 

Name of the Compound Average Heat of Combustion 

cal/g 

Biomass 3646.64 

Yard Grass 3835.72 

Vegetable peels 3391.15 

Packaging paper 3998.54 

Banana peels 3379.69 

Textile 3384.93 

Low density plastics 7827.12 

High density plastics 4379.95 

Cardboard 3246.27 

Printed paper 2668.02 

News paper 3208.63 
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3.4 Ultimate Analysis 

The elemental composition of the all the MSW samples are determined using a PE 2400 

II CHNS/O analyzer (PerkinElmer Japan Co., Ltd.). The weight used of the samples used 

in the experiment was about 2-3 mg.  

Table 3.6. Elemental analyzer data for MSW samples 

Trash Samples Name of the 

Compound 

C (%) H (%) N (%) O (%) 

Sample -1 

Plastics 71.17 9.31 0.41 19.11 

Organics 38.5 3.73 5.41 52.36 

Textile 53.89 5.82 1.51 38.78 

Paper 44.86 7.25 0.97 46.92 

Sample -2 

Plastics 62.91 9.91 0.55 26.63 

Organics 35.45 5.23 2.54 56.78 

Textile 38.67 6.33 0.75 54.25 

Paper 44.67 7.4 0.29 47.64 

Sample -3 

Plastics 72.25 6.31 0.74 20.7 

Organics 37.67 6.13 3.21 52.99 

Textile 45.4 6.94 2.13 45.53 

Paper 44.28 6.99 0.22 48.51 

Sample -4 

Plastics 69.36 4.18 0.79 25.67 

Organics 40.01 6.5 3.57 49.92 

Textile 55.76 4.8 0.47 38.97 

Paper 45.12 7.13 0.22 47.53 

Sample -5 

Plastics 68.4 10.58 0.41 20.61 

Organics     
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Table 3.6. Continued. 

Sample -5 

Textile 45.05 7.39 14.57 32.99 

Paper 42.37 6.94 0.19 50.5 

Sample -6 

Plastics 54.41 7.2 0.93 37.46 

Organics 45.87 6.92 1.04 46.17 

Textile 59.13 4.86 0.38 35.63 

Paper     

Table 3.7. Elemental analyzer data for simulated MSW samples 

Name of the 

Compound 

C (%) H (%) N (%) O (%) 

Biomass 47.33 6.82 0.12 45.73 

Yard grass 54.8 8.27 6.03 30.9 

Vegetable peels 39.96 6.37 8.22 45.45 

Packaging paper 47.56 8.12 0.33 43.99 

Banana peels 43.16 2.78 1.07 52.99 

Textile 42.27 7.08 0.63 50.02 

Low density plastics 90.79 8.08 0.06 1.07 

High density plastics 60.76 4.42 0.04 34.78 

Cardboard 42.84 2.94 0.19 54.03 

Printed paper 37.67 6.22 0.1 56.01 

News paper 45.38 6.7 0.13 47.79 
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From the preceding Tables 3.4 and 3.5, it can be inferred that the carbon content in the 

plastics is very high when compared to others due to the presence of large hydrocarbon 

chains. The value of the carbon percentage in high density plastics is relatively greater 

than that of the low density plastics because as the name suggests the density of the 

hydrocarbons per molecule is greater in the former plastics when compared to the latter 

one. And this property in the high density plastics is clearly evident in the above Tables 

3.4 and 3.5. The rest of the samples are in the range of 35- 55 %.  

3.5 Method Used for the Calculation of Thermal Kinetics 

The kinetics of thermal decomposition reactions of MSW samples is complicated 

in that the decomposition of these materials involves a large number of reactions in 

parallel and series. Although TGA provides general information on the overall reaction 

kinetics, rather than individual reactions, it could be used as a tool for providing 

comparison kinetic data of various reaction parameters such as temperature and heating 

rate. Other advantages of determining kinetic parameters from TGA are that only a single 

sample and considerably fewer data are required for calculating the kinetics over an 

entire temperature range in a continuous manner. 

Determination of the kinetic parameters from TGA data was based on the following rate 

expression [43, 44].  

  

  
      

 

  
                           (3.1) 

Where, 
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X is the weight of sample undergoing reaction (kg), t is the time (min), A is the pre-

exponential or frequency factor (min-1), E is the activation energy of the   

decomposition Reaction (kJ mol-1), R  is the Universal gas constant (kJ mol-1 

K-1), T  is the absolute temperature (K), n is the order of reaction. 

A technique based on the Arrhenius equation of the form proposed by Goldfarb 

and Duvvuri [45, 46] was used to determine the kinetic parameters from typical curves 

of thermogravimetric data over an entire temperature range in a continuous manner. The 

linearized form of the Arrhenius equation was used to determine A, E and n by applying 

least squares (multiple linear regression) technique. The simplified form of the 

linearized rate equation is as follows: 

    Cx+Dz                    (3.2) 

The parameters y, x, z, B, C and D in Eq. (2) are defined as follows: 
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The values obtained from the experiment for calculated for the y, x and z values and then 

a method of regression has been used in Microsoft excel to calculate the values of B, C 

and D. Thus, the values of A, E and n are obtained. 

3.6. Calculating the Caloric Requirement 

Several studies have done on investigation of the heat of reaction of biomass 

using the TGA/DSC data and the literature shows that quantification of the reaction heat 

is really difficult. The main reasons for them are: 

 During pyrolysis, combustion or gasification, the temperature of the sample 

changes greatly, the chemical state and the property of the component also 

changes continuously. 

 At high temperatures, it is evitable that there will be interaction between the 

specific heat and the reaction heat and it is really impossible to detect them 

separately especially in TGA analyzer.  

The caloric requirements of the compounds are calculated by integrating the DSC heat 

flow curve with the help of the following equation [47, 48] 

pchchpbbp QdTmcdTmcQ   ,,                                                                               (3.7) 

For the heat flow data from the plots and by integrating the above equation, we get  
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We know that the moisture content in the DSC peaks of the sample is influenced by the 

moisture (at least 6-12 %) in the sample which further influences the caloric requirement. 

