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Abstract

The world’s heavy dependence on vehicles which utilize hydrocarbon fuels as a

primary power source has renewed the interest in electric and hybrid vehicles for indus-

trial, commercial, and public use. The primary objective of this movement is centered

on increased efficiency in energy usage for transportation. Hybrid vehicles which uti-

lize an internal combustion engine as a linear generator, converting energy stored in

hydrocarbon fuels into electrical power, could serve as a transitioning technology. The

free-piston enhanced hybrid vehicle (FPHV) could potentially fill this role.

The present work contains a theoretical and numerical approach to analyzing

and optimizing the usage of energy within a free-piston enhanced hybrid vehicle given

urban, highway, and aggressive driving profiles. An electromechanical model repre-

senting the free-piston hybrid vehicle is developed and optimized based on mass of

energy sources carried.
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Chapter 1

Introduction

Over the past few decades energy has become an increasingly polarizing topic

worldwide. The rise of newly industrialized and modernized countries has increased

market demand for energy resources and caused their costs to soar. In particular, the

rising cost of oil has led to increased gas prices. Between 2001 and 2012, the national

average for gasoline in the United States increased by 250% going from $1.46 per gal-

lon to $3.67 per gallon[1]. The world’s heavy dependence on vehicles which utilize

hydrocarbon fuels as a primary power source has renewed interest in electric and hy-

brid vehicles for industrial, commercial, and public use. The primary objective of this

movement is centered around increased efficiency in energy usage for transportation[2].

Pure electric vehicles are vehicles that utilize an energy storage component, such

as a battery, as the sole energy source for propulsion; while hybrid vehicles are char-

acterized by the utilization of multiple energy sources[3, 4]. New technological de-

velopments focused around energy storage have allowed pure electric vehicles to gain

some traction within the market as a viable alternative to internal combustion engine

(ICE) based vehicles; however the infrastructure to fully support these vehicles is under-

developed within most industrialized countries[5, 6]. Even though a pure electric ve-

hicle may get similar mileage to that of an ICE vehicle, the ability to quickly refuel

ICE vehicles and the established infrastructure of hydrocarbon focused fueling sta-

tions across most countries can not be overlooked from an economic standpoint. The

established fueling infrastructure represents a surmountable investment that will un-
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doubtedly stagger the growth of the pure electric vehicle industry. Alternatively, hybrid

vehicles could potentially play an important role in bridging the gap between the es-

tablished hydrocarbon fuel network and the burgeoning pure electric fueling network,

given their multiple power source nature.

Hybrid vehicles which utilize an internal combustion engine as a linear gener-

ator, converting energy stored in hydrocarbon fuels into electrical power, could serve

as a transitioning technology. The free-piston enhanced hybrid vehicle (FPHV) could

potentially fill this role. A FPHV uses a linear generator to convert fuel and supply

electrical power to an induction motor which serves as the motor vehicle’s engine[3].

By existing within both networks the FPHV is able to effectively utilize the current fu-

eling infrastructure devoted to ICE vehicles and at the same time take advantage of new

developments for the electric car. This dissertation will focus on the optimization of

energy use and storage within the FPHV such that its design and operation are effective

for everyday public transportation.

The second chapter of this study will present a literature review about dynam-

ics of vehicle propulsion; after which the third chapter will take an in-depth look at

free-piston generator. The fourth chapter will present the simulated annealing algo-

rithm. The fifth chapter covers the electrical drive system and power electronics located

within the free-piston hybrid vehicle. The sixth chapter looks at the internal design of

the free-piston hybrid vehicle and the development and implementation of the energy

optimization algorithm. Chapter seven analyzes the results of the optimization algo-

rithm. Lastly, chapter eight provides conclusions formed during the study and suggest

areas where additional work should be performed.
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Chapter 2

Literature Review

2.1 Vehicle Dynamics

A hybrid vehicle is defined as a vehicle with at least two different energy con-

verters and two different energy storage systems which are primarily used for vehicle

propulsion[3]. The primary objective for a system using multiple energy sources is sys-

tem efficiency. The developers of hybrid vehicles seek to utilize the advantages unique

to each energy subsystem within the vehicle while minimizing their disadvantages by

balancing one subsystem against the other based on established goals. In order to de-

velop a viable hybrid vehicle the basic dynamics surrounding vehicle propulsion must

be considered.

2.1.1 Vehicle Propulsion

Newton’s second law states that the net forces acting on an object are equal to

the mass of that object multiplied by its acceleration. Using Equation 2.1, a basic

equation for the acceleration of a vehicle can be derived for a given environment; where

m represents the mass of the object, a represents its acceleration, and F represents the

forces acting on it.

∑F = ma (2.1)
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FIGURE 2.1: Forces acting on a vehicle in motion.

Equation 2.2 represents the summation of forces acting on the vehicle according

to Newton’s second law. The mass of the vehicle, mv, multiplied by the vehicle’s ac-

celeration is equal to the difference of traction force, Fτ , applied by the tires and the

summation of environmental forces acting upon the vehicle[7]. Figure 2.1 shows the

environmental forces acting on the vehicle: rolling friction (Fr), normal force (Fg), and

air drag (Fa).

mv
d
dt

v(t) = Fτ (t)− (Fr (t)+Fg (t)+Fa (t)) (2.2)

Rolling friction, displayed in Equation 2.3, is the horizontal component of the

normal force acting on the vehicle; where the tires serve as the point of contact. The

coefficient of rolling friction, cr, represents the bond between the driving surface and

tires of the vehicle; while θ represents the inline angle of the road and g represents

gravity. Equation 2.4 yields the vertical component of the normal force acting on the

vehicle. Equation 2.5 models the aerodynamic resistance acting on the vehicle[7]. The

model is a function of air density (ρ), the vehicle’s frontal area (A f ), the vehicle’s

velocity (v), and the drag coefficient (cd).

Fr (t) = crmvgcos(θ (t)) (2.3)
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Fg (t) = mvgsin(θ (t)) (2.4)

Fa (t) = .5ρacdA f (v(t))
2 (2.5)

Equation 2.6 represents the force applied for vehicle propulsion. The force is

derived from the torque generated by the motor which is delivered to the tires from the

drive-train. This torque is then applied to the road through the tires for propulsion. The

motor torque, gear ratio with drive-train efficiency, and tire radius are represented by τ ,

µgear, and rw, respectively.

Fτ (t) =
µgearτ (t)

rw
(2.6)

Having defined the forces affecting the vehicle, Equation 2.2 can now be written as

a first-order differential equation representing the acceleration of the vehicle. Using

Euler’s method, an equation for modeling vehicle propulsion can be generated from

Equation 2.7. With Equations 2.7 and 2.8, we are able to simulate the velocity of a

vehicle being driven through various environments such as urban or highway traffic.

dv
dt

= f (t,v(t)) =
Fτ (t)− (Fr (t)+Fg (t)+Fa (t))

mv
(2.7)

vn+1 = vn + f (tn,vn)∆t (2.8)

Consequently, the mechanical power, Pm, being exerted to in order to propel the vehicle

can be derived using Equation 2.9.

Pm (t) = Fτ (t)v(t) (2.9)
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2.1.2 Fuel Economy Testing

Fuel economy tests within the United States are standardized and regulated by the

Environmental Protection Agency (EPA)[8]. These tests consist of standardized speed

and elevation driving schedules for urban areas and highways in order to evaluate how

a vehicle consumes fuel and produces pollutant emissions during typical operation[7].

The tests are carried out in a controlled environments; where control variables like tem-

perature and humidity can be set and monitored. Typically, chassis dynamo-meters are

used to emulate force at the wheels of the vehicle during testing; thus representing the

vehicle energy losses that would normally be seen if the vehicle were moving according

to the selected driving schedule[7]. Multiple driving schedules have been designed to

test the fuel economy of vehicles. This study will focus on using the following sched-

ules to evaluate fuel economy: the federal test procedure 75 driving schedule (FTP-75),

the highway fuel economy test driving schedule (HWFET), and the supplemental fed-

eral test procedure driving schedule (US06).

The FTP-75 shown in Figure 2.2a is structured to evaluate driving within an

urban area; where vehicle movement typically occurs in short intervals with frequent

stops throughout[8]. It is broken into three phases. The first and third phase account

for the vehicle’s emissions during cold and hot starts of the engine respectively. The

second phase accounts for fuel consumption during an area where the vehicle velocity is

relatively similar across a stop and go traffic pattern. Figure 2.2b displays the highway

fuel economy test driving schedule which is patterned after typical highway driving

across a ten mile stretch.
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(A) The Federal Test Procedure 75 driving schedule.

(B) The highway fuel economy driving schedule.

(C) The US06 FTP driving schedule.

FIGURE 2.2: The federal fuel economy test driving schedules.
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TABLE 2.1: EPA Standardized Weights for Fuel Economy Testing of Hybrid Vehicles

FTP-75 HWFET US06
City 90% - 10%
Highway - 21% 79%

Figure 2.2c contains the US06 FTP driving schedule which represents an aggres-

sive driving profile. A combination of the phases in the driving schedules mentioned

are used in order to measure the fuel economy for a given vehicle. The combination

and formula for weighting each phase is determined by the EPA[8]. Table 2.1 displays

the weights standardized by the EPA for testing the fuel economy of hybrid vehicles

with the overall fuel economy of the vehicle being represented as a combination both;

where 55% of the overall fuel economy is city fuel economy and 45% is highway fuel

economy[9].

2.2 Hybrid Electric Vehicles

Hybrid electric vehicles are characterized by the configuration of their primary

and secondary power sources for vehicle propulsion. The topology of a hybrid vehicle

will fall into one of the following categories: series hybrid, parallel hybrid, or series-

parallel hybrid.

2.2.1 Series Hybrid

In the series hybrid configuration, the electric motor is the sole source of propul-

sion for the vehicle. As shown in Figure 2.3, the energy sources which provide power

to the motor include an energy storage device along with a primary power generator

that converts energy from a specified form into electricity[3]. The inclusion of the en-

ergy storage device within the series hybrid topology prevents the need for the primary

power unit to operate at powers level similar to that of the electric motor. Ideally, the
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FIGURE 2.3: The series hybrid topology.

energy storage can be sized such that the primary power unit can be operated within

range the that is more efficient for energy conversion given the technology utilized.

2.2.2 Parallel Hybrid

Within the parallel hybrid topology both the primary power unit and the electric

motor are capable of propelling the vehicle through the drive-shaft[7]. Using this topol-

ogy the electric motor and primary power unit can assist one another in handling the

load for propulsion. Typically the electric motor is chosen to help provide additional

torque when needed[3]. Figure 2.4 also shows that the electric motor can also be used

as a generator to recharge the energy storage unit of the vehicle. While this topology

does provide additional assistance to the primary power unit concerning torque; the

assistance is only helpful at low speeds. The primary power unit must still be capable

of propelling the vehicle at high speeds without the assistance of the electric motor.

Unlike the series topology, the primary power unit is not shielded from the demands

of the driving loaded. The primary power unit can also not serve as a generator for

the onboard energy storage unit; thus leaving regenerative braking, plug-in fueling, and

unit replacement as the only options for recharging the energy storage unit.
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FIGURE 2.4: The parallel hybrid topology.

FIGURE 2.5: The series-parallel hybrid topology.

2.2.3 Series-Parallel Hybrid

The series-parallel hybrid topology combines features from both the series and

parallel topologies. This topology has been widely used in the Toyota Prius with much

success[3]. The primary power unit must still adhere to the power requirements nec-

essary for driving the vehicle; however the electric motor can now be used to as a

secondary propulsion device. As shown in Figure 2.5, this allows the primary power

unit to serve as an additional generator while the electric motor propels the vehicle.

Essentially the electric motor and primary power unit can be chosen to drive the car at

speeds which are most suitable for each device.
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2.3 Free-Piston Hybrid Vehicle

The free-piston hybrid vehicle can be classified as a series hybrid. The FPHV

benefits from this topology due to the isolation of the of the primary power unit. An

operating frequency can be chosen for the free piston generator that focuses on the

efficiency of energy conversion; while the energy can be sized to balance the power

demands of the electric motor. This research will focus on determining the attributes

for the energy storage elements in the series topology such that the FPHV is a viable

and energy efficient vehicle which can be used for everyday travel.
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Chapter 3

Free Piston Generator

3.1 Background

A free-piston generator consists of a linear combustion engine combined with

a linear electric machine which can convert hydrocarbon fuel into electricity[10]. The

piston is considered free due to the motion of the piston being unrestricted by a crankshaft,

which is normally seen in internal combustion engines. The removal of the crankshaft

allows the piston to easily vary its stroke length; however it allows requires stricter

control than the typical ICE. In 1928, Raul Pescara invented the first free-piston engine

which he described as a spark ignition air compressor[11]. The dual piston free-piston

generator was patented in the United States by Sydney Baruch in 1959[12]. Baruch’s

design, shown in Figure 3.6, places magnets with matching poles 120 degrees out of

phase of one another on a movable translator. The translator lies between two opposing

pistons and passes through coupled coils to generate electricity.

FIGURE 3.6: A dual piston free-piston generator patented by Sydney Baruch.
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3.2 FPG Modeling

Free piston generators are commonly configured in one of two ways. The first

being a single piston design where the bounce back chamber opposite of the piston is

a hydraulic cylinder containing some gas, liquid, or spring which is used to rebound

the translator[13]. The second configuration is a dual piston design where the bounce

back chamber is replaced with another piston and combustion chamber. This study will

focus on the dual piston configuration. The modeling of the dual piston FPG can be

broken up into two parts: the modeling of the thermodynamics of combustion within

the piston chambers for motion and the modeling of the electrodynamics of the system.

The dual piston configuration of the free piston generator, shown in Figure 3.7,

consists of two opposing pistons attached to a translator. Alternating combustion within

the chambers applies force to the pistons and moves the translator back and forth; thus

passing the magnets by the coils and inducing an electromagnetic field in the coils[14].

Using Newton’s second law Equation 3.10 can be formulated, where mp represents the

mass of the pistons,x is the displacement of the piston along the stroke path, Fe is an

expansion force in one of the chambers, Fc is the opposing compression force, Fm is

electromagnetic force from the generator, and Ff is friction. This study will consider

the motion of the piston to be frictionless and focus on modeling the combustion in the

piston chambers that supply the compression and expansion forces.

mp
d2x
dt2 = Fe−Fc−Fm−Ff , (3.10)
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FIGURE 3.7: A dual piston free-piston generator.

