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ABSTRACT 
 

Eesiah, Morlue Samukai.  POWER SYSTEM LOAD MODELING USING A 

WEIGHTED OPTIMAL LINEAR ASSOCIATIVE MEMORY (OLAM).  (Major 

Professor: Dr. Gary L. Lebby), North Carolina Agricultural and Technical State 

University. 

 

Power system load models are very powerful tools, which have a wide range of 

applications in the electric power industry. These uses include scheduling system 

maintenance, monitoring load management policies, helping with the generator 

commitment problem by providing short-term forecasts, and aiding system planning [4]. 

Further, Power System Load Modeling is a technique used to model a power 

system and other essentials for the assessment of stability.  In today’s datacenters, power 

consumption is a major issue.  Storage usually typically comprises a large percentage of a 

datacenter’s power.  Therefore, without mentioning that managing, understanding, and 

reducing storage, power consumption is an essential aspect of any efforts that address the 

total power consumption of datacenters.  Moreover, according to [16], power system load 

models have a wide range of applications in the electric power industry including load 

management policy monitoring, such as aiding with system planning by providing long-

term forecasts, short-term forecasts, and others including assisting with the generator 

commitment problem.  

The direct impact that population growth and technological development have on 

the electric demand load cannot be under estimated.  This thesis partly served as a 

reminder that through data and research that the direct proportional relationship between 
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population growth and demand load, and technological development and demand load 

makes up the entire concept of electric power generation and the entire electric power 

system that is a part of our daily lives.  Since they are a part of our daily lives, power 

system engineers should and must derive mathematical models, namely, Traditional Least 

Squares, Truncated Fourier series, the use of artificial neural networks, and the Optimal 

Linear Associative Memory (OLAM) to capture these impacts on demand load. 
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CHAPTER 1 

INTRODUCTION 

 

Power or electric utility companies must be knowledgeable of at least the 

minimum demand load to set into place or coordinate energy storage procedures or 

maintenance.  Being aware of this drives my sincere passion, among other things, to 

model a utility company’s collection of power system load data implementing the 

weighted Optimum Linear Associative Memory (OLAM).  Electric utility companies also 

have to be cognizant of rising demand load and ready to serve during peak demand load 

comfortably.  Therefore, a portion of the data modeled was obtained from the Randolph 

Electric Membership Corporation, which is an Electric Power corporation operating in an 

area surrounding Asheboro, North Carolina [7].  In addition to discussing the importance 

of the three central tendency models (Linear, Quadratic, and Cubical), a large section of 

this thesis developed a scalable power modeling method by implementing artificial neural 

network’s OLAM.  The OLAM estimates or forecasts the power consumption of storage 

power system loads. 

Additionally, the art of applying an explanatory data analysis (EDA) to the power 

system load utilizing load models is critical.  To this end, a compilation of power system 

load over a span of three years was modeled using linear functions and estimating the 

unknown model parameters from data.  With the aid of OCTAVE, a free version of 

MATLAB, this huge collection of power system load data was manipulated.  Therefore, 

this thesis presented a detailed algorithm developed and implemented to mimic the 
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definition of the weighted OLAM.  In addition to having a power system load forecast or 

model, this definition outlines a comparison of hourly, daily, weekly, monthly, and yearly 

extractions of the load data.  Each model shows the growth rate and base load.  How do 

we know for sure that the linear, quadratic, or cubical model is our best choice?  The 

OLAM’s capabilities allow one to estimates or models the daily Randolph Power System 

Load Data and the weekly Randolph power system load data to show the cubical central 

tendency models of each case, and the best curvature that at least mimics or follows the 

trajectory of an original plot. 

The general chronological order of this research begins with a detail explanation 

of the importance of electric power system load modeling to both utility companies and 

our lives.  This thesis then moves on to discuss the entire electric power system, from 

generation to the customer or utilization.  Then, a detailed history is given of power 

system load modeling and load management concerns, which is linked to the history of 

ANN, and its huge impact in power system load modeling.  The role of some of ANN’s 

sub networks are described, namely, Radial Basis Function Generalized Regression 

Neural Network (RBFGRNN) and the feed forward network, and the OLAM.  Further, 

this thesis includes rising electric demand load in a power system.  This research then 

showed the effects of biological patterns, natural, and seasonal cycles on the very electric 

power system that is a huge part of our daily lives.  Discussions and proofs are given the 

fact that demand load growth is indeed impacted by the increasing population and 

increasing technological developments. 
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Therefore, one of the crusts or nucleus of this thesis is to emphasize that electric 

demand load and modeling these loads are indeed a part of our daily lives, which must be 

important to both electric power system engineers and to everyone else as well.  As this 

case cannot be ignored or swept under the carpet because engineers must be able to use 

mathematical models to capture these impacts on demand load.  With all these human 

realities and chain effects affecting the electric power system, this simply means that such 

occurances are indeed a part of us as humans that do affect our daily activities.  Since the 

population and electric demand load are related, it is imperative that power system 

engineers derive mathematical models or use mathematical models to capture impacts on 

electric demand load.  Consequently, these impacts do lead to the concepts of the 

Traditional Least Squares Model (Unweighted OLAM), Truncated Fourier Series Model, 

the Weighted OLAM three central tendency model.  Besides the OLAM and  many other 

methods that can be explored to come up with good power system load models, the scope 

of this thesis only allows for brief discussions of the Radial Basis Function Generalized 

Regression Neural Network (RBFGRNN ) method. 
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CHAPTER 2 

ELECTRIC POWER SYSTEM 

 

2.1   Generation 

An electric power system is mainly concerned with the generation, transmission, 

distribution, and utilization of electric power.  Paramount to this definition is any power 

system must be economical, reliable, safe, and accommodative to the environment.  A 

power system can have subdivisions, namely, generation, transmission, sub-transmission, 

distribution, sub-distribution, and loads [1].  Figure 2.1 is a visual of an entire power 

system that shows different sources of electric power.  Conveyed also are concepts of 

generation, transmission, distribution, and utilization from the demand end.  One can also 

glean from Figure 2.1 how different climatic or weather conditions affect the entire 

power system. 

 

 

Figure 2.1:  Typical Electrical Power System 
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Utility companies do generate electricity in a variety of ways.  One of the most 

common methods is the energy of running water to power a generator.  Power created in 

this way is termed hydroelectricity.  In order to generate such a massive energy of 

flowing water, a dam may be built across a narrow gorge in a river or somewhere at the 

head of a man-made lake.  All the water that backs up behind this dam’s force-bay, is 

then allowed to flow through a submerged passage (Penstock) in a controlled release 

manner.  Now, the massive flow of this elevated water spins the generator’s giant 

turbines as it falls, producing electricity.  Remember that electrical power produced in 

this way is called AC power or alternating current.  Basically, it can be considered as the 

use of ac generators with rotating rectifiers known as brushless excitation systems.  The 

generator excitation system not only maintains generators voltage, but also controls the 

reactive power flow.  AC generators do generate high power at high voltages [2, pg 232].  

Further, [12] adds that generators are usually built in the range of 18-24 KV with some at 

slightly higher rated voltages. 

 

2.2   Transmission 

An electric transmission system can be defined as the interconnection of the 

electric energy producing power plants or generating stations including the loads.  Figure 

2.2 depicts the interconnections involved with transmissions lines.  Shown also in the 

upper right hand corner of the figure is a basic electric power system with the power plant 

as the generation unit and shows transmission lines and substations involved with the 

interconnections until it reaches the load, which is the house in Figure 2.2.   
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Figure 2.2:  Typical Transmission Lines and Substations 

 

According to [12], transmission lines operate at nominal voltages up to 765 KV 

line to line.  A three-phase AC system is used for most transmission lines with an 

operating frequency of 60Hz (US) and 50Hz (Europe, Australia, and other parts of Asia 

and Africa [3]. After a utility company produces electricity, the power company must 

then be able to transmit the electricity through many miles of transmission lines so the 

power can reach the end users or customers.  To ensure ease of transmission, the 

electrical power is raised to many thousands of volts and conducted over high-voltage 

transmission lines to the utility company’s regional switching stations. Once at the 

regional stations, the utility company steps down the power to a lower voltage for 

transmission to substations.  This procedure is continued until the power reaches your 

home.  A typical transmission starts at 230,000 volts, is stepped down to 69,000 volts at a 
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switching station, it is again stepped down further at a substation to 13,800 volts. By the 

time it reaches your home, it is reduced to 240 volts through utility transformers [2, pg. 

232]. 

An electric transmission system is the interconnection of the electric energy 

producing power plants or generating stations with the loads. A three-phase AC system is 

used for most transmission lines.  A three-phase AC system, operating frequency of 60 

Hz (United States) and 50 Hz (Europe, Australia, and other parts of Asia), is used for 

most transmission lines. 

 

2.3   Transformers 

Simply stated, a transformer not only steps up or steps down electric energy or 

voltage, it can be considered as a device that carries or transfers electric energy from one 

circuit to the other basically through conductors that are inductively coupled.   Figure 2.3 

is an image of a utility transformer at a switching station where very high voltages are 

stepped down to be tranmitted further over long distances. The receiving end and the 

sending end of the transformers are seen in the image.   In-fact, [12, pg 41] rightly puts 

states: Transformers are the link between the generators of the power system and the 

transmission lines, and between lines of different voltage levels.  Transformers also lower 

the voltages to distribution levels and finally for residential use at 240/120 V.  They are 

highly (nearly 100%) efficient and very reliable. 
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Figure 2.3:  Typical Utility Transformer at a Substation 

 

For the case of the IDEAL Transformer, [12] explains that transformers consist of 

two or more coils placed so that they are linked by the same magnetic flux.  In a power 

transformer, the coils are placed on an iron core for confinement purposes so that almost 

all of the flux linking any one coil links all others. Several coils may be connected in 

series or parallel to form one winding, the coils of which may be stacked on the core 

alternately with those of the other winding or windings.  Figue 2.4 shows an image 

obtained during research that depicts the basic transformer winding concept in a typical 

step-up transformer. 



9 
 

 

Figure 2.4:  A Basic Transformer Concept 

 

2.4   Distribution 

Remember that within a power plant, a number of AC generators generally 

operate in parallel.  For a smooth and economic operation of the plant, the total load must 

be appropriately shared by the generating units [1]. A power distribution system is the 

part that the sub-transmission lines typically deliver their power to locations called 

substation, when stepped-down transformers are used to reduce the high voltage to a level 

usable by customers. The voltage of the distribution system is usually between 4.6KV 

and 25KV [3].  Figure 2.5 shows a typical configuration of electric distributions and how 

they form a major part of the power system network.  Figure 2.5 also shows how the 

distribution line at the secondary end receives the dropped or stepped down voltage from 

the step-down transformer hanging on the electric pole.  The other end of the stepped-
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down transformer is the primary side that has higher voltage from the substation.  The 

voltage level, 240 volts, on the secondary end is ready to be utilized by homes. 