And since this stage (moisture content) is unstable, the exact caloric requirement is really 

difficult to calculate. Hence, the data until the first 200 °C is omitted and then the DSC 

curve is integrated using EXCEL to obtain the values of caloric requirement. 
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CHAPTER 4 

Results and Discussion 

4.1. TG, DTG and DTA Curves 

Figure 4.1, 4.2 and 4.3 show the weight loss (TG), weight loss rates (DTG) and 

temperature change (DTA) of different components in MSW i.e., Plastics, Paper, Textile 

and Organics, simulated MSW and mixture of MSW (equal weights) under three 

different gases namely air, nitrogen and carbon dioxide  respectively. The TG/DTG and 

DTA curves of these samples exhibit completely different profiles, under the influence of 

different gases.   

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Thermo gravimetric (TGA) and weight loss (DTG) kinetics of MSW in 

air 
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The Figures 4.1 to Figure 4.6 show the same pattern for all the samples in different gases 

environment.  The number of derivative peaks in the sample represent the number of 

different compounds present in the samples. If we observe carefully, two peaks were seen 

for organics as well as plastics due to the presence of two or more different compounds in 

them. The organics had bone matter in the sample. Hence, we can see that the ash 

percentage is bit higher when compared to the other compounds. 

 

 

 

 

 

 

 

Figure 4.2. TGA kinetics of MSW in nitrogen 

The thermal degradation rate data of the samples gives the possibility to establish the 

wastes in mixtures thermo-chemical properties in combustion, pyrolysis or gasification 

conditions. The solid waste submits a continuously homogenous thermal treatment 

process, guaranteed by the unit isothermal profile and the continuous gas flow residential 

time distribution. This insures an accurate dynamic process gas analysis. 
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Figure 4.3. TGA kinetics of MSW in carbon dioxide 

 

 

 

 

 

 

 

 

Figure 4.4: TGA kinetics of MSW (simulated) in air 

 

 

Figure 4.4. TGA kinetics of MSW (simulated) in air 
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Figure 4.5. TGA kinetics of MSW (simulated) in nitrogen 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. TGA kinetics of MSW (simulated) in carbon dioxide  
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Figure 4.7. TGA kinetics of MSW mixture in air, nitrogen and carbon dioxide 

In the above Figures, 4.4, 4.5 and 4.6, there is a similar pattern followed by all the 

samples in all the environments. The plastics, since there is no lignin content in the 

sample, the final weights were always lesser than all the other compounds, mostly close 

to zero. 

In the following Tables 4.1, 4.2, 4.3 & 4.4, the thermal degradation rate for each 

of the samples followed the same pattern in terms of their thermal degradation rate, peak 

temperatures and their corresponding final weights. The final weights of all the MSW and 

the MSW (simulated) samples were high in nitrogen when compared to other gases. The 

thermal degradation rate helps us to understand where the actual reaction is taking place 

and this can be inferred from the following Tables 4.1, 4.2, 4.3 & 4.4. A same pattern is 

observed in all the three different gas environments for all the samples.  
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Table 4.1. Thermal degradation rates, their corresponding temperatures and final 

weights (MSW) in nitrogen, air and carbon dioxide  

Name of 

the 

Sample 

Peak 1 Peak 2 Peak 3 

Final 

weight, 

% 
Thermal 

Degradati

on Rate, 

%/min. 

Temp 

(°C) 

Thermal 

Degradat

ion Rate, 

%/min. 

Temp 

(°C) 

Thermal 

Degradati

on Rate, 

%/min. 

Temp 

(°C) 

Nitrogen 

Organics 

Paper  

Plastics 

Textile 

Air 

Organics 

Paper 

Plastics 

Textile 

CO2 

Organics 

Paper 

Plastics 

Textile 

 

4.78 

8.79 

6.62 

8.87 

 

6.21 

8.89 

4.72 

5.10 

 

5.80 

8.90 

3.42 

7.35 

 

282.48 

322.15 

285.84 

332.34 

 

277.27 

297.25 

279.12 

276.43 

 

285.95 

310.05 

274.41 

310.05 

 

1.05 

- 

6.58 

0.82 

 

2.59 

13.93 

5.38 

7.68 

 

1.09 

1.50 

6.21 

1.05 

 

443.18 

- 

466.72 

445.20 

 

451.25 

388.72 

455.96 

442.51 

 

440.69 

453.27 

432.42 

478.12 

 

0.32 

0.56 

0.12 

0.19 

 

0.17 

4.83 

6.60 

- 

 

.65 

0.1247 

1.514 

0.1330 

 

692.64 

677.85 

675.83 

645.57 

 

669.78 

427.72 

488.91 

- 

 

606.11 

612.63 

508.40 

666.42 

 

28.81 

9.52 

15.76 

18.82 

 

18.03 

4.52 

4.71 

7.12 

 

18.29 

3.693 

5.984 

9.02 
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Table 4.2. Thermal degradation rates, their corresponding temperatures and final 

weights (MSW Simulated) in nitrogen 

Name of 

the 

Sample 

  

Peak 1 Peak 2 Peak 3 

Fina

l wt, 

(%) 
Thermal 

Degradati

-on Rate, 

%/min. 

Temp. 

(°C) 

Thermal 

Degradatio

n Rate, 

%/min. 

Temp. 

(°C) 

Thermal 

Degradat

i-on 

Rate, 

%/min. 

Temp.

(°C) 

Banana 

Peel 
4.23 298.62 1.44 365.86 - - 

33.2

7 

Cardboard  10.15 341.65 0.26 682.55 - - 
15.3

9 

HD 

Plastics  
20.28 429.73 - - - - 

11.3

2 

LD 

plastics  
29.84 412.25 - - - - 0.15 

Newspaper  8.18 348.38 - - - - 
16.4

4 

Packaging 

paper 
13.78 349.05 3.8 466.67 - - 

11.7

3 

Printed 

paper 
11.97 332.91 1.24 712.81 - - 

14.7

6 

Textile  15.22 355.77 - - - - 
1.37

7 

Vegetable 

peel 
3.79 299.29 - - - - 

14.2

5 

Yard grass 4.04 293.91 1.08 440.49 - - 
14.2

9 
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Table 4.3. Thermal degradation rates, their corresponding temperatures and final 

weights (MSW Simulated) in air 

Name of 

the 

Sample 

Peak 1 Peak 2 Peak 3 

Final 

wt, 

(%) 
Thermal 

Degradat

i-on Rate, 

%/min. 

Temp. 

(°C) 

Thermal 

Degradati-

on Rate, 

%/min. 

Temp. 