3.2.1 Thermodynamics of a FPG

In order to model the expansion forces in the combustion chamber we must model

the combustion process itself and examine how it performs work upon the piston. The

first law of thermodynamics, shown in Equation, states that the change of internal en-

ergy within a system is the sum of the change in heat supplied to the system, dQ, and

work done by the system, dW [15].

dU = dQ−dW (3.11)

If it is assumed that complete combustion occurs within the chamber such that all fuel

is consumed, the combustion process can be modeled as a closed system and Equation

3.11 can be rewritten as Equation 3.12.

dU = dQ−PdV (3.12)

Equation 3.12 defines the change in work as a change in volume occurring at a

constant pressure. Assuming that the gas combusting in the cylinders are ideal, equa-

tions for the change in pressure and temperature for each chamber can be derived using

the ideal gas law shown in Equation 3.13. The ideal gas law represents the behavior of

the gas in the chamber by approximating the relationships between pressure, volume,

mass, and temperature of the specific gas. Cv is the specific heat for a constant volume,

Cp is the specific heat for a constant pressure, and γ is the specific heat ratio.
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mCv (γ−1)T = PV (3.13)

γ =
Cp

Cv
(3.14)

By taking the derivative of Equation 3.13 with respect to time we arrive at Equa-

tion 3.15 which also represents the change of internal energy in the system given Equa-

tion 3.16 represents the internal energy within an ideal gas[16].

mCv
dT
dt

=
1

(γ−1)

(
P

dV
dt

+V
dP
dt

)
(3.15)

U = mCv∆T, (3.16)

Equations 3.17 and 3.18 represent the change of pressure and temperature within a

combustion chamber where P represents the chamber pressure, V is the chamber vol-

ume, T is the temperature of the gas in the chamber, m is the mass of the gas in the

chamber, and Q is the heat in the chamber[10, 17].

dP
dt

=
γ−1

V
dQ
dt
− γ

V
P

dV
dt

(3.17)

dT
dt

=
1

mCv

dQ
dt

+
T (1− γ)

V
dV
dt

(3.18)

Now that equations for the rate of change in pressure and temperature a formula

must be derived which represents the rate of heat release over the duration of the com-

bustion. The overall release of heat use in Equations 3.17 and 3.18 can be separated

into two portions: the heat released by the combustion, Qc, and the heat absorbed by

the chamber walls, Ql , resulting in a loss of heat from the system.

dQ
dt

=
∂Qc

∂ t
− ∂Ql

∂ t
(3.19)
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The derivative of the Wiebe function has been found to be a suitable estimator

for the release rate of heat during combustion[10, 18]. The Wiebe coefficients, a and

b are determined experimentally for the Wiebe function displayed in Equation 3.20;

where t0represents the start time of the combustion and td represents the burn duration

of the combustion. The value of burn duration and the Wiebe coefficients are dependent

upon the specific fuel being used in the combustion process[19]. Qin in Equation 3.21

represents the total amount of heat added during combustion.

χ (t) = 1− exp

(
−a
(

t− t0
td

)1+b
)

(3.20)

Qc

dt
= Qin

∂ χ (t)
∂ t

(3.21)

Given a specific fuel, the heat of combustion,∆Hc, can be calculated by taking the

difference between the heat of formation for the products and reactants of a combustion

process utilizing the specified fuel. Qin can then be determined with Equation 3.22;

where m is the mass of the fuel used in the chemical reaction.

Qin = m∆Hc (3.22)

The loss of heat in Equation 3.19 is the result of heat being absorbed by the

walls of the combustion chamber. The rate of heat absorbed by the wall is expressed

in Equation 3.23; where A is the area of the chamber wall, T is the temperature of the

chamber gas, and Tw is the temperature of the chamber wall.

∂Ql

∂ t
= αA(T −Tw) (3.23)

The heat transfer coefficient, α , is a widely used heuristic that approximates how the

wall absorbs heat during combustion in internal combustion engines[20, 18, 17]. In
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Equation 3.24, P represents the chamber pressure, V is the chamber volume, T is the

temperature of the gas in the chamber, and v̄ is the average speed of the piston.

α = 130V−0.06
(

P
105

)0.8

T−0.4 (v̄+1.4)0.8 . (3.24)

The temperature of the wall, Tw, does not remain constant during repeated com-

bustion cycles. The heat absorbed by the wall gradually changes the temperature of

the wall. We can model this behavior as a lumped heat capacitance, in which the ab-

sorbed heat can be thought of as current charging a capacitor; where the wall eventually

reaches a steady state when it absorbs enough heat[21]. Equation 3.25 represents the

change in temperature for the wall of the chamber. The parameters Cw and Rw represent

the thermal capacitance and thermal resistance of the chamber walls.

dTw

dt
=

1
Cw

dQl

dt
− Tw

RwCw
(3.25)

The thermal capacitance, shown in Equation 3.26, is a function of the volume of

the engine block, Vblock, the density of the material used to make the engine block, ρ ,

and a heat conduction constant, c, which is determined by the material used to construct

the engine block.

Cw = ρcVblock (3.26)

The thermal resistance, displayed in Equation 3.27, is a function of the outside area of

the engine block, Ablock, and a heat transfer coefficient, h, which is determined by the

airflow outside of the block.

Rw =
1

hAblock
(3.27)
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3.2.2 Electrodynamics of a FPG

The FPG is a linear generator combined with an internal combustion engine

which serves to propel the prime mover of the generator. A common configuration

for the linear generator in an FPG can be seen in Figure 3.8[10]. Permanent magnets

with alternating poles are placed along the prime mover of the generator; so that they

may induce an electromotive force when passing by the coils on the stator[22]. Using

Faraday’s law, shown in Equation 3.28, the electromotive force produced by the gener-

ator can be modeled; where N is the number of turns in the coil and Φ is the magnetic

flux[14, 18].

E =−N
dΦ

dx
dx
dt

(3.28)

Equation 3.29 represents the Lorentz force equation for a stationary wire; where I

is electrical current, L is the length of the wire, and B is the magnetic field, a relationship

between the electromotive force generated and the electromagnetic force acting on the

generator can be derived.

~F = I~L×~B =−BiL~ax (3.29)

Writing Equation 3.28 in terms of B and L yields Equation 3.30, which can be sub-

stituted into Equation 3.28[23, 24]. This generates Equation 3.31 which yields the

electromagnetic force acting on the generator.

E = BL
dx
dt

(3.30)

Fm =
E · I

dx
dt

(3.31)

The electrical current passing through the load can be determined with Equation

3.32; where Z is the impedance of the stator and Vsys is the voltage level of the system.
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FIGURE 3.8: The schematic of stator and prime mover for an FPG.

Equations 3.31 and 3.32 show that the force acting on the generator from the system is

proportional to the amount of power being absorbed by the system.

I =
E−Vsys

Z
(3.32)

3.2.3 Motion of a FPG

Now that the basic dynamics of the system have been explored, a state space

model can be developed to represent the motion of the FPG. Equation 3.28 clearly

shows that the electromotive force generated by the generator is primarily dependent on

the speed of the pistons. Equation 3.10 can be rewritten to form a first order differential

equation modeling the speed of the piston.

d2x
dt2 =

Fe−Fc−Fm

mp
(3.33)

We will maintain the assumption that the system being modeled is frictionless. The

electromagnetic force, Fm, was defined in Equation 3.31; leaving the compression force,

Fc, and the expansion force, Fe, as undefined. Pressure is defined as force per unit area;

therefore both the expansion and compression forces can be derived from the pressure

in each chamber using Equation 3.34, where Ap is the area of the bore of the piston.

F = PAp (3.34)
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Given the reciprocative nature between the chambers when applying force to the

pistons, the expansion and compression forces will be relabeled with a numerical sub-

script to represent the chamber of the force instead of the type of force. Now that all of

the forces in Equation 3.33 have been identified, a basic state space model representing

the movement of the FPG can be formed. Equations 3.35, 3.36, and 3.37 represent

the state of the gas in each chamber during combustion. The volume for the chambers

shown in Equation 3.36 alternate signs with another due to their connection.

dPi

dt
=

γ−1
Vi

dQi

dt
− γ

Vi
Pi

dVi

dt
(3.35)

dVi

dt
=±Ap

dx
dt

(3.36)

dTi

dt
=

1
mCv

dQi

dt
+

Ti (1− γ)

Vi

dVi

dt
(3.37)

With states defined for the change in pressure, Equation 3.34 can be substituted into

Equation 3.33 to yield Equation 3.38 which represents a model for the acceleration of

the pistons in the generator based on the pressure in each chamber.

d2x
dt2 =

Ap (P1−P2)−Fm

mp
(3.38)

3.3 Simulation of a FPG

Using the first-order differential equations described in the previous section, a

discrete state space model shown in Equations 3.39 and 3.40 can be generated[25].

The states, x [k], represent the heat released, the change in pressure, in temperature,

and in volume of the gas in each combustion chamber; along with the acceleration and

velocity of the piston. The input, u [k], for the systems represents the amount of fuel

placed into each chamber for combustion. Parameters A, B, C, and D are generated
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from the first-order differential equations for thermodynamics, electrodynamics, and

motion.

x [k+1] = Ax [k]+Bu [k] (3.39)

y [k] =Cx [k]+Du [k] (3.40)

The output, y [k], for the system is the voltage waveform generated by the motion

of the piston. It should be noted that the magnitude of the waveform is proportional to

the product of the magnetic field and the length of the wire to which current is being

induced, shown in Equation 3.30. In order to determine the peak voltage the back-

electromagnetic field constant, KE , representing the product of the magnetic field and

the length of the wire must be determined. This can be done by choosing an obtainable

operating frequency for the FPG and a desired peak voltage to occur along the half

periods within that frequency. Equation 3.41 demonstrates how to obtain the back-

electromagnetic field constant for Equation 3.42. The parameters ∆t and L represent

the time it takes to complete a stroke and the stroke-length, respectively. It should be

noted that the compression ratio of the piston chamber affects the length of the stroke.

The compression ratio represents the relationship between the minimum and maximum

values of volume for the combustion chambers[19].

KE =
VPeak∆t

L
(3.41)

E = KE
dx
dt

(3.42)

Once the voltage peak has been determined the amount of power absorbed by the

system needs to be chosen as it has an effect on the operation of the system as seen in

Equation 3.31[17]. If it is assumed that the load is purely resistive and that the FPG
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voltage waveform is similar to that of a sine wave; then the power absorbed by the load

can determined using Equation 3.43. VM is the magnitude of the voltage waveform and

RL is the load resistance.

P =
V 2

M
2RL

(3.43)
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Chapter 4

Electric Drive System of a Free-Piston Hybrid Vehicle

4.1 Drive System Components

In this chapter the basic components that constitute the electric drive system of

the free-piston hybrid vehicle will be discussed. The free-piston hybrid vehicle (FPHV)

is classified as a series hybrid[26]. Figure 4.9 resembles the diagram for a series hybrid

presented in Chapter ; the free piston generator has been substituted in as the primary

power unit of the vehicle. The electric drive system is responsible for converting and

delivering power to the necessary components in order to propel the vehicle. The drive

system consists of a free-piston generator, an energy storage component, an electric

motor, a full-wave rectifier, a resonant inverter, a DC-DC bi-directional converter, and

a 3-phase pulse-width modulation (PWM) inverter for DC to AC conversion.

The free piston generator is assumed to be the main source of power for the

system. The energy storage component serves to assist the FPG in managing energy

within the system. The electric motor converts electrical power into mechanical power

and propels the vehicle. The full-wave rectifier converts the AC power generated by

the FPG into DC power. This helps lessen the need for the FPG to generate power

at a frequency specified by the electric motor; thus enabling the FPG to operate at a

frequency more suited for energy conversion[27]. The DC-DC bi-directional converter

allows energy to travel back and forth to the energy storage unit[28]. This enables the

controller to balance the energy within the system. The DC-link receives and stores

energy from all generators connected to it. It holds just enough energy to achieve
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FIGURE 4.9: The free-piston hybrid vehicle drive system block diagram.

FIGURE 4.10: A single-phase full wave rectifier with smoothing capacitor.

maximum power in the motor for one cycle. The 3-phase PWM inverter draws on

energy stored in the DC-Link and converts it into AC power; delivering it to the electric

motor at the necessary frequency in order to drive the motor.

4.2 Full-Wave Rectifier

The FPHV draws its power from two different energy sources. Each source is

attached to the DC-link using a power electronics unit to control or converter the en-

ergy. The FPG is attached using a full-wave rectifier. The full-wave rectifier serves to

convert the voltage from the FPG, an AC source, into a DC source. Figure 4.10 shows

a full-wave rectifier with a smoothing capacitor attached across the load resistor. The

capacitor produces a voltage which is fundamentally DC. It contains a slight ripple due

to the voltage level of the source dropping below that of the capacitor during each half

period of the sinusoidal wave[29].

Equation 4.44 presents the relationship between a sinusoidal source and an output
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voltage, vo, for a full-wave rectifier given a parallel RC load. The output voltage follows

the source voltage while the diodes are forward bias. When the source voltage drops

below the output voltage the diodes become reverse bias. The capacitor provides the

voltage to the load resistor at this point. This causes a voltage ripple across the DC

voltage. The size of the ripple can be determined using Equation 4.45; where Vm is the

magnitude of the sinusoid, f is its operating frequency, R is the load resistor, and C is

the smoothing capacitor[29].

vo (ωt) =

 |Vm sin(ωt)| ; onediode pair on

(Vm sinθ)exp
(
−(ωt−θ)

ωRC

)
; diodeso f f

(4.44)

∆Vo =
Vm

2 f RC
(4.45)

4.3 DC-DC Bi-directional Converter

The second source the FPHV draws power from is the energy storage element,

which can refer to a battery or ultra-capacitor. This element needs to be capable of both

sending and receiving energy thus it is connected to the DC-link using a bi-directional

converter. The DC-DC bi-directional converter is a controllable power electronic unit

that allows the charging and discharging of energy between two storage elements[30].

This study will focus on the half-bridge buck/boost converter shown in Figure 4.11a.

This converter utilizes two transistors with feedback diodes in order to control the cur-

rent passing through the inductor. Using a unified duty ratio, in which the opening and

closing of gates Q1 and Q2 alternate between one another, the DC-DC converter is able

to increase, decrease, or reverse the flow of current across the inductor[31].

The duty ratio refers to the amount of time in which Q1 is open while Q2 is

closed in respect to the collective time allotted for the aforementioned state and the

state in which Q1 is closed while Q2 is open. The state in which Q1 is open and Q2 is
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(A) A half-bridge buck boost converter.

(B) The switching diagram of a half-bridge buck boost converter.

FIGURE 4.11: A single-phase DC-DC bi-directional converter with switching chart.

closed shall be referred to as ton; while the state in which Q1 is closed while Q2 is open

will be referred to as to f f .

