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Abstract 

Providing advance notice of rare events, such as a cloud cluster (CC) developing into a 

tropical cyclone (TC), is of great importance.  Having advance warning of such rare events 

possibly can help avoid or reduce the risk of damages and allow emergency responders and the 

affected community enough time to respond appropriately.  Considering this, forecasters need 

better data mining and data driven techniques to identify developing CCs.  Prior studies have 

attempted to predict the formation of TCs using numerical weather prediction models as well as 

satellite and radar data.  However, refined observational data and forecasting techniques are not 

always available or accurate in areas such as the North Atlantic Ocean where data are sparse.   

Consequently, this research provides the predictive features that contribute to a CC 

developing into a TC using only global gridded satellite data that are readily available.  This was 

accomplished by identifying and tracking CCs objectively where no expert knowledge is 

required to investigate the predictive features of developing CCs.  We have applied the proposed 

oversampling technique named the Selective Clustering based Oversampling Technique (SCOT) 

to reduce the bias of the non-developing CCs when using standard classifiers.  Our approach 

identifies twelve predictive features for developing CCs and demonstrates predictive skill for 0 - 

48 hours prior to development.  The results confirm that the proposed technique can 

satisfactorily identify developing CCs for each of the nine forecasts using standard classifiers 

such as Classification and Regression Trees (CART), neural networks, and support vector 

machines (SVM) and ten-fold cross validation.  These results are based on the geometric mean 

values and are further verified using seven case studies such as Hurricane Katrina (2005).  These 

results demonstrate that our proposed approach could potentially improve weather prediction and 

provide advance notice of a developing CC by using solely gridded satellite data.
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CHAPTER 1 

Introduction 

A tropical cyclone (TC) is a low-pressure system with closed circulation and a warm core 

that originates over tropical basins (Houze, 2010).  These systems obtain their energy from heat 

fluxes from the ocean and they contain wind speeds of at least 17 m s-1 (Houze, 2010; Lee, 1989; 

Lin, 2007).  The formation of TCs over the Atlantic Ocean region is an important research topic 

due to the lack of scientific understanding and sparse data in the area.  Currently, many 

forecasting models are used by the National Hurricane Center to predict TCs and to prepare 

official track and intensity forecasts.  These models run for 6-126 hours to obtain their 

predictions but to accurately forecast TCs, the model outputs are adjusted to match the current 

time and conditions.  This can cause an issue if the models cannot find an exact match.  Accurate 

models of TC development remain elusive for numerous reasons and progress in improving these 

models is very slow (Hennon, Helms, Knapp, & Bowen, 2011; Shen, Tao, Lau, & Atlas, 2010).  

In few cases, a TC could be forecasted satisfactorily in less than 24 hours prior to its 

development (National Oceanic and Atmospheric Administration, 2009).  Satellite data are used 

to initialize the models and are run to attempt to forecast the complex atmospheric processes, 

which lead to the development of a TC.  We suggest that the satellite observations along with 

data driven techniques could lead to an approach to identify predictive features satisfactorily that 

lead to the development of a TC at least 24 hours prior instead of using numerical weather 

prediction models.   

TCs in the North Atlantic Ocean impact the United States; therefore, it is a research topic 

which needs attention to provide imperative information to citizens of the U.S. to assist in better 

preparedness.  The 2005 Atlantic Ocean hurricane season is a fine example of this need.  This 
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record setting hurricane season consisted of the most named TCs in history which included 

Hurricane Katrina which was the costliest and most expensive natural disaster in U.S. history 

with approximately $108 billion in damage (Dolce, 2013; McTaggart-Cowan, Deane, Bosart, 

Davis, & Galarneau, 2008).  The impact of this hurricane season alone displays the need for 

better understanding of how TCs develop from cloud clusters (CCs).   

The purpose of this research is summarized by one question: What determines whether a 

CC will develop into a TC?  Forecasters have theories to answer this question from a climatology 

perspective, but is there a way to identify developing CCs without expert subjectivity?  This 

dissertation aims to identify predictive features of developing CCs to give researchers a better 

understanding of TC development which will reduce the amount of deaths related to TCs.  

Therefore, forecasters will be able to use our research to assist in improving forecasts and 

preparedness for TCs which will be significant to research of weather prediction.  This research 

incorporates difficult problems such as the complexity of CC evolution, big data, absence of 

ground truth data, and imbalanced data classification.  These complexities are the reason this 

topic is identified as a difficult open-ended research area by scientists, such as Kevin E. 

Trenberth of the National Center for Atmospheric Research. 

Determining whether a TC will develop from loosely organized CCs continues to be a 

difficult topic of interest (Piñeros, Ritchie, & Tyo, 2010).  This is critical information when 

storms form close to the coast because the time to prepare and/or evacuate is short.  Public 

officials and individual citizens alike consider this information as they plan their actions.  

Analysis of satellite data is an effective strategy for understanding atmospheric properties and is 

generally used for weather forecasting and prediction purposes (Mandal, Pal, De, & Mitra, 

2005).  Satellite data are used for this reason because it relates important features to physical 
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processes that occur in the atmosphere.  One method to reliably detect or predict the 

development of a TC is to examine the evolution of CCs using satellite observations.  CCs are 

too unique and complex to be incorporated into existing dynamic models since CC patterns have 

a variety of shapes and forms that could change rapidly (Chang, 1970; Grazzini, Bereziat, & 

Herlin, 2001).  Due to the complexity of cloud patterns, satellite data are used to initialize these 

dynamic models since TCs form in areas where little or no in situ data are available (Hennon et 

al., 2011).  Dynamic models still show discrepancies (Hennon et al., 2011); hence, it is beneficial 

to use only satellite data which is fully based on remote sensing of events that have actually 

occurred.   

Identifying CCs in satellite observations is a difficult task due to the multiple definitions 

of a CC.  Therefore, identification and tracking of individual CCs is one of the most important 

portions of this research since it allows to objectively analyzing the movements and identify 

important characteristics that contribute to the development or non-development of a CC into a 

TC.  It is challenging to obtain enough CC cases to make valid conclusions about their complex 

evolution.  Throughout the existence of a CC, its characteristics are obtained and then analyzed 

to determine what factors contribute to the formation of TCs.  We still lack a complete 

understanding of cloud evolution and TC development.  To distinguish between developing and 

non-developing CCs, we must thoroughly investigate CC development and how it is reflected in 

satellite imagery from an engineering prospective.  Once this process is completed, data driven 

techniques provide information on CCs.  This research uses data driven techniques to separate 

the CC data into two classes: developing and non-developing CCs.  The amount of non-

developing CCs outnumbers the amount of developing CCs where the imbalance ratio for the 

1999-2005 North Atlantic hurricane season is approximately 27 non-developing CCs to 1 
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developing CC.  Therefore, this problem is considered an imbalanced classification problem.  To 

address this problem, we introduce Selective Clustering based Oversampling Technique (SCOT) 

which uses clustering to generate synthetic samples for the minority class (developing CCs) until 

the class distribution is approximately equal (C. W. Lacewell & Homaifar, 2015).  Having equal 

class distribution is important because data imbalance is an essential source of low performance 

given that most classifiers assume to have balanced data.  The SCOT has provided results that 

outscored most of the state-of-the art methods for both time series and multivariate data.  Hence, 

we suggest it is beneficial to incorporate the SCOT into this research especially since our data is 

imbalanced and SCOT performs well with standard classifiers such as Classification and 

Regression Trees (CART), neural networks, and support vector machines (SVM). 

This research will explore the development of a CC into a TC using global gridded 

satellite data without using numerical weather prediction models.  Through the investigation, 

recommendations will be made regarding which features are predictors of TC development.  

Chapter 2 gives a literature review on TC development and CCs.  Chapter 3 provides a literature 

review of feature selection techniques that can assist in the identification of the predictive 

features and on methods that can assist in distinguishing between developing and non-developing 

CCs.  In this chapter, we contribute a Selective Clustering based Oversampling Technique 

(SCOT) which addresses data imbalance in a selective way.  Chapter 4 discusses the 

methodology used to solve this problem such as application of thresholds, CC tracking, SCOT 

and sequential forward selection (SFS) as the feature selection method.  Chapter 5 discusses the 

results of this dissertation while Chapter 6 provides case studies to further verify our techniques 

for identifying developing CCs.  To conclude, Chapter 7 provides a summary of this dissertation 

and discusses some possible directions for future work.  
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CHAPTER 2 

Literature Review: Cloud Clusters 

The scientific background for TC development and CCs is presented in this chapter.  A 

brief literature review is presented to provide basic understanding of TC formation and methods 

of identifying and tracking CCs. 

2.1 Tropical Cyclogenesis 

Tropical cyclogenesis (TCG) is a sequence of events that result in the transformation of a 

CC to an independent heat engine (McTaggart-Cowan et al., 2008).  It is the formation of a TC 

whose physical processes are difficult to solve in forecast models.  TCG is a rare event which 

only occurs in approximately 15% of the CCs in the Atlantic Ocean (Hennon, 2008).  This 

process rarely occurs within 5o of the equator due to weak Coriolis force in this region and it 

typically occurs over a tropical ocean (Houze, 2010; Lin, 2007).  TCG typically begins with a 

poorly organized CC which lacks a well-defined circulation center.  A large region of warm 

ocean water can transform a poorly organized CC into a better-defined CC because TCs are 

driven by the evaporation of warm water.  Therefore, it is necessary to have a sea surface 

temperature (SST) greater than 26.5oC (299.65 K) (Hennon, 2008; Houze, 2010; Terry, 2007).  

TCs release energy as a result of the atmosphere attempting to attain equilibrium between the 

warm SSTs and the cool atmosphere through convection and condensation (Terry, 2007).   

Due to lack of in situ observations over tropical oceans, TCG continues to be an 

atmospheric phenomenon in which we lack understanding (Peng, Fu, Li, & Stevens, 2012).  

Many mechanisms were proposed to explain TCG, including: cooperative intensification, linear 

conditional instability of the second kind (CISK), wind-induced surface heat exchange (WISHE), 

vortex interaction, hot-tower mechanism (Lin, 2007), and the more recent pouch theory 
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(Montgomery et al., 2012).  Multiple studies suggest TCG is dependent on CCs of various scales 

and their interaction with the atmosphere (Kerns & Chen, 2013).  Therefore, a thorough 

investigation of CCs is necessary. 

2.2 Identification of Cloud Clusters 

To investigate the development of a TC from a CC, a precise definition of a CC must be 

established.  Recent studies used CCs to identify synoptic-scale disturbances with embedded 

convective clouds, such as African easterly waves (AEWs) (Hennon et al., 2011; Hennon & 

Hobgood, 2003; Kerns & Chen, 2013).  There are few studies on the identification of CCs 

because it is not a trivial process but it is subjective.  Some studies suggest that mesoscale 

convective systems (MCSs) are organized clusters of thunderstorms with a spatial scale of 100 

km (~ 1o in longitude/latitude) or more (Carvalho & Jones, 2001; Lin, 2007).  Simpson et al. 

(1997) suggests that CCs are comprised of multiple MCSs.  Hennon and Hobgood (2003) 

suggest that CCs are considered MCSs when they have a lifespan of at least 6 hours and a spatial 

scale of 250-2500 km.  Based on these definitions, MCSs and CCs are used interchangeably. 

Due to the scarcity of data in the North Atlantic Ocean, using satellite data to identify and 

track CCs is beneficial (Piñeros et al., 2010).  CCs are large, long-lasting group of 

cumulonimbus clouds that are easy to recognize in infrared (IR) satellite images (Carvalho, 

Lavallée, & Jones, 2002).  Forecasters rely on satellite data when in situ or direct aircraft 

reconnaissance is not available.  CCs are usually circular in shape but smaller convective 

systems can sometimes merge into larger elliptical CCs.  Williams and Houze (1987) suggest CC 

shields are 100-1000 km in dimension.  Feidas and Cartalis (2005) suggest CCs in satellite 

images are circular with diameters of 100-500 km or elliptical with diameters up to 1000 km.  

Based on IR satellite imagery, Hennon and Hobgood (2003) uses the following criteria to 
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objectively identify potential CCs over the Atlantic basin during the 1998-2000 Atlantic 

hurricane seasons: 

I. Each cluster must be independent and not related to a cyclone 

II. A cluster cannot be elongated and must have a diameter of at least 4o 

III. A cluster must be located to the south of 40oN 

IV. A cluster must last for at least 24 hours 

The authors use a subjective method for identifying CCs by using satellite brightness 

temperatures (BTs) for visual inspection instead of using an objective automated method.  Using 

these criteria, Hennon and Hobgood (2003) label each CC as developing or non-developing.  The 

authors classify CCs as developing if they become a tropical depression (TD) within 48 hours.  

Table 1 provides a summary of the characteristics of the CCs from Hennon and Hobgood (2003). 

Table 1 

Summary of cloud clusters from Hennon and Hobgood (2003) for the 1998-2000 Atlantic 

hurricane seasons 

 1998 1999 2000 

Total # of clusters 90 91 110 

Longest in duration (hours)* 198 258 294 

Mean duration (hours)* 58.9 55.1 54.8 

Median duration (hours)* 42 36 42 

Number of TDs 14 16 18 

* Non-developing CCs only 

The reason CCs are identified easily in IR satellite imagery is due to the temperature 

difference between the cold cloud tops and the warmer surface, and low cloud temperatures 
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(Mapes & Houze, 1993).  Therefore, using a BT and a minimum area threshold offers a better 

understanding of the spatial and temporal characteristics (Boer & Ramanathan, 1997; Futyan & 

Del Genio, 2007; Vila, Machado, Laurent, & Velasco, 2008).  A CC should have the potential to 

develop into a TC; therefore, the CC must have ample size, it must endure for an extended period 

of time, and the possibility of TCG must exist in the region of the CC (Hennon & Hobgood, 

2003).  The size and time requirements vary throughout different studies.  Table 2 displays 

various BT and area thresholds used by numerous studies.  The varieties in the BT and area 

thresholds demonstrate the vagueness of the many definitions of a CC.  Hennon et al. (2011) 

identifies North Atlantic CCs as CCs that do not occur over land, covers approximately 90% of a 

1o radius circle (34,800 km2), and whose pixels have a BT less than or equal to 224 K (-49.15oC).   

Table 2 

Brightness temperature and area thresholds used in references 

BT 
Threshold 

Area Threshold Region Reference 

208 K ݎ݁ݐ݁݉ܽ݅ܦ  80	݇݉ 
Western North 

Pacific 
(Kerns & Chen, 2013) 

213 K ܽ݁ݎܣ  5000	݇݉ଶ 
Maritime 
continent 

(Williams & Houze, 1987) 

223 K  Greek peninsula (Feidas & Cartalis, 2005) 

224 K 
ݏݑܴ݅݀ܽ  111	݇݉ 
ܽ݁ݎܣ  34,800	݇݉ଶ North Atlantic (Hennon et al., 2011) 

232 K 
244 K 
254 K 

ݏݑܴ݅݀ܽ  300	݇݉ 
Atlantic and 

Africa 
(Futyan & Del Genio, 2007) 

233.15 K  Africa 
(Arnaud, Desbois, & Maizi, 

1992) 
235 K ܴܽ݀݅ݏݑ  100	݇݉ South America (Carvalho & Jones, 2001) 
235 K ܽ݁ݎܣ  2,400	݇݉ଶ South America (Vila et al., 2008) 
235 K  Western Pacific (Sherwood & Wahrlich, 1999) 

240 K ܴܽ݀݅ݏݑ  100,000	݇݉ 
Western and 

central Pacific 
(Boer & Ramanathan, 1997) 

241 K ܽ݁ݎܣ  30,000	݇݉ଶ China (Guo, Dai, & Wu, 2008) 

245 K  Americas 
(Machado, Rossow, Guedes, & 

Walker, 1998) 
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Boer and Ramanathan (1997) introduce detect and spread (DAS) cloud identification 

method which identifies clouds using multiple thresholds instead of one.  Initially, CCs with BTs 

colder than 240 K (-33.15oC) are identified as individual CCs.  The authors spread the CC by 

using a new threshold which is 20 K warmer than the detecting threshold.  This process is 

repeated for multiple detecting thresholds of 255 K (-18.15oC), 270 K (-3.15oC), and 285 K 

(11.85oC).  Futyan and Genio (2007) use the DAS method in their study of deep convective 

system evolution over the Atlantic Ocean and Africa.  To identify cold core systems, the authors 

use an initial threshold of 232 K (-41.15oC).  These cold core systems are spread until a 244 K (-

29.15oC) threshold is met.  In their study, this second threshold is of importance.  If multiple cold 

core systems lie in a single region of warmer cloud, this indicates that the cold core systems 

share the warmer anvil cloud.  On the other hand, if a new cloud region surfaces under the 

second threshold and does not contain a cold core system, the new cloud region is considered a 

new system.  These warmer systems are spread to a 254 K (-19.15oC) threshold which 

determines the spatial extent of the cloud.  Futyan and Genio (2007) suggest that using the DAS 

method allows easier tracking of CCs through development stages where a cold core is not 

present.  Therefore, it provides more information on the spatial and temporal structure of a CC 

than a single threshold method can provide.  There are a variety of thresholds and parameters 

used to identify CCs in satellite imagery.  Generally, a radius of at least 100 km and BTs below a 

threshold of 245 K (-28.15oC) can identify CCs satisfactorily because it usually confirms the 

presence of deep convection (Carvalho & Jones, 2001; Vila et al., 2008).   

2.3 Cloud Cluster Feature Extraction 

There are few large scale factors that are favorable for TCG.  These factors include 

having an instable atmosphere, a moist mid-troposphere, a warm ocean, near-zero vertical shear, 
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a large region of preexisting convection, and adequate planetary vorticity which indicates that the 

CC must be at least 5o latitude from the equator (Gray, 1968).  There are statistical distinctions 

between the environment of developing and non-developing CCs but the large scale factors 

cannot distinguish these differences entirely (Kerns & Chen, 2013).  Some of the large scale 

factors are difficult to determine from satellite data and atmospheric analysis products; however, 

it is essential to determine additional factors to distinguish between development and non-

development of CCs. 

Satellite data enables researchers to examine patterns in actual events.  Piñeros et al. 

(2010) proposes an objective technique to distinguish between developing and non-developing 

CCs during TCG.  In this study, satellite data are used because of their consistency in detecting 

and predicting CC evolution.  The authors conclude that the underlying TC vortex structure 

helped symmetrically organize the CCs.  Since vortices are characterized by high levels of 

organization, their detection at early stages of the lifecycle of TCs makes it possible to determine 

when CCs develop.  In addition, this technique shows potential to discriminate non-developing 

from developing CCs. 

Hennon and Hobgood (2003) hypothesized that certain features are predictors of TCG.  

The authors recommend that the most significant predictor is the daily genesis potential which is 

the difference between the 900 hPa and 200 hPa relative vorticities.  This predictor is calculated 

using reanalysis data from the National Centers for Environmental Prediction-National Center 

for Atmospheric Research (NCEP-NCAR).  The authors convey that this feature is of importance 

because TCG requires near-zero vertical wind shear near the center of the storm and a vertical 

shear gradient that is strong.  Therefore, a more favorable development environment is obtained 

when the daily genesis potential is high.   
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It is suggested by multiple studies that for TCG to occur, the CC must be at least 5o 

latitude away from the equator.  Therefore, the next most significant predictor in Hennon and 

Hobgood (2003) was a Scaled Coriolis (SC) parameter which is defined as follows: 

݂ ൌ 2߱ ൈ 10ସsinሺ߶ሻ 

where ߶ denotes the latitude in degrees and ߱ indicates the angular rotation of the Earth 

ሺ߱ ൌ 7.29 ൈ 10ିହ	ିݏଵሻ.  Hennon and Hobgood (2003) list other predictors, such as maximum 

potential intensity and precipitable water, but they are much weaker in significance.  When using 

solely IR gridded satellite observations, daily genesis potential is impossible to calculate; 

therefore, for this research, only the scaled Coriolis parameter is relevant. 

2.4 Tracking Cloud Clusters 

The movement of clusters provides important information about CC evolution.  Chang 

(1970) suggests that a longitude-time (Hovmöller) diagram from zonal strips of successive 

satellite images provides useful information since most wave motions propagate zonally.  This is 

important because some studies suggest that wave motions, such as the AEWs, can initiate TC 

formation in the Atlantic basin (Berry & Thorncroft, 2005; Hopsch, Thorncroft, & Tyle, 2010; C. 

Lacewell, Homaifar, & Lin, 2013; Lin, 2007; Lin, Liu, Tang, Spinks, & Jones, 2013; Peng et al., 

2012; Reed, Norquist, & Recker, 1977).  The Hovmöller diagram is not a dependable method 

because it is a very subjective way to track the MCSs or the AEWs.   

Arnaud et al. (1992) uses an automatic tracking technique to track convective systems 

that propagate from West Africa to the Atlantic Ocean.  In this method, a cloud is tracked based 

on the intersection between the clouds in two successive images.  If more than one cloud 

intersects, the cloud with the maximum intersection is the tracked cloud as long as at least half of 

its area intersects.  Similarly, Kerns and Chen (2013) tracks CCs by viewing hourly consecutive 
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satellite images.  In these images, a CC is considered the same CC if at least 50% or 10,000 km2 

overlap between the images. 

Carvalho and Jones (2001) proposes the maximum spatial correlation tracking technique 

(MASCOTTE) which uses the BTs from Geostationary Operational Environmental Satellite 

(GOES-8) images to automatically characterize and track convective system (CS) properties.  In 

MASCOTTE, CSs are identified as systems with a radius of at least 100 km and BTs less than or 

equal to 235 K.  At time t, an individual CS is identified and the CS with the maximum spatial 

correlation at time t+1 is considered the new location of that CS.  In this technique, splitting is 

identified when multiple CSs at time t+1 have positive and high spatial correlation with the CS 

at time t.  On the other hand, merging is identified when the area increases and the spatial 

correlation decreases for more than 10% but remains positive.   

Mandal et al. (2005) proposes a novel hierarchical method to find tracer clouds from 

satellite images using cloud motion vectors to study the dynamic behavior of clouds.  This 

method extracts features from a sequence of cloud images and uses them to calculate several 

parameters such as mean, standard deviation, and entropy.  Based on these features, tracer clouds 

are identified and cloud motion vectors are used to make predictions on storm movement. 

Boer and Ramanathan (1997) developed an automatic cloud tracking algorithm (CTA) to 

track CCs.  In the CTA, individual CCs are identified by DAS and are replaced with their 

equivalent ellipse which has the same characteristics as the actual CC, i.e. centroid, eccentricity, 

area, and orientation.  In the tracking method, two CCs in two successive images are considered 

the same CC if either centroid falls inside the overlap of the ellipses.  The CC undergoes splitting 

if multiple CCs at time t+1 overlap with a single CC at time t.  The CC merges if multiple CCs 
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at time t overlap with a single CC at time t+1.  Please see Appendix A for details regarding 

features such as centroid and eccentricity. 

