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ABSTRACT 

 

Tettey, David. CLASSIFICATION OF CIVILIAN VEHICLE SOUNDS USING A 

LARGE DATABASE OF VEHICLE SOUNDS. (Major Advisor: Dr. M. Bikdash), 

North Carolina Agricultural and Technical State University. 

 

We have completed the building of an extensive database of civilian vehicle 

sounds. The database consists of correlated acoustic and seismic signatures of a large 

number (exceeding 850) of civilian vehicles. Each acoustic signature is obtained through 

two high-quality microphones separated by 25 feet, and whose signals are exactly 

synchronized. In this work, spectral and tristimulus features of civilian vehicle sounds are 

computed and then submitted to further processing using principal component analysis. 

The “super” features, derived after principal component analysis is performed, are then 

used for classification. In this research effort, the performance of the quadratic classifier 

with that of the neural network classifier is compared. Results presented here show that 

the neural network classifier out-performs the quadratic classifier in distinguishing 

different and same branded vehicle sounds. The classification usually has small (at times 

0%) classification errors.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Literature Survey 

Significant research work has been carried out recently on civilian vehicle 

classification using spectral features [1], neural networks and many other signal 

processing algorithms and pattern recognition tools. Mgaya et al. [2] for instance 

designed and implemented a data-fusion software for vehicle surveillance and 

applications using a distributed network of acoustic sensors. They used 3 civilian vehicles 

namely a Toyota Corolla, a Mitsubishi Mirage and a Toyota Sienna, 2 Sports Utility 

Vehicles (SUV), and 2 High Mobility Multipurpose Wheeled Vehicles (HMMWV) for 

their data analysis. The SUVs and the HMMWV data were provided by the military. 

Takechi et al., [3] also introduced a system of detecting a car by measuring the 

automobile sound of three vehicles. Thus far, research has suffered from limited 

availability of vehicle sound data for analysis. The goal of this study is to build a clean 

database of civilian vehicle sounds. We believe that for a good statistical analysis of 

vehicle sounds, it is prudent to use as much data as possible to validate findings. 

One significant addition to this study is the use of an accelerometer to collect 

seismic data. Moving vehicles generate a succession of disturbances over the ground [4]. 

These ground disturbances propagate away from the source as seismic waves which are 

usually difficult to detect acoustically. Accelerometers become useful devices for taking 

such seismic measurements. In [5], Krishnan et al. used accelerometers for activity 
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detection. Nishkam et al. also used it in the detection of eight activities such as standing, 

walking, running, climbing up stairs, climbing down stairs, sit-ups, vacuuming and 

brushing of teeth [6]. Apart from activity detection, accelerometers can be used for 

context awareness. In [7], Seon et al. used it to determine a user's location and detect 

transitions between preselected locations. They used the measured and angular velocity 

data gathered through an accelerometer. In this experimental research work, the 

measurements from the accelerometer will provide understanding on the contribution of 

tire noise to the total vehicle sound. 

A very important area that has gone through extensive research work is the study 

of higher order statistics [8] and [9]. These statistics are useful in problems where non-

Gaussianity, nonminimum phase systems, colored noise, or nonlinearities are important 

and must be accounted for. In [9], Mendel described the application of higher-order 

statistics to the identification of nonminimum phase channels from noisy output 

measurements. Because many real world problems are non-Gaussian, higher-order 

statistics have found applicability in fields such as sonar, radar, seismic data processing 

etc. Work in higher-order statistics has led to several analysis tools complementary to 

classical second order methods. One of such useful tools is the fourth-order cumulant 

based kurtosis, which provides a measure of distance to gaussianity. It was used to detect 

randomly occurring signals in [10] and [11]. In the frequency domain, the Spectral 

Kurtosis (SK) of a signal is defined as the kurtosis of its frequency components. In [12] 

and [13], the SK approach is generalized by using the frequency component modulus. In 

this work, we focus heavily on spectral feature models such as the spectral kurtosis and 



 

 3 

the spectral skewness to compute the seismic and acoustic spectral features of moving 

vehicles. We believe that vehicle attributes can be derived from these computed features. 

In addition, attention has been paid to other features such as the tristimulus features for 

the vehicle engine sound classification problem at hand. The primary objectives of this 

work are as follows: 

1. To build a database of acoustic/seismic vehicle engine sounds. 

2. To compute spectral shape and tristimulus features from the database of vehicle 

engine sounds. 

 

3. To use statistical and data reduction techniques to extract super features for 

classification. 

 

4. To use the super features as input to a quadratic and an artificial neural network 

classifier. 

 

5. To compare the performance of the quadratic classifier and the artificial neural 

network classifier. 

 

1.2 Synopsis 

 This thesis is organized as follows. Chapter 2 presents background material. 

Particular emphasis is given to techniques that were applied during our experimental 

work. It has three sections. Section 2.1 presents Principal Component Analysis (PCA). 

Section 2.2 discusses the Quadratic classifier. Section 2.3 presents the Artificial Neural 

Network classifiers. Chapter 3 describes the technical details of the equipment used, the 

experimental setup and the data collection methodology followed in the recording of 

acoustic/seismic vehicle sounds. The features used for classification are also presented. 

Chapter 4 describes seismic/acoustic spectral feature computation. Chapter 5 focuses on 
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efforts to extract super features from the acoustic/seismic spectral features. The mean of 

the spectral features are compared with the principal components of the spectral features. 

Chapter 6 discusses the tristimulus feature computation. Chapter 7 presents some results 

based on the Quadratic and Neural Network classifiers. Chapter 8 presents our 

conclusions and future work. 
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CHAPTER 2 

BACKGROUND 

 

2.1 Principal Component Analysis 

     In [14], Yang et al. demonstrated the Berkeley mote-based implementation of an 

acoustic vehicle system which was based on the Short Time Fast Fourier Transform 

(STFFT) and PCA. They converted the time-domain sound signal to a time-frequency 

domain signal using STFFT. The resulting high dimensions of the time-frequency domain 

features were reduced using PCA. Thus, they utilized the dimension reduction property of 

PCA to enable their application fit to a Berkeley-mote device. In [15], Junwen et al. 

presented a novel PCA classifier which calculated the principal components of each class 

of vehicle images to solve the problem of vehicle recognition and detection using static 

images. They performed this experiment on both artificial and real world data and 

obtained good classification. Furthermore, Meta et al. presented a novel vehicle-

classification algorithm in [16]. In their work, they performed a Discrete Fourier 

Transform (DFT) on the signal generated by a single inductive loop detector and 

transformed the DFT features using PCA. They exploited PCA for decorrelation and 

dimensionality reduction. Clearly, research is replete with many such efforts where PCA 

has been extensively used in solving the problem of classification. 

PCA is a technique for reducing the number of variables in a dataset while at the 

same time accounting for as much of the variation in the data set as possible. Its earliest 

descriptions were given by Pearson [17] and Hotelling [18]. PCA operates by 
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transforming a set of correlated variables into a new set of uncorrelated variables that are 

called Principal Components (PCs). In addition to being uncorrelated, the principal 

components are orthogonal and are ordered in terms of the variability they represent. That 

is, the first principal component represents the greatest amount of variability in the 

original data set. Each succeeding orthogonal component accounts for as much of the 

remaining variability as possible.  