D≡ ton

ton + to f f
(4.46)

Figure 4.11b illustrates how the current in the inductor reacts during each state.

While ton is occurring the current increases to its peak value. When to f f occurs the

current decreases and will eventually reverse its direction of flow. It is clear from the

graph that by adjusting the duty ratio of the gates the bi-directional DC-DC converter
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FIGURE 4.12: The bi-directional converter during ton.

can transfer energy back and forth to energy storage elements that are connected to it.

Now that the states of the DC-DC converter have been identified a closer look can be

taken to understand how the circuit shown in Figure 4.11a operates based on which

state is active.

The converter contains three energy storage elements: an inductor, a capacitor

for the high voltage side, and a capacitor for the low voltage side. Figure 4.12 is the

circuit equivalent of the converter during ton. The circuit can be written as a first-order

differential equation, seen in Equation 4.48, where v1 and v2 represent the high and low

voltage sides, respectively. The resistance of inductor and the transistor are given by

RLP and Rdson. Performing Kirchhoff’s current law (KCL) at the high and low voltage

capacitors yields Equation 4.48 which showcases how current passing from one node

to the other affects energy stored in the capacitors[32].

L
di
dt

+ iL (Rdson +RLP) = v1− v2 (4.47)

 CH
dv1
dt =−

(
iL + v1−VH

R1

)
CL

dv2
dt = iL− v2−VL

R2

(4.48)

During to f f the high and low voltage sides of the converter are isolated from one

another. Performing Kirchhoff’s voltage law on the circuit equivalent for to f f shown

in Figure 4.13 reveals that the voltage across the inductor is strictly a function of the

low capacitor voltage during this state. Additionally, performing a KCL at each on the
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FIGURE 4.13: The bi-directional converter during to f f .

voltage nodes reinforces Equation 4.49, showing that the change in voltage across the

low voltage capacitor is dependent on current in the inductor and current being drawn

by an independent source[32]. Meanwhile, Equation 4.50 shows that the voltage across

the high voltage capacitor is unaffected by current in the inductor.

L
di
dt

+ iL (Rdson +RLP) =−v2 (4.49)

 CH
dv1
dt =−v1−VH

R1

CL
dv2
dt = iL− v2−VL

R2

(4.50)

Using state space averaging, a set of differential equations can be formed from

Equations 4.47-4.50 that will represent the change of current and voltage within the

inductor and storage capacitors across both states, simultaneously[32]. If Equation

4.51 is allowed to represent the percentage of time that the converter spends in to f f

over the period of the duty ratio; then the aforementioned equations can be combined

to form the differential equations given in Equation 4.52.

D′ = 1−D (4.51)


L di

dt = D(v1− v2)− iL (Rdson +RLP)+D′ (−v2)

CH
dv1
dt =−D

(
iL + v1−VH

R1

)
−D′

(
v1−VH

R1

)
CL

dv2
dt = iL− v2−VL

R2

(4.52)
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Now by replacing D′ with Equation 4.51 the like terms in Equation 4.52 can be

combined. This allows the differential equations to be written in a general form with

respect to the initial definition of the duty ratio given in Equation 4.46. The transfer of

energy during either state of the duty ratio can now be assessed with Equation 4.53.


L di

dt = Dv1− v2− iL (Rdson +RLP)

CH
dv1
dt =−DiL− v1−VH

R1

CL
dv2
dt = iL− v2−VL

R2

(4.53)

4.4 DC-Link with 3-Phase Pulse-width Modulation Inverter

The purpose of the 3-phase PWM inverter is to convert energy from the DC-Link

into 3-phase power suitable for driving the motor. The 3-phase PWM inverter, shown in

Figure 4.14 uses alternating transistor pairs in a six-step switching strategy to draw en-

ergy from the DC-link and generate an AC voltage. The output frequency of the voltage

is dependent upon the switching frequency of the transistors; while the magnitude of

the voltage is dependent on the voltage of the DC source[29]. The DC source is chosen

so that it can meet the max load demand and max response time demanded due to the

switching frequency of the transistors. The power demand seen by the DC source from

one complete switching cycle is the equivalent of the power load demand of the motor

plus losses.

Typically the voltage level of a DC-link is kept within a particular range that is

suitable for powering devices attached to it. For the FPHV this range is determined

by the operating voltage of the motor and control strategy used to operate it. This

study will consider a DC-link in which the voltage is kept constant at a specified volt-

age. Given this assumption, power being supplied to the motor is dependent upon the

switching frequency of the transistors. This must be taken into consideration when siz-

ing the capacitor that will serve as the DC-link. Ideally, the capacitor should be able



31

FIGURE 4.14: A 3-phase PWM inverter.

to supply max power to the motor which occurs at a certain frequency. The electrical

frequency that the transistors must operate is proportional to the number of poles and

the synchronous speed of the motor. Using Equation 4.54 the operating frequency of

the transistors can be determined for any give synchronous speed[29, 33].

f =
poles∗ωs

4π
(4.54)

The instantaneous power supplied or absorbed by a capacitor is given by Equa-

tion 4.55. In order to solve for the capacitor, the derivative of the voltage across the

capacitor is written as the empirical differences between known values of voltage and

time. The power supplied is considered to be at maximum value along with the charge

level of the capacitor. Equation 4.56 now represents the relationship between the trans-

fer of energy and the size of the capacitor.

P(t) =Cv(t)
dv
dt

(4.55)

C =
Pmax∆t
vmax∆v

(4.56)

Equation 4.56 can be rewritten with the desired values ∆t and ∆v which represent

the maximum voltage level of the capacitor and the electrical frequency at which max-
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imum power is drawn from the DC-link. The maximum power is adjusted by a factor

µ to account for power losses which occur due to switching and motor slip.

C =
µPmax

v2
max fPmax

(4.57)

4.5 FPHV Power Flow

With any electrical system understanding how power flows throughout that sys-

tem is of great importance. If the system’s generators can not meet the energy needs of

various power drawing elements on time, then the system will fail. With respect to the

FPHV the DC-link must always be filled with enough charge to meet the load demands

of the motor; else the motor will not apply torque to the tires when needed. Power flow

within the FPHV can be separated into two phases: charging and discharging of the

DC-Link. The charging phase entails the FPG and energy storage unit supplying en-

ergy to the DC-Link; while the discharging phase consists of the electric motor drawing

power from the DC-link. Though these two phases occur simultaneously, they will be

evaluated individually and combined once each phase has been modeled.

The FPG and the energy storage element both serve as energy sources for the

DC-Link; however the rate at which they can deliver energy varies considerably. The

FPG can be seen a sinusoidal of relatively slow response time when compared to the

capabilities of an ultra-capacitor or battery. As such, the FPG serves as a continuous

source that over time needs assistance from the fast responding energy storage.

Based on the intended usage of the energy storage element the charging of the

DC-link will be evaluated using only the FPG at this time. Assuming the capacitance

of the DC-Link is known, a resistance, R, can be chosen to achieve a desired output

voltage within a given time period. By applying the Laplace transform to Equations

4.58 and 4.59 an equation for the output voltage can be derived[34]. Given the circuit

shown in Figure 4.15, it is clear that the Laplace model shown in Equation 4.60 should
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FIGURE 4.15: The single-phase full wave rectifier attached to DC-Link.

only be evaluated up until Vo reaches its peak voltage. Past that point the diodes will

become reverse bias and no longer feed current to the capacitor.

Vs (t) =Vm sin(ωt) (4.58)

dvc (t)
dt

+
vc (t)
RC

=
Vs (t)
RC

(4.59)

Vo (s) =
1

RCVmω(
s+ 1

RC

)
(s2 +ω2)

(4.60)

With the parameters for the DC-Link chosen, Equation 4.59 can be revisited

in order to include the current supplied by the energy storage element. The current,

ies, is restricted to the limits and capabilities of the energy storage element supplying

it; therefore care must be taken to assure that the energy storage is sized correctly to

effectively assist the FPG in meeting the load demand.

dvc (t)
dt

=
Vs (t)
RC
− vc (t)

RC
+

iES (t)
C

(4.61)
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Discharging the DC-link is dependent on the load demand of the motor. Assum-

ing that the control strategy for the motor is based on maintaining a relatively constant

voltage at the DC-link, the change of voltage in the capacitor can be determined with

Equation 4.62. The current, io, is obtained by dividing the power load demand by the

constant DC-link voltage. The parameter, µ , takes into account the efficiency of the

motor when drawing power.

dvc (t)
dt

=− iLoad (t)
C

(4.62)

iLoad (t) =
µPLoad (t)

VDC
(4.63)

Using Equations 4.61 and 4.62 a general equation for the transfer of energy

within the DC-link can be written. Essentially the transfer of energy across the link

is the sum of the first-order differential equations of the two phases.

dvc (t)
dt

=
Vs (t)
RC
− vc (t)

RC
+

iES (t)
C
− iLoad (t)

C
(4.64)
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Chapter 5

System Design for Energy Optimization

5.1 System Overview

Utilizing the information covered in the previous chapters a system design for

an FPHV can be assembled. In order to design the system assumptions must be made

about the vehicle concerning mass and performance. For this study the 2014 Toyota

Prius V and the 2013 Volkswagen Jetta SEL have been chosen as base models to derive

vehicle specifications from. They are highly recognizable compact vehicles currently

available on the consumer market. Table 5.2 shows the specifications of the vehicles

chosen[35, 36].

TABLE 5.2: Vehicle Specifications

2014 Toyota Prius V 2013 VW Jetta SEL
Fuel Capacity (gal) 11.9 14.5
Curb Weight (lbs) 3274 3070
Wheel Diameter (in) 16 16
EPA City (mpg) 44 25
EPA Highway (mpg) 40 36
Horsepower (hp@maxrpm) 98@5200 170@5000
Torque (lb− f t.@maxrpm) 105@4000 184@1500
Drag Coefficient 0.25 0.30
Payload (lbs) 915 1067

With the test vehicles established focus will be placed towards developing an

FPG based electrical power system that will propel each vehicle. An AC induction

motor is selected to serve as the single propulsion engine. The AC-150, shown in
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TABLE 5.3: Electric Motor Specifications

AC-150
Motor Type AC Induction
Poles 4
Peak Power (kW ) 150
Continuous Power (kW ) 40
Max Speed (rpm) 13000
Max Torque (Nm) 225
Mass (kg) 80
Road Load Efficiency .86

FIGURE 5.16: The AC Propulsion AC-150 electric motor.

Figure 5.16, developed by AC Propulsion, Inc. is capable of delivering approximately

201 horsepower at 8000 rpm[37]. Table 5.3 displays the technical specifications for the

AC-150, which exceeds the engine specifications for the Prius and fall slightly short of

the engine specifications for the Jetta.

5.1.1 Driving Load Demand

In order to assure that the chosen motor can provide the necessary power, poten-

tial power load demands will be calculated based on the EPA driving profiles discussed

in Chapter . The force applied by rolling friction and air drag the power load demand

can be estimated with Equation 5.65. The rolling friction force, Fr, and the air drag

force, Fa , represent the forces that must be overcome while moving the vehicle. The
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total force needed to move the vehicle includes the sum of the aforementioned external

forces in addition to the force that would move the vehicle absent those external forces.

If it is assumed that the vehicle is being driven on a flat surface then forward propulsion

is only caused when the motor applies torque to the wheels; increasing the vehicle’s ac-

celeration. This assumption leads to the conclusion that power is only demanded when

the acceleration of the vehicle is positive.

PLoad (t) =


(
Fr (t)+Fa (t)+mdv

dt

)
v(t) ; dv

dt > 0

0; dv
dt ≤ 0

(5.65)

Figures 5.17 and 5.18 illustrate the theoretical power load demand needed to

propel the Prius and the Jetta in an urban environment. The EPA FTP-75 and US06

were used to simulate both moderate and aggressive driving for each vehicle. Notice

the peak power for each graph does not exceed 86% of the peak power of the electric

motor. The AC-150 should be suitable for providing propulsion for each of the vehicles.

With the motor chosen, the capacitance at the DC-Link can be sized based on the

power specifications shown in Table 5.3 and the efficiency map of the AC-150 shown

in Figure 5.19[37]. The efficiency map shows that the peak power for the electric motor

occurs at 8000rpm. Using Equation 4.57, the size of the capacitor for the system can

be determined; assuming that the operating voltage of the DC-link is a constant 336V .

5.2 Power Generation

When determining the power generation units for the FPHV the focus is placed

on meeting the power demands to move the vehicle; while minimizing the impact the

stored energy being carried has on the system. Pempek’s Free Piston Power Pack (FP3)

will be modeled as the FPG for the test vehicles. The FP3 consists of four 25kW free

piston modules in pack operating at 30Hz with a peak power of 100kW [38]. Table 5.4

lists the specifications for the individual modules.



38

(A) The FTP-75 power load for a Toyota Prius.

(B) The US06 power load for a Toyota Prius.

FIGURE 5.17: The EPA test based power load demands for the Toyota Prius.
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(A) The FTP-75 power load for a VW Jetta.

(B) The US06 power load for a VW Jetta.

FIGURE 5.18: The EPA test based power load demands for the VW Jetta.
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FIGURE 5.19: The efficiency map of the AC-150.

TABLE 5.4: Free Piston Generator Specifications

25 kW FPG
Bore (m) .066
Stoke Length (m) .103
Compression Ratio 9.8
Mass (kg) 5.2
Material Aluminum
Operating Frequency (Hz) 30

Using the equations discussed in Chapter 2.3, the movement of an individual

module can be described with a discrete state space model. Setting the resistive load to

2.4404Ω and the back-electromagnetic field constant to 75 yields a voltage waveform

with a peak value of 350V when operating around 30Hz. Figure 5.20 illustrates the

simulated individual free-piston module. With the capacitance and voltage level of

the DC-link known and the peak voltage of the FPG chosen, a circuit representing the

charging of the DC-link from the FPG’s perspective can be designed using Equation

4.60. The FPG can loosely be modeled as a sinusoidal voltage source with a magnitude

of 350V operating at a frequency of 30Hz.
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(A) The FPG voltage waveform. (B) The piston velocity as a function of position.

FIGURE 5.20: The simulation of a 25 kW free piston generator.

Vs (t) = 350sin(60πt) (5.66)

Vo (s) =
21000ω

RC(
s+ 1

RC

)(
s2 +(60π)2

) (5.67)

This study will be assume that the FPG is capable of delivering 150kW at a

frequency of 30Hz. Now a resistance for the DC-link can be determined that will place

the voltage level of the DC-link at 336V when the FPG reaches its peak voltage. Figure

5.21 illustrates the voltage across the DC-Link given the resistance is .475Ω and the

capacitance is 3.3mF .