Vila et al. (2008) introduces Forecasting and Tracking the Evolution of Cloud Clusters 

(ForTraCC) to track and forecast CC properties using satellite images.  In ForTraCC, the CCs are 

identified using BT and area thresholds.  The tracking method used is based on an area overlap 

method.  To track CCs, each CC is given a CC number for each time step and one of the five 

conditions could occur: 

1. Spontaneous generation: This occurs when a new CC generates.  In this case, 

there is no CC visible in satellite image at time t but a new CC is visible at time 

t+1. 

2. Natural dissipation: This occurs when a CC dissipates.  In this case, there is a CC 

present at time t but not at time t+1. 

3. Continuity: This occurs when there is an overlap in two successive images 

between only one pair of CCs. 

4. Split: This occurs when one CC at time t overlaps with multiple CCs at time t+1.  

In this case, the continuing CC is considered as the CC with the maximum 

overlapping area and the other overlapping CCs at time t+1 are considered new 

CCs. 

5. Merger: This occurs when one CC at time t+1 overlaps with multiple CCs at time 

t.  In this case, the continuing CC is considered as the CC with the maximum 

overlapping area and the other overlapping CCs at time t are considered CCs that 

have dissipated. 
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A detecting and tracking algorithm for CCs is proposed by Hennon et al. (2011).  A 

dataset comprised of all tropical CCs over water from 1980 to 2008 is created using the 

algorithm.  This algorithm uses Gridded Satellite (GridSat) and International Best Track Archive 

for Climate Stewardship (IBTrACS) data to produce the Tropical Cloud Cluster (TCC) dataset.  

The authors use the geometric center to track the identified CCs through time intervals.  The 

authors use a tracking framework similar to an area overlap method with a search range 

incorporated.  In this tracking method a CC is considered the same CC in the next time step if it 

is within a specified distance.  Due to the fact that CCs may disappear for up to 12 hours, 

Hennon et al. (2011) uses a search radius for up to 12 hours with 3 hour increments.  In cases 

where the CC does disappear, all coordinates are estimated through a linear interpolation 

between the last known coordinates and all other CC features are labeled “missing.”  After 

tracking all identified CCs, all CCs that did not last for at least 24 hours, with the exception of 

CCs that developed into TCs, were removed.  This dataset makes thousands of cases of TCG 

immediately available to researchers.  These researchers can focus on identifying large-scale 

differences between developing and non-developing CCs.  Their algorithm excludes all CCs 

which are located over land and it does not consider any other factors which may contribute to a 

CC’s development.   

Our prior work, documented in Lacewell et al. (2013), uses the Scale and Orientation 

Adaptive Mean Shift Tracking (SOAMST) method to track pre-TS Debby (2006) to its origin in 

eastern North Africa.  This method solves problems in estimating the scale and orientation 

changes in objects; therefore, it has been helpful in tracing processes such as cloud movement.   
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2.5 Summary 

This chapter presented a review of TCG, and identification, features extraction, and 

tracking of CCs.  These topics are pertinent to understanding the background information needed 

to distinguish between the development and non-development of CC.  Discussions of other 

relevant topics of this research are in the succeeding chapters.   
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CHAPTER 3 

Literature Review: Feature Selection and Classification of Imbalanced Data 

The scientific background of feature selection and addressing a two-class classification 

problem using imbalanced data is presented in this chapter.  A brief literature review is offered to 

provide basic understanding of feature selection techniques, balancing imbalanced data, and 

performance measures to assess the classification of imbalanced data. 

3.1 Feature Selection Techniques  

A significant challenge in machine learning is the high dimensionality of data.  These 

datasets may contain redundant features which may reduce classification performance, have high 

computation costs, and in our case, poor identification of developing CCs (Brown, Pocock, Zhao, 

& Luján, 2012; Y. Chen, Li, Cheng, & Guo, 2006; Song, Ni, & Wang, 2013).  An exhaustive 

evaluation of feature subsets in such datasets are unfeasible because, in this case, it would 

involve the evaluation of 
଼!

ெ!ሺ଼ିெሻ!
 combinations if we choose to reduce the eighty features to ܯ 

features (Wilder, 2011).  To address this issue, this section provides necessary background on 

feature selection techniques.   

Feature selection is a pre-processing step for high dimensional data used to alleviate the 

curse of dimensionality by reducing the number of features, storage, and computation time in 

statistical learning such as classification (Y. Chen et al., 2006; M. Han & Liu, 2013; MathWorks 

Incorporated, 2014).  Feature selection is necessary in identifying the predictive features of 

developing CCs since eighty features are extracted from each CC in the dataset that contains 

thousands of observations.  To identify the predictive features, we must discover a robust subset 

of features that can satisfactorily distinguish between developing and non-developing CCs.   
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There are three categories of feature selection: filters, wrappers, and embedded methods.  

Filter methods use attributes of the data to assess and select a subset of generic features with only 

few assumptions.  Therefore, they are classifier independent techniques.  On the other hand, 

wrapper and embedded methods are classifier dependent.  Wrapper methods use the performance 

of a pre-selected classifier to search for feature subsets.  This is a benefit in generalization but a 

drawback can occur in computational cost and it can become specific to the chosen classifier.  

Embedded methods perform feature selection in the training process and assume precise model 

structure (Brown et al., 2012; Y. Chen et al., 2006; Dias, Kamrunnahar, Mendes, Schiff, & 

Correia, 2010; Pohjalainen, Räsänen, & Kadioglu, 2013; Saeys, Inza, & Larrañaga, 2007; Song 

et al., 2013).  This dissertation focuses on subset selection and scoring algorithms to assist in 

identifying a subset of features as predictive features since they are typically simple to 

implement.  For the remainder of this section, we use a standard notation to represent the data 

and features.  We consider a set of ݉ observations containing ݊ features and a set of class labels 

denoted by ൛ܥܥ
, ܥܥ ൟ whereݏݏ݈ܽܥ

 is the jth observation of the ith feature for ݆ ൌ 1, 2, … ,݉ and 

݅ ൌ 1, 2, … , ݊. 

3.1.1 Feature subset selection algorithms. Feature subset selection algorithms are 

feature selection techniques that identify a subset of features from a given dataset while 

removing irrelevant and redundant features (Yoon, Yang, & Shahabi, 2005).  The following 

feature subset selection algorithms are included in this section: sequential forward/backward 

selection and random subset feature selection. 

Two well-known and widely used feature selection techniques are the sequential forward 

selection (SFS) algorithm which is proposed by Whitney (1971) and the sequential backward 

selection (SBS) algorithm which is originally described in Marill and Green (1963).  These 



19 
 

 

feature selection methods are wrapper methods.  The SFS algorithm selects a subset of features 

by beginning with an empty set of features and sequentially adding features until there is no 

change in the performance of the pre-selected classifier.  On the other hand, the SBS algorithm 

begins with a set of all features and sequentially removes features until there is no change in the 

performance of the pre-selected classifier (Blachnik, 2009; Marill & Green, 1963; Pohjalainen et 

al., 2013; Whitney, 1971).  In the iterations of SFS, the feature that is added to the subset 

maximizes the selected classification performance measure ܿ.  In SBS, the feature that mostly 

affects the classification performance is removed.  Each feature is assessed individually therefore 

SFS and SBS can be computationally expensive which is dependent on the total number of 

features (Dias et al., 2010; MathWorks Incorporated, 2014; Pohjalainen et al., 2013; Wilder, 

2011). 

Räsänen and Pohjalainen (2013) proposes the Random Subset Feature Selection (RSFS) 

wrapper method that attempts to discover a subset of features by repetitively choosing a random 

subset of features and comparing its classification results (Pohjalainen et al., 2013; Räsänen & 

Pohjalainen, 2013).  In RSFS, there are true features ௧݂ with associated relevance value ݎ௧ ∈

ሾെ∞,∞ሿ and dummy features ݀௬ with associated relevance value ݃௬.  During each iteration ݇, 

the following steps of RSFS are performed: 

1. A subset ܵ containing  features is randomly selected from ݊ features using a 

uniform distribution. 

2. Use k nearest neighbor (NN) classification on the data using ܵ and compute a 

desired classification performance measure ܿ. 

3. Update relevance value ݎ௧ of the true features ௧݂ using 

௧ݎ ← ௧ݎ  ܿ െ  ሼܿሽܧ
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where ܧሼ∙ሽ is the expected value.  In parallel, update relevance value ݃௬ of the 

dummy features ݀௬ using 

݃௬ ← ݃௬  ܿ െ  ሼܿሽܧ

which essentially becomes a random walk process and provides a baseline level 

 ௗ.  A true feature must exceed this baseline level to become an importantݎ

feature. 

4. Return to Step 1 with a new random subset. 

To identify the best subset of features, ݎ௧ must satisfy  

௧ݎሺ  ௗሻݎ  	∀	ߜ ௧݂ 

where ߜ is a user-defined threshold for probability.  Räsänen and Pohjalainen (2013) set the 

probability threshold to 0.99.  The cumulative normal distribution is used to obtain the 

probability that ௧݂ is more relevant than ݃௬ using  

௧ݎሺ  ௗሻݎ ൌ
1

ߨ√2ߪ
න ݔ݁ ൭

െ൫ܥܥ െ ൯ߤ
ଶ

ଶߪ2
൱݀ݔ



ିஶ
 

where ߤ and ߪ denote the mean and standard deviation of the relevance values of all dummy 

features.  Refer to Pohjalainen et al. (2013) and Räsänen and Pohjalainen (2013) for further 

details. 

3.1.2 Scoring Algorithms. The fastest and simplest types of filter methods in feature 

selection problems are the scoring algorithms which are also called ranking methods.  These 

methods use a scoring function computed from ܥܥ
 and ݏݏ݈ܽܥ to identify valuable features.  

These methods only involve the computation of ݊ scores which are ranked by their significance 

according to the given score (Pohjalainen et al., 2013).  Additional considerations are needed to 

determine the size of the feature subset when using the calculated scores.  This is an additional 
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issue of using these methods but it is not discussed in this dissertation.  The following scoring 

algorithms are included in this section: statistical dependency, box difference index, independent 

significance features test, and correlation ranking. 

Statistical dependency (SD) determines whether the feature values are dependent on the 

class labels.  In this method, each feature value is quantized in a manner where an equal amount 

of samples is contained in each bin when quantizing the entire dataset.  The following equation is 

used to calculate the statistical dependence between the discretized feature value ݂ and ݏݏ݈ܽܥ 

ܦܵ ൌ൫ ݂, ൯	ݏݏ݈ܽܥ
൫ ݂, ൯ݏݏ݈ܽܥ

൫ ݂൯൫ݏݏ݈ܽܥ൯
 

where larger SD values indicate a higher dependency between ݂ and ݏݏ݈ܽܥ.  SD of the minimal 

value 1 indicates the feature is fully independent of the class labels (Pohjalainen et al., 2013).   

Peng et al. (2012) proposes a box difference index (BDI) to objectively and quantitatively 

identify predictive parameters of a tropical disturbance developing into a TC.  The BDI is 

defined as follows: 

ܫܦܤ ൌ ฬ
௩ܯ െ ேௗ௩ܯ

௩ߪ  ேௗ௩ߪ
ฬ 

where MDev and σDev (MNondev and σNondev) represents the mean and standard deviation of the 

considered feature for developing (non-developing) CCs.  Higher BDI magnitudes represent a 

better predictability of the variable.  The BDI is used on many key genesis parameters for the 

North Atlantic basin and the authors conclude that a parameter with larger BDI amplitude 

contributes more to the prediction of TCG than one with a lesser amplitude.  Figure 1 illustrates 

an example from Peng et al. (2012) of the BDI for special cases of relative humidity.  When the 

BDI value equals zero, the developing and non-developing CCs are similar.  When the BDI 

value equals 0.5, the two groups are partially separated but when the BDI equals one, the 
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developing and non-developing CCs are well separated.  By using this index, the authors 

recommended that thermodynamic parameters, i.e. SST, are more important than dynamic 

parameters, i.e. vertical shear, when distinguishing between CCs in the North Atlantic Ocean.  

 

Figure 1. Box-and-whiskers figure from Peng et al. (2012) where the box difference index varies 

for special cases of relative humidity. 

Weiss and Indurkhya (1997) propose the independent significance features test which is 

also called Fisher’s discriminant ratio (FDR).  This filter method measures the linear 

discriminating power of features using the following equation: 

ܴܦܨ ൌ
൫ߤ

 െ ேߤ
 ൯

ଶ

൫ߪ
 ൯

ଶ
 ൫ߪே

 ൯
ଶ 

where ߤ
  and ߤே

  denote the means of developing and non-developing CCs of feature ݅ and 

൫ߪ
 ൯

ଶ
 ൫ߪே

 ൯
ଶ
 represent the within-class variances of the data.  Better features have higher 

FDR values.  
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The correlation ranking is a filter method that can only discover linear dependencies 

between a feature and the associated class labels.  This method uses the Pearson correlation 

coefficient to score each feature which is defined as 

ܴሺ݅ሻ ൌ
,ܥܥ൫ݒܿ ൯ݏݏ݈ܽܥ

ඥݎܽݒሺܥܥሻ ∗ ሻݏݏ݈ܽܥሺݎܽݒ
 

where ܥܥ is the ith feature, ܿݒሺ∙ሻ is the covariance, and ݎܽݒሺ∙ሻ is the variance (Chandrashekar 

& Sahin, 2014; Guyon & Elisseeff, 2003).  If the inputs are not random variables, the estimate is 

given by 

ܴሺ݅ሻ ൌ
∑ ൫ܥܥ

 െ ݏݏ݈ܽܥതതതത൯൫ܥܥ െ തതതതതതത൯ݏݏ݈ܽܥ
ୀଵ

ට∑ ൫ܥܥ
 െ തതതത൯ܥܥ

ଶ
ୀଵ ∑ ൫ݏݏ݈ܽܥ െ തതതതതതത൯ݏݏ݈ܽܥ

ଶ
ୀଵ

 

where the bar notation indicates the average over ݆ (Guyon & Elisseeff, 2003). 

3.2 Techniques for Imbalanced Data  

In most real world applications, there is a demand to accurately identify rare events 

which are typically more significant than frequently occurring events (Bekkar & Alitouche, 

2013; Fernández, García, & Herrera, 2011; He, Bai, Garcia, & Li, 2008; G. M. Weiss, 2013).  In 

these cases, the observed data are highly imbalanced which causes a decrease in classification 

accuracies due to standard classifiers that assume the class distribution of data are approximately 

equal (Batista, Prati, & Monard, 2004; Cao, Li, Woon, & Ng, 2013; He & Garcia, 2009).  When 

the class distribution is not equal, the classifiers perform better on the majority (larger) class than 

the minority (smaller) class.  The identification of predictive features of CCs which will develop 

into a TC is considered an imbalanced data problem because the number of non-developing CCs 

is expected to outnumber developing CCs.  In this application, classifying a developing CC 
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accurately is of great importance and misclassifying a developing CC is more costly than 

misclassifying a non-developing CC.   

To address the imbalanced learning problem, many approaches have been introduced.  

Sampling methods, cost based methods, kernel based methods, and active learning methods are 

four categories of imbalanced learning solutions (Barua, Islam, Yao, & Murase, 2014; He & 

Garcia, 2009).  The sampling methods are the focus of this dissertation because this category 

performs at the data level where the class distribution is modified and the techniques can be used 

with standard classifiers.  Data level approaches generally provide better results than algorithmic 

level approaches which are more data specific (Barua et al., 2014; Cao et al., 2013; He & Garcia, 

2009) 

In recent years, sampling methods have been used successfully to modify the class 

distribution of imbalanced data (Barua et al., 2014; Chawla, Bowyer, Hall, & Kegelmeyer, 2002; 

H. Han, Wang, & Mao, 2005; He & Garcia, 2009).  These methods balance the amount of 

samples in each class by either reducing the majority class samples (undersampling), increasing 

the minority class samples (oversampling), or by combining the two methods.  Hence, any 

classifier can use sampled data instead of modifying the classifier to fit the data.   

3.2.1 Undersampling techniques. Random sampling is the most simplistic, non-heuristic 

type of sampling.  Random undersampling removes instances from the majority class randomly 

until the class distributions are approximately equal (Batista et al., 2004; Bekkar & Alitouche, 

2013; García, Sánchez, Mollineda, Alejo, & Sotoca, 2007; Japkowicz, 2000).  This method is 

less frequently used in classification problems because it may remove valuable information from 

the majority class (Batista et al., 2004).  Many undersampling techniques have been introduced 

to assist in improving the classification performance of imbalanced data (Batista et al., 2004; 
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Bekkar & Alitouche, 2013; Hart, 1968; Kubat & Matwin, 1997; Wilson, 1972).  A Tomek link is 

a pair of NNs of opposite classes, which are minimally distanced.  When Tomek links are 

identified, either both samples are on the decision boundary or one of the samples is noise.  

When this method is used as an undersampling technique, only the sample in the link belonging 

to the majority class is removed (Batista et al., 2004; Bekkar & Alitouche, 2013). 

Hart (1968) introduces the condensed nearest neighbor (CNN) rule which was based on 

the NN rule.  In the CNN rule, it identifies a consistent subset of samples, which classifies the 

remaining samples correctly.  To determine the consistent subset, the CNN rule initializes a 

subset called STORE with one randomly selected majority sample and all minority samples in the 

dataset.  The remaining samples are classified using the NN rule using the contents in STORE as 

a reference set.  If the samples are classified correctly, they are added to a subset called 

GRABBAG; otherwise, the sample is placed in STORE.  This method continues to loop through 

GRABBAG until all samples are transferred to STORE or until the algorithm loops through one 

complete pass through GRABBAG without any additional transfers.  The contents of STORE are 

considered the consistent subset and are used as reference samples for the NN rule.  The contents 

of GRABBAG are the majority samples that are distant from the decision boundary which are 

removed from the dataset (Batista et al., 2004; Hart, 1968). 

Kubat and Matwin (1997) introduce an undersampling method called one-sided selection 

(OSS) which combines both Tomek links and the CNN rule.  In this method, Tomek links are 

used to remove noisy and borderline majority samples since these samples are easily 

misclassified.  After these samples are eliminated, the CNN rule is applied to remove majority 

samples that are distant from the decision boundary (Batista et al., 2004).  Batista et al. (2004) 

introduces CNN plus Tomek links which is an undersampling method similar to OSS except that 
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the algorithms are performed in reverse order.  The author suggests that this method is 

competitive with OSS and may be less computationally expensive since the Tomek links are 

identified on a reduced dataset. 

Wilson (1972) proposes the edited nearest neighbor (ENN) rule which identifies the three 

NNs of all observations and removes samples whose class label differs from at least two of its 

three NNs (Batista et al., 2004).  Laurikkala (2001) proposes Neighborhood Cleaning Rule 

(NCL) as an undersampling technique which incorporates ENN.  In this method, the ENN rule is 

applied to all samples, ݔ.  If ݔ is a member of the minority class and almost all of its NNs are 

from the majority class, then the NNs belonging to the majority class are removed.  On the other 

hand, ݔ is removed when it is a member of the majority class and two of its three NNs are from 

the minority class. 

3.2.2 Oversampling techniques. Random oversampling duplicates randomly selected 

minority class samples until the class distributions are nearly equal (Batista et al., 2004; Bekkar 

& Alitouche, 2013; García et al., 2007; Japkowicz, 2000).  This method can lead to overfitting 

the minority class since it replicates existing samples (Batista et al., 2004).   

Another oversampling method is synthetic oversampling.  Synthetic oversampling 

generates synthetic minority class samples to assist in improving the classification performance 

of imbalanced data (Barua et al., 2014; He & Garcia, 2009).  Chawla et al. (2002) introduces 

Synthetic Minority Oversampling TEchnique (SMOTE) which operates in the feature space to 

overcome the overfitting short-coming of random oversampling (Chawla, 2005; Chawla et al., 

2002; García et al., 2007; He & Garcia, 2009).  It is an effective method and it is basis of many 

other synthetic oversampling techniques.  In SMOTE, synthetic data are constructed for each 

minority sample until the class distribution is approximately equal.  The synthetic samples are 
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formulated along a line segment that joins the selected minority sample and one of its randomly 

selected ݇ NNs (Barua et al., 2014; Bekkar & Alitouche, 2013; Chawla et al., 2002; H. Han et 

al., 2005; Luengo, Fernández, García, & Herrera, 2011).  The number of randomly selected ݇ 

NNs chosen is dependent on the amount of oversampling needed.  Chawla et al. (2002) set ݇ to 

five.  If the number of minority samples should be doubled to make the class distribution 

approximately equal (200% of the original minority class), then two of the five NNs are selected 

and each NN is used to generate a synthetic sample.  The following equation is used to create a 

synthetic minority sample, ݏ: 

ݏ  ൌ ݔ  ݕሺߜ െ  ሻ (1)ݔ

where ݔ	 is the minority sample, ݕ is the randomly selected ݇-NN of ݔ, and ߜ	߳	ሾ0, 1ሿ is a random 

number.  Eq. (1) interpolates between similar minority samples instead of duplicating the 

samples.  Hence, the overfitting problem of random oversampling is addressed (Luengo et al., 

2011).  In contrast, it can cause over generalization which can produce more overlapping 

between classes (Barua et al., 2014; Batista et al., 2004; He & Garcia, 2009).  The time 

complexity of SMOTE for the worst situation is ܱሺ|ݔ| ൈ ݒ ൈ  denotes the number of |ݔ| ሻ whereߛ

minority samples, ݒ represents the number of synthetic samples generated for each minority 

samples, and ߛ denotes the cost of calculating the k nearest neighbor.  The value of ߛ depends on 

the approach taken.  For example, ߛ ൌ  if the exhaustive search algorithm is used for finding |ݔ|݇

the nearest neighbor; therefore, the time complexity is ܱሺ|ݔ|ଶ ൈ -ሻ.  Figure 2 uses the wellݒ

known Fisher’s iris data, which consists of 150 iris samples with the sepal length, the sepal 

width, the petal length, and the petal width measurements as features.  To demonstrate the 

generation of synthetic samples and the capability of the selected oversampling methods, only 

the sepal length and sepal width features are used.  The minority class contains the setosa species 
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and the majority class contains the versicolor and virginica species.  The sample distribution of 

the data when using SMOTE for oversampling is displayed in Figure 2 which is from Lacewell 

and Homaifar (2015).  In the figure, there are synthetic samples that are replicas of the minority 

class samples.   

