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Abstract 

Magnesium has emerged as a revolutionary biodegradable metal for use as an orthopedic 

material, it has several advantages over the permanent metallic materials currently in use, 

including eliminating the effects of stress shielding, improving biocompatibility and degradation 

properties, thus removing the requirement of a second surgery for implant removal. Due to the 

rapid degradation of magnesium, it is necessary to control the corrosion rates of the materials to 

match the rates of bone healing. This dissertation reports on the effect of doping on the 

properties of β-tricalcium phosphate (β-TCP). It also reports on its application as a thin film 

coating on magnesium alloys for implant applications. 

Adding various dopants to β-TCP significantly influences critical properties. In this 

study, discs were fabricated in two compositions: (i) undoped β-TCP, (ii) β-TCP doped with 1.0 

wt % MgO, 0.5 wt % ZnO, and 1.0 wt % TiO2. Films were fabricated from these compositions 

using the pulsed laser deposition (PLD) technique. These coatings were then characterized for 

corrosive, hardness, and cytocompatibility. The XRD patterns of the coating confirm the 

amorphous nature of the films. The presence of the metal oxides in β-TCP improved ceramic 

densification. The application of these doped coatings was also found to increase the hardness by 

88 %, the modulus of elasticity by 66 %, and improve corrosion resistance of the magnesium 

alloy substrate; with a 2.4 % improvement in Ecorr and 95 % decrease in icorr. Cell viability was 

studied using an osteoblast precursor cell line MC3T3-E1 to assure that the biocompatibility of 

these ceramics was not altered due to the dopants. Long-term biodegradation studies were 

conducted by measuring weight change and surface microstructure as a function of time in 

simulated body fluid. The results suggest that these coatings could be used for bioresorbable 

implants with improved corrosion resistance and increased hardness.
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CHAPTER 1 

Introduction 

This dissertation is organized into five chapters. Chapter 1 introduces the research 

subject, objectives and motivations for this work. It also gives a brief review of the current 

innovations. The second chapter is dedicated to presenting a comprehensive theoretical review of 

biomaterials, their current use and limitations. It also provides a literature review of metallic 

implant materials, bioceramics, and coating methods currently utilized, as well as the logic 

behind the ceramic, target and substrate selections for the present work. Chapter 3 presents the 

experimental methods and theory behind the characterization methods used in this research. It 

provides the parameters used in the PLD system followed by descriptions of the characterization 

techniques used in this work. Results and discussions are presented in Chapter 4. In chapter 5 a 

conclusion of the present work is given and suggestions for potential future work are described 

briefly. 

1.1 Background 

Soft tissue tears, bone fracture or joint dislocations all generally require a fixation device 

to be correctly treated (Rayburn, Riffle, Walburn, & Williams, 1998; Walz, Salzmann, Fabbro, 

Eichhorn, & Imhoff, 2008; Waris, Konttinen, Ashammakhi, Suuronen, & Santavirta, 2004). 

Bone is a highly specialized form of connective tissue that provides an internal support system in 

most vertebrates (Shea & Miller, 2005). It acts as the site for the attachment of muscles and 

tendons, essential for movement, protects the vital organs of the cranial and chest cavities, and it 

encloses the blood forming vessel elements of the bone marrow. In addition to these mechanical 

functions, bone plays an important metabolic role as a mobile store of calcium and phosphate, 

which can be drawn upon when needed. 
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Bone is a connective tissue composed of an organic collagenous matrix, a fine dispersion 

of reinforcing inorganic elements, and bone-forming and bone-degrading cells. These different 

components render bone tissue properties unique in terms of hardness, flexibility and 

regenerative capacity. Bone defects are frequently caused by trauma, disease and 

developmental deformity (Wiese & Pape, 2010). Repairing such bone sites involves various 

medical surgical techniques, some of which include the use of autografts, allografts, internal 

and external fixation devices, and replacement implants. A number of materials have been 

tested for use in the biomedical industry to treat these types of bone defects, which include 

metals, polymers, ceramics and composites (Altieri, Flores, Gonzalez, & Rodríguez; Lemons, 

1993; T. Ogawa, 2006; Uchida et al., 1990; Wallace et al., 1988). 

The mechanical and biological properties of bone implants need to be optimal to form a 

quick and firm connection with the bone tissue in load bearing applications. Metallic and certain 

polymeric materials with the right mechanical strength offer mechanical strength that is required 

to simulate bone tissue in load-bearing applications in terms of maximum load, bending and 

fatigue strength, such as titanium, stainless steel, Polyesters, PLA, and PGA, which are currently 

used for bone tissue engineering (Hutmacher, Hurzeler, & Schliephake, 1996; Yue, Pilliar, & 

Weatherly, 1984). 

Magnesium and magnesium alloys are potential bioresorbable metals for orthopedic 

devices such as mini/micro-plate systems, screws, and rods. This is so because magnesium is one 

of the essential elements in the human body. The mechanical integrity of magnesium based 

devices to bones is high owing to magnesium’s elastic modulus and compressive yield strength 

being closer to those of natural bone than other commonly used metallic implants (Staiger, 

Pietak, Huadmai, & Dias, 2006) as listed in Table 1.1 (Choi, Kong, Kim, & Lee, 1998; 
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DeGarmo, Black, & Kohser, 1997; L. J. Gibson & Ashby, 1999; Seeley, Bandyopadhyay, & 

Bose, 2007; Thamaraiselvi & Rajeswari, 2004). Degradation of bioresorbable metals should be 

inhibited until the fractured bone is sufficiently repaired to bear the load. However, the existing 

magnesium alloys do not show enough corrosion resistance for bone fixation devices. 

Improvement of the corrosion resistance is essential for the promotion of the practical use of 

magnesium alloys (A. Yamamoto, Watanabe, Sugahara, Tsubakino, & Fukumoto, 2001). 

Table 1.1 

Summary of physical and mechanical properties of various implant materials in comparison to 

natural bone 

Properties 
Natural 

Bone 
Mg Ti alloy 

Co–Cr 

Alloy 

Stainless 

Steel 
TCP HA 

Density 

(g/cm3) 
1.8–2.1 1.74–2.0 4.4–4.5 8.3–9.2 7.9–8.1 3.14 3.1 

Elastic 

modulus 

(Gpa) 

3–20 41–45 110–117 230 189–205 120.69 73-117

Compressive 

yield strength 

(Mpa) 

130–180 65–100 758–1117 450–1000 170–310 70-95 600 

Fracture 

toughness 

(MPa m1/2) 

3–6 15–40 55–115 N/A 50–200 0.41-1.15 0.7 
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The interaction between the implanted material and the surrounding tissue at the implant 

interface is essential for success or failure of implants and thus the need arises for coatings that 

will improve the performance of the bone implant (H. Zreiqat et al., 2002). Surface modification 

is one of the methods to improve the corrosion resistance of magnesium and its alloys (Gupta, 

Mensah-Darkwa, & Kumar, 2013). Coatings with calcium phosphate compounds attracted 

attention because the calcium phosphate compounds precipitated from simulated body fluids 

(SBF) improved the corrosion resistance of magnesium (Clèries L, 2000). 

In that respect, coatings can be applied to facilitate the process of bone healing and obtain 

a continuous transition from living tissue to the synthetic implant, thus, the most obvious 

candidates for application as implant coating are compounds that are inspired by the components 

of bone tissue, they can be inorganic (e.g., hydroxyapatite, tricalcium phosphate) or organic (e.g., 

collagen, extracellular matrix components, enzymes) (Geng, Tan, Zhang, et al., 2009; Mckee & 

Nanci, 1996; Morra et al., 2005; Oonishi et al., 1989; Robins et al., 2009). One of the limitations 

of using ceramic material components is that the implant suffers from early failures due to their 

low fracture toughness (Kalita, Bhardwaj, & Bhatt, 2007). Therefore, in an effort to improve the 

mechanical properties of these ceramics, metallic oxide dopants were added to the bulk ceramic 

to improve its fracture toughness, hardness and to improve corrosion resistance of the 

magnesium implant due to the physiological environment with the body. 

As a new approach for a bioresorbable implant, this research work reports on the use of 

pulsed laser deposition (PLD) to uniformly coat magnesium and its alloys with the bioresorbable 

doped ceramic beta tricalcium phosphate for application as a bioresorbable bone fixation device. 

1.2 Innovations 

Metals and their alloys have a long history as orthopedic implants and bone graft 
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substitutes for their well-known strength (elastic modulus larger than 100 GPa), especially in 

load-bearing sites (M. Wang, 2003). Typically implants have been produced from stainless steel, 

cobalt–chromium (CoCr), or titanium alloys. A lot of methods of surface modification have been 

developed to enhance biological properties of these implants to promote bone fixation for use in 

orthopedic procedures (Bobyn JD, 1999). 

Due to inherent properties, such as lightweight, high strength and biocompatibility, 

metallic alloys garnered considerable attention as implant materials. Their use is however also 

associated with several limitations, which include permanence, cracking, low volumetric 

porosity, relatively high modulus of elasticity compared to bone and the potential of releasing 

harmful metallic ions and introducing corrosion products into the body from these materials (J. 

Jacobs, Hallab, Skipor, & Urban, 2003; J. J. Jacobs et al., 1998; JJ., JL., & RM., 1998; Lhotka, 

Szekeres, Steffan, Zhuber, & Zweymuller, 2003; Puleo & Huh, 1995). Most metals are not 

biodegradable, thus, cannot be used to produce a complete tissue replacement for bone defects. 

Additionally, metal particles released from the implant have been found to affect the release of 

inflammatory factors, inhibit expression of osteogenic cell markers, and stimulate bone loss or 

recommencement. For instance, studies have shown that titanium and its alloy particles inhibit 

bone-cell proliferation and osteogenic differentiation (Goodman, Ma, Chiu, Ramachandran, & 

Lane Smith, 2006). Another draw back in the use of metal implants is their lack of bioactivity 

and a significant difference in stiffness between the metal and surrounding bone tissue rendering 

them not capable of integrating well with the implant site. These metal implants being stiffer 

than the natural bone tissue, leads to the stress shielding effect and poor osteointegration during 

the implants lifetime. Several modifications have been suggested to address some of the 

limitations of these traditional solid metals. 
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The use of magnesium is thought to be helpful in overcoming the limitations of 

conventional metals currently used in tissue engineering. Magnesium is lightweight and 

biodegradable making it potentially useful metal in bone substitution. The fracture toughness of 

magnesium is greater than that of ceramic biomaterials such as hydroxyapatite, while its elastic 

modulus and compressive yield strength are closer to those of the natural bone as compared to 

other commonly used metallic implants (DeGarmo et al., 1997). Moreover, magnesium can be 

found in bone tissue as a trace element, where it plays an essential role (DeGarmo et al., 1997; 

Hartwig, 2001; Okuma, 2001; Slinde, Grönberg, Engström, Rossander-Hulthén, & S., 2002; 

Vormann, 2003; Wolf & Cittadini, 2003). Magnesium is a co-factor for many enzymes, and 

helps to stabilize the structures of DNA and RNA (Hartwig, 2001). Reports suggested that 

magnesium might actually stimulate the growth of new bone tissue (Revell, Damien, Zhang, 

Evans, & Howlett, Dec; Yamasaki et al., 2003; Yamasaki Y, 2002 Oct; H. Zreiqat et al., 2002). 

Thus, magnesium and its alloys could be used for load bearing orthopedic implants, which would 

remain present in the body and maintain mechanical integrity over the healing period; eventually 

the implants are replaced by natural tissue (C. E. Wen et al., 2001; F. Witte et al., 2006). 

One approach to providing a strong, long-lasting adhesive interface between a bone 

replacement implant and the surrounding tissue involves the use of bioactive materials that 

mimic the behavior of natural bone. The bioactive materials are put as a coating on the implant 

surfaces to improve the integration of metal implants to bone tissue, prolong their lifetime, and 

prevent adverse effects produced by metal implants. Examples of such materials include calcium 

phosphate salts, such as hydroxyapatite (HA), tricalcium phosphate (TCP), and Plaster of Paris 

(calcium sulfate dihydrate). 

In the past decade, many studies were conducted to investigate coatings that will inhibit 



 9

degradation rate of magnesium in physiological environment. Geng et al. found that β-TCP 

coated porous magnesium scaffolds showed improved mechanical and biological properties 

(Geng, Tan, Zhang, et al., 2009). It was found to control the degradation rate of magnesium to 

create a suitable microenvironment and a bioactive surface for cell growth and proliferation, it 

promoted cell attachment and proliferation, and the growth of bone like apatite on the surface of 

the coated metals. 

There are many techniques that have been used to create such coatings on metallic 

implant materials, for example, dip coating, electrophoretic deposition, hot isotatic pressing, 

pulsed laser deposition, sol-gel processing, and sputter coating have been used to deposit these 

coatings (Lacefield, 1998). Amongst all these methods, PLD has several characteristics that 

distinguish it from other growth methods and provide special advantages for the growth of 

chemically complex (multielement) and composite materials (Sharma, Kalyanaraman, Narayan, 

Oktyabrsky, & Narayan, 2001). The advantages of this technique are the capability for reactive 

deposition, energetic evaporants, fast deposition times, flexibility, improved film quality at lower 

temperatures, maintenance of stoichiometry, and simplicity for the growth of multilayered 

structures (Eason, 2006). 

For PLD deposition ceramic powders must be fabricated into targets my means of 

pressing and sintering. Although TCP is a very attractive candidate for these coatings, sintering 

remains a major challenge. The sintering of TCP is much less reported than it is for HA. α-TCP 

and β-TCP are the two phases of interest in biological applications. β-TCP is the 

thermodynamically stable form at low temperature. It transforms into α-TCP in the temperature 

range 1275–1300 °C (Barralet, Gbureck, Grover, & Thull, 2004; Perera, Martínez-Vázquez, 

Miranda, Ortiz, & Pajares, 2010). β-TCP is generally preferred in sintered ceramic implants, 
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while α-TCP is more commonly used in bone graft cements because of its hydrolysis properties 

(Perera et al., 2010). 

The main difficulty encountered in the sintering of β-TCP comes from the β → α phase 

transformation that occurs at ~1300 °C. It is accompanied by a sudden thermal expansion, which 

creates mechanical stresses inducing cracks within the sample (Itatani, Takahashi, Howell, & 

Aizawa, 2002; X. L. Wang, Fan, & Zhang, 2005). This leads to a low mechanical reliability of 

TCP ceramics sintered above the transformation temperature (Raynaud, Champion, Lafon, & 

Bernache-Assollant, 2002). Another point is that the reverse transformation α → β during cooling 

to room temperature does not occur in the same conditions as the β → α transformation, α-TCP 

being generally present in the cooled ceramics heated above the transformation temperature. 

Slow kinetics of the α → β transformation is often encountered in dimetallic phosphate 

compounds Me2(PO4)3 (Averbuch-Pouchot & Durif, 1996). 

According to the work of Monma and Goto, an annealing treatment of TCP for at least 5 

h at 850 °C would be necessary to complete this transformation (Monma & Goto, 1983). To 

overcome these difficulties, some authors used MgO (Famery, Richard, & Boch, 1994; 

Rabadjieva et al., 2011), ZnO (Bandyopadhyay, Withey, Moore, & Bose, 2007; Carbajal, 

Caballero, & Sainz, 2012; Rabadjieva et al., 2011), MgO–ZnO (Xue, Dahlquist, Banerjee, 

Bandyopadhyay, & Bose, 2008), MgO–SrO (Banerjee, Tarafder, Davies, Bandyopadhyay, & 

Bose, 2010), SiO2– ZnO (Fielding, Bandyopadhyay, & Bose, 2012) or Ca2P2O7 (Ryu et al., 

2002) as additives to increase the high-temperature limit of β-TCP. Similarly, the influence of 

TiO2, Ag2O, NaF, CaO or SiO2 addition on the sintering of β-TCP has also been reported 

(Bandyopadhyay et al., 2007; Douard et al., 2011; Seeley et al., 2007; Seeley, Bandyopadhyay, 
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& Bose, 2008). All these oxides were also chosen because they were expected to improve the 

biological and/or mechanical properties of sintered ceramics. 

1.3 Objective and Motivation 

Magnesium alloys are susceptible to corrosion in the physiological environment of the 

body. There are two potential solutions to stop or reduce the corrosion of magnesium; the first 

one is to develop alloys of magnesium using metals that are biocompatible and the second 

solution is based on the application of surface modification. In this research, a combined 

approach has been used that allows the mechanical properties of the implants to be supported by 

the metallic structure, while the osteointegration is promoted by the applied coating. Attempts 

have been made to improve the mechanical properties of tricalcium phosphate through the 

addition of dopants. The significance of adding dopants to TCP is to modify the rate of 

resorption, improve the material’s hardness and promote bioactivity, thus, controlling the rate of 

mechanical degradation and inhibiting corrosion of the magnesium alloys. The focus to improve 

densification was based on the combination and ratio of dopants added to TCP. 

Sun et al. showed that addition of zinc (Zn) and calcium (Ca) enhances the corrosion 

potential of the magnesium alloy and the in vitro degradation rate of the Mg4Zn0.2Ca alloy was 

similar to that of high-purity magnesium in SBF (Sun, Zhang, Wang, Geng, & Jiao, 2012). After 

30-day degradation in SBF solution, the values of the yield strength, the ultimate tensile strength 

and the elongation of the alloy were enough for the fixed bone. In vitro cytotoxicity experiments 

indicated good biocompatibility of the alloy. For this work a magnesium alloy of Mg2Zn0.3Ca 

cast in our lab was used as a substrate as well as commercially bought unalloyed magnesium. 

The present research relates to bioceramic coating of metallic devices for use in bone 

fixation. Ca-P coating is believed to first allow strong tissue-material interaction and then 
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slowly dissolve away as tissue grows on the material. Pulsed laser deposition was chosen as the 

method to apply these coatings. The parameters to produce the smoothest and most 

stoichiometric films were optimized thorough experiments and characterized through structural, 

mechanical and biological tests to investigate the effect of dopant addition on these properties. 

 X-ray diffraction was used to investigate any phase changes on the TCP films due to the 

addition of dopants and the crystallinity of the deposited films. 

 The hardness and stiffness of the ceramics and films were studied using nanoindentation 

tests. 

 Bio-mineralization due to exposure to SBF was studied by checking weight gain after 

soaking and SEM images were taken for each sample and time duration. 

 Corrosion resistance of the films after TCP coating was checked using electrochemical 

corrosion studies. 

 Biocompatibility of the fabricated coatings was studied using live-dead assay. 
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CHAPTER 2 

Literature Review 

Chapter 2 reviews the literature relevant to this research field. This chapter is divided into 

five components, (1) an introduction to the human skeletal system, the functions, composition, 

and mechanical properties of bone (2) biomaterials in orthopedics and their current use, (3) 

corrosion of implant materials, (4) choice of materials; metal substrates, bioceramics and metal 

oxide dopants used, and (5) an overview of the pulsed laser deposition technique used in the 

current research and methods used to characterize the newly developed implant material. 