PCA is considered an eigenproblem. In [19], Nikon et al. summarized this 

eigenproblem in the following steps:  

1. Obtain the feature matrix xf  from the data. Each column of the matrix defines a 

feature vector. 

 

2. Compute the covariance matrix .T

x x xS f f  T
 is the transpose. This matrix gives 

information about the linear independence between the features. 

 

3. Obtain eigenvalues by solving the characteristic equation 

det| iI  Sx|  0,   #   
 

where I  is the identity matrix. The eigenvalues form the diagonal covariance 

matrix .yS  Since the matrix is diagonal, each element is the variance of the 

transformed data. 

 

4. Obtain the eigenvectors by solving for ib  in 

 iI  Sxbi  0   #   
 

for each eigenvalue. Eigenvectors should be normalized and linearly independent. 

 

5. The transformation matrix B  is obtained by considering the eigenvectors as their 

columns. 

 

6. Obtain the transform features by computing .T

y xf f B  The new features are 

linearly independent. 
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7. For classification applications, select the features with large values of .i i  

measures the variance and features that have large range of values will have large 

variance. 

 

8. To reduce the dimensionality of the new feature vectors, the components of i    

are set to zero. Features in the original data space can be obtained by .T T T

x yf B f  

 

2.2 Quadratic Classifier 

One standard approach to a supervised classification problem is the Quadratic 

Discriminant Analysis (QDA). It models the likelihood of each class as a Gaussian 

distribution, then uses the posterior distributions to estimate the class for a given test 

point [20]. The QDC is based on Bayes's rule [21] and [8]. For M pattern classes, the 

multivariate normal density function is governed by 

px/ci  1

2n/2 |Si |
1/2

exp 1
2
x  x iTSi

1x  x i,   #   

 

for 1,2,..., ,i M  where each density is specified by the mean vector ix  and covariance 

matrix
iS of the class. They are defined as 

 ,i ix E x  

and 

Si  Eix  x ix  x iT.   #   
 

{}iE   denotes the expectation operator over the patterns of class .ic  The covariance 

matrix iS
 
is symmetric and positive semi-definite. The diagonal element kks

 
is the 

variance of the thk  element of the pattern vectors. The off-diagonal element jks
 
is the 
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covariance of 
jx
 
and .kx  When 

jx
 
and kx

 
are statistically independent, 0.jks   The 

decision function for class ic
 
may be chosen as 

ln ( ) ln[ ( / ) ( )].i i iD x p x c p c  

Then 

( ) ln[ ( / ) ( )] ln ( / ) ln ( ).i i i i id x p x c p c p x c p c    

Substituting the equations above, we have 

1( ) ln 2 0.5ln 0.5( ) ( ) ln ( ).
2

T

i i i i i i

n
d x S x x S x x p c         

Since the term 
2
ln 2n   does not depend on ,i  it can be eliminated from the expression to 

yield 

1( ) 0.5ln 0.5( ) ( ) ln ( ).T

i i i i i id x S x x S x x p c       

The above equations were used in computing the quadratic decision boundary for the 

quadratic classifier. 

 

2.3 Neural Network Classifier 

     In [22], Wei et al. presented a novel method of vehicle classification using 

vertices and their topological structure as feature vectors and adopted the multi-layer 

perceptron network (MLPN) to recognize vehicles. Experimental results gave over 91% 

success rates for the neural network classifier used. In [23], Abdullah et al. used Forward 

Scattering Radar (FSR) data to automatically classify vehicles into one of three 

categories; namely, “small vehicle”, “medium vehicle” and “large vehicle”. They used 

the vehicle length as a feature for a back-propagation neural network and achieved good 
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classification. These and many other works emphasize the uniqueness and the ability of 

the neural network classifier to accurately classify vehicle signatures.  

     An artificial neural network is a network of artificial neurons that are connected 

through synapses or weights. It is primarily based on the emulation of our biological 

neural system. Warren McCulloch, a neuro-physiologist, and Walter Pittsit, a 

mathematician, began the pioneering work in artificial neural network in 1943 [24]. They 

composed a theme on the working of neurons and used electrical circuits to model neural 

networks. Work in neural network was motivated by the way the brain performs a 

particular function. Sumathi et al. have estimated that the human brain has about 10 

billion neurons. Each of these neurons can connect up to about 200,000 other neurons.

 The neuron is the basic processing element of a neural network. Figure 2.1 shows 

an artificial neuron with input and output elements, and processing functions. From 

Figure 2.1, the three basic elements we can identify are: 

1. A set of input elements 
jx  multiplying connecting links characterized by a weight  

.kjw  

 

2. An Adder that performs a linear combination of the input elements, weighted by 

the respective synapses of the neuron. 

 

3. An activation function that limits the amplitude of the output of the neuron to a 

permissive range of either [0 1] or [-1 1]. The most common activation function is 

the sigmoid function. 

 

From Figure 2.1, initial weights kjw  are randomly chosen. These weights are updated 

until the network converges. 



 

 10 
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1x

2x

mx

1kw
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Output
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Figure 2.1.  A nonlinear model of a neuron 

 

 

 

 

In [25], Latha et al. used the back propagation neural network for face 

recognition. In our work, we implemented the multilayer feedforward network with the 

back propagation learning algorithm in Matlab. Two hidden layers were used. Figure 2.2 

shows the multilayer feedforward network with the input layer denoted by ix , the hidden 

layer ih  and the output layer io . 

 

 

 
Hidden layerInput layer Output layer

1x

2x

nx

1o

2o

ko
mh
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1h

 

Figure 2.2.  Multilayer feed forward network  
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CHAPTER 3 

DATA-COLLECTION METHODOLOGY 

 

3.1 Survey of Data collection sites 

     A survey was conducted by visiting a number of sites for the data collection 

process. The sites are: 

1. Walmart shopping centers located at Wendover Avenue and at East Cone 

Boulevard in Greensboro, NC. 

 

2. Two different highway exits on I40 East. 

3. Best Buy located on South 40 Drive, Greensboro, NC. 

     The Walmart shopping centers had lots of vehicular activities. There were also 

lots of human activities such as the pushing of shopping carts, loitering and chatting by 

shoppers. These activities generated a lot of noise. The two Walmart shopping centers 

were therefore not suitable for data collection. Furthermore, high speeding vehicles on 

the I40 East highway also generated very loud noises. The exits on the I40 East highway 

were therefore not suitable for the data collection. 