 
Figure 2.5:  Typical Image of Electric Distribution Lines 

2.5   Load 

A load can be regarded as the electricity demand of consumers or customers for 

power.  It is basically the “burden” that customers put on utility companies.  Loads of the 

power systems are classified into industrial, commercial, residential, and others.  

Residential customers are domestic users whereas commercial and industrial customers 

are business and industrial users.  Among other customer classifications are 
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municipalities, state and federal government agencies, electric corporations, and 

educational institutions [3]. 

 

2.6   The Randolph Power System Load Data 

The Randolph Electric Membership Corporation is an Electric Power Corporate 

operating in the area surrounding Ashboro, North Carolina.  The original Randolph 

Power System Load data used for this thesis is residential load data whose size is 1369 by 

24 (1369 days by 24 hours).  The Randolph Corporation collected these data from their 

load centers from 1990 through 1993.  Table 2.1 is a truncated version of the entire 

Randolph load data that only shows the first seven days and the first ten hours. 

Table 2.1:  Truncated Table of the Randolph Power System Load Data 

  DAYS HOURS (Hour # 1 through hour # 10) 

(Days  

1 thru 7) 

5237 4961 4759 4759 5115 5747 6581 7768 9052 9777 

9072 9449 9655 9999 10619 12272 13017 13280 13069 11984 

8870 8614 8813 9040 9643 11344 12531 12434 11283 10052 

7497 7278 7136 7193 7727 9339 10404 10429 9692 9262 

6225 5954 5958 6035 6654 8294 9659 9874 9177 8728 

6768 6314 6209 6213 6456 6691 7132 7849 9011 10129 

6950 6597 6610 6541 6691 6921 7424 8659 10562 11020 

 

2.7  Importance of Power System Load Modeling 

Before preceeding with some of the importance of power system load modeling, 

the author must stress that although there are several methods used in modeling power 

system load data, this study do not want to restrict anyone’s ability to investigate any of 

the mechanisms that power system engineers can use to model power system load data. 
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Power system load modeling is significant in that both outside and inside the 

power industry.  There is an increasing appreciation of the dire need to account for how 

much customers value the power supply they consume and also to account for their 

expectations.  This is where load modeling comes into play and becomes even more 

important especially with regards to near-future forecasting to ensure system 

maintenance.  Power system load modeling aids power engineers when it comes to 

putting into place operating strategies, maintenance schedules, and reinforcements. 

Besides applications involving load management policy monitoring, aiding with 

system planning by providing long term forecasts, providing short term forecasts, and 

many more including assisting with the generator commitment problem.  According to 

[8], a load model is very important to improve the accuracy of stability analysis and study 

load flow in power systems. 

 

2.8   History of Power System Load Modeling and Load Management Concerns 

 As the power system load becomes the new area of research within power system 

stability, repeated evidence of the current trajectory shows load modeing has certainly 

gained attention.  Studies have shown that there is a need to discover more accurate load 

models other than those already used traditionally (e.g. All constant impedance or all 

constant power).   

 Remember, voltage collapses only took several minutes in the past “real-world” 

cases, the older modeling works focused on induction machines, which were critical in 

the range of some seconds after a disturbance.  The load response was taken as a fuction 
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of voltage [20].  In addition, the use of dynamic load models has increasingly become 

popular compared to static load models.  Although knowledge has been acquired from a 

power system load in recent years, it is one of the most difficult and unknown areas of 

study in the midst of the power system models. This is because of the diverse and 

complex load components, the high distribution and variation during the time of day and 

year, weather, and lack of information for the load.  New techniques such as this thesis’ 

implementation of the OLAM and truncated Fourier series do also result in a better 

understanding of the load and a better representation of the load in simulations of a power 

system.  This helps in having a positive impact for the control, operation, and reliability 

of the power system.  Remember that accurate load models and even a real-time 

monitoring application do help to introduce more competitiveness for the electric 

industry and contribute to the development of a smart grid information structure [21]. 

 The ability to functionally express variations in the power system load over time 

is an important attribute, especially to those concerned with load management.  Load 

management primarily deals with techniques that in the long run determine the shape of 

the daily load curve.  In general, the best means to observe the effects of load 

management techniques is to have an apparatus that gives as output a typical daily load 

curve in a particular week. 

 A desire to have a mathematical expression of the power system load is not 

limited to those connected with a load management program.  Modeling of a power 

system load has applications in a dispatching environment where knowing the shape of 

the load at a particular hour may be as important as knowing the actual magnitude itself.  
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This indeed can be seen in the unit commitment problem.  This problem has enough 

generating units on-line when they are needed.  Remember, in the unit commitment 

problem, there must be adequate time between identification of the need and the actual 

need in order to have additional generating units on-line.  An in-depth knowledge of the 

shape of the daily load curve in conjunction with the load magnitude becomes important 

in determining how many generating units to have ready on-line.  It is well established 

that in the early morning hours, the power system load experiences a rapid rate of 

increase due to people waking up in the morning to begin their daily routines.  In order to 

know how the power system load behaves during this period could allow dispatchers to 

plan with a greater efficiency of how many on-line generating units to allocate. 

 From the time of the energy disruptions of the 1970s, predictable demand in 

conjunction with a flexible low-cost supply became harder to achieve.  Since then, there 

has been a nationwide push aimed at controlling the shape of the daily load curve.  One 

of the primary aims of those in load management is to flatten out the daily load curve so 

that it will conform to some pre-determined curve, which is economically optimum and 

system dependent.  One could easily visualize the daily load curve as being obviously 

constructed of peaks and valleys. The goal is to fill in the valleys and clip off the peaks of 

the daily load curve in such a manner that the total energy consumed remains 

undiminished, yet still the resultant curve approaches the ideal system load curve.  One 

primary reason behind forcing the power system load to some economically system load 

curve is to decrease the capital investment (generating units and their maintenance), 

while still maintaining an acceptable level of demand.  Remember, there must be enough 
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generating units to service the peak demand and the level of demand must be such that 

the outputs from the generating units are used efficiently.  Load control schemes are put 

into place in situations such as these. 

 The sincere effort to influence the daily load is not a new development.  In the 

infancy of electric utility, a large portion of the demand was due to night-time lighting.  

There evolved a management campaign to shift some of the load to daylight hours by 

smart advertisers who promoted day-time usage.  This is clearly an example of demand-

side planning.  The important lesson here is that all demand-side planning does not just 

involve load reduction or load construction, but it can also involve the redistribution of 

load or a combination of all three. 

 Even though there are many different ways one could modify the load shape, 

there are still five different general types of changes that embodies them all [22].  The 

following five load management techniques are not necessarily mutually exclusive, yet it 

is suitable to cover all of them for clarity.  Another point to establish is in general, a given 

load management technique consists of a combination of all five in a kind of varying 

degree.  Out of the five load management techniques, the first three are classical, whereas 

the last two are the less used approaches. 

 The first technique is to clip the peaks, which reduces the system peak load.  As it 

is obvious, clipping the peak load by itself is not acceptable to the power industry since 

this result in lower demand, which is a direct reflection of lost revenue.  This peak 

clipping can be accomplished in the residential sector by having the customer accept 

direct control over appliances such as air conditioners and it can be accomplished in the 
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commercial sector by having customers subscribe to interruptible power at lower rate as 

an incentive.  The impacts of these load management techniques are still evolving. 

 The second load management technique is to fill the valleys.  Remember that 

valleys are off-peak hours and filling them in can be accomplished by creating new 

reasons for added load to exist at those hours.  As it is typical with most changes 

involving human nature, there must be some incentive involved to encourage the required 

modification.  Next, some common valley-filling techniques by sectors are described. 

 In the residential sector, valley filling can be accomplished by having the 

customer use off peak water heating; whereas in the commercial sector, the 

customer could store hot water to augment space heating requirements.   

 The industrial customer could be given incentives to add night-time operations.  

Obviously, the residential load in the form of water heating is being shifted from 

some other period of time, preferably from an on-peak region, since hot water is a 

constant necessity of everyday living.  A component of growth encouragement is 

embedded in the current valley filling technique used for the industrial sector. 

 It has already being assumed above that the space heating requirement is a major 

contributor to the load associated with the commercial sector. If this is indeed the 

case, then a portion of the commercial space heating load is being transferred to 

the commercial water heating load in a manner that will increase the commercial 

water heating load due to intended heat loss.   

 The third technique in actuality is a combination of techniques one and two with a 

restriction that there is not a loss of overall demand.  Load shifting is the third technique.  
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Its principle is to move demand from on-peak to off-peak periods.  For instance, the 

residential customer could subscribe to time-of-use rates, while the industrial customer 

could shift more of their day-time activity to nighttime.  These three examples can be 

referred to as the classics in load management.  The remaining techniques (fourth and 

fifth) are not very common. 

The fourth technique is to invoke strategic conservation.  Probably, this technique 

is not popular because it typically reduces the total energy usage and peak load.  From the 

stand point of the electric utility, the load management technique’s purposed is not to 

reduce revenue.  Notwithstanding, in the residential sector, this could be realized by 

increasing home insulation; whereas, the commercial customer could reduce lighting 

usage and the industrial customer could install more efficient energy-saving processes. 

 Strategic load growth is the fifth type of change.  Basically, this technique target 

areas where sales can be beneficial.  If the growth is targeted for the valley areas of the 

daily load curve, then the load management aspect of this technique can be realized.  In 

effect, the residential customer would switch from gas to electric water heating.  The 

commercial customer would be somehow persuaded to have heat pumps installed, while 

the industrial customer would be persuaded to convert from gas to electric process 

heating. 

 Remember any uncertainty occurred after implementing a chosen load 

management policy will fade away gradually once a load mechanism is put into place; 

wherein the effectiveness of a load management program is enhanced after assessing the 

power system load (PSL) before and after the policy has been in efect.  One has to look at 
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the subtle changes in the PSL, noting how the shape of the PSL changes over several 

fixed intervals of time.  Figure 2.6 is an illustration of how the daily load curve is made 

up of peaks and valleys. 

 

Figure 2.6: Power System Load Model of Average Days of Randolph Power  

  System Load Data 
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CHAPTER 3 

ARTIFICIAL NEURAL NETWORKS 

 

3.1   General Overview 

In the human brain, neurons send signals that activate each other.  All of the 

activations and interconnections create intelligent thoughts.  Humans make decisions 

based on factors believed to be important based on whatever tasks are at hand.  A certain 

level of importance may be attached to these tasks.  In the process of coming up with a 

solution, these factors has a certain level of importance based on previous experiences of 

the present task and any generalizations that may be obtained from other instances, which 

maybe applicable.  Once obtained, the solutions can be distributed, impartially, as a 

factor to any task that conceiveably might hold some significance.  The result may well 

be a dynamic and complexed network of reasoning built from a learning paradigm that 

makes use of both historical and environmental data.  In a general sense, this identical 

process can occur at the biological level considering how scientists believe the human 

brain works.  This thesis can safely mention that the brain can be described as a 

complexed, parallel computer, which is composed of trilliions of processing units known 

as neurons [5]. 