(°C) 

Thermal 

Degradat

i-on 

Rate, 

%/min. 

Temp. 

(°C) 

Banana 

Peel 
4.45 301.98 9.47 406.87 8.21 572.28 7.08 

Cardboard  65.51 306.69 - - - - 0.09 

HD plastics 15.73 414.27 11.6 521.85 - - 0.21 

LD plastics 16.46 383.34 - - - - 0.79 

Newspaper 43.02 308.02 10.81 378.63 6.55 420.32 3.44 

Packaging 

paper 
27.11 322.82 7.98 433.77 - - 0.3 

Printed 

paper 
56 304.67 1.87 379.88 0.8 716.17 8.13 

Textile 98.71 328.2 25.77 443.18 - - 0.85 

Vegetable 

peel 
5.02 263.65 14.86 409.56 - - 13.02 

Yard grass 4.3 271.05 22.39 407.47 - - 12.73 
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Table 4.4. Thermal degradation rates, their corresponding temperatures and final 

weights (MSW simulated) in carbon dioxide 

Name of 

the Sample 

Peak 1 Peak 2 Peak 3 

Final 

wt, 

(%) 

Thermal 

Degradation 

Rate, 

%/min. 

Temp. 

(°C) 

Thermal 

Degradation 

Rate,(%/mi

n. 

Temp. 

(°C) 

Thermal 

Degradation 

Rate,(%/mi

n. 

Temp. 

(°C) 

Banana 

Peel  
4.45 299.29 355 1.52 - - 6.37 

Cardboard 11.07 330.89 - - - - 4.16 

HD plastics  16.78 429.73 - - - - 1.34 

LD plastics 22.88 403.51 - - - - 0.45 

Newspaper 10.8 336.27 - - - - 2.55 

Packaging 

paper  
16.83 333.58 2.5 421.67 - - 0.49 

Printed 

paper 
13.48 324.84 6.77 376.62 - - 4.11 

Textile 27.79 339.63 - - - - 1.36 

Vegetable 

peel  
3.59 283.15 - - - - 11.36 

Yard grass 3.97 279.79 2.63 475.46 - - 8.03 

  

4.2. Operating Conditions 

4.2.1. Type of Gas Used. 

There are three types of gases that are used in this experiment. They are nitrogen for 

pyrolysis, air for combustion and carbon dioxide for gasification. 
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4.2.1.1. Pyrolysis (Nitrogen). 

The pyrolysis temperature ranges and the peak temperature of mixed components 

samples. It could be seen that the mixed component samples initial pyrolysis temperature 

located between the initial pyrolysis temperatures of each component with exception in 

organic mixed component. The initial pyrolysis temperature of organic mixed component 

higher than the single component pyrolysis initial temperature. It caused of synergetic 

reactions which occurred between the components. Pyrolysis temperature ranges of each 

sample could be seen in the above Tables 4.1 & 4.2, they show that the samples other 

than plastics were pyrolysed starting from around 220 °C and continuing until 450 °C, 

where the highest mass loss occurred at about 250-280 °C, while the banana leaves 

wastes was pyrolysed from 190 °C to 420 °C with the highest decomposition rate at 298  

°C.  Plastics were pyrolysed at 310 °C – 450 °C with peak temperature occurring at 420 

°C. 

From the experimental results, it could be concluded that all the waste samples, 

except the plastics started pyrolysing at almost the same temperature which as 

hemicelluloses decomposition temperature. Heikkinen et al. [49] explained that the 

maximum decomposition rates of xylan, the one of hemicelulose type, occurred at 298 

°C. Based on the peak temperature, i.e. the temperature which highest devolatilization 

rates occurred which defined by Heikkinen et al. [49], banana leaves wastes categorized 

as low stability organic component (LSOC), i.e. materials which have the peak 

temperature around 300 °C. The peak temperature of packaging paper occurred at 349 
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°C, which is close to the peak temperature of milk carton [49], i.e. 354 °C. Plastic wastes 

have high thermal stability and have peak temperature above of 400 °C as we can see 

from the Figures 4.3. & 4.4. Banana waste sample begin to decompose at 175 °C and 

finished at 420 °C and signed with one maximum mass loss rate at 322.7 °C and one 

shoulder located at 273.4 °C. According to Di Blasi [50] biomass started to be 

decomposed at 227 °C, while Kalita et al. [51] found that bamboo dust pyrolysed at 190 

°C to 365 °C.  

4.2.1.2. Combustion (Air). 

In the combustion process, the char formed from the previous phase of 

evaporation and cracking combusts rapidly, only 3-4% of the original mass of biomass is 

ash. Hence, we observe an obvious peak is observed in the DSC cures. The weight loss 

peak will also be a bit different when compared to pyrolysis and gasification. The 

combusting process of the primary MSW is a serial complicated chemical reaction 

process. In their paper, Kok et al. [52] have postulated that even though, the  combustion 

of fuel can be initiated whenever oxygen comes into contact with the fuel, it is the 

temperature, the composition of the fuel and the air supply which dictate the nature of the 

reaction. It has been inferred here in this paper that under the influence of different fuels 

(gases) and the conditions, the same sample tends to behave differently. It has been also 

observed from the curves that the rate of mass loss is maximal at the peak temperature. 

When analyzing and comparing the combusting curve of the mixture of municipal solid 

waste, we can conclude that the combustion of municipal solid waste can be divided into 
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three stages: First, it is the dehydration stage, which is carried out before the temperature 

of 200 °C. Because of the high proportion of the kitchen-left waste in primary municipal 

solid waste, and the high water-containing in this waste, in this stage, the weight of the 

waste would decrease rapidly. During 150-200 °C, TG curve almost had no change. 

When temperature is above 200 °C, TG curve began to decrease, which indicated the 

volatilization occurring. As temperature increased more, the volatile fraction began to 

combust. Because of the complicated waste composition, the different combusting nature, 

as well as the interaction among each elements, the combusting process did not reflect the 

three obvious stages of the volatile fraction combustion, over-combusting, fixed carbon 

combustion ,which, on the contrary, occurred simultaneously, which could sustain till 

combusting completely at about 500 °C. When it’s above 700 °C, another weight-losing 

process appeared. Combining with the relative DTA curve, we can conclude that during 

this period, some solid materials began to be melted.  