5.2.1 Energy Storage

Though the scaled FPG can supply 150kW to the DC-link, the rate at which it

supplies energy is much slower than the potential rate of energy consumption from

the electric motor. This is the primary reason an additional energy unit capable of

fast response is needed. This study will consider energy packs built using the following

cells: Panasonic’s NC18650 lithium ion battery and Maxwell Technologies BCAP3000

ultra-capacitor. Table 5.5 lists the characteristics for a single cell of each energy storage
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FIGURE 5.21: The impulse response for the voltage across the DC-link capacitor.

TABLE 5.5: Energy Storage Element Specifications

NC18650 BCAP3000
Storage Type Lithium Ion Battery Ultra-capacitor
Energy Storage Capacity (Wh) 10.44 3.04
Max Continuous Current (A) .55 210
Rated Voltage (V ) 3.6 2.7
Mass (g) 45 510

element[39, 40]. The energy pack will consist of only one type of cell. The size of the

pack will be addressed during the energy optimization of the FPHV.

5.3 Energy Optimization for System Design

Optimization of the FPHV energy system revolves around correctly sizing the

energy stored on board relative to the amount of mass it adds such that the FPHV can

maximize its travel distance while minimizing fuel consumption. Since the energy

system in the FPHV is co-dependent on receiving power from a hydrocarbon based

source and the energy storage element optimization must occur simultaneously over
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TABLE 5.6: Hydrocarbon Fuel Characteristics

Gasoline Diesel Methanol Ethanol
Molecular Mass (g) 114.23 170.34 32.04 46.07
Density (gL−1) 720 820 790 789
Heat of Combustion (KJ mol−1) 5470.10 8086.50 726 1366.70
Energy Density (Whg−1) 13.30 13.18 6.29 8.24

both sources. Table 5.6 lists the characteristics of the hydrocarbon fuels that will power

the FPG[41]. In order to relate hydrocarbon fuels to the energy storage elements the

energy density of the fuels are written in terms of kilowatt-hours per gram. Through the

fuel’s energy density any amount of fuel the vehicle carries can be represented in terms

of stored energy with the same units as energy within the energy storage elements.

Furthermore this transformation will prove useful when evaluating the fitness of the

system.

5.3.1 Simulated Annealing

The FPHV will be optimized using simulated annealing. Simulated annealing is

a local search optimization technique. The technique is based off of physical annealing

with solids, in which a crystalline solid is heated and then cooled very slowly until it

achieves a crystal lattice configuration that is free of crystal defects[42]. When per-

formed properly the resulting crystal is typically assessed to be of higher quality than

the original. Using heuristics and a structured heating and cooling schedule this process

has been replicated mathematically with great success; particularly when it comes to

solving optimization problems of a discrete nature[43, 44].

Applying simulated annealing to solve an optimization problem requires that the

heating, cooling, and objective function be tailored for that particular problem. As a

result determining the heating and cooling schedules along with starting and stopping

temperatures can be difficult, resulting in some trial and error until suitable parameters
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are found. Even though parameters are unique to the problem being solved the basic

methodology for simulated annealing does not change. Simulated annealing uses rapid

heating and slow cooling processes to comb an input space and find an optimal solution

for a given objective. In order to begin the process a starting point within the input

space is chosen for the initial position of the search parameter, ~h. The starting point

represents a configuration of the parameters in the optimization problem. The solution

parameter, ~S is also initialized to the same position as the search parameter.

~h = initial state

~S =~h
(5.68)

After initialization, the search parameter is altered by a step parameter, ∆h, as

shown in Equation 5.69. The adjusted parameter, ~hnew, is a potential solution for

the problem that now must be assessed by the objective function, F(x), and evaluated

against the solution parameter. It is important to note that~hnew must lie within the input

space; if it does not it should be discarded. The step parameter should be specifically

tailored for the input space that is to be searched.

hnew = hold +∆h (5.69)

Equation 5.70 evaluates the potential new solution and the chosen solution parameter.

If the difference, ρ, is less than zero, then hnew, is set as the new solution; assuming the

overall goal is to minimize the objective function.

ρ = F(hnew)−F(S) (5.70)

{
~S =~hnew; ρ < 0 (5.71)

If the suggested solution given by the search parameter is not accepted it is passed

through an acceptance probability which is based on the temperature, T , of the system.
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If a randomly generated number between zero and one is less than P(ρ,T ); then hnew

is set as the new solution. This heuristic serves to help the process break out of any

local extrema. The Boltzmann constant, k, is unique to the relationship under evalu-

ation and determines how active the acceptance probability becomes at high and low

temperatures[42].

α ∈ [0,1] (5.72)

P(ρ,T ) = exp
(
−ρ

kT

)
(5.73)


~S =~hnew; α < P(ρ,T )

~S =~S; otherwise
(5.74)

Once this step is completed the system is evaluated to see whether it has reached

equilibrium. Equilibrium for the process is defined as maintaining a particular solution

over a predetermined length of trial solutions while in the temperature cooling cycle of

the process. It can also be defined as a point where the system idles with a low level

of activity or acceptance while in the cooling phase. This type of equilibrium can be

seen in Figure 5.22. When equilibrium is achieved the position of solution parameter

is considered the final solution to the objective[45].

The acceptance probability is driven entirely by the rapid heating and slow cool-

ing of the process. High temperatures cause it to accept solutions at a feverishly high

rate; while low temperatures have the opposite effect. In essence the high volume of

acceptances can be described as boiling the solution. Once the boiling point has been

reached, a slow cool down of the system can begin by decreasing the temperature, T ,

until the system freezes. An initial temperature is chosen as a starting point for the heat

process which will increase and decrease according the heating schedule chosen for the

given problem. The heating and cooling schedules are defined with individual heating
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FIGURE 5.22: The convergence of a simulated annealing algorithm towards a solution.

and cooling rates and a common temperature step, ∆T . The temperature of the system

is adjusted after a pre-determined number of possible solutions has been evaluated.

T (n+1) = T (n)+ rheat ∗∆T (5.75)

T (n+1) = T (n)− rcool ∗∆T (5.76)

The boiling point and freeze point of the system can be described using batch

processing in which the activity or rate of acceptance is evaluated or a given number

of trials to determine the system state[46]. By doing this one can also set reasonable

boiling and freezing points that are achievable with respect to the problem.

5.3.2 Application of Simulated Annealing

Equation 5.65 has shown that a change in mass will directly affect the power

demand load. Since the amounts of stored energy can also be related in terms of mass

it is reasonable to define the search parameter,~h, in terms of mass; where m f uel is the
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mass of the fuel and mES is the mass of the energy storage unit.

~h =

 m f uel

mES

 (5.77)

The mass of the vehicle must be adjusted to reflect its new configuration. This

entails mathematically removing the current propulsion system and installing the FPHV

propulsion system by adjusting the mass of the vehicle. Equation 5.78 calculates the

adjusted mass of the vehicle. The mass of the vehicle at curb weight, mcurb, represents

the vehicle’s mass with all driving fluids and components intact for driving. By remov-

ing the estimated mass for the internal combustion engine, mice, and the original fuel

tank, mtank, and then adding the mass of the FPHV system and the fuels from Equation

5.77, an estimate for the mass of the FPHV can be made.

mcar = mcurb−mice−mtank +m f phvsys +m f uel +mES (5.78)

This study estimates that the internal combustion engine in both vehicles weighs

250 pounds with the Prius electric motor adding another 125 pounds to its curb weight,

respectively. The mass of the original fuel tank can be determined from the specifica-

tions given in Tables 5.2 and 5.6.

5.3.3 Fitness Function Development

In order to evaluate the system for energy efficiency, the contributions that the

FPG and the energy storage individually make towards supplying power to meet load

demands must be assessed. The energy contributed by each element can be determined

through the following steps. First, given a driving schedule and a vehicle whose mass

has been adjusted to reflect the energy stored on-board, a schedule representing the

power load demand of the vehicle while performing the schedule can be generated
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using Equation 5.65. Using the assumption that the DC-link should maintain a constant

operation voltage of 336V , the load demand can be written as current using Equation

4.63. Since the efficiency of the motor at load is 86%, the power demand across the

DC-link is increased by a factor of 1.14.

iLoad (t) =
1.14PLoad (t)

336
(5.79)

With the load current defined a discrete state space model can be written to rep-

resent energy transfer within the system using Equation 4.64. Now since the target

voltage level of the DC-link is known an inverse problem can be set up using Euler’s

formula. It should be noted that the FPG is considered to be continuously running; thus

Equation 5.80 holds for energy transferred to the DC-link from the FPG, as long as

its voltage level is greater than the DC-link. Therefore, the value of Equation 5.80 is

known and the power delivered by the FPG can be determined. The energy provided

by the energy storage, which will balance the power to maintain the DC=link voltage

at a given instance in time is calculated in Equation 5.81.

dvcFPG (t)
dt

=
Vs (t)
RC
− vc (t)

RC
(5.80)

dvcES (t)
dt

=
iLoad (t)

C
− dvcFPG (t)

dt
− 336

∆t
(5.81)

Using the voltage rates, power supplied by each of the energy sources can be determined

with Equations 5.82 and 5.83 where C is the capacitance of the DC-link.

PFPG (t) =Cvc (t)
dvcFPG (t)

dt
(5.82)

PES (t) =Cvc (t)
dvcES (t)

dt
(5.83)
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Once the power supplied by each generator has been found, the energy supplied

from each generator can be determined with Equation 5.84[25]. With the contribution

of each energy source known, a ratio can be generated that represents how many times

the generators can supply each contribution given the total amount of stored energy

on-board. The amount fuel available in the source is adjusted by a factor, η , in or-

der to account for the source’s efficiency during the conversion process. Studies have

shown that FPGs similar to the size being considered can reach up to 44% in energy

convergence efficiency[47].

E = ∑P(ti)∆ti (5.84)

ε =
ηESourceTotal

EDrive
(5.85)

Once the ratios have been found the reciprocal of the smallest ratio is chosen

as the system fitness grade as shown in Equation 5.86. The smallest ratio is chosen

do to the co-dependency of the generation units when supplying power. If one source

is depleted then the FPHV will not function. Based on this grading system, solutions

which perform well will yield grades closer to zero.

α =
1

min(εFPG,εES)
(5.86)

The current fitness function allows for the evaluation of only a single driving

schedule. In order to perform comprehensive optimization, this study will utilize the

FTP-75, HWFET, and the US06 in a weighted fitness function. Equation 5.87 displays

the new composite grade that will be used to evaluate the system across the three driving

schedules. The best solutions will still generate low scores when being evaluated. The

overall goal of the optimization will be to minimize the grade of the solution across the

three driving schedules.
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A = .4αFT P−75 + .4αHWFET + .2αUS06 (5.87)

5.3.4 System Constraints

Though the optimization algorithm has been developed there are some constraints

that must be adhere to when evaluating solutions for the system. First, the entire mass

of stored energy must remain under 205kg. This is to ensure that optimization doesn’t

maximize the energy system at the complete expense of payload. Secondly, the cur-

rent sent by the energy storage elements can not exceed the maximum current for the

pack. Traditionally, the cells in the power pack are structured to meet specific current,

voltage, and power requirements based on the energy that must be delivered; because

this study is evaluating a variety of possible configurations, maximum current will have

a generalized definition. Equation 5.88 represents the generalization of max current

for this study in which the number of cells, N, multiplied by the maximum continuous

current of an individual cell yields the maximum current for the pack.

imax = Nimaxcont (5.88)

Current supplied from the energy storage at any given time is given by Equation 5.89.

Solutions that fail to stay under the maximum current are discarded.

iES (t) =C
dvcES (t)

dt
(5.89)

5.3.5 Processing Constraints

The computationally expensive nature of simulated annealing requires that some

sacrifices be made concerning complex modeling. For this reason once a voltage wave-
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FIGURE 5.23: The Fourier series model and the discrete state space model of a 25 kW
free piston generator.

form was generated using the FPG model described in Chapter 2.3, a Fourier series

model of the waveform was generated in order to represent the FPG voltage. The

Fourier series model initially contained five harmonics; but was expanded to use five

odd harmonics when it was observed that the even harmonics were relatively small in

comparison to the odd harmonics. Equation 5.90 represents a Fourier series model. In

order to determine the coefficients for the model a Fourier matrix is developed for the

time length of the voltage waveform with the chosen harmonics.

f (t) = a0 +
k

∑
n=0

a2n+1 cosnω0t +b2n+1 sinnω0t (5.90)

F =


1 cosω0t1 sinω0t1 · · · sin9ω0t1 cos9ω0t1
...

...
... . . . ...

...

1 cosω0tn sinω0tn · · · sin9ω0tn cos9ω0tn

 (5.91)
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Using the Fourier matrix, Equation 5.92 is established. The coefficients can now

be solved for by performing a pseudo-inverse on Equation 5.92 yielding Equation 5.93.

The Fourier series model, shown in Figure 5.23, can now represent the FPG voltage

waveform at any given instance in time.

VFPG (t) = F(t)∗w (5.92)

w = (FᵀF)−1 FᵀVFPG (5.93)
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Chapter 6

Results

6.1 Experimental Setup

The optimization described in Chapter 4.5 was performed using simulated an-

nealing. A batch mode configuration was used when evaluating the state of the opti-

mization algorithm before each temperature update. Each epoch in batch mode con-

sisted of twenty-five potential solutions. The algorithm was deemed to be in a boiling

state if the acceptance rate of solutions across an epoch was greater than 75% and in

a freezing state if the rate was less than 20%. A total of sixteen configurations were

passed through the simulated annealing for optimization. Each representing a unique

combination from the vehicles, energy storage units, and hydrocarbon fuels given in

Chapter 4.5. It should be noted that the optimization process only considers systems

which utilize both power generators.

6.2 Energy Optimization Results

Tables 6.7 and 6.10 present the solutions obtained for all sixteen configurations.

The first thing noticed from the solutions is that the mass chosen for the energy storage

pack remains relatively consistent for both types of vehicles. This suggests that the

energy contribution from the lithium ion battery might be uniform for vehicles of this

particular size and fluctuations in the mass of hydrocarbon fuels have no bearing upon

it.
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TABLE 6.7: Stored Energy Solutions for FPHV with a Lithium Ion Battery

Fuel Mass (kg ) Battery Mass (kg )
Gasoline 49.0 91.0
Diesel 56.2 90.8
Methanol 53.7 91.6
Ethanol 86.6 92.9

(A) 2013 VW Jetta

Fuel Mass (kg) Battery Mass (kg)
Gasoline 87.2 91.2
Diesel 70.6 91.4
Methanol 60.6 91.6
Ethanol 88.0 92.7

(B) 2014 Toyota Prius

Based on this observation and how the hydrocarbon fuel levels fluctuate for the

lithium ion vehicles, its probable that the lithium ion battery pack is serving as the

primary generator in the vehicle. A quick look at the power supplied for one of the

solutions utilizing a lithium ion battery confirms our theory. Figure 6.24 shows a com-

parison of the power supplied by the FPG and power supplied by the lithium battery.