     The back of Best Buy shopping center has a lot of vehicular activity. It serves as 

the entry and exit point to Best Buy. It is free from the noise generated due to the pushing 

of shopping carts because all the shopping carts are left at the parking lot which is in 

front of the Best Buy building. There is also very minimal loitering and chatting about as 

compared to the entrance of the building. It was therefore more reasonable to do the data 

collection at the back of the Best Buy building. Figure 3.1 shows the layout at the Best 
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Buy site for the data collection. The layout shows the parking lot in front of the entrance 

where all the carts are left. It also shows the position where the data collection process 

was undertaken. 
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Figure 3.1.  Site layout for data collection exercise 

 

 

 

 

3.2 Instrument Setup 

As shown in Figure 3.2, two microphones were mounted on two different tripods 

and connected to an AudioBox. The AudioBox was then connected to the USB port of a 

laptop. The accelerometer was bolted to a steel plate and connected to the second USB 
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port of the same laptop. The accelerometer was placed on the road from a distance of 

about 3 feet away from the path of moving vehicles. Acoustic gel was applied between 

the area of contact of the accelerometer and the road for good conductivity. One 

microphone was placed near the accelerometer and the other about 25 feet away. 

     A mark was drawn on the road 30 feet away from each microphone. These marks 

helped in determining when to start the recording and at what point to stop. The total 

distance between the marked portions on the road was 85 feet. Figure 3.3 shows the chalk 

markings on the street. Vehicle sounds and vibrations of different moving cars have been 

recorded for this study using the setups shown in Figure 3.2 and Figure 3.3. 

 

 

 

Audiobox

Microphone

Laptop

Accelerometer

25 feet

 

Figure 3.2.  Instrument setup for data collection 
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Figure 3.3.  Chalk markings on the street 

 

 

 

 

3.3 Description and some technical specifications of instruments used 

     Two microphones, a USB powered AudioBox and a triaxial accelerometer have 

been purchased and tested for the data collection. The first microphone is an AT2020 

Cardioid [26] condenser microphone with a custom-engineered 16 mm low-mass 

diaphragm. It provides an extended frequency response ranging from 20 Hz to 20 kHz 

with superior transient response. The second microphone is a Shure SM81 [27] condenser 

microphone with the same frequency response as the first. It has low noise characteristics 

with a signal to noise ratio of 78 dB at 94 dB SPL. It also has low radio-frequency 

susceptibility. 

     The AudioBox is an audio recording interface with two microphone inputs. It has 

a 48 volts dc phantom power that is used in powering the microphones. It has microphone 

preamps with frequency supply ranging from 14 Hz to 70 kHz (-3 to 3 dB) and delivers 
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low noise with high gain to give pure and rich sound signals. It uses a professional-grade 

analog-to-digital converter with a dynamic range of 102 dB and 24-bit sample rate so that 

the digital conversion is big and quiet making it one of the best sounding USB bus-

powered interfaces. The AudioBox has a sampling rate of 44100 Hz. It comes with 

Studio One software, which is used for recording purposes. It is worth noting that the 

microphones and the AudioBox device are able to operate below frequencies of 100 Hz 

and above 10 kHz. The significance of this is to ensure that signals useful for 

classification within these stated ranges are not omitted. 

     The CX1 [28] sensor device combines accelerometer, inclinometer and 

temperature sensors into one small sensing module. It measures acceleration in the x, y 

and z directions (triaxial). It has a range of -1.5 to 1.5 g. 1 g is a unit of acceleration equal 

to the earth's gravity at sea level, where 1g=9.8 m/s². The sampling rate for the 

accelerometer is 2000 Hz. The inclinometer sensors enable the CX1 to measure tilt 

positions. Its sensitivity to tilt which is also known as resolution is 10⁻⁵g. The CX1 

sensor device comes with SensrView software for capturing the acceleration, tilt and 

temperature values of objects. Accelerometers can be used to measure vibration on cars, 

machines and buildings. Seismic activity can also be measured using accelerometers. The 

CX1 accelerometer was used in measuring the vibration due to the movement of vehicles. 

Figure 3.4 shows the software interfaces for Studio One (left) and SensrView (right) 

softwares. The SensrView software has the capability of displaying the root mean square 

values of signals at different frequencies. 
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Figure 3.4.  Studio One and SensrView software 

 

 

 

 

3.4 Acoustic and Seismic Database 

 

In the selection of an appropriate site for this data collection exercise we ensured 

that: 

1. The site had a low level of noise and was significantly free from other forms of 

interference. Exits of highways were avoided because fast moving vehicles 

produced loud car noise that was a major source of interference. 

 

2. The site had a low level of noise and was significantly free from other forms of 

interference. Exits of highways were avoided because fast moving vehicles 

produced loud car noise that was a major source of interference. 

 

3. Vehicles whose signals were measured were sufficiently isolated thus avoiding 

the collection of sound generated from several vehicles at the same time 

 

4. Vehicle speeds were in the range of 5-15 miles per hour in order to reduce 

Doppler effect between the two acoustic devices. 
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5. The wind effect was minimized, thus data collection was done on days that 

ambient wind speed was roughly 2 miles per hour. 

 

      Figure 3.5 shows the process for the creation of the database. Raw accelerometer 

data was recorded on the hard drive of the laptop shown in Figure 3.2 earlier. SensrView 

software was then used in converting the raw accelerometer data to a comma separated 

value (•csv) file format which is readable by Matlab. In the case of the acoustic signals, 

Studio One software was used in converting the raw acoustic signal to a •wav file. This 

format is also readable by Matlab. 
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Accelerometer 

Data

Raw Acoustic 

Data
WAV Format

Acoustic and 
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Figure 3.5.  Process for database creation 

 

 

 

 

About 860 vehicle sounds were collected for each microphone and the 

accelerometer. Toyota cars accounted for the largest percentage (14.30%) of vehicle 

sound data that was gathered. This percentage includes brands like Avalon, Corolla, 
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Camry and so forth. Ford cars were the second largest with a total of 12.81%. Figure 3.6 

is a pie chart of the distribution of vehicles in the database. 

 

 

 

 

Figure 3.6.  Pie chart of the distribution of different vehicle types 

 

 

 

 

3.5 Acoustic and Seismic signal pre-processing for spectral features 

The vehicles whose signals were collected were either moving toward or away 

from a fixed set of recording microphones. The vehicles could also be either accelerating 

or decelerating and therefore making their signals generally not stationary. Thus, the 
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acoustic signals of the vehicles are largely non-stationary [29] over a given time frame. It 

is therefore necessary to consider the effect of Doppler frequency shift. 

Let v  be the Doppler frequency shift, v  the original frequency, V  the vehicle 

travelling speed, and c  the speed of propagation of sound in air (343.4 m/s), then  

.v V
v c
   

Assuming the vehicles move at a speed of 15 mi/h (25 km/h), then the Doppler shift is 

given by  

25000

3600
 1

343.4
 100  2.0223%.  

The resulting Doppler shift is ±2.0223%, which is less than 5%, and can be assumed 

negligible. Thus, the acoustic signals can be reasonably modeled under stationary 

conditions when the signals are segmented in short time durations with an overlap.  

Figure 3.7 shows 3 seconds of a digitized acoustic signal sampled at 44100 Hz. 

The signal is segmented into short time durations with 50% overlap. The choice of the 

50% overlap is arbitrary. It must however be reasonable enough to ensure that the signal 

is modeled under stationary conditions. The acoustic signal is normalized to zero-mean to 

remove any direct current (dc) bias. Figure 3.7 also shows that a 3 seconds signal 

segmented at 1 second interval with 50% overlap produces 5 short frames of the signal. 