After comparing the curves of all the samples, we can see that during the 

combusting process, activation energy in two stages have no obvious difference, and 

during the two stages, the combustion proportion show the same level, that is activation 

energy in primary municipal solid waste will decrease slightly with the temperature 

increasing, but not too much, less than the activation energy of the coal. The ignition 

point is low. The activation energy E will increase during the low temperature stages, but 

in high temperature, decrease the activation energy E, increase the combustion 

percentage, which illustrate that during this mixed proportion scope, ignition point would 

increase as the mixed coal increase, The average apparent activation energy shows the 
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opposite trend, which indicate that low ignition point elements often influence the 

combustion nature of high ignition point elements. Because elements with low ignition 

point will speed up the elements with high ignition point and spread the easy-burning 

molecules, which would tend to decrease the ignition point. After comparing the curves 

of the MSW to those of simulated waste, we would find that activation energy E in the 

mixes municipal solid waste are low than that in the segregated solid waste as well as the 

simulated waste. 

4.2.1.3. Gasification (Carbon Dioxide). 

There is not much research done on TGA in the carbon dioxide environment even 

though it is the most viable process. The reason for that being that the amount of char 

yield at the end of the process is quite low when compared to other gases. The 

characteristics of all the MSW and simulated waste samples in the presence of carbon 

dioxide are quite similar to that of air except for the plastics. In the presence of air, the 

large hydrocarbon chains will have a greater chance of bonding with the available oxygen 

atoms hence releasing an extra amount of energy when compared to gasification and 

pyrolysis. However the thermal degradation rate is very high for gasification when 

compared to other gases and that is clearly visible from the plots. 

4.2.2. Sample Size. 

Although some argue that large samples can cause limitations of both heat and 

mass transfer, which can drastically influence the results of these experiments [53]. The 
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results show for all the samples particle size has an effect on pyrolysis product yields and 

composition: smaller particle size results in higher gas yield with less tar and char; the 

decrease of particle size can increase H2 and CO contents of gas, as well as the ash and 

carbon element contents in the char. The influence is the much more significant for 

sample with higher fixed carbon and ash contents, such as kitchen garbage, and less for 

sample with higher volatile content, plastic in the test Therefore, small samples should be 

used when heat and mass transfer limitations occur at higher sample masses. 

Chamberlain et al. suggest that both the mechanism and the activation energy of 

dehydration of a hydrate could be significantly influenced by sample pre-history such as 

particle size, sample weight, crystal defects and surface characteristics [53]. But the 

instrument limits the sample size to 25 mg to get admirable results. And hence, the 

sample size used in the TGA/DSC analyzer is between 20-25 mg. 

4.2.3. Gas Flow Rate. 

The gas flow rate of the purge gas can also affect the measurement curve. There 

are authors who have used high gas flow rates of around 100ml/min. But the samples 

used in these experiments are very light and there is a greater possibility for them for fly 

away with high purge gas flow rates. Since, weight is an important parameter in 

calculating the TGA/DSC characteristics; TGA purge gas flow rates are normally kept 

between 20 – 30 ml per minute total flow to avoid these problems. In this experiment, an 

optimum gas flow rate of 20 ml/min. has been used to make sure that the samples do not 

lose weight through gas flow.  
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4.2.4. Heating Rates. 

Researchers have also looked into the effect of heating rate on the reactions and 

have concluded that it has very little effect on pyrolysis, but the increase in terminal 

temperature will cause the pyrolysis percentage to rise [35, 39, 54-56]. But higher heating 

rates would lead to ―Thermal lag‖. Szabo et al. [55] and Varhegyi et al. [29] have sorted 

out the discrepancies in TG kinetics due to the differences in measured and actual sample 

temperature. ―Thermal lag‖, as that difference is called, has attributed to the heat and 

mass transfer resistance as well as to the endothermic characteristics of pyrolysis 

reactions. The use of small samples and low heating rates is hence generally 

recommended to limit this phenomenon. This paper has provided a platform to even 

understand them at a broader prospect. Generally, it has been observed that the earlier the 

volatile matter is released, the lower will be the ignition temperature and the greater will 

be the time lag between the two temperatures. Hence, to avoid thermal lag, a heating rate 

of 10 °C has been used throughout the experiment for all the samples. 

4.3. Thermal Degradation Kinetics (TGA Curves and Kinetics) 

We can clearly observe that there is about a 10 % loss in the weight of all the 

samples within the temperature range of 0-200 °C, which indicate that it is not only 

moisture that evaporates but also some organic matter which have low boiling points. 

Any given sample loses most of its weight within the range of 200 to 500 °C and this 

stage is shown as the exothermic process in the DTA curve indicating the light 

compounds that are volatile from the samples. The DTG peak starts between 200-250 °C 
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and its corresponding shoulder peak emerges at around 350-400 °C, which might be 

because of the decomposition reaction of some heavy compounds [56]. Organics behaves 

peculiarly under the presence of air, but exhibit the same characteristics in the presence 

of the other two gases. And after reaching 600 °C, the TA curve almost becomes 

horizontal. Meanwhile, the DTA curve shows a mild endothermic process, showing the 

decomposition reaction of remaining heavier components [57]. The main section of 

weight loss is within the range of 450-500 °C. In all the curves, the DTG peak occurs at 

around 290 °C. All the organic compounds volatilize before 225 °C. Hence, we can 

observe a mild endothermic curve before that temperature. About 75 % of the weight loss 

occurs between the ranges of 375-550 °C in all the MSW and the simulated MSW 

samples. According to Sorum et al, [57], Orfao et al. [58] and Varhegyi et al. [29], the 

lower temperature shoulder in the curves shows the decomposition of hemi cellulose and 

the higher temperature peak shows the decomposition of cellulose in the material. We can 

observe these peaks in all the samples expect the plastics which have high hydrocarbons. 

The TG curves can be categorized into three phases namely (1) the water and the 

lighter compound evaporation i.e., the release of the volatile compounds, (2) ignition and 

burning of the heavier compounds (mainly carbon) and finally (3) decomposition of the 

carbonate compounds [59]. The ignition and burning of these compounds can be divided 

further into two different stages. The first stage involves the volatilization of the light 

compounds and the oxidization in the gaseous phase. The second stage involves the 

heterogeneous combustion between the heavy compounds and the exposed gases [60].  