Through this chapter, the reader can understand the importance of the role that metals and 

ceramics playing in tissue engineering. 

2.1 Human Skeletal System – An Introduction 

The human skeletal system provides support and protection for the body as well as sites 

for muscle attachments and the production of blood cells (Larry L. Hench, October 1993). The 

skeleton of an adult is made up on average of 206 bones, but with age this number decreases as 

some bones become fused together during the development of the circulatory and nervous 

system. Unlike adults the skeleton of an embryo is comprised of about 350 completely 

cartilaginous bones, over 140 more than adults. In an adult skeleton, the cartilage almost 

completely disappears: it remains in a few places which include certain parts of the ear, the nose, 

the mouth, the anterior parts of the ribs, and on the surface of the joints (Figure 2.1). 

The human skeleton reaches full maturity at about 25 years of age and is comprised of 

two categories: the axial skeleton, which includes the cranium, the spinal column, and the 

thorax. The basic function of this section of the skeleton is to protect the internal organs: and 

the appendicular skeleton, which includes the upper and lower limbs, and the pelvis; its basic 
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function is to enable movement and support. Of the 206 bones in the human skeletal system, 

approximately 29 of them are defined as cranial bones; 26 make up the spinal column, roughly 

25 can be found in the upper torso, also 64 make up both upper limbs including the hands, and 

62 make up both lower limbs (Giovanni Iazzetti, 2002). 

 

Figure 2.1 The Human Skeletal System (Webnode). 
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2.2 Functions and Composition of Bone 

The four primary functions of bone are as follows: first, bones provide structural 

support for all organs and tissues in the body and act as a surface for muscle attachment to 

facilitate movement of the body. Second, the skeleton system provides protection for all internal 

organs. Third, bones act as a storage facility by maintaining and storing over 99 % of the body’s 

total calcium supply. Finally, marrow within bones is the site of production of white and red 

blood cells and plays an important role in the development of the body’s immune system 

(Iwasaki, Torres, Ohashi, Robinson, & Barber, 1997). 

Bones make up about one sixth of the total body mass and have a density of 

approximately 1.9 g/cm3. The principal constituent of bone is calcium phosphates in the form 

of the ceramic phase hydroxyapatite (HA) (Ca10(PO4)6(OH)2) (Mow, 2005). Another major 

constituent is the mineral phase of bone, which includes calcium (Ca), phosphorous (P), 

sodium (Na), potassium (K), magnesium (Mg), fluorine (F), chlorine (Cl), carbonate (COଷ
ିଶ) 

and some other trace elements are strontium (Sr), lead (Pb), barium (Ba), iron (Fe), zinc (Zn), 

copper (Cu) (Agna, Knowles, & Alverson, 1958). 

2.3 Mechanical Properties of Bone 

Bone tissue is a calcium phosphate ceramic based material, with specific mechanical 

properties such as toughness, compressive strength, low density, lightness, corrosion, and 

fatigue resistant. However, bone material primarily is brittle and viscoelastic in nature whose 

mechanical properties are determined by porosity, degree of mineralization, and other structural 

factors. The mechanical properties of the human skeletal system have been studied and 

summarized by many authors (Ellis Iii, 1993; Matthews, Khambay, Ayoub, Koppel, & Wood, 

2003; Shadanbaz & Dias, 2012; Wood, Zollman, Reuben, & Brandt, 1975). 
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Bone has a varied arrangement of material structures at many length scales that work in 

concert to perform diverse mechanical, biological and chemical functions such as structural 

support, protection and storage of blood cells, and mineral ion stability. In order to understand 

the mechanical properties of bone material, it is important to understand the mechanical 

properties of its component phases, and the structural relationship between them at the various 

levels of hierarchical structural organization (Bauer, Schmuki, von der Mark, & Park, 2013; 

Böstman & Pihlajamäki, 2000; Y. B. Wang et al., 2011). These levels and structures are: 

1. The macrostructure (from 10 to 500 mm): This consists of cancellous and cortical bone. 

2. The microstructure: containing the Haversian systems, osteons, and single trabecular. 

3. The sub-microstructure (1–10 mm): enclosing the lamellae. 

4. The nanostructure (from a few hundred nanometers to 1 mm): This holds the fibrillar 

collagen and embedded mineral. 

5. And finally the subnanostructure (below a few hundred nanometers): which is 

comprised of a molecular structure of constituent elements, such as mineral, collagen, 

and non-collagenous organic proteins (Gao, 2006). 

 

Figure 2.2 The hierarchical levels of bone structure (Rogel, Qiu, & Ameer, 2008). 
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This hierarchically organized structure has an irregular, yet optimized, arrangement and 

orientation of the components, making the material of bone heterogeneous and anisotropic. 

Based on the properties of bone shown in Table 2.1 (Larry L. Hench, October 1993) *(D. Shi, 

2004), various materials have been used in bone engineering; in the following section some of 

these materials and methods of their application will be discussed. 

Table 2.1 

Mechanical properties of bone 

Property Cortical Bone Cancellous Bone Articular Cartilage 

Compressive Strength 

(MPa) 

*137.8 

100-230 

*41.4 

2-12 
- 

Flexural, Tensile 

Strength (MPa) 

50-150 

*68.6 

10-20 

*3.5 
10-40 

Strain to Failure 1-3 5-7 15-50 % 

Young’s Modulus 

(Tensile) (GPa) 
14-20 

0.5-0.05 

*3 
0.001-0.01 

Fracture Toughness 

(K1c)(MPa m1/2) 
2-12 - - 

2.4 Biomaterials in Orthopedics 

A biomaterial is a material that interacts with human tissue and body fluids to treat, 

improve, or replace functional elements of the human body. Biomaterial devices used in 

orthopedics are commonly called implants; these are manufactured for numerous orthopedic 

applications, they are meant to be implanted in the human body as components of devices that 

are designed to perform certain biological functions by substituting, repairing or supporting 
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different tissues such as teeth, bone, cartilage or ligaments and tendons, and even by guiding 

bone repair when necessary (Figure 2.3). Often metals and other materials have been used for 

this purpose. Metals in biomedical device are exploited due to their inertness and structural 

functions. They are generally preferred over polymers or ceramics especially in applications 

where the implants are subjected to static, dynamic or cyclic loads requiring a combination of 

strength and ductility. 

 

Figure 2.3 (a) Hip implant, (b) tooth implant, (c) & (d) knuckle implants. 

The late l9th century steered in the concept of sterile surgery, and with research, 

development, and the optimization of implant materials, came the possibility of implanting 

foreign materials into the body with low risk of rejection due to infection or other adverse 

reactions. However, at this time there existed no suitable material to withstand the challenges 

posed by the biologic environment, particularly in regard to strength and corrosion resistance. 

Biocompatibility is the primary characteristic that a medical device should have in any 

orthopedic application; that is, it must not adversely affect the local and general host. The human 

body, however, consists of a highly corrosive environment; consequently, the first generation of 

biomaterials was required to be as inert as possible to reduce corrosion and the release of ions 

and particles during the implant lifetime (Larry L. Hench & Polak, 2002). 

Mechanical properties play a leading role in the selection of candidate materials for 

implant manufacture. Generally the mechanical properties of a material are described in terms of 
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the deformation or strain produced by an applied stress. A fracture-fixation device typically 

remains in service for a period of months or years and must endure repeated loading under 

corrosive conditions. The mechanical properties of fatigue, creep, and stress relaxation reflect 

time-dependent materials' behavior and are important mechanical parameters in the selection 

process. Figure 2.4 illustrates the uses of biomaterials in the human body. 

 

Figure 2.4 Applications of biomaterials [After (OpenCourseWare)]. 

2.5 Bone Implants and Fixation Devices 

Metal alloys such as Ti alloys, stainless steel and CoCr alloys are currently the most 

popular materials for manufacture of implants and fracture-fixation devices. Two major 
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disadvantages of these materials are their extreme stiffness, which causes stress shielding of the 

underlying bone, and the necessity of removing metallic implants after fracture healing is 

complete, in certain cases. To overcome the shortcomings of these metal alloys, bioresorbable 

materials for use in fracture fixation have been extensively studied and researched. 

Unfortunately, the currently available bioresorbable materials lack strength and stiffness and are 

associated with inflammatory reactions in a significant number of cases (Navarro, Michiardi, 

Castaiio, & Planell, 2008). 

Fractures have been treated with many different methods throughout history, depending 

on the fracture; one might be treated in a cast or splint, whereas another would require open 

reduction and internal fixation. Immobilization by casting, bracing, or splinting a joint above and 

below the fracture was used for most long bone fractures (Farlex, 2013). The ultimate aim of 

applying a fracture fixation device is to restore the structural integrity of the damaged bone; this 

is dependent upon a number of materials properties, device design, and physiologic 

requirements. It is important to take into consideration the site and type of fracture, the possible 

operative approaches, and the rapidity of bone healing. Specifically, the materials selection 

process must incorporate the chemical and mechanical demands of the biologic environment to 

achieve the desired outcome. 

Wires, screws, pins, plates, rods, and nails are some structures currently in use 

extensively to restore the function of traumatized or degenerated bone tissues. Mechanical failure 

of these internal fixation devices may occur during orthopedic surgery, which may be caused by 

poor material quality, inadequate design, or wrong material choice. The biomaterials for bone 

fixation devices may include stainless steel, Ti alloys, Co-Cr alloys, iron, magnesium, polymers, 

and ceramics. Each of these materials has a set of typical mechanical properties, including 
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Young’s modulus, hardness, tensile strength, compressive strength, shear strength and ductility. 

The design of these bone fixation devices must be adapted considering these properties and 

possible forces applied during implantation. Commonly there are two types of fixation devices 

internal and external devices. 

2.5.1 External fixation devices. External fixation entails the use of pins and/or wires 

secured to external scaffolding to provide support to a limb (Figure 2.5). In this way, this device 

is a stabilizing frame that holds the bones in the proper position while they heal. Some of the 

advantages of external fixation are that it is quickly and easily applied. When compared with 

internal plates and screws, external fixators cause less disruption of the soft tissues and blood 

supply (Claes, Heitemeyer, Krischak, Braun, & Hierholzer, 1999). The risk of infection at the 

site of the fracture is minimal, but there is a risk of infection where the pins are inserted from the 

skin into the bone. They are mainly used where the skin and other soft tissues around the fracture 

are badly damaged. 

 

Figure 2.5 External bone fixation device (A.D.A.M., 2006). 
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2.5.2 Internal fixation devices. Metal implants are used successfully for fracture 

stabilization because they reproduce the supportive and protective functions of bone without 

impairing bone healing, remodeling, or growth. In an internal fixation device, the implant is able 

to withstand tension, unlike the fractured bone, which is best suited to resist compression; the 

most efficient biomechanical internal fixation takes advantage of this difference by loading the 

bone in compression and the metal in tension (Bone & Expressed, 1976). It involves the surgical 

implementation of implants for the purpose of repairing a bone. During this operation, the bone 

fragments are first repositioned (reduced) in their normal alignment, and then held together with 

special screws or by attaching metal plates to the outer surface of the bone (Figure 2.6). In the 

presence of fragments, they may also be held together by inserting rods down through the 

marrow space in the center of the bone to guide the healing process of a bone, as well as the 

setting of the bone itself, this procedure is known as open reduction internal fixation. 

 

Figure 2.6 Internal bone fixation device (A.D.A.M., 2006). 

There is currently no perfect material for use in internal fixation; therefore, a variety of 
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issues must be examined when specific metals are considered as surgical implant. The material 

must be systemically nontoxic, non-immunogenic, and non-carcinogenic; it should have good 

mechanical strength, such as tensile, compressive, and torsional strength, stiffness, fatigue 

resistance, and easy to shape and form. It should be visible in X-ray, resistant to degradation and 

erosion or bio-corrosion, easily integrated and have minimal adverse effects on imaging such as 

magnetic resonance imaging (MRI). Numerous materials have been studied for use to fabricate 

these bone stabilizing devices, including metals, polymers and ceramics. The following section 

will give an overview of some of the materials currently in use for the fabrication of such 

devices. 

2.6 Metals for Implants 

Metals have been used as implants material for more than 100 years, when Lane first 

introduced metal plate for bone fracture fixation (Lane, 1895) . In the early development, metal 

implants faced corrosion and insufficient strength problems (Lambotte, 1909; Sherman, 1912). 

Shortly after the introduction of the stainless steel in 1920s, which has had far-superior corrosion 

resistance to anything in that time, it immediately attracted the interest of the clinicians. 

Thereafter, metal implants experienced vast development and clinical use depending on specific 

implant applications. 

The majority of elements in the periodic table are metals, remarkably few warrant even 

preliminary consideration for uses as implant materials since the majority of metals and alloys 

are not suitable for biologic implantation due to the relatively corrosive environment combined 

with the poor tolerance of the body to even minute concentrations of most metallic corrosion 

products, this eliminates from discussion most metallic materials. However, with advances in 

biotechnology, many metals and alloy systems have been developed with a high degree of 
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corrosion resistance. 

Metallic biomaterials do not possess bio-functionalities like blood compatibility, bone 

conductivity and bioactivity (Niinomi, 2002). Hence, surface modifications are often times 

required. Improving their bone conductivity has been done by coating with bioactive ceramics 

like hydroxyapatite (Habibovic, Barrere, van Blitterswijk, de Groot, & Layrolle, 2002), or blood 

compatibility by coating with biopolymers (Lahann et al., 1999). Nowadays, large number of 

metallic biomaterials composed of nontoxic and allergy-free elements are being developed. Even 

more, new types of biodegradable metals have been proposed as temporary implants (H. 

Hermawan & Mantovani, 2009). Generally, all metal implants are exploited due to their inertness 

and structural functions; they are generally non-magnetic and high in density, making them 

compatible with magnetic resonance imaging techniques and visible under X-ray imaging.  

Metals are highly superior to polymers and ceramics, due to the fact that artificial 

implants are subjected to loads, either static or repetitive, and this condition requires an excellent 

combination of strength and ductility (Hendra Hermawan, 2012). Specific requirements of 

metals depend on the specific implant applications. Stents and stent grafts are implanted to open 

blood vessels; therefore, it requires plasticity for expansion and rigidity to maintain dilatation. 

For orthopedic implants, metals are required to have excellent toughness, elasticity, rigidity, 

strength and resistance to fracture, shown in Figure 2.7 (F. Witte, Crostack, Nellesen, & 

Beckmann, 2011). For total joint replacement, metals need to be wear resistant to avoid debris 

formation resulting from friction. Dental restoration requires strong and rigid metals and even the 

shape memory effect for better results. Magnesium has mechanical properties closest to those of 

bone when compared to the properties of other metallic materials currently in use for orthopedic 

implants. 
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Figure 2.7 Mechanical properties of bone and implant materials. 

Of the possible metallic candidates, tantalum and the noble metals do not have suitable 

mechanical properties for the construction of most orthopedic tools and implants, while 

zirconium is in general too expensive. Some of the most popular metals currently in use as 

implants include: 

 Stainless Steel 

The most used types of stainless steels for implant fabrication are Types 316 and 316L. 

Forged stainless steel has greater yield strength than cast stainless steels, but has lower fatigue 

strength than other implant alloys. However, stainless steel is more ductile and more easily 

machined, and recent advancements have significantly enhanced its properties (Hayes & 

Richards, 2010). Stainless steel that has a low content of impurities and a passivated surface was 

found to be suitable for implantation in the human body. Despite these qualities, stainless steel is 

inferior to other super alloys, as it has less desirable erosion, biocompatibility, and fatigue life 

properties; for this reason it is no longer used routinely (Weckbach, Losacco, Hahnhaussen, 
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Gebhard, & Stahel, 2012). 

 Cobalt Chrome Alloys 

Cobalt-based alloys are highly resistant to corrosion and especially to attack by chloride 

byproducts, making them quite resistant to fatigue and corrosion induced cracking. However, as 

is true of other alloys, cobalt based alloys may fail because of fatigue fracture. As in all highly 

alloyed metals in the body environment, galvanic corrosion can occur, but to a lesser extent than 

in the iron-based alloys (M. Ogawa, Tohma, Ohgushi, Takakura, & Tanaka, 2012).  

There are basically two types of cobalt chromium alloys. CoCrMo alloy, which is usually 

castable and the other is CoNiCrMo alloy, which is usually wrought by (hot) forging. The 

wrought CoNiCrMo alloy is usually used for making the stems of prosthesis for heavily loaded 

joints such as the knee and hip. The castable CoCrMo alloy has been used for many decades in 

dentistry and recently has found a market in the making of artificial joints (Damron, 2008). 

 Titanium and Titanium-Based Alloys 

The first recorded use of titanium for implant fabrication dates back to the late 1930's. 

Titanium's lightness and good mechanical and chemical properties makes them outstanding 

features for implant applications (Disegi & Wyss, 1989). One of the most commonly used 

titanium alloy in the manufacture of implants is (Ti6Al4V), its main alloying elements are 

aluminum and vanadium. Titanium alloys outperform any other implant material; they 

outperform stainless steel when compared by specific strength. One of the shortcomings of 

titanium is its poor shear strength causing stress shielding, thus, making it less desirable for use 

on bone screws, plates and similar applications. 

Titanium-based alloys that have a high coefficient of friction that can cause problems, 

they tend to seize when in contact with other surfaces. Wear particles are formed if two parts of 
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an implant rub against one another, therefore, implants of titanium upon titanium generally are 

not used as joint surfaces (Watzinger et al., 2000). The corrosion resistance of titanium is 

attributed to the formation of a surface oxide film on exposure to air. Under in viv' conditions, 

the oxide is the only stable reaction product. 

Table 2.2 

Implants division and type of metals used 

Division Example of implants Type of metal 

Cardiovascular Stent, Artificial valve 316L SS; CoCrMo; Ti Ti6Al4V 

Orthopedic 
Bone fixation (plate, screw, 

pin), Artificial joints 

316L SS; Ti; Ti6Al4V; CoCrMo; 

Ti6Al4V; Ti6Al7Nb 

Dentistry Orthodontic wire Filling 
316L SS; CoCrMo; TiNi; TiMo 

AgSn(Cu) amalgam, Au 

Craniofacial Plate and screw 316L SS; CoCrMo; Ti; Ti6Al4V 

Otorhinolaryngology 
 

Artificial eardrum 316L SS 

2.7 Magnesium as a Metal Implant 

The major advantages of magnesium alloys as temporary biomaterials are their good 

mechanical properties, biocompatibilities, but being one of the most electrochemically active 

metals they are prone to corrosion. Various magnesium alloys have been investigated as 

biodegradable materials and some of them have been shown good biocompatibility. For example, 

AZ31, AZ91, WE43, LAE442, Mg-Ca and Mg-Zn have been investigated for bone implant 

application (X. Gu, Zheng, Cheng, Zhong, & Xi, 2009; Y. Z. Wan et al., 2008; Xu, Zhang, Yin, 

Zeng, & Yang, 2008; Zeng, Dietzel, Witte, Hort, & Blawert, 2008). 