Similarly, a seismic signal of 3 seconds duration, segmented at 1 second interval with 

50% overlap and sampled at 2000 Hz produces 5 short frames. The seismic signal is also 

normalized to remove any dc bias. The spectral features were computed for each segment 

of signal and used as attribute in this work.  
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Figure 3.7.  Signal segments with 50% overlap  

. 

 

3.6 Features used for classification 

The process in which raw acoustic/seismic data is transformed into data that can 

be used as input to a classifier is called feature extraction. One commonly known feature 

extraction method is the wavelet transform which gained widespread application with the 

development of Daubechies [30]. Another frequency domain feature extraction method is 

the Fast Fourier Transform. In [1], new and efficient features for vehicle classification 

using various concepts were developed. Tristimulus features for example, were 

developed based on concepts from music theory. There was special emphasis on the 

isolation of tonal components related to the engine Revolution Per Minute (RPM) and the 

need for the robust estimation of the fundamental frequency that is free of integer 

ambiguity. There was also a discussion on the extraction of spectral features from 
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acoustic data. Investigations indicated that vehicle sounds were rich enough to distinguish 

two different cars using spectral and tristimulus features. In this work, the newly 

developed and efficient features are applied to a large database of vehicle sounds. 

Table 3.1 shows the data structure of meaningful features for the problem of 

vehicle classification. These features can be grouped as spectral shape features, harmonic 

features and energy features. Some of the spectral features are spectrum centroid, 

spectrum spread, the spectrum skewness and spectrum kurtosis. Features dependent on 

fundamental frequencies are tristimulus features. The energy features indicate both the 

harmonic and non-harmonic energy content. 

 

 

 

Table 3.1.  Data structure of features in the database 

Spectral Shape Features spec.cent Spectral centroid 

spec.spread Spectral spread 

spec.skew Spectral skewness 

spec.kurt Spectral kurtosis 

Harmonic Features harm.f0 Fundamental frequency 

harm.tristimulus Tristimulus 

harm.inharmonicity Inharmonicity 

Energy Features energy.tot Total energy 

energy.harm Harmonic energy 

energy.inharm Non-harmonic energy 
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CHAPTER 4 

ACOUSTIC AND SEISMIC FEATURE COMPUTATION 

 

4.1 Mathematical computation of spectral features  

     Figure 4.1 shows the general approach we adopted in computing different 

spectral shape features. Each 3 seconds seismic/acoustic signal was segmented and the 

Power Spectral Density (PSD) calculated. The PSD describes how the energy of a signal 

is distributed with frequency. There are many methods for the computation of the PSD of 

a signal. For instance we have the following fundamentally different approaches: 

1. Parametric methods, i.e., Burg, Covariance and Yule-Walker [31]; 

2. Non-parametric method such as FFT and Welch [32] and [33]. 

3. Subspace methods, i.e., eigenvector and Multiple Signal Classification (MUSIC) 

[34]. 

 

Spectral features computed using each of the above power density computation 

methods may be different and the differences can be exploited in the classification. This 

richness will be pursued in future work. The Welch method was used in computing the 

power spectral density of the vehicle sounds. The Welch method for evaluating the power 

spectrum divides the data equally in several possibly overlapping segments and performs 

a Fast Fourier Transform (FFT) on each segment. Any remaining entry in the data that 

cannot be included in the segment of equal length is discarded. It then computes the 

average spectra of the segments. In this work, we used the Hamming window with a 50% 

overlap. 
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Figure 4.1.  General approach to the computation of spectral features 

  

 

 

 

The mathematical model used in the computation of the spectral features for both 

the seismic and acoustic signals is presented. The dependence of the spectral features on 

Doppler shift [1] is also discussed. For a given signal ( )x t , the energy, ,E  is given by 

E  


pxd   #   
 

where Ω is the frequency domain support on which ( )  max ( ) .x xp p    Limiting Ω is 

crucial to alleviating the effect of noise and to make the features more reliable. The 

spectral centroid is the center of mass of the PSD ( )xp   of the signal ( )x t : 

x 


pxd

E
,   #   

 

where ω is the frequency. A car moving with a radial velocity v  with respect to the 

microphone, and emitting a tone of frequency ,  produces a tone whose frequency   

undergoes a Doppler shift equal to /v c  where c  is the speed of sound. Hence the 

measured PSD is approximately      ˆ / .x x xp p p v c       
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We define /v c   and 1 .    For a car moving at 80Km/hr, 

80000/3600
320

6.94%     and 1.0694.   The statistics of the measured spectrum are 

related to those of the emitted spectrum through the scaling factor .  For instance, 


0


p xd  

0


pxd  

0


pxd/

 1
 

0


px  d .

 

The first moment of the measured spectrum is 


0


p xd  

0


pxd

 1

2


0


pxd

 1

2


0


 px  d ,

 

Thus, the measured centroid is related to the emitted one like 

2

1

1

( )ˆ ( ) 1
ˆ .

ˆ ( ) ( )

xx
x x

x x

p dp d

p d p d





    
 

    

  
  

  
 

 The spectral spread is the spread of the spectrum around its mean value. The 

variance of the spectrum is 

2 


  2pxd

E
.   #   

 

The effect of the Doppler shift is given by  

2 21
ˆ ˆ ˆ( ) . ( )x xp d

E
       
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2

2

2 2

2 3

1
ˆ . ( )

1 1
( ) . ( ) / .

x
x

x x

p d
E

p d
E


   



     
 

 
  

 
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



 

The standard deviation normalized by the centroid is then given by the nondimensional 

quantity 

1 2ˆ .


 


  

The spectral skewness is the asymmetry of a distribution around its mean. It can 

be computed by starting with the moment or cumulant, 

m3 


  3pxd

E
.   #   

 

The Doppler shift effect is 

3

3

3

3

33 4

1 1
ˆ ˆ ˆ( ) . ( ) . ( )

1 1
( ) . ( ) / .

x
x x

x x

m p d p d
E E

p d m
E


      



    
 

 
    

 

    

 



 

The nondimensional skewness is the ratio 

 1  m 3

 3
 4m3

3/23
  m3

3
 1 .   #   

 

Kurtosis is the ratio of the fourth-order central moment to the square of a second 

order central moment [11]. The spectral kurtosis of a signal is the kurtosis of its 

frequency components [35]. It measures the flatness of a distribution around its mean 

value and can be computed from the 4
th

 order moment about the mean defined as 
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4

4

( ) ( )
,xp d

m
E

   



  

and the Doppler shift effect is 

4

4

4

4

44 5

1 1
ˆ ˆ ˆ( ) . ( ) . ( )

1 1
( ) . ( ) / .

x
x x

x x

m p d p d
E E

p d m
E


      



    
 

 
    

 
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

 

The perceived nondimensional kurtosis is given by:  

 

5

4 4 4
2 244 43/2

ˆ
ˆ .

ˆ

m m m
  

  




     

The spectral features were computed using the equations above. The Doppler shift effect 

was small in the experiments we conducted since the vehicles were moving at slow 

speeds. The Doppler shift will be important for fast moving vehicles (on highways). The 

sections that follow show the graphical representations of these features over the 

segments. 