The experiment was even carried out at higher rates and it was observed that at much 
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higher rates of around 50
 
°C/min., there will be a formation of thick shell around the 

samples with high lignin content that prevents the diffusion of the respective gases and 

makes the compound more resistant towards the heat and they also cause more intense 

release of volatiles. Arrhenius n
th

 order rate equations were used to describe the kinetics 

of single reaction steps. Heat and mass transfer limitations due to transport phenomena 

within the sample were neglected because of the low heating rates and the small sample 

sizes used in experimental runs. 

The TGA data is used to calculate the activation energy E (KJ/mol), the pre-

exponential factor A (min
-1

) and the order of the reaction.  Agrawal performed some TG 

studies on some pure components of MSW and their mixtures. According to him, the 

pyrolysis of several cellulosic wastes take place in the same range of temperature with 

similar kinetic constant. The same has been observed in the experiments. The temperature 

range of cellulosic decomposition is 300-400
 
°C. And that of newspaper (high lignin 

content) is around 250-375 °C. Plastics have a thermal decomposition of 400-500
 
°C. In 

the following Tables 4.5, 4.6, 4.7, 4.8, & 4.9, we can see the kinetic parameters for all the 

MSW samples. The residual weights of all the biomass samples after gasification (CO2), 

pyrolysis (N2) and combustion (Air) were 5 %, 10-15 % and 4 % of the original dry mass 

respectively. The maximum rate of mass loss is directly proportional to the reactivity of 

the sample. It has been also observed that as the temperature in the sample increases, the 

weight loss peaks in the Derivative Thermo Gravimetric analysis, DTG curves shift to the 

higher temperature. It will also have a higher peak value and peak width at higher rates. 

This will not have any effect on the initial ignition temperature but the initial temperature 
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of the volatile release and the burn up temperature shift higher. The following Tables 4.5, 

4.6, 4.7, 4.8 and 4.9 give us the information of the kinetic parameters such as the pre-

exponential factor A, activation energy E and the reaction order n.  

Table 4.5. Kinetic parameters of MSW samples in nitrogen 

Compound Kinetic Parameters Peak 1 Peak 2 Peak 3 

Organics 

Pre exponential factor, A, min-1 3.7x10
7 

3.4x10
7 

 
Activation energy, E,  kJ/mol 84.29 183.10 

 
Reaction order, n 1.12 1.17 

 

Paper 

Pre exponential factor, A, min-1 1.7x10
7 

  
Activation energy, E,  kJ/mol 70.24 

  
Reaction order, n 1.15 

  

Plastics 

Pre exponential factor, A, min-1 1.1x10
8 

3.4x10
7 

 
Activation energy, E,  kJ/mol 123.75 137.64 

 
Reaction order, n 1.50 1.56 

 

Textile 

Pre exponential factor, A, min-1 78099.98 0.86 
 

Activation energy, E,  kJ/mol 66.2 121.5 
 

Reaction order, n 0.95 2.99 
 

 

The Tables 4.5, 4.6, and 4.7 give us the kinetic parameters of the MSW compounds. The 

values obtained for the pre-exponential factor and the activation energy for the organics, 

paper, and plastics comply with the earlier published data. There was not much research 

done in terms on textile but since it also has the lignin content, the values were close to 

that of others except plastics.  
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Table 4.6. Kinetic parameters of MSW samples in air 

Compound Kinetic Parameters Peak 1 Peak 2 Peak 3 

Organics 

Pre exponential factor, A, min-1 2.65x10
7 

5.17x10
7 

 
Activation energy, E,  kJ/mol 65.4 181.15 

 
Reaction order, n 2.68 1.88 

 

Paper 

Pre exponential factor, A, min-1 4.20x10
7
 2.3x10

7
 3.6x10

7
 

Activation energy, E,  kJ/mol 98.86 115.78 126.41 

Reaction order, n 2.91 1.56 1.60 

Plastics 

Pre exponential factor, A, min-1 5.1x10
7
 732115.77 3.9x10

7
 

Activation energy, E,  kJ/mol 119.69 88.51 220.88 

Reaction order, n 1.61 1.60 1.33 

Textile 

Pre exponential factor, A, min-1 3.4x10
7
 612326.18 

 
Activation energy, E,  kJ/mol 244.82 30.74 

 
Reaction order, n 2.85 1.39 

 
 

Table 4.7. Kinetic parameters of MSW samples in CO2 

Compound Kinetic parameters Peak 1 Peak 2 Peak 3 

Organics 

Pre exponential factor, A, min-1 411383.47 742125.12 
 

Activation energy, E,  kJ/mol 67.89 124.77 
 

Reaction order, n 2.58 2.40 
 

Paper 

Pre exponential factor, A, min-1 495432.31 
1355208.5

8  

Activation energy, E,  kJ/mol 66.41 91.42 
 

Reaction order, n 2.88 1.75 
 

Plastics 
Pre exponential factor, A, min-1 4335.74 1.2x10

7
 2.4x10

7
 

Activation energy, E,  kJ/mol 53.74 128.78 172.97 
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Table 4.8. Kinetic parameters of MSW (simulated) samples in air 

Compound Kinetic Parameters Peak 1 Peak 2 Peak 3 

Banana peels 

Pre exponential factor, A, min-1 28446.01 3.7x10
7 

3.24x10
7
 

Activation energy, E,  kJ/mol 54.79 136.72 522.010 

Reaction order, n 1.26 1.09 1.27 

Cardboard 

Pre exponential factor, A, min-1 4.1x10
7
 

  
Activation energy, E,  kJ/mol 324.25 

  
Reaction order, n 1.27 

  

HD plastics 

Pre exponential factor, A, min-1 1.7x10
7
 2.3x10

7
 

 
Activation energy, E,  kJ/mol 379.86 229.66 

 
Reaction order, n 1.19 0.47 

 

LD plastics 

Pre exponential factor, A, min-1 3.1x10
7
 

  
Activation energy, E,  kJ/mol 424.25 

  
Reaction order, n 1.31 

  

Newspaper 

Pre exponential factor, A, min-1 2.8x10
7
 4.1x10

7
 5.3x10

7
 

Activation energy, E,  kJ/mol 423.25 222.499 689.75 

Reaction order, n 1.07 1.13 1.42 

Packaging paper 

Pre exponential factor, A, min-1 1.3x10
7
 4.6x10

7
 

 
Activation energy, E,  kJ/mol 282.74 357.68 

 
Reaction order, n 0.95 1.41 

 