 

Figure 2. Sample distribution of Fisher's Iris data when using Synthetic Minority Oversampling 

TEchnique (C. W. Lacewell & Homaifar, 2015). 

Han et al. (2005) introduces a modification of SMOTE named Borderline SMOTE.  The 

difference between SMOTE and Borderline SMOTE is that the latter creates synthetic samples 

for minority samples that lie closer to the decision boundary because these samples are difficult 

to learn by a classifier.  A minority sample where over half of its k-NNs are members of the 

majority class is considered a borderline minority sample.  In this method, k is user defined.  

Borderline SMOTE does not generate samples for noisy minority samples, which are minority 

samples whose NNs all belong to the majority class.  Instead it uses Eq. (1) to create synthetic 
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samples for the borderline minority samples (Barua et al., 2014; H. Han et al., 2005; He & 

Garcia, 2009).  The time complexity of this method is ܱሺ|ݔ| ൈ |ௗݔ| ൈ  |ௗݔ| ሻ whereݒ

denotes the number of borderline minority samples.  In this case, the k nearest neighbor 

algorithm uses the exhaustive search approach.  Borderline SMOTE typically performs better 

than SMOTE since it concentrates on minority samples with higher chances of being 

misclassified (Bekkar & Alitouche, 2013).  Figure 3, from Lacewell and Homaifar (2015), 

displays samples of the Fisher’s iris data once Borderline SMOTE is applied.  As displayed in 

the figure, in some cases, Borderline SMOTE does not recognize samples closer to the decision 

boundary as borderline samples because its ݇ NNs are from the minority class.  This drawback 

can be a challenge in classification because of insufficient information regarding the minority 

class samples near the decision boundary. 

 

Figure 3. Synthetic samples generated by Borderline Synthetic Minority Oversampling 

TEchnique on Fisher's Iris data (C. W. Lacewell & Homaifar, 2015). 
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Hu et al. (2009) proposes Modified Synthetic Minority Oversampling Technique 

(MSMOTE) which improves SMOTE by considering the distribution of minority samples and 

noise.  In this method, the minority samples are divided into three groups: security samples, 

border samples and noise samples.  Security samples are minority samples whose k NNs are 

members of the minority class.  Noise samples are minority samples whose k NNs are members 

of the majority class.  Border samples are minority samples, which are neither security samples 

nor noise samples.  MSMOTE generates synthetic samples for security and border samples but it 

does not generate samples for the noise samples.  As in SMOTE, synthetic samples are generated 

using Eq. (1) where ݔ	߳	൫ܵ௦௨௧௬ ⋃ ܵௗ൯.  If ݔ	߳ܵ௦௨௧௬ then ݕ is a randomly selected k NN 

of ݔ.  On the other hand, if ݔ	߳ܵௗ then ݕ is the NN of ݔ.   

He et al. (2008) proposes an adaptive synthetic (ADASYN) sampling approach that 

generates samples for hard to learn minority samples.  Unlike SMOTE or Borderline SMOTE, 

ADASYN uses a density distribution, ̂ݎ, to determine the number of synthetic minority samples 

to generate for each minority sample.  For each minority sample, ݇ NNs are identified.  The 

density distribution is calculated as 

ݎ̂ ൌ

Δ
݇

∑ Δ
݇

ೞ
ୀଵ

 

where Δ denotes the number of majority samples in the ݇ NNs of the minority sample and ݉௦ 

denotes the number of minority samples.  The number of synthetic minority samples that should 

be generated for each minority sample is defined by 

g ൌ ݎ̂ ൈ ሺ݉ߚ െ ݉௦ሻ 

where ݉ denotes the number of majority samples and ߚ ∈ ሾ0, 1ሿ specifies the desired balance 

level after generation.  The synthetic minority samples are generated in the same manner as 
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SMOTE using Eq. (1).  The time complexity of ADASYN is equal to that of SMOTE since the 

only difference between the two are that ADASYN does not use uniform distribution to 

determine the number of synthetic samples to generate. 

Barua et al. (2014) proposes a cluster based oversampling technique that is a variation of 

SMOTE called Majority Weighted Minority Oversampling TEchnique (MWMOTE).  

MWMOTE attempts to improve the drawbacks of the preceding methods.  As with Borderline 

SMOTE and MSMOTE, MWMOTE does not generate synthetic samples for noisy minority 

samples.  Instead of using borderline minority samples to generate the synthetic data, MWMOTE 

uses informative minority samples.  Informative minority samples are the NNs of borderline 

majority samples, which are majority samples that are NNs of non-noisy minority samples.  

MWMOTE uses hierarchical average-linkage agglomerative clustering to assign selection 

weights to the minority samples in hopes to improve the synthetic sample generation process.  

Agglomerative clustering technique begins with each sample being a single cluster and at each 

level it merges clusters together based on the smallest intergroup dissimilarity until only one 

cluster is left at the top (Hastie, Tibshirani, & Friedman, 2009).  Average linkage agglomerative 

clustering calculates the distance between clusters as the distance between the averages of the 

cluster members (Hastie et al., 2009).  The selection weight for each minority sample is based on 

the summation of a closeness factor, ܥ, multiplied by a density factor, ܦ, of all borderline 

majority samples as defined by 

ܵ௪ሺݔሻ ൌ  ,ݕሺܥ ,ݕሺܦሻݔ ሻݔ
௬∈ௌ್ೝೝೌೕ

 

Sparse clusters of minority samples and samples closer to the decision boundary are assigned a 

higher selection weight.  Barua et al. (2014) provides a more detailed description of the closeness 
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and density factors.  MWMOTE also uses Eq. (1) to generate the synthetic minority samples 

where ݕ is a member of ݔ’s cluster instead of being the randomly selected k NN of ݔ.  This 

minor change in Eq. (1) keeps the generated synthetic minority sample from falling in the 

majority class region (Barua et al., 2014).  The simplified time complexity is ܱሺ|ݔ|ଶ  |ݔ| ൈ

 | denotes the number of informative minority samples.  Figure 4 from Lacewellݔ| ሻ whereݒ

and Homaifar (2015) shows the synthetic samples generated by MWMOTE on the Fisher’s iris 

data.   

-  

Figure 4. Synthetic samples generated by Majority Weighted Minority Oversampling TEchnique 

on Fisher's Iris data (C. W. Lacewell & Homaifar, 2015). 

Lacewell and Homaifar (2015) propose the Selective Clustering based Oversampling 

Technique (SCOT) which uses a combination of the local outlier factor (LOF) to identify 

outliers, agglomerative clustering which best fits the data, and it explores the neighborhood of 

the informative minority samples to reduce the risk of overfitting when generating synthetic 
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samples.  The LOF is a degree of objects being outliers which was introduced by Breunig et al. 

(2000).  This degree provides a numerical representation of how isolated a sample is when 

compared to its surrounding neighborhood.  Further details regarding the LOF is found in 

Breunig et al. (2000).  SCOT is separated into three main processes: identifying informative 

minority samples, identifying informative clusters, and finally, generating synthetic samples.  

The complete algorithm is summarized below: 

1) Compute the k nearest neighbor set for each minority sample according to Euclidean or 

standardized Euclidean distance.  The k is equivalent to 5% of the number of minority 

samples.  Therefore, 

݇ ൌ 0.05|ܵ| 

2) Construct the noisy minority set containing minority samples where all k-nearest neighbors 

are majority class samples.  The members of this set are removed from the original dataset. 

3) Construct the filtered minority set containing minority samples where the number of 

minority class samples, m, among its k-nearest neighbors satisfy 

݇
2
 ݉  ݇ 

4) Construct the danger minority set and the borderline majority set.  The danger minority set 

contains minority samples where the number of minority class samples, m, among its k-

nearest neighbors satisfy 0 ൏ m ൏ ୩

ଶ
 and the majority samples among its ݇-nearest 

neighbors are contained in the borderline majority set. 

5) Construct the qualified minority set as 

S୯୳ୟ୪ ൌ S୫୧୬ራSୢୟ୬ୣ୰ 
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6) Find the informative minority set which contains ninety-nine percent of samples of Squal.  

One percent of the samples with the highest LOF values are considered outliers and are 

eliminated. 

7) If there are less than two members in the informative minority set 

a) Construct the noisy test set as  

Sୣୱ୲୭୧ୱ୷ ൌ S୯୳ୟ୪ራS୭୧ୱ୷ 

b) Add noisy samples to the danger minority set that have local outlier factors less than 0.1 

quantile of all local outlier factors 

c) Repeat steps 5 and 6 using new danger minority set. 

8) Determine the best agglomerative hierarchical clustering tree structure based on 

inconsistency coefficients and cophenetic correlation coefficients.  To determine the best 

cluster tree, the maximum inconsistency coefficients are sorted in ascending order.  Out of 

the top three trees with high maximum inconsistency coefficients, the tree with the highest 

cophenetic correlation coefficient is used to cluster the data. 

9) Cluster the informative minority set using a threshold, ݄ܶ௨௧, to separate the data into 

clusters.  When separating the clusters, a node and its leaves should have an inconsistency 

coefficient less than ݄ܶ௨௧, which is equivalent to the median of all inconsistency 

coefficients. 

10) For each cluster, compute the cluster center, the number of members, and the average 

Euclidean distance between the informative minority samples and the cluster center. 

 informative clusters are formed where the average Euclidean distance between the ܯ (11

informative minority samples and the cluster center is not equal to zero, and the number of 

samples in each cluster is greater than one but less than the number of informative minority 
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samples.  The clusters are denoted as Lଵ, Lଶ, … , L. 

12) Generate a point system which is based on the ranking of the population factor, a closeness 

factor, and a sparseness factor to specify the number of synthetic samples to generate per 

cluster, ܵݏݐܲ݊ݕ. 

13) Do for ݅	 ൌ 	1	 …  ܯ	

14) Do for ݆	 ൌ 	1	 …  ݏݐܲ݊ݕܵ	

a) Select a sample ݔ at random from the members of cluster ܮ. 

b) Select another random sample ݕ from the members of cluster ܮ 

c) Generate one synthetic minority sample, ݏ, according to ݏ ൌ ݔ  ݕሺߜ െ  is a ߜ ሻ, whereݔ

number in the range ሾ0.1, 0.9ሿ. 

d) Add ݏ to a set of all generated minority samples, ܵ௦௬	 

15) End Loop 

16) End Loop 

17) Add ܵ௦௬	 to the original dataset 

Overall, SCOT can enhance the classification performance of the minority class.  

SCOT’s approach performs well on truly imbalanced data that contain less than ten percent 

minority samples.  This performance is demonstrated by a comparison with state-of-the-art 

techniques as found in Appendix B.  Unlike other methods, SCOT eliminates user defined 

parameters, identifies hard to learn minority samples better, produces synthetic samples to 

better define the decision boundary, and generates synthetic samples in the area of the minority 

class to avoid overlapping of classes which, in all, lowers the risk of overfitting.  The 

simplified time complexity is ܱ൫|ݔ|ଶ  หݔ	ఢ	ெห ൈ  ெห denotes the	ఢ	ݔ൯ where หݒ

number of samples in the informative clusters.  The synthetic samples generated by applying 



36 
 

 

SCOT on the Fisher’s iris data is illustrated in Figure 5.  This technique produces more 

synthetic samples in areas where there are gaps in the data or where more information is 

needed.  Further details on this method are found in Lacewell and Homaifar (2015) and 

simulation results are found in Appendix B for a better representation of its performance. 

 

Figure 5. Synthetic samples generated by Selective Clustering based Oversampling Technique 

on Fisher's Iris data (C. W. Lacewell & Homaifar, 2015). 

3.2.3 Data cleaning techniques. Data cleaning techniques are used to remove 

overlapping that may be caused by sampling techniques.  Removing overlapping samples can 

improve classification performance by making class clusters more defined (He & Garcia, 2009).  

The data cleaning process removes overlapping samples which are identified using different 

methods.  Tomek links and the ENN rule are two techniques that are used for data cleaning when 

combined with sampling techniques.  These data cleaning methods are used to remove difficult 

to learn samples and are mostly applied when sampling does not provide satisfactory results.  
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Tomek links can either be used as an undersampling technique or as a data cleaning method.  As 

a data cleaning method, a sampling technique is applied to the dataset to balance the class 

distribution followed by identifying and removing both samples of the Tomek link (Batista et al., 

2004).  When using ENN as a data cleaning method, it removes any sample where the class of 

majority of its nearest neighbors differ from its actual class label instead of removing only the 

majority samples.   

3.3 Performance Measures 

A confusion matrix, as shown in Table 3, is typically used to evaluate the performance of 

two-class classification problems (Batista et al., 2004).  The columns represent the actual classes 

while the rows represent the predicted classes.  This representation makes it easier to visualize 

whether instances are being misclassified.  Throughout this dissertation, the minority samples 

represent the developing CCs and the majority samples represent the non-developing CCs. 

Table 3 

Format of a two-class confusion matrix 

  Actual 

  Minority Majority 

Predicted 
Minority TP FP 

Majority FN TN 

    

The four important parameters found in a two-class confusion matrix are true positive 

(TP), false positive (FP), false negative (FN), and true negative (TN).  In this dissertation, TP 

represents the number of developing CCs correctly classified, FP represent the number of non-

developing CC misclassified as developing CCs, FN represents the number of developing CCs 
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misclassified as non-developing, and TN represents the number of non-developing CC correctly 

classified (Bunkhumpornpat, Sinapiromsaran, & Lursinsap, 2012; Chawla, 2005).  These four 

parameters assist in deriving significant performance measures.  

When using balanced data, classification problems usually use accuracy as a performance 

measure (Barua et al., 2014; Batista et al., 2004; Chawla, 2005; Chawla et al., 2002; Si Chen, 

Guo, & Chen, 2010; García et al., 2007; He & Garcia, 2009).  This measure is defined by  

ݕܿܽݎݑܿܿܣ ൌ
ܶܲ  ܶܰ

ܶܲ  ܲܨ  ܰܨ  ܶܰ
ൌ 1 െ Err 

ݎݎܧ ൌ
ܲܨ  ܰܨ

ܶܲ  ܲܨ  ܰܨ  ܶܰ
	

Accuracy and error rate, ݎݎܧ, are not good performance measures for imbalanced data because it 

is strongly biased to favor the majority (negative) class.  For example, if 98% of a given dataset 

are majority samples and all samples are classified as being members of the majority class, this 

would provide an accuracy of 98% (or error rate of 2%).  This seems satisfactory but in reality it 

fails to identify any of the minority samples. 

Chawla (2005) suggests that recall, precision, F1-measure, geometric mean and the area 

under the receiver operating characteristic (ROC) curve are more suitable for imbalanced data.  

Recall is also known as sensitivity and the probability of detection (POD).  It is used to evaluate 

the number of minority samples correctly classified.  Precision is also known as the positive 

predictive value (PPV).  It measures the number of samples classified correctly as the minority 

class (Bekkar & Alitouche, 2013; Chawla et al., 2002; He & Garcia, 2009).  These two metrics 

have an inverse relationship.  When using these metrics, the goal is to improve the recall without 

hindering the precision (Chawla, 2005). 

ܴ݈݈݁ܿܽ ൌ ݕݐ݅ݒ݅ݐ݅ݏ݊݁ܵ ൌ 	POD ൌ
ܶܲ

ܶܲ  ܰܨ
 



39 
 

 

݊݅ݏ݅ܿ݁ݎܲ ൌ ܸܲܲ ൌ 	
ܶܲ

ܶܲ  ܲܨ
 

On the other hand, specificity, also known as the true negative rate (TNR), is used to assess the 

number of majority samples classified correctly and the negative predictive value (NPV) 

measures the number of samples classified correctly as the majority class.  The measures are the 

opposites of recall and precision. 

ݕݐ݂݅ܿ݅݅ܿ݁ܵ ൌ ܴܶܰ ൌ	
ܶܰ

ܶܰ  ܲܨ
 

ܸܰܲ ൌ 	
ܶܰ

ܶܰ  ܰܨ
 

F1-Measure ( also known as F1-Score) is a performance measure utilized to evaluate the 

success of the classification (Bekkar, Djemaa, & Alitouche, 2013; He & Garcia, 2009).  It is 

defined by 

F1‐Measure ൌ
2 ∙ ܴ݈݈݁ܿܽ ∙ ݊݅ݏ݅ܿ݁ݎܲ
ܴ݈݈݁ܿܽ  ݊݅ݏ݅ܿ݁ݎܲ

 

A large F1-Measure value gives a high performance of the minority class.  This measure 

originated from  

Fβ‐Measure ൌ
ሺ1  ଶሻߚ ∙ ܴ݈݈݁ܿܽ ∙ ݊݅ݏ݅ܿ݁ݎܲ
ଶߚ ∙ ܴ݈݈݁ܿܽ  ݊݅ݏ݅ܿ݁ݎܲ

	

where β changes the significance of precision versus recall.  In most cases, recall and precision 

are equally important therefore ߚ typically equals one (Bekkar et al., 2013; Bunkhumpornpat et 

al., 2012). 

Geometric mean (G-mean) is a performance measure used to assess the balanced 

performance between the majority and minority classes (Barua et al., 2014; Bekkar et al., 2013; 

He & Garcia, 2009; Sun, Wong, & Kamel, 2009).  This measure is defined by  

G‐Mean ൌ ඥܴ݈݈݁ܿܽ ∙  ݕݐ݂݅ܿ݅݅ܿ݁ܵ
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G-mean is independent of the class distribution and it takes into account the biases of the 

performance of the minority and majority classes (García et al., 2007).  This measure provides a 

better representation of the performance of an imbalanced problem while it incorporates both the 

TP rate and the TN rate (Bekkar et al., 2013; He & Garcia, 2009; Sun et al., 2009). 

A graphical representation using the TP rate as a function of the FP rate is the ROC 

curve.  This graph is insensitive to class distribution (Barua et al., 2014).  The comparison of 

multiple ROC curves is difficult to assess especially when one curve does not clearly dominate 

the others.  Therefore, it is favorable to obtain a numerical representation of the graph known as 

the area under the ROC curve (AUC) where 0 ≤ AUC ≤ 1 (Barua et al., 2014; Bekkar et al., 

2013; Chawla, 2005; Sun et al., 2009).  Better classification performance is indicated by larger 

AUC values. 

There are other performance measures that are typically used to access the performance 

of forecasts and predictions such as Matthew’s correlation coefficient (MCC), Heidke skill score 

(HSS), and threat score (TS).  MCC is a performance measure which considers the accuracies 

and error rates of both classes which is defined by 

ܥܥܯ ൌ
ܶܰ ∙ ܶܲ െ ܲܨ ∙ ܰܨ

ඥሺܶܲ  ሻሺܶܲܲܨ  ሻሺܶܰܰܨ  ሻሺܶܰܲܨ  ሻܰܨ
 

where ܥܥܯ ∈ ሾെ1,1ሿ.  When MCC is -1, 0, or 1 then the predictions are respectively the worst 

possible, random, or perfect (Bekkar et al., 2013).  The HSS is used to evaluate the performance 

of a rare event problem.  It is an appropriate measure to determine the predictive skill relative to 

making random guesses (Hennon, Marzban, & Hobgood, 2005; Kerns & Chen, 2013; Wilks, 

2005).  The HSS is defined by 

ܵܵܪ ൌ
2ሺܶܰ ∙ ܶܲ െ ܲܨ ∙ ሻܰܨ

ሺܶܰ  ܰܨሻሺܰܨ  ܶܲሻ  ሺܶܰ  ܲܨሻሺܲܨ  ܶܲሻ
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where ܵܵܪ ∈ ሾെ1,1ሿ.  This skill score yields perfect predictions when ܵܵܪ ൌ 1, random 

predictions when ܵܵܪ ൌ 0, and ܵܵܪ ൏ 0 indicates the predictions have no skill.  TS is a 

statistical measure of the statistical power of the chosen classifier.  It is typically useful when 

analyzing rare events such as developing CCs.  The TS, also called the critical success index, 

measures the fraction of majority events that are correctly predicted.  TS is calculated as 

ܶܵ ൌ
ܶܲ

ܶܲ  ܲܨ  ܰܨ
 

where ܶܵ ∈ ሾ0,1ሿ.  A perfect forecast occurs when ܶܵ ൌ 1 and a highly skilled forecast occurs 

when ܶܵ  0.5 (Hennon, 2003; Wilks, 2005). 

3.4 Summary 

This chapter presented a review of techniques for feature selection, classifying 

imbalanced data, including the contributed oversampling technique SCOT, and commonly used 

performance measures to evaluate classification problems.  These topics are essential to 

identifying predictive features of developing CCs of a highly imbalanced dataset containing 

thousands of observations.  The succeeding chapter will discuss the overall methodology of 

identifying predictive features of developing CCs.  
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CHAPTER 4 

Methodology 

The purpose of this dissertation is to use feature extraction and oversampling techniques 

to identify predictive features of CCs that are developing into TCs.  The procedure for 

identifying the predictive features comprises of obtaining the readily accessible satellite data, 

identification and tracking of each cloud cluster, and distinguishing between developing and 

non-developing cloud clusters using sampling, feature selection, and classification techniques.  

This procedure is summarized in Figure 6. 

 

Figure 6. Procedure for identifying the predictive features. 

4.1 Software Programs 

Few software programs are used for visualization and computations for this research.  

Those programs are Exelis Visual Information Solutions’ Interactive Data Language (IDL) and 

MathWorks Incorporated’s Matlab.  IDL is a scientific programming language choice of 

scientists and engineers, especially in the meteorology or climatology field.  This software assists 

in interpreting data and is used to create visualizations from complex numerical data (Exelis 

Visual Information Solutions, 2014).  In this dissertation, IDL is used to identify individual CCs, 

extract cloud features, and track CC movements from the obtained satellite data.  The CC 

Verification of Predictive Features

Distinguish Between Developing and Non‐developing CCs

Balance Data Identify Predictive Features

Identification and Tracking of CCs
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features and obtained tracking information are then used as inputs to computations implemented 

in Matlab. 

Matlab is a well-known high-level language that performs computationally exhaustive 

tasks faster than other programming languages such as C, C++, and Fortran.  Matlab is 

commonly used by engineers and is used in a wide range of applications including control 

design, computational biology, and signal and image processing (MathWorks Incorporated, 

2005).  In this research, Matlab is used for computation of feature selection, oversampling, and 

pattern recognition techniques to help identify predictive features, which can distinguish between 

developing and non-developing CCs. 

4.2 Datasets 

The accessibility of information via the internet allowed the acquisition of all required 

data for this research.  Descriptions of the datasets obtained from the National Oceanic and 

Atmospheric Administration’s (NOAA’s) National Climatic Data Center (NCDC) are provided. 