There are four basic components in the composition of a neuron, namely, axon, 

dendrites, synapses, and the soma located in the neuclus (see Figure 3.1).  As shown in 

Figure 3.1, the dendrites do provide input channels to the nucleus connecting to the soma, 

which provides input and creates output to be received by the axon.  The axons carry 
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signals away.  They carry the output to the synapses, which transmit the information to 

other neurons [20].  Recall as [5] precisely stated, the neuron is capable of storing 

acquired knowledge for future use while obtaining new knowledge to be processed.  It is 

clear that massive biological neural networks of immense complexity can be created 

within the brain based on the neuron’s capabilities and its simplistic architecture. 

 

 

Figure 3.1:  Biological Neuron 

 

Artificial Neural Networks (ANN) are algorithms that emulate biological 

networks created within the brain utilizing a mathematical model of the neuron as a 

building foundation.  Figure 3.2 depicts the first mathematical representation of a neuron 

known as a single-layer perception neural network (SLPNN).  SLPNN represents an 

input vector whose characteristics are examined for importance by the weight vector, W.   

Equation 3.1 generates the output of the neuron, and passes the weighted 

summation to the transfer function.  Equation 3.2 is a function that determines whether or 

not the neuron will activate, and depending on the slope parameter,  , this equation may 
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perform as a hard limiter or a soft limiter.  Better still, it can be removed from the 

network completely. 

 

  ∑     
 
    (3.1) 

 

 ( )  
 

      
 (3.2) 

 

Eventhough, there are a number of different ANNs, the scope of this thesis briefly 

discuss three of these networks, namely, the Radial Bassis Function Generalization 

Regression Neural Network, the Backpropagation Neural Network and the sub feed-

forward network, and the Optimal Linear Associative Memory (OLAM). 

 

Figure 3.2:  Single Layer Perceptron Neural Network 
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3.2   A Brief History of Artificial Neural Networks 

Remember that the Optimal Linear Associative Memory (OLAM) is a subset of 

Artificial Neural Network’s feed-forward networks.  A thorough, 100%, or a complete 

literature of this powerful and huge area of artificial neural networks is completely out of 

the reach or beyond the scope of this thesis.  Therefore, it is fitting to at least mention a 

few historical studies mentioned in the literature.  According to [9], the history of neural 

networking arguably started in the late 1800s with scientific attempts to study the 

workings of the human brain. In 1890, William James published the first work about 

brain activity patterns.  We begin our look at neural network history in the Age of 

Camelot with perhaps the greatest American psychologist who ever lived, William 

James. James also taught, and thoroughly understood physiology. It has been almost 

exactly a century since James published his "Principles of Psychology," and its 

condensed version, "Psychology (Briefer Course)" James was the first to publish a 

number of facts relative to the brain’s structure and function.  For example, he was first to 

state some of the basic principles of correlational learning and associative memory [18, 

pg.15]. 

The human brain has neurons that send signals that activate each other, and 

implies interconnections (see Figure 3.3).  All of the activations and interconnections 

create intelligent thoughts.  Particularly, [6] continued McCulloch’s and Pitts’ work on 

neural networks published in 1943, which still is a cornerstone in the theory of neural 

networks.  They made an attempt to understand and describe the brain’s functions by 

mathematical means.  McCulloch and Pitts used their neural networks to model logical 
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operators.  Contemporary developments in the field of computer science were closely 

related.  

 

Figure 3.3:  Human Brain Neurons Interconnections 

 

For this thesis, there is a systematic and intentional use of several references to 

highlight the coherence in these historical developments.  Therefore, [5] made similar 

accounts as [6] states, the study of the human brain dates back thousands of years. 

However, it has only been with the dawn of modern day electronics that man has begun 

to attempt and emulate the human brain and its thinking processes.  The modern era of 

neural network research is credited with the work of neuro-physiologist, Warren 

McCulloch and the young mathematical prodigy, Walter Pitts, in 1943.  McCulloch had 

spent 20 years of his life thinking about the "event" in the nervous system that allowed us 

to think, feel, and so on.  When the two joined forces, they wrote a paper on how neurons 

might work, and they designed and built a primitive artificial neural network using simple 

electric circuits.  They are credited with the McCulloch-Pitts Theory of Formal Neural 

Networks. (Haykin, 1994, pg. 36) (http://www.helsinki.fi).” 

http://www.helsinki.fi/
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The next major development in neural network technology arrived in 1949 in a 

book entitled, “The Organization of Behavior” by Donald Hebb. The book supported and 

further reinforced McCulloch-Pitts's theory about neurons and how they work. A major 

point brought forward in the book described how neural pathways are strengthened each 

time they were used.  Likewise, this is true of neural networks, specifically in a training 

network. (Haykin, 1994, pg. 37) (http://www.dacs.dtic.mil) [5]. 

Between 1959 and 1960, Bernard Wildrow and Marcian Hoff of Stanford 

University in the United States developed the ADALINE (ADAptiveLINear Elements) 

and MADELINE (Multiple ADAptiveLINear Elements) models.  These were the first 

neural networks that could be applied to real problems. The ADALAINE model is used 

as a filter to remove echoes from telephone lines.  In 1969, Minsky and Papert published 

several documents, including their book, ‘Perceptron.’  They showed how neural 

networks of the time were severely limited, and due to the opinion of these two 

influential men, research into neural networks decreased drastically [5]. 

In 1982, John Hopfield of Caltech presented a paper to the scientific community. 

He stated the approach to AI should not be purely to imitate the human brain but instead 

to use its concepts to build machines that could solve dynamic problems. He showed 

what such networks were capable of and how they would work. It was his articulate, 

likeable character and his vast knowledge of mathematical analysis that convinced 

scientists and researchers at the National Academy of Sciences to renew interest into the 

research of AI and neural networks. His ideas gave birth to a new class of neural 

http://www.dacs.dtic.mil/
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networks that over time became known as the Hopfield Model. 

(http://www.dacs.dtic.mil) (Haykin, 1994, pg: 39). 

At about the same time at a conference in Japan on neural networks, Japan 

announced that they had again begun exploring possibilities of neural networks. The 

United States feared that they would be left behind in terms of research and technology 

and began almost immediately funding AI and neural network projects. 

(http://www.dacs.dtic.mil).  Moreover, [11] adds an important concept during this period: 

Adaptive Resonance Theory (ART) was first introduced by Carpenter and Grossberg in 

1983. The development of ART has continued and resulted in the more advanced ART II 

and ART III network models. 

Broomhead and Lowe first introduced Radial Basis Function (RBF) networks in 

1988.  Although the basic idea of RBF was developed 30 years ago under the name 

“method of potential function,” the work by Broomhead and Lowe opened a new frontier 

in the neural network community.  According to [10], in 1985, the American Institute of 

Physics hosted the first annual meeting on Neural Networks for Computing, and by 1987, 

the Institute of Electrical and Electronic Engineers (IEEE) the first International 

Conference on Neural Networks drew more than 1,000 attendees.  This interest has more 

or less continued to present day and artificial neural networks have now found uses in 

everything from medical diagnosis equipment to speech recognition software.  The year 

1986 saw the first annual Neural Networks for computing conference that drew more 

than 1800 delegates.  In 1986 Rumelhart, Hinton, and Williams reported on the 

developments of the back-propagation algorithm. The paper discussed how back-

http://www.dacs.dtic.mil/
http://www.neuralnetworksolutions.com/nn/www.ieee-nns.org
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propagation learning had emerged as the most popular learning set for training of multi-

layer perceptrons [5]. 

3.3   Radial Basis Function Generalization Regression Neural Network 

The RBFGRNN is a nonlinear mapping and linear separation network with a 

cluster-based module comprised of KSOM and DIANA.  The RBFGRNN employs a 

curve fitting approach whose learning process searches an optimal fitting surface in a 

multidimensional space.  Remember, the neurons in the hidden layer of the radial basis 

function neural network (RBFNN) are offered a radial basis function set, which builds a 

discretion space.  It must be mentioned that the radial function was introduced to solve 

the real multi-variable interpolation problems in the beginning.  Figure 3.4 depicts that in 

the typical architecture of a RBFGRNN, the adjustable weights are only present in the 

output layer.  The connections from the input layer to the hidden are fixed to unit 

weights. 

 

Figure 3.4:  Radial Basis Function Network 
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3.4   Back Propagation Neural Network 

The BPN is a network that uses a recursive technique.  In fact, according to [5], 

Paul John Werbos established the back-propagation algorithm in his dissertation in 1974 

and proposed the concept of hidden layers.  Unfortunately, his work went largely ignored 

and was revived in the late 1980s.  In their training style, the generalized delta rule, 

James L. McClelland and David E. Rinehart made the BPN popular.  Remember that the 

weight adjusting type of back propagation neural network is divided into two parts, the 

forward propagation and back propagation.  Basically, the structure of forward 

propagation is the same as multi-layer perception.  Figure 3.5 is a clear depiction of the 

back-propagation multilayer feed forward network. It shows how errors,          

      (Sigma, which is the difference between desire and expected output) are fed back 

again to the input layer so that again they can be weighted and a new set of weights can 

be achieved.  Signal e is the adder output signal, which is basically the sum of product X 

and W. 

 

 Figure 3.5: A Fully Connected Multilayer Feed Forward Back  

  Propagation Network  
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CHAPTER 4 

RISING OF LOAD DEMAND IN POWER SYSTEM 

 

4.1   Effects of Biological Patterns, Natural, and Seasonal Cycles on an Electric  

         Power System 

 Decisions are made by human beings based on a number of given factors that can 

be considered to a certain task at hand.  It must be noted that an electric power system 

load is composed of two types of loads, random and regular.  The regular load portion is 

what brings in the biological patterns, natural, and seasonal cycles.  These do decribe the 

periodical variations caused by daily life activities, seasonal changing, working schedule, 

and so forth.  Eventhough an electric power system is affected by biological patterns, 

natural, and seasonal cycles, it must be emphasized that within certain operational 

constraints, the basic goal of any modern electric power distribution system is essentially 

to satisfy the growing and changing system demand load during planning periods.  This 

can be done safely, reliably, and economically especially when optimized decisions are 

made on the following: servicing areas, voltage levels of the distribution network, sizes, 

locations, scheduled expansions of substations, conductor types, routes, building and load 

schedules of sub-transmission lines and feeders, load reliability level, and locations of 

switching devices, etc. 