The magnitude of power delivered from the battery is four times greater than that of

the FPG confirming that it is supplying the majority of energy for propulsion. Table

6.8 displays the average energy supplied from each generator across all configurations

utilizing the lithium ion battery. The average energy supplied by the lithium battery is

about four times greater than that of the energy supplied by the FPG; corroborating the

previous observations. The table also shows an increase in the power supplied by the

FPG across the FTP-75 driving schedule.
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(A) FPG using gasoline.

(B) Lithium ion battery.

FIGURE 6.24: Power supplied by generators for 2013 Jetta FPHV using lithium ion

battery and gasoline as energy sources.
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TABLE 6.8: Average Energy Supplied by Generator for FPHV with a Lithium Ion
Battery

FPG (kWh ) Battery (kWh )
FTP-75 1.53 4.45
HWYFET 1.20 4.45
US06 0.97 3.55

(A) 2014 Toyota Prius

FPG (kWh) Battery (kWh)
FTP-75 1.59 4.73
HWYFET 1.31 4.93
US06 1.06 3.80

(B) 2013 VW Jetta

FTP-75 contains the slowest speeds of the driving schedule. Given the data it

is suspected that the lithium ion battery has defaulted to serving as the primary power

generation source do to its ability to quickly respond to the power load demand. The

decrease of energy supplied by the FPG at high speeds reinforces this theory given that

high speeds would result in the motor pulling current at a higher frequency.

With the battery acting as the primary generator it will also serve as the lim-

iting factor concerning functionality for the vehicle. Table 6.9 relays the theoretical

travel distance for each vehicle given the particular driving schedule profile. The travel

distance is determined by taking the limiting energy ratio from Equation 5.85 and mul-

tiplying it by the distance traveled within the driving schedule.

Disttravel = min(εFPG,εES)∗Distschedule (6.94)

The system’s driving distance seems to typically fall between 40 and 50 miles for both

vehicles. Seeing as the FPHV are carrying more hydrocarbon fuel than their ICE coun-

terparts the conclusion can be made that the benefits of carrying the hydrocarbon fuel

are not being fully realized.

Table 6.10 displays the solutions obtained for the FPHVs equipped with ultra-
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TABLE 6.9: Travel Distance for FPHV with a Lithium Ion Battery

FTP-75 (mi ) HWYFET (mi ) US06 (mi )
Gasoline 52.2 48.5 47.5
Diesel 52.6 48.8 47.7
Methanol 52.9 49.3 48.3
Ethanol 52.6 48.8 47.7

(A) 2014 Toyota Prius

FTP-75 (mi ) HWYFET (mi ) US06 (mi )
Gasoline 49.12 43.91 44.37
Diesel 48.90 43.81 44.21
Methanol 49.23 44.11 44.61
Ethanol 50.45 44.93 45.33

(B) 2013 VW Jetta

TABLE 6.10: Stored Energy Solutions for FPHV with an Ultra-capacitor

Fuel Mass (kg) Capacitor Mass (kg)
Gasoline 65.5 93.9
Diesel 87.0 81.0
Methanol 87.0 81.0
Ethanol 69.7 71.2

(A) 2013 VW Jetta

Fuel Mass (kg) Capacitor Mass (kg )
Gasoline 44.3 81.9
Diesel 44.5 94.5
Methanol 66.7 64.2
Ethanol 86.2 86.6

(B) 2014 Toyota Prius V

capacitors. Based on observations from the vehicles using lithium ion batteries it is

suspected that the FPHVs with ultra-capacitors would follow a similar pattern where

the energy storage unit serves as the primary energy source. This is certainly the case

as data will soon elude to this; however, one should take notice at the mass totals given

for the ultra-capacitors. Considering the energy density of the ultra-capacitor relative to

that of the lithium battery, the values shown in Table 6.10 for energy storage pack mass
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TABLE 6.11: Travel Distance for FPHV with an Ultra-capacitor

FTP-75 (mi) HWYFET (mi) US06 (mi)
Gasoline 1.32 1.12 1.12
Diesel 1.10 0.92 0.96
Methanol 1.10 0.92 0.96
Ethanol 0.88 0.82 0.88

(A) 2013 VW Jetta

FTP-75 (mi) HWYFET (mi) US06 (mi)
Gasoline 1.21 1.12 1.04
Diesel 1.32 1.23 1.20
Methanol 0.88 0.82 0.88
Ethanol 1.21 1.12 1.12

(B) 2014 Toyota Prius

suggest that current ultra-capacitors might not be capable of performing as a primary

power source for FPHVs.

Table 6.11 confirms that ultra-capacitors are not yet up to the task for being a

primary power source in compact vehicles. A majority of the projected travel distances

are only slightly over one mile; with some falling much shorter than that. None of the

configurations are capable of completing their respective driving schedules; as a result

there seem to be no viable ultra-capacitor solutions for a FPHV based on a compact

vehicle design using given the constraints that were placed upon the system in this

study’s optimization process.

Given the results shown in Tables 6.8 and 6.9 the viable solutions obtained during

the optimization process where re-evaluated with the operating frequency of the FPG

adjusted to 60Hz and 120Hz. This was done in order to observe how an increase in

generator frequency for the FPG would affect the energy balance and performance of

the system. Tables 6.12 and 6.13 display the average energy supplied by each energy

source across the driving schedules.
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TABLE 6.12: Average Energy Supplied by Generators for FPHV with a Lithium Ion
Battery and FPG Operating at 60Hz

FPG (kWh) Battery (kWh)
FTP-75 2.70 2.39
HWYFET 2.12 2.52
US06 1.88 2.20

(A) 2014 Toyota Prius

FPG (kWh) Battery (kWh)
FTP-75 2.79 2.60
HWYFET 2.39 2.89
US06 2.18 2.52

(B) 2013 VW Jetta

TABLE 6.13: Average Energy Supplied by Generators for FPHV with a Lithium Ion
Battery and FPG Operating at 120Hz

FPG (kWh) Battery (kWh)
FTP-75 3.52 1.54
HWYFET 2.17 1.45
US06 1.90 1.31

(A) 2014 Toyota Prius

FPG (kWh) Battery (kWh)
FTP-75 3.63 1.65
HWYFET 2.40 1.68
US06 2.14 1.54

(B) 2013 VW Jetta

When the operating frequency of the FPG is set to 60Hz the energy consump-

tion is almost evenly distributed across both sources; however setting the frequency to

120Hz results in the FPG taking a majority share of the load and becoming the primary

generator. The change in FPG operating frequency has had a noticeable effect on the

energy supplied by each generation source. This effect also extends to the overall per-

formance of the vehicle. Tables 6.14 and 6.15 display the theoretical travel distances

for FPHVs with free-piston generators operating at 60Hz and 120Hz. The FPHVs us-
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TABLE 6.14: Travel Distance for FPHV with a Lithium Ion Battery and FPG Operat-
ing at 60Hz

FTP-75 (mi ) HWYFET (mi ) US06 (mi )
Gasoline 97.3 86.8 76.9
Diesel 97.5 87.0 77.1
Methanol 40.4 47.6 41.8
Ethanol 60.9 71.8 63.2

(A) 2014 Toyota Prius

FTP-75 (mi ) HWYFET (mi ) US06 (mi )
Gasoline 89.6 74.7 67.6
Diesel 89.4 74.5 67.4
Methanol 53.9 58.5 49.9
Ethanol 50.3 54.5 46.5

(B) 2013 VW Jetta

ing gasoline and diesel have doubled and tripled their travel distance across the driving

schedules when operating at 60Hz and 120Hz, respectively. The travel distance of the

FPHVs using methanol and ethanol as a energy sources remained relatively unchanged

at 60Hz; but decreased at 120Hz. The drastic changes in travel distance are likely at-

tributed to the fuel density of the hydrocarbon fuel. Both gasoline and diesel have a

considerably higher energy density when compared to methanol and ethanol. When

the operating frequency of the FPG was increased the high energy density of the fuel

became an important factor in determine overall system performance.
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TABLE 6.15: Travel Distance for FPHV with a Lithium Ion Battery and FPG Operat-
ing at 120Hz

FTP-75 (mi ) HWYFET (mi ) US06 (mi )
Gasoline 151.6 149.6 129.4
Diesel 151.9 150.0 129.6
Methanol 31.1 46.4 41.8
Ethanol 47.0 70.2 63.2

(A) 2014 Toyota Prius

FTP-75 (mi ) HWYFET (mi ) US06 (mi )
Gasoline 137.1 127.4 112.7
Diesel 136.7 127.1 112.5
Methanol 18.4 25.7 22.5
Ethanol 17.2 24.0 20.9

(B) 2013 VW Jetta
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

The initial goal of the study looked to deliver an optimized free-piston hybrid

vehicle that could take advantage of today’s hydrocarbon infrastructure, along with

the emerging electric vehicle industry, and serve as a transitioning technology between

the two. Though the study was able to produce a solution for the FPHVs containing

lithium ion based batteries, some of the glaring short-comings of today’s technology

were insurmountable. The energy density of the energy storage unit and the frequency

of the power generated by the FPG were the two factors that had significant impacts

during the optimization process for the FPHV.

The energy density of the ultra-capacitor is the factor that currently makes it a

poor choice for energy storage in small passenger vehicles. The ultra-capacitors weight

relative to that of the car placed it out of range for a viable solution. Until the ultra-

capacitors energy density is at least comparable to the current lithium battery it can

not serve as a viable energy storage solution within a compact vehicle. This problem

also points out the main advantage hydrocarbon fuels and vehicles using internal com-

bustion engines have over series hybrid and electric vehicles. Even though the energy

conversion efficiency for internal combustion engine is relatively low, its use of hydro-

carbons fuels as an energy source maintains the ICE’s superior status amongst viable

solutions for vehicle propulsion. This is due to the energy densities of the hydrocarbons

fuels greatly exceeding those of all electrical energy sources currently available.
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The second factor affecting the FPHV deals with the frequency of the power

generated by the FPG. It was believed that the FPG would need some assistance from

the energy storage to propel the vehicle; however the amount of assistance that the FPG

needed was greatly underestimated. In order for it serve as an effective co-generation

source the frequency of power generation for the FPG must be increased. This study

has shown that when the FPG operates at low frequencies the FPHV becomes primarily

dependent upon the energy storage unit. In order to utilize the full benefits of the

hydrocarbon fuel it is carrying the FPG speed must be increased. Increasing the speed

of the FPG to 60Hz and 120Hz resulted in drastic improvements in the energy usage

concerning the energy storage and lengthened the vehicles travel distance; however care

must be take in choosing the hydrocarbon fuel source as the increased speed consumes

energy at a faster rate.

7.2 Future Work

The need for energy storage devices with greater energy density is a key area for

all power consuming devices. The storage device that is able to contain large quantities

of power relative to its mass would revolutionize the power industry and change the

world.

The operating frequency of the FPG might prove to be the more approachable

problem of the two mentioned. Motion control of the piston is a primary concern for

the FPG. The design of the system makes it difficult to control at high speeds. A closer

study of the physics surrounding the movement and power generation of the FPG could

lead to a design and control mechanism that could increase the performance of the FPG

to levels which may be more suitable for driving applications.
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Appendix 

Matlab Code for the Simulation and Optimization of a FPHV 
 
 
 
 
 

C:\Users\Kenneth Jones\Documents\Kens_Dissertation\code\FPG_SA\fpeg_25W_specs.m Monday,  November 11, 2013 5:59 AM 

fpeg.bore = .066; %m 
fpeg.stroke_length = .103; %m 
fpeg.compression_ratio = 9.8; 
fpeg.mass = 5.2; %kg 
fpeg.bore_area = pi * (fpeg.bore/2)^2; %(m^2) 
fpeg.vol_min = (fpeg.bore_area*fpeg.stroke_length)/... 
(fpeg.compression_ratio-1); 
fpeg.vol_max = fpeg.bore_area*fpeg.stroke_length - fpeg.vol_min; 
fpeg.density = 2707; %kg/m^3 Aluminum 
fpeg.heat_conduct_const = 0.896; %kJ/(kg*C) 
fpeg.thermal_C = fpeg.density * fpeg.heat_conduct_const; %kJ/C 
fpeg.thermal_R = 1/(75 * fpeg.bore * fpeg.stroke_length * 1.5); %C/W 
fpeg.back_emf_const = 75; %V/(mps) 
fpeg.internal_R = 2.4404; %ohms 12 
fpeg.thrust_const = 36.3; 
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function [state_vars,output_Vec,Output_Vec_Data,time,flag_complete]... 
= fpeg_dynamicsSA(fpeg,fuel,state_vars,output_Vec,fire_select,... 
fuel_mass,freq) 
%fpeg_dynamics Simulates the physics of an free piston generator 
%  Detailed explanation goes here 
% fpeg_specs 
% fpeg_state_vars_cal 
% fuel = fuel_select(1); 

 
%Fuel load parameters 
mole_mass = fuel.mass; 
Hc = fuel.Hc; 
hf = fuel.hf; 
hf_co = fuel.hf_co; hf_h2o 
= fuel.hf_h2o; density = 
fuel.density; pct_co = 
fuel.percent_co; pct_h2o = 
fuel.percent_h2o; 
react_rate_parms = fuel.react_rate_parms; 
a2f_ratio = fuel.air2fuel_ratio; 
concentration = fuel.conc; 
Cp = fuel.Cp; 
Cv = fuel.Cv; 
% burn_duration = fuel.burn_duration; 
burn_duration = 0.0006; 
wiebe_coeffs = fuel.wiebe_coeff; 
min_pressure = 1.01325e5; 
max_pressure = 1e7; 

 
%FPEG load parameters 
therm_C = fpeg.thermal_C; 
% therm_R = fpeg.thermal_R; 
bore = fpeg.bore; 
bore_area = fpeg.bore_area; 
fpeg_mass = fpeg.mass; 
emf_const = fpeg.back_emf_const; 
thrust_const = fpeg.thrust_const; 
vol_max = fpeg.vol_max; 
vol_min = fpeg.vol_min; 
gamma = Cp/Cv; 
flag_complete = 0; 
end_marker = 10000; 

 
 

%System Resistance 
system_R = fpeg.internal_R; 

 
%Initialize Sensor Outputs 
fuel_set = 0; 

 
% m_1 = 0; 
% m_2 = 0; 

 
m_1 = fuel_mass; 
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m_2 = fuel_mass; 