Magnesium is essential to human metabolism and is the fourth most abundant cation in 
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the human body. The human body has an estimated 25 g of magnesium stored in bone tissue 

(Hartwig, 2001; Okuma, 2001; N. E. L. Saris, E. Mervaala, H. Karppanen, J. A. Khawaja, & A. 

Lewenstam, 2000; Vormann, 2003; Wolf & Cittadini, 2003). Magnesium is a cofactor for many 

enzymes and stabilized the structures of DNA and RNA (N.-E. L. Saris, E. Mervaala, H. 

Karppanen, J. A. Khawaja, & A. Lewenstam, 2000; Staiger et al., 2006). Magnesium and 

magnesium alloys have density ranging from 1.74 to 2.0 g/cm3, which is much less than that of 

the biomedical Ti alloy (4.4–4.5 g/cm3) and close to that of the bone (1.8– 2.1 g/cm3) (Staiger et 

al., 2006). The fracture toughness of magnesium is greater than ceramic biomaterials, while the 

elastic modulus (41–45 GPa) is close to that of the bone that avoids the stress shielding effect (J. 

Jacobs et al., 2003). Magnesium has standard electrode potential – 2.37 V, and bare magnesium 

metal exhibits even poorer corrosion resistance in Clି containing physiologic environment. 

Therefore, magnesium alloys could be developed as a new biodegradable metal, taking 

advantage of their fast corrosion rate in the physiologic environment. 

Magnesium-based materials were first introduced as orthopedic biomaterials in the first 

half of the century. Lambotte first reported on the use of magnesium as an orthopedic implant 

(Lambotte, 1909), a plate of magnesium with gold-plated steel nails were used to secure a 

fracture involving the bones of the lower leg (Lambotte, 1932). The implant was unsuccessful as 

the magnesium metal corroded only 8 days after surgery and produced a large amount of gas 

beneath the skin. In an attempt to slow the corrosion process and increase the mechanical 

integrity of the implants, in vivo works have investigated various magnesium alloys (McBride, 

1938; Troitskii & Tsitrin, 1944; F. Witte et al., 2005). 

Troitskii and Tsitrin, reported on 34 cases where magnesium alloyed with small levels of 

cadmium, was constructed into plates and screws and used to secure various fractures. 9 of these 
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trials were unsuccessful; these failures were attributed to infection, or difficulties arising from 

not allow for treatment of subcutaneous gas bubble formation, although no adverse inflammatory 

reactions to the implant were observed. The material is reported to have stimulated the 

development of a hardening at the fracture site and there was hydrogen gas evolution during the 

corrosion process, however, using a subcutaneous needle to drawing off the gas easily treated 

this problem. The mechanical integrity of most was maintained for 6–8 weeks, with complete 

resorption occurring in 10–12 months. On the other hand, it was also reported that some implants 

only survived 3–5 weeks, which was attributed to increased acidity in the site of some fractures 

(Troitskii & Tsitrin, 1944). Similar results were reported by Znamenski, where magnesium alloy 

containing 10 wt % aluminum was used to treat gunshot wounds in two young men (Znamenskii, 

1945). In both cases, fractures fused in 6 weeks, with the magnesium plate no longer detectable 

after 6 weeks, and the pins no longer detected after 4 weeks. 

McBride reports on the use of screws, pegs, plates and bands prepared from Mg–Al–Mn 

alloys to secure 20 fractures and bone grafts. No systemic reactions to the use of magnesium 

alloys or inflammatory reactions adjacent to the implant are observed. A positive effect on the 

bone tissue and deposits of the osseous callous were observed despite there being no effect on 

the cancellous bone tissues (McBride, 1938). McBride also reported that while the absorption 

rate was higher for traumatized bone tissue, a typical magnesium–aluminum–manganese 1 gram 

screw would completely absorb in 120 days (McBride, 1938). 

These early examples imply that magnesium-based materials are non-toxic and may 

actually stimulate bone tissue healing. However, the rate of corrosion of magnesium, or these 

simple alloys, occurs at a rate that is too rapid to allow sufficient time for healing as it is 

desirable to have the implanted fixture present for at least 12 weeks (F. Witte et al., 2005). In the 
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following sections, the science behind the corrosion of these metal implants will be discusses, as 

well as some methods currently being studied to inhibit such corrosive behavior. 

2.8 Corrosion of Implant Materials 

The manner in which that material will affect the body must be considered any time a 

foreign material is placed inside the human body. Because all metals corrode, preventing 

corrosion is difficult; thus, choosing better quality materials is one apparent solution to this 

problem. Efforts should also be made to use materials whose corrosion does not create adverse 

effects inside the body. These efforts can reduce the complications associated with corrosion 

such as the increase in pain for the patient and reduction in the functional capacity of the implant. 

The selection of a metallic biomaterial to be employed as a load-bearing orthopedic 

device should be based on a reliable analysis of relevant materials properties. Several reports 

indicate that fatigue-related mechanisms are responsible for the most part of mechanical failures 

of implantable medical metallic components (Fleck & Eifler, 2010; Giori, 2010; Niinomi, 2007; 

Vadiraj & Kamaraj, 2007). Chao and López reported that nearly 90 % of the surface fracture of 

cementless hip prosthesis manufactured with Ti–6Al–4V alloy was due to fatigue mechanisms 

(Chao & López, 2007). In addition to oscillating mechanical loads, implants are exposed to the 

physiological fluid that consists of a saline solution including Naା, Mgଶା, Clି, SOସ
ଶି and HCOଷ

ଶି 

(Bloyer et al., 2007). 

Metallic implants owe their corrosion resistance to the formation of a passive film, which 

is a stable, compact and continuous oxide surface film that prevents the underlying bare metal 

surface from coming into contact with these corrosive ions (Antunes & de Oliveira, 2009). 

However, in case the passive film is locally dissolved by chloride ions, pits are generated that 

rapidly propagates, leading to pitting corrosion. Sudarshan et al. related nucleation of fatigue 
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cracks to the presence of pits on the surface of metallic materials (Sudarshan, Srivatsan, & 

Harvey, 1990). This is due to the fact that the environment can accelerate the initiation of a 

surface flaw and propagate it to a critical size, leading to fracture. This process is known as 

corrosion fatigue, denoting the failure of a material under the simultaneous action of cyclic loads 

and chemical attack (Suresh, 2004). The reduction in fatigue life of metallic implants under 

corrosion fatigue has been well documented (Azevedo, 2003; Giordani, Guimarães, Pinto, & 

Ferreira, 2004; Magnissalis, Zinelis, Karachalios, & Hartofilakidis, 2003). 

2.8.1 Corrosion of magnesium-based alloys. Magnesium alloys are currently 

considered for applications as load-bearing implant devices such as plates, screws and pins for 

repairing bone fracture (Frank Witte et al., 2008). This arises from the low corrosion resistance 

properties of magnesium alloys in aqueous environments (Staiger et al., 2006). While for most 

engineering applications the susceptibility to corrosion is a critical limitation of these materials, 

for biomedical purposes it is a desirable property. If the material is employed as a fixture device, 

degradation may be beneficial to the patient, enabling it to be absorbed by the body, eliminating 

the need for a new surgical procedure to remove the device (Jamesh, Kumar, & Narayanan, 

2011). 

Biodegradable magnesium-based implants are very attractive since the in vivo corrosion 

of these materials generates mainly non-toxic, soluble byproducts (Abidin, Martin, & Atrens, 

2011; Harandi, Idris, & Jafari, 2011; J. Yang, Cui, Lee, & Wang, 2010). However, the evolution 

of hydrogen gas during in vivo degradation of magnesium alloys is a major drawback. If the 

degradation is too fast, hydrogen may accumulate as subcutaneous gas bubbles, causing the 

implant device to lose its mechanical integrity before the effective healing of the fractured bone 

(Xu, Yu, Zhang, Pan, & Yang, 2007; E. Zhang, Yin, Xu, Yang, & Yang, 2009). Hence, 
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controlling the corrosion rate of magnesium-based biomedical alloys is of utmost importance. 

Several studies have concentrated on this subject, investigating the effect of different 

alloying elements and coatings on the corrosion properties of biodegradable magnesium alloys 

(Y. W. Song, Shan, & Han, 2008; Z. Wen, Wu, Dai, & Yang, 2009; S. Zhang et al., 2010; Y. 

Zhang, Yang, Cui, Lee, & Lee, 2010). Reports have focused mainly on aluminum and rare earth 

(RE) containing magnesium alloys due to the positive effect that these elements have on 

arresting the corrosion of magnesium in physiological environments (Avedesian, Baker, & 

Committee, 1999). However, Witte et al. (Frank Witte et al., 2008) have recently recommended 

that magnesium alloyed with Al and RE systems should avoided due to their cytotoxic effects 

and the possible harmful effects of these elements on osteoblasts (El-Rahman, 2003; Ku, 

Piolettli, Browne, & Gregson, 2002; W. Yang, Zhang, Liu, & Xue, 2006). As a result, new 

biodegradable magnesium alloys have recently been developed for biomedical purposes and their 

in vitro corrosion resistance in physiological fluids evaluated (X. N. Gu et al., 2011; Y. Z. Wan 

et al., 2008; E. Zhang, Yang, Xu, & Chen, 2010). 

Magnesium alloys corrode in aqueous materials by several different oxidation-reduction 

reactions, which are influenced by the alloying elements. Generally, the corrosion of magnesium 

in water will yield magnesium hydroxide and hydrogen gas evolution (F. Witte et al., 2009). The 

following net reaction (1) from half-cell reactions are given below: 

Mg	ሺsሻ  	2HଶO	ሺaqሻ → MgሺOHሻଶ	ሺsሻ 	Hଶ	ሺgሻ     (1) 

Contributing Half-cell reactions: 

 Mg	ሺsሻ → 	Mgଶା	ሺaqሻ  2	eି	Mg (s)                    (Oxidation Reaction)  (2) 

													2	HଶO	ሺaqሻ  	2	eି → 	Hଶ	ሺgሻ  	2	OHିሺaqሻ       (Reduction Reaction)    (3) 

												Mgଶା	ሺaqሻ  	2	OHି → Mg	ሺOHሻଶ	ሺsሻ                  (Byproduct Formation)  (4) 
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As seen from these equations, magnesium’s reaction with aqueous solutions results in the 

production of hydrogen gas. In orthopedic applications where development of blood vessels and 

transport is minimal, this might lead to the formation of potentially harmful subcutaneous 

hydrogen pockets. Experimentation has shown that the addition of zinc has the ability to 

significantly decrease the amount of hydrogen gas evolved when measured by electrical 

corrosion testing (F. Witte et al., 2010). 

The types of corrosion that are evidenced on the surface of the material are dependent 

upon the electrolytic medium in which the corrosion of the material is taking place (G. Song, 

2007; F. Witte et al., 2005). The medium in which the material is placed greatly influences the 

parameters and degree to which the corrosion occurs, since corrosion is a surface effect. It has 

been noted that the corrosion of magnesium in water forms a hydroxide layer on the surface of 

the material. If the corrosive medium contains any chlorides with concentrations above 30 

mmol/L, the hydroxide will be converted to magnesium chloride (MgCl2) rather than magnesium 

hydroxide (Saw, 2003). In the case of biological fluids where chloride concentrations are 

approximately 150 mmol/L, surface pitting corrosion is observed (G. Song, 2007). 

Many methods are being developed to inhibit the corrosive properties of magnesium, 

such as alloying, heat treatment and surface modification. In this research the use of ceramic 

coating to ihibit these corrosive properties is proposed. In the following sections we will discuss 

the the properties of bioceramics and the reason behind their selection. 

2.9 Bioceramics 

Ceramics used for the repair and reconstruction of diseased or damaged parts of the 

musculo-skeletal system, termed bioceramics, may be bioinert (e.g., alumina and zirconia), 

resorbable (e.g., tricalcium phosphate), bioactive (e.g., hydroxyapatite, bioactive glasses, and 
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glass-ceramics), or porous for tissue ingrowth (e.g., Ca-P-coated metals). Applications include 

coatings of orthopedic and dental implants, maxillofacial surgery, ear, nose, and throat (ENT) 

diseases and scaffolds for bone growth and as powders in total hip and knee surgery (F. Zhang, 

Chang, Lu, Lin, & Ning, 2007). 

Bioceramic is the name given to this class of ceramics used for repair and reconstruction 

of these diseased and damaged parts of the musculoskeletal system. These ceramics including 

calcium phosphate and materials such as calcium aluminates, titanates, zirconates, alumina and 

silica have been used for surgical implantations. Many of these ceramics are mostly inert or 

insoluble in human body fluids, they are at their most stable form and cannot be oxidized any 

further, some are bioactive or surface reactive and bioresorbable or biodegradable, (Wise et al., 

2000) examples of these bioinert materials include zirconia, silicon nitrides, and alumina. 

Some glass ceramics and dense hydroxyapatite are bioactive whereas tetra calcium phosphate 

and tricalcium phosphate are bioresorbable ceramics (Park, 2000). Calcium phosphate 

bioceramics may be bioactive or bioresorbable depending on the phase being used. The 

presence of water and the temperature, both during processing and in service, determine the 

stable phases of calcium phosphate. 

2.9.1 Bioactive ceramics. Examples of bioactive ceramics are low silica glasses, and 

various calcium phosphates. In general, a material that elicits a specific biological response at 

the interface of the material is termed a bioactive material. This response results in a formation 

of a bond between the tissue and that material; thus, they can be used to transfer loads to and 

from living cells. Normally cells grow directly adjacent to the material and in some cases may 

actually dissolve the material over time. These calcium phosphates are very similar to bone 

material (P. Ducheyne & Qiu, 1999). The high porosity of bioactive ceramics is often what 
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increases their surface activity. Uniform porosity in the order of 0.3 - 0.4 mm is desirable to 

facilitate the in-growth of bone into pores in alumina (bioinert material) or hydroxyapatite 

(bioactive material).  

One of the main disadvantages of bioactive ceramics is their low strength. For this 

reason they are most often used in composites. Usually they are used to coat a bioinert metal, 

and many different combinations and morphologies have been used successfully (Cao & 

Hench, 1996). Fiber and particulate reinforcement are commonly used with bioactive materials 

as well. 

2.9.2 Bioresorbable ceramics. Often times foreign materials are needed to be placed 

temporarily inside the body for a certain length of time in order to promote natural healing of the 

surrounding tissues, for example in the cases of hip replacements, vascular stints, or bone grafts. 

In those situations the foreign material needs to be removed after it has outlived its usefulness. 

However, it is imperative to shorten the total recovery time of the patients and decrease the risk 

of exposure to various other complications. This can be achieved through the use of 

bioresorbable materials that degrade in the body over time; thus, a second surgery to remove 

implanted devices can be avoided. Furthermore, bioresorbable materials can be implanted to 

support new tissue growth until such a time as the tissue is no longer needed and completely 

replaced by the newly grown tissue (D. D. Lee, Rey, & Aiolova, 2000). 

Bioresorbable ceramics typically are calcium-based materials such as calcium sulfate 

(Plaster of Paris), hydroxyapatite, tricalcium phosphate, and other calcium salts. These materials 

are designed to degrade in the body over time allowing complete replacement of the implant by 

new growth of the host tissue. This eliminates the problem of limited service life often 
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encountered with implants since the biological tissue that replaced the implant will have the 

ability to grow and repair itself. 

Challenges with resorbable ceramics include: the maintenance of the strength of the 

implant, the interface during the period of degradation, tissue growth to meet short term 

performance needs, and the matching of the material resorption rate to the rate of new tissue 

growth. Also, larger implants will leave a large quantity of material that must be absorbed by the 

body; therefore, the selected material must break down into components that are easily 

metabolized by the body, thus, the predominant use of calcium phosphates (M. Brown & 

Farrar, 2008). 

2.10 Calcium Phosphates Ceramics 

Calcium phosphate-based bioceramics have been in use in medicine and dentistry for 

more than 20 years (Barrère, Mahmood, de Groot, & van Blitterswijk, 2008; de Groot; Hulbert, 

Bokros, Hench, Wilson, & Heimke, 1987; Jarcho, 1985; Maurus & Kaeding, 2004). Applications 

include replacements for teeth, hips, knees, tendons, and ligaments and repair for periodontal 

disease, oral reconstruction, augmentation and stabilization of the jawbone, spinal fusion, and 

bone repair after major surgery. Different phases of calcium phosphate ceramics are used 

depending upon whether a resorbable or bioactive material desire. 

Calcium phosphates, such as beta tricalcium phosphate, [β-Ca3(PO4)2] and 

hydroxyapatite, [Ca10(PO4)6(OH)2] are promising compounds for bone and tooth implant 

materials (L. L. Hench, 1998; Jarcho, Salsbury, Thomas, & Doremus, 1979). While calcium 

hydroxyapatite Ca10(PO4)6(OH)2 or (HA), is the primary inorganic component of natural bone 

(Yamashita et al., 2005), trace elements are also present (Driessens & Verbeeck, 1990). HA is 

but one of a number of calcium-phosphorous (Ca-P) compounds which are biocompatible. 
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Others include octocalcium phosphate (W. E. Brown, Mathew, & Tung, 1981) and both phases 

of tricalcium phosphate Ca3(PO4)2 (α-TCP/β-TCP) (J. C. Elliot, 1994). Compounds, particularly 

HA, may show differing degrees of stoichiometry with the Ca/P ratio ranging from 1.55 to 2.2 

(Meyer & Fowler, 1997). Such materials can be artificially created by conventional high-

temperature ceramic processing (Roberto, 1995) or by low-temperature aqueous chemistry (P. 

Brown & Hocker, 1991; P. W. Brown & Fulmer, 2005). 

 

Figure 2.8 Diagram illustrating the stabilities of HA and TCP (Langstaff et al., 1999). 

Figure 2.8 shows the calculated phase diagram expected for the Ca-P system as a 

function of inverse temperature ሺKିଵሻ	and partial pressure of H2O in the thermal processing 

atmosphere. The diagram applies to a closed chemical system and utilizes a large database of 

literature values for the Gibbs free energies of formation. The most stable phase(s) are computed 
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for a large matrix of coordinates, which lead to the placement of the phase boundaries. HA 

decomposes into β-TCP at temperatures below 1100 °C under low partial pressure of H2O. α-

TCP is formed at temperatures above about 1100 °C. The predictions are consistent with high-

temperature crystallographic data for HA ceramics (Dickens, Schroeder, & Brown, 1974; Welch 

& Gutt, 1961). 