4.2.1 Hurricane satellite data. NOAA’s NCDC provides access to the Hurricane 

Satellite data (HURSAT–B1, version 05).  The HURSAT data comprises of global TC 

observations from 1978 through 2009.  The HURSAT observations have a spatial span of ~10.5o 

from the center of the observed storm, a temporal resolution of 3 hours, and a gridding resolution 

of 8 km.  The HURSAT data are in a network common data form (netCDF) format and have 

three available channels: a visible (VIS) channel at 0.65 μm, an IR channel at 11 μm, and an IR 

water vapor (WV) channel at 6.7 μm (Knapp & Kossin, 2007).  Each netCDF file contains a 

snapshot of a storm from a geostationary weather satellite.  The IR channel of the HURSAT data 

is used to identify and obtain the location of developed TCs.  Labelling a CC as developing or 
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non-developing is dependent on TCs identified by this dataset.  Table 4 provides additional 

specifications regarding the HURSAT-B1 data. 

Table 4 

Detailed specification of HURSAT and GridSat data (Knapp & Kossin, 2007) 

Product HURSAT-B1 
HURSAT-

AVHHR 
HURSAT-MW GridSat 

Temporal span 1978 – 2009 1978 – 2009 1988 – 2009 1979 - 2009 

Spatial span 

Storm-centric: 

10.5o from 

center for all 

global TCs 

Storm-centric: 

10.5o from 

center for all 

global TCs 

Storm-centric: 

10.5o from 

center for all 

global TCs 

Global 

Temporal 

resolution 

3 hourly Varying 

(6 – 12 hourly) 

Varying 

(6 – 12 hourly) 

3 hourly 

Gridding 

resolution 

8km 4km 8km 8km 

Data source ISCCP B1 AVHRR GAC DMSP SSM/I ISCCP B1 

Channels 

available 

IRWIN(11μm) 

IRWVP(6.7μm)

(0.65μm) 

All AVHRR 

channels 

All SSM/I 

channels 

IRWIN(11μm) 

IRWVP(6.7μm)

(0.65μm) 

Calibration 

Clim.–IRWIN, 

ISCCP–

IRWVP 

Climate 

calibrated 

Operational 

calibration 

Clim.–IRWIN, 

ISCCP-IRWVP

Yearly size (GB) < 6.5 40 – 60 4 200 

Format NetCDF NetCDF NetCDF NetCDF 

Current version 4.0 Beta Beta Beta 

Imagery Movies BD Imagery Imagery Planned 

     

4.2.2 Gridded satellite data. NOAA’s NCDC provides access to the Gridded Satellite 

(GridSat) data.  The temporal and gridding resolution of the GridSat data are the same as the 
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HURSAT data but it includes global observations from 1979 through 2009.  For this research, 

only the IR channel is used because it senses the Earth’s surface under clear sky conditions, 

cloud top temperature of thick clouds, and a combination of cloud and surface temperatures.  

Both datasets are derived from the International Satellite Cloud Climatology Project (ISCCP) B1 

data (Knapp et al., 2011).  The GridSat data are used to identify and track all CCs in the 

atmosphere.  Table 4 provides additional specifications regarding the GridSat data. 

4.2.3 Reynolds sea surface temperature. NOAA’s NCDC provides access to High-

Resolution SST blended data with observations from the Advanced Very High Resolution 

Radiometer (AVHRR) IR satellite.  This dataset is derived through optimum interpolation, has a 

daily temporal resolution and a gridding resolution of 0.25o (Reynolds et al., 2007).  This dataset 

provides the SST corresponding to each CC as a feature in our dataset. 

4.3 Identification and Tracking of Cloud Clusters 

All CCs that formed above the equator and south of 40oN in the North Atlantic Ocean are 

found by examining the 1999-2005 Atlantic hurricane seasons (June 1 – November 30).  

Throughout this dissertation, all times are reported in a standard Greenwich Time called 

Coordinated Universal Time (UTC or Z).  The UTC times along with its US time zone 

equivalents are displayed in Table 5. 

Table 5 

Coordinated Universal Time with its equivalent times in each of the United States time zones 

UTC Time Pacific Central Eastern 

00 4pm 6pm 7pm 

03 7pm 9pm 10pm 

06 10pm 12am 1am 

09 1am 3am 4am 
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Table 5 

Cont. 

12 4am 6am 7am 

15 7am 9am 10am 

18 10am 12pm 1pm 

21 1pm 3pm 4pm 

    

4.3.1 Identification of cloud clusters. As discussed in Chapter 2, there are multiple 

definitions of a CC.  Therefore, based on previous studies a formal definition of a CC is 

established to identify CCs objectively.  Overall, a CC should have the ability to developing into 

a TC.  Therefore, the CC must have sufficient BTs, sufficient size, must persist for a prolonged 

period of time, and must exist in an area where genesis is possible which is typically not in high 

latitudes.  For this study, the following criterion is used to objectively identify CCs: 

I. A cluster must be located to the south of 40oN 

II. A cluster must last for at least 24 hours 

III. A cluster must have a BT less than or equal to 250 K (-23.15oC) 

IV. A cluster must have an area of at least 5,000 km2 

Prior studies use a colder BT threshold and a larger area threshold (Futyan & Del Genio, 2007; 

Hennon et al., 2011; Machado et al., 1998).  Instead, more conservative thresholds are used to 

account for CCs that may convert to a warm core system, to account for CCs that may change 

rapidly in size, and to avoid the need to apply fixes for missing data.   

Once a CC is identified using the GridSat data, each CC is given a serial number for 

reference.  The serial number follows the format YYYYMMDDHHLsLaLaLaLpLoLoLoLo 

where YYYY, MM, DD, and HH represent the year, month, day, and hour respectively.  Ls 
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denotes the direction (north or south) of the latitude coordinate LaLaLa and Lp denotes the 

direction (east or west) of the longitude coordinate LoLoLoLo.  The actual latitude coordinates 

are in the format LaLa.La with a range of 0.0 to 90.0o and the actual longitude coordinates are in 

the format LoLoLo.Lo with a range of 0.0 to 180.0o.  Each coordinate contains one decimal place 

and the decimals are removed to fit in the serial number format.  For example, a CC located at 

(25.95oW, 10.96oN) at 15Z August 4, 2000 is assigned 2000080415N109W0259 as its serial 

number.   

In the CC identification stage, a few variables are assigned to provide additional 

information regarding the CC.  These variables are: Time, StormName, and LandFlag.  Time 

specifies the time of the CC observation in the format YYYYMMDDHH, which denotes the 

year, month, day, and hour of the CC respectively.  StormName is defined as “NA” if the CC is 

not a developed TC.  Otherwise, it is assigned the corresponding storm name from the HURSAT 

dataset.  The LandFlag variable indicates whether the CC is over land or ocean.  The formation 

of a TC typically occurs over an ocean basin and, in this case, LandFlag ൌ 0.  In cases where a 

CC develops into a TC, we continue to obtain information regarding the developed TC 

regardless of if it makes landfall ሺLandFlag ൌ 1ሻ.  Developed TCs are the only CCs in our 

dataset where LandFlag ൌ 1. 

4.3.2 Cloud cluster feature extraction. The features extracted from each CC are 

separated into four different categories: location, shape, statistical, and image.  There are 9 

location features that provide information on the location of each CC.  The location features can 

become valid predictive features if there is an adequate separation between the spatial 

distribution of developing and non-developing CCs.  Figure 7 and Figure 8 illustrate the spatial 

distribution of the geometric center ሺglon, glatሻ of the first observation of all non-developing and 
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developing CCs.  There is not a visual distinction between the locations of the developing and 

non-developing CCs.  There is simply a higher occurrence of non-developing CCs than 

developing CCs.   

 

Figure 7. Spatial distribution of the first observation of all non-developing cloud clusters for the 

1999-2005 North Atlantic hurricane seasons. 

 

Figure 8. Spatial distribution of the first observation of all developing cloud clusters for the 

1999-2005 North Atlantic hurricane seasons. 
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In addition to location features, there are 13 shape features, which provide information 

about the shape of the CC, 50 statistical features that use the BT to obtain information about the 

CC, and 8 image features that contain information regarding the relationship of the pixels in an 

image with a spatial span of approximately 10.5o from the center of the observed CC.  The 50 

statistical features consist of 36 features that are based on the mean and standard deviation of the 

BTs, and the minimum BT for 12 rings that are in 50 km increments from 50 km to 600 km from 

the CC center.  There are also five statistical features which indicate the percentage of CC pixels 

that are less than or equal to 195 K (-78.15oC), 205 K (-68.15oC), 215 K (-58.15oC), 225 K (-

48.15oC), and 235 K (-38.15oC).  The feature variables listed in Table 6 are extracted from each 

CC.  Additional information regarding equations and descriptions of each feature is located in 

Appendix A.  These features are evaluated to determine which predictive features contribute to 

the development of a TC. 

Table 6 

List of features extracted from each identified cloud cluster 

Location (9) Shape (13) Statistical (50) Image (8) 

ܤ ଵߣ ሺ݇݉ሻ	ܣ 17ܶܣܮܣ ܶ௩ ܴ݅݊݃ܤ ܶ ܥܤܧ 

்݀ ܣ ሺݏ݈݁ݔ݅ሻ ߣଶ ܵܵ ܶ௩ ܴ݅݊݃ܤ ௦ܶ௧ௗ ܪ 

ܤ ܩ ݉ܥ ݈݊݃ ܶ௨௧ ܤ ௦ܶ௧ௗ ݊ܥ 

ܤ ܴ ܿܿܧ ݐ݈ܽ݃ ௦ܶ௪ ܤ ܶ ݎܥ 

ܤ  ௩ܧ ݈݊݉ ହܶ%  ܧ 

ܤ  ா௦௧ܴ ݐ݈ܽ݉ ଵܶ%  ܨܥܧ

 ݉ܪ  ܿܨ  ெ௫ܴ ܥܵ

ܶܤ  ெܴ ݈݊ݓ ܲ  ܰܫܯ 

ܤܴ݃݊݅  ܲ ݐ݈ܽݓ ܶ௩   
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4.3.3 Tracking cloud clusters. Once each CC is identified and its corresponding features 

are extracted, they are then tracked to trace their evolution.  The approach used to track 

individual CCs incorporate the area overlap method.  This technique assumes that a CC at time ݐ 

corresponds to a CC at time ݐ  1 if there are common pixels in consecutive satellite images and 

the size and the BT criterion are met.  This method is a relatively simple technique that is 

commonly used since it tracks CCs based on consecutive observations.  When tracking CCs, it is 

important to account for the splitting and merging occurrences; therefore, it is possible for an 

overlap to exist for multiple CCs.  Five possible conditions can occur when using this tracking 

method.   

1) Generation: Occurs when there is not a CC present at time ݐ but there is a CC 

present at time ݐ  1.  This represents the beginning of a new CC. 

2) Dissipation: Occurs when there is a CC present at time ݐ but there is not a CC 

present at time ݐ  1.  This represents the dissipation of a CC. 

3) Continuance: Occurs when there is an overlap of only one pair of CCs as shown 

in Figure 9a.  In this figure, the gray CCs represent time ݐ and the white dotted 

CCs represent time ݐ  1. 

4) Split: Occurs when a CC at time ݐ overlaps multiple CCs at time ݐ  1 as shown 

in Figure 9b.  The CC interaction with the larger overlap is typically chosen to 

continue the CC evolution and all other CCs represent a generation of a new CC. 

5) Merge: This situation is the opposite of a split.  A merge occurs when multiple 

CCs at time ݐ overlap with a single CC at time ݐ  1.  An example of this case is 

shown in Figure 9c.  The CC interaction with the larger overlap is chosen to 

continue the CC evolution and all other CCs represent a dissipating CC. 
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(a) (b) (c) 

Figure 9. Schematic representation of (a) continuing, (b) splitting, and (c) merging cloud 

clusters.  The gray figures represent a cloud cluster at time ݐ and the white dotted figures 

represent a cloud cluster at time ݐ  1.  The arrows represent the actual evolution of the cloud 

cluster. 

To determine which CC interaction represents the best CC track in the splitting and 

merging cases, the overlap of sequential CCs is calculated by the maximum scaled overlap 

ܱܵ௫ which is defined as 

ܱܵ௫ ൌ
୲ܥܥ ୲ାଵܥܥ⋂
maxሺܣ୲, ୲ାଵሻܣ

 

where ܣ୲ and ܣ୲ାଵ denote the area of the CCs at time t and t  1, respectively.  If multiple CC 

interactions have the same ܱܵ௫ value, then the interaction with the highest minimum scaled 

overlap ܱܵ is selected.  Minimum scaled overlap is defined as 

ܱܵ ൌ
୲ܥܥ ୲ାଵܥܥ⋂
minሺܣ୲, ୲ାଵሻܣ

 

Once the identification and tracking of all CCs is complete, the characteristics of each CC is 

contained in a multivariate time series.  Each time series is labeled as a developing or non-

developing CC dependent on the developed TCs identified using the HURSAT data.   

Identification and tracking of all CCs and their extracted features are the most important 

contribution of this study because there is no ground truth dataset.  However, there are numerous 
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CCs in the atmosphere and the techniques must be accurate and completed in an objective 

manner so individuals other than forecasters can use them.  Therefore, we validated the proposed 

methods by comparing our tracks of developed TCs to those recorded in the HURSAT dataset. 

Figure 10 shows an example of the HURSAT centers and the calculated centers 

(geometric, weighted, and minimum BT) for Hurricane Cindy (1999).  As shown, the calculated 

centers vary from the HURSAT centers because the calculated centers are always inside the CC.  

Therefore, these centers are automatically calculated based on the shape and/or BT of the CC.  

On the other hand, the HURSAT centers are subjective and their centers are not always inside a 

CC.  The differences in the centers demonstrate the benefits of our research, which is based 

solely on observations and are not subjective. 

 

Figure 10. Plot of HURSAT centers and calculated centers for Hurricane Cindy (1999). 

4.3.4 Characteristics of cloud cluster feature dataset. The number of North Atlantic 

TCs in the HURSAT dataset are not always equivalent to the number of TCs in our CC feature 

dataset because we eliminate any CC that persist for less than 24 hours or are pole ward of 40oN.  
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These CCs are eliminated because they do not abide by our CC criterion found in Section 4.3.1.  

Statistics of the CCs that met the criterion for this dissertation during the seven North Atlantic 

Hurricane seasons are presented in Table 7.  The 2005 season is the most active in developing 

CCs while the 1999 season was the most active in non-developing CCs.  The characteristics from 

Table 7 are not equivalent to prior studies because our BT and area thresholds in the 

identification process are more conservative.  Hence, having conservative thresholds identify 

more CCs and it eliminates the need to apply fixes to our data as done in Hennon et al. (2011) 

due to their colder BT and larger area thresholds.    

Table 7 

Summary of cloud clusters for the 1999-2005 North Atlantic hurricane seasons that meet the 

proposed cloud cluster criterion 

 1999 2000 2001 2002 2003 2004 2005 Overall

Total # of CCs 521 479 513 480 499 495 525 3512 

Longest duration (hours)* 186 138 114 156 120 159 132 186 

Mean duration (hours)* 40.06 38.93 39.53 39.34 39.49 39.10 39.02 39.36 

Median duration (hours)* 36 33 33 33 33 33 33 33 

# of Developing CCs 15 17 19 15 17 14 30 127 

% of Developing CCs 2.88 3.55 3.70 3.13 3.41 2.83 5.71 3.62 

# of Non-developing CCs 506 462 494 465 482 481 495 3385 

% of Non-developing CCs 97.12 96.45 96.30 96.88 96.59 97.17 94.29 96.38 

* Non-developing CCs only  
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4.4 Distinguishing between Developing and Non-developing Cloud Clusters 

Identifying predictive features of developing CCs using solely gridded satellite data is a 

difficult task.  When addressing this problem, we must convert CC time series to individual 

observations, standardize the data, balance the data to make the class distribution approximately 

equal, identify predictive features, and classify the data.  The methods used for these steps are 

described in this section. 

4.4.1 Convert cloud cluster time series. There are multiple ways of representing our CC 

feature dataset.  We convert our CC time series data in a manner that can be used for real time 

classification in the future.  This representation includes all observations of each CC time series 

dependent on the forecast being analyzed.  There are nine forecasts which contain all non-

developing observations and observations of developing CCs that occur at 0, 6, 12, 18, 24, 30, 

36, 42, and 48 hours prior to the development of a TC.  In this representation, a developing CC is 

categorized as non-developing if it does not develop into a TC within 48 hours. 

4.4.2 Standardization of the dataset. After changing the representation of the data, we 

standardize the data by converting the values to z-scores using the following equation: 

෪ܥܥ
 ൌ

൫ܥܥ
 െ തതതത൯ܥܥ

ݏ
 

where ܥܥ
 denotes sample ݆ of feature ݅, ܥܥതതതത represents the sample mean of feature ݅, and ݏ 

indicates the sample standard deviation of feature ݅.  The data is standardized to avoid confusion 

during the classification of features that have different magnitudes and units.  Therefore, the 

selected classifier will treat each variable with equal consideration and the standardization can 

help stabilize the training of the classifier.  Before further analysis, observations that contain any 

missing values were excluded.   
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4.4.3 Balance cloud cluster data. In most real world applications, the observed data are 

highly imbalanced which causes a problem since standard classifiers are biased to the larger 

class.  In this research, the observations of non-developing CCs outnumber those of developing 

CCs.  Therefore, to address this issue we eliminate outliers and apply ENN for undersampling, 

and we apply SCOT for oversampling.   

The amount of non-developing CCs greatly outnumbers developing CCs by thousands, 

which is due to our conservative thresholds.  Therefore, to reduce the number of samples, we 

eliminate mild outliers from the non-developing CCs using the first quartile (Q1), third quartile 

(Q3) and the interquartile range (IQR), which is equivalent to the difference between Q1 and Q3 

(Lewis, 2012).  A CC is a mild outlier if 

ܥܥ
 ൏ ܳଵ െ ሺ1.5 ൈ  ሻܴܳܫ

or 

ܥܥ
  ܳଷ  ሺ1.5 ൈ  ሻܴܳܫ

This method of identifying mild outliers focuses on the positions of the first and third quartile 

(Lewis, 2012).  Once the mild outliers are eliminated, the ENN is used for undersampling as 

described in Chapter 3.  ENN is used because it is expected to remove non-developing CCs that 

may overlap with the developing CCs causing misclassification. 

Once the number of non-developing CCs is reduced, SCOT is used because of its 

satisfactory performances, which were described in Chapter 3 and Appendix B.  Specifically, 

SCOT assures that the synthetic samples do not replicate any of the minority samples or other 

synthetic samples.  Here, SCOT is used to balance the CC feature data so we can use standard 

classifiers to determine the best predictive features to identify developing CCs.  We analyze nine 

forecasts, which contain observations that occur at 0, 6, 12, 18, 24, 30, 36, 42, and 48 hours prior 
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to the development of the TCs.  Table 8 provides a comparison of the number of samples for 

each forecast before and after balancing the dataset.  Note that the totals in Table 8 are different 

from that of Table 7 because it is based on the individual observations instead of the complete 

time series data.  Table 8 shows that the developing CCs on average over all forecasts were 

approximately 0.96% of the imbalanced dataset but once ENN and SCOT are applied, its 

population increased to approximately 50.57% of the balanced dataset.  Balancing the data 

verifies that the number of samples in each class are approximately equal which reduces the bias 

of the non-developing CCs (majority class) when using a standard classifier.     

Table 8 

Comparison of the number of cloud clusters for each forecast before and after balancing the 

data so the number of samples in each class are approximately equal 

Forecast Characteristic Before Balancing After Balancing 

0 

# of CCs 44997 32743 

# of Developing CCs 1108 16398 

% of Developing CCs 2.46 50.08 

# of Non-Developing CCs 43889 16345 

% of Non-Developing CCs 97.54 49.92 

6 

# of CCs 44746 33501 

# of Developing CCs 857 16942 

% of Developing CCs 1.92 50.57 

# of Non-Developing CCs 43889 16559 

% of Non-Developing CCs 98.08 49.43 

12 

# of CCs 44523 33954 

# of Developing CCs 634 17126 

% of Developing CCs 1.42 50.44 

# of Non-Developing CCs 43889 16828 

% of Non-Developing CCs 98.58 49.56 
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Table 8 

Cont. 

18 

# of CCs 44356 34259 

# of Developing CCs 467 17190 

% of Developing CCs 1.05 50.18 

# of Non-Developing CCs 43889 17069 

% of Non-Developing CCs 98.95 49.82 

24 

# of CCs 44229 34648 

# of Developing CCs 340 17377 

% of Developing CCs 0.77 50.15 

# of Non-Developing CCs 43889 17271 

% of Non-Developing CCs 99.23 49.85 

30 

# of CCs 44119 35044 

# of Developing CCs 230 17589 

% of Developing CCs 0.52 50.19 

# of Non-Developing CCs 43889 17455 

% of Non-Developing CCs 99.48 49.81 

36 

# of CCs 44020 35390 

# of Developing CCs 131 17735 

% of Developing CCs 0.30 50.11 

# of Non-Developing CCs 43889 17655 

% of Non-Developing CCs 99.70 49.89 

42 

# of CCs 43951 35681 

# of Developing CCs 62 17864 

% of Developing CCs 0.14 50.07 

# of Non-Developing CCs 43889 17817 

% of Non-Developing CCs 99.86 49.93 

48 

# of CCs 43904 35874 

# of Developing CCs 15 17939 

% of Developing CCs 0.03 50.01 

# of Non-Developing CCs 43889 17935 

% of Non-Developing CCs 99.97 49.99 
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4.4.4 Identification of predictive features. To select an appropriate subset of features 

(or predictors) for developing CCs, the SFS algorithm was used as described in Chapter 3.  In 

this case, SFS selects the predictors using a stopping criterion for the feature selection process of 

0.0001, and using a selected classification performance measure.  The classifier chosen to assess 

the SFS process is logistic regression.  Binary logistic regression is a statistical method that 

analyzes a dataset containing features and binary class labels equal to 1 for developing CCs and 

0 for non-developing CCs.  We used three different classification performance measures to assist 

in the SFS method.  These measures are the average of sensitivity and specificity (Acc), HSS, 

and G-Mean whose definitions are found in Chapter 3.   