 

4.2 Seismic spectral feature representation 

     Figure 4.2 and Figure 4.3 show the spectral features of same branded cars for the 

accelerometer data. Figure 4.2 shows the plot of the spectral kurtosis versus the spectral 

skewness for all windowed segments of 2 Nissan Altimas. The mean of the skewness for 

the first car is 0.3960 and the mean of the kurtosis is 2.4389. For the second Nissan 

Altima, the mean of the skewness is 0.4931 and the mean of the kurtosis is 2.3727. The 

average of the skewness-kurtosis for the two cars is very close.  
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Figure 4.2.  Seismic spectral shape statistics for two Altimas 

 

 

 

 

  Figure 4.3 shows the spectral features of all windowed segments of seismic 

signals for two Toyota Camrys. The spectral representation of different segments of 

Camry 3 is indicated by the number „3‟ and the number „4‟ show the distribution of the 

different segments of Camry 4. The mean of the skewness for Camry 3 is -1.2577 and the 

mean of the kurtosis is 4.6457. The mean of the skewness of Camry 4 is -0.9710 and the 

mean of its kurtosis is 3.4720. From Figure 4.2 and Figure 4.3, the distribution of the 

skewness-kurtosis for all segments is fairly clustered around the means.  
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Figure 4.3.  Seismic spectral features for two Camrys 

 

 

 

 

4.3 Acoustic spectral feature representation 

     In Figure 4.4, Figure 4.5 and Figure 4.6, the spectral features for the acoustic 

signals are compared. Figure 4.4 shows the plot of the spectral features for 2 Nissan 

Altimas. The mean skewness of Altima 1 is 2.6474 and the mean of the kurtosis is 

11.5118. The mean skewness of Altima 2 is 2.6653 and the mean of the kurtosis is 

13.0882. Figure 4.5 shows a mean skewness of 1.1514 and a mean kurtosis of 4.6048 for 

Camry 3. Camry 4 has a mean skewness of 0.9729 and a mean kurtosis value of 4.4901. 
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Figure 4.4.  Acoustic shape statistics for two Altima cars 

 

 

 

Figure 4.5.  Acoustic shape statistics for two Camry cars 

1.5 2 2.5 3 3.5
0

5

10

15

20

25

1

1 1
1

11 1

1

1

1
1

2

2

2
2

2

2

2

2

2

2

skewness

ku
rt

o
si

s

Acoustic shape statistics for two Altima cars

 

 

Altima 1

Altima 2

Mean 1

Mean 2

0 0.5 1 1.5 2 2.5 3
2

4

6

8

10

12

14

16

3

3

3
3

3 3
3

3

33

3

4

4
4

4
4

4

4
4

4 4

4

skewness

k
u

rt
o

s
is

Acoustic shape statistics for two Camry cars

 

 

Camry 3

Camry 4

Mean 3

Mean 4



 

 30 

Figure 4.6 shows a cluster of the segments of the spectral values for 2 Accords. 

The segments of vehicle sounds from the first and second Accords are represented by „5‟ 

and „6‟ respectively. For Accord 5, the average skewness is 0.2356 and the average 

kurtosis is 2.6429. It also shows an average skewness of 0.3754 and average kurtosis of 

3.4540 for Accord 6. Clearly, the mean of the spectral skewness and spectral kurtosis are 

close for same branded cars.  

 

 

 

 

Figure 4.6.  Acoustic shape statistics for two Accord cars 
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Figure 4.7 compares the spectral skewness-kurtosis of different branded cars for 

the microphone signals. Segments of Accord vehicle sound are represented as „1‟, Altima 

is represented by „2‟ and Camry is „3‟. The spectral means have been computed and 

indicated in Figure 4.7 . The statistical means of the spectral skewness-kurtosis are quite 

different for the 3 different cars. The relationships that exist in the spectral features using 

the mean-skewness and mean-kurtosis for several vehicle sounds are investigated in the 

next chapter. 

 

 

 

 

Figure 4.7.  Acoustic shape statistics for three different cars 
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CHAPTER 5 

ACOUSTIC SPECTRAL SUPER FEATURE EXTRACTION 

 

After computing the features, further processing is usually required to extract 

more abstract features with a stronger classification power. Indeed, there are many 

algorithms for obtaining these super features. Entropy minimization and divergence 

maximization are just but a few of feature selection algorithms. In this work, two simple 

processes for extracting more powerful features are adopted. First, the use of descriptive 

statistics such as the average of the spectral features is considered. Secondly, a dimension 

reduction technique such as PCA is applied to the spectral features to find the 

relationships within the dataset. 

 

5.1 Statistical analysis of spectral features from the database  

The statistics of vehicle sounds are somewhat nonstationary and hence it is often 

beneficial to average the spectral features over the signal segments. Figure 5.1 shows the 

general approach adopted in exploring the mean spectral features as input to different 

classifiers. The mean skewness vs. the mean kurtosis for different brands of vehicles is 

represented graphically. Figure 5.2 shows the mean-skewness vs. mean-kurtosis for 24 

Kias and 29 Mazdas. Figure 5.3 shows the mean-skewness vs. mean-kurtosis for 14 

Corollas and 14 Maximas. Figure 5.4 shows the mean-skewness vs. mean-kurtosis for 21 

Civics and 14 Maximas. Figure 5.5 shows the mean-skewness vs. mean-kurtosis for 39 

Chevrolets, 33 Camrys and 34 Accords. 



 

 33 

Spectral 

features of 

segments 

Mean of 

Spectral 

Features

Application of 

Classifiers

Performance 

of Classifiers

 

Figure 5.1.  Use of spectral means as input to a classifier 

 

 

 

Figure 5.2.  Mean skewness vs. mean kurtosis for Kia and Mazda 
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Figure 5.3.  Mean skewness vs. mean kurtosis for Corolla and Maxima 

 

 

 

 

 

Figure 5.4.  Mean skewness vs. mean kurtosis for Civic and Maxima 
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Figure 5.5.  Mean skewness vs. mean kurtosis for Chevrolet, Camry and Accord 

 

 

 

We also plot the mean-skewness vs. mean-kurtosis for vehicle sounds from the 

same manufacturer. Figure 5.6 shows the mean spectral representation for 21 Civics and 

34 Accords. The Civics are denoted by „red squares‟ and the Accords denoted by „blue 

asterisks‟. Figure 5.7 shows the mean spectral representation for 14 Corollas and 33 

Camrys. The Corollas are denoted by „red squares‟ and the Camrys are denoted by „blue 

asterisks‟. From Figure 5.6 and Figure 5.7, there is an overlap of the mean spectral 

features for vehicle sounds from the same manufacturer. Figure 5.8 shows the plot for a 

5-class scenario for vehicle sounds from different manufacturers. Generally, these 

spectral features overlap. Therefore, additional processing is needed to obtain better 

"super" features. We use PCA to obtain these “super” features. 
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Figure 5.6.  Mean spectral features for Civic and Accord 

 

 

 

 

 

Figure 5.7.  Mean spectral features for Corolla and Camry 
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Figure 5.8.  Mean spectral features for a 5-class scenario 

   

 

 

 

5.2 PCA analysis of spectral features from the database 

         Mathematically, PCA is considered an eigenproblem [19] applied to the 

covariance matrix ,T

x x xS f f  computed from the collection of feature vectors for the 

different instances. The transformed "super” features are computed as ,y Bx where B  

is the transformed matrix derived from the eigenvalue problem. Only the few dominant 

super features are retained. The first 4 dominant super features are retained in this work. 