Printing paper 

Pre exponential factor, A, min-1 4.7x10
7
 3.1x10

7
 2.9x10

7
 

Activation energy, E,  kJ/mol 229.75 198.60 238.21 

Reaction order, n 1.45 2.51 1.51 

Textile 

Pre exponential factor, A, min-1 2.1x10
7
 5.5x10

7
 

 
Activation energy, E,  kJ/mol 229.10 971.93 

 
Reaction order, n 1.96 1.99 

 

Vegetable peels 

Pre exponential factor, A, min-1 3.7x10
7
 3.8x10

7
 

 
Activation energy, E,  kJ/mol 189.03 273.66 

 
Reaction order, n 1.82 1.77 

 

Yard grass 

Pre exponential factor, A, min-1 3.1x10
7
 19.26 

 
Activation energy, E,  kJ/mol 198.21 120.74 

 
Reaction order, n 2.50 1.02 
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Table 4.9. Kinetic parameters of MSW (simulated) samples in carbon dioxide 

 

Compound Kinetic Parameters Peak 1 Peak 2 Peak 3 

 Banana peels 

Pre exponential factor, A, min-1 28446.01 1.55x10
8 

8.7 x10
7
 

 

Activation energy, E,  kJ/mol 54.79 136.72 122.50 

 

Reaction order, n 1.25 2.08 1.77 

 Cardboard 

Pre exponential factor, A, min-1 6.12 x10
7 

  

 

Activation energy, E,  kJ/mol 135.94 
  

 

Reaction order, n 1.76 
  

 HD plastics 

Pre exponential factor, A, min-1 1.07 x10
8
 4.5 x10

7
 

 

 

Activation energy, E,  kJ/mol 305.90 129.66 
 

 

Reaction order, n 1.8 0.47 
 

 LD plastics 

Pre exponential factor, A, min-1 6.3 x10
8
 

  

 

Activation energy, E,  kJ/mol 137.81 
  

 

Reaction order, n 1.30 
  

 Newspaper 

Pre exponential factor, A, min-1 5.55 x10
7
 3.55 x10

7
 3.3 x10

7
 

 

Activation energy, E,  kJ/mol 113.58 222.49 689.75 

 

Reaction order, n 1.07 1.12 1.42 

 Packaging paper 

Pre exponential factor, A, min-1 1.88 x10
8
 2.23 x10

7
 

 

 

Activation energy, E,  kJ/mol 121.91 357.68 
 

 

Reaction order, n 1.94 1.41 
 

 Printing paper 

Pre exponential factor, A, min-1 7.06 x10
7
 6.77 x10

7
 2 x10

8
 

 

Activation energy, E,  kJ/mol 219.38 598.60 538.213 

 

Reaction order, n 1.45 1.55 1.50 

 Textile 

Pre exponential factor, A, min-1 4.54 x10
7
 2.57 x10

7
 

 

 

Activation energy, E,  kJ/mol 128.85 971934 
 

 

Reaction order, n 1.96 1.98 
 

 Vegetable peels 

Pre exponential factor, A, min-1 253 x10
7
 2.51 x10

7
 

 

 

Activation energy, E,  kJ/mol 88903.804 273665.2 
 

 

Reaction order, n 1.82 1.76 
 

 Yard grass 

Pre exponential factor, A, min-1 2.64 x10
7
 19.26376 

 

 

Activation energy, E,  kJ/mol 116.57 120.74 
 

 

Reaction order, n 1.50 1.01 
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Figure 4.8. Experimental (Vs.) calculated curves for MSW mixture in N2, air and 

CO2 

The Figure 4.8 shows us the plot between the experimental values and the calculated 

values for the MSW mixture in nitrogen, air and carbon dioxide gas environments. We 

can clearly infer that the values calculated with the help of the kinetic equation perfectly 

match with the experimental values obtained from the equipment. Activation energies, 

pre- exponential factors and orders of reaction computed from the model were 

comparable with published values. These kinetic parameters can directly be used to 

describe decomposition processes. 
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4.4. Caloric Requirement of Pyrolysis (DSC Curves and Analysis) 

The caloric requirements of the compounds are calculated by integrating the DSC 

heat flow curve with the help of the following equation 

pchchpbbp QdTmcdTmcQ   ,,           
 (4.1) 

For the heat flow data from the plots and by integrating the above equation, we get  

dt

Hm
dt

dT
cm

m

Q
t pssps

s





0

,

0,

)(

                                                                                     (4.2) 

We know that the moisture content in the DSC peaks of the sample is influenced by the 

moisture (at least 6-12 %) in the sample which further influences the caloric requirement. 

And since this stage (moisture content) is unstable, the exact caloric requirement is really 

difficult to calculate. Hence, the data until the first 200 °C is omitted and then the DSC 

curve is integrated using EXCEL to obtain the values of caloric requirement. Precision 

data is really difficult to achieve by current calculation methods and the equipments 

because of the complexity of the samples, the lack of the property values and the 

difficulty in determining the heat loss of the equipments. The following Figures 4.9. to 

4.15. show the caloric requirement in MSW samples, mixtures and simulated MSW 

samples.  
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Figure 4.9. DSC curves of MSW in air 

Based on the values obtained, this thesis proves that the DSC cannot be used for 

all the substances because in some cases, most of the substance is lost by sublimation 

during heating and there are cases where there is unburnt carbonaceous substance even at 

the end of the reaction. The organic components wastes could be categorized as low 

stability organics, while the packaging paper could be categorized as mixed polymer 

material. Styrofoam wastes could be categorized as plastic material which has high 

thermal stability Precision data of the caloric requirement of biomass pyrolysis is difficult 

to achieve by current calculation methods or by experiments on some laboratory 

equipments because of the complexity of MSW, the complexity of the processes, the lack 

of property values and the difficulty in determining the heat loss of the equipments.  
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Figure 4.10. DSC curves of MSW in nitrogen 

 

 

 

 

 

Figure 4.10. DSC curves of MSW in carbon dioxide 

 

 

 

 

 

Figure 4.11. DSC curves of MSW in carbon dioxide  
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Figure 4.12. DSC curves of MSW (simulated) in air 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13. DSC curves of MSW (simulated) in nitrogen  
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Figure 4.14. DSC curves of MSW (simulated) in carbon dioxide 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15. DSC curves of MSW mixture in air, nitrogen and carbon dioxide 
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Table 4.10. Relationship of caloric requirement with temperature of mixture 

 

In the above Table 4.10, the total caloric requirement for nitrogen is negative 

(endothermic) and it is positive (exothermic) for the mixture in the other two gases.  