2.10.1 Hydroxyapatite. The term apatite describes a family of compounds having similar 

structures but not necessarily having identical compositions. Hence, apatite is a description and 

not a composition. Stoichiometric hydroxyapatite belongs to the general and wide apatitic group, 

represented by the formula M10(RO4)X2, where R is most commonly phosphorous, M could be 

one of several metals although it is usually calcium, and X is commonly hydroxide or a halogen 

such as fluorine or chlorine. 

Hydroxyapatite is one of the most biocompatible materials known that has been in use as 

a coating for metal implants. Hydroxyapatite, specifically, calcium hydroxyapatite is the most 

commonly used calcium phosphate in the medical industry, as it possesses excellent 

biocompatibility and osteo-conductivity (Suchanek & Yoshimura, 1998). The Ca/P molar ratio 

for HA is 1.67:1 and its theoretical density is 3.156 g/cm3. HA has hexagonal rhombic prisms 

crystal structure. It enhances bone healing adjacent to implants and establishes high interfacial 

bone-implant strength (Wise et al., 2000). 

The principal objective of using dense or porous HA implants, is to obtain a structure 

with sufficient strength and function to osseointegrate with bone during healing. Porous HA has 

comparatively low mechanical properties, thus, it is mainly used as cancellous bone substitute or 

as specific fillers for periodontal defects and maxillofacial reconstruction (Hing, Best, & 

Bonfield, 1999). 
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2.10.2 Tricalcium phosphate. Tricalcium phosphate with chemical formula Ca3(PO4)2, 

has four polymorphs, α, β, γ, and super-α. The γ polymorph is a high-pressure phase, and the 

super-α phase is observed at temperatures above 1500 °C (I. Gibson, Akao, Best, & Boneield, 

1996). Hence, the most frequently observed polymorphs of TCP bioceramics are the alpha and 

beta phases. According to Elliot, β-TCP has the rhombohedral space group R3c with unit cell 

a=1.0439 nm, c=3.7375 nm (hexagonal setting) with 21 formula units per hexagonal unit cell 

(J. Elliot, 1994). In order to make it more easy to described mathematically, a non-primitive 

hexagonal unit cell is always used to express a rhombohedral lattice by adopting the axes a, b, 

and c indicated by the arrows in Figure 2.9, which has the cell transferred to one centered at the 

points 1/3, 2/3, 2/3 and 2/3, 1/3, 1/3 and thus, the cell is three times as large, but has the shape of 

the conventional hexagonal cell with the c-direction as the unique axis (Liao, 2006). Lattices, 

which have rhombohedral centering, are normally given the symbol R. 

 

Figure 2.9 Schematic illustrating the relationship between the hexagonal and primitive 

rhombohedral unit cells. 

Figure 2.10 illustrates the structure viewed along the [0001] plane (Jay, Mallinson, Fong, 
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Metcalfe, & Grimes, 2011). Here, calcium sites are blue, phosphorous ions are purple and 

oxygen ions are red with grey tetrahedra. The five cation sites are presented below the structure 

to emphasize their polyhedra, with the central ion representing the cation and surrounding red 

atoms, oxygen. The five cation sites are described individually (Ca (1)–(5)), with the central ion 

representing the cation and surrounding red atoms, oxygen. 

 

 

Figure 2.10 The β-Ca3(PO4)2 structure viewed along [0001]. 

β-TCP is stable up to 1125 °C, but above this temperature and up to 1430 °C, α-TCP 

becomes the stable phase (J. Elliot, 1994). The dissolution rate of TCP was investigated by 

various researchers (Black & Hastings, 1998). Comparing the relative dissolution ratios of dense 

HA and TCP, the dissolution rate of TCP was found to be 12.3 times higher than that of HA in 

buffered lactic acid solution (0.4 M, pH 5.2) and was 22.3 times higher than that of HA in 

buffered ethylene diamine tetracetic acid (EDTA) solution (0.05 M, pH 8.2) (Jarco, Kay, 

Gumaer, & Doremus, 1977). Ducheyne et al. (P Ducheyne et al., 1980) compared the 

dissolution rate of six calcium phosphates in calcium and phosphate free solution at pH 7.3, the 

dissolution rate increased in the following order: 
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HA < β-TCP < α-TCP < TTCP 

Mechanical properties of TCP are rarely available, but it was reported that TCP has 

slightly higher fracture toughness than HA (Santos, Jha, & Monteiro, 1996). Fully dense and 

translucent β-TCP totally free from α modification can attain a maximum strength value of 120 

MPa (Tampieri, Fiorani, & Barone, 1995). 

The hydroxyapatite is relatively leess resorbable than tricalcium phosphate when used as 

a coating material on the implant surface (Ando, 1958; L.L. Hench & Wilson, 1993). This 

behavior allows tricalcium phosphates to be used as resorbable implants and coatings on inert 

materials to improve the interface between a prosthesis and surrounding tissues (Ando, 1958). In 

general, biodegradation of calcium phosphate ceramics is caused by physiological dissolution, 

which depends on the local pH of the environment, solubility product of the material and, 

physical disintegration into small particles as a result of preferential chemical attack on the 

grain boundaries. Biological factors such as phagocytosis (the ingestion of living cells) that 

causes a decrease in local pH value are also a factor in the dissolution of the ceramics. 

Numerous studies have been conducted to improve on the properties of bioceramics 

with the use of metal dopants, in the current research MgO, ZnO, and TiO2 have been selected 

as dopants to improve on the sintering process, the mechanical, and corrosion properties. In the 

upcoming sections, justification of the selection of these materials is discussed. 

2.11 Metal Ion Dopants 

One of most important goals is the densification of β-TCP ceramics using high 

temperature without the phase transition of β to α (Famery et al., 1994). The principal difficulties 

in the use β-TCP ceramics are achievement of high-strength and single-phase composition. The 

flexural strength of dense β-TCP ceramic is reported at 138 MPa which value is lower than that 



 42

for dense human bones (Akao, Aoki, Kato, & Sato, 1982). Bonfield argues that implant materials 

with similar mechanical properties should be the goal when bone is to be replaced (W Bonfield, 

1999). 

Research of β-Ca3(PO4)2 properties shows that there are some advantages in the use of 

metal-oxides as MgO in the densification of bioceramic compacts (Itatani et al., 2002). The 

presence of magnesium in calcified living tissues (about 0.5 % in bone or tooth enamel and more 

than 1 % in tooth dentine) suggests that this element could improve the biocompatibility of TCP 

materials (Christel et al., 1988). In this work beta tricalcium phosphate [β-Ca3(PO4)2] was doped 

with MgO, ZnO, and TiO2 to improve biocompatibility and improve hardness, corrosion 

resistance, as well as densification during sintering. 

2.11.1 Magnesium oxide. Magnesium oxide, also called magnesia, is a colorless, 

amorphous powder, which occurs in nature as periclase. It is also a source of magnesium. 

Magnesium oxide has numerous benefits and applications especially in the health care industry. 

It is necessary for the majority of bodily functions including the heart. Magnesium oxide is vital 

to maintain the integrity of the skeletal system and enhances bone density. It can slow down or 

reverse osteoporosis, i.e., abnormal bone loss due to lack of calcium. Magnesium oxide also 

maintains important bodily balance with other minerals and is associated with protein and 

carbohydrate metabolism (Lindberg, Zobitz, Poindexter, & Pak, 1990). Magnesium oxide is a 

basis of good health in many respects, according to the May 2009 edition of Disaster Medicine 

and Public Health Preparedness. For example, it aids in energy production and assists the electric 

conduction of the heart, thus minimizing the risk of heart attack. It is also observed to play an 

important role in hypertension, diabetes and stroke (Dean, 2012). 
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Magnesium is the fourth most abundant mineral in the body and is essential to good 

health. Magnesium is needed for bone, protein, and fatty acid formation, making new cells, 

activating B vitamins, relaxing muscles, clotting blood, and forming adenosine triphosphate 

(ATP; the energy the body runs on). The secretion and action of insulin also require 

magnesium. Approximately 60 % of total body magnesium is found in bone, the other half is 

found predominantly inside cells of body tissues and organs. Only 1 % of magnesium is found 

in blood, but the body works very hard to keep blood levels of magnesium constant (Rude, 

1998). Also, there is growing evidence that magnesium may be an important factor in the 

qualitative changes of the bone matrix that determine bone fragility. Magnesium depletion 

adversely affects all stages of skeletal metabolism, causing ceasing of bone growth, decreased 

osteoblast and osteoclast activities and induce bone fragility (Percival, 1999). 

Figure 2.11 illustrates the crystal structure of magnesium oxide, the grey indicates the 

position of the magnesium atoms and the red indicates oxygen atoms in the lattice of the 

crystal respectively (Winter, 1993-2012). 

Table 2.3 

General properties of magnesium oxide 

Crystal Structure Cubic FCC (a=4.216 Å) 

Density (g/cm3) 3.58 

Boiling Point (°C) 3600 

Melting Point (°C) 2852 

Color White 

Solubility 0.0086 g/100mL water 

Formula weight (g/mol) 40.30 
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Figure 2.11 Solid crystal structure diagram of magnesium oxide. 

It has been found that the optimum amount of MgO doping into TCP was 1 wt %; this 

percentage has shown good biocompatibility without cytotoxicity (Hyun Seung Yu, 2003). It 

was found that Mg2+ substitution into β-TCP tends to is a known to stabilize the rhombohedral 

crystal structure of TCP (Ando, 1958). It was also found to decrease the rate of degradation 

(L.L. Hench & Wilson, 1993). According to Calderin, magnesium is substituted into tri-

calcium phosphate in the formula Mgx Ca3 - x (PO4 )2  (x = 1, 2, and 3) as shown in Figure 2.12 

(Calderin, Xilin, Stott, & Sayer, 2002). As expected, because of the smaller ionic radius, the 

magnesium atoms reside closer to the axis of the cluster than the Ca atoms. When a Mg atom is 

substituted into the TCP structure the Mg-O bond becomes stronger whereas, the Ca-O bonds 

are weakened by the increase in bond length compared to the Mg-O interaction, therefore, this 

may be the reason for magnesium stabilizing the structure of TCP (Calderin et al., 2002). 

Figure 2.12 indicates the equilibrium interatomic distances and bond angles. 
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Figure 2.12 Equilibrium interatomic distances (Å) and bond angles (degree) of (a) fully relaxed 

Ca3(PO4)2 (TCP) fragment (b) fully relaxed MgCa3-1(PO4)2 fragment. 

2.11.2 Zinc oxide. The health benefits of zinc include proper functioning of immune 

system, digestion, control of diabetes, improves stress level, energy metabolism, acne and 

wounds healing. Also, pregnancy, hair care, eczema, weight loss, night blindness, cold, eye care, 

appetite loss and many other factors are included as health benefits of zinc (Maret & Sandstead, 

2006). 

There are organs of the human body, which secrete zinc such as salivary gland, prostate 

gland and pancreas, and the immune cells also secrete zinc. It plays a crucial role in growth and 

cell division where it is required for protein synthesis and also for DNA and RNA synthesis in 

body cells. Zinc accelerates the process of healing of wounds. It combines with the hormone 

insulin but it is not required for the activity of insulin (Maret & Sandstead, 2006). 

 As a component of many enzymes, zinc is involved in the metabolism of proteins, 

carbohydrates, lipids and energy. The body contains about 2-3 g of zinc. There are no specific 

storage sites known for zinc; it is found in traces in all body tissues. The highest concentration 
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of it occurs in the liver, pancreas, kidneys and brain. It is also present in red blood cells and 

blood serum. The deficiency of zinc among human being is rare. There are reports that fibroses 

of the liver, extreme anemia, and heart diseases occur due to low zinc level in the blood (Chen et 

al., 1985). In certain cases zinc deficiency is associated with growth failure (dwarfism) and it is 

believed to causes sex glands to produce little or no hormones. The first signs of zinc deficiency 

are poor immune response and skin problems (Walker & Black, 2004). 

Incorporation of Zn into bioglasses, Ca–P and Ca–Si system bioceramics to enhance their 

mechanical properties and cell–materials interactions has drawn considerable attention (Lusvardi 

et al., 2009; Miao et al., 2008; Ramaswamy, Wu, Zhou, & Zreiqat, 2008; Tang, Chappell, Dove, 

Reeder, & Lee, 2009; Wu et al., 2008; Hala Zreiqat et al., 2010). Zinc is an essential trace 

element with stimulatory effects on bone formation. It was found that zinc doped into beta-

tricalcium phosphate to develop zinc-releasing biomaterials could promote bone formation 

(Rabadjieva et al., 2011; Wu et al., 2008; Xue et al., 2008). Also, when the zinc content was 

higher than 1.20 wt % in TCP, release of zinc from the zinc oxide caused cytotoxicity 

(Bandyopadhyay et al., 2007). Therefore, the zinc content of the composite ceramic must be 

<1.20 wt % (Kawamura et al., 2000). The density of zinc is 5.61 (g/cm3) and its melting point is 

approximately 1975 °C. 

TCP based materials doped with some trace elements such as zinc promotes excellent 

bioactivity, which does not exist in the parent materials (Kawamura et al., 1993). As an essential 

trace metal, Zn inhibits the differentiation of osteoclasts and/or promotes the activity of 

osteoblasts, affecting the formation of hard tissues, but a high Zn concentration can have serious 

toxic side effects on cells (Bettger & Odell, 1993). Kawamura et al. also found that Zn-

containing calcium phosphate ceramics stimulated bone formation around the ceramics 
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implanted in rabbit femora, and attributed the effect to the Zn ions released from the ceramics. 

Therefore, it is important to use Zn-TCP for bone regeneration applications (Kawamura et al., 

2000). 

Table 2.3 

General properties of zinc oxide 

Crystal Structure Hexagonal wurtzite (a=3.2495 Å) 

Density (g/cm3) 5.61 

Boiling Point (°C) 1800 

Melting Point (°C) 1300 

Color White 

Solubility 0.16 g/100mL water 

Formula weight (g/mol) 81.41 

 

 

Figure 2.13 Solid crystal structure diagram of zinc oxide (Winter, 1993-2012). 
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Zinc is added into TCP by substitution method and can be seen in Figure 2.14 (Calderin 

et al., 2002). Zinc replaces the Ca atom causing some distortion in the crystal structure and is 

believe to be the reason for improved bioactivity in TCP (Yin et al., 2002). 

 

Figure 2.14 Equilibrium interatomic distances (Å) and bond angles (degree) of (a) fully relaxed 

Ca3(PO4)2 (TCP) fragment (b) fully relaxed ZnCa3-1(PO4)2 fragment. 

2.11.3 Titanium dioxide. Titanium (Ti) is widely used as material for permanent 

implants in orthopedic and dental applications. It is well known that Ti shows a mechanically 

stable interface towards bone (osseointegration) (Seeley et al., 2007; Wolff, Ramalho, & Acchar, 

2006). The good biological properties are due to the beneficial properties of the native oxide 

(TiO2) that forms on Ti when exposed to oxygen. The native titanium oxide on Ti is usually 

amorphous and very thin, 2–7 nm (Jennifer & Michael, 2003; Lausmaa, Kasemo, & Mattsson, 

1990; Zhou et al., 2007). In addition to being stable in the physiological environment, titanium 

oxides increase calcium ion interactions, which are important for protein and subsequent 

osteoblast adhesion (Ellingsen, 1991; Kasuga, Kondo, & Nogami, 2002). 

This oxidized surface of Ti also increases some of the differentiation markers of the 

osteoblast promoting traits toward bioactivity and bonding to the natural bone (Kasuga et al., 
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2002; Ramires, Romito, Cosentino, & Milella, 2001). Titanium dioxide also grows bone-like 

apatite when submersed in a simulated body fluid and thus it has the potential to be bioactive and 

bond with bone tissue (Moritz, Jokinen, Peltola, Areva, & Yli-Urpo, 2003; Ng, Annergren, 

Soutar, Khor, & Jarfors, 2005; Piveteau et al., 1999). Addition of titanium dioxide to TCP has 

also shown to improve the sintering characteristics of the ceramic composite (Caroff, Oh, 

Famery, & Boch, 1998). 

It is well known that titanium with a thin titanium oxide surface is a biocompatible 

orthopedic material that provides an excellent physical bonding with the surface of bone. The 

bone bonding generally occurs without the common connective tissue layer that forms from the 

body’s immune response (foreign body reaction) between the implant metal and the underlying 

bone surface (Linder, Carlsson, Marsal, Bjursten, & Branemark, 1988; Pilliar, Lee, & 

Maniatopoulos, 1986; Satomi, Akagawa, Nikai, & Tsuru, 1988). TiO2 has good biocompatibility 

with bone and is known to induce: (i) osteoblast function, (ii) apatite nucleation and (iii) protein 

adsorption. 

Influence of an addition of titanium dioxide on thermal properties of sintered HA has 

attracted significant attention because titania ceramics are potentially useful as porous cell carrier 

material whose properties, such as good permeability and high biocompatibility, serve to 

enhance cell vitality (Vu & Heimann, 1997; Weng, Liu, Zhang, & Ji, 1994). The effectiveness of 

different titanium dioxide materials on cell growth and distribution has been studied (Blum et al., 

1996). The effect of TiO2 incorporation on the shear strength and adhesive strength of HA 

coatings has been studied by Li et al. It is found that the shear strength slightly increases with the 

increase of TiO2 content in the coatings (H. Li, Khor, & Cheang, 2002). However, to-date, the 

reports focus mainly on bulk HA composite materials. Investigation on alternative Ca-P coatings 
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is rare. The effect of TiO2 on the structure and mechanical properties of PLD deposited TCP 

coatings are still under investigation. 

Table 2.4 

General properties of titanium dioxide 

Crystal Structure Tetragonal (a=4.5937 Å) 

Density (g/cm3) 4.23 

Boiling Point (°C) 2972 

Melting Point (°C) 2843 

Color White 

Solubility Insoluble in water 

Formula weight (g/mol) 79.87 

 

 

Figure 2.15 Solid crystal structure diagram of rutile (Winter, 1993-2012). 
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Table 2.5 

Atomic radii of atoms in TCP and the dopants used 

Element Atomic radius (pm) 

Calcium (Ca) 197 

Phosphorous (P) 98 

Oxygen (O) 73 

Magnesium (Mg) 160 

Zinc (Zn) 134 

Titanium (Ti) 176 

2.12 Surface Modification of Magnesium 

Previously, orthopedic implants were designed simply as mechanical devices; the 

biological aspects of the implant were not the primary focus when designing these devices. The 

primary goal was to supply internal/external fixation to the injured bone tissue during healing. 

More recently, biologic coatings have been incorporated into orthopedic implants in order to 

modify and control the interaction of these devices with the surrounding biological environment. 

It is believed that magnesium and its alloys may find applications in biomedical fields as 

implants, bone fixation devices, and tissue engineering scaffolds. The presence of magnesium 

ions has been shown to accelerate the growth of new bone tissue (F. Witte et al., 2005). 