 Since decision makers of a modern electric power system are basically interested 

in knowing or having a basic idea of what the electric load will be at a certain future time 

interval of interest, these same decision makers must also be cognizant of the fact that 
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load modelling or load forecasting becomes an even difficult task to perform partly due to 

these biological pattens, natural, and seasonal cycles.  These factors do make  load 

forecasting an intricate task.  Two of the many factors are: 

Weather Factor:  noticeably, electric power load has a definite correlation to weather in 

general, especially to temperature.  Temperature is the most influential factor in electric 

load forecasting.  When a change in temperature occurs, its impact becomes important.  

For instance, during the summer when temperature rises, more power is needed for air 

conditioning and cooling systems, or during the winter when the temperature is lower, 

more power is needed for the heating system.  Also, a number of factors such as wet and 

dry temperatures, dew point, wind, precipitation, and humidity do impact the amount of 

power needed. 

Time Factor:  time factors do have an important effect on electric load pattern.  This may 

include holidays, hour of the day, and day of the week.  For example, the consumption of 

electric power during week days is quite different from the weekend or a seasonal effect 

can be the number of daylight hours in a season.  Holidays do also have a different and 

important effect on load patterns.  Holiday loads will mostly depend on geographical 

location and cultural attributes of each country.  For instance, typical holiday load models 

in India and the United States would be quite different. 

 

4.2   Load Demand Growth Due To Increasing Population 

Electric power is a little like the air one breathes or better still like the water one 

drinks.  The general population will not think about it until it is no longer available or 
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until it is missed.  In these mordern times, a substantial amount of the human population 

put a lot of constraint or demand on electric power utility companies as a result of human 

dire needs for heating, cooling, lighting, refrigeration, cooking, entertainment, sound 

computation, etc.  So, without electricity, life somehow becomes cumbersome.  Since 

electricity is usually provided around the clock in the industrialized world, this along with 

the steady increase in the human population will definitely show a typical demand load 

verses population plot with an ascending trend. 

Overwhelming evidence and repeated research have shown healthy economies 

and expanding populations are taxing electric grids and could force certain countries or 

subregions or states to cut into their emergency power reserves during times of peak use 

in the very near future.  Growing demand for electricity especially during the hottest 

times of the year are treatening to outstrip new power supplies.  For instance, in order to 

buttress the fact that electric demand load is directly proportional to population growth, 

[23] stresses that on a yearly basis, it can be concluded that as the population estimates 

increase, the electric power generated, annual average load demand and instanteous 

annual peak load values do change dynamically.  Since the crust of [23]’s research is 

based on electric generation and demand trend of Nigeria from 1973 to 2006, its 

subsequent study revealed that power demand or energy demand and supplies are 

growing at an annual exponential rate of 18.56% while the electric load factor for the 

period under review is 0.595. 

In this thesis, it must be stated that beyond all reasonable doubts that as 

population increases, demand load is bound to increase, and as such, a consequent effect 
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would be for utility companies to increase electric power generation.  With all these 

human realities and chain effects affecting the electric power system simply means that 

such occurances are indeed a part of humans; they do affect our daily activities. Since 

population and electric demand load are related, it is imperitive that power system 

engineers derive mathematical models or use mathematical models to capture these 

impacts on electric demand load.  Thus, leading to the crust of this thesis’ next chapter. 

Table 4.1 shows data beginning in 1973 through 2006, the corresponding power 

generation, the average demand load, and the population estimate in the Nigerian State of 

Osogbo.  A clear proportionality can be seen between demand load and population.  For 

graphing purposes and to minimize data congestion, Table 4.2 was used to generate the 

graph in Figure 4.1.  Table 4.2 and Figure 4.1 shows the first two years and skip two 

years.  Figure 4.1 shows a direct proportionality among population growth, power 

generation (P), and Demand Load (DL).  

 

Table 4.1: Annual Electric Generation, Demand Trend, And Population in   

 Osogbo, Nigeria 

Year Power Generated (GW) 

Average Demand 

Load (MW) Population 

1973 2493 285 54226 

1974 2780 318 55865 

1975 3322 379 57500 

1976 3750 428 59143 

1977 4195 479 60782 

1978 4359 498 62421 

1979 5151 588 64060 

1980 5724 654 65699 
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Table 4.1:  Cont. 

Year 

Power 

Generated(GW) 

Average Demand 

Load (MW) Population 

1981 6766 773 67782 

1982 7102 811 69865 

1983 8456 966 71948 

1984 8927 1020 74031 

1985 10156 1160 76115 

1986 10665 1218 78198 

1987 11141 1272 80281 

1988 11147 1310 82364 

1989 12700 1450 84447 

1990 13364 1526 86530 

1991 14212 1623 89263 

1992 15066 1721 92057 

1993 14617 1669 94934 

1994 14557 1663 97900 

1995 15793 1804 100959 

1996 15971 1824 104095 

1997 15416 1760 107286 

1998 16235 1856 110532 

1999 16291 1860 113829 

2000 17227 1738 117171 

2001 17637 2014 120481 

2002 21544 2460 123791 

2003 22612 2582 127101 

2004 24132 2756 130412 

2005 24177 2759 133722 

2006 23300 2761 137032 

 

Table 4.2:  Truncated Version of Table 4.1 For Graphing Purpose      

Year P(GW) DL(MW) Population 

1973 2493 285 54226 

1974 2780 318 55865 

1977 4195 479 60782 

1978 4359 498 62421 

1981 6766 773 67782 
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Table 4.2:  Cont.      

Year P(GW) DL(MW) Population 

1982 7102 811 69865 

1985 10156 1160 76115 

1986 10665 1218 78198 

1989 12700 1450 84447 

1990 13364 1526 86530 

1993 14617 1669 94934 

1994 14557 1663 97900 

1997 15416 1760 107286 

1998 16235 1856 110532 

2001 17637 2014 120481 

2002 21544 2460 123791 

2005 24177 2759 133722 

2006 23300 2761 137032 

 

 

 

Figure 4.1: Graph Showing Direct Proportion Among Population Growth, Power  

 Generation, And Demand Load 
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4.3   Load Demand Growth Due To Increasing Technological Development 

This thesis also argues that there is a direct correlation between demand load 

growth and increasing technological development.  Most rural areas do not have 

technologically advance electronic gadgets and high-level power-consuming equipments 

compared to urban and metropolitan areas. Remember that most Americans do live in 

urban areas, forming huge hot spots of energy consumption.  Indeed electric demand 

loads do increase as a result of heating, air conditioning, business machines, higher light 

intensities, and appliances.  Evidently, urban metropolitan areas are more technologically 

advanced and do possess the best power-consumming appliances, which are factors that 

increase electric demand load. 

Advancement in technology can be generally linked to an increase in electric load 

density partly because more, and more components are packed in the same space, thus 

drawing more power.  According to [24], these two factors, building function and 

equipment technology are interrelated.  The researcher maintains that certain types of 

buildings are more prone to load growth than others due to the task being performed and 

the ongoing advancement of the equipment technology being used.  Lab and hospital 

equipment continue to become more electronic with the need to store and access 

substantial amounts of information. Data center equipment continues to become more 

compact with higher power use in a smaller space. Since more of the types of buildings 

listed in Table 4.3 found in urban areas, [24] adds that Table 4.3 depicts projected load 

growth factors for different types of building functions based on a 10- to 15-year period. 
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Table 4.3: Building Type And Percentage of Load Growth 

 

 

 

 

 

 

 

 

 

  

Building Type % of Load Growth 

Data center 50% to 200% 

Laboratory Building 15% to 35% 

Hospital 15% to 35% 

Office Building 5% to 15% 
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CHAPTER 5 

THE USE OF MATHEMATICAL MODELS TO CAPTURE THESE IMPACTS 

ON DEMAND LOAD 

 

5.1   Traditional Least Squares Model (Unweighted OLAM) 

The Traditional Least Squares Model cannot easily be explained without 

mentioning Regression or Curve Fitting.  Remember that field data such as the Randolph 

power System Load data is often accompanied by noise.  It is evident that all control 

parameters such as the independent variables do remain constant, but the resultant 

outcomes such as the dependent variables do vary.  Therefore, it is only necessary to have 

a process called Regression or Curve fitting to quantatively estimate the trend of the 

outcomes. 

Least squares analysis is one of the most widely used methods of fitting trends to 

data.  Several researches have shown that the method of least squares is a good method of 

fitting data to a model equation.  Basically, this is all about fitting the best trend curve to 

data.  The sum of square error needs to be at a minimum.  Regression analysis is 

implemented by means of least squares.  One important note is that the presence of 

outliers is critical because they do affect the fit as a whole.  The least squares method is 

indeed sensitive to outliers. 

Among the many assumptions that can be made in linear modeling after the 

statement of the model, only two will be mentioned for the scope of this thesis.  The first 

assumption is the independent variables are linearly independent or simply the rank 
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assumption.  Since this is also about a problem of uniqueness of solution, the second 

assumption is there are more data available then parameters to be determined.  There 

must be some reason behind why the least squares is used or favored.  The following 

three properties could be partly the reasons: 

1. The least squares estimator is unbiased.  Meaning that the value of the unknown 

population parameter is the  espected value of the estimator. 

2. Linearity is another property of the least square estimator.  That is, the least 

squares estimator for a sum of vectors of data on the dependent variable is indeed 

the sum of the least squares estimator for each separate vector. 

3. The estimator is efficient. Meaning the bias and variance are taken into account 

by efficiency.  If one estimator is a smaller spread about the true value of the 

population than another then it is more efficient. 

 

5.2   Truncated Fourier Series Model 

Glancing at the Randolph power system load data, it is evident that the daily 

variations are basically in relationship between the days of the week.  Comparing it to 

another day of the week of the same hour, such relationships can be as simple as just one 

day of the week having a larger load on average at a certain hour.  Weekly variations in 

the power system load (PSL) is handled by its explicit inclusion in the mathematical form 

of each daily and hourly model. 

Remember that such time-varying load is composed of a base load, a growth that 

is related to the load, and a seasonal component.  In this thesis, the characteristics used to 
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model the power system load are achieved by plotting, and then observing obvious trends 

in a given historical average weekly load data spanning over a period of about four years.  

Summer cooling peaks and winter heating peaks are recognizable characteristics that 

happens in approximately 24 week intervals.  According to [25], in electric power 

utilities located in the southeastern part of the United States, the peaks are due to the 

summer cooling loads in the hot months and the winter heating loads in the cold months.  

This pattern occurs every year (see Figure 5.1); hence, is the reason for the labeling, 

seasonal load effect.  Additionally, [26] adds that the seasonal weather load is 

traditionally modeled as a truncated Fourier series.  Equation 5.1 describes the load 

model used in this thesis. 