Table 9 

Comparison of sequential forward selection using different performance measures and their 

classification results for the CART simulation 

Performance 
Measure 

Forecast # of Features Features F1-Measure G-Mean HSS 

Acc 

0 

9 

ALAT17 
SSTavg 

Hb 
dTC 
Ecc 
mlat 
NMI 

RingBTstd550 
BTstd 

99.97499 99.97498 0.9995 
6 99.98863 99.98863 0.99977 

12 99.96702 99.96702 0.99934 
18 99.80666 99.80655 0.99613 
24 99.96816 99.96816 0.99936 
30 99.7988 99.79859 0.99597 
36 99.94313 99.94313 0.99886 
42 99.94314 99.94313 0.99886 
48 99.97726 99.97725 0.99955 

HSS 

0 

4 

SSTavg 
dTC 

BTP195K 
RingBTstd200 

99.95793 99.95792 0.99916 
6 99.98636 99.98636 0.99973 

12 99.92838 99.92836 0.99857 
18 99.79973 99.79974 0.99599 
24 99.94771 99.94769 0.99895 
30 99.63654 99.63579 0.99272 
36 99.89881 99.89876 0.99798 
42 99.94882 99.94882 0.99898 
48 99.95906 99.95906 0.99918 
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Table 9 

Cont. 

GMean 

0 

6 

ALAT17 
SSTavg 

dTC 
BT5% 
mlat 
NMI 

99.97839 99.97839 0.99957 
6 99.98408 99.98408 0.99968 

12 99.95566 99.95565 0.99911 
18 99.76236 99.76216 0.99524 
24 99.97044 99.97044 0.99941 
30 99.76583 99.7656 0.99531 
36 99.91926 99.91924 0.99838 
42 99.95223 99.95223 0.99904 
48 99.96589 99.96588 0.99932 

       

The classification results for a simple classification and regression trees (CART) 

simulation using ten-fold cross validation for all forecasts are displayed in Table 9.  This 

simulation classifies all CC observations using the selected predictive features, which were 

identified using SFS and various performance measures.  As shown in the table, each 

performance measure selects different features as predictors but all results are satisfactory.  To 

determine which SFS method is significant, we use the Wilcoxon Signed Rank test to compare 

the G-Mean values (ideal performance measure) of SFS using G-Mean to the results of SFS 

using HSS and Acc.  This test is used because it is a powerful non-parametric test (Sheng Chen, 

He, & Garcia, 2010; Demsar, 2006).  For each forecast, we calculate the difference di between 

the G-Mean values of the compared methods.  The absolute values of the differences are ranked 

from least to greatest where the smallest difference obtains a ranking of 1.  An average rank is 

given if a tie occurs in more than one difference.  The sign (+ or -) of the difference is applied to 

each ranking and summed based on their signs as follows (Demsar, 2006): 

ܴା ൌ  rankሺ|݀|ሻ
ௗவ


1
2
 rankሺ|݀|ሻ
ௗୀ
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ܴି ൌ  rankሺ|݀|ሻ
ௗழ


1
2
 rankሺ|݀|ሻ
ௗୀ

 

Table 10 

Wilcoxon Signed Rank test results, which compare the geometric means of the sequential 

forward selection methods using geometric mean, heidke skill score, and average of sensitivity 

and specificity as performance measures 

Forecast 
SFS using G-Mean vs. HSS SFS using G-Mean vs. Acc 

G-Mean HSS Rank G-Mean Acc Rank 

0 99.97839 99.95792 4.0 99.97839 99.97498 2.0 

6 99.98408 99.98636 -1.0 99.98408 99.98863 -3.0 

12 99.95565 99.92836 7.0 99.95565 99.96702 -5.5 

18 99.76216 99.79974 -8.0 99.76216 99.80655 -9.0 

24 99.97044 99.94769 6.0 99.97044 99.96816 1.0 

30 99.7656 99.63579 9.0 99.7656 99.79859 -8.0 

36 99.91924 99.89876 5.0 99.91924 99.94313 -7.0 

42 99.95223 99.94882 2.0 99.95223 99.94313 4.0 

48 99.96588 99.95906 3.0 99.96588 99.97725 5.5 

 T = min{36, 9} = 9 T = min{12.5, 32.5} = 12.5 

   

To determine the significance of using the SFS method, a T value is computed as ܶ ൌ

݉݅݊ሺܴା, ܴିሻ.  The null hypothesis of this test is that the considered methods perform equally.  

In order to reject this hypothesis, the T value must be less than or equal to its relative critical 

value found in a Wilcoxon Signed Rank critical value table such as the one found in Bissonnette 
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(2011).  From the Wilcoxon Signed Rank critical value table we find that for nine forecasts and a 

significance level of 0.05 ሺߙ ൌ 0.05ሻ, the value of T should be less than or equal to 5 if the 

difference between the methods are significant (Demsar, 2006).  Table 10 displays the results of 

this test with the best results highlighted in bold.  The table concludes that we cannot reject the 

null hypothesis when comparing SFS using G-Mean versus Acc or HSS, which indicates that the 

three methods perform equally.  Hence, we identify the predictors as the union of the features 

selected by the methods.  Based on our feature selection results, our dataset is reduced to only 

include the selected predictors.  The dimensions of our dataset are reduced drastically once we 

use the predictors instead of using all eighty features.  The reduction in the number of 

dimensions increases the speed and reduces the computation time of our classification process.  

4.5 Summary 

This chapter presented the methodology for this research.  Our methods used IDL to 

objectively identify and track CCs, and to extract eighty features for each CC from the obtained 

satellite data.  On the other hand, Matlab was used for feature selection, oversampling, and 

pattern recognition techniques to help identify the best set of predictive features obtained from 

applying SFS.  The succeeding chapter will discuss the identified predictive features and the 

classification results of using the predictive features. 

  



62 
 

 

CHAPTER 5 

Verification of Predictive Features 

Identifying developing TCs is a complicated task; therefore, it is beneficial to identify 

predictive features that can objectively identify developing CCs from global gridded satellite 

data.  Identifying predictive features may improve the performance of identifying developing 

CCs by eliminating redundant features which may reduce classification performance and have 

high computational costs.  The preceding chapter provided the methodology for identifying the 

predictive features.  Based on the results of the Wilcoxon Signed Rank test, we identify the 

predictors as the union of the features selected after applying SFS using G-Mean, HSS, and Acc.  

The twelve features identified as predictors consist of three location features, one shape feature, 

six statistical features, and two image features with the age of the CC being an additional 

parameter.  The following are the selected predictors: latitude of maximum genesis productivity, 

distance to nearest TC, average latitude of the minimum BT, eccentricity, average SST, BT in 

which 5% of the CC pixels are colder, percentage of CC pixels less than 195 K (-78.15oC), 

standard deviation of BT in rings with a radius of 200 and 550 km from the geometric center, 

standard deviation of BT, binary entropy, and normalized moment of inertia.  These predictors 

indicate that some information regarding all feature types (location, shape, statistical, and image) 

is required to successfully identify developing CCs from solely gridded satellite data.   

5.1 Verification of Predictive Features using Standard Classifiers 

The goal of presenting simulation results is to evaluate the performance of identifying 

developing CCs using the identified predictive features.  To verify that our simulations are not 

classifier dependent, one specific classifier is not used.  Instead, we apply CART, a simple neural 

network, and a support vector machine (SVM) using ten-fold cross validation to classify the 
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simplified 1999-2005 CC feature dataset containing only the identified predictors and the age 

parameter.  These classifiers are used because the CART algorithm is one of the simplest 

algorithms that does not require additional parameters, a neural network is more complex, and 

both the CART algorithm and the neural network can provide probabilistic forecasts (Shao & 

Lunetta, 2012).  On the other hand, the SVM does not provide probabilistic forecasts but this 

classifier is used primarily for its performance in real world problems, its generalization 

capability, and its fast and effective learning (Gavrishchaka & Ganguli, 2001; Shao & Lunetta, 

2012).  Therefore, satisfactory results for all simulations demonstrate the ability of our 

techniques.   

5.1.1 Optimal design of probabilistic classifiers. When using a neural network, it is 

imperative that the network is designed to yield optimal results (Doukim, Dargham, & Chekima, 

2010; Hennon, 2003; Sheela & Deepa, 2013).  Therefore, an optimal number of neurons in the 

hidden layer for each forecast hour is determined.  Many studies have evaluated many techniques 

of determining an optimal number of hidden neurons and most techniques consider three rule-of-

thumb methods  

ܪ .1 ൌ ܱ  ሺ0.75ܫሻ, 

ܪ .2   and ,ܫ2

3. ܱ  ܪ   ܫ

where ܱ, ܪ, and ܫ represent the number of neurons in the output, hidden, and input layers, 

respectively (Karsoliya, 2012; Shahamiri & Binti Salim, 2014; Sheela & Deepa, 2013).  

Therefore, we consider possible values of hidden neurons between one and twenty-six for each 

forecast hour since our input layer contains thirteen neurons, and our output layer contains one 

neuron.  The CC feature dataset is analyzed for ten trials using 10-fold cross validation for all 
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possible of hidden neurons values.  Thus, the network was trained 2600 times for each forecast 

hour.   

The optimal number of hidden neurons for each forecast hour is determined in the 

following manner.  For each trial, the dataset is classified using a neural network with the scaled 

conjugate gradient backpropagation as the training function, the hyperbolic tangent sigmoid 

transfer function as the input activation function, the log-sigmoid transfer function as the output 

activation function, and the mean squared error as the performance function.  The number of 

hidden neurons with minimal error is selected for each of the ten trials.  Once all trials are 

concluded, ten values of possible hidden layer sizes are suggested.  The hidden layer size that 

occurs more frequently for the considered forecast hour is chosen as the optimal number of 

hidden neurons.  Figure 11 is a frequency histogram of the optimal number of hidden neurons for 

all forecast hours.  The optimal number of hidden neurons for each forecast hour are as follows: 

25 neurons for the 0 hour forecast, 23 neurons for the 6 hour forecast, 23 neurons for the 12 hour 

forecast, 24 neurons for the 18 hour forecast, 25 neurons for the 24 hour forecast, 25 neurons for 

the 30 hour forecast, 22 neurons for the 36 hour forecast, 22 neurons for the 42 hour forecast, 

and 23 neurons for the 48 hour forecast. 

The performance measures used to evaluate the simulations are based on the confusion 

matrix.  This matrix is generated based on discrete forecasts of 1 (developing) or 0 (non-

developing).  Therefore, an optimal decision threshold (ܦ௧) is ideal where probability of 

forecasts above (below) the threshold are classified as developing (non-developing) CCs and the 

skill of the forecasts are maximized (Hennon, 2003).  To identify ܦ௧ for each forecast hour, the 

entire CC feature dataset was classified using the corresponding classifier and 10-fold cross 

validation.  The probabilistic forecasts were evaluated using the confusion matrix for all possible 
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decision thresholds between 0 and 1 in 0.001 increments.  The decision threshold obtaining the 

highest HSS value is selected as ܦ௧.  In instances where there are equivalent HSS values, the 

lower decision threshold is selected.  The optimal decision thresholds for each of the forecast 

hours are indicated in Table 11 and are used hereafter. 

 

Figure 11. Histogram of the optimal number of hidden neurons for the 90 trials. 

Table 11 

Optimal decision thresholds for each forecast hour 

 0 6 12 18 24 30 36 42 48 

CART 0.700 0.800 0.750 0.667 0.500 0.400 0.667 0.667 0.048 

Neural Network 0.527 0.549 0.590 0.591 0.644 0.698 0.778 0.858 0.886 

          

5.1.2 Classification and regression trees. CART is one of the original techniques for 

classification problems which uses a tree structure where the leaves represent class labels 

(developing or non-developing CCs) and the branches signify combinations of the predictive 
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features that result in those labels (Narsky & Porter, 2013; Shao & Lunetta, 2012).  The CART 

algorithm is implemented using the Statistics Toolbox in Matlab to distinguish between 

developing and non-developing CCs.  The classifier is implemented to use pruning, have at least 

one observation per tree leaf, uses the Gini’s diversity index as a splitting criterion, merge leaves 

that originate from the same parent node, and the class probabilities are based on the class 

distribution.  Figure 12 illustrates the classification performance using the identified predictive 

features and the performance measures for each forecast in the simulation are found in Table 12.   

(a) (b) 

Figure 12. Comparison of the geometric means and the performance of developing (recall) and 

non-developing (specificity) cloud clusters using (a) the imbalanced dataset and (b) the balanced 

dataset for each forecast hour for the CART simulation. 

When the dataset is imbalanced, the CART classifier has poor performance in identifying 

developing CCs.  Its best performance occurs at the 0 hour forecast where only 37.73% and 

99.85% of the developing and non-developing CCs are identified correctly.  This is expected 
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because the classifier is bias to the non-developing CCs since they represent majority of the data.  

The precision performance measure provides a representation of the amount of developing CCs 

that are correctly classified as developing.  Therefore, the imbalanced dataset has low recall and 

higher precision values which means there are few non-developing CCs being misclassified as 

developing.  This indicates that the CART algorithm is fairly confident when it classifies a CC as 

developing. 

Table 12 

Performance measures for each forecast for the CART simulation 

Dataset Forecast Recall Specificity Precision 
F1-

Measure 
G-Mean HSS TS 

Imbalanced 

0 37.72563 99.85317 94.57014 53.93548 61.37608 0.52205 0.36926

6 21.47025 99.94565 95.33679 35.04762 46.3234 0.33851 0.21247

12 6.15142 100 100 11.5899 24.80206 0.11216 0.06151

18 26.7666 99.94141 92.59259 41.52824 51.72129 0.40821 0.26205

24 31.47059 99.91894 88.42975 46.42082 56.07591 0.45872 0.30226

30 7.3913 100 100 13.76518 27.18695 0.13611 0.07391

36 8.39695 99.99434 91.66667 15.38462 28.97666 0.1528 0.08333

42 3.22581 100 100 6.25 17.96053 0.0623 0.03226

48 6.66667 99.99442 50 11.76471 25.81917 0.11747 0.0625 

Balanced 

0 99.85822 99.83216 99.84188 99.85005 99.84519 0.99691 0.99701

6 99.85724 99.85047 99.85724 99.85724 99.85386 0.99708 0.99715

12 99.8508 99.87992 99.88392 99.86736 99.86536 0.9973 0.99735

18 99.88357 99.81241 99.81716 99.85036 99.84799 0.99697 0.99701

24 99.91663 99.83588 99.83894 99.87777 99.87625 0.99753 0.99756

30 99.9109 99.86474 99.86641 99.88865 99.88782 0.99776 0.99778

36 99.92198 99.85415 99.8552 99.88858 99.88806 0.99776 0.99777

42 99.9108 99.83788 99.83845 99.87461 99.87434 0.99749 0.9975 

48 99.94423 99.83824 99.83845 99.89131 99.89122 0.99782 0.99783
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It is difficult to identify the developing CCs since there are few samples.  The distribution 

of the developing and non-developing CCs is approximately equal after applying SCOT because 

SCOT generates synthetic samples for the developing CCs.  Generating synthetic samples 

increases the ability to identify developing CCs.  This is demonstrated by the performance of the 

balanced dataset where at least 99.85% and 99.81% of developing and non-developing CC are 

correctly identified.  Therefore, all evaluated forecasts obtain a geometric mean of at least 

99.85% which indicates the confidence in the identified predictive features.  All of the 

performance measures for the balance dataset demonstrate satisfactory results for identifying 

developing CCs specifically with high recall and high precision values. 

5.1.3 Neural network. Neural networks are typically used because it does not make 

assumptions regarding the distribution of the data (Shao & Lunetta, 2012).  Therefore, this 

simulation uses a simple neural network implemented using the Neural Network Toolbox in 

Matlab.  The implemented neural network has one hidden layer, uses the scaled conjugate 

gradient backpropagation as the training function, the hyperbolic tangent sigmoid transfer 

function as the input activation function, the log-sigmoid transfer function as the output 

activation function, and the mean squared error as the performance function (Beale, Hagan, & 

Demuth, 2013).  Figure 13 illustrates the performance of using the identified predictive features 

to classify developing and non-developing CCs in the neural network simulation.  As illustrated 

in this figure, the performance of identifying non-developing CCs is high while the performance 

of identifying developing CCs decreases for longer forecasts when the dataset is imbalanced.  

Once the class distribution is approximately equal, all evaluated forecasts obtain a geometric 

mean above 99.09 % which indicates the identified predictive features can satisfactorily identify 

developing CCs.  In addition to high geometric mean values, high recall and precision values 
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indicate the ability to identify developing CCs without misclassifying non-developing CCs as 

developing.  The calculated performance measures for each forecast are found in Table 13.  This 

table demonstrates SCOT’s skill of increasing the ability to identify developing CCs using the 

identified predictive features. 

(a) (b) 

Figure 13. Comparison of the geometric means and the performance of developing (recall) and 

non-developing (specificity) cloud clusters using (a) the imbalanced dataset and (b) the balanced 

dataset for each forecast for the neural network simulation. 

Table 13 

Performance measures for each forecast for the neural network simulation 

Dataset Forecast Recall Specificity Precision F1-Measure G-Mean HSS TS 

Imbalanced 

0 36.19134 99.66351 87.9386 51.27877 60.05793 0.49406 0.3448 
6 31.972 99.87922 93.19728 47.61077 56.50963 0.4626 0.31243

12 23.50158 99.97029 96.75325 37.81726 48.47122 0.36922 0.23318
18 25.05353 99.99414 99.15254 40 50.05204 0.39348 0.25 
24 15 99.99421 98.07692 26.02041 38.72871 0.2564 0.14956
30 12.6087 100 100 22.39382 35.50873 0.22167 0.12609
36 10.68702 100 100 19.31034 32.69101 0.19195 0.10687
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Table 13 

Cont. 

 
42 3.22581 100 100 6.25 17.96053 0.0623 0.03226

48 0 100 NaN NaN 0 0 0 

Balanced 

0 98.42949 99.7627 99.77337 99.09687 99.09386 0.98152 0.9821 
6 98.90188 99.89648 99.90017 99.39852 99.39794 0.98775 0.98804

12 99.07167 99.76555 99.77184 99.42052 99.41801 0.98825 0.98848
18 99.40677 99.93179 99.93312 99.66925 99.66894 0.99332 0.99341
24 99.63317 99.86418 99.8663 99.7496 99.74861 0.99495 0.995 
30 99.84965 99.82528 99.82741 99.83853 99.83747 0.99675 0.99678
36 99.91083 99.94951 99.94982 99.93033 99.93017 0.9986 0.99861
42 99.92195 99.86024 99.86072 99.89133 99.89109 0.99782 0.99783
48 99.98327 99.98327 99.98327 99.98327 99.98327 0.99967 0.99967

         

5.1.4 Support vector machine. The SVMs are typically used because they are effective 

in high dimensional spaces and they perform well on sparse and noisy data.  This classifier 

separates the data with a maximally distant hyperplane in the feature space which can 

satisfactorily separate the developing and non-developing CCs (Furey et al., 2000).  It is 

implemented using the Statistics Toolbox in Matlab.  The SVM is designed to use the Gaussian 

radial basis function as the kernel function with a default scaling factor (sigma) of one, the 

maximum number of iterations to converge is set to 100,000, and the sequential minimal 

optimization algorithm is used to find the separating hyperplane.  Figure 14 illustrates the 

classification performance using the identified predictive features and the performance measures 

for each forecast in the simulation are found in Table 14.  When the dataset is imbalanced, at 

least 93.77% of the non-developing CCs are identified correctly while the identification of 

developing CCs does not perform as well.  The imbalanced dataset has low recall and low 

precision values which means many non-developing CCs are being misclassified as developing.  

This indicates that the SVM algorithm has limited confidence when it classifies a CC as 

developing.  On the other hand, at least 98.35 % and 99.93 % of developing and non-developing 
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CC are correctly identified once the dataset is balanced.  Therefore, all evaluated forecasts obtain 

a geometric mean of at least 99.09% which indicates the ability of identifying developing CCs 

using only the identified predictive features and the age parameter.    

(a) (b) 

Figure 14. Comparison of the geometric means and the performance of developing (recall) and 

non-developing (specificity) cloud clusters using (a) the imbalanced dataset and (b) the balanced 

dataset for each forecast for the support vector machine simulation. 

Table 14 

Performance measures for each forecast for the support vector machine simulation 

Dataset Forecast Recall Specificity Precision F1-Measure G-Mean HSS TS 

Imbalanced 

0 52.70758 93.76568 36.43169 43.08373 70.30051 0.38464 0.27457
6 44.69078 94.95139 31.4192 36.89788 65.14178 0.33028 0.22623

12 35.96215 96.17304 26.14679 30.27888 58.80977 0.27219 0.1784 
18 29.97859 97.47495 24.51839 26.97495 54.05702 0.24771 0.1559 
24 24.11765 98.37879 22.65193 23.36182 48.71001 0.21805 0.13226
30 18.69565 98.95159 19.02655 18.85965 43.01121 0.178 0.10412
36 5.34351 99.56386 8.33333 6.51163 23.06557 0.0597 0.03365
42 4.83871 99.82601 8.82353 6.25 21.97792 0.06019 0.03226
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Table 14 

Cont. 

 48 0 99.98327 0 NaN 0 -.00028 0 

Balanced 

0 98.35315 99.93055 99.93351 99.13703 99.13871 0.98236 0.98289
6 98.79756 99.94824 99.95001 99.37044 99.37124 0.98719 0.98749

12 99.25402 99.98856 99.98887 99.62009 99.62061 0.9923 0.99243
18 99.50657 99.99432 99.99443 99.7499 99.75014 0.99495 0.99501
24 99.69987 99.98868 99.98885 99.84415 99.84417 0.99686 0.99689
30 99.88306 99.98873 99.98885 99.93593 99.93588 0.99871 0.99872
36 99.9387 99.99439 99.99442 99.96655 99.96654 0.99933 0.99933
42 99.96655 99.99441 99.99442 99.98049 99.98048 0.99961 0.99961
48 100 99.99442 99.99442 99.99721 99.99721 0.99994 0.99994

         

5.2 Summary 

This chapter presents the simulation results to verify the performance of the identified 

predictive features.  For all forecasts and simulations, the results indicate a F1-Measure of at 

least 99.09%, a geometric mean above 99.09%, a HSS of at least 0.98, and a TS above 0.98.  

These values are a huge improvement when compared to the results without using SCOT to 

make the class distribution of developing and non-developing CCs approximately equal.  Figure 

15 and Figure 16 demonstrate the improvement of the G-Mean values and the HSSs, 

respectively, for all forecast hours using SCOT when compared to not using SCOT.  When 

SCOT is not applied and the dataset is imbalanced, longer forecast hours decrease in predictive 

skill.  This indicates that SCOT increases the size of the minority class (developing CCs) without 

hindering the ability to distinguish non-developing CCs from those that will develop.  Overall, 

the results show that the selected predictors from our CC feature dataset and the application of 

SCOT can satisfactorily separate developing and non-developing CCs.   