Temperature, °C 
Caloric Requirement, J/g 

Nitrogen Air Carbon Dioxide 

50 34 50 38 

100 -12 37 15 

150 -12 57 1 

200 -4 100 14 

250 1 202 73 

300 1 483 195 

350 33 1346 611 

400 82 2589 1142 

450 110 3231 1620 

500 105 4122 2102 

550 79 4631 2665 

600 25 4787 2844 

650 -74 4770 2788 

700 -248 4765 2699 

750 -521 4718 2601 

800 -898 4666 2501 

850 -1372 4623 2396 

900 -2027 4598 2280 
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Table 4.11. Relationship of caloric requirement with temperature of organics 

Organics 

Temperature, °C Caloric Requirement, J/g 

 

Nitrogen Air Carbon Dioxide 

50 56 45 64 

100 69 48 41 

0 99 72 72 

200 159 127 136 

250 245 257 219 

300 366 589 353 

350 562 1283 622 

400 824 1949 977 

450 1078 2733 1296 

500 1290 4113 1619 

550 1438 5048 1943 

600 1519 5327 2233 

650 1524 5330 2457 

700 1406 5313 2624 

750 1164 5292 2740 

800 839 5258 2821 

850 447 5211 2858 
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Table 4.12. Relationship of caloric requirement with temperature of paper 

 

Temperature, °C Caloric Requirement, J/g 

 

Nitrogen Air Carbon Dioxide 

50 70 79 87 

100 148 161 95 

150 253 291 152 

200 373 441 225 

250 492 612 310 

300 636 987 478 

350 961 2211 1093 

400 1404 3115 1760 

450 1833 4774 2193 

500 2165 5312 2904 

550 2378 5398 3579 

600 2488 5442 4041 

650 2509 5456 4028 

700 2422 5452 3983 

750 2275 5426 3977 

800 2079 5379 4027 

850 1817 5321 4112 

900 1493 5268 4261 
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Table 4.13. Relationship of caloric requirement with temperature of plastics 

 

Temperature, °C 

Caloric Requirement, J/g 

Nitrogen Air Carbon Dioxide 

50 127 100 73 

100 298 230 120 

150 447 333 142 

200 598 472 206 

250 754 754 323 

300 900 1206 553 

350 1060 1724 847 

400 1239 2162 1229 

450 1395 2664 1817 

500 1547 4641 2719 

550 1732 6397 3768 

600 1883 6529 4436 

650 2011 6595 4609 

700 2096 6660 4613 

750 2110 6690 4619 

800 2051 6706 4642 

850 1935 6713 4689 

900 1731 6712 4761 
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Table 4.14. Relationship of caloric requirement with temperature in textile 

Textile 

Temperature, °C Caloric Requirement, J/g 

 
Nitrogen Air 

Carbon 

Dioxide 

50 44 31 23 

100 37 0 -99 

150 147 74 -81 

200 262 152 -40 

250 364 266 8 

300 462 763 121 

350 563 2573 524 

400 692 3217 967 

450 795 3811 1367 

500 860 4022 1729 

550 874 4066 2100 

600 833 4095 2443 

650 752 4116 2676 

700 624 4133 2626 

750 430 4152 2535 

800 158 4173 2481 

850 -200 4194 2455 

900 -709 4218 2466 

 

In the above Tables 4.10, 4.11, 4.12, 4.13, the total caloric requirement for nitrogen is 

negative (endothermic) and it is positive (exothermic) for the mixture in the other two 

gases. There is an exception for plastics for paper and plastics. This is because of large 

hydrocarbons in the samples. And it is the same even for the MSW (simulated) samples. 

The above data is really important as it helps us in calculating the caloric requirement of 

1 gram of the sample to increase the temperatures. 
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Figure 4.16. DSC curve and caloric requirement curve for the MSW mixture in 

nitrogen 

These curves show us the heat flow and the caloric requirement (the heat required for the 

reaction to complete) in the three gas environment. The data from the Figures 4.16., 

4.17., and 4.18., can help us predict the caloric requirement of the MSW samples at the 

desired temperatures. This data is really helpful in modeling an actual plant even though 

there are other factors such as the atmospheric and the operating conditions, energy losses 

etc., that are to be taken into consideration. Precision data of the caloric requirement of 

biomass pyrolysis is difficult to achieve by current calculation methods or by experiments 

on some laboratory equipments because of the complexity of MSW, the complexity of 

the processes. 
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Figure 4.17. DSC curve and caloric requirement curve for the MSW mixture in air 

 

 

 

 

 

 

 

Figure 4.18. DSC curve and caloric requirement curve for the MSW mixture in 

carbon dioxide 

A DSC is used to measure the heat flow into or out of a sample as it is exposed to a 

controlled thermal profile. The DSC curves and their corresponding caloric requirement 
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curves in the Figures 4.15, 4.16 & 4.17 agree with previous data published by other 

authors. [47]. The caloric requirement for the MSW (simulated) and the MSW in the all 

the three gases i.e., nitrogen, air and carbon dioxide are shown in the following Tables 

4.14, 4.15 & 4.16. As we can see, the values are negative for all the samples in nitrogen 

and they are all maximum in air when compared to other gases. 