 
P_1 = output_Vec(1); 
V_1 = output_Vec(2); 
T_1 = output_Vec(3); 
Twall_1 = output_Vec(4); 

 
P_2 = output_Vec(5); 
V_2 = output_Vec(6); 
T_2 = output_Vec(7); 
Twall_2 = output_Vec(8); 

 
Volt = output_Vec(9); 
Current = output_Vec(10); 
x = output_Vec(11); 
dx = state_vars(12); 

 
dQ_1 = state_vars(1); 
dP_1 = state_vars(2); 
dV_1 = state_vars(3); 
dT_1 = state_vars(4); 
dTwall_1 = state_vars(5); 

 
dQ_2 = state_vars(6); 
dP_2 = state_vars(7); 
dV_2 = state_vars(8); 
dT_2 = state_vars(9); 
dTwall_2 = state_vars(10); 

 
dx2 = state_vars(11); 
dx = state_vars(12); 

 
Release_P1 = 0; 
Release_P2 = 0; 

 
beta_P1 = 1; 
beta_P2 = 1; 

 
mid_P1 = P_1 + (300e3 - P_1)/2; 
mid_P2 = P_2 + (300e3 - P_2)/2; 

 
beta_P1_flag = 1; 
beta_P2_flag = 1; 

 
decay_flag = 1; 
dx_zero_flag = 1; 

 
if (fire_select == 1) 
end_position = (.5*fpeg.stroke_length) - fpeg.vol_min/... 
fpeg.bore_area; 
init_Release_P1 = 0; 
%     init_Release_P2 = (1.01325e5 - output_Vec(5))/(2/freq); 
init_Release_P2 = 0; 
else 
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end_position = -(.5*fpeg.stroke_length) + fpeg.vol_min/... 
fpeg.bore_area; 
%  init_Release_P1 = (1.01325e5 - output_Vec(1))/(2/freq); 
init_Release_P1 = 0; 
init_Release_P2 = 0; 
end 

 
 

%Time 
delta_t = .0001; 
time = 0:delta_t:1; %seconds 

 
% %Desired Signal 
% freq = 30; 

% Desired = -cos (2*pi*freq*time); 
DW_1 = zeros(length(time),1); 
DW_2 = zeros(length(time),1); 
for n = 1:length(time) 
t = time(n); 

 
if ((t == 0) && (fire_select == 1) && (fuel_set == 0) )  
init_t = t; 
fuel_set = 1; 
m_1 = fuel_mass; 
m_2 = fuel_mass; 

 
xb = exp(-wiebe_coeffs(1)*((time(n:end) - init_t)/... 
burn_duration).^(wiebe_coeffs(2) + 1)); 
DW_1(n:length(time)-1) = diff(1-xb); 

 
elseif ((t == 0) && (fire_select == 2) && (fuel_set == 0)  ) 
init_t = t; 
fuel_set = 1; 
m_1 = fuel_mass; 
m_2 = fuel_mass; 

 
xb = exp(-wiebe_coeffs(1)*((time(n:end) - init_t)/... 
burn_duration).^(wiebe_coeffs(2) + 1)); 
DW_2(n:length(time)-1) = diff(1-xb); 
end 

 
%Chamber 1 Coefficients 
%  gamma(1) = Cp/Cv; 
h_wall(1) = heatcoeff_wall(V_1(n),P_1(n),T_1(n),dx(n)); 
h_1(n) = h_wall(1); 
cyl_area(1) = 2*pi*bore_area + 4*V_1(n)/bore; 

 
 

%Chamber 2 Coefficients 
%  gamma(2) = Cp/Cv; 
h_wall(2) = heatcoeff_wall(V_2(n),P_2(n),T_2(n),dx(n)); 
h_2(n) = h_wall(2); 
cyl_area(2) = 2*pi*bore_area + 4*V_2(n)/bore; 
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%NaN/imag check for wall coefficient 
if ((isnan(h_wall(1))) || (abs(imag(h_wall(1)))) > 0) 
if (n == 1) 
h_wall(1) = 1; 
else 
h_wall(1) = h_1(n-1); 
h_1(n) = h_wall(1); 
end 
end 

 
%NaN/imag check for wall coefficient 
if ((isnan(h_wall(2))) || (abs(imag(h_wall(2)))) > 0) 
if (n == 1) 
h_wall(2) = 1; 
else 
h_wall(2) = h_2(n-1); 
h_2(n) = h_wall(2); 
end 
end 

 
%Thermal REsistance of System 
therm_R(1) = 1/(V_1(n)*h_wall(1)*cyl_area(1)); 
therm_R(2) = 1/(V_2(n)*h_wall(2)*cyl_area(2)); 

 
 

%Pressure Release Valve 
if (fire_select == 1) 
end_position = (.5*fpeg.stroke_length) - ... 
fpeg.vol_min/fpeg.bore_area; 
Release_P1 = 0; 
Release_P2 = -gamma*P_2(n)/V_2(n)*state_vars(8) - init_Release_P2; 
else 
end_position = -(.5*fpeg.stroke_length) + ... 
fpeg.vol_min/fpeg.bore_area; 
Release_P1 = -gamma*P_1(n)/V_1(n)*state_vars(3) - init_Release_P1; 
Release_P2 = 0; 
end 

 
if beta_P1 < 0 
beta_P1 = 0; 
end 

 
if beta_P2 < 0 
beta_P2 = 0; 
end 

 
 

%First Chamber dynamic states (A) 
state_Mat = [0,0,0,0,0,0,0,0,0,0,0,0;...  %dQ_1 
(gamma - 1)/V_1(n), 0, -gamma*P_1(n)/V_1(n), .... 
0, 0, 0 ,0,0,0,0,0,0;...  %dP_1 
0,0,0,0,0,0,0,0,0,0,0,bore_area;... %dV_1 
1/(m_1*Cv),0,(1-gamma)*T_1(n)/V_1(n),0,0,... 
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0, 0, 0, 0 ,0,0,0;...        %dT_1 
0,0,0,0,0,0,0,0,0,0,0,0;...         %dTwall_1 

 
%Second Chamber dynamic states (A) 
0,0,0,0,0,0,0,0,0,0,0,0;...         %dQ_2 
0,0,0,0,0,(gamma - 1)/V_2(n), 0, ... 
-gamma*P_2(n)/V_2(n), 0, 0, 0,0;...        %dP_2 
0,0,0,0,0,0,0,0,0,0,0,-bore_area;...        %dV_2 
0,0,0,0,0,1/(m_2*Cv), 0,(1-gamma)*T_2(n)/V_2(n),   0, 0, 0,0;... 
0,0,0,0,0,0,0,0,0,0,0,0;...         %dTwall_2 

 
%Speed and acceleration of piston 
0,0,0,0,0,0,0,0,0,0,0,-(thrust_const*(emf_const/system_R))/... 
fpeg_mass;...        %dx2 
0,0,0,0,0,0,0,0,0,0,delta_t,1;... %dx 
]; 

 
input_Vec = [DW_1(n)*m_1*Hc/mole_mass  - V_1(n)*h_wall(1)... 
*cyl_area(1)*(T_1(n) - Cel_2_Kel(Twall_1(n)));...  %dQ_1 
-Release_P1;... %dP_1 
0;... 
0;... 
(h_wall(1)*cyl_area(1)*(T_1(n)  - Cel_2_Kel(Twall_1(n)))/... 
(therm_C * V_1(n)) - (Cel_2_Kel(Twall_1(n))/therm_R(1))/... 
(therm_C * V_1(n)));... %dTwall_1 
DW_2(n)*m_2*Hc/mole_mass - V_2(n)*h_wall(2)*cyl_area(2)... 
*(T_2(n) - Cel_2_Kel(Twall_2(n)));...  %dQ_2 
-Release_P2;...  %dP_2 
0;... 
0;... 
(h_wall(2)*cyl_area(2)*(T_2(n)  - Cel_2_Kel(Twall_2(n)))/... 
(therm_C * V_2(n)) - (Cel_2_Kel(Twall_2(n))/therm_R(2))/... 
(therm_C * V_2(n)));... %dTwall_2 
(P_1(n)- P_2(n))*bore_area/fpeg_mass;... %dx2 
0]; 

 
output_Mat = [0,beta_P1*delta_t,0,0,0,0,0,0,0,0,0,0;... %P_1 
0,0,delta_t,0,0,0,0,0,0,0,0,0;... %V_1 
0,0,0,delta_t,0,0,0,0,0,0,0,0;... %T_1 
0,0,0,0,delta_t,0,0,0,0,0,0,0;... %Twall_1 

 
0,0,0,0,0,0,beta_P2*delta_t,0,0,0,0,0;... %P_2 
0,0,0,0,0,0,0,delta_t,0,0,0,0;... %V_2 
0,0,0,0,0,0,0,0,delta_t,0,0,0;... %T_2 
0,0,0,0,0,0,0,0,0,delta_t,0,0;... %Twall_2 

 
0,0,0,0,0,0,0,0,0,0,0,emf_const;... %Voltage 
0,0,0,0,0,0,0,0,0,0,0,emf_const/system_R;...   %Current 
0,0,0,0,0,0,0,0,0,0,0,delta_t;... %x 
]; 

 
if (fire_select == 1) 
input_Vec(6) = 0; 
else 
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input_Vec(1) = 0; 
end 

 
%State Variable Calculations 
next_state_vars = state_Mat * state_vars + input_Vec; 

 
%System Variable Constraints 
%Heat Chamber 1 (dQ_1) 
if state_vars(1) < 0 
state_vars(1) = 0; 
end 
%Heat Chamber 2 (dQ_2) 
if state_vars(6) < 0 
state_vars(6) = 0; 
end 

 
%NaN/imag check for State Variables 
if ((sum(isnan(next_state_vars))  > 0) || (sum(abs(imag(next_state_vars))) > 0)) 
disp('Stopping Loop for Variables') 
flag_complete = -1; 
break; 
end 

 
%Output Reset (Voltage,Current) 
output_Vec(9) = 0; 
output_Vec(10) = 0; 

 
 
 

%Output Calculations 
output_Vec = output_Mat * state_vars + output_Vec; 

 
%Releases pressure in combustion chamber 
if ((fire_select == 1) && (dP_1(n) < 0) && (.9*max(P_1) > P_1(n)) ) 
if (decay_flag == 1) 
lambda = -log(P_2(n)/P_1(n))/(inv(freq)-t); 
base = P_1(n); 
init_t_decay = t; 
decay_flag = 0; 
end 
state_vars(2) = -lambda*base*exp(-lambda*(t-init_t_decay)); 
output_Vec(1) = base*exp(-lambda*(t-init_t_decay)); 
elseif ((fire_select == 2) && (dP_2(n) < 0) && (.9*max(P_2) > P_2(n))) 
if (decay_flag == 1) 
lambda = -log(P_1(n)/P_2(n))/(inv(freq)-t); 
base = P_2(n); 
init_t_decay = t; 
decay_flag = 0; 
end 
state_vars(7) = -lambda*base*exp(-lambda*(t-init_t_decay)); 
output_Vec(5) = base*exp(-lambda*(t-init_t_decay)); 
end 

 
%Pressue Chamber 1 (P_1) 
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if output_Vec(1) < 1.01325e5 
output_Vec(1) = 1.01325e5; 
end 

 
%Pressue Chamber 2 (P_2) 
if output_Vec(5) < 1.01325e5 
output_Vec(5) = 1.01325e5; 
end 

 
%Update State Variables 
%Record State Varables for viewing 
dQ_1(n+1) = next_state_vars(1); 
dP_1(n+1) = next_state_vars(2); 
dV_1(n+1) = next_state_vars(3); 
dT_1(n+1) = next_state_vars(4); 
dTwall_1(n+1) = next_state_vars(5); 

 
dQ_2(n+1) = next_state_vars(6); 
dP_2(n+1) = next_state_vars(7); 
dV_2(n+1) = next_state_vars(8); 
dT_2(n+1) = next_state_vars(9); 
dTwall_2(n+1) = next_state_vars(10); 

 
dx2(n+1) = next_state_vars(11); 
dx(n+1) = next_state_vars(12); 

 
%Update Sensor Outputs 
%Record Outputs for viewing 
P_1(n+1) = output_Vec(1); 
V_1(n+1) = output_Vec(2); 
T_1(n+1) = output_Vec(3); 
Twall_1(n+1) = output_Vec(4); 

 
P_2(n+1) = output_Vec(5); 
V_2(n+1) = output_Vec(6); 
T_2(n+1) = output_Vec(7); 
Twall_2(n+1) = output_Vec(8); 

 
Volt(n+1) = output_Vec(9); 
Current(n+1) = output_Vec(10); 
x(n+1) = output_Vec(11); 

 
state_vars = next_state_vars; 

 
if ((x(n) >= end_position) && (fire_select == 1)) 
end_marker = n; 
flag_complete = 1; 
break; 
elseif ((x(n) <= end_position) && (fire_select == 2)) 
flag_complete = 1; 
end_marker = n; 
break; 
end 
end 
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if (flag_complete == 1) 
P_1 = P_1(2:end_marker+1); 
V_1 = V_1(2:end_marker+1); 
T_1 = T_1(2:end_marker+1); 
Twall_1 = Twall_1(2:end_marker+1); 

 
P_2 = P_2(2:end_marker+1); 
V_2 = V_2(2:end_marker+1); 
T_2 = T_2(2:end_marker+1); 
Twall_2 = Twall_2(2:end_marker+1); 

 
Volt = Volt(2:end_marker+1); 
Current = Current(2:end_marker+1); 
x = x(2:end_marker+1); 
time = time(2:end_marker+1); 
end 

 
Output_Vec_Data = [P_1(:), V_1(:), T_1(:), Twall_1(:),... 
P_2(:), V_2(:), T_2(:), Twall_2(:), Volt(:), Current(:), x(:)]; 
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C:\Users\Kenneth Jones\Documents\Kens_Dissertation\code\Simulated Annealing\Evaluate_System.m Monday,  November 11, 2013 6:13 AM 

function [FPG_energy, ES_energy, ES_max_current] = ... 
Evaluate_System(freq,LoadCurrent,R) 
%Simulated Annealing Parameters 

 
FPG_model = importdata('Gasoline_Model.mat'); 

 
motor.poles = 4; 
motor.power = 150e3; % Watts 
motor.constant_V = 336; % Volts 
motor.max_I = motor.power/motor.constant_V;  %Amps 
max_switch_freq = .5*motor.poles*rpm2hz(12000); 
max_power_switch_freq = .5*motor.poles*rpm2hz(8000); 
motor.C = motor.max_I/(max_power_switch_freq*motor.constant_V); 