 

 
Figure 5.1:  Average Weekly Power System Load 

 

   ( )̂ =BaseLoad + GrowthRate*w + Seasonal(w)  (5.1) 
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The assumptions made in this thesis are the base load and growth rate are indeed 

linear functions of the weekly variable (w).  Equation 5.2 defines the fundamental 

frequency, whereas Equation 5.3 describes the expression of the seasonal weighted 

component as having embedded components such as sinusoids and the fundamental 

frequency.  Figure 5.2 is a plot of the truncated Fourier series model showing the OLAM 

estimate and the actual PSL data.  

 

                   
 

  
    (5.2) 

 

        ( )  ∑  ( )    (    ) ( )    (    )
 
    (5.3) 

 

 
Figure 5.2:  Truncated Fourier Series Model With OLAM Application 
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As the number of unknown constants in a typical problem grows, the direct 

application of solving the normal equations for the least square problems become much 

more cumbersome and tedious.  Equation 5.4 gives a general estimate or output 

expression of the problem. 

 

                   (5.4) 

 

We can include Equation 5.5 if considering many discrete events, for instance P, 

and then assume     can be written as, 

 

 ̃   ̃    ̃ (5.5) 

 

5.3   The Weighted OLAM 

 In 1984 professors Teuvo Kohonen and Mikko J. Ruohonen developed the 

OLAM based on an earlier work in 1973, which involved correlation matrix memories. 

The weights of the OLAM guarantee perfect retrieval of stored memories given the 

columns of both X and Y fields are linearly independent.  An assumption can also be 

made that the columns of X and Y are linearly independent.  Both fields, X and Y, can be 

separated into a training set and a testing set [5]. 

In this thesis, the concept of the weighted OLAM is an attribute and a sense of 

focus on the fact that in the hidden layer section of the feed-forward structure, there are 

indeed weights or better still, adjusted weights that do contribute to the final forecast or 
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output or prediction or estimate of our power system load model.  Note that the OLAM is 

a feed-forward network, thus making it a very essential tool in predicting or forecasting 

power system loads and the ability to provide enough simple processing neurons, which 

does prove advantagous when it comes to time series. 

 

5.4   Definition of The Weighted OLAM 

Remember that the Optimal Linear Associative Memory is basically a linear 

regression, which is an approach to modeling the relationship between a scalar variable, 

Y, and one or more variables denoted by X.  Recall that a linear regression line has an 

equation of the form Y = a +bX, where X is the explanatory variable and Y is the 

dependent variable. The slope of the line is b, and the intercept is a (the value of y when x 

= 0).  X is the input matrix, W being the Weight or interconnection matrix, and Y is the 

output matrix.   

Figure 5.3, depicts a simple OLAM conceptual diagram wherein the analogy is 

that the Randolph Power system load data over three yeas represent the input field, X, 

which gets fed into the feed-forward network wherein weights, W, are readjusted, 

manipulated, pre-processed and then sent out as Y, the output, as a forecast or estimate. 

The stimulus term (Xk), in some cases can be refered to as the KEY pattern, and that of 

the response term (Yk) can be refered to as the Stored pattern, both are data-containing 

vectors.  Remember also that positive and negative values can be assumed by elements or 

contents of Yk and Xk.  Equation 5.6 shows contents of the typical interconnection 

matrix wherein the contribution of each input relative to its position index is shown, and 
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after weight adjustment, the estimates are then sent as y, output. 

 

 

Figure 5.3: Simple Weighted OLAM Architecture   
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Remember, it is very important to point out that the OLAM is a feed-forward 

network, thus making it a very essential tool in predicting or forecasting power system 

loads and the ability to provide enough simple processing neurons, which does prove 

advantagous when it comes to time series.  “Feed-forward network has the capacity to 

complex non-linear cue because of its ability to provide many simple processing neurons 

of the composite role, …. ” [14, pg. 329]. 

This thesis stresses the point that there is no doubt that there exists a link or 

correlation when it comes to the human brain’s interconnected neurons and that of the 

OLAM’s structure with regards to the input neurons and the internections and 

contributions of each weight toward the final output or result, which does lead to 

forecasting or load modeling.  One contributor of Neural Networks even stresses the 
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assertion of this thesis.  In stating what he called his Elementary Principle, James wrote: 

"Let us then assume as the basis of all our subsequent reasoning this law: When two 

elementary brain processes have been active together or in immediate succession, one of 

them on reoccurring, tends to propagate its excitement into the other."  This is closely 

related to the concepts of associative memory and correlational learning. James seemed 

to foretell the notion of a neuron's activity being a function of the sum of its inputs, with 

past correlation history contributing to the weight of interconnections, when he wrote: 

"The amount of activity at any given point in the brain cortex is the sum of the tendencies 

of all other points to discharge into it.  Such tendencies being proportionate to the number 

of times the excitement of each other point may have accompanied that of the point in 

question; to the intensity of such excitements; and to the absence of any rival point 

functionally disconnected with the first point into which the discharges might be 

diverted" [18, pg. 15].  Unlike other earlier associative memory networks or models like 

the correlation memory, the OLAM also makes optimal use of the Linear Associative 

Memory (LAM) weights that are interconnected.  

 OPTIMIZATION of the Linear Associative Memory is one of its distintive 

characteristics.  The optimization basically refers to the fact that stored memories can be 

perfectly recovered or retrieved. All of this is only possible as long as the set of 

associations is linearly independent. This is the technique that basically makes the LAM 

to be Optimal.  The number of links or associations must be based on the size of the 

weight matrix.   
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The MEMORY aspect is also very important and distinctive because it becomes 

just as simple as recognizing the fact that memory will be a complete nonentity without 

changes and alterations.  Also, if memory cannot be linked or if it is not accessible by 

another subset or branch or by another link, then memory is not useful.  This is the 

neucleus of this thesis.  The Optimal Linear Associative Memory (OLAM)’s memory or 

the contents of the OLAM’s memory have to be reachable or accessible because those 

contents have within them the manipulated power system load data or the weighted 

average.  The contribution of each input neuron to the entire output is needed so that 

future behavior can be influenced or models like the power system load model can be 

derived. 

A discussion of learning tasks, particularly the task of pattern association, leads us 

to think about memory naturally.  In a neurobiological context, memory refers to the 

relatively enduring neural alterations induced by the interaction of an organism with its 

environment.  Without such a change there can be no memory. Furthermore, for memory 

to be useful, it must be be accessible to the nervous system in order to influence future 

behavior.  However, an activity pattern must initially be stored in memory through a 

learning process.  Memory and learning are intricately connected.  When a particular 

activity pattern is learned, it is stored in the brain where it can be recalled later when 

required.  Depending on the retention time. memory may be divided into “short-term” 

and “long-term” memory.  Short-term memory refers to a compilation of knowledge 

representing the “current” state of the environment.  Any discrepancies between 

knowledge stored in short-term memory and a “new” state are used to update the short-
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term memory.  Long-term memory, on the other hand, refers to knowledge stored for a 

long time or permanently [5, pg. 75].  The following characteristics must be mentioned 

about the OLAM: 

 Data that are in a stimulus (Key) helps determine a path link or address so that 

those data can be retrieved. 

 Contents of a stimulus also helps determine the storage location of those data in 

memory. 

 Interactions between distinct and individual patterns that are stored in the memory 

do exist, assuming the memory is not exceptionally large. 

 If there is a possibility for data patterns being stored in isolation, the likelihood of 

error occuring in memory during a recall proceeding. 

 The distribution of memory is a fact. 

 Across a huge number of neurons, data can be stored in memory by establishing a 

pattern of neural activities that is spatial. Figure 5.4 gives a structural 

visualization of a multi-layered feed-forward network wherein inputs are received 

and adjustments and readjustments are done within the hidden layers and then 

released as outputs or estimates.  

 

5.5   Applications Of The OLAM 

The OLAM is a very powerful feed-forward artificial neural network, which is 

why this network is at the neucleous of this thesis.  Among the OLAM’s other 

applications, it is also used to predict, give a trojectory, or forecast of a power system 
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load data.  If the intent is to forecast, avoid difficulties with regards to learning prototypes 

that are sort of related, avoiding the growth of weight matrices that are not constrained or 

take advantage of the OLAM’s storage capacity.  Then, the OLAM should be the choice.  

Remember that the use of artificial neural networks or specifically one of its networks 

especially in power system load modeling is to ensure that making assumptions are 

avoided.  Neural network enables load forecasting engineers to derive accurate models.  

Even [19, pg. 341] mentions that “ANNs are used in a wide variety of data processing 

applications where real-time data analysis and information extraction are required. One 

advantage of the neural network approach is that most intense computation takes place 

during the training process. Once the ANN is trained for a particular task, operation is 

relatively fast and unknown samples can be rapidly identified in the field.” 

 

 
Figure 5.4: Architecture of a Typical Feed Forward Network 
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In fact, [15, pg. 1393] gives a better explanation: “To overcome those difficulties 

[mentioned above], different learning algorithms were proposed.  The most popular 

solution uses a weight matrix that converges to an optimal linear associative memory 

(OLAM) based on the pseudo-inverse.  The pseudo-inverse of a matrix was,….proposed 

as a neural network leaning algorithm by Kohonen…… and applied to the Hopfield 

network by Personnaz and Guyon…. and Kanter and Sompolinsk.” 

For even more heightened insight into the importance of the OLAM with regards 

to historical and chronological sequence of events from the first works on associative 

matrix memories or better still, correlation matrix memories to the OLAM, please see 

[16] in detail. 

In fact, [16] hightlights additional reasons why the OLAM is important when it 

comes to crosstalks that appeared among input patterns of activity. To overcome this 

degradation effect on performance, several learning strategies were proposed, such as the 

Optimum Linear Associative Memory (OLAM), which uses the pseudo-inverse for 

storage… and also on matrix memories deal with efficient representation of input/output 

associations onto the weight matrix space [16, pg. 51]. 

The OLAM is also very important compared to other networks with regards to its 

role in the linear problem.  In fact, [13] comments that, unlike the BAM (Bidirectional 

Associative Memory), which lacks the ability to perform nonlinear classification such as 

solving the well-known XOR problem, the OLAM (Optimal Linear Associative Memory) 

does have the ability to solve linear problems. 
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5.6   Prelude To The OLAM and Data Pre-Processing 

For the scope of this thesis,  Figure 5.5 is presented as a visual of how the OLAM  

models actually looks along with the individual base load and growth relate of each 

model.  Before proceeding to the daily and weekly OLAM implementation of this thesis, 

the next subsections examines and mimics this typical power system load model.  A 

relative explanation is given of how the OLAM and the concept of the pseudo-inverse 

play a huge part in each of these next subsections on implementing the OLAM.  The 

constant, b0 is the base load and the other constant, b1 is the growth rate.  Remember, 

this thesis makes every effort so that these power system load model figures and 

equations will serve as prototypical explanations into how the results of the next 

subsections originated. 