Unfortunately, the poor corrosion resistance properties of magnesium-based materials in vivo 

impede their clinical use. The degradation time of the magnesium implants cannot match the rate 

of healing or regeneration of damaged bone. These shortcomings of metal alloys have led to the 

study of surface modification in an effort to prevent its initial degradation to maintain its desired 

mechanical strength. 

Magnesium has been tested as internal fixation of bone fractures for decades. However, 

fast degradation and the production of hydrogen during in vivo degradation after implantation 
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hinders its clinical use (Lambotte, 1932). Recently, several methods have been suggested to slow 

down the biodegradation rate of magnesium alloys, such as element alloying, ion implantation, 

and mechanical treatment (Bobby Kannan, Singh Raman, Witte, Blawert, & Dietzel, 2011; 

McBride, 1938; Znamenskii, 1945).  The fracture toughness of magnesium alloys is higher than 

that of bioceramics and polymers, but lower than that of stainless steels and titanium alloys, 

whilst the elastic modulus is closer to that of natural bone than other implant materials, making 

at very attractive material for implant applications (Evans, 1976; Feng & Han, 2010; Maurus & 

Kaeding, 2004; Navarro et al., 2008; Frank Witte et al., 2008). 

For implant applications, a small number of preliminary surface treatment methods for 

magnesium alloys have been reported, including carbonate treatment (Al-Abdullat et al.), alkali–

heat treatment (L. Li, Gao, & Wang, 2004; Atsushi Yamamoto & Tsubakino, 2003), ion plating 

of Ti (E. Zhang, Xu, & Yang, 2005), fluoride-conversion coating (Chiu, Wong, Cheng, & Man, 

2007), and microarc oxidation (P. Shi, Ng, Wong, & Cheng, 2009), each with its merits and 

limitations. Another important method to reduce the degradation rate of Mg is surface 

modification. Many researchers have pointed out that surface modification with an appropriate 

coating is an effective approach, which could improve the corrosion resistance and surface 

biocompatibility of Mg-based implants (G. L. Song & Atrens, 1999; C. Wen et al., 2009; F. 

Witte et al., 2010; Wong et al., 2010; Xu et al., 2009). 

Calcium–phosphate (Ca–P) coatings have been widely used in biomedical applications 

due to their favorable biocompatibility and osteo-conductive properties (Geng, Tan, Jin, Yang, & 

Yang, 2009; Lin et al., 1995; C. Wen et al., 2009). Many studies have been conducted on metal 

implants with Ca–P coatings to combine the biocompatibility of ceramics with the excellent 

strength of metals (Y. Li, Lee, Cui, & Choi, 2008; Y. W. Song et al., 2008). The mechanical 
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strength of these ceramics is known to be too poor to be used for load-bearing applications; thus, 

HA/TCP are often used as a bioactive coating on metallic substrates such as Ti alloys (Bigi et al., 

2008; Huang, Best, Bonfield, & Buckland, 2010; H. X. Wang, Guan, Wang, Ren, & Wang, 

2010). Recently, there are such reports about HA coating on biodegradable Mg-based materials 

(Gray-Munro & Strong, 2009; Onoki, Yamamoto, Onodera, & Nakahira, 2011; H. X. Wang et 

al., 2010). β-tricalcium phosphate, which has good chemical stability, relatively high mechanical 

strength, and favorable bioresorption rate is a promising material to be coated on magnesium to 

improve the possibility of applying magnesium in biomedical fields (Famery et al., 1994). To 

expand the repertoire in this respect, the present study attempts to prepare a bioresorbable 

coating with good mechanical properties, biocompatibility and biodegradation on magnesium 

alloys. The method selected for the application of these coatings was pulsed laser deposition 

technique. This section gives an overview on the science behind this method and justification of 

the reason behind its selection. 

2.13 Pulsed Laser Deposition Technique 

2.13.1 Introduction. Laser was first demonstrated in 1960. Since then it has been 

developed into a powerful tool in many application. It is especially useful in material processing 

(S. M. Metev & Veĭko, 1994). Laser possesses many unique properties such as narrow frequency 

bandwidth, coherence and high power density. Often the light beam is intense enough to 

vaporize the hardest and most heat resistant materials. Due to its high precision, reliability and 

spatial resolution, it is widely used in the industry for machining of thin films, modification of 

materials, material surface heat treatment, welding and micro patterning and multi-component 

materials can be ablated and deposited onto substrates to form stoichiometric thin films (Chrisey 

& Hubler, 1994). 
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To fine-tune the desired film properties, only a few parameters need to be controlled 

during the PLD process, such as laser energy density and pulse repetition rate. The targets used 

in PLD are small compared with the large size required for other sputtering techniques. It is quite 

easy to produce multi-layered films of different materials by sequential ablation of assorted 

targets. By controlling the number of pulses, a fine control of film thickness down to atomic 

monolayer can be achieved. The most important feature of PLD is that the stoichiometry of the 

target can be retained in the deposited films. This is the result of the extremely high heating rate 

of the target surface (1011 K/s) due to pulsed laser irradiation (Christen & Eres, 2008). It leads to 

the corresponding evaporation of the target irrespective of the evaporating point of the basic 

elements or compounds of the target. 

2.13.2 A general description of pulsed laser deposition technique. The principle of 

pulsed laser deposition, in contrast to the simplicity of the system set-up, is a very complex 

physical phenomenon. It involves all the physical processes of laser-material interaction during 

the impact of the high-power pulsed radiation on a solid target. It also includes the formation of 

the plasma plume with high energetic species, the subsequent transfer of the ablated material 

through the plasma plume onto the heated substrate surface and the final film growth process. 

Thus PLD generally can be divided into the following four stages. 

1. Laser radiation interaction with the target 

2. Dynamic of the ablation materials 

3. Decomposition of the ablation materials onto the substrate 

4. Nucleation and growth of a thin film on the substrate surface 

In the first stage, the laser beam is focused onto the surface of the target. At sufficiently 

high energy density and short pulse duration, the laser intensity exceeds the ablation threshold of 
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the target; the laser beam evaporates and ionizes material, creating a plasma plume above the 

material surface. Materials are dissociated from the target and ablated out with stoichiometry as 

in the target. The instantaneous ablation rate is highly dependent on the fluence of the laser 

irradiating on the target. The ablation mechanisms involve many complex physical phenomena 

such as collisional, thermal and electronic excitation, exfoliation and hydrodynamics. Initially 

the atoms, molecules and ions undergo collisions in the high-density region near the target 

forming the so-called Knudsen layer, leading to a highly directional expansion perpendicular to 

the target. The expansion dynamics of the laser-produced plasma plume have been described 

using semi-quantitative models (R.K. Singh, Holland, & Narayan, 1990; R. K. Singh & Narayan, 

1990). 

During the second stage the emitted materials tend to move towards the substrate 

according to the laws of gas-dynamic and show the forward peaking phenomenon (Namiki, 

Kawai, & Ichige, 1986). R.K. Singh reported that the spatial thickness varied as a function of 

, where n>>1 (Rajiv K. Singh & Carignan, 1991). The laser spot size and the plasma 

temperature have significant effects on the deposited film uniformity. The target-to-substrate 

distance is another parameter that governs the angular spread of the ablated materials. Hanabusa 

also found that a mask placed close to the substrate could reduce the spreading (Hanabusa, 

1993). 

The third stage is important to determine the quality of thin film. The ejected high-energy 

species impinge onto the substrate surface and may induce various type of damage to the 

substrate. The mechanism of the interaction is illustrated in Figure 2.16. These energetic species 

sputter some of the surface atoms and a collision region is established between the incident flow 

and the sputtered atoms. Film grows immediately after this thermalized region (collision region) 

ncos
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is formed. The region serves as a source for condensation of particles. When the condensation 

rate is higher than the rate of particles supplied by the sputtering, thermal equilibrium condition 

can be reached quickly and film grows on the substrate surface at the expense of the direct flow 

of the ablation particles. 

 

 

 

 

 

Figure 2.16 Schematic diagram of plasma-substrate interaction. 

Nucleation-and-growth of crystalline films depends on many factors such as the density, 

energy, degree of ionization, and the type of the condensing material, as well as the temperature 

and the physical-chemical properties of the substrate. The two main thermodynamic parameters 

for the growth mechanism are the substrate temperature T and the supersaturation m. They can 

be related by the following equation: 

Δ݉ ൌ kT	lnሺR Rୣ⁄ ሻ   (5) 

where k is the Boltzmann constant, R is the actual deposition rate, and Re is the 

equilibrium value at temperature T. 

The nucleation process depends on the interfacial energies between the three phases 

present – substrate, the condensing material and the vapor. The critical size of the nucleus 

depends on the deposition rate and the substrate temperature. For the large nuclei, a characteristic 

of small supersaturation, they create isolate patches (islands) of the film on the substrates, which 
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subsequently grow and coalesce together. As the supersaturation increases, the critical nucleus 

shrinks until its height reaches an atomic diameter and its shape is that of a two-dimensional 

layer. 

The crystalline film growth depends on the surface mobility of the vapor atoms (adatom). 

Normally, the adatom will diffuse through several atomic distances before sticking to a stable 

position within the newly formed film. The surface temperature of the substrate determines the 

adatom’s surface diffusibility. High temperature favors rapid and defect free crystal growth, 

whereas low temperature or large supersaturation crystal growth may be overwhelmed by 

energetic particle impingement, resulting in disordered or even amorphous structures. 

Metev and Veilo suggested that the ଽܰଽ, the mean thickness at which the growing, thin 

and discontinuous film reaching continuity is given by the formula: 

Nଽଽ ൌ Aሺ1 R⁄ ሻଵ ଷ⁄ expሺെ1 T⁄ ሻ  (6) 

where R is the deposition rate (supersaturation related) and T is the temperature of the 

substrate and A is a constant related to the materials (Goodwin, Leppert, Risbud, Kennedy, & 

Lee, 1997; S. Metev & Meteva, 1989). 

In the PLD process, due to the short laser pulsed duration (~10 ns) and the small temporal 

spread (<10 μs) of the ablated materials, the deposition rate can be enormous (~10 μm s⁄ ). 

Consequently a layer-by-layer nucleation is favored and ultra-thin and smooth film can be 

produced (R. Kelly & Miotello, 1996). In addition the rapid deposition of the energetic ablation 

species helps to raise the substrate surface temperature. In this respect PLD tends to demand a 

lower substrate temperature for crystalline film growth. 

A PLD system basically consists of three main components: Laser, deposition system, 

and the optics between the former two. Figure 2.17 shows the diagram of the PLD system that is 
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used in this work. Usually any type of laser can be used in a PLD system if the power of out-put 

laser beam is high enough. The lasers that had already been used in the PLD technique included 

ruby laser, CO2 gas laser, Nd-YAG laser, Nd-glass laser, and excimer lasers, etc. However, due 

to its unique characteristics, excimer laser has become the number one choice in the PLD system.  

Excimer laser is a gas laser operated in the UV range. It is also a pulsed laser with the 

repetition rate up to several hundred hertz and a common pulse width of 25 nanoseconds. 

Depending on the gas used, the operating wavelength of excimer laser can be changed from 157 

nm for F2 to 351 nm for XeF. Table 2.6 lists the wavelengths for the commercial excimer laser 

systems. Compared to other commercial lasers, excimer laser also has output energy as high as 

1J/pulse (Basting & Stamm, 2001). The higher output energy and the short operating wavelength 

make excimer laser the ideal one for PLD systems since most of the materials used for the 

deposition have strong absorption in range of 200 nm to 400 nm. 

 

Figure 2.17 Diagram of PLD system used for this work. 
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Table 2.6 

Operating wavelengths of excimer laser for different gases 

Excimer Wavelength (nm) 

F2 157 

ArF 193 

KrCl 222 

KrF 248 

XeCl 308 

XeF 351 

In a PLD system, thin films are grown in a high vacuum chamber. The vacuum may vary 

from 10-6 Torr for the general purpose to 10–11 Torr for the laser molecular beam epitaxy (MBE) 

systems. One of the advantages of PLD is that it requires very simple and relatively economical 

pump and gas-flow systems. The basic elements inside the vacuum chamber include substrate 

holder, targets holder, vacuum gauges, etc. The multiple-target mounting assembly is usually 

adopted for the PLD system. In the system used for this work, six targets can be loaded into the 

vacuum chamber at the same time. The multiple-target assembly gives another advantage of PLD 

technique, by which in situ multilayer structures can be easily developed. 

For all the PLD system, the optical elements are needed to achieve the optimized focused 

beam for ablating the target material. These optical elements, such as mirror, aperture, beam 

splitter, and lens are placed between the output port of the laser and the laser window of the 

vacuum chamber. 

2.13.3 Plume-background gas interaction. The interaction of pulsed laser ablation 

plumes with a background gas has received increased attention recently due to its importance in 
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laser deposition, nanoparticle formation and growth, cluster production etc. In addition to these 

applications, these studies are very important for modeling of various processes in space physics, 

plasma chemistry and hydrodynamics (Chrisey & Hubler, 1994; Geohegan, Puretzky, Duscher, 

& Pennycook, 1998; Kroto, Heath, O'Brien, Curl, & Smalley, 1985). 

 The plasma expands freely in vacuum or low background pressures. As the background 

pressure increases, the plume behavior is characterized by strong mutual penetration of the laser 

plasma and ambient low-density gas. The expansion dynamics of the plume in this pressure 

regime is determined by the properties of the plasma as well as the background gas, and 

collisional affects starts to play a role. At still higher background pressures, the expansion 

dynamics of the plasma are fully governed by the nature and pressure of the ambient gas used 

(Geiohegan, 1994). In general, an increase in background pressure results in the following 

effects: (i) an increase in fluorescence from all species due to enhanced collisions on the 

expansion front and subsequent inter-plume collisions, (ii) shock front formation, (iii) slowing of 

the plume compared to propagation in vacuum resulting in spatial confinement of the plasma.  

Compared to the expansion into a vacuum, the interaction of the plume with an ambient 

gas is a far more complex gas dynamic process due to the rise of new physical processes 

involved such as deceleration, attenuation, thermalization of the ablated species, diffusion, 

recombination, formation of shock waves and clustering (Bulgakov & Bulgakova, 1995, 1998; 

Geiohegan, 1994; Geohegan et al., 1998; Geohegan, Puretzky, & Rader, 1999; Harilal, 2001; 

Harilal, Bindhu, Nampoori, & Vallabhan, 1998). 

In TCP, phosphorus is bound as PO4, so higher Ca/P ratio can be caused by preferential 

resputtering of phosphorus before PO4 is formed in the growing film. In a previous work Lee et 

al. observed an increased amount of phosphorus in PLD films with increasing H2O pressure, 
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although the flux of phosphorus from the target should be reduced by scattering of the plume by 

the background gas (W. J. Lee, Lee, Kim, Kim, & Han, 2005). Therefore, the preferential 

resputtering of phosphorus from the growing film by the plume is important for determining the 

amount of deposited phosphorus. A preferential resputtering of phosphorus from a calcium 

phosphate film was also reported by van Dijk et al. for the sputter deposition of the film from a 

HA target (van Dijk et al., 1995; van Dijk, Verhoeven, Marée, Habraken, & Jansen, 1997). They 

also reported that a better stoichiometry of the deposited films with respect to HA was obtained 

by the introduction of O2 into the sputter gas. Ahn et al. showed that the growth rates of thin 

films were found to be larger in an argon atmosphere than in vacuum over the entire range of 

target-substrate distances. In addition, the growth rate increased greatly when the substrate was 

placed within the plume for the deposition under an argon gas atmosphere. The enhanced 

deposition rates were of the order of 10−2 nm per pulse (Ahn et al., 2007). In the case of thin 

films deposited in an ambient argon gas, the compositions of the films were found to be very 

close to the target’s composition when substrate was placed inside the plume. On the other hand, 

it is found to be very difficult to optimize the deposition parameters controlling the composition 

for PLD under vacuum.  

In the PLD process of this work, argon ambient gas reacts with the growing film to 

enhance the formation of PO4 in the film. Consequently, preferential resputtering of phosphorus 

is suppressed, resulting in better stoichiometry and Ca/P ratios that are lower than those obtained 

with vacuum depositions. 
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CHAPTER 3 

Experimental Procedure 

Chapter 3 was focused on the materials and methodology of the project. Magnesium and 

beta-tricalcium phosphate were used as the raw materials to fabricate the implant device. In this 

study, a magnesium alloy [Mg2Zn0.3Ca] was used as the substrate in conjunction with 

magnesium for comparison. These substrates were then coated with doped TCP targets in order 

to further increase the substrate's compressive strength, inhibit its corrosive nature, and promote 

bioactivity. The metal oxides chosen for doping were MgO, ZnO, and TiO2. The ceramic TCP 

target to be used was doped with these metal oxides, fabricated, and characterized. These targets 

were obtained when green compacts were sintered at 1250 °C for 2 hours. Results from the 

hardness tests, corrosion tests, and in vitro biological tests will be presented in Chapter 4. The 

sample characterization techniques used were XRD analysis, imaging of the ceramic compacts 

and films produced by scanning electron microscopy, mechanical testing by nanoindentation and 

corrosion studies, and in vitro biological test (including image of the apatite growth on the 

ceramics and films and cell viability testing). This study examined effect of the dopant addition 

on the mechanical and biological properties of tricalcium phosphate. 

3.1 Substrate Preparation 

It is well known that magnesium has poor corrosion resistance properties and can be 

effectively improved by the appropriate selection of alloying elements (Baker & Committee, 

1999). A lot of metals are toxic when implanted, thus, the range of alloying elements used in the 

degradable magnesium alloys is rather limited, zinc (Zn), manganese (Mn), calcium (Ca) and 

perhaps a very small amount of low toxicity rare earth (RE) can be tolerated in the human body 

and can also retard the biodegradation. Therefore, Mg-Ca binary alloys attract attention of 
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researchers because calcium is an important element of human bones. Controlling the calcium 

content and processing treatment can adjust the mechanical properties and biocompatibility of 

Mg-Ca binary alloy. However, inadequate mechanical properties as well as lower corrosion 

resistances of Mg-Ca binary alloys are the biggest drawback of these alloys (Z. Li, Gu, Lou, & 

Zheng, 2008; Y. Wan et al., 2008). Fortunately, in latest recent years, Mg-Zn system is paid 

more attention because zinc is one of abundant nutritional elements in human body (Tapiero & 

Tew, 2003; S. Zhang et al., 2010). Additionally, it is a great potential alloying element to 

improve the mechanical properties and corrosion resistance of magnesium alloys (Ben-Hamu, 

Eliezer, Dietzel, & Shin, 2008; Jardim, Solorzano, & Vander Sande, 2004). The addition of other 

alloying element can further improve the mechanical properties of Mg-Zn alloys (Ortega, 

Monge, & Pareja, 2008; Tapiero & Tew, 2003). 