73 
 

 

 

Figure 15. Comparison of the geometric mean of the imbalanced and the balanced datasets for 

all forecast hours and classifiers. 

 

Figure 16. Comparison of the Heidke skill score of the imbalanced and the balanced datasets for 

all forecast hours and classifiers. 

The results of three different classifiers are provided in this chapter.  Each classifier has 

satisfactory performance for the balanced dataset but the main difference in the classifiers are 
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visible by its performance on the imbalanced dataset.  The CART algorithm is the simplest of the 

compared classifiers that does not require additional parameters and is computationally 

inexpensive in comparison to the compared classifiers.  This classifiers has low recall values and 

high specificity values for the imbalanced dataset but the precision values are at least 88.43% 

with the exception of the 48 hour forecast.  The neural network classifier is more complex than 

CART and it requires the specification of additional parameters.  The performance is dependent 

on the specified additional parameters therefore they must be chosen in an objective manner.  

This classifiers has low recall values and high specificity values for the imbalanced dataset but 

the precision values are at least 87.94% with the exception of the 48 hour forecast.  The SVM 

classifier is known for its generalization capability and its fast and effective learning capabilities.  

This is partially demonstrated by the results but this classifier was the most computationally 

expensive classifier of the three.  This classifiers has low recall and precision values and high 

specificity values for the imbalanced dataset.  The low precision and recall values demonstrates 

less confidence in the decisions of identifying a CC as developing.  Based on the overall results 

of each classifier, the preferred classifier is the neural network classifier because it can be 

optimally designed, it performs well on complex data, and its results are more consistent as 

demonstrated by the steadiness in the G-Mean and HSS values in Figure 15 and Figure 16, 

respectively.  The succeeding chapter evaluates case studies to further verify the performance of 

our techniques. 
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CHAPTER 6 

Case Studies 

The performance of multiple classifiers is evaluated on the 1999-2005 North Atlantic 

hurricane season in the preceding chapter.  The CART, the neural network, and the SVM 

classifiers all have satisfactory performance of identifying developing CCs.  The results 

demonstrate a drastic increase in performance when comparing the imbalanced data results to 

those of the balanced dataset especially since its ability does not decrease for longer forecasting 

hours.  In this chapter we examine seven case studies to further verify the performance of our 

techniques.  The first six case studies are within the 1999-2005 dataset and the last case study is 

from the 2006 North Atlantic hurricane season to further verify that our techniques performs well 

with other datasets.  These studies were randomly selected, with an exception of the historic 

Hurricane Katrina (2005), and evaluated using the same classifiers from the previous chapter.  

The National Hurricane Center website provided summaries for the developing case studies.  The 

data associated with each case study were removed from the dataset and used as the test samples 

while the remaining data were used as the training samples.  Therefore, for each case study there 

were twenty seven different datasets (9 forecasts per classifier). 

The following case studies are shown using an index value called TCG Index (TCGI).  

This scale produces an index ranging from -1 (least favorable) to 1 (most favorable) and is 

defined as follows: 

ܫܩܥܶ ൌ
ܲ െ ௧ܦ
1 െ ௧ܦ

	if	ܲ   ௧ܦ

ܫܩܥܶ ൌ
ܲ െ ௧ܦ
௧ܦ

if	ܲ ൏  ௧ܦ
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where ܲ denotes the probability from the classifier and ܦ௧ represents the optimal decision 

threshold for the respective classifier and forecast as indicated in Table 11.  For the SVM 

classifier, ܲ is either 1 (developing) or 0 (non-developing) and ܦ௧ ൌ 0.5.  Figure 17 through 

Figure 19 display histograms of TCGI values for developing and non-developing CCs for the 

CART, neural network, and SVM simulations, respectively.  These figures show that the TCGI 

values for developing and non-developing CCs are clearly separable for all simulations.  This 

suggests our techniques can satisfactorily identify developing CCs.  The succeeding sections 

focus on the TCGI values of the selected case study. 

 

Figure 17. Histogram of the TCGI values for developing and non-developing CCs for the CART 

simulation. 
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Figure 18. Histogram of the TCGI values for developing and non-developing CCs for the neural 

network simulation. 

 

Figure 19. Histogram of the TCGI values for developing and non-developing CCs for the 

support vector machine simulation.  

6.1 Hurricane Katrina (2005) 

In the CC dataset, the CC that eventually became Hurricane Katrina originated at 12Z 

August 21 with a geometric center at (20.79oN, 68.95oW).  This system originated from the 
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interaction of an upper tropospheric trough over the Bahamas, remnants of Tropical Depression 

Ten, and a tropical wave departing the west coast of Africa (Knabb, Rhome, & Brown, 2005).  

This interaction produced a large region of convection and thunderstorms which slowly 

progressed northwestward during August 22.  This slow movement coincides with the data in the 

CC dataset.  By 18Z August 23, the system was declared a tropical depression at (23.1oN, 

75.1oW) which was 36 hours after the Tropical Weather Outlook (TWO) began conveying the 

possibility of the CC developing (Knabb et al., 2005).  Figure 20 displays the CC at genesis from 

our CC dataset and from the HURSAT dataset after applying our BT threshold of 250K.  Both 

figures are images that are 301 by 301 pixels where the center of the storm is the center of the 

image.  The CC from our dataset uses the geometric center as the center while the HURSAT 

center is specified by an expert.  The difference in the defined centers is visible by the shift of the 

CC in the image. 

  

(a) (b) 

Figure 20. Hurricane Katrina at 18Z August 23 from (a) our CC dataset and (b) the HURSAT 

data after applying our brightness temperature threshold. 
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A series of forecasts were analyzed for each developing and non-developing CC of 

Katrina using the same classifiers presented in the preceding chapter.  Figure 21 displays the 

TCGI values for each forecast hour for Hurricane Katrina (2005) for the CART simulation.  In 

this figure, the first forecast to identify the storm as developing is the 36 hour forecast for the CC 

observed on 3Z August 22.  This occurred during the time a slow propagating large region of 

convection and thunderstorms was produced which was 39 hours prior to its genesis.  The CART 

simulation is one of the simplest classifiers "learned" by splitting the dataset into subsets based 

on the values of each predictor.  Therefore, to examine its overall performance over all forecast 

hours, the average TCGI values are obtained as displayed in Figure 22.  The increase in TCGI 

values in this simulation indicates that as the CC evolves, genesis is more favorable.  For 

example, the TCGI value from 12Z August 21 to 9Z August 22 are relatively low (൏ െ0.32), 

with a neutral value at 12Z August 22, and there are oscillations in the TCGI values with a 

downward trend until an abrupt increase to 0.31 at 3Z August 23. 

 
Figure 21. TCGI values for each forecast hour for Hurricane Katrina (2005) for the CART 

simulation. 
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Figure 22. Average TCGI values for Hurricane Katrina (2005) for the CART simulation. 

Figure 23 displays the TCGI values for each forecast hour for Hurricane Katrina (2005) 

for the neural network simulation.  In this figure, the first forecast to identify the storm as 

developing is the 30 hour forecast for the CC observed on 6Z August 22.  This was also during 

the time a slow propagating large region of convection and thunderstorms was produced.  The 

difference between this simulation and the CART simulation is that there are more CC 

observations identified as favorable for TC development.  This is demonstrated by the number of 

observations above zero and even those CCs identified as non-favorable have higher values than 

the CART simulation.  This change is contributed to the neural network classifier having the 

ability to recognize more complex patterns in the data.  The average TCGI values are obtained as 

displayed in Figure 24.  In this figure, the average TCGI values increase throughout time and is 

considered favorable for development beginning at 18Z August 22 with the exception of 3Z 

August 23 (-0.09) which is slightly unfavorable for development. 
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-  

Figure 23. TCGI values for each forecast hour for Hurricane Katrina (2005) for the neural 

network simulation. 

 

Figure 24. Average TCGI values for Hurricane Katrina (2005) for the neural network simulation. 
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The TCGI values for each forecast hour for Hurricane Katrina (2005) for the SVM 

simulation is shown in Figure 25.  Since the SVM simulation is non-probabilistic, the TCGI 

values are either -1 for non-developing or 1 for developing CCs.  In this figure, the first forecast 

to identify the storm as developing is the 36 hour forecast for the CC observed on 3Z August 22 

which is the same as the CART simulation.  To examine its overall performance over all forecast 

hours, the average TCGI values are obtained as displayed in Figure 26.  Based on these values, 

the pre-Katrina CC has favorable conditions for development as early as 3Z August 22 with the 

exception of 9Z August 22, 21Z August 22, 3Z August 23, and 9Z August 23.   

 

Figure 25. TCGI values for each forecast hour for Hurricane Katrina (2005) for the support 

vector machine simulation. 

Overall, all classifiers performed well during the phases of development.  The simulation 

results indicate that the CART simulation suffers more than the neural network simulation which 

suffers more than the SVM simulation as supported by the oscillations in the TCGI values 
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throughout the development phases of the Katrina CCs.  When comparing the average TCGI 

values over all classifiers, Hurricane Katrina can be identified as a developing CC 39 hours prior 

to development which is at 3Z August 22.  The difference in simulations could be attributed to 

complex interactions present between the predictors which are difficult to address using the 

“divide and conquer” method implemented in CARTs.  On the other hand, neural networks and 

SVMs can address such interactions better even though SVM is more computationally 

expensive.   

 

Figure 26. Average TCGI values for Hurricane Katrina (2005) for the support vector machine 

simulation. 

6.2 Hurricane Olga (2001)  

The CC that eventually became Hurricane Olga originated at 15Z November 20 with a 

geometric center at (35.07oN, 73.96oW).  This system originated during the latter part of the 

2001 North Atlantic hurricane season from a cold front and disturbed weather on November 22 

between the Leeward Islands and Bermuda (Avila, 2001).  The HURSAT data indicates the 
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genesis of Hurricane Olga occurred at 6Z November 23 while Avila (2001) indicates 0Z 

November 24.  Note that our CC feature dataset uses the HURSAT date as the genesis date.  

Figure 27 displays the CC at genesis from our CC dataset and from the HURSAT dataset after 

applying our BT threshold of 250K.  At this time, Olga has low circulation, a comma-shaped 

cloud band, and extends northward which eventually formed circulation as thunderstorm activity 

increased (Avila, 2001). 

  

(a) (b) 
Figure 27. Hurricane Olga at 6Z November 23 from (a) our CC dataset and (b) the HURSAT 

data after applying our brightness temperature threshold. 

The TCGI values for each forecast hour for Hurricane Olga (2001) for the CART, neural 

network, and SVM simulations are displayed in Figure 28 through Figure 30, respectively.  All 

simulations have the ability of identifying the storm as developing in the 42 hour forecast for the 

CC observed on 6Z November 21.  This occurred before the cold front reached the Bermuda area 

and the CC obtained tropical characteristics.  This indicate that our techniques satisfactorily 

identified Hurricane Olga.  This is also further verified by Figure 31 through Figure 33, which 
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displays the average TCGI values for all forecast hours for the CART, neural network, and SVM 

simulations, respectively.   

 
Figure 28. TCGI values for each forecast hour for Hurricane Olga (2001) for the CART 

simulation. 

 
Figure 29. TCGI values for each forecast hour for Hurricane Olga (2001) for the neural network 

simulation. 
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Figure 30. TCGI values for each forecast hour for Hurricane Olga (2001) for the support vector 

machine simulation. 

 

Figure 31. Average TCGI values for Hurricane Olga (2001) for the CART simulation. 
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Figure 32. Average TCGI values for Hurricane Olga (2001) for the neural network simulation. 

 

Figure 33. Average TCGI values for Hurricane Olga (2001) for the support vector machine 

simulation. 
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In summary, the CCs of Hurricane Olga (2001) are accurately identified as developing by 

all evaluated classifiers.  The CART simulation identifies the CC at 0Z November 23 as 

unfavorable for development while the remaining simulations identify all CCs as favorable.  This 

is attributed to the simplicity of the CART algorithm but the overall results indicate that when 

using our techniques, the pre-Olga CCs are developing with high confidence. 

6.3 Hurricane Michelle (2001) 

The pre-Michelle CC originated at 6Z October 27 with a geometric center at (6.71oN, 

76.63oW).  This CC was produced from a tropical wave moving westward from the coast of 

Africa, an increase in shower activity, and the formation of a low pressure area near the 

Nicaragua coast (Beven, 2002).  It was not until 18Z October 29 that an Air Force Reserve 

Hurricane Hunter aircraft identified the system as a TC.  Figure 34 displays the CC at genesis 

from our CC dataset and from the HURSAT dataset after applying our BT threshold of 250K.  

The difference in the defined centers is visible by the shift of the CC in the image. 

  

(a) (b) 
Figure 34. Hurricane Michelle at 18Z October 29 from (a) our CC dataset and (b) the HURSAT 

data after applying our brightness temperature threshold. 
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A series of 0-48 hour forecasts were issued for the pre-Michelle CCs using the CART, 

neural network, and SVM simulations.  The TCGI values and average TCGI values for each 

forecast hour for the CART simulations are displayed in Figure 35 and Figure 36, respectively.  

This classifier does a good job at identifying the developing stage of the system.  The first 

forecast to identify the storm as developing is the 36 hour forecast for the CC observed at 18Z 

October 27 which was exactly 48 hours prior to its genesis even though some forecast suggest 

unfavorable conditions.  When considering the average TCGI values, all TCGI values are above 

0.66 which are highly favorable conditions with the exception of the CC observation at 18Z 

October 27 (~0.36) which is still favorable and 15Z October 29 (-1) which is highly unfavorable. 

 

Figure 35. TCGI values for each forecast hour for Hurricane Michelle (2001) for the CART 

simulation. 
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Figure 36. Average TCGI values for Hurricane Michelle (2001) for the CART simulation. 

 

Figure 37. TCGI values for each forecast hour for Hurricane Michelle (2001) for the neural 

network simulation. 
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The TCGI values and average TCGI values for each forecast hour for the neural network 

simulations are displayed in Figure 37 and Figure 38, respectively.  The first forecast to identify 

the storm as developing is the 42 hour forecast for the CC observed at 18Z October 27.  When 

considering the average TCGI values, all TCGI values are favorable conditions even though the 

TCGI values oscillate between 0.17 and 1.   

 

Figure 38. Average TCGI values for Hurricane Michelle (2001) for the neural network 

simulation. 

The TCGI values and average TCGI values for each forecast hour for the SVM 

simulations are displayed in Figure 39 and Figure 40, respectively.  The 36 hour forecast is the 

first forecast to suggest favorable conditions for CC development as in the CART simulation.  

The difference between the simulations is the SVM simulation suggest unfavorable conditions 

for more CC observations than the CART simulation.  This is also visible with the average TCGI 

values that are displayed in Figure 40.  The observations at 3Z October 28 (-0.14), 12Z October 

28 (-0.67), 18Z October 28 (-0.2), and 12Z October 29 (-1) have unfavorable conditions for 
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development while observations at 21Z October 28 and 9Z October 29 have neutral conditions.  

This suggests that the SVM simulation suffers more than the other simulations as evidenced by 

the oscillations in the forecasts.  The SVM simulation is a non-probabilistic classifier and does 

not use an optimal decision threshold as the other classifiers.  Hence, some observations of this 

case study are similar to the non-developing CCs and are misclassified. 

 

Figure 39. TCGI values for each forecast hour for Hurricane Michelle (2001) for the support 

vector machine simulation. 

Overall, all classifiers performed well during the phases of development.  When 

comparing the average TCGI values over all classifiers, Hurricane Michelle can be identified as 

a developing CC 48 hours prior to development which is at 18Z October 27.   
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Figure 40. Average TCGI values for Hurricane Michelle (2001) for the support vector machine 

simulation. 

6.4 Non-developing Case 100 (ND-100 2003) 

This system formed off the west coast of Africa during the beginning of the 2003 North 

Atlantic hurricane season at 9Z June 3.  It then persisted for 33 hours and dissipated at 18Z June 

4.  The track of this non-developing CC is displayed in Figure 41.  Through simulations, the 

predictive features reveal that ND-100 was unfavorable for its entire lifetime and predicted no 

development.  This is illustrated by the consistency in TCGI values for the CART simulation 

with TCGI values less than -0.89, the neural network with TCGI values less than -0.96, and 

SVM simulations with TCGI values equal to -1 in Figure 42 through Figure 44, respectively.  All 

simulations suggest there was no chance for development. 
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Figure 41. Irregular track of cloud cluster of ND-100 (2003). 

 

Figure 42. TCGI values for each forecast hour for ND-100 (2003) for the CART simulation. 
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Figure 43. TCGI values for each forecast hour for ND-100 (2003) for the neural network 

simulation. 

 

Figure 44. TCGI values for each forecast hour for ND-100 (2003) for the support vector machine 

simulation. 
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6.5 Non-developing Case 101 (ND-101 2000) 

The non-developing case ND-101 (2000) formed off the northeast coast of South 

America during the beginning of the 2000 North Atlantic hurricane season at 21Z June 2.  It then 

persisted for 24 hours and dissipated at 21Z June 3.  The track of this non-developing CC is 

displayed in Figure 45.  Through simulations, the predictive features reveal that ND-101 was 

unfavorable for its entire lifetime and predicted no development.  This is illustrated by the 

consistency in TCGI values, which are all less than -0.96 for the CART, neural network, and 

SVM simulations in Figure 46 through Figure 48, respectively.  Regardless of which classifier is 

used, the forecasts suggest there was no chance for development. 

 

Figure 45. Irregular track of cloud cluster of ND-101 (2000). 

-50 -49 -48 -47 -46 -45 -44 -43
4

4.5

5

5.5

6

6.5

7

Longitude

La
tit

ud
e



97 
 

 

 

Figure 46. TCGI values for each forecast hour for ND-101 (2000) for the CART simulation. 

 

Figure 47. TCGI values for each forecast hour for ND-101 (2000) for the neural network 

simulation. 
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Figure 48. TCGI values for each forecast hour for ND-101 (2000) for the support vector machine 

simulation. 

6.6 Non-developing Case 1007 (ND-1007 2002) 

This system formed off the west coast of Africa during the beginning of the 2002 North 

Atlantic hurricane season at 18Z June 20.  It then persisted for 24 hours and dissipated at 18Z 

June 21.  The track of this non-developing CC is displayed in Figure 49.  Through simulations, 

the predictive features reveal that ND-1007 was unfavorable for its entire lifetime and predicted 

no development.  This is illustrated by the consistency in TCGI values for the CART, neural 

network, and SVM simulations in Figure 50 through Figure 52, respectively.  The neural 

network simulation shows CC observation that are more favorable than the other simulations.  

Even though these observations have TCGI value higher than the minimum value of -1, they 

remain highly unfavorable with TCGI value less than -0.72.  Regardless of which classifier is 

used, the forecasts suggest there was no chance for development. 
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Figure 49. Irregular track of cloud cluster of ND-1007 (2002). 

 

Figure 50. TCGI values for each forecast hour for ND-1007 (2002) for the CART simulation. 
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Figure 51. TCGI values for each forecast hour for ND-1007 (2002) for the neural network 

simulation. 

 

Figure 52. TCGI values for each forecast hour for ND-1007 (2002) for the support vector 

machine simulation. 
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6.7 Tropical Storm Debby (2006) 

To verify the performance of our techniques, we evaluated Tropical Storm Debby from 

the 2006 North Atlantic hurricane season since this hurricane season is not included in the 

dataset.  The pre-Debby CC originated at 0Z August 20 with a geometric center at (9.67oN, 

8.97oW).  This CC was produced from a tropical wave moving westward across the west coast of 

Africa and established closed circulation directly after moving offshore.  The pre-Debby CC was 

initially identified by the Dvorak Classification method at 12Z August 21 and at 18Z it was 

labeled a tropical depression near Praia in the Cape Verde Islands (Franklin, 2007).  Figure 34 

displays the CC at genesis from our CC dataset and from the HURSAT dataset after applying our 

BT threshold of 250K.  The difference in the defined centers is visible by the minor shift of the 

CC in the image. 

  

(a) (b) 

Figure 53. Tropical storm Debby at 18Z August 21 from (a) our CC dataset and (b) the 

HURSAT data after applying our brightness temperature threshold. 
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A series of 0-48 hour forecasts were issued for the pre-Debby CCs using the CART, 

neural network, and SVM simulations.  The TCGI values and average TCGI values for each 

forecast hour for the CART simulations are displayed in Figure 54 and Figure 55, respectively.  

This classifier does a good job at identifying the developing stage of the system.  The first 

forecast to identify the storm as developing is the 36 hour forecast for the CC observed at 0Z 

August 20 which was exactly 42 hours prior to its genesis even though some forecast suggest 

unfavorable conditions.  When considering the average TCGI values, all TCGI values are above 

0.99 which are highly favorable conditions with the exception of the CC observation at 0Z 

August 20 (~ -0.19) which is slightly unfavorable, and 3Z August 20, 6Z August 20, 12Z August 

20, and 15Z August 21 (< -0.69) which are highly unfavorable. 

 

Figure 54. TCGI values for each forecast hour for Tropical Storm Debby (2006) for the CART 

simulation. 
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Figure 55. Average TCGI values for Tropical Storm Debby (2006) for the CART simulation. 

 

Figure 56. TCGI values for each forecast hour for Tropical Storm Debby (2006) for the neural 

network simulation. 
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The TCGI values and average TCGI values for each forecast hour for the neural network 

simulations are displayed in Figure 56 and Figure 57, respectively.  The first forecast to identify 

the storm as developing is the 30 hour forecast for the CC observed at 9Z August 20.  When 

considering the average TCGI values, all TCGI values beginning at 9Z August 20 are favorable 

conditions with an exception for the CC observed at 12Z August 20.   

 

Figure 57. Average TCGI values for Tropical Storm Debby (2006) for the neural network 

simulation. 

The TCGI values and average TCGI values for each forecast hour for the SVM 

simulation are displayed in Figure 58 and Figure 59, respectively.  The 24 hour forecast is the 

first forecast to suggest favorable conditions for CC development.  The SVM simulation suggest 

unfavorable conditions for more CC observations than the CART and neural network 

simulations.  This is also visible with the average TCGI values that are displayed in Figure 59.  

The observations at 15Z August 20 (1), 21Z August 20 (0.50), 3Z August 21 (1), 6Z August 21 

(1), and 9Z August 21 (1) have favorable conditions for development while observations at 12Z 
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August 21 have neutral conditions.  This suggests that the SVM simulations suffers more than 

the other simulations as evidenced by the oscillations in the forecasts. 

 
Figure 58. TCGI values for each forecast hour for Tropical Storm Debby (2006) for the support 

vector machine simulation. 