 

 
Figure 5.5:  Typical OLAM Power System Model 

 

Therefore, the first two columns of Equation 5.7, referred to as the “E” matrix 

equation, do represent the output and input fields.  For this thesis, the input field is indeed 

the power system load data over a span of three years of the Randolph Power 
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coorperation represented by X, while Y represents the output of our feed-forward 

network.  Since X and Y do represent the input and output respectively, this thesis can 

safely relate the fact that by a simple Weighted Optimal Linear Associative Memory 

(OLAM) relation, the input and output can be mapped linearly using this pseudo-inverse 

operations in Equations 5.8 and 5.9.  Then, Equation 5.10 is the typical equation to 

express the power system load.  

 

 (5.7) 

 

(
  
  ̂

̂
)  (   )     (5.8) 

 

 ̂  (   )      (5.9) 

 

            (5.10) 

 

Therefore, with serious consideration of the above figures and equations related to 

the implementation of the OLAM, the b0 and b1 (base load and growth rate respectively) 

do represent the forecast or projection or estimate of the power system load data [4]. 
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In the next OLAM implementation subsections, the growth rate will indeed be 

likely and expected as in most of power system load modeling, the series of the load or 

the load series do show an ascending trend.  Trying to increase the sample size by 

aggregating data from years way back in the past may not be feasible because in most 

places, the load series show a very clear and upward trend [17, pg. 50]. 

Furthermore, before the next subsection, the idea or need to have data pre- 

processing or data manipulation or the rearranging of our original power system load data 

is very important.  In order to avoid the appearance of unwanted data or outliers in the 

final data set and also for normalization purposes, the biasing concept is applied and in a 

separate column with a bias of “1” is applied to each daily and weekly use of the OLAM 

modeling.  [17, pg. 49] could not emphasize the importance of pre-processing any better: 

“before data are ready to be used as input to a NN, they may be subjected to some form 

of pre-processing, which usually intends to make the forecasting problem more 

manageable.  Pre-processing may be needed  to reduce the dimension of the input vector, 

in order to avoid the “curse of dimensionality” (the exponential growth in the complexity 

of the problem that results from an increase in the number of dimensions).  Pre-

processing may also be needed to “clean” the data by removing outliers, missing values 

or any irregularities, since NNs are sensitive to such defective data.” 

This thesis used the Randolph power system load data, which is a three-year 

residential load data that has been used to impliment the OLAM in order to derive 

different models for each OLAM modeling for the next subsections. The Randolph data 

used by this thesis is of size 1369 by 24.  This is basically the length of time over which 
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this data was cumulated (1369 days, 24 hours a day). The power system load model of 

the entire Randolph power system load data for average days before implementation of 

the OLAM is shown in Figure 5.6, where as the weekly pre-OLAM Randolph load data is 

plotted in Figure 5.7. 

 
Figure 5.6:  Pre-OLAM Daily Randolph Load Plot 

 

 
Figure 5.7:  Pre-OLAM Weekly Randolph Load Plot 
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Equation 5.11 shows the link between the “E” matrix and base load and that of the 

growth rate, wherein Y is the Power System Load Data and X is the Week Data.  

Equations 5.12, 5.13, and 5.14 are the OLAM estimation equations for the Linear, 

Quadratic, and Cubical central tendency models, respectively. 
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]  [
  
  
]  (5.11) 
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5.7  Short-term Load Modeling Using The OLAM 

Eventhough hourly load modeling can be categorized as short, the weekly load 

model is relatively short as well.  The weekly load term is affected greatly by weather.  

As a whole, seasonal changing regularities do affect the model outcome.  Industrial, 

agricultural, commercial, and load composition do affect the load model.  Figure 5.8 

shows plots of the three outputs of the testing data after the sliding window data had been 

formed. 
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Figure 5.8:  Three Outputs From The Tested OLAM Data 

 

Figure 5.9 shows the results of the three outputs from the trained OLAM data. 

Figure 5.10 is the result of the short term power system load modeling mechanism in 

which the sliding window process was used to arrive at the tested predictions or estimates 

that closely resembles the three outputs previously viewed.  Figure 5.11 shows the error 

plot that was generated as a result of the training and testing process of the sliding 

window data. 



54 
 

 
Figure 5.9:  Three Outputs From The Trained OLAM Data 

 
Figure 5.10:  OLAM Estimate of The Tested Data 
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Figure 5.11:  Error Plot of Weekly Sliding Window Data 

 

5.8  Three Central Tendency Models Using The Daily OLAM Data 

In the following sections of this research, the OLAM is used to model and show 

comparisons among the three central tendencies: Linear, Quadratic, and cubical.  These 

three central tendencies are relevant and important partly because each tendency gives 

some meaning to the power system load model with regards to the base load and growth 

rate.  The tendency of each model to stay with some close vacinity of the base load does 

matter. How far does each model deviate from the base load?  Additionally, the fact that 

the cubical central tendency model has even more terms and more seasonal effects does 

partly make its model mimic or follow much closely the trojectory of the original power 

system load model. 
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Modeling daily load uses certain characteristics that would depend on the 

observations of obvious trends of daily load curve in a month.  Observing the daily 

OLAM models, noticeable obvious trends such as the first periodic occurrence occurs a 

little over every 200 days.  A second periodic occurrence kicks in as a weekly load 

composition every 52 weeks and so on (refer to Figures 5.12 through 5.14). 

Figures 5.12 through 5.14 also show the Linear, Quadratic, and Cubical daily 

models with central tendency obtained after implementing the OLAM.  In each model, a 

section in the code was also used to obtain the individual base load and growth rate as 

shown in each central tendency model.  Remember that in the PSL equation used, it is 

worth reiterating that in the Randolph power system load data used to implement the 

OLAM, the relavant equation does have a weather component. Therefore, in electric 

power system load modeling, not only time sequence load itself should be considered 

because the influence of weather factors should also be considered.  

 
 Figure 5.12: Linear Model of 12

th
 Hour of The Randolph Power System 

   Load Data With Central Tendency 
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**Base Load and Growth Rate of LINEAR MODEL are*** 

bhat = 

   8583.4124 

   2.0431 

 
 Figure 5.13:  Quadratic Model of 12

th
 Hour of The Randolph Power 

   System Load Data With Central Tendency 

 

**Base Load and Growth Rate of Quadratic MODEL are*** 

bhat = 

 

   9.0025e+03 

   2.0915e-01 

   1.3386e-03 
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 Figure 5.14: Cubical Model of 12

th
 Hour of The Randolph Power System  

   Load Data With Central Tendency 

 

**Base Load and Growth Rate of Cubic MODEL are*** 

bhat = 

 

   8.0822e+03 

   8.2555e+00 

  -1.3339e-02 

   7.1424e-06 

 

5.9   Three Central Tendency Models Using The Weekly OLAM Data 

The Randolph power system load data somehow improved the simulation’s 

fidelity.  The weekly load prediction can be categorized as middle-term load prediction. It 

does have a seasonal changing regularity.  It is hugely affected by load composition, 

weather features, agricultural, industrial, and commercial proportions.  Certain 
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characteristics used to model the OLAM weekly load do depend on the observations of 

trends weekly load curve over a span of almost four years (1990 to 1993). Observing 

each of the models (Figures 5.15 through 5.17), the fundamental load has a noticeable 

period of 52 weeks (about a year).  The second periodic occurance from peak to peak 

(summer to summer or winter to winter) is about 26 weeks, while the third periodic 

occurance seems to swing somehow in correlation to the seasons, which would be 

approximately 12 to 13 weeks. 

Figures 5.15 through 5.17 are aslo the Linear, Quadratic, and Cubical weekly 

central tendency models obtained after implementing the OLAM, respectively.  In each 

model, a section in the code was also used to obtain the individual base load and growth 

rate as shown in each model. 

 
Figure 5.15: Linear Model of Sixth Hour of Every Seventh Day With Central  

  Tendency 
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**Base Load and Growth Rate of Linear MODEL are*** 

bhat = 

 

   6444.4188 

      8.4072 

 

 
 Figure 5.16 Quadratic Model of Sixth Hour of Every Seventh Day 

   With Central Tendency 

 

**Base Load and Growth Rate of Quadratic Model are*** 

bhat = 

 

   6.3547e+03 

   1.1141e+01 

  -1.3949e-02 
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 Figure 5.17: Cubical Model of Sixth Hour of Every Seventh Day   

   With Central Tendency 

 

**Base Load and Growth Rate of Cubic MODEL are*** 

bhat = 

 

   5.9255e+03 

   3.7082e+01 

  -3.4399e-01 

   1.1226e-0 
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CHAPTER 6 

CONCLUSION 

 

Good and accurate electric power system load modeling is very essential to 

electric energy utilities for several reasons, namely, energy management, grid operating 

mode selection, maintenance scheduling, power plant construction planning, generation 

cost reduction, economical and reasonable arrangements of a generator group start-up and 

shut-down, keeping the grid operationg safe and stable, and many more.  Recall the PSL 

equation. It is worth reiterating the Randolph power system load used to implement the 

OLAM with central tendencies, the relavant equation does have a weather component.  

Therefore, in electric power system load modeling, not only should time sequence load 

be considered but also weather factors influences should be considered, as well.  

The OLAM being a feed forward network and a good tool used in this thesis to 

model power system load.  Every section of the data under consideration was factored in 

as weights and then manipulated and adjusted and summed up and fed forward to form a 

part of the final estimate or model.  Further, it must be mentioned that certain important 

factors do increase the accuracy of the neural network prediction, namely, seasonal 

changes, human daily activities, weather conditions, etc.  A reasonable selection of these 

variables influenced the accuracy of the forecasted results.  This was clearly shown in the 

OLAM daily and weekly power system load models whereas the Linear, Quadratic, and 

Cubic central tendency models were shown for each category (daily and weekly).  

Looking at each model objectively, it is clear that the cubical central tendency model has 
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more curvature and the cubical equation does have more terms (more weights and 

weather factor involved).  The Mean Average Deviation (MAD) is the selection criteria 

for the best model of choice.  Among the models, Linear, Quadratic, and Cubical, the 

model with the least MAD became our model of choice or our best model for the scope 

of this thesis.  Table 6.1 shows that in both the daily and weekly OLAM  central tendency 

models, the cubic central tendency model had the least MAD. 