Studies conducted by Wang at al. (H. X. Wang et al., 2010) indicate that the Mg-Zn-Ca 

alloys have an excellent corrosion resistance in Kokubo’s simulated body fluid (SBF). L. Mao et 

al. studied the effects of zinc on microstructure and mechanical properties of biomedical Mg-Zn-

Ca alloys (Mao, Wang, Wan, He, & Huang, 2009). The results show that the microstructure is 

refined and the mechanical properties can be improved evidently with zinc content increasing. 

The mechanical properties of bending and compression can meet the requirements for hard tissue 

metal implants. 

This research is geared towards revolutionizing of biodegradable magnesium alloys; and 

since small amounts of zinc, calcium and magnesium are all essential for human body, cast 

Mg2Zn0.3Ca alloy, which was prepared in our laboratory and high purity magnesium 99.97 % 

(Goodfellow, Germany) were used in this study. These rods were cut into 12.4 mm circular disc 

with of 5 mm thickness. The substrates were then mechanically polished progressively with 
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silicon carbide paper from #600 up to grade #1200 ascending grit; isopropyl alcohol was used for 

lubrication. The substrates were then washed in ultrasonic baths using acetone, and isopropyl 

alcohol for 15 minutes each. The substrates were then mounted on the substrate heater with 

double side copper tape for room temperature deposition. 

3.2 Target preparation 

Oxide based dopants used included magnesium oxide (96 %), titanium dioxide (99 %), 

and zinc oxide (99.9 %) all purchased from Fisher Scientific. Synthetic β-tricalcium phos-

phate (BABI-TCP-N100) nano powder was obtained from Berkley Advanced Biomaterials 

Inc. with an average particle size of 100 nm. These dopants were independently added to 

tricalcium phosphate in multiple weight percentages, which included 0.25, 0.5, and 1.0 wt. %. 

Powders were weighed and mixed in 250 mL translucent polypropylene bottles, and 150g 

of zirconia milling media balls were added. Batches were made based on 30 g of β-TCP. After 

dopant addition, ball milling was done for 6 hours at 70 rpm to minimize the formation of 

agglomerates and increase the homogeneity of the powders. Figure 3.1 shows a flow chart of 

the process of target fabrication. 

After milling, milling media was removed from the powders using a sifter. All powders 

were appropriately labeled. Powders were measured for each composition and pressed using a 

uniaxial press at 250 MPa of pressure using polyvinyl acetate (PVC) as a binder. The disk 

mold press produced 12 mm in diameter by 5 mm thick green compacts. After pressing, all 

green compacts were placed in a muffle furnace for densification at 1250 ◦C for 2 hours. Bulk 

densities for green and sintered targets were measured for all compositions. 
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Figure 3.1 Processing of TCP with metal ion dopants flow chart. 

 

Figure 3.2 Target preparation process. 
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After preparing the green compacts, they were placed in a furnace for sintering and 

densification. The following section will elaborate on the sintering process used to densify the 

green power compacts. 

Binder 

When ceramics are sintered cracks are prone to occur in the sample, because of 

shrinkage, which, consequently, causes a severe reduction in strength. So in fabrication of all the 

compacts, use of binder is a requisite for sintering ceramic. Polymers are usually used, examples 

are polystyrene (PS), polyvinyl acetate (PVC) (Kruth, Wang, Laoui, & Froyen, 2003; Quadir, 

1994), as the binder, since it would be expected to improve the strength of the body, which, in 

turn, would prevent it from cracking (Koh et al., 2006). The presence of small pores formed by 

the removal of the polymer on the ceramic during sintering, the polymer could also be used for 

increasing ceramic‘s porosity (Ruksudjarit, Pengpat, Rujijanagul, & Tunkasiri, 2008). However, 

if polymer is over-added into the ceramic, the mechanical properties would decrease instead. In 

Yook’s experiment, where a polystyrene (PS) polymer was used as the binder, he pointed out 

that the compressive strength of the porous HA scaffolds was significantly affected by the PS 

content, when increasing PS content from 0 to 20 vol. %, the compressive strength of the sample 

was significantly increased. However, a higher PS content of 30 vol. % was observed to lead to a 

lower compressive strength (Ruksudjarit et al., 2008). Safronova’s report indicated that the 

presence of 0.25 % – 0.50 % PVC (Polyvinyl chloride) strongly influences the mechanical 

properties of the powder (Safronova, Shekhirev, & Putlyaev, 2007). In the present research PVA 

was used as the binder when processing the powder compacts. 

3.2.1 Sintering process. Sintering of ceramic materials is the method involving 

consolidation of ceramic powder particles by heating the green compact to a high temperature 
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below the melting point, when the material of the separate particles diffuse to the neighboring 

powder particles. The driving force of sintering process is reduction of surface energy of the 

particles caused by decreasing their vapor-solid interfaces. 

During the diffusion process the pores in the green compact diminish or even close up, 

resulting in densification of the part and improvement of its mechanical properties. The level of 

the initial porosity of the green compact, sintering temperature and time, determines decrease of 

the porosity, caused by the sintering process. Sintering of pure oxide ceramics require a 

relatively long time and high temperature because the diffusion proceeds in solid state.  

Sintering is a processing technique used to produce density-controlled materials and 

components from metal or/and ceramic powders by applying thermal energy. In general, the aim 

of sintering is to produce sintered parts with control of grain size, sintered density, and size and 

distribution of other phases including pores. 

 

Figure 3.3 Schematic of coalescence process during sintering (Tanaka, Yamamoto, Shimoyama, 

Ogino, & Kishio, 2012). 

During the sintering process the heating rate can affect the final density and phase purity 

of the material. Higher ramp rates can give a higher final density, but a rate greater than 10 

°C/min has been shown to result in decomposition (W. Bonfield, Grynpas, Tully, Bowman, & 

Abram, 1981). In this step, a heating rate of 3 °C/min was used for sintering the green compacts. 

The sintering was carried out in a furnace, using a heating rate of 3 °C/min up to sintering 
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temperature, which was held for 2 hours, followed by cooling to room temperature. The reason 

for setting 3 °C/min as the heating rate was that if the heating rate was too high, cracks may be 

created on the ceramic target. There were seven stages in the schedule (Figure 3.4) including: 

1) Heating from room temperature to 100 °C with a heating rate 3 °C/min to prevent the 

compacts from cracking. 

2) Holding this temperature (100 °C) for 10 minutes (any moisture in the sample will be 

burned out at this step). 

3) Increasing the temperature from 100 °C to 550 °C at a rate of 3 °C/min. 

4) Holding this temperature for 15 minutes. 

5) Increasing the temperature from 1250 °C at a rate of 3 °C/min. 

6) Holding this temperature for 2 hours. 

7) Cooling the furnace down to room temperature. 

The sintered ceramic targets were then removed from the furnace after it had cooled down. 

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0

200

400

600

800

1000

1200

1400
Hold at 1250 °C

For 120 min 

Hold at 550 °C

For 15 min 3 °C/min

3 °C/min

T
em

p
 (

°C
)

Time (min)

 Sintering Curve

RT

3 °C/min

Final Temp 1250 °C

Hold at 100 °C

For 10 min 

 

Figure 3.4 β -TCP sintering curve schematic. 
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The following section describes the method used to measure the shrinkage and 

densification that resulted from this sintering process. 

3.2.2 Density measurements. Bulk densities for green and sintered samples were 

measured for all compositions. Compositions that showed poor densification when the dopant 

percentage additions were varied, were not used for the remainder of the research, only the 

compositions that showed the highest densification were used for dopant combinations and 

mechanical and biological characterization. 

Table 3.1 shows the combination of dopant used for this research based on the highest 

densifications recorded. Commercial ceramics usually use sintering additives as a measure to 

increase densification. For this research no additives were used simply because we wanted to 

identify the specific effects of the dopants being added. 

Table 3.1 

Weight percent and combination of dopants 

Compositions Weight (%) 

TCP N/A 

TiO2 1 

MgO 1 

ZnO 0.5 

TiO2+MgO+ZnO 1 + 1 + 0.5 

The dense compact targets were used in the pulsed laser deposition to coat the 

magnesium and its alloy. In the following section the equipment and deposition parameters are 

stated. 
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3.3 Deposition Parameters 

The experimental set-up consists of a KrF excimer laser (Lambda Physik LPX200) and a 

stainless steel vacuum chamber in which the target and substrate were placed (Figure 3.5). 

 

Figure 3.5 Schematic diagram of multi-target PLD method (Technology). 

The target is mounted onto the target holder using silver paste. The laser beam (pulse 

duration, 30 ns; repetition rate, 10 Hz; input energy, 300 mJ/pulse) was focused on the target 

through high-quality quartz optics (focal length, 20 cm) at an angle of 45°. The target was kept 

rotating during deposition to avoid deep crater formation. Prior to each deposition targets were 

polished to eliminate uneven interaction with the ablated surface. The magnesium substrates 

were polished using isopropyl alcohol for lubricant, followed by sonic cleaning in acetone for 10 

minutes. The magnesium substrate was placed directly onto the stainless steel holder and was 

connected to the holder using double-sided copper tape for room temperature deposition. The 

substrate heater-target distance was set to 4.5 cm. A turbomolecular pump pumped the vacuum 
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chamber to a pressure of 10ି mbar before introducing argon ambient gas at 3 ൈ 10ିଵ mbar for 

deposition. 

After all the samples were prepared structural characterization using X-ray diffraction 

(XRD) and scanning electron microscopy (SEM) was conducted. XRD was used to test if there 

were any significant changes to the phases of β-TCP deposited film after the introduction of 

dopants compared to β-TCP processed under the same conditions and SEM was used to visualize 

the microstructure of sintered β-TCP structures with various dopant additions and to compare 

them with that of sintered undoped β -TCP compact. These sintered compacts were then used for 

PLD deposition and to conduct biological studies. 

3.4 Structural Characterization 

3.4.1 X-ray diffraction analysis. English physicists Sir W.H. Bragg and his son Sir W.L. 

Bragg developed a relationship in 1913 to explain why the cleavage faces of crystals appear to 

reflect X-ray beams at certain angles of incidence (theta, θ) (Bragg & Bragg, 1913). Bragg's Law 

refers to the simple equation: 

nλ = 2d sinθ   (1) 

The variable d is the distance between atomic layers in a crystal, and the variable lambda 

λ is the wavelength of the incident X-ray beam; n is an integer. This observation is an example of 

X-ray wave interference, commonly known as X-ray diffraction, and was direct evidence for the 

periodic atomic structure of crystals assumed for several centuries. Although Bragg's law was 

used to explain the interference pattern of X-rays scattered by crystals, diffraction has been 

developed to study the structure of all states of matter with any beam, e.g., ions, electrons, 

neutrons, and protons, with a wavelength similar to the distance between the atomic or molecular 

structures of interest. XRD is used to measure the average spacing between layers or rows of 
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atoms, to determine the orientation of a single crystal or grain, and to find the crystal structure of 

an unknown material. It is also used to measure the size, shape and internal stress of small 

crystalline regions. 

To eliminate the peaks for the magnesium substrate the films were deposited on Glass, 

then placed in a specimen holder, individually and analyzed using a Bruker® AXS D8 discover 

diffractometer tube consisting of a copper anode generating the characteristic Cukα radiative 

source with a wavelength of 1.54 Å and equipped with a couple of 0.2 mm slits on both the 

source and detector. Operating parameters for the tube are 40 kV at 40 mA. 

A Z-scan was done using a point detector to align the sample to the path of the X-ray 

beam. Area detector was then used to run a locked couple scan (θ - 2θ scan) on all the samples. 

Diffraction patterns are collected by the detector while the sample is rotated through 2θ = 20° to 

80°. An X-ray detector (point detector) is placed at an angle to satisfy the geometry such that the 

angle between the incoming rays and the reflected rays is 2θ, as shown in Figure 3.6. 

 

Figure 3.6 Schematic of the diffraction geometry. 

3.4.2 Scanning electron microscopy. A scanning electron microscope uses beams of 

electrons to create magnified images of samples, as opposed to beams of light that a traditional 

microscope uses (Lausmaa et al.). Because the scanning electron microscope can magnify a 
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sample up to 500,000 times it has a wide range of applications. They are used for quality control 

in both the pharmaceutical and semiconductor industries, sample comparisons in forensics, 

diagnostics in medical labs, and in research labs to determine the composition of samples treated 

in different ways. Scanning electron microscopes have different kinds of signal detectors 

available that include back-scattered electrons (for imaging), characteristic X-rays (for 

determining types and amounts of elements present in the sample), transmitted electrons, and 

cathode-luminescence. Other variations in different scanning electron microscopes include 

availability of low or high vacuum mode and imaging options for bright field samples and/or 

dark field samples. Scanning electron microscope is the most widely employed thin film and 

coating characterization instrument (Lausmaa et al.; Ohring, 2002). 

Hitachi® SEM SU8000 was used to visualize the fabricated samples used in these 

experiments. Depending on the particular sample, appropriate voltage and current were selected 

to capture high quality images. Elemental compositions of the ceramics and films were also 

evaluated using the attached energy dispersive X-ray analyzer to verify stoichiometric transfer 

from the target to the PLD deposited films. 

Triple detector system offers a variety of signal collection. Top detector can detect high 

angle BSE (HA-BSE), which has pure Z-number contrast with less topographical information. 

The upper detector collects either the SE signal for surface topography/ voltage contrast, or user-

selectable low angle BSE (LA-BSE), for both topographical information and compositional 

contrast. Both signals can also be mixed. The Lower detector is used for longer working distance 

SE imaging of surface topography. Table 3.2 illustrates a list of upper and lower triple detectors’ 

signal information. 
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Table 3.2 

SEM detectors and signal information 

Signal name Detector Signal information 

HA-BSE Top 
Compositional/Crystal 

information 

LA-BSE Upper 
Compositional/Topographic 

information 

SE Upper 
Surface information 

(Including voltage contrast) 

Lower Lower Topographic contrast 

Several models SEM’s are available on the market; a schematic of a variety of signal 

detecting system for visualizing absolute surface information is shown in Figure 3.7. 

All compositions were observed under SEM to study the effect of dopants on the 

microstructure of β-TCP. Ceramic targets that were subjected to a biological study were also 

observed under the SEM for all compositions and all time durations (2, 4, 6, 8, 10 weeks). 

 

Figure 3.7 Scanning electron microscope (High-Tech). 
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Nanoindentation tests and corrosion analysis were conducted on the samples to give an 

idea of the mechanical characteristics. The following section describes the equipment used and 

the science behind the procedures. 

3.5 Mechanical Characterization 

3.5.1 Nanoindentation tests. Indentation techniques are most frequently used to measure 

two important mechanical properties the hardness (H) and the elastic modulus (E). As the 

indenter is pressed into the sample, both elastic and plastic deformation occurs, which results in 

the formation of a hardness impression conforming to the shape of the indenter. During indenter 

withdrawal, only the elastic portion of the displacement is recovered, which facilitates the use of 

an elastic solution in modeling the contact process. 

A typical load–displacement curve and the deformation pattern of an elastic–plastic 

sample during and after indentation are shown in Figure 4.8 (a) and (b) (Oliver & Pharr, 1992). 

  

Figure 3.8 (a) A typical load-displacement curve (b) The deformation pattern of an elastic-plastic 

sample during and after indentation. 

where 

 P represents the applied force. 
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 h denotes the indenter displacement. 

 hmax represents the displacement at the peak load, Pmax. 

 hc is the contact depth and is defined as the depth of the indenter in contact with the 

sample under load. 

 hf is the final displacement after complete unloading. 

 hr is the plastic deformation after load removal. 

 hs represents the surface displacement at the contact perimeter. 

 S is the initial unloading contact stiffness. 

Nanoindentation is the mean pressure that a material can support under load and hardness 

is defined as the indentation load divided by the projected contact area of the indentation. From 

the load–displacement curve, hardness can be obtained at the peak load as 

ܪ ൌ ೌೣ


   (2) 

where A is the projected contact area. Measurement of the projected contact area from a load-

displacement curve requires the contact depth, hc. 

The elastic modulus of the indented sample can be derived from the slope of the initial 

portion of the unloading curve, i.e. the initial unloading contact stiffness, S = dP/dh. Based on 

relationships developed by Sneddon for the indentation, S can be derived as follows 

ܵ ൌ ටߚ2

గ
    (3)ܧ

where β is a constant that depends on the geometry of the indenter and Er is the reduced 

elastic modulus, which accounts for the fact that elastic deformation occurs in both the sample 

and the indenter (Sneddon, 1965). Er is given by 

ܧ ൌ
ଵିఔమ
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ଵିఔ
మ

ா
  (4) 
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where E and ν are the elastic modulus and Poisson’s ratio for the sample, respectively, 

and Ei and νi for the indenter. For diamond, Ei = 1141 GPa and νi = 0.07 (Oliver & Pharr, 1992; 

Tabor, 1951). 

The contact stiffness and the projected contact area need to be determined from the load–

displacement curve to calculate elastic modulus, E, from Eqns. (3) and (4). Oliver and Pharr 

found that the unloading curve is usually not linear as suggested by Doerner, but is better 

described by a power law: 

ܲ ൌ ൫݄ܤ െ ݄൯


  (5) 

where B and m are empirically determined fitting parameters (Oliver & Pharr, 1992) 

(Doerner & Nix, 1986). The unloading stiffness, S, is then established by differentiating Eq. (5) 

at the maximum depth of penetration, h = hmax (i.e., Eq. (6)) 

ܵ ൌ ቀௗ
ௗ
ቁ
ୀೌೣ

ൌ ൫݄௫݉ܤ െ ݄൯
ିଵ

 (6) 

For an indenter with a known geometry, the projected contact area is a function of the 

contact depth. The area function for a perfect Berkovich indenter is given by 

ܣ ൌ 24.56݄ଶ   (7) 

Indenters used in practical nanoindentation testing are not ideally sharp. Therefore, tip 

geometry calibration or area function calibration is needed. A series of indentations is made on 

fused quartz at depths of interest. A plot of A versus hc can be curve fit according to the 

following functional form (Eq. (8)): 

ܣ ൌ 24.56݄ଶ  ଵ݄ଵܥ  ଶ݄ܥ
ଵ
ଶൗ  ଷ݄ܥ

ଵ
ସൗ  ଼݄ܥ⋯

ଵ
ଵଶ଼ൗ

 (8) 

where C1 through C8 are constants. The lead term describes a perfect Berkovich indenter, 

the others describe deviations from the Berkovich geometry due to blunting of the tip (Oliver & 

Pharr, 1992). 
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The contact depth can be estimated from the load–displacement data using Eq. (9): 

݄ ൌ ݄௫ െ ߝ ೌೣ

ௌ
  (9) 

where ε is a constant that depends on the indenter geometry (ε = 0.75 for a Berkovich 

indenter) (Oliver & Pharr, 1992). 