 
%FPG Parameters 
vs_FPG.voltage_peak = 350; 
vs_FPG.freq = freq; 
vs_FPG.power = 100e3; 
vs_FPG.C = Generate_Capacitor(vs_FPG.power/... 
(max_power_switch_freq*vs_FPG.voltage_peak^2)); %0.0545F 
vs_FPG.R = vs_FPG.C.esr; 

 
%DC Link Parameters 
dc_link.C = Generate_Capacitor(.0033); 
dc_link.L = .0185; 
% dc_link.Rc = dc_link.C.esr; 
dc_link.Rc = R; 
dc_link.V_limit = motor.constant_V; 

 
[doutput, output] = Power_Sim_DCLink(FPG_model,dc_link,vs_FPG,LoadCurrent); 

 
FPG_power_supplied = doutput(:,1); 
ES_power_supplied = doutput(:,2); 
ES_current_supplied = output(:,2); 

 
clear doutput output 

 
% [converted_FPG_power_supplied]  = power_converter(FPG_power_supplied,freq); 

% [converted_ES_power_supplied]  = power_converter(ES_power_supplied,freq); 
FPG_power_supplied = decimate(FPG_power_supplied,1000); 
ES_power_supplied = decimate(ES_power_supplied,1000); 
ES_max_current = max(ES_current_supplied); 

 
FPG_energy = sum(FPG_power_supplied)/3600; 
ES_energy = sum(ES_power_supplied)/3600; 
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C:\Users\Kenneth Jones\Documents\Kens_Dissertation\code\Simulated Annealing\fpeg_state_vars_cal.m Monday,  November 11, 2013 6:13 AM 

dQ_1 = 0; 
dP_1 = 0; 
dV_1 = 0; 
dT_1 = 0; 
dTwall_1 = 0; 

 
m_1 = 0; 
P_1 = 1.01325e5; %4e6; %1.01325e5 Pa == 1 atm 
V_1 = fpeg.vol_min; 
T_1 = 293; %Kelvin (room temp) 
Twall_1 = 20; %Celsius (room temp) 
dQ_2 = 0; 
dP_2 = 0; 
dV_2 = 0; 
dT_2 = 0; 
dTwall_2 = 0; 

 
m_2 = 0; 
P_2 = 1.01325e5; %4e6; %1.01325e5 Pa == 1 atm 
V_2 = fpeg.vol_max; 
T_2 = 293; %Kelvin (room temp) 
Twall_2 = 20; %Celsius (room temp) 
dx2 = 0; 
dx = 0; 
x = -(.5*fpeg.stroke_length - fpeg.vol_min/fpeg.bore_area); 
Volt = 0; 
Current = 0; 
state_vars  = [dQ_1; dP_1; dV_1; dT_1; dTwall_1;... 

dQ_2; dP_2; dV_2; dT_2; dTwall_2;... 
dx2; dx]; 

 
output_Vec = [P_1; V_1; T_1; Twall_1; P_2;... 
V_2; T_2; Twall_2; Volt; Current; x]; 



fuel.conc = @conc;  %Concentration of air & fuel (mol/L) 
fuel.Cp = 35.67; 
fuel.Cv = fuel.Cp - 20.8; 
fuel.wiebe_coeff = [5,2]; %[coeff exp] 
fuel.burn_duration = .0125; %seconds 
fuel.percent_co = 0.5501; 
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function [fuel] = fuel_select(type) 
switch (type) case 
{'gas' ,1} fuel.type = 
'gasoline'; 
fuel.mass = 114.23; %molecular mass (g) 
fuel.Hc = 5470.1e3; %Heat of combustion (J/mol) 
fuel.hf = (250.1/fuel.mass)*10^3; %Heat of formation (KJ/g) 
fuel.hf_co = (393.5/44.01)*10^3; %Heat of formation (KJ/g) 
fuel.hf_h2o = (241.8/18)*10^3; %Heat of formation (KJ/g) 
fuel.density = 720; %Fuel density (g/L) 
fuel.react_rate_parms = [4.6e11, 15.098, 0.25, 1.5]; %[A, E/R, m, n] 
fuel.air2fuel_ratio = 3.5017;  %ratio per gram 
fuel.conc = @conc;  %Concentration of air & fuel (mol/L) 
fuel.Cp = 187.4; 
fuel.Cv = fuel.Cp - 20.8; 
fuel.wiebe_coeff = [2,1]; %[coeff exp] 
fuel.burn_duration = .0006; %seconds 
fuel.percent_co = 0.6849; 
fuel.percent_h2o = 0.3151; 

 
case {'diesel',2} 
fuel.type = 'diesel'; 
fuel.mass = 170.34; %molecular mass (g) 
fuel.Hc = 8086.5e3; %Heat of combustion (J/mol) 
fuel.hf = (300.9/fuel.mass)*10^3; %Heat of formation (KJ/g) 
fuel.hf_co = (393.5/44.01)*10^3; %Heat of formation (KJ/g) 
fuel.hf_h2o = (241.8/18)*10^3; %Heat of formation (KJ/g) 
fuel.density = 820; %Fuel density (g/L) 
fuel.react_rate_parms = [3.8e11, 15.098, 0.25, 1.5]; %[A, E/R, m, n] 
fuel.air2fuel_ratio = 2.9118;  %ratio per gram 
fuel.conc = @conc;  %Concentration of air & fuel (mol/L) 
fuel.Cp = 232.63; 
fuel.Cv = fuel.Cp - 20.8; 
fuel.wiebe_coeff = [5,2]; %[coeff exp] 
fuel.burn_duration = .0125; %seconds 
fuel.percent_co = 0.6897; 
fuel.percent_h2o = 0.3103; 

 
case {'methane',3} 
fuel.type = 'methane'; 
fuel.mass = 16.04; %molecular mass (g) 
fuel.Hc = 890.7e3; %Heat of combustion (J/mol) 
fuel.hf = (77.4/fuel.mass)*10^3; %Heat of formation (KJ/g) 
fuel.hf_co = (393.5/44.01)*10^3; %Heat of formation (KJ/g) 
fuel.hf_h2o = (241.8/18)*10^3; %Heat of formation (KJ/g) 
fuel.density = .66; %Fuel density (g/L) 
fuel.react_rate_parms = [8.3e5, 15.098, -0.3, 1.3]; %[A, E/R, m, n] 
fuel.air2fuel_ratio = 4;  %ratio per gram 



fuel.conc = @conc;  %Concentration of air & fuel (mol/L) 
fuel.Cp = 187.4; 
fuel.Cv = fuel.Cp - 20.8; 
fuel.wiebe_coeff = [2,1]; %[coeff exp] 
fuel.burn_duration = .0006; %seconds 
fuel.percent_co = 0.6849; 
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case {'methanol',4} 
fuel.type = 'methanol'; 
fuel.mass = 32.04; %molecular mass (g) 
fuel.Hc = 726e3; %Heat of combustion (J/mol) 
fuel.hf = (239.1/fuel.mass)*10^3; %Heat of formation (KJ/g) 
fuel.hf_co = (393.5/44.01)*10^3; %Heat of formation (KJ/g) 
fuel.hf_h2o = (241.8/18)*10^3; %Heat of formation (KJ/g) 
fuel.density = 790; %Fuel density (g/L) 
fuel.react_rate_parms = [3.2e12, 15.098, 0.25, 1.25]; %[A, E/R, m,n] 
fuel.air2fuel_ratio = 1.5;  %ratio per gram 
fuel.conc = @conc;  %Concentration of air & fuel (mol/L) 
fuel.Cp = 44.07; 
fuel.Cv = fuel.Cp - 20.8; 
fuel.wiebe_coeff = [5,2]; %[coeff exp] 
fuel.burn_duration = .0125; %seconds 
fuel.percent_co = 0.5501; 
fuel.percent_h2o = 0.4499; 

 
case {'ethanol',5} 
fuel.type = 'ethanol'; 
fuel.mass = 46.07; %molecular mass (g) 
fuel.Hc = 1366.7e3; %Heat of combustion (J/mol) 
fuel.hf = (277.7/fuel.mass)*10^3; %Heat of formation (KJ/g) 
fuel.hf_co = (393.5/44.01)*10^3; %Heat of formation (KJ/g) 
fuel.hf_h2o = (241.8/18)*10^3; %Heat of formation (KJ/g) 
fuel.density = 790; %Fuel density (g/L) 
fuel.react_rate_parms = [1.5e12, 15.098, 0.15, 1.6]; %[A, E/R, m,n] 
fuel.air2fuel_ratio = 2.08;  %ratio per gram 
fuel.conc = @conc;  %Concentration of air & fuel (mol/L) 
fuel.Cp = 65.59; 
fuel.Cv = fuel.Cp - 20.8; 
fuel.wiebe_coeff = [2.3,3]; %[coeff exp] 
fuel.burn_duration = .0125; %seconds 
fuel.percent_co = 0.6198; 
fuel.percent_h2o = 0.3802; 

 
otherwise 
fuel.type = 'gasoline'; 
fuel.mass = 114.23; %molecular mass (g) 
fuel.Hc = 5470.1e3; %Heat of combustion (J/mol) 
fuel.hf = (250.1/fuel.mass)*10^3; %Heat of formation (KJ/g) 
fuel.hf_co = (393.5/44.01)*10^3; %Heat of formation (KJ/g) 
fuel.hf_h2o = (241.8/18)*10^3; %Heat of formation (KJ/g) 
fuel.density = 720; %Fuel density (g/L) 
fuel.react_rate_parms = [4.6e11, 15.098, 0.25, 1.5]; %[A, E/R, m,n] 
fuel.air2fuel_ratio = 3.5017;  %ratio per gram 
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end 
end 

 
function [ conc_air, conc_fuel ] = conc(air_mass,fuel_mass,fuel) 
%Conc Summary: Calcualtes the concentration of fuel and air in a given 
%mixture 
vol_air = air_mass*.7; %Liters 
vol_fuel = fuel_mass/fuel.density; %Liters 

 
conc_air = (air_mass/32)/(vol_air + vol_fuel); %Molarity (mol/L) 
conc_fuel = (fuel_mass/fuel.mass)/(vol_air  + vol_fuel);  %Molarity (mol/L) 
end 
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clear all clc 
fpeg_25W_specs 
fuel = fuel_select(1); 
freq_list = 30:5:60; 
freq = freq_list(7); 
desired_EMF = 350; 
delta_t = 1/(2*freq); 
stroke_length = fpeg.stroke_length; 
fpeg.back_emf_const = desired_EMF/(2*stroke_length*freq); 
tstart = tic; 
[SA_score,fuel_amt,system_freq,flag_complete,Volt,Current]... 
= Piston_Motion_DataGen(fpeg,fuel,freq); 
tElapsed_sec = toc(tstart); 
tElapsed_min = round(tElapsed_sec/60); 
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C:\Users\Kenneth Jones\Documents\Kens_Dissertation\code\Simulated Annealing\heatcoeff_wall.m Monday,  November 11, 2013 6:14 AM 

function [ out ] = heatcoeff_wall(V,P,T,speed  ) 
%HEATCOEFF_WALL Determines the wall heating coeffieicient for the engine 
%  Inputs: V = volume (m^3) 
%  P = pressure (pascals) 
%  T = temperature (Kelvin) 
%  speed = speed (m/s) 

 
%Honenberg heat coeffecient 
out = 130*V^-0.06 * (P/1e5)^0.8 * T^-0.4 * (abs(speed) + 1.4)^0.8; 

 
end 
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C:\Users\Kenneth Jones\Documents\Kens_Dissertation\code\Simulated Annealing\Load_Current.m Monday,  November 11, 2013 6:14 AM 

function [LoadCurrent] = Load_Current(schedule,car,SA_mass) 

 
load(schedule,'schedule_mph'); 

 
gravity = 9.80665; %m/s^2 
d_air = 1.2041; %air density 

 
samp_freq = 1000; 

 
schedule_mph = interp(schedule_mph,samp_freq); 

 
cr = car.rolling_coeff; 
drag_coef = car.drag_coeff; 
eff = car.gear_eff; 
mass_car = car.car_mass + SA_mass; %kg 
F_Area = car.frontal_area; %m^2 
schedule_mps = mph2mps(schedule_mph); 
Fr = cr * mass_car * gravity; 
Fa = .5 * drag_coef * d_air *F_Area * (schedule_mps.^2); 
schedule_acc = diff(schedule_mps); 
schedule_acc = [schedule_acc;0]; 
schedule_power = (Fa + Fr).*schedule_mps/1000 + mass_car * schedule_acc... 
.*schedule_mps/1000; 

 
schedule_acc_ID = (schedule_acc > 0); 
schedule_power2 = schedule_power.*schedule_acc_ID; 
LoadCurrent = 1.14*schedule_power2/336 * 1e3; 

 
smoothing_factor = 10; 
LoadCurrent = smooth(LoadCurrent,smoothing_factor); 
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function [SA_score,fuel_amt,system_freq,flag_complete,Volt,Current]=... 
Piston_Motion_DataGen(fpeg,fuel,freq) 
fpeg_state_vars_cal 

t = []; 

P_1 = []; 
V_1 = []; 
T_1 = []; 
Twall_1 = []; 

 
P_2 = []; 
V_2 = []; 
T_2 = []; 
Twall_2 = []; 

 
Volt = []; 
Current = []; 
x = []; 

 
dx = []; 
dx2 = []; 
beta = 10; 

 
init_state = state_vars; 
prev_state_vars = state_vars; 
prev_output_Vec = output_Vec; 
init_fuel = 1; 

 
half_period = 1/(2*freq); 
half_period_check = ones(10,1); 

 
fire_select = 1; 
fuel_amt(3) = 0; 

for n = 1:3 

flag_complete = 0; 
fuel_mass = init_fuel; 
state_vars = prev_state_vars; 
beta = 10; 

 
while ((flag_complete == 0) || ... 
(abs(half_period - half_period_check(n)/half_period) > .03)) 

 
[state_vars,output_Vec,Output_Vec_Data,time,flag_complete]=... 
fpeg_dynamicsSA(fpeg,fuel,state_vars,output_Vec,fire_select,fuel_mass,freq) 
half_period_check(n) = time(end); 

 
if (flag_complete == -1) 
break; 
elseif ((flag_complete == 0) || (half_period_check(n) >= half_period)) 
fuel_mass = fuel_mass + beta*1; 
state_vars = prev_state_vars; 
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output_Vec = prev_output_Vec; 
elseif (1/half_period_check(n) - 1/half_period >= 1) 
fuel_mass = fuel_mass - beta*1; 
state_vars = prev_state_vars; 
output_Vec = prev_output_Vec; 

 
beta = beta/2; 
end 
end 

 
if (flag_complete == -1) 
break; 
end 

 
Volt = [Volt; Output_Vec_Data(:,9)]; 
Current = [Current; Output_Vec_Data(:,10)]; 

 
prev_state_vars = [0;0;0;0;0;0;0;0;0;0;0;0]; 
prev_output_Vec = output_Vec; 

 
fuel_amt(n) = fuel_mass; 
init_fuel = .5 * fuel_mass; 

 
if (fire_select == 1) 
fire_select = 2; 
else 
fire_select = 1; 
end 

end 

system_freq = 1/(mean(half_period_check)); 
Energy = system_freq*sum(abs(Volt.*Current))/5; 
fuel_total = mean(fuel_amt); 