Table 4.15. Caloric requirement for MSW (simulated) in nitrogen, air and carbon 

dioxide 

Compound 

MSW (Simulated) 

in Nitrogen 

MSW (Simulated) 

in Air 

MSW (Simulated) 

in Carbon Dioxide 

Caloric 

Requirement, J/g 

Caloric 

Requirement, J/g 

Caloric 

Requirement, J/g 

Banana peels -2559 
5657 2643 

Cardboard -2368 
5371 3518 

HD plastics -2321 
4989 2334 

LD Plastics 1076 
1696 1751 

Newspaper -3815 
4288 2348 

Packaging 

paper 
-2848 

1594 4297 

Printed paper -2409 
2351 2385 

Textile -1272 
5671 3910 

Vegetable peels -2051 
7169 6321 

Yard grass -1230 
9649 7102 
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Table 4.16. Caloric requirement for MSW in nitrogen, air and carbon dioxide 

Compound 

MSW in Nitrogen MSW in Air 
MSW in Carbon 

Dioxide 

Caloric 

Requirement, J/g 

Caloric 

Requirement, J/g 

Caloric 

Requirement, J/g 

Organics 
-46 5156 2842 

Paper 
-1493 5268 4261 

Plastics 
1731 6712 4761 

Textile 
-709 4218 2466 

 

4.5. Technical, Economic and Environmental Analysis of Energy Production 

MSW is a potential gasifier feedstock that presents an opportunity to produce 

alternative liquid fuels because of its availability in significant amounts at current 

landfills and because it is a predominantly biomass derived material that, like 

conventional biomass feed stocks such as wood, is a renewable resource.  The viability of 

MSW as a gasifier feedstock for liquid fuels synthesis depends on several factors. 

Foremost is the availability of MSW in sufficient quantities to meet the minimum process 

scale required for economic feasibility.  Based on this review, the process scale may be as 

large as 3,300 short tons per day of as received MSW, based on the anticipated scale 

required for conventional biomass feed stocks. Conventional biomass feed stocks are 

market based and are a cost to the process, averaging nearly $45 per dry short ton, 

whereas MSW is charged to the supplier as a tipping fee to dispose of the material.  

Historically, landfills receiving MSW and processing it to produce heat and energy using 

incinerators and gasifiers charge about $30 per short ton (as received basis) additional fee 
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beyond that typically charged to just landfill the material.  The effect of the extra charges 

on process economics and, in turn, minimum process scale for economic feasibility needs 

to be further examined. 

A review of available information on the number and size of various landfill sites 

around the country identified 47 sites that processed 3,300 short tons per day or more (as 

received basis) of MSW (U.S EPA, 2008).  Together these sites could potentially produce 

enough liquid fuel to meet approximately 1.4% of current transportation fuel demand 

(about 113 MM bbl/year of liquid fuel).  A greater contribution could be attained if 

smaller scale facilities are found to be feasible due to latitude in the tipping fee charged to 

MSW producers. Another important issue deals with the quality of MSW as a feedstock.  

MSW is a heterogeneous feedstock containing materials with widely varying sizes, 

shapes, and composition, which can lead to variable gasification behavior if used in an as 

received condition.  It is expected that some minimal size reduction and sorting will need 

to be performed to make MSW suitable as a feedstock for MSW gasifiers. RDF (Refuse 

Derived Fuel) is a processed form of MSW where significant size reduction, screening, 

sorting and, in some cases, pelletization is performed to improve the handling 

characteristics and composition of the material to be fed to a gasifier.  There is a trade-off 

between the increased costs of producing RDF from MSW and potential cost reductions 

in gasifier design and operation. The chemical make-up of MSW includes significant 

quantities of chemical constituents that can create problems in downstream processes.  

While the concentrations of these contaminants are greater than those found in 

conventional biomass feedstocks, they are roughly comparable to those found in coal.   
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The commercial and demonstration gasifiers are currently available in sizes that range 

from 24 to 660 short tons per day MSW processing capability and will likely require 

multiple gasifiers to meet the minimum processing scale requirement for a liquid fuels 

synthesis plant.  Further investigation is needed to determine the trade-offs between using 

many relatively small scale gasifiers that may be built as packaged systems or a few 

larger field erected gasifiers to minimize gasifier capital and operating costs.  In addition, 

there are a large number of gasifier designs with a range of capacities that are at the pilot 

scale level of development. These were not examined closely and may ultimately be 

suitable for syngas applications. Overall, this study concludes that MSW should be 

considered as a potentially viable gasifier feedstock for liquid fuels synthesis.  A review 

of feedstock availability, composition, and handling characteristics, along with 

commercially available MSW specific gasifiers, did not identify any obvious 

insurmountable technical or economic barriers to commercialization. However, further 

research into the economic issues surrounding tipping fees and process scale is needed to 

verify economic viability and the appropriate plant scale for economic viability. 
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CHAPTER 5 

Conclusion 

TGA was used to determine the thermal degradation characteristics and kinetic 

parameters of DGS residue and the simultaneous thermal analyzer (TG–DSC) can be 

used to investigate the caloric requirement for MSW in nitrogen, air and Carbon dioxide. 

TGA indicated that the starting temperatures of pyrolysis of DGS in nitrogen and 

oxidation in air increased with the increase of heating rate and initial moisture content. 

The residual weights of all the biomass samples after gasification (CO2), pyrolysis (N2) 

and combustion (air) were 7-10 %, 15-20 % and 5-7 % of the original dry mass 

respectively. The maximum rate of mass loss is directly proportional to the reactivity of 

the sample. It has been also observed that as the temperature in the sample increases, the 

weight loss peaks in the Derivative Thermogravimetric analysis, DTG curves shift to the 

higher temperature. It will also have a higher peak value and peak width at higher rates. 

The reaction kinetic model representing the process gave good agreement with the 

experiment al data. Activation energies, pre-exponential factors and orders of reaction 

computed from the model were comparable with published values. The data and model 

appear to be useful in the design of MSW processing systems.  

The results of this research showed that the organic components wastes could be 

categorized as low stability organics, while the packaging paper could be categorized as 

mixed polymer material. Styrofoam wastes could be categorized as plastic material which 

has high thermal stability. The lignocellulosic blends pyrolysis gave the lower activation 
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energy if compared with their component. Inorganic wastes blends showed lower 

activation energies than their components. The caloric requirements of the process can be 

achieved by integrating the differential scanning calorimetry (DSC) curves. Precision 

data of the caloric requirement of biomass pyrolysis is difficult to achieve by current 

calculation methods or by experiments on some laboratory equipments because of the 

complexity of MSW, the complexity of the processes, the lack of property values and the 

difficulty in determining the heat loss of the equipments. 

Based on the values obtained, this thesis proves that the DSC cannot be used for 

all the substances because in some cases, most of the substance is lost by sublimation 

during heating and there are cases where there is unburnt carbonaceous substance even at 

the end of the reaction. Precision data of the caloric requirement of biomass pyrolysis is 

difficult to achieve by current calculation methods or by experiments on some laboratory 

equipments because of the complexity of MSW, the complexity of the processes, the lack 

of property values and the difficulty in determining the heat loss of the equipments.  
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