The dominant super features are called principal components. 
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     Figure 5.9 shows the procedure we used in applying PCA to the spectral features 

from the database. The spectral skewness and spectral kurtosis were computed over 

several segments for each signal. Hence for a single vehicle, the feature vector has 20 

elements, 10 skewness values for 10 segments and 10 values for kurtosis. Fifty elements 

are used when the tristimulus is included. PCA was then applied to the combined 

segments of the skewness-kurtosis and the dimensionality reduced such that the principal 

components retained over 90% of the information contained in the spectral features. 
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Figure 5.9.  Use of PCA for feature dimension reduction 

 

 

 

 

Table 5.1 shows the principal components of different vehicle sounds in terms of 

the percentage variance (Var. %) and the percentage cumulative variance (Cum. Var. %).  

The percentage cumulative variance for the first four principal components for Civic is 

94.15% and the „OTHERS‟ account for 5.86%. Similarly, Maxima records 98.91% for 

the first four principal components of the percentage cumulative variance and 1.12% for 

the „OTHERS‟. From Table 5.1, the cumulative variance of the first four dominant 

principal components account for more than 90% of the total variance in all the cases 
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considered. This means that the first 4 principal components explain more than 90% of 

the spectrum and hence are retained. Hence for a single vehicle sound, the feature vector 

has 20 elements. The elements are made up of ten skewness values for 10 segments of the 

vehicle sound and 10 values for kurtosis. 

 

 

 

Table 5.1.  Principal Components of different vehicle sounds 

 

1
ST

  PC 2
ND

  PC 3
RD

 PC 4
TH

 PC OTHERS 

Civic 

Var. (%) 46.04 26.78 12.41 8.92 5.86 

Cum. Var (%) 46.04 72.82 85.23 94.15 100 

Maxima 

Var. (%) 43.33 34.81 17.84 2.93 1.12 

Cum. Var (%) 43.33 78.14 95.98 98.91 100 

Accord 

Var. (%) 61.26 21.51 8.33 4.49 4.43 

Cum. Var (%) 61.26 82.77 91.1 95.59 100 

Camry 

Var. (%) 38.64 35.59 14.86 6.07 4.85 

Cum. Var (%) 38.64 74.23 89.09 95.16 100 

Kia 

Var. (%) 55.34 23.18 9.91 5.49 6.08 

Cum. Var (%) 55.34 78.52 88.43 93.92 100 

Mazda 

Var. (%) 57.27 24.48 12.04 4.6 1.61 

Cum. Var (%) 57.27 81.75 93.79 98.39 100 

Corolla 

Var. (%) 51.4 25.37 10.11 7.74 5.38 

Cum. Var (%) 51.4 76.77 86.88 94.62 100 
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The scatter plots of the first two principal components for different brands of 

vehicles are shown in Figure 5.10, Figure 5.11, Figure 5.12, Figure 5.13 and Figure 5.14 

where different car models exhibit significantly different patterns. For instance, Figure 

5.10 shows the 1
st
 and 2

nd
 principal components of the spectral features for Civic and 

Maxima. Similarly, Figure 5.11 shows the 1
st
 and 2

nd
 principal components of the spectral 

features for Kia and Mazda. Comparing these figures to their counterpart mean spectral 

features, it is clear that the mean spectral features have significantly more overlap and 

hence little discerning powers. These identifiable patterns are explored in classification 

using the quadratic classifier and also the artificial neural network classifier in chapter 7. 

 

 

 

 

Figure 5.10.  1st and 2nd PCs of spectral features for Civic and Maxima 
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Figure 5.11.  1st and 2nd PCs of spectral features for Kia and Mazda 

 

 

 

 

 
 

Figure 5.12.  1st and 2nd PCs of spectral features for Corolla and Maxima 
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Figure 5.13.  1st and 2nd PCs of spectral features for Chevrolet, Camry and Accord 

 

 

.  

Figure 5.14.  1st and 2nd PCs of spectral features for a 5-class case  
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CHAPTER 6 

TRISTIMULUS FEATURES 
 

In [1], several physical phenomena relevant to the problem of acoustic vehicle 

classification were identified. The sound due to explosion pulses for instance produces 

periodic spectral components. The belt and gear mechanisms may also produce several 

quasi periodic frequencies in the spectrum of the engine sound. These and many other 

reasons clearly emphasize the need for a robust estimation for the fundamental frequency 

of vehicle engine sound. In this chapter, the tristimulus features for two different brands 

of vehicles sounds (e.g., Civic and Altima) are computed based on their fundamental 

frequency.  

 

6.1 Fundamental frequency computation 

    In estimating the fundamental frequency of vehicle sounds, three different 

algorithms were used. The fundamental frequency estimation algorithms used are the 

Yin, the auto-correlation and angles of the poles of the Burg filter. The vehicle sound was 

segmented into 0.2 second frames with 0.05 second overlap. For the first segment, the 

first peak was found from the PSD Burg. Assume this peak is at 0.f  Then for each 

segment: 

1. Window a signal segment using a Hamming window. 

2. Using the Auto-correlation, Yin and poles of the Burg filter methods, search for 

an estimate of 0f  within ±20% of the previous estimate. All these methods can 

have parameters that depend on the most recent estimate of 0.f  
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3. Then the intermediate average of the 
0f  estimates will be 

f0i  0.3f0Auto  0.4f0Burg  0.3f0Yin .   #   
 

4. Smooth the time-variations of 
0f  according to 

f0new  0.2f0i  0.8f0previous.   #   
 

5. Based on the 0f  update the parameters for auto-correlation, Yin and Burg 

methods for the next segment. 

 

Figure 6.1 shows the power spectral density for Altima. An initial peak of 60.39 

Hz was observed. This initial peak is assumed to be the fundamental frequency, f0 . 

Using the auto-correlation, Yin and Burg methods, the 0f  for each segment was 

computed to arrive at a smoothed version of 0f . Figure 6.2 shows the 0f  for different 

segments using the three algorithms. It also shows the smoothed 0f  for the same Altima 

vehicle sound used in Figure 6.1. From Figure 6.1 and Figure 6.2, the initial fundamental 

frequency observed from the PSD method is quite consistent with the smoothed 0f  from 

the auto-correlation, Yin and Burg methods. 