 
Figure 59. Average TCGI values for Tropical Storm Debby (2006) for the support vector 

machine simulation. 
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Overall, the CART and neural network classifiers performed well during the phases of 

development.  When comparing the average TCGI values over all classifiers, Tropical Storm 

Debby (2006) can be identified as a developing CC 33 hours prior to development which is at 9Z 

August 20 which is 27 hours prior to being identified with the Dvorak classification method.   

Table 15 

Summary of case study characteristics 

 Katrina (2005) Olga (2001) Michelle (2001) Debby (2006) 

Genesis Date 18Z August 23 6Z November 23 18Z October 29 18Z August 21

Hours before Genesis that TWO 

Conveyed CC as Developing 
36 - - 6 

Earliest 

Detection Date 

CART 3Z August 22 6Z November 21 18Z October 27 0Z August 20 

Neural 

Network 
6Z August 22 6Z November 21 18Z October 27 9Z August 20 

SVM 3Z August 22 6Z November 21 18Z October 27 15Z August 20

Earliest 

Detection 

Forecast Hour 

CART 36 42 36 36 

Neural 

Network 
30 42 42 30 

SVM 36 42 36 24 

Earliest 

Detection in 

Hours Before 

Genesis 

CART 39 48 48 42 

Neural 

Network 
36 48 48 33 

SVM 39 48 48 27 

      

6.8 Summary 

Six case studies were randomly chosen, with an exception of Hurricane Katrina (2005), 

from the 1999-2005 North Atlantic hurricane seasons and the Tropical Storm Debby case study 

was randomly chosen from the 2006 hurricane season to verify the performance of our 

techniques.  Table 15 summarizes important characteristics from the case studies of developed 

TCs including the number of hours prior to genesis that the TWO indicated the CC has a 
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possibility of development.  The TWO did not indicate the time of possible development for 

Hurricane Olga (2001) and Hurricane Michelle (2001).  In each case, our techniques identifies 

developing CCs at least 27 hours prior to genesis in the 24 hour forecast in the worst case 

scenario.  This scenario is from Tropical Storm Debby (2006) which is a weaker form of a TC 

than a hurricane.  Therefore, its characteristics may not compare to other TCs until closer to 

genesis.  In the best case scenario, the developing CC is identified 48 hours prior to genesis in 

the 42 hour forecast.  These results further verify that the suggested predictive features can 

identify developing CCs using the aforementioned methods. 
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CHAPTER 7 

Conclusion and Future Work 

7.1 Conclusion 

The formation of TCs over the North Atlantic Ocean continues to be an important 

research topic due to lack of scientific understanding and sparse data.  The National Hurricane 

Center currently use forecasting models to assist in the prediction and preparedness of TCs but 

accurate models of TC development remain elusive.  These models are initialized by satellite 

data and the model attempts to forecast atmospheric processes.  This study suggests that the use 

of actual satellite observations can satisfactorily assist in providing imperative information 

regarding developing TCs.  This research specifically focuses on identifying predictive features 

of developing CCs in the North Atlantic Ocean without expert subjectivity and without using 

forecasting models.  This research topic needs attention especially since the United States is 

directly impacted by the activity in the North Atlantic Ocean and forecasters lack scientific 

understanding.  Forecasters can gain valuable knowledge from feature extraction, and 

oversampling of satellite observations to improve forecasts and preparedness for TCs.  Satellite 

observations have assisted in understanding atmospheric properties and examining the evolution 

of CCs in many studies.  Therefore, this research verifies that it is beneficial to use the satellite 

observations to identify predictive features of developing CCs. 

Identifying CCs in satellite observations is a difficult task due to the multiple definitions 

of a CC.  Therefore, we produced a new dataset that contains eighty features of CCs in the North 

Atlantic Ocean that are used to identify predictive features.  The most important portion of this 

research is objectively identifying and tracking individual CCs in order to analyze their 

movements and identify important characteristics that contribute to the development or non-
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development of a CC into a TC.  To produce this dataset, we identified individual CCs that 

formed above the equator and south of 40oN by examining the 1999-2005 North Atlantic 

hurricane seasons and using a conservative BT threshold of 250 K and size threshold of 5,000 

km2.  The conservative thresholds identify a great number of CCs and can account for the 

complex processes and movement of CCs.  This is beneficial because CCs are too unique and 

complex to be incorporated into existing dynamical models since CC patterns have a variety of 

shapes and forms that could change rapidly.   

For each CC in the dataset, eighty features computed from actual satellite observations 

were extracted and can be categorized as location, shape, statistical, or image features.  The 

contributed dataset containing all features for each CC will be available to the community to 

further research on tropical cyclogenesis.  These features are evaluated to determine which 

predictive features contribute to the development of a TC.  To trace the evolution of each CC, a 

simple area overlap method is incorporated with the use of the maximum and minimum scaled 

overlap parameter.  The evolution of each CC is contained in a multivariate time series where 

each time series is labeled as a developing or non-developing CC.  A set of all time steps of all 

CCs were evaluated using the sequential forward selection method as specified in Chapter 4 to 

identify possible predictive features.  The results of this method identified the following twelve 

features as predictors: latitude of maximum genesis productivity, distance to nearest TC, average 

latitude of the minimum BT, eccentricity, average SST, BT in which 5% of the CC pixels are 

colder, percentage of CC pixels less than 195 K (-78.15oC), standard deviation of BT in rings 

with a radius of 200 and 550 km from the geometric center, standard deviation of BT, binary 

entropy, and normalized moment of inertia.  The selected predictive features can make an 

indication regarding developing CCs.  The three location features provides vital information 
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regarding the location of the CC, the shape feature indicates that there is a good separation 

between the eccentricity of developing and non-developing CCs, the six statistical features 

suggest that attributes of the BT of the CCs are separable, and the two image features show that 

the CC’s resistance to rotational changes and the content in a binary image of a CC contain some 

imperative information about the CC.  Therefore, all feature types (location, shape, statistical, 

and image) are required to successfully identify developing CCs from solely gridded satellite 

data.   

The number of non-developing CCs outnumbers the number of developing CCs.  

Therefore, this problem is considered an imbalanced classification problem.  To address this 

problem, we contributed a unique oversampling technique called the Selective Clustering based 

Oversampling Technique (SCOT) that uses a combination of local outlier factors to identify 

outliers, agglomerative clustering to best fit the data, and it explores the neighborhood of 

informative developing CC observations to reduce the risk of overfitting when generating 

synthetic samples.  The SCOT is a technique that can be applied to identifying rare events.  

Therefore, SCOT was applied to the data using only the identified predictive features and an age 

parameter.  SCOT generated synthetic developing CC samples to make the class distribution of 

the developing and non-developing CCs approximately equal which reduces the bias of the non-

developing CCs when using a standard classifier.  The G-Mean and HSS results for each forecast 

verify that forecasters can identify a developing CC analyzing the identified predictive features 

up to 48 hours before the CC actually develops. 

Our proposed oversampling technique SCOT can assist in the identification of rare events 

in many applications.  Such applications include the identification of cancer, suicidal behavior, 

tornadoes, and other rare events that directly impact society.  Through this research we 
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discovered that unlike other oversampling techniques, SCOT eliminates user defined parameters, 

identifies hard to learn minority samples better, produces synthetic samples to better define the 

decision boundary, and generates synthetic samples in the area of the minority class to avoid 

overlapping of classes which, in all, lowers the risk of overfitting.  These benefits and the 

applicability of SCOT are confirmed by a comparison with state-of-the-art techniques when 

using twelve real-world datasets that contain less than ten percent minority samples.  The results 

from this comparison are found in Appendix B which were originally presented in Lacewell and 

Homaifar (2015).  Overall, this technique could allow researchers to gain additional knowledge 

on events that do not occur frequently. 

Our approach for identifying predictive features of developing CCs demonstrates 

predictive skill for 0 - 48 hours prior to development and current methods have satisfactory 

predictive skills approximately 24 hours prior to genesis.  The case studies presented in the 

preceding chapter also verify the ability of our approach by identifying developing CCs 27 – 48 

hours prior to genesis using the 24 – 42 hour forecasts.  Overall, the results demonstrate that our 

approach could potentially improve weather prediction and provide advance notice of a 

developing CC.  Having warnings in advance can avoid or reduce the risk of damages and allow 

emergency responders and the affected community enough time to respond appropriately.  

7.2 Future Work 

In future, rare event problems such as detecting cancer in medical patients, detecting 

suicidal behavior, detecting tornadoes, and etc., can benefit from the application of our proposed 

oversampling technique SCOT.  Furthermore, our proposed techniques could be implemented in 

real time by using real-time gridded satellite data and the identified predictors.  Real-time 

implementation could keep society updated on TC development by using solely observations that 
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have occurred and without depending on numerical models which are typically only initiated by 

satellite data.  A forecaster can simply monitor real time satellite imagery, extract the suggested 

predictors, and identify developing CCs using a standard classifier.  In addition to real-time 

implementation, this work could also be applied to other ocean basins to determine whether the 

identified predictors are dependent on processes in the North Atlantic Ocean or whether they 

apply to other basins.  Overall, this research could assist in improving weather prediction. 
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Appendix A 

This Appendix provides additional information regarding equations and descriptions of 

possible predictive features for cloud clusters.  The following features are categorized as 

location, shape, statistical, or image features. 

A.1 Location Features 

The following features are related to the location of each CC. 

 Latitude of maximum genesis productivity (ALAT17): Genesis productivity is 

at its maximum at ~17oN (Kerns & Chen, 2013).  Therefore, the following is used 

as a CC feature: 

17ܶܣܮܣ ൌ ݐ݈ܽ݃| െ 17| 

where ݈݃ܽݐ is the latitude coordinate of the geometric center.   

 Distance to nearest TC (ࢀࢊ): This feature is equivalent to the distance (in km) 

between the geometric center of the CC and the nearest TC origin.  

 Front edge position: This feature provides the position of the front edge of the 

CC.  This position is very subjective (Arnaud et al., 1992; Feidas & Cartalis, 

2005); hence, it is not included in our CC feature dataset . 

 Geometric center (glon, glat): The geometric center, also known as centroid or 

center of gravity, is the calculated center based on the shape of the CC.  It is 

calculated using the following equation: 

݈݊݃ ൌ ଵ

ே
∑ ܺ
ே
ୀଵ ݐ݈ܽ݃  ൌ ଵ

ே
∑ ܻ
ே
ୀଵ  

where N denotes the number of points in the CC, and Xi and Yi denote the 

coordinates of the points in the CC (Carvalho & Jones, 2001; Feidas & Cartalis, 

2005; Hennon et al., 2011; Mingqiang, Kidiyo, & Joseph, 2008). 
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 Minimum BT location (mlon, mlat): This feature indicates the average location 

of the minimum BT of the CC.  It is calculated as follows: 

݈݊݉ ൌ ଵ

ேಳ
∑ ܺ
ேಳ
ୀଵ ݐ݈ܽ݉  ൌ ଵ

ேಳ
∑ ܻ
ேಳ
ୀଵ  

where NB denotes the number of points equal to the minimum BT, and XBi and YBi 

denote the coordinates of the minimum BT points in the CC. 

 Scaled Coriolis (ࡿ): This feature is defined by: 

ܥܵ ൌ 2߱ ൈ 10ସ݊݅ݏ߶ 

where ߶ denotes the latitude in degrees and ߱ indicates the angular rotation of the 

Earth which is equivalent to 7.29 ൈ 10ିହ	ିݏଵ (Hennon & Hobgood, 2003).   

 Weighted center (wlon, wlat): The weighted center is equivalent to the center 

coordinates of the CC when bias to the BTs.  It is defined as follows: 

݈݊ݓ ൌ
∑ ்
ಿು
సభ

∑ ்
ಿು
సభ

ݐ݈ܽݓ  ൌ
∑ ்
ಿು
సభ

∑ ்
ಿು
సభ

 

where NP denotes the number of pixels in the CC, BTi denotes the BT, and Xi and 

Yi denote the coordinates of the CC pixels (Arnaud et al., 1992; Carvalho & Jones, 

2001; Hennon et al., 2011). 

A.2 Shape Features 

These features provide additional information regarding the shape of each CC. 

 Area (): The area of the CC is either in pixels or in km2 (Arnaud et al., 1992; 

Carvalho & Jones, 2001; Feidas & Cartalis, 2005; Hennon et al., 2011; Kerns & 

Chen, 2013; Liu, Sun, Chen, Zhao, & Gao, 2011; Yang, Lin, Guo, Fang, & Jiang, 

2004).  If in pixels, the feature is the same as the pixel count feature. 
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 Axis inclination: Axis inclination is the clockwise angle between the first 

eigenvector (λ1), also known as the major axis, of the CC and the x-axis (east-west 

direction) (Arnaud et al., 1992). 

 Compactness (): The compactness indicates the similarity between the 

shape and a circle.  It is very similar to roundness and is defined by: 

ܥ ൌ
ܰ
ܲଶ

 

where N denotes the number of pixels in the CC and P denotes the perimeter of 

the CC. 

 Contour of CC: The outline of the CC is considered its contour (Mingqiang et 

al., 2008). 

 Eccentricity (ࢉࢉࡱ): Eccentricity is the ratio of the major axis length to the length 

of the minor axis. 

ܿܿܧ ൌ
ଶߣ
ଵߣ

 

where λ2 is the second eigenvector.  High (low) ECC indicates a circular (linear) 

CC (Carvalho & Jones, 2001; Feidas & Cartalis, 2005; Mingqiang et al., 2008).  

When using the contour of a CC to calculate λ1and λ2, the following equations are 

used: 

ଵߣ ൌ
1
2
ቈܿ௫௫  ܿ௬௬  ට൫ܿ௫௫  ܿ௬௬൯

ଶ
െ 4൫ܿ௫௫ܿ௬௬ െ ܿ௫௬ଶ ൯ 

ଶߣ ൌ
1
2
ቈܿ௫௫  ܿ௬௬ െ ට൫ܿ௫௫  ܿ௬௬൯

ଶ
െ 4൫ܿ௫௫ܿ௬௬ െ ܿ௫௬ଶ ൯ 

where 
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ܿ௫௫ ൌ
1
ܰ
 ሺݔ െ ܺሻଶ

ேିଵ

ୀ
 

ܿ௫௬ ൌ ܿ௬௫ ൌ
1
ܰ
 ሺݔ െ ܺሻሺݕ െ ܻሻ

ேିଵ

ୀ
 

ܿ௬௬ ൌ
1
ܰ
 ሺݕ െ ܻሻଶ

ேିଵ

ୀ
 

 Ellipse Variance (ࢇ࢜ࡱ): A mapping error of a shape to fit an ellipse with the 

same covariance matrix is called the ellipse variance (Mingqiang et al., 2008).  

This feature is defined by 

௩ܧ ൌ
ோߪ
ᇱ

ோߤ
ᇱ  

where we assume 

ܸ ൌ ൬
ݔ െ ݈݊݃
ݕ െ  ൰ݐ݈ܽ݃

௦ܥ ൌ ቀ
ܿ௫௫ ܿ௫௬
ܿ௬௫ ܿ௬௬ቁ 

݀
ᇱ ൌ ට ܸ

் ∙ ௦ܥ
ିଵ ∙ ܸ 

ோߤ
ᇱ ൌ

1
ܰ
 ݀

ᇱ

ேିଵ

ୀଵ

 

ோߪ
ᇱ ൌ ඩ

1
ܰ
ሺ݀

ᇱ െ ோߤ
ᇱ ሻଶ

ேିଵ

ୀଵ

 

 Estimated radius (࢚࢙ࡱࡾ): This feature is the estimated radius that the CC would 

have if it were a circle with the same area. 

ܴܧ ൌ ඨ
ܣ
ߨ
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where A is the area of the CC in km2. 

 Maximum and Minimum radius (࢞ࢇࡹࡾ and ࡹࡾ):  This is equivalent to the 

maximum and minimum radius of the CC. 

 Perimeter (ࡼ): This feature indicates the perimeter of the CC (Carvalho & Jones, 

2001). 

 Pixel count: Pixel count (area in pixels) is equivalent to the number of pixels in 

each CC (Arnaud et al., 1992; Hennon et al., 2011). 

 First eigenvector length (ࣅ): This feature indicates the maximum length of the 

first principle axis of the CC (Arnaud et al., 1992; Feidas & Cartalis, 2005; 

Mingqiang et al., 2008). 

 Second eigenvector length (ࣅ): This feature indicates the maximum length of 

the second principle axis of the CC (Arnaud et al., 1992; Feidas & Cartalis, 2005; 

Mingqiang et al., 2008). 

 Protraction Ratio (ࡳ): This feature is equivalent to the ratio of the CC’s 

longitude coordinate range to the CC’s latitude range of coordinates.  It is defined 

as follows: 

ܩ ൌ
௫ݔ െ ݔ

௫ݕ െ ݕ
 

where xmin and ymin are the minimum coordinate values of the CC boundary and 

xmax and ymax are the maximum coordinate values.  A round CC has a protraction 

ratio of 1 (Yang et al., 2004). 

 Roundness (ࡾ): The roundness, also called the circularity ratio, indicates the 

similarity between the shape and a circle. 
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ܴ ൌ
ܣ
ܲଶ

 

where A denotes the area of the CC in km2 and P denotes the perimeter of the CC 

(Mingqiang et al., 2008; Yang et al., 2004). 

A.3 Statistical Features 

These features are calculated from the data of each CC. 

 Average BT (ࢍ࢜ࢇࢀ): The average BT of the CC (Carvalho & Jones, 2001; 

Feidas & Cartalis, 2005; Hennon et al., 2011; Liu et al., 2011). 

 Average SST (ࢍ࢜ࢇࢀࡿࡿ): The average SST coinciding with the CC location (Dare 

& McBride, 2011). 

 BT Kurtosis (࢚࢛࢘ࢀ): The BT kurtosis measures the peakness of the CC 

distribution.  This feature is defined by 

ܤ ܶ௨௧ ൌ
1

ܰ


ሺܤ ܶ െ ሻସߤ

ସߪ

ேು

ୀଵ

 

where ܰ denotes the number of pixels in the CC, ܤ ܶ denotes the BT at each 

pixel of the CC, ߤ is the average BT, and ߪ is the standard deviation of the CC. 

 BT Skewness (࢝ࢋ࢙ࢀ): The BT skewness measures the asymmetry of the CC 

distribution.  This feature is defined by 

ܤ ௦ܶ௪ ൌ
1

ܰ


ሺܤ ܶ െ ሻଷߤ

ଷߪ

ேು

ୀଵ

 

where ܰ denotes the number of pixels in the CC, ܤ ܶ denotes the BT at each 

pixel of the CC, ߤ is the average BT, and ߪ is the standard deviation of the CC.  A 

positive (negative) ܤ ௦ܶ௪ denotes a right (left) skewed distribution.  
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 5th percentile (ࢀ%): 5% of the CC pixels are colder than this BT (Hennon et 

al., 2011). 

 10th percentile (ࢀ%): 10% of the CC pixels are colder than this BT (Hennon 

et al., 2011). 

 Fractional convective area (ࢉࡲ): The fractional convective area represents the 

percentage of the CC’s area that is less than or equal to 210 K.  It is defined as 

follows: 

ܿܨ ൌ 100
்ܣ
ܣ

 

where ATC denotes the area in a CC whose ܶ   and A represents the area ܭ	210

of the CC (Carvalho & Jones, 2001). 

 BT percentage (ࢄࢄࢄࡼࢀ): The percentage of CC pixels which are less than or 

equal to a specified BT.  Typically the specified BT is equivalent to 195K, 205K, 

215K, 225K, and 235K; therefore, this produces five features.  These features are 

defined by 

ܶܤ ܲ ൌ 100 ்ܰ

ܰ
 

where N denotes the number of pixels in the CC, and NBT denotes the number of 

pixels that are less than or equal to a specified BT (Hennon et al., 2011). 

 Minimum BT (ࢀ): This feature is equivalent to the minimum BT of the CC 

(Carvalho & Jones, 2001; Hennon et al., 2011). 

 Ring average of BT (ࢄࢄࢍ࢜ࢇࢀࢍࡾ): These twelve features are equivalent to 

the average BT in rings with a radius of 50 km, 100 km, 150 km, …, and 600 km 

from the geometric center of the CC. 
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 Ring minimum of BT (ࢄࢄࢀࢍࡾ): These twelve features are equivalent to 

the minimum BT in rings with a radius of 50 km, 100 km, 150 km, …, and 600 

km from the geometric center of the CC. 

 Ring standard deviation of BT (ࢄࢄࢊ࢚࢙ࢀࢍࡾ): These twelve features are 

equivalent to the standard deviation of BT in rings with a radius of 50 km, 100 

km, 150 km, …, and 600 km from the geometric center of the CC. 

 Standard deviation of BT (ࢊ࢚࢙ࢀ): This feature indicates the standard deviation 

of BTs of the CC (Hennon et al., 2011). 

 Variance of BT (࢘ࢇ࢜ࢀ): This feature is the variance of all BTs in the CC 

(Carvalho & Jones, 2001). 

 Volume index (ࢂ): This feature measures the potential of a CC producing heavy 

precipitation.  The volume index is defined as 

ܸ ൌ݊ሺ ܶ െ ܶሻ 

where ni denotes the number of pixels in class i where each class i covers 0.5 K.  

Ti represents the BT of each pixel in class i and T0 denotes a chosen BT threshold 

(Feidas & Cartalis, 2005). 

A.4 Image Features 

These features are related to the image of each CC. 

 Estimated Backscattering coefficient (ࡱ):  The estimated backscattering 

coefficient is an optical property of natural waters.  It is defined (in dB) as the 

following: 

ܥܤܧ ൌ 10 log
∑ ܤ ܶ
ே
ୀଵ

ܰ
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where N denotes the number of pixels in the CC and BTi denotes the BT of each 

pixel in the satellite image. 

 Binary Entropy (࢈ࡴ): Binary entropy reveals the information content of events 

in a binary image.  The following equation is used to calculate the binary entropy: 

ܪ ൌ log
ܰ

ூܰ
 

where N denotes the number of pixels in the CC, NI denotes the number of pixels 

in the satellite image, and ܪ ∈ ሾെ∞, 0ሿ (Zhang & Zhou, 2012). 