 

Table 6.1:  Mean Average Deviation Comparison of Central Tendency Models       

  Daily OLAM Model Weekly OLAM Model 

Linear 1413.9 1208.1 

Quadratic 1403.5 1207.4 

Cubic 1368.3 1207.1 

 

To crown it all, this research explained the OLAM in detail and showed the power 

of the OLAM in electrical power system load modeling.  Artificial Neural Networks are 

great modeling tools because, among input variables, of their ability to model 

multivariate problems basically without making assumptions that are complexed and also 

dependent.  One observation was instead of relying on human experience, ANN’s 

attempted to draw links between sets of input and output data.  This thesis also stressed 

another core theme.  Since population and electric demand load are related, it is 

imperative that power system engineers derive mathematical models or to use 

mathematical models to capture these impacts on electric demand load.  Consequently, 

these led to the concepts of the Traditional Least Squares Model (Unweighted OLAM), 
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Truncated Fourier Series Model, the Weighted OLAM, and other neural network models, 

which were also discussed.  
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APPENDIX A 

THESIS CODES 

 

The Code For Average Days and Average Weeks For The Randolph Power System 

Load Data 

## Copyright (C) 2012 Eesiah  

##Thesis: Average Days and Average Weeks of Randolph data 

## Author: Morlue Eesiah <Morlue@ubuntu> 

function [  ] = thesisDaysWeeks () 

## Load three-year Randolph power system load data 

data=load('-ascii','RANDOLPH.DAT'); 

[R C] =size(data); 

daily=zeros(R,1); 

for i=1:R 

##Find daily average (average of each row) 

daily(i)=mean(data(i,:)); 

end 

figure(1) 

plot(daily') 

title("Power system load vs time(avg.days)") 

xlabel("avg days") 

ylabel("load, Watts") 
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print -dpng thesisdaily.png 

figure(2) 

count=0; 

##start incrementing every seven rows (weekly) 

for i=1:7:1365 

 count=count+1; 

weekly(count)=mean(daily(i:i+6,:)); 

end 

plot(weekly) 

title("Power system load vs time(avg.weeks)") 

xlabel("avg weeks") 

ylabel("load, Watts") 

print -dpng thesisweekly.png 

##avgD=mean(data,2); 

##plot(avgD); 

Endfunction 

Below is The Code For The Power System Load Model, Implementing The OLAM , 

For the 12
th

 Hour of The Randolph Power System Load Data, The Central Tendencies: 

## Copyright (C) 2012 Morlue 

## Author: Morlue S. Eesiah <Morlue@ubuntu> 

##Power system load model of the 12th hour 

function [ ret ] = thesis12thHour () 
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dataY=load('-ascii','RANDOLPH.DAT'); 

twelvethHour=dataY(:,12); 

printf('\n*****LINEAR MODEL******\n'); 

b0=ones(1369,1); 

weeks=[1:1369]'; 

x=[b0 weeks]; 

printf('\n**Base Load and Growth Rate of LINEAR MODEL are***\n'); 

bhat=pinv(x)*twelvethHour 

yhat=(x*bhat)'; 

for i=1:1369 

error(i)=(twelvethHour(i)-yhat(i))^2; 

endfor 

sse=sum(error) 

##Begin to find Mean Average Deviation 

for i=1:1369 

##obtain difference in magnitude between desired output 

##and estimated output 

mad(i)=abs(twelvethHour(i)-yhat(i)); 

endfor 

MAD=sum(mad)/1369 

################# 

figure(1) 
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plot(weeks, yhat, weeks,twelvethHour) 

legend('OlAM estimate, No brownouts', 'PSL_data'); 

title("Power system load vs days,Linear Model,12th") 

xlabel(" Days") 

ylabel("load(Watts)") 

print -dpng thesis12HourLinear.png 

printf('\n****QUADRATIC******\n'); 

##square element-by-element of the second column of our OLAM input matrix 

q=x(:,2).^2; 

x=[x q]; 

printf('\n**Base Load and Growth Rate of Quadratic MODEL are***\n'); 

##find pseudo inverse 

bhat=pinv(x)*twelvethHour  

yhat=(x*bhat)'; 

for i=1:1369 

error(i)=(twelvethHour(i)-yhat(i))^2; 

endfor 

sse=sum(error) 

for i=1:1369 

mad(i)=abs(twelvethHour(i)-yhat(i)); 

endfor 

MAD=sum(mad)/1369 
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################# 

figure(2) 

plot(weeks, yhat, weeks,twelvethHour) 

legend('OlAM estimate, No brownouts', 'PSL_data'); 

title("Power system load vs days,Quadratic Model,12th") 

xlabel(" Days") 

ylabel("load(Watts)") 

print -dpng thesis12HourQuad.png 

printf('\n****CUBIC******\n'); 

##cube element-by-element of the second column of our OLAM input matrix 

c=x(:,2).^3; 

x=[x c]; 

printf('\n**Base Load and Growth Rate of Cubic MODEL are***\n'); 

bhat=pinv(x)*twelvethHour  

yhat=(x*bhat)'; 

##Begin to find Sum Square Error (SSE) 

for i=1:1369 

error(i)=(twelvethHour(i)-yhat(i))^2; 

endfor 

sse=sum(error) 

for i=1:1369 

mad(i)=abs(twelvethHour(i)-yhat(i)); 
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endfor 

MAD=sum(mad)/1369 

figure(3) 

plot(weeks, yhat, weeks,twelvethHour) 

legend('OlAM estimate, No brownouts', 'PSL_data'); 

title("Power system load vs days,Cubical Model,12th") 

xlabel("Days") 

ylabel("load(Watts)") 

print -dpng thesis12HourCubic.png 

endfunction 

Below is the Code Used To Generate The Truncated Fourier Series Model 

data = load('-ascii','RANDOLPH.DAT'); 

[r c]=size(data) 

n=[1:r]'; 

HourType=6;   %choosen hour of the day 

DayType=4; 

idx=find(mod(n,7)==DayType);  %Finds the specified day out of the week 

Dat=data(idx,HourType); 

sizeIDX=size(Dat) 

A=[]; 

plot(Dat) 

##define omega or frequency 
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w=2*pi/52; 

for t=1:196 

row=[1 t cos(w*t) sin(w*t) cos(w*2*t) sin(w*2*t) cos(w*3*t) sin(w*3*t)]; 

A=[A;row]; 

end 

SizeA=size(A) 

weeks=[1:196]' 

bhat=pinv(A'*A)*A'*Dat  

yhat=A*bhat 

plot(weeks,yhat,weeks,Dat) 

legend('OlAM estimate', 'PSL_data'); 

title("Power system load vs Weeks,Truncated Fourier Series") 

xlabel(" Weeks") 

ylabel("load(Watts)") 

print -dpng thesisFourierWeeks.png 

t=1:196; 

y=x(1)+x(2)*t+x(3)*cos(w*t)+x(4)*sin(w*t)+x(5)*cos(2*w*t)+x(6)*sin(2*w*t)+x(7)*co

s(3*w*t)+x(8)*sin(3*w*t) 

figure;plot(t,Dat) 

Below is the Code Used To Generate The First, Second, and Third Trained OLAM 

Output, The First, Second, and Third Tested OLAM Output, and Also The OLAM 

Estimate: 
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data = load('-ascii','RANDOLPH.DAT'); 

[r c]=size(data); 

n=[1:r]'; 

HourType=6;   %choosen hour of the day 

DayType=4; 

Events=thesisSlidingWin (data,DayType,HourType); 

[R C]=size(Events); 

TrSz=floor(R*.75); 

delta_w=0;beta=.10;alpha=.25; 

%%Input Data 

Xtr=Events(1:TrSz,1:5); 

Xts=Events(TrSz+1:R,1:5); 

%%Output Data  

Ytr=Events(1:TrSz,6:8); 

Yts=Events(TrSz+1:R,6:8); 

weights=pinv(Xtr'*Xtr)*Xtr'*Ytr; 

%%Trainig 

YhatTr=Xtr*weights; 

plot(YhatTr) 

legend('Output1','Output2', 'Output3'); 

title("Output From Trained OLAM Data") 

xlabel(" Weeks") 
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ylabel("load(Watts)") 

print -dpng thesisTrainOutput.png 

%%Testing 

YhatTs=Xts*weights; 

figure;plot(YhatTs) 

legend('Output1','Output2', 'Output3'); 

title("Output From Tested OLAM Data") 

xlabel(" Weeks") 

ylabel("load(Watts)") 

print -dpng thesisTestedOutput.png 

%% Validation  (Averaging to calculate Yhat) 

for i=1:rows(Yts)-2 

Yhat(i,:)=mean([Yts(i+2,1) Yts(i+1,2) Yts(i,3)]); 

end 

YEst=[Yts(1,1) Yts(1,2) Yhat'] ; 

figure;plot(YEst) 

title("OLAM Estimate") 

xlabel(" Weeks") 

ylabel("load(Watts)") 

print -dpng thesisEstimate.png 
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APPENDIX B 

SLIDING WINDOW DATA 

 

Below is The Result of The Generated Sliding Window Data During The Process of 

Short Term Load Modeling Using The OLAM.The Weights,W, are at The End of This 

189 by 8 Data. Five Inputs, Three Outputs. 

octave-3.2.4.exe:6> ThesisBuildDataSet 

DataSet = 

  9339   11607    8343    8424   10643    9874    7906    9044 

   11607    8343    8424   10643    9874    7906    9044    9173 

    8343    8424   10643    9874    7906    9044    9173    9250 

    8424   10643    9874    7906    9044    9173    9250    5139 

   10643    9874    7906    9044    9173    9250    5139    8687 

    9874    7906    9044    9173    9250    5139    8687    6877 

    7906    9044    9173    9250    5139    8687    6877    9651 

    9044    9173    9250    5139    8687    6877    9651   10619 

    9173    9250    5139    8687    6877    9651   10619   10425 

    9250    5139    8687    6877    9651   10619   10425    6415 

    5139    8687    6877    9651   10619   10425    6415    6614 

    8687    6877    9651   10619   10425    6415    6614    6367 

    6877    9651   10619   10425    6415    6614    6367    7079 

    9651   10619   10425    6415    6614    6367    7079    7164 

   10619   10425    6415    6614    6367    7079    7164    6784 
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   10425    6415    6614    6367    7079    7164    6784    6832 