     Figure 6.3 shows the power spectral density for Corolla. The initial 0f  is observed 

to be 103 Hz. Using the same approach as described above, the 0f  for different segments 

was found using the auto-correlation, Yin and Burg methods. Figure 6.4 shows the 0f s 

using the three different methods and the smoothed 0f  for the same Corolla vehicle 

sound used in Figure 6.3. The results shown in Figure 6.3 and Figure 6.4 are consistent. 
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Figure 6.1.  Power spectral density for Altima sound 

 

 

 

 

 

Figure 6.2.  Fundamental frequencies using 3 methods 
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Figure 6.3.  Power spectral density of Corolla sound 

 

 

 

 

 
Figure 6.4.  Fundamental frequencies for Corolla 
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6.2 Computation of Tristimulus features from the database 

      Tristimulus features give an indication of the mixture of harmonics in the sound 

by grouping the harmonics into three categories called stimuli. The first tristimulus 

calculates the relative weight of the first harmonic; the second tristimulus calculates the 

relative weight of the 2
nd

, 3
rd

, and 4
th

 harmonics combined; and the third tristimulus 

calculates the relative weight of all the remaining harmonics. We computed the 

tristimulus based on the distribution of energy among the different harmonics using the 

equations: 

    
T1  1

E
RMSF0   #   

 

    
T2  1

E
RMS2F0 , 3F0 , 4F0   #   

 

    3 0 0 0

1
{5 ,6 ,7 ,...}T RMS F F F

E
  

where { , ,...}i jE RMS F F  denotes the RMS (square root of the energy) of the signal 

made of the sum of the tones at the pitches , ,....i jF F  

     Figure 6.5 shows the tristimulus diagram for 2 Civic vehicle sounds over several 

segments. The distribution of the tristimulus for the 1
st
 Civic vehicle sound is denoted by 

„1‟ and „2‟ for the 2
nd

 Civic vehicle sound. Similarly, Figure 6.6 shows the tristimulus 

diagram for 2 Altima vehicle sounds. The distribution of the tristimulus for the 2 Altimas 

is denoted by „3‟ and „4‟. The average of the tristimulus for each vehicle sound is 

different. The results from the tristimulus diagrams illustrate the usefulness of these 

features and therefore the tristimulus features can be used for classification. 
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Figure 6.5.  Tristimulus diagram for 2 Civic sounds 

 

  

 

Figure 6.6.  Tristimulus diagram for 2 Altima sounds 
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CHAPTER 7 

RESULTS FROM CLASSIFICATION 

 

7.1 Results from the quadratic classifier 

     In classification problems, we are usually interested in the test error, which is the 

expected prediction error on an independent set. The stratified 3-fold cross-validation was 

used in our work. The stratified 3-fold cross-validation randomly divides the data into 3 

disjoint subsets of roughly equal size. Moreover, same-class proportions (e.g. ratio of 

Toyotas to Nissans) are roughly preserved in each of the sets as in the data to be 

classified. During the 3-fold cross-validation, one subset is removed and the rest two are 

used for training (including the minimization of classification error). The trained model is 

then used to classify the previously removed data set. This process is repeated for the 

next two. For instance, for 3 data sets A, B, and C of equal sizes, the optimization of the 

classifiers is performed in 3 stages. In the first, the data in A and B are used for training 

while C is used for post validation. Then the datasets A and C are used for training while 

B is used for testing and so forth. Then the discriminating functions are combined into 

one classifier whose performance is the unbiased average of the performance of the 

individual classifiers. 

     Data from our database was used to perform some two-class classifications using 

the stratified 3-fold cross-validation quadratic classifier. The performance of the 

quadratic classifier using the mean spectral features and the principal components of the 

spectral features were evaluated and compared. The confusion matrices for different 
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cases of two-class classifications are shown in the tables that follow. Table 7.1 shows the 

confusion matrix for Civic and Maxima. There were 21 Civics and 14 Maximas. Nine (9) 

Civics were misclassified as Maximas and 3 Maximas were misclassified as Civic. 

Twelve (12) Civics were correctly classified and 11 Maximas were correctly classified. 

     Table 7.2 shows the confusion matrix for Corolla and Maxima. There were 14 

Corollas and 14 Maximas. Two (2) Corollas were misclassified as Maxima and 4 

Maximas were misclassified as Corolla. Twelve (12) out of 14 Corollas were correctly 

classified and 10 out of 14 Maximas were correctly classified. Table 7.3 shows the 

confusion matrix for Accord and Camry. We used 34 Accords and 33 Camrys. Seven (7) 

Accords were misclassified and 19 Camrys were misclassified. Twenty-seven (27) 

Accords were correctly classified and 14 Camrys were correctly classified. 

     Table 7.4 shows the confusion matrix for Kia and Mazda. Out of 24 Kias, 19 were 

correctly classified and 5 misclassified as Mazda. Nine (9) Mazdas were misclassified as 

Kia. Twenty (20) out of 29 Mazdas were correctly classified. A summary of results using 

the mean spectral features and the principal components of the spectral features as input 

to the 3-fold stratified quadratic classifier can be seen in Table 7.5. For instance, from 

Table 7.5, the success rate using the mean spectral features and the PCA spectral features 

is 65.78% and 77.15% respectively for Civic-Maxima. The classification of Kia and 

Mazda achieved a very low correct classification rate of 54.72% using the mean spectral 

features. Performing PCA on the spectral features improved the correct classification rate 

to 73.58%. From Table 7.5, the quadratic classifier performs better with the principal 

components of the spectral features. 
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Table 7.1.  Confusion matrix for Civic and Maxima 

  Civic Maxima Total 

Civic (Mean spectral features) 12 9 21 

Maxima (Mean spectral features) 3 11 14 

  

 

 

 

Table 7.2.  Confusion matrix for Corolla and Maxima 

  Corolla Maxima Total 

Corolla (Mean spectral features) 12 2 14 

Maxima (Mean spectral features) 4 10 14 

 

 

 

 

Table 7.3.  Confusion matrix for Accord and Camry 

 
Accord Camry Total 

Accord (Mean spectral features) 27 7 34 

Camry (Mean spectral features) 19 14 33 

 

 

 

 

Table 7.4.  Confusion matrix for Kia and Mazda 

 
Kia Mazda Total 

Kia (Mean spectral features) 19 5 24 

Mazda (Mean spectral features) 9 20 29 

 

 

 

 

Table 7.5.  Summary of results from Quadratic Classifier 

2-Class Combination  

SPECTRAL FEATURES 

Mean % PCs % 

Civic-Maxima 65.78 77.15 

Corolla-Maxima 78.58 82.15 

Accord-Camry 61.7 65.67 

Kia-Mazda 54.72 73.58 
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7.2 Results from the neural network classifier 

Neural network classifiers usually exhibit superior performance over other 

classifiers. Neural networks are: 

1. Nonlinear models. The nonlinear functionality of neural networks makes them 

more flexible in classifying complex real work data. 

 

2. Data driven self-adaptive methods which enable them to adjust to the data. 

3. Universal function approximators and thus able to approximate any function. 

     One common problem that occurs during neural network training is data 

overfitting, where the network tends to memorize the training examples without learning 

how to generalize to new situations. The default method for improving generalization is 

called early stopping and consists in dividing the available data set into three subsets. The 

sets are: 

1. Training set, which is used for computing the gradient and updating the network 

weights and biases; 

 

2. Test set, whose error is monitored during the training process. The error tends to 

increase when data is overfitted. The test set ensures that there is no overfitting; 

 

3. Post training evaluation set, whose error can be used to assess the quality of the 

overall models. It serves as a completely independent test to the network 

generalization process. 