The nanoindentation analysis was performed using the Nano Indenter® XP system (MTS 

Systems Corporation). This instrument has a maximum applied load is 500 mN, indenter load 

resolution of 50 nN, and displacement resolution of < 0.02 nm. It provides the possibility to 

obtain reliable characterization data for thin films and individual grains. Testworks 4 software is 

used for analysis of collected data. A Berkovich diamond indenter was used for all the 

experiments. A schematic representation of the nanoindenter is shown in Figure 3.9. 

 

Figure 3.9 Schematic representation of the nanoindenter setup (Mensah-Darkwa, 2012). 
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3.5.2 Corrosion tests. Predicting the corrosion behavior of magnesium is very 

challenging, because it does not follow the normal corrosion behavior as other materials. 

Typically, anodic and cathodic reactions model the behavior of all electrochemical corrosion 

processes. The anodic and cathodic reactions are usually inversely related. As the applied 

potential (Eappl) or current density increases, the anodic reaction rate increases and the cathodic 

reaction rate decreases. An anodic increase of applied potential causes an increase in the anodic 

dissolution rate, while the cathodic site decreases in hydrogen evolution. 

In this section, the primary electrochemical methods used for determining the corrosion 

rate of the coated magnesium and magnesium alloy used in this research are addressed. 

Potentiodynamic polarization over a potential range about േ	200 - 250 mV from the open 

circuit potential results in a polarization curve that can be analyzed for corrosion rate, provided 

that the rates of other anodic reactions are small in comparison, which is a requirement of all 

electrochemical assessments of corrosion rate. Typically presented in a semi-logarithmic plot, 

polarization curves provide corrosion rate by extrapolation of the linear cathodic and/or anodic 

regions to the corrosion potential or by fitting to the following equation (Frankel & Rohwerder, 

2003; Jones, 1996; R. G. Kelly, Scully, Shoesmith, & Buchheit, 2003): 

I୬ୣ୲ ൌ ݅ୡ୭୰୰ ቀexp ቂ
ଶ.ଷሺିౙ౨౨ሻ

ஒ
ቃ െ exp ቂିଶ.ଷሺିౙ౨౨ሻ

|ஒౙ|
ቃቁ           (10) 

where: 

Inet is the current measured as a function of applied potential E, 

Ecorr is the corrosion potential, 

icorr is the corrosion current density, 

and βa and βc are the anodic and cathodic Tafel slopes, respectively. 

The equation represents an idealized form of the electrochemical data for the case of a 
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mixed electrode in which there is only one anodic and one cathodic reaction taking place on the 

corroding surface. Both reactions must be controlled by activation polarization and Ecorr must be 

far from both reversible potentials. Most commercial corrosion analysis software packages 

contain the capability to fit data to this equation. 

Potentiodynamic polarization over a wide range of potential generates more information 

about the system than just the corrosion rate. For instance, information can be obtained about the 

proximity of the open circuit potential to regions of passivity or localized corrosion 

susceptibility. Potentiodynamic polarization is a tool for laboratory investigations, not corrosion 

rate monitoring, as it involves perturbation of the potential relatively far from the steady-state 

corrosion potential. 

The corrosion rate also can be determined from the polarization resistance (RP) using the 

Stearn-Geary equation provided that the polarization resistance is similar to the charge transfer 

resistance and if the Tafel slopes are known (Mansfeld, 1976; Scully, 2000; Stern & Geary, 

1957). 

R୮ ൌ


୍ౙ౨౨
ൌ

ሺሻ

ሺ୧ሻ →
        (11) 

where: 

 Rp is the polarization resistance 

 Icorr the corrosion current 

The proportionality constant, B, for a particular system can be determined empirically 

(calibrated from separate weight loss measurements) or, as shown by (Stern & Geary, 1957), can 

be calculated from βa and βc, the slopes of the anodic and cathodic Tafel. 

B ൌ ஒ.ஒౙ
ଶ.ଷሺஒାஒౙሻ

     (12) 
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Figure 3.10 Polarization plot showing intersection of anodic and cathodic Tafel. 

At low overvoltage values, deviations from Tafel behavior for a non-corroding electrode 

are due primarily to the reverse reaction of the oxidation-reduction system, and at high over-

voltages to concentration and/or resistance polarization. The most common way to determine RP 

is by the linear polarization resistance method, in which the potential is scanned about േ	5 െ 10 

mV relative to the corrosion potential. The slope (dE/di), at the zero current potential is a 

measure of RP (Ramirez & Lei, 1996). These simplified analyses assume that the polarization 

response is perfectly linear, and error will result if there is any deviation from linearity. The 

linear polarization resistance method has been put to considerable use in corrosion monitoring as 

it involves relatively little potential agitation. 

The potentiodynamic polarization studies were carried out using a Gamry® R600 

Potentiostat (Gamry Instruments). All DC potentiodynamic polarization measurements were 

performed in at room temperature in Hench simulated body fluid solution (SBF) buffered at a pH 

= 7.4. The scan rate was set at 5 mV/s spanning a scan range of ± 0.3 V vs open circuit potential 

(Eoc). A 50 ml electrochemical cell with a standard three-electrode configuration consisting of 

the sample acting as the working electrode and the standard Ag/AgCl electrode and platinum 

wire used as the reference and counter electrodes, respectively. The samples were immersed in 
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the test solution for 15 min until steady state conditions before running the tests. Fresh solution 

was used for each experiment. Figure 3.11 illustrates the experimental setup used in this 

research. 

 

Figure 3.11 Experimental setup for electrochemical corrosion testing. 

After fabricating the samples and conducting structural and mechanical analysis, it is 

necessary to test for biocompatibility, dissolution rate, and surface apatite formation ability. The 

following section describes the methods used to test for bio mineralization ability as well as 

cytotoxicity of the materials being studied in this research. 

3.6 Biological Studies 

3.6.1 Mineralization studies. SBF was used to replicate the human body’s natural 

physiological environment. Experiments were conducted for durations of 2, 4, 6, 8, and 10 weeks 

for all compositions. 

Preparation 

Following the standard procedure to make Hench’s simulated body fluid (L.L. Hench & 

Wilson, 1993) SBF was prepared, the procedure calls for the preparation of 1 liter of solution. 

First a solution of 1 normal hydrochloric acid at 100 mL was made by adding 8.26 mL of 
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concentrated HCL and 91.74 mL of de-ionized distilled water and mixing with a magnetic 

stirring rod. Then the 500 mL beaker to be used was washed with approximately 4 mL of N HCL 

and de-ionized water and dried. The beaker was filled with 500 mL of de-ionized water and 

poured into a 1 L glass flask with a magnetic stirring rod. Next, the reagent salts were added in 

the order specified by Hench, and made sure each one was completely dissolved before adding 

the next. After all reagents were added, the pH of the solution was measured and adjusted to 

approximately 7.40 by stirring the solution and adding 1N-HCl solution in. Finally the volume 

was adjusted by adding de-ionized water to make 1 liter of SBF. 

Table 3.3 

Reagent preparation for simulated body fluid (L.L. Hench & Wilson, 1993) 

Order Reagent Purity Amount (g) 

1 NaCl 99.5 % 7.996 

2 NaHCO3 99.5 % 0.350 

3 KCl 99.5 % 0.244 

4 K2HPO4.3H2O 99 % 0.171 

5 MgCl2.6H2O 98 % 0.305 

6 1N-HCl - 40 ml 

7 CaCl2.2H2O 95 % 0.368 

8 Na2SO4.10H2O 99 % 0.161 

9 NH2C(CH2OH)3 99.9 % 6.057 

Procedure 

All sintered targets and coated samples were placed in a 24 well plate. The wells were 

filled with 2 ml of SBF solution via pipetting from larger flask containing the previously made 
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SBF. This procedure was conducted in a bench hood. All samples were placed in an incubator at 

a regulated temperature of 37 °C to simulate the human body’s internal temperature. 

Following conclusion of the biological experiment, all targets and films were removed 

from the wells and gently washed by repeated dipping in de-ionized water. All samples were 

then left to dry for approximately 48 hours. After the drying process ended, samples were then 

weighed for change due to any apatite formation or dissolution occurrence. Weight 

measurements were recorded for each composition and time duration. In general, if there was 

any Ca-P based apatite such as hydroxycarbonate apatite (HCA) formation, then that would 

result in weight increase, however, if there is any dissolution of sample occurring then there is a 

loss in weight. 

Owing to its inherent biocompatibility, synthetic beta-tricalcium phosphate forms a 

strong bond with human bone and is thus very attractive for use as an implant material. β-TCP 

coatings also enhance the cell response of surrounding bone tissue to a metallic or ceramic 

implant. The rapidly increasing popularity of Ca-P coatings is due to accumulating evidence that 

an implant coated with a material chemically similar to natural bone should result in a more 

desirable tissue response. Since ceramic β-TCP is brittle, and thus not suitable for load-bearing 

applications, metal oxide reinforced β-TCP coatings are applied to dental and medical implant 

materials to combine the superior mechanical properties of the implant metals with the 

biocompatibility of β-TCP. 

To be most effective, Ca-P coatings should remain on the implant metal surface and 

stimulate bone in-growth until sufficient bone regenerates at the implant-bone interface. 

Unfortunately, both the presence of additional phases in the coating can cause excessive 

dissolution in a physiological environment and consequently reduce the coating integrity of the 
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implants. To decrease the solubility of the β-TCP coatings the film needed to be crystalline, 

historically making post-deposition annealing a requirement. However, annealing is time 

consuming, and, more important, is detrimental to the thermo-stability of the underlying implant 

metal and is often the main cause of crack formation and the degradation in adhesion of the 

coating to the substrate. Therefore the challenge has been to develop an approach capable of 

producing phase-pure, β-TCP coatings on various implant materials. 

3.6.2 Cell viability tests. The materials used in conducting this test included a 24-well 

Corning/ Costar plate, MC3T3-E1 pre-osteoblastic mouse calvaria-derived cells; alpha minimum 

essential medium (α-MEM) supplemented with 10 % fetal bovine serum (FBS) and 1 % 

penicillin-streptomycin solution; phosphate buffered saline (PBS); 70 % ethanol; Trypsin – 0.53 

mM EDTA solution; and Live/Dead reagent stock solutions (Calcein AM and Ethidium 

Homodimer (EthD-1)). 

Frozen cells were removed from liquid nitrogen and thawed in a water bath at 37 °C. 

Cells were pipetted into a 50 ml centrifuge tube containing 9 ml of growth media pre-warmed to 

37 °C. The cells were centrifuged in a hemocytometer at 500 rpm for 5 minutes. Growth media 

was aspirated off the top of the cells and cells are cultured in T75 Corning cell culture flasks in 

the prepared α-MEM media solution at 37 °C under 5 % CO2 and passaged every 7 days. 

MC3T3-E1 cells were kept in the α-MEM media and every 2 to 3 days the media in the flasks 

was aspirated and fresh media added to avoid excessive alkalinity of the medium during 

culturing. After 7 days, the cells were the washed with PBS, to remove all traces of serum, which 

contains trypsin inhibitor. Cells are passaged with 1 ml of 0.25 % Trypsin, which was added to 

the flask swirled gently and incubated at 37 °C for 3 minutes to detach the cells from the bottom 

of the flask. Special care should be taken not to agitate the flask to avoid clumping. Cells are 
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then observed in an inverted microscope to ensure cell layer is dispersed. 9 ml of fresh growth 

media was added to the flasks and the resulting cell suspension was transferred into a new 50 ml 

vial. The appropriate aliquots of the cells suspension were split and seeded into two separate 

flasks, usually at a subcultivation ratio of 1:6 and incubated at 37 °C under 5 % CO2. This 

process was performed for each group of cells at each time point to obtain the desired amount of 

cells. Cells at passage numbers 21–23 were used in the experiments. 

Live-dead assay tests 

For the experiments, all samples were sterilized by autoclaving under a UV light for 

30 min on each side, and then placed in a separate well of a 24-well plate. Before harvesting cells 

for the experiment, 80 % confluence of the cell must be ensured. Part of the cell suspension 1:3 

was diluted in complete media by adding 3 μL cells to 7 μL complete media. 1 μL of this diluted 

cell suspension containing 50,000 cells/well was then seeded into each of the test wells on the 

corning plates. When seeding, the cells were mixed gently and often to prevent settling of the 

cells. The cells were place in an incubator overnight to ensure that the cells firmly attach to the 

surface. After 24 h incubation, the samples were rinsed with PBS to remove non-adherent cells 

and stained with the Live/Dead Viability/Cytotoxicity Kit. To prepare the dye the Live/Dead 

reagent stock solutions was removed from the freezer and allowed to warm to room temperature. 

2 μl of the supplied 4 mM EthD-1 stock solution was added to 20 ml sterile PBS in 50 ml 

centrifuge tube and 0.5 μl of the 2 mM calcein AM stock solution was added to the EthD-1 

solution and vortexed to ensure mixing, the resulting solution was then stored in foil wrap. To 

stain with the live/dead reagent, media was aspirated form the wells and the wells were rinsed 

with 1ml of PBS using a micropipette, swished lightly and aspirated using a glass Pasteur pipet. 

When adding the PBS to the wells, the liquid was squirted on the sidewall of the well where 
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there are no attached cells. 200 μl PBS and 10 μl dye were added to each of the wells. The plate 

was then covered with foil and incubated for 30 min. 

All viable cells fluoresced green and all dead/dying cells fluoresced red. The cells were 

then visualized using an EVOS digital inverted fluorescent microscope equipped with a UV light 

source and an accompanying UV filters set, Figure 3.12. Stained cells were visualized using a 

4ൈ. Magnification on an inverted fluorescence microscope (EVOS) equipped with a Sony 

ICX285AL CCD camera. Pictures were taken with the appropriate filter block. The operating 

features of the microscope are a mechanical glide stage: X-Y axis fine-positioning controls; 69 

mm (2.7-in) per rotation; 110 mm	ൈ 110 mm (4.3-in	ൈ	4.3-in) range of motion; Z-axis focusing 

controls, 480 μm/rotation; interchangeable vessel holders available for most common shapes and 

sizes. 

 

Figure 3.12 AMG EVOS digital inverted fluorescence microscope (EVOS). 
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CHAPTER 4 

Results and Discussions 

This chapter presents the results of the mechanical and biological tests and discusses 

these in light of the suitability of the improved coated metallic material for application in bone 

tissue engineering. 

4.1 Densification Measurements 

To improve mechanical properties of ceramic compacts, it is necessary to achieve good 

densification. To prepare the green ceramics they were pressed manually via uniaxial pressing 

for various compositions of tricalcium phosphate with the selected dopant. Polyvinyl alcohol was 

used to process the green compacts. The use of this binding agent prevented samples from 

sticking to the mold and cracking during processing. 

After preparing the green compacts, all samples were sintered in a muffle furnace for 2 

hours at 1250 °C. This temperature and sintering time was based on literature review (Caroff et 

al., 1998; Itatani et al., 2002; X. L. Wang et al., 2005). High alumina setter plates were used to 

place these samples inside the furnace. It is well known that β-TCP has the best densification 

between 1200 – 1300 °C; above 1300 °C there is high possibility of β-TCP transforming to α-

TCP phase, this also changes the resorption properties and bioactivity characteristics (Ando, 

1958). Good densification is important to improve mechanical and physical properties of β-TCP. 

Green and sintered densities were measured and were normalized with respect to the theoretical 

density of TCP (3.07 g/cm3). Average green and sintered densities for each of these compositions 

were calculated and represented separately. The shrinkage of undoped β-TCP samples is shown 

in Figure 4.1. 
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Figure 4.1 Densification of undoped TCP. 

In the preliminary stage of this project the main objective was to determine the ratio of 

dopant to be added to TCP. The amount of each dopant was kept minimal to preserve the β-TCP 

structure and eliminate any unwanted phase formation. 

Based on literature review, a decision was made to use (0.25, 0.5, and 1 wt %). Figure 4.2 

shows the effect of MgO on densification based on 0.25 wt %, 0.5 wt %, and 1 wt %. 
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Figure 4.2 Densification of TCP doped with 1 %, 0.5 % and 0.25 % MgO. 

It was observed that MgO influenced a slightly higher densification to TCP at 1 wt % 

addition compared to 0.25 wt % and 0.5 wt %. In Figure 4.3 the highest density for TCP-ZnO 

compacts were present at 0.5 wt % addition. 
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Figure 4.3 Densification of TCP doped with 1 %, 0.5 % and 0.25 % ZnO. 

It was determined based on trends in densification that by using 1 wt % of TiO2 added to 

TCP it was possible to obtain the maximum densification, as seen in Figure 4.4. 
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Figure 4.4 Densification of TCP doped with 1 %, 0.5 % and 0.25 % TiO2. 

Based on this observation we decided to optimize the density of TCP by using these 

compositions and ratios of dopants for the remainder of the research. 

4.1.1 Single dopant system. Density was measured and normalized with respect to 

theoretical density for the disk compacts. TCP-MgO (1 wt %) showed around 21 % densification 

increase for the sintered targets as shown in Figure 4.5. 
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Figure 4.5 Densification % increase due to MgO doping. 

TCP-ZnO (0.5 wt %) demonstrated a positive effect on densification for disk compacts 

by increasing the density from 77 to 98 % as shown in Figure 4.6. 
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Figure 4.6 Densification % increase due to ZnO doping. 

The effect of titanium dioxide on sintered density was positive on all three compositions. 

1 wt % addition shows the highest densification, it showed an increase in densification of 21 % 

as shown in Figure 4.7. 
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Figure 4.7 Densification % increase due to TiO2 doping. 
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4.1.2 Ternary dopant system [TCP + TiO2(1 wt %) + MgO(1 wt %) + ZnO (0.5 wt 

%)]. The highest densification was recorded for the ternary compound targets. For the sintered 

target there was a 22 % increase in density as shown in Figure 4.8. The ternary compound 

densification analysis confirms that the combined effect of these dopants on TCP is more 

pronounced than in the single dopant compositions. 
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Figure 4.8 Densification of TCP doped with 1 % MgO, 1 % TiO2 and 0.5 % ZnO. 

4.2 Effect of Sintering 

In general, sintering controls both densification and grain growth. The sintering process 

provides the energy to encourage the individual powder particles to bond or sinter together to 

remove the porosity present from the compaction stages. During densification the samples 

become denser and grain growth commences, this is the process of grain boundary motion to 

increase the average grain size. It can be seen as a competition between two thermally activated 

phenomena that proceed by solid-state diffusion of matter: densification and grain growth. 

Usually, the objective is to promote the first and prevent the second. The size of the grain 

as well as the high relative density of sintered samples can benefit many properties, such as; 

mechanical strength and electrical breakdown strength, thus, being able to control these 

properties during processing is of great importance. In general, the strength for ceramics is 

proportional to the inverse square root of the grain size (Carter & Norton, 2007), similar to the 
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relationship of metals. 