    6415    6614    6367    7079    7164    6784    6832    6444 

    6614    6367    7079    7164    6784    6832    6444    6986 

    6367    7079    7164    6784    6832    6444    6986    7355 

    7079    7164    6784    6832    6444    6986    7355    5026 

    7164    6784    6832    6444    6986    7355    5026    8149 

    6784    6832    6444    6986    7355    5026    8149    7634 

    6832    6444    6986    7355    5026    8149    7634    7059 

    6444    6986    7355    5026    8149    7634    7059    7355 

    6986    7355    5026    8149    7634    7059    7355    7322 

    7355    5026    8149    7634    7059    7355    7322    7646 

    5026    8149    7634    7059    7355    7322    7646    7650 

    8149    7634    7059    7355    7322    7646    7650    7667 

    7634    7059    7355    7322    7646    7650    7667    7096 

    7059    7355    7322    7646    7650    7667    7096    7379 

    7355    7322    7646    7650    7667    7096    7379    6743 

    7322    7646    7650    7667    7096    7379    6743    7019 

    7646    7650    7667    7096    7379    6743    7019    6776 

    7650    7667    7096    7379    6743    7019    6776    6881 

    7667    7096    7379    6743    7019    6776    6881    6703 

    7096    7379    6743    7019    6776    6881    6703    7752 

    7379    6743    7019    6776    6881    6703    7752    9360 

    6743    7019    6776    6881    6703    7752    9360    9262 

    7019    6776    6881    6703    7752    9360    9262   11174 
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    6776    6881    6703    7752    9360    9262   11174    7436 

    6881    6703    7752    9360    9262   11174    7436    6926 

    6703    7752    9360    9262   11174    7436    6926   12089 

    7752    9360    9262   11174    7436    6926   12089   10182 

    9360    9262   11174    7436    6926   12089   10182    9141 

    9262   11174    7436    6926   12089   10182    9141    8878 

   11174    7436    6926   12089   10182    9141    8878   10822 

    7436    6926   12089   10182    9141    8878   10822   10413 

    6926   12089   10182    9141    8878   10822   10413   10595 

   12089   10182    9141    8878   10822   10413   10595   11781 

   10182    9141    8878   10822   10413   10595   11781    8618 

    9141    8878   10822   10413   10595   11781    8618    7979 

    8878   10822   10413   10595   11781    8618    7979    8797 

   10822   10413   10595   11781    8618    7979    8797    8262 

   10413   10595   11781    8618    7979    8797    8262   11696 

   10595   11781    8618    7979    8797    8262   11696    8590 

   11781    8618    7979    8797    8262   11696    8590   10299 

    8618    7979    8797    8262   11696    8590   10299    8663 

    7979    8797    8262   11696    8590   10299    8663    6731 

    8797    8262   11696    8590   10299    8663    6731    9469 

    8262   11696    8590   10299    8663    6731    9469    7565 

   11696    8590   10299    8663    6731    9469    7565    6743 

    8590   10299    8663    6731    9469    7565    6743    8671 

   10299    8663    6731    9469    7565    6743    8671    6901 
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    8663    6731    9469    7565    6743    8671    6901    6800 

    6731    9469    7565    6743    8671    6901    6800    7468 

    9469    7565    6743    8671    6901    6800    7468    7011 

    7565    6743    8671    6901    6800    7468    7011    7655 

    6743    8671    6901    6800    7468    7011    7655    6970 

    8671    6901    6800    7468    7011    7655    6970    7278 

    6901    6800    7468    7011    7655    6970    7278    7841 

    6800    7468    7011    7655    6970    7278    7841    7185 

    7468    7011    7655    6970    7278    7841    7185    5382 

    7011    7655    6970    7278    7841    7185    5382    8262 

    7655    6970    7278    7841    7185    5382    8262    7561 

    6970    7278    7841    7185    5382    8262    7561    9113 

    7278    7841    7185    5382    8262    7561    9113    7930 

    7841    7185    5382    8262    7561    9113    7930    7731 

    7185    5382    8262    7561    9113    7930    7731    7023 

    5382    8262    7561    9113    7930    7731    7023    7051 

    8262    7561    9113    7930    7731    7023    7051    7910 

    7561    9113    7930    7731    7023    7051    7910    7298 

    9113    7930    7731    7023    7051    7910    7298    7764 

    7930    7731    7023    7051    7910    7298    7764    8294 

    7731    7023    7051    7910    7298    7764    8294    7144 

    7023    7051    7910    7298    7764    8294    7144    7051 

    7051    7910    7298    7764    8294    7144    7051    8618 

    7910    7298    7764    8294    7144    7051    8618    9149 
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    7298    7764    8294    7144    7051    8618    9149    7116 

    7764    8294    7144    7051    8618    9149    7116    9400 

    8294    7144    7051    8618    9149    7116    9400   12211 

    7144    7051    8618    9149    7116    9400   12211   11409 

    7051    8618    9149    7116    9400   12211   11409    7331 

    8618    9149    7116    9400   12211   11409    7331   10396 

    9149    7116    9400   12211   11409    7331   10396   13782 

    7116    9400   12211   11409    7331   10396   13782   11368 

    9400   12211   11409    7331   10396   13782   11368   13681 

   12211   11409    7331   10396   13782   11368   13681    9870 

   11409    7331   10396   13782   11368   13681    9870   10943 

    7331   10396   13782   11368   13681    9870   10943    9704 

   10396   13782   11368   13681    9870   10943    9704   13426 

   13782   11368   13681    9870   10943    9704   13426   10360 

   11368   13681    9870   10943    9704   13426   10360   11255 

   13681    9870   10943    9704   13426   10360   11255   11547 

    9870   10943    9704   13426   10360   11255   11547   11717 

   10943    9704   13426   10360   11255   11547   11717   10587 

    9704   13426   10360   11255   11547   11717   10587   12057 

   13426   10360   11255   11547   11717   10587   12057    9084 

   10360   11255   11547   11717   10587   12057    9084   12778 

   11255   11547   11717   10587   12057    9084   12778    8388 

   11547   11717   10587   12057    9084   12778    8388    9619 

   11717   10587   12057    9084   12778    8388    9619   11336 
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   10587   12057    9084   12778    8388    9619   11336    8760 

   12057    9084   12778    8388    9619   11336    8760    7140 

    9084   12778    8388    9619   11336    8760    7140    7290 

   12778    8388    9619   11336    8760    7140    7290    9437 

    8388    9619   11336    8760    7140    7290    9437   10214 

    9619   11336    8760    7140    7290    9437   10214    7541 

   11336    8760    7140    7290    9437   10214    7541    7602 

    8760    7140    7290    9437   10214    7541    7602    7513 

    7140    7290    9437   10214    7541    7602    7513    7015 

    7290    9437   10214    7541    7602    7513    7015    7140 

    9437   10214    7541    7602    7513    7015    7140    7375 

   10214    7541    7602    7513    7015    7140    7375    7488 

    7541    7602    7513    7015    7140    7375    7488    5443 

    7602    7513    7015    7140    7375    7488    5443    8509 

    7513    7015    7140    7375    7488    5443    8509    9222 

    7015    7140    7375    7488    5443    8509    9222    8327 

    7140    7375    7488    5443    8509    9222    8327    8072 

    7375    7488    5443    8509    9222    8327    8072    7817 

    7488    5443    8509    9222    8327    8072    7817    8169 

    5443    8509    9222    8327    8072    7817    8169    7893 

    8509    9222    8327    8072    7817    8169    7893    8201 

    9222    8327    8072    7817    8169    7893    8201    7979 

    8327    8072    7817    8169    7893    8201    7979    7902 

    8072    7817    8169    7893    8201    7979    7902    7671 
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    7817    8169    7893    8201    7979    7902    7671    7885 

    8169    7893    8201    7979    7902    7671    7885    9979 

    7893    8201    7979    7902    7671    7885    9979    8201 

    8201    7979    7902    7671    7885    9979    8201    7804 

    7979    7902    7671    7885    9979    8201    7804    9736 

    7902    7671    7885    9979    8201    7804    9736    8096 

    7671    7885    9979    8201    7804    9736    8096    7942 

    7885    9979    8201    7804    9736    8096    7942    9234 

    9979    8201    7804    9736    8096    7942    9234   11449 

    8201    7804    9736    8096    7942    9234   11449    6269 

    7804    9736    8096    7942    9234   11449    6269   13325 

    9736    8096    7942    9234   11449    6269   13325   12685 

    8096    7942    9234   11449    6269   13325   12685    9424 

    7942    9234   11449    6269   13325   12685    9424    6840 

    9234   11449    6269   13325   12685    9424    6840    6792 

   11449    6269   13325   12685    9424    6840    6792    9599 

    6269   13325   12685    9424    6840    6792    9599   11968 

   13325   12685    9424    6840    6792    9599   11968   12118 

   12685    9424    6840    6792    9599   11968   12118   13693 

    9424    6840    6792    9599   11968   12118   13693   12887 

    6840    6792    9599   11968   12118   13693   12887   11972 

    6792    9599   11968   12118   13693   12887   11972   12235 

    9599   11968   12118   13693   12887   11972   12235   13709 

   11968   12118   13693   12887   11972   12235   13709    9611 
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   12118   13693   12887   11972   12235   13709    9611   10060 

   13693   12887   11972   12235   13709    9611   10060   11794 

   12887   11972   12235   13709    9611   10060   11794    8784 

   11972   12235   13709    9611   10060   11794    8784    7995 

   12235   13709    9611   10060   11794    8784    7995   11705 

   13709    9611   10060   11794    8784    7995   11705    7387 

    9611   10060   11794    8784    7995   11705    7387    9983 

   10060   11794    8784    7995   11705    7387    9983    9813 

   11794    8784    7995   11705    7387    9983    9813    7902 

    8784    7995   11705    7387    9983    9813    7902    7914 

    7995   11705    7387    9983    9813    7902    7914    7752 

   11705    7387    9983    9813    7902    7914    7752    7784 

    7387    9983    9813    7902    7914    7752    7784    7776 

    9983    9813    7902    7914    7752    7784    7776    9534 

    9813    7902    7914    7752    7784    7776    9534    8452 

    7902    7914    7752    7784    7776    9534    8452    8513 

    7914    7752    7784    7776    9534    8452    8513    9072 

    7752    7784    7776    9534    8452    8513    9072    6832 

    7784    7776    9534    8452    8513    9072    6832   10287 

    7776    9534    8452    8513    9072    6832   10287    9040 

    9534    8452    8513    9072    6832   10287    9040   11016 

    8452    8513    9072    6832   10287    9040   11016    9040 

    8513    9072    6832   10287    9040   11016    9040    8695 

    9072    6832   10287    9040   11016    9040    8695    8465 
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    6832   10287    9040   11016    9040    8695    8465    9275 

   10287    9040   11016    9040    8695    8465    9275    9740 

    9040   11016    9040    8695    8465    9275    9740    8566 

   11016    9040    8695    8465    9275    9740    8566    9032 

    9040    8695    8465    9275    9740    8566    9032    7893 

    8695    8465    9275    9740    8566    9032    7893    8687 

 

sizeDataset = 

 

   189     8 

 

W = 

 

   0.10747   0.20029   0.13030 

   0.15871   0.10506   0.20461 

   0.20464   0.19589   0.14911 

   0.17553   0.22477   0.21285 

   0.34655   0.26462   0.29330 
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