 

The neural network model used in matlab, assigns 60% of the data set to the training set, 

20% to the test set and 20% to the post training evaluation set. The confusion matrices 

shown in all the figures in this section are those for the 20% post training evaluation data 

set. 

  In this research effort, the first experimental work using the neural network 

examined the classification of vehicle sounds from the same manufacturer. From Table 
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7.6, 4 Civics and 7 Accords were used for the post training evaluation. From the 

confusion matrix in Figure 7.1, one (1) Accord was misclassified. We obtained 90.9% 

success rate. Similarly, from Table 7.7, 3 Corollas and 6 Camrys were used for the post 

training evaluation. The confusion matrix from Figure 7.2 shows 100% success rates. 

 

 

 

Table 7.6.  Vehicle sounds for testing and training for Civic and Accord 

Vehicle Training Testing 

Post training 

evaluation Total 

Civic 13 4 4 21 

Accord 20 7 7 34 

 

 

 

 
 

Figure 7.1.  Confusion matrix for Civic and Accord 

 



 

 54 

Table 7.7.  Vehicle sounds for training and testing for Corolla and Camry 

Vehicle Training Testing 

Post training 

evaluation Total 

Corolla 8 3 3 14 

Camry 20 7 6 33 

 

 

 

 

 
 

Figure 7.2.  Confusion matrix for Corolla and Camry 

 

 

 

 

 The second experimental work examined the classification of vehicle sounds 

from different manufacturers. From Table 7.8, 4 Civics and 3 Maximas were used for the 

post training evaluation. From Figure 7.3, we recorded a 100% success rate for the 

classification of Civic and Maxima. Similarly, the number of vehicle sounds used for post 
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training evaluation is shown in Table 7.9, Table 7.10 and Table 7.11 for vehicles from 

different manufacturers. In Table 7.9, we used 3 vehicle sounds each for Corolla and 

Maxima for post training evaluation. Three Corollas and 3 Maximas were used for 

testing.  The confusion matrices are shown in Figure 7.4, Figure 7.5 and Figure 7.6. A 

100% success rate was achieved for all the cases considered as shown in the confusion 

matrices in Figure 7.4, Figure 7.5 and Figure 7.6.  

 

 

 

Table 7.8.  Vehicle sounds for training and testing for Civic and Maxima 

Vehicle Training Testing 

Post training 

evaluation Total 

Civic 13 4 4 21 

Maxima 8 3 3 14 

 

 

 

 

 

Figure 7.3.  Confusion matrix for Civic and Maxima 
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Table 7.9.  Vehicle sounds for training and testing for Corolla and Maxima 

Vehicle Training Testing 

Post training 

evaluation Total 

Corolla 8 3 3 14 

Maxima 8 3 3 14 

 

   

 

 

 

 

 

 

Figure 7.4.  Confusion matrix for Corolla and Maxima 

 

 

 



 

 57 

Table 7.10.  Vehicle sounds for training for Accord and Camry 

Vehicle Training Testing 

Post training 

evaluation Total 

Accord 20 7 7 34 

Camry 19 7 7 33 

 

 

 

 

 

 

 

Figure 7.5.  Confusion matrix for Accord and Camry 
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Table 7.11.  Vehicle sounds for training and testing for Chevrolet, Camry and 

Accord 

Vehicle Training Testing 

Post training 

evaluation Total 

Chevrolet 18 6 6 30 

Camry 19 7 7 33 

Accord 18 8 8 34 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7.6.  Confusion matrix for Chevrolet, Camry and Accord 
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    A five-class scenario was also considered. Table 7.12 shows the investigation of a 

5-class problem using the artificial neural network classifier. We used 41 Chevrolets, 21 

Fords, 39 Accords, 33 Camrys and 21 Mazdas. Twenty-five Chevrolets, 11 Fords, 24 

Accords, 19 Camrys and 12 Mazdas were used as training data. Eight Chevrolets, 5 

Fords, 8 Accords 7 Camrys and 5 Mazdas were used for testing data. 

 Figure 7.7 shows the confusion matrix for the post training data set. There was 

zero error classification for all the 8 Chevrolets used in post training evaluation. Out of 5 

Fords, 2 were misclassified as Chevrolet. Out of 7 Camrys, 1 was misclassified as an 

Accord. There was 40% and 14.3% error classification rate for Ford and Camry 

respectively. We achieved an overall success rate of 90.3% with the use of the principal 

components of the spectral features. 

 

 

Table 7.12.  Vehicle sounds for training and testing for a 5-class problem 

Vehicle Training Testing 

Post training 

evaluation Total 

Chevrolet 25 8 8 41 

Ford 11 5 5 21 

Accord 24 8 7 39 

Camry 19 7 7 33 

Mazda 12 5 5 21 
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Figure 7.7.  Confusion matrix for 5-class problem 

 

 

 

 

    The tristimulus features were also used for classification. Figure 7.8 shows a 

100% classification when the tristimulus features are used alone as input to a neural 

network classifier for a two class problem. The result significantly degrades when there 

are more than two classes. We therefore examined the classification of the combined 

spectral and tristimulus features with the application of PCA on a five-class problem. 

Figure 7.9 shows the confusion matrix for the combined spectral and tristimulus features 

with the application of PCA. From Figure 7.9 we achieved a success rate of 93.8% which 

is a moderate increase over our previously reported 5-class problem using the principal 

components of the spectral features. 
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Figure 7.8.  Confusion matrix for tristimulus features for Civic and Altima 

 

 

 

 

 
 

Figure 7.9.  Confusion matrix for combined spectral and tristimulus features 
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 

 

8.1 Conclusions 

We have built a database of acoustic and seismic vehicle sounds. The mean and 

the principal components of the spectral features were used as inputs to the quadratic and 

the neural network classifiers. The quadratic and the neural network classifiers performed 

better with the use of the principal components of the spectral features than the mean of 

the spectral features. This is due to the fact that the principal components of the spectral 

features do not have as much overlap as the mean spectral features. 

    The neural network classifier out-performs the quadratic classifier with the use of 

the principal components of the spectral features. However, the quadratic classifier uses 

K-fold cross validation and hence our confidence in the performance is based on a larger 

sample and is unbiased and hence better. 

     The tristimulus features alone were sufficient to achieve low classification errors. 

We observed that the tristimulus features perform well only under 2-class scenarios for 

the neural network classifier. 

     We combined the spectral features and the tristimulus features and applied PCA 

on the combined features for a 5-class problem. The correct classification ratio from the 

neural network classifier was 93.8% which was slightly higher than 90.3% obtained by 

using the principal components of the spectral features. 
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     These conclusions were validated using the NCAT database of vehicle acoustic 

and seismic signatures. We conclude that one can classify civilian vehicles into many 

makes when they are moving at about 15mph and when there is little interference from 

other vehicle sounds.  

 

8.2 Future Work 

Future work will test the interference from other overlapping vehicle sounds as 

well as classifying vehicles moving at higher speeds. Issues like Doppler shift, removing 

tire noise (seismic data) will be tested. We shall also consider the use of the seismic data 

(issues of synchronization) for classification. 
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