 Contrast (): This feature, along with correlation, energy, and homogeneity, 

are calculated from the gray level co-occurrence matrix (GLCM) of the CC 

satellite image.  The GLCM is a square matrix p that describes the texture of an 

image I where each element (i, j) specifies the number of times gray level 

intensity i is adjacent to gray level intensity j.  The GLCM is calculated using 

,ሺ݅ ݆ሻ ൌ ൜1 ,ݔሺܫ	݂݅ ሻݕ ൌ ݔ൫ܫ	݀݊ܽ	݅  ∆௫, ݕ  ∆௬൯
0 ݁ݏ݅ݓݎ݄݁ݐ

ே

௬ୀଵ

ே

௫ୀଵ

 

where N denotes the number of pixels in the CC, and ൫∆௫, ∆௬൯ is the offset that is 

sensitive to rotation and specifies the distance between adjacent pixels (Eleyan & 

Demirel, 2011; Kekre, Thepade, Sarode, & Suryawanshi, 2010).  To achieve a 

degree of rotational invariance, a set of offsets are used as in the following table. 
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Table 

Offsets with its corresponding angle 

Angle Offset 

0 ሺ0, ∆ሻ 

45 ሺെ∆, ∆ሻ 

90 ሺെ∆,0ሻ 

135 ሺെ∆,െ∆ሻ

The contrast feature uses the GLCM to measure the intensity contrast between 

neighboring pixels using the following equation: 

ݐݏܽݎݐ݊ܥ ൌ|݅ െ ݆|ଶሺ݅, ݆ሻ
,

 

where i and j specifies the gray level intensities, and p is the GLCM which is 

dependent on the specified spatial relationships of the pixels.  For example, four 

gray level co-occurrence matrices are produced if the GLCM is calculated by 

finding adjacent pixels at 0, 45, 90, and 135o angles.  Typically, if more than one 

GLCM is produced, the average contrast is used (Eleyan & Demirel, 2011; Kekre 

et al., 2010; MathWorks Incorporated, 2005).  

 Correlation (࢘): Correlation is a measure of the correlation between 

neighboring pixels which is calculated from the GLCM using the following 

equation: 

݊݅ݐ݈ܽ݁ݎݎܥ ൌ
ሺ݅ െ ሻሺ݆݅ߤ െ ,ሺ݅ሻ݆ߤ ݆ሻ

,ߪߪ
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where ݊݅ݐ݈ܽ݁ݎݎܥ ∈ ሾെ1,1ሿ.  If more than one GLCM is produced, the average 

correlation is used (Eleyan & Demirel, 2011; Kekre et al., 2010; MathWorks 

Incorporated, 2005). 

 Energy (ࡱ): Energy, also known as angular second moment, is a measure of 

textural uniformity.  It is the sum of the squared elements of the GLCM as 

indicated in the following equation: 

ݕ݃ݎ݁݊ܧ ൌሺ݅, ݆ሻଶ

,

 

If more than one GLCM is produced, the average energy is used (Eleyan & 

Demirel, 2011; Kekre et al., 2010; MathWorks Incorporated, 2005). 

 Estimated cloud fraction (ࡲࡱ): The estimated cloud fraction is a ratio of the 

number of cloudy pixels to the total number of pixels in a CC image.  It is defined 

as 

ܨܥܧ ൌ ܰ௨ௗ

௧ܰ௧
 

where ܰ௨ௗ denotes the number of cloudy pixels and ௧ܰ௧ denotes the total 

number of pixels in the satellite image (Liu et al., 2011). 

 Homogeneity (ࡴ): This feature measures the closeness of the GLCM 

diagonal to the distribution of elements in the GLCM using the following 

equation: 

ݕݐ݅݁݊݁݃݉ܪ ൌ
,ሺ݅ ݆ሻ

1  |݅ െ ݆|
,

 

If more than one GLCM is produced, the average correlation is used (Eleyan & 

Demirel, 2011; Kekre et al., 2010; MathWorks Incorporated, 2005). 
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 Moments of inertia (ࡶሺ࢚ࢇࢍ,ࢍሻ): Moment of inertia is a measure of the CC’s 

resistance to rotational changes.  When calculating from a CC image, it is defined 

as follows: 

൫ೣ,൯ܬ ൌ ቂሺݔ െ ௫ሻଶܥ  ൫ݕ െ ௬൯ܥ
ଶ
ቃ ݂ሺݔ, ሻݕ

ெ

௫ୀଵ

ே

௬ୀଵ

 

where M x N is the image size with centroid (Cx, Cy), and f(x, y) denotes the 

intensity of image at location (x, y) (Arnaud et al., 1992; Zhang & Zhou, 2012). 

 Normalized Moment of Inertia (ࡵࡹࡺ): This feature normalizes the moments of 

inertia as follows (Zhang & Zhou, 2012): 

ܫܯܰ ൌ
ට∑ ∑ ቂሺݔ െ ௫ሻଶܥ  ൫ݕ െ ௬൯ܥ

ଶ
ቃ ݂ሺݔ, ሻெݕ

௫ୀଵ
ே
௬ୀଵ

∑ ∑ ݂ሺݔ, ሻெݕ
௫ୀଵ

ே
௬ୀଵ

 

 

  



141 
 

 

Appendix B 

This appendix provides the results for comparing the proposed oversampling technique 

SCOT to the state-of-the-art oversampling techniques SMOTE, Borderline SMOTE and 

MWMOTE.  Descriptions of these techniques are provided in Chapter 3 and Lacewell and 

Homaifar (2015).  Simulations were performed on each data set using 1) a basic decision tree 

classifier and 2) a support vector machine (SVM).  For each simulation, we obtained the chosen 

data set, applied oversampling method, and then ran the selected classifier using ten-fold cross 

validation.  More than one classifier is tested to verify that the results are not dependent on the 

chosen classifier.  In the first set of simulations, a simple decision tree classifier was selected 

which uses pruning, has at least one observation per tree leaf, uses the Gini’s diversity index as a 

splitting criterion, merges leaves that originate from the same parent node, and class probabilities 

are based on the class distribution.  In the second set of simulations, a SVM classifier using the 

Gaussian radial basis function as the kernel function was selected with a default scaling factor 

(sigma) of one.  The sequential minimal optimization is used to find the separating hyperplane 

and the maximum number of iterations to converge is set to 100,000. 
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Table B-1 

Description of the datasets used to compare SMOTE, Borderline SMOTE, MWMOTE, and SCOT.  The twelve real world imbalanced 

datasets contain a maximum of ten percent minority samples. 

Dataset Data Type Minority Class Majority Class Features Instances Minority Majority
Imbalance

Ratio 
Abalone Multivariate ‘18’ ‘9’ 8 731 42 689 1:16 
ClimateModel Multivariate ‘failure’ ‘success’ 18 540 46 494 1:11 
CoverType Multivariate ‘4’ ‘3’ 54 38501 2747 35754 1:13 
Mammography Multivariate ‘1’ ‘-1’ 6 11183 260 10923 1:42 
OCR Multivariate ‘0’ All others 64 3826 376 3447 1:9 
OillSpill Multivariate ‘1’ ‘-1’ 49 937 41 896 1:22 
Ozone Multivariate ‘1’ ‘0’ 73 2536 73 2463 1:34 
Page Blocks Multivariate ‘3’ ‘4’ and ‘5’ All others 10 5476 231 5245 1:23 
Robot Nav. Multivariate ‘Slight-Left-Turn’ All others 24 5456 328 5128 1:16 
Seismic Multivariate ‘1’ ‘0’ 18 2584 170 2414 1:14 
Statlog Multivariate ‘4' All others 36 6435 626 5809 1:9 
TCC Time Series ‘1’ ‘0’ Vary 877 52 825 1:16 
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Table B-2 

Comparison of performance measures when applying SMOTE, Borderline SMOTE, MWMOTE, and SCOT to twelve real world 

datasets for the decision tree simulation.  The best results for each dataset are highlighted in bold. 

Dataset Method Recall Precision F1 Measure G-Mean AUC 
TCC Raw 7.69231 10.52632 8.88889 27.15749 0.51786 
TCC SMOTE 87.0303 82.52874 84.71976 84.2589 0.84303 
TCC Borderline SMOTE 90.45505 89.36404 89.90623 89.34189 0.89349 
TCC MWMOTE 95.39394 94.2515 94.81928 94.78594 0.94788 
TCC SCOT 98.91304 98.6747 98.79373 98.78978 0.9879 
Abalone Raw 38.09524 37.2093 37.64706 60.49991 0.67088 
Abalone SMOTE 91.14659 90.75145 90.94859 90.92862 0.90929 
Abalone Borderline SMOTE 89.36464 89.24138 89.30297 89.02128 0.89022 
Abalone MWMOTE 97.37609 95.70201 96.53179 96.5071 0.96511 
Abalone SCOT 98.41499 98.69942 98.557 98.55427 0.98554 
ClimateModel Raw 30.43478 34.14634 32.18391 53.63893 0.62485 
ClimateModel SMOTE 93.52227 90.94488 92.21557 92.09436 0.92105 
ClimateModel Borderline SMOTE 86.20038 83.9779 85.07463 84.27297 0.84295 
ClimateModel MWMOTE 96.07438 94.5122 95.28689 95.30129 0.95304 
ClimateModel SCOT 97.80439 98.19639 98 97.99109 0.97991 
OCR Raw 94.68085 95.18717 94.93333 97.0497 0.97079 
OCR SMOTE 99.30374 99.36139 99.33256 99.33275 0.99333 
OCR Borderline SMOTE 99.27473 99.44783 99.36121 99.36173 0.99362 
OCR MWMOTE 99.4772 99.73791 99.60739 99.60797 0.99608 
OCR SCOT 99.41011 99.60597 99.50794 99.50194 0.99502 
OilSpill Raw 26.82927 45.83333 33.84615 51.41984 0.62689 
OilSpill SMOTE 97.32143 95.82418 96.567 96.53702 0.9654 
OilSpill Borderline SMOTE 95.62433 94.61457 95.11677 94.9639 0.94966 
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Table B-2 

Cont. 

OilSpill MWMOTE 98.21029 97.77283 97.99107 97.98882 0.97989 
OilSpill SCOT 99.66592 99.77703 99.72145 99.72134 0.99721 
Ozone Raw 26.31579 27.77778 27.02703 50.73731 0.62069 
Ozone SMOTE 97.05122 95.51935 96.27919 96.06386 0.96069 
Ozone Borderline SMOTE 97.19189 95.07821 96.12343 94.96919 0.94995 
Ozone MWMOTE 98.32448 97.72543 98.02404 97.59617 0.97599 
Ozone SCOT 99.67572 99.35354 99.51437 99.39077 0.99391 
PageBlocks Raw 73.16017 77.16895 75.11111 85.12482 0.86103 
PageBlocks SMOTE 98.66463 98.17768 98.42055 98.41632 0.98417 
PageBlocks Borderline SMOTE 96.81085 96.79311 96.80198 96.73619 0.96736 
PageBlocks MWMOTE 99.0256 99.06346 99.04453 99.04542 0.99045 
PageBlocks SCOT 99.23379 99.03021 99.1319 99.12084 0.99121 
Statlog Raw 53.35463 55.48173 54.39739 71.3394 0.74371 
Statlog SMOTE 94.99053 93.58887 94.28449 94.23872 0.94242 
Statlog Borderline SMOTE 94.07947 93.94562 94.0125 93.74252 0.93743 
Statlog MWMOTE 96.0241 94.57535 95.29422 95.25462 0.95258 
Statlog SCOT 95.65946 94.97504 95.31602 95.22935 0.9523 
RobotNav Raw 95.73171 98.4326 97.06337 97.79487 0.97817 
RobotNav SMOTE 99.9025 99.88302 99.89276 99.89275 0.99893 
RobotNav Borderline SMOTE 99.57682 99.68687 99.63181 99.62264 0.99623 
RobotNav MWMOTE 99.86325 99.86325 99.86325 99.86337 0.99863 
RobotNav SCOT 99.94235 99.94235 99.94235 99.94192 0.99942 
Mammography Raw 55 64.41441 59.3361 73.89331 0.77138 
Mammography SMOTE 95.44081 97.9241 96.66651 96.70047 0.96709 
Mammography Borderline SMOTE 98.24577 98.14037 98.19304 98.17074 0.98171 
Mammography MWMOTE 99.16674 99.00357 99.08509 99.08439 0.99084 
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Table B-2 

Cont. 

Mammography SCOT 99.30178 99.17587 99.23879 99.23431 0.99234 
Seismic Raw 14.70588 17.0068 15.77287 37.36665 0.54826 
Seismic SMOTE 92.58492 92.50828 92.54658 92.54349 0.92543 
Seismic Borderline SMOTE 93.43511 94.70019 94.0634 93.87889 0.9388 
Seismic MWMOTE 94.79124 95.14523 94.9679 94.97208 0.94972 
Seismic SCOT 96.21027 97.00082 96.60393 96.59236 0.96593 
Covertype Raw 85.22024 88.37297 86.76798 91.91633 0.92179 
Covertype SMOTE 99.02668 98.78906 98.90773 98.90634 0.98906 
Covertype Borderline SMOTE 98.70467 98.97457 98.83944 98.80689 0.98807 
Covertype MWMOTE 99.40158 98.93955 99.17003 99.16771 0.99168 
Covertype SCOT 99.12567 99.05715 99.0914 99.08596 0.99086 
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Table B-3 

Comparison of performance measures when applying SMOTE, Borderline SMOTE, MWMOTE, and SCOT to twelve real world 

datasets for the support vector machine simulation.  The best results for each dataset are highlighted in bold. 

Dataset Method Recall Precision F1 Measure G-Mean AUC 
TCC Raw 15.38462 6.95652 9.58084 36.59136 0.51207 
TCC SMOTE 93.81818 85.80931 89.63521 89.02929 0.89152 
TCC Borderline SMOTE 94.11765 91.87432 92.98246 92.49946 0.92513 
TCC MWMOTE 96 97.05882 96.52651 96.54391 0.96545 
TCC SCOT 99.63768 99.87893 99.75816 99.75816 0.99758 
Abalone Raw 42.85714 19.56522 26.86567 61.84998 0.66058 
Abalone SMOTE 99.70972 90.87302 95.08651 94.7229 0.94848 
Abalone Borderline SMOTE 94.75138 89.90826 92.26631 91.74003 0.91788 
Abalone MWMOTE 98.54227 82.74174 89.95343 88.5303 0.89039 
Abalone SCOT 99.42363 99.85528 99.63899 99.63901 0.99639 
ClimateModel Raw 0 NaN NaN 0 0.5 
ClimateModel SMOTE 97.57085 100 98.77049 98.77796 0.98785 
ClimateModel Borderline SMOTE 89.03592 92.89941 90.92664 90.85564 0.90874 
ClimateModel MWMOTE 98.34711 76.28205 85.92058 82.99566 0.84194 
ClimateModel SCOT 98.8024 100 99.39759 99.39939 0.99401 
OCR Raw 4.52128 100 8.6514 21.26329 0.52261 
OCR SMOTE 98.69452 100 99.34297 99.34511 0.99347 
OCR Borderline SMOTE 98.25936 100 99.12204 99.12586 0.9913 
OCR MWMOTE 99.39007 100 99.6941 99.69457 0.99695 
OCR SCOT 96.88202 100 98.41632 98.42867 0.98441 
OilSpill Raw 0 NaN NaN 0 0.5 
OilSpill SMOTE 97.54464 100 98.75706 98.76469 0.98772 
OilSpill Borderline SMOTE 93.81003 97.34219 95.54348 95.5496 0.95566 
OilSpill MWMOTE 97.76286 92.38901 95 94.81926 0.94864 
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Table B-3 

Cont. 

OilSpill SCOT 99.77728 100 99.88852 99.88858 0.99889 
Ozone Raw 0 NaN NaN 0 0.5 
Ozone SMOTE 98.49974 100 99.2442 99.24704 0.9925 
Ozone Borderline SMOTE 98.47894 98.55582 98.51736 98.20615 0.98207 
Ozone MWMOTE 98.56968 93.09147 95.75228 94.19035 0.94288 
Ozone SCOT 99.83786 100 99.91886 99.9189 0.99919 
PageBlocks Raw 81.38528 23.5 36.46945 84.7842 0.84855 
PageBlocks SMOTE 97.44372 95.28073 96.35009 96.30197 0.96309 
PageBlocks Borderline SMOTE 96.60924 93.37467 94.96442 94.71878 0.94737 
PageBlocks MWMOTE 98.33779 97.42571 97.87962 97.87057 0.97872 
PageBlocks SCOT 99.3646 97.84689 98.59991 98.56308 0.98566 
Statlog Raw 78.11502 68.39161 72.93065 86.64637 0.87112 
Statlog SMOTE 99.94836 97.80997 98.8676 98.84918 0.98855 
Statlog Borderline SMOTE 97.94206 96.05651 96.99012 96.77785 0.96785 
Statlog MWMOTE 99.19105 98.11032 98.64772 98.63857 0.9864 
Statlog SCOT 98.7766 98.11886 98.44663 98.41501 0.98416 
RobotNav Raw 65.85366 96.86099 78.4029 81.09486 0.82859 
RobotNav SMOTE 99.922 99.82466 99.87331 99.87323 0.99873 
RobotNav Borderline SMOTE 98.54646 99.79504 99.16682 99.16404 0.99166 
RobotNav MWMOTE 99.74604 99.88263 99.81429 99.8145 0.99815 
RobotNav SCOT 99.21214 99.8646 99.5373 99.53729 0.99538 
Mammography Raw 83.07692 32 46.20321 89.21094 0.89437 
Mammography SMOTE 93.72883 96.03227 94.86657 94.92056 0.94928 
Mammography Borderline SMOTE 99.00653 97.31679 98.15439 98.10301 0.98107 
Mammography MWMOTE 99.39566 97.92512 98.65491 98.64215 0.98645 
Mammography SCOT 99.80051 97.97045 98.87701 98.85208 0.98857 
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Table B-3 

Cont. 

Seismic Raw 15.88235 11.68831 13.46633 38.13159 0.53716 
Seismic SMOTE 90.76222 92.95715 91.84657 91.93525 0.91943 
Seismic Borderline SMOTE 93.81679 78.70637 85.59986 82.44543 0.83135 
Seismic MWMOTE 99.25589 56.03267 71.62888 46.68178 0.60606 
Seismic SCOT 97.96251 98.48423 98.22268 98.21457 0.98215 
Covertype Raw 97.16054 78.36171 86.75443 97.54884 0.9755 
Covertype SMOTE 99.84617 98.52892 99.18317 99.17546 0.99178 
Covertype Borderline SMOTE 99.45722 98.70921 99.0818 99.03408 0.99035 
Covertype MWMOTE 99.88815 98.52982 99.20433 99.19631 0.99199 
Covertype SCOT 99.80079 98.79756 99.29664 99.28514 0.99286 
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Table B-4 

Wilcoxon Signed-Rank test to compare the geometric mean values when applying SMOTE, Borderline SMOTE, MWMOTE, and SCOT 

to twelve real world datasets for the decision tree simulation.  The best results for each dataset are highlighted in bold. 

Data set 
Original 

Data 
SCOT vs. SMOTE SCOT vs. B-SMOTE SCOT vs. MWMOTE 

SCOT SMOTE Rank SCOT BSMOTE Rank SCOT MWMOTE Rank 
Abalone 60.49991 98.55427 90.92862 11.0 98.55427 89.02128 11.0 98.55427 96.50710 10.0 
ClimateModel 53.63893 97.99109 92.09436 10.0 97.99109 84.27297 12.0 97.99109 95.30129 11.0 
CoverType 91.91633 99.08596 98.90634 3.0 99.08596 98.80689 2.0 99.08596 99.16771 -4.0 
Mammography 73.89331 99.23431 96.70047 6.0 99.23431 98.17074 4.0 99.23431 99.08439 6.0 
OCR 97.0497 99.50194 99.33275 2.0 99.50194 99.36173 1.0 99.50194 99.60797 -5.0 
OillSpill 51.41984 99.72134 96.53702 7.0 99.72134 94.96390 9.0 99.72134 97.98882 8.0 
Ozone 50.73731 99.39077 96.06386 8.0 99.39077 94.96919 8.0 99.39077 97.59617 9.0 
Page Blocks 85.12482 99.12084 98.41632 4.0 99.12084 96.73619 6.0 99.12084 99.04542 2.0 
Robot Nav. 97.79487 99.94192 99.89275 1.0 99.94192 99.62264 3.0 99.94192 99.86337 3.0 
Seismic 37.36665 96.59236 92.54349 9.0 96.59236 93.87889 7.0 96.59236 94.97208 7.0 
Statlog 71.3394 95.22935 94.23872 5.0 95.22935 93.74252 5.0 95.22935 95.25462 -1.0 
TCC 27.15749 98.78978 84.25890 12.0 98.78978 89.34189 10.0 98.78978 94.78594 12.0 
  T = min{78, 0} = 0 T = min{78, 0} = 0 T = min{68, 10} = 10 
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Table B-5 

Wilcoxon Signed-Rank test to compare the geometric mean values when applying SMOTE, Borderline SMOTE, MWMOTE, and SCOT 

to twelve real world datasets for the support vector machine simulation.  The best results for each dataset are highlighted in bold. 

Data set 
Original 

Data 
SCOT vs. SMOTE SCOT vs. B-SMOTE SCOT vs. MWMOTE 

SCOT SMOTE Rank SCOT BSMOTE Rank SCOT MWMOTE Rank 
Abalone 61.84998 99.63901 94.72290 10.0 99.63901 91.74003 10.0 99.63901 88.53030 10.0 
ClimateModel 0 99.39939 98.77796 4.0 99.39939 90.85564 11.0 99.39939 82.99566 11.0 
CoverType 97.54884 99.28514 99.17546 1.0 99.28514 99.03408 1.0 99.28514 99.19631 1.0 
Mammography 89.21094 98.85208 94.92056 9.0 98.85208 98.10301 4.0 98.85208 98.64215 2.0 
OCR 21.26329 98.42867 99.34511 -6.0 98.42867 99.12586 -3.0 98.42867 99.69457 -6.0 
OillSpill 0 99.88858 98.76469 7.0 99.88858 95.54960 8.0 99.88858 94.81926 8.0 
Ozone 0 99.91890 99.24704 5.0 99.91890 98.20615 6.0 99.91890 94.19035 9.0 
Page Blocks 84.7842 98.56308 96.30197 8.0 98.56308 94.71878 7.0 98.56308 97.87057 5.0 
Robot Nav. 81.09486 99.53729 99.87323 -2.0 99.53729 99.16404 2.0 99.53729 99.81450 -4.0 
Seismic 38.13159 98.21457 91.93525 11.0 98.21457 82.44543 12.0 98.21457 46.68178 12.0 
Statlog 86.64637 98.41501 98.84918 -3.0 98.41501 96.77785 5.0 98.41501 98.63857 -3.0 
TCC 36.59136 99.75816 89.02929 12.0 99.75816 92.49946 9.0 99.75816 96.54391 7.0 
  T = min{67, 11} = 11 T = min{75, 3} = 3 T = min{65, 13} = 13 
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