 
SA_score = fuel_total/Energy; 
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Power_Sim_DCLink(FPG_model,dc_link,fpg_src_store,I_out) 
%POWER_SIM Summary of this function goes here 
%  Detailed explanation goes here 

 
%Time scale 
vector_length = length(I_out) + 1; 
%delta_t = 1/120; 
delta_t = 1e-3; 
time = 0:length(I_out)-1; 
time = delta_t*time; 

 
%Load DC_link parameters 
C_dc = dc_link.C.value; 
L_dc = dc_link.L; 
R_dc = dc_link.Rc; 
V_DCLink_limit = 336; 

 
%Load Source parameters 
freq = fpg_src_store.freq; 

 
%Initialize recording state variables 
V_FPG_src(vector_length) = 0; 
iL_FPG(vector_length) = 0; 
% iL_ES(vector_length) = 0; 
VC_DCLink(vector_length) = 0; 
dVC_DCLink(vector_length) = 0; 
% d2VC_DCLink(vector_length)  = 0; 

 
extra_energy = 0; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Initialize Systems States 
dX_system = zeros(2,1); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
%System State Parameters Matrix 
A = zeros(2,2); 
A(1,2) = -1/(R_dc*C_dc); 
A(2,1) = delta_t; 
A(2,2) = 1; 

 
%System Input Matrix 
B = zeros(2,2); 
B(1,1) = 1/(R_dc*C_dc); 
B(2,2) = -delta_t/C_dc; 

 
%System Output Matrix 
C = zeros(2,2); 
C(1,1) = 1; 
C(2,2) = 1; 

 
 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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for n = 1:length(I_out) 

 
V_FPG_src(n) = FPG_Wave(FPG_model.coeffs,time(n),freq); 

 
 

%Update input parameters 
U_system = [V_FPG_src(n); I_out(n)]; 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%State Updates for System 
next_dX_system = A*dX_system + B*U_system; 
X_system = C*dX_system; 

 
if (next_dX_system(1) < 0) 
next_dX_system(1) = 0; 
end 
% 
if (next_dX_system(2) > V_DCLink_limit) 
extra_energy = extra_energy +.5*C_dc*(V_DCLink_limit-next_dX_system(1))^2; 
next_dX_system(2) = V_DCLink_limit; 
end 

 
%Update Output parameters 
dVC_DCLink(n) = X_system(1); 
VC_DCLink(n) = X_system(2); 
iL_FPG(n) = C_dc*X_system(1)*(X_system(2)  >= 0); 

 
dX_system = next_dX_system; 
end 

 
 

V_FPG_src = V_FPG_src(1:length(I_out)); 
iL_FPG = iL_FPG(1:length(I_out)); 
VC_DCLink = VC_DCLink(1:length(I_out)); 
dVC_DCLink = dVC_DCLink(1:length(I_out)); 

 
iL_ES = C_dc*(V_DCLink_limit - VC_DCLink)/delta_t; 
FPG_power_supplied = (iL_FPG.*VC_DCLink)/1000; 
ES_power_supplied = (iL_ES.*VC_DCLink)/1000; 

 
doutput = [FPG_power_supplied(:), ES_power_supplied(:)]; 
output = [iL_FPG(:), iL_ES(:), VC_DCLink(:)]; 

 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [ y_hat ] = FPG_Wave(coeffs,t,freq) 
w = 2*pi*freq; 
fseries_mat = [1, cos(w*t)', sin(w*t)', cos(3*w*t)', sin(3*w*t)',... 
cos(5*w*t)', sin(5*w*t)',cos(7*w*t)', sin(7*w*t)',cos(9*w*t)',sin(9*w*t)']; 
y_hat = abs(fseries_mat*coeffs); 
end 
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C:\Users\Kenneth Jones\Documents\Kens_Dissertation\code\Simulated Annealing\rate_react.m Monday,  November 11, 2013 6:15 AM 

function [ rate ] = rate_react( air_mass,fuel_mass,temp,fuel) 
%RATE_REACT Calculates the rate of reaction of a given amount of fuel about 
%to be ignited 
%Inputs: 
%temp = temperature (Kelvin) 
%air_mass = grams 
%fuel_mass = grams 

 
%Output 
%rate (per second) 
[ conc_air, conc_fuel ] = fuel.conc(air_mass,fuel_mass,fuel); 
A = fuel.react_rate_parms(1);  E_R = 
fuel.react_rate_parms(2);  exp_fuel = 
fuel.react_rate_parms(3);  exp_air = 
fuel.react_rate_parms(4); 

 
rate = A*exp(-E_R/temp)*(fuel_mass.^exp_fuel)*(air_mass.^exp_air); 
end 
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clc 
%SA_CENTERS Performs simulated annealing to find 
%the tuning variable for 
%the non-linear proximal support vector machine 

 
FTP_schedule = 'ftpdds_schedule.mat'; 
HWY_schedule = 'hwyftedds_schedule.mat'; 
US06_schedule = 'us06_schedule.mat'; 

 
gravity = 9.80665; 
fuel_num = 5; 
fuel = fuel_select(fuel_num); 
Toyota_Prius 

% VW_Jetta 
fpeg_25W_specs 
fpg_eff = .44; 

 
tuning_var(1) = 30;   %freq 
tuning_var(2) = 50;  %fuel_mass kg 
tuning_var(3) = 75;  %energy_mass kg 

 
%Heat of Combustion 
Hc = fuel.Hc/1000; 

 
tank_size = gal2Liter(car.gas_tank_volume); %liters 
fuel_density = fuel.density; %g/L 
energy_mass_limit = lb2newt(450)/gravity; %kg Jetta 
% energy_mass_limit = lb2newt(250)/gravity; %kg Prius 

 
 

% %Panasonic Lithium Ion Cells 
% %#18650 
% cell_size = 3.6*2.9; %(V*Ah -> Wh) 
% cell_mass = 45; %grams 
% cell_max_current = .55; %A 

 
%Maxwell Technologies Ultracapacitor 
%BCAP3000 
cell_size = 3.04; %(Wh) 
cell_mass = 510; %grams 
cell_max_current = 210; %A 

 
old_cost = 1e16; 

 
temp = .3;  %Initial Starting temperature 

 
epochs = 25; %Number to run in batch while heating/cooling 
%before doing 

%energy check 

count = 1; 

state = 'HEAT'; 
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while ((temp > 0) && (count <= 12)) 

 
energy = 0; 
for i = 1:epochs 
%  temp 
%Varies the tuning variable in the SVM 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%  tuning_var(1) = tuning_var(1) + randi([-1 1],1);  %freq 
tuning_var(1) = 30; 
tuning_var(2) = abs(tuning_var(2) + randi([-5 5],1)*rand(1)); 
%fuel_mass kg 
tuning_var(3) = abs(tuning_var(3) + randi([-5 5],1)*rand(1)); 
%energy_mass kg 

 
if ((tuning_var(1) > 60) || (tuning_var(1) < 30)) 

tuning_var(1) = best_tuning_var(1); 
end 

 
if ((tuning_var(2) + tuning_var(3)) > energy_mass_limit) 

tuning_var(2) = best_tuning_var(2); 
tuning_var(3) = best_tuning_var(3); 

end 

 
if ((tuning_var(1) >= 30) && (tuning_var(1) < 34)) 

R = .475; 
elseif ((tuning_var(1) >= 34) && (tuning_var(1) < 39)) 

R = .355; 
elseif ((tuning_var(1) >= 39) && (tuning_var(1) < 50)) 

R = .335; 
else 

R = .235; 
end 

 
fuel_molecular_mass = 1000*tuning_var(2)/fuel_density; %grams 
fuel_tank_size = (Hc*fuel_molecular_mass)/3600;  %kWh 

 
energy_storage_mass = 1000*tuning_var(3); %grams 
energy_storage_size = (cell_size*energy_storage_mass/cell_mass)/1000; %kWh 
energy_storage_max_current  = cell_max_current*... 
round(energy_storage_mass/cell_mass); 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
SA_mass = tuning_var(2) + tuning_var(3); 
[LoadCurrent_FTP85] = Load_Current(FTP_schedule,car,SA_mass); 
[LoadCurrent_HWY] = Load_Current(HWY_schedule,car,SA_mass); 
[LoadCurrent_US06] = Load_Current(US06_schedule,car,SA_mass); 

 
temp_tracker(count) = temp; 

 
%Computes performance cost for new tuning variable 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
[FPG_energy, ES_energy, ES_max_current_FTP85] = ... 
Evaluate_System(tuning_var(1),LoadCurrent_FTP85,R); 
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fuel_duration_FTP85 = (fpg_eff*fuel_tank_size)/FPG_energy; 
energy_duration_FTP85 = energy_storage_size/ES_energy; 

metric_FTP85 = 1/min([fuel_duration_FTP85,energy_duration_FTP85]); 

[FPG_energy, ES_energy, ES_max_current_HWY] = ... 
Evaluate_System(tuning_var(1),LoadCurrent_HWY,R); 
fuel_duration_HWY = (fpg_eff*fuel_tank_size)/FPG_energy; 
energy_duration_HWY = energy_storage_size/ES_energy; 

 
metric_HWY = 1/min([fuel_duration_HWY,energy_duration_HWY]); 

 
[FPG_energy, ES_energy, ES_max_current_US06] = ... 
Evaluate_System(tuning_var(1),LoadCurrent_US06,R); 
fuel_duration_US06 = (fpg_eff*fuel_tank_size)/FPG_energy; 
energy_duration_US06 = energy_storage_size/ES_energy; 

 
metric_US06 = 1/min([fuel_duration_US06,energy_duration_US06]); 

 
new_cost = .4*metric_FTP85 + .4*metric_HWY + .2*metric_US06; 

 
if((ES_max_current_FTP85 > energy_storage_max_current)||... 
(ES_max_current_HWY > energy_storage_max_current)||... 
(ES_max_current_US06 > energy_storage_max_current)) 

new_cost = 1e16; 
end 
d_cost = new_cost - old_cost; 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
%Evaluates centers and decides which set to keep 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if (new_cost < 1e16) 

if (d_cost < 0) 
best_tuning_var = tuning_var; 
old_cost = new_cost; 
energy = energy + 1; 

elseif (rand(1) < exp((-d_cost/temp))) 
%   exp((-d_cost/temp)) 

best_tuning_var = tuning_var; 
old_cost = new_cost; 
energy = energy + 1; 

 
end 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
end 

 
energy = energy/epochs 
energy_tracker(count) = energy; 

 
if (energy > .75) && (strcmp(state,'HEAT')) 
state = 'COOL' 
end 
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if ((energy < .2) && (strcmp(state,'COOL'))) || (temp <= .0001) 
break 
end 

 
temp = temperature_update(temp,state); 
count = count + 1; 
end 

 
figure(1),plot(energy_tracker),ylabel('Magnitude'),... 
title('Energy Tracker') 
figure(2),plot(temp_tracker),ylabel('Magnitude'),... 
title('Temperature Tracker') 
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C:\Users\Kenneth Jones\Documents\Kens_Dissertation\code\Simulated Annealing\temperature_update.m Monday,  November 11, 2013 6:15 AM 

function new_T = temperature_update(T,state) 
wf = .8;  %warming factor 
cf = .2;  %cooling factor 
T_step = .05;  %step factor for temperature 

 
switch state 

case 'HEAT' 
new_T = T + wf*T_step; 

case 'COOL' 
new_T = T - cf*T_step; 

 
end 

end 
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avg_person_weight = 195; 
persons = 1; 
gasoline_density = 6.073; %lbs/gal 

 
%FPG System 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
FPG_powerpack_mass = 100; %kg 
ACProp_motor_mass = 50; %kg 
ACProp_peu_mass = 30; %kg 

 
%Car Constants 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
car.type = 'Toyota Prius'; 
car.curb_weight = 3042; 
car.engine_weight_est = 250 + 125; %lbs (ICE/AC) 
car.est_curb_weight = car.curb_weight - car.engine_weight_est; 
car.rolling_coeff = .015; 
car.gas_tank_volume = 11.9; %US Gallons 
car.drag_coeff = 0.25; 
car.tire_radius = inch2m(7.5); 
car.car_mass_old = lb2newt(car.est_curb_weight  - ... 
(gasoline_density*car.gas_tank_volume) + persons * avg_person_weight)/... 
gravity; %kgrams 
car.car_mass = car.car_mass_old + FPG_powerpack_mass + ACProp_motor_mass... 
+ ACProp_peu_mass; 
car.frontal_area = 22.4/10.764; %m^2 

 
%Gearbox 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
car.gear_ratio = [6.5,5.9,4.1,3.7]; 
car.final_gear_ratio = 1.23; 
car.gear_eff = 0.95; 
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avg_person_weight = 195;  % in pounds 
persons = 1; 
gasoline_density = 6.073; %lbs/gal 

 
%FPG System 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
FPG_powerpack_mass = 100; %kg 
ACProp_motor_mass = 50; %kg 
ACProp_peu_mass = 30; %kg 

 
 

%Car Constants 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
car.type = 'VW Jetta SEL 2011'; 
car.curb_weight = 3018; % in pounds 
car.engine_weight_est = 250; %lbs 
car.est_curb_weight = car.curb_weight - car.engine_weight_est; 
car.gas_tank_volume = 14.5; %US gallons 
car.rolling_coeff = .015; 
car.drag_coeff = 0.3; 
car.frontal_area = inch2m(70)*inch2m(57.2); %Estimate 
car.tire_radius = inch2m(8.5); 
car.car_mass_old = lb2newt(car.est_curb_weight  -... 
(gasoline_density*car.gas_tank_volume)... 
+ persons * avg_person_weight)/gravity;  %kgrams 
car.car_mass = car.car_mass_old + FPG_powerpack_mass +... 
ACProp_motor_mass + ACProp_peu_mass; 
%Gearbox 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
car.gear_ratio = [3.77,2.11,1.26,0.86,0.66]; 
car.final_gear_ratio = 3.389; 
car.gear_eff = 0.95; 

 
% ACProp_Engine_module 
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