As the resorbability of a biomaterial depends principally on its dissolution rate (Hoppe, 

Gueldal, & Boccaccini, 2011; Sainz, Pena, Serena, & Caballero, 2010), which depends on 

microstructure (phase assemblage, porosity, surface roughness, etc.) conditioning the mechanical 

performance of implanted materials in the body, the understanding and the control of these 

parameters must be taken into serious account. Therefore, due to the complexity of calcium 

phosphate based biomaterials, further optimization of these materials is still required. For this 

reason, in the last decades, a new approach has been considered in order to optimize synthesis, 

phase compatibility, microstructure, dissolution rate, mechanical resistance and osteogenesis of 

tricalcium phosphate based biomaterials; enhancing not only bone formation but also tissue 

regeneration. It consists of doping TCP with trace elements that do not break biocompatibility. 

Some of the chemical components which can be used as additives (COଷ
ଶି, SiOସ

ଶି, Mgଶା, Znଶା, 

Fି, Clି, Naା and Kା) are restricted to elements contained in natural bone (Carrodeguas, De Aza, 

García�Páez, De Aza, & Pena, 2010; Douard et al., 2011). 

Figure 4.9 shows the effect of sintering on the green compacts. It can be seen that the 

grains coalesce and grains grow to an average size of ~10 μm. 

  

Figure 4.9 Surface structure of undoped TCP, before and after sintering. 
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Ando et al. found that a small amount of magnesia contained in tricalcium phosphate 

stabilizes β modification of the phosphate (Ando, 1958). However, a new compound 

Ca3Mg3(PO4)4 is formed below 1175 °C when more than 0.6 mol. of MgO to 1 mol. of P2O5 is 

introduced into the phosphate. Furthermore, when studying the effect of MgO substitution in β-

TCP, Banjerjee et al. and Enderle et al., have shown that MgO can influence the mechanical and 

biological properties of β-TCP. Incorporation of Mg2+ in the crystal structure of β-TCP 

suppressed β to α phase (Ando, 1958; Banerjee et al., 2010; Enderle, Götz-Neunhoeffer, 

Göbbels, Müller, & Greil, 2005). 

Figure 4.10 illustrates the densification effect based on the addition of 1 % MgO to TCP, 

defined grain boundaries with an average grain size of about 5 μm were formed as a result of the 

sintering. 

  

Figure 4.10 Surface structure of 1 % MgO doped TCP, before and after sintering. 

Bandyopadhyay et al. studied TCP compositions containing ZnO and showed that 

addition of ZnO had significant effects on the grain size of the material. It was found that ZnO 

increases densification of TCP ceramics. Grain size for TCP ceramics dropped from 9 to 2 μm 

for samples sintered at 1250 °C. An increase in microhardness was also observed; highest 

microhardness value was observed for 2.5 % ZnO composition sintered at 1250 °C. Cell 

materials interactions were studied using an osteo precursor cell line, OPC1. These studies 
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showed that the substrates were non-toxic, however, increasing ZnO content decreased cell 

spreading and cell–cell interactions in the TCP samples (Bandyopadhyay et al., 2007). 

The sintering of TCP doped with 0.5 % ZnO can be seen in Figure 4.11. The grain size 

formed as a result of this composition was in the range of 2 to 3 μm. 

  

Figure 4.11 Surface structure of 0.5 % ZnO doped TCP, before and after sintering. 

Seeley et al. doped tricalcium phosphate with 1.0 wt % TiO2. Influence of this dopant on 

physical, mechanical, and biological properties was studied in comparison with undoped TCP. 

Results show that there is potential for improving these properties with the addition of this metal 

oxide without hindering the excellent biocompatibility of TCP. The addition of TiO2 

significantly increased the densification of undoped TCP, and ultimate compression strength 

increased from 70 (625) to 145 (640) MPa with the addition of TiO2 in TCP (Seeley et al., 2007). 

Density and compression strength displayed a direct relationship. In vitro cell culture test showed 

that this composition was nontoxic and OPC1 cells attached and proliferated well on the TCP 

ceramics. Strength degradation in TCP began after 32 days in SBF, but for the doped 

composition, no noticeable degradation was noticed up to 96 days (Seeley et al., 2007). 

Wolff et al. showed that the addition of TiO2 show that only β phase was found in XRD 

analysis until 1250 °C, and the amount of TiO2 added was sufficient to increase the phase 

transition temperature of β-TCP. Maximum values of relative density 92 % (TiO2-TCP) until 
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1200 °C were found (Wolff et al., 2006). 

Influence of addition of 1 % TiO2 to TCP can be seen in Figure 4.12, an average grain 

size of 5 to 7 μm was seen as a result of the addition of the dopant. 

  

Figure 4.12 Surface structure of 1 % TiO2 doped TCP, before and after sintering. 

Figure 4.13 illustrates the result of doping TCP with the ternary compound [1 % MgO, 

0.5 % ZnO, and 1 % TiO2]. From the figure it can be seen that the grains coalesce and form 

distinct grain boundaries in the range of 2 to 3 μm. The addition of all three dopants produced 

samples with smaller grain size than the undoped TCP, thus, producing a compact ceramic with 

higher strength more resistant to degradation. 

  

Figure 4.13 Surface structure of the ternary compound doped TCP, before and after sintering. 
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4.3 PLD Deposition Parameters 

TCP ceramics reinforced with compositions of TiO2 and MgO and ZnO were processed 

into target shapes via uniaxial powder compression. The compositions were prepared using high 

purity starting powders; which included synthetic β-TCP (Ca3(PO4)2) (Berkely Advanced 

Biomaterials, CA), titanium dioxide (TiO2), zinc oxide (ZnO), and magnesium oxide (MgO) 

(Sigma-Aldrich, St. Louis, MO). Dopant powders were mixed with the TCP in amounts of 1 wt 

% TiO2, 0.5 wt % ZnO, and 1 wt % MgO. Two different targets were created from these 

powders, undoped TCP and the ternary composition of TCP with the three different dopants. 

Calcium phosphate films were deposited in a vacuum chamber by utilizing a pulsed KrF 

laser (Eximer) operating at a repetition rate of 10 Hz with a wavelength of 248 nm and 300 

mJ/pulse of energy. The laser beam was focused on a rotating target at an angle of 45°. The films 

were deposited at room temperature with various pressures of argon inside the chamber. The 

argon pressure was controlled in the range from 1 ൈ 10ିଵ to 3 ൈ 10ିଵ mbar. Magnesium and 

Mg2ZnO0.3Ca alloy were used as the substrates, and the calcium phosphate film was deposited 

exclusively on a circular area by utilizing a shadow mask. 

The focused laser beam was scanned across the rotating and rastering target surface to 

avoid deep crater formation. Substrates were fixed at a distance of 4.5 cm from the target. The 

laser fluence at the target was varied from 6 to 20 J/cm2 by varying the laser energy between 300 

to 400 mJ and the use of an aperture at the site of the laser exit from no aperture to 10 ൈ 4 mm. 

By using these parameters, the laser fluence and spot size were calculated, and experiments were 

conducted to find the growth rate, porosity and roughness of the deposited films. Scanning 

electron microscopy was used to give a visualization of the films. Table 4.1 and Table 4.2 

represent the average of the results of the spot size and fluence rate acquired based on varying 
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these parameters. 

Table 4.1 

Spot size calculation based on varying the aperture at the site of the laser exit 

Aperture 
1st reading 

(mm) 

2nd reading 

(mm) 

3rd reading 

(mm) 

Average 

reading (mm) 

Apt 

area 

(mm2) 

Spot 

area 

(mm2) 

No aperture 3.26 1.59 3.3 1.69 3.11 1.74 3.22 1.67 N/A 5.39 

20 10 3.13 1.44 3.24 1.24 3.1 1.43 3.16 1.37 200 4.32 

15 6 3.11 1.05 2.98 1.11 3.09 0.93 3.06 1.03 90 3.15 

12 6 3.05 0.98 3.01 1.05 2.76 0.9 2.94 1.00 72 2.94 

12 4 2.86 0.97 2.47 1.18 2.45 0.88 2.59 1.01 48 2.62 

10 4 2.77 0.83 2.46 0.89 2.15 0.85 2.29 0.86 40 1.96 

Table 4.2 

Laser fluence based on aperture and input laser energy 

Aperture 
Laser Energy 

(mJ) 

Laser Fluence 

(J/cm2) 

Laser Energy 

(mJ) 

Laser Fluence 

(J/cm2) 

No Aperture 300 6.0 400 8.0 

20 10 300 7.5 400 10.0 

15 6 300 10.0 400 13.3 

12 6 300 10.0 400 13.3 

12 4 300 10.0 400 13.3 

10 4 300 15.0 400 20.0 
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Applying laser energy of 400 mJ and using no aperture, depositions were conducted 

under room temperature in vacuum. The films produced under these conditions were rough and 

there was a significant loss in phosphate with a Ca/P ratio of over 3. Introducing argon as a 

background gas resolved the issue of the Ca/P ratio back to around 1.5, which is the theoretical 

value expected for tricalcium phosphate, however, the resulting film was porous and rough as 

seen in Figure 4.14 through Figure 4.17. The optimized stoichiometry can be seen in Figure 4.18. 

Since the objective of the current research is to produce dense films with good 

stoichiometry equivalent to that of the target material, varying these parameters and optimizing 

the deposition process we were able to ultimately find the optimum parameters to achieve the 

desired results. The smoothest film was achieved at room temperature, input laser energy of 300 

mJ, introducing argon as a background gas at 3 ൈ 10ିଵ	mbar, the use of 20 ൈ 10 aperture and a 

fluence of 7.5 J/cm2. 

Figure 4.14 through Figure 4.17 illustrate the SEM visualization of the ternary compound 

ceramic deposited on magnesium and magnesium alloy substrates. 

 

Figure 4.14 Magnesium substrate coated with doped TCP film, before optimization. 



 100

 

Figure 4.15 Magnesium substrate coated with doped TCP film, after optimization. 

 

Figure 4.16 Magnesium alloy substrate coated with doped TCP film, before optimization. 
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Figure 4.17 Magnesium alloy substrate coated with doped TCP film, after optimization. 

4.3.1 Film growth. In order to determine the deposition rate of PLD films, we measured 

the thickness of the deposited film by using a stylus electromagnetic sensor (KLA Tencor Alpha-

Step IQ®). The stylus profilometer is capable of measuring the step height (film thickness) and 

the surface roughness of the film. Masking the substrate during the deposition created a step 

height difference between the substrate and the deposited film. The film’s average thickness was 

measured by tracing the surface of the sample; vertical displacements denote the change on the 

surface topography. From the observed average film thickness, the deposition rate of each 

sample was estimated using the following equation: 

Depositon	rate ൌ 	
Film	thickness

Number	of	pulses
 

By default, the stylus profilometer is set to scan in the range of 20 µm/1.19 pm and the 

stylus force is set at 13 mg. For this study the stylus was set to scan over an area of 600 µm 

across a step with a scan speed of 20 µm/s and sampling rate of 50 Hz. The film thickness was 
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measured at more than 10 positions over the entire deposited/masked area on the sample. The 

average film thickness was estimated using two zones leveling technique. 

The growth rate slightly increased with introduction of argon background gas, which 

means that the total amount of material delivered from the target to the substrate was almost 

constant over a wide range of argon pressures. By applying 50,000 pulses, the deposited rate of 

TCP coatings was found to be 4 nm/pulse, resulting typically on a film thickness in the range of 

1 – 1.5 μm. 

4.3.2 Ca/P ratio. The PLD process generally has a very energetic deposition flux. The 

particles in the flux have kinetic energies comparable to the bond strengths in the growing film. 

These energies promote surface diffusion on the growing film, resulting in high-quality films at 

lower substrate temperatures as compared with other thermal deposition techniques (Chrisey & 

Hubler, 1994). It has shown that particles with energies above 50 eV can cause material to be re-

sputtered from the film surface (Willmott, 2004). This not only reduces the effective deposition 

rate but can also lead to a change in the stoichiometry of multi-elemental films by preferential 

resputtering. By introducing a background gas, such as argon in the present work, the entire 

kinetic-energy distribution can be shifted to lower values (Willmott, Timm, & Huber, 1997). The 

decrease in calcium deposition can be explained by a scattering of the plume with the 

background gas. Regarding phosphorus, however, the phosphorus deposition increased with the 

argon pressure despite plume scattering. The preferential resputtering phenomenon is likely to be 

more important than plume scattering for determining the amount of deposited phosphorus. A 

preferential resputtering of phosphorus from a calcium phosphate film was observed during the 

deposition of the calcium phosphate films, and an increase in the background argon pressure 

resulted in a better stoichiometry (lower Ca/P ratio) of the film (Koch et al., 2007). This is in 
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good agreement with the relationship between the Ca/P ratio of the ceramic and that of the film 

obtained through the PLD process under argon pressure in present work. 

The chemical composition and the constituting phases of the films were analyzed using 

the EDX and the XRD techniques. Figure 4.18 shows the Ca/P ratios of the films determined by 

using EDX. The Ca/P ratio decreased from ~ 3.2 to ~ 1.5 with the introduction of argon 

background gas. 
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Figure 4.18 Ca-P ratio under different argon pressures. 

4.4 X-Ray Diffraction 

X-ray diffraction is a versatile, non-destructive technique that reveals detailed 

information about the chemical composition and crystallographic structure of natural and 

manufactured materials. A crystal lattice is a regular three-dimensional distribution (cubic, 

rhombic, etc.) of atoms in space. These are arranged so that they form a series of parallel planes 

separated from one another by a distance d, which varies according to the nature of the material. 

For any crystal, planes exist in a number of different orientations - each with its own specific d-

spacing. When a monochromatic X-ray beam with wavelength λ is projected onto a crystalline 

material at an angle θ, diffraction occurs only when the distance traveled by the rays reflected 
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from successive planes differs by a complete number n of wavelengths. 

Bragg's Law 

By varying the angle θ, the Bragg's Law conditions are satisfied by different d-spacing in 

polycrystalline materials. Plotting the angular positions and intensities of the resultant diffracted 

peaks of radiation produces a pattern, which is characteristic of the sample. Where a mixture of 

different phases is present, the resultant diffractogram is formed by addition of the individual 

patterns. 

Based on the principle of X-ray diffraction, a wealth of structural, physical and chemical 

information about the material investigated can be obtained. A host of application techniques for 

various material classes is available, each revealing its own specific details of the sample studied. 

X-ray diffraction at grazing incidence with a Cu Kα source was employed in order to detect 

crystalline phases at the interface. The X-ray diffractions at different incident grazing angles of 

the sample are shown in Figure 4.19. 
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Figure 4.19 XRD pattern of the (a) undoped TCP coating on glass, (b) doped TCP coating on 

glass. 

From the diffractograms obtained Figure 4.19 it seems that there is no crystalline film 

formation in the samples. From a physicochemical perspective, amorphous forms tend to be 
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more soluble in certain solvents due to their increased surface energy; a direct result of their less-

ordered structures as compared to specific crystal structure in crystalline form, Figure 4.20 

(Holmes & Bridges, 2004). The increase in surface energy allows for greater molecular 

interaction between different materials. Since the aim of this research is to develop 

biodegradable materials, it is desirable to have the films in amorphous form. 

 

Figure 4.20 Aggregate of atomic arrangement (A) single crystal, (B) polycrystal, and (C) 

amorphous solid. 

4.5 Mechanical Characterization 

4.5.1 Nanoindentation tests. The mechanical property of hardness refers to a material's 

resistance to indentation either by a ball (Brinell test) or by a pyramidal diamond (Vickers test). 

Indentation hardness tests involve the measurement of the size of a residual plastic impression in 

the specimen as a function of the indenter load to provide a measure of the area of contact for a 

given indenter load, elastic modulus and hardness of the sample material from load-displacement 

measurements i.e. the depth of penetration beneath the specimen surface is measured as the load 

is applied to the indenter. The modulus of the sample material is then obtained from a 

measurement of the stiffness of the contact, that is, the rate of change of load and depth, and 

knowing the geometry of the indenter allows the size of the area of contact to be determined by 
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calculations. Depth and area of indentation are related to applied load, with high values reflecting 

hard materials and low values, soft materials. 

The measurement of hardness is important, particularly when combining various 

materials for bearing or wear conditions. Nanoindentation has high accuracy and can be used for 

analyzing small sample areas, e.g.: Different grains/orientations. Real time measurements are 

possible when using nanoindentation testing and no optical measurements are required. Different 

indenter tips can be used depending on the application (Area function needs to be created). 

Stress-Strain curves can be generated with the same testing method. Creep and fatigue 

measurements are possible when using this instrument. 

Mechanical properties of the dopant combination incorporated into TCP structure were 

evaluated via nanoindentation testing, using a Nano Indenter® XP system (MTS Systems 

Corporation). A Berkovich indenter (a three-sided pyramid with a face angle of 65.3°) was used. 

Depth sensing indentation tests were carried out on a reference sample of fused silica with a 

Poisson ratio of 0.17. Fused silica is usually chosen as a reference sample since its modulus is 

load independent. First, nanoindentation was performed to check the effect of dopant addition to 

the ceramic compact samples with average diameter of 1.3 mm and average height of 0.15 mm, 

and then the test was conducted on the corresponding material used as a coating on both the 

magnesium and its alloy substrates. 

Structures with 1 wt % TiO2, 1 wt % MgO and 0.5 wt % ZnO were tested for their elastic 

strength and compared with undoped TCP structures processed under the same conditions. Nine 

indentations were made on each sample. The results are an average of these nine indentations 

with controlled depths from 50 up to a maximum of 1500 nm. Other conditions were the same as 

for the reference. In each test run, the indenter was driven into the specimen surface (loading 
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half-cycle) under a load gradually increased to the predetermined peak value, unloaded gradually 

to 10 % of the peak load (unloading half-cycle) after being held at peak load for 30 s, and then 

driven again into the specimen surface to a higher value of the peak load. Such a procedure 

repeated for nine times with increasing peak loads and resulted in a load–displacement curve 

containing nine loading/unloading. Four samples of each composition were tested and results 

from the indentation testing were recorded. 

The load–displacement curves obtained for the ceramic targets and deposited films are 

shown in figure 4.21 and Figure 4.22. For each material, averages of four measurements are 

given in this plot. For the ceramics in bulk form, the load-displacement curves from all the five 

measurements overlap with each other, indicating a high level of reproducibility. For the 

ceramics coated substrates, slight scatters exist among the different load–displacement curves. 

These scatters may be attributed to the softness or roughness of these amorphous ceramics 

deposited coating. 

(a) Doped TCP     (b) Undoped TCP 

  

Figure 4.21 Load vs displacement curves for the ceramic compacts. 
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(a) Undoped TCP-on-Mg        (b) Undoped TCP-on-Alloy 

  

 

(c) Doped TCP -on-Alloy             (d) Doped TCP -on-Mg 

  

Figure 4.22 Load vs displacement for the coated samples. 
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Table 4.3 

Hardness and modulus of elasticity resulting from nanoindentation 

Sample Hardness (GPa) Modulus (GPa) 

TCP 6.500 114.70 

TC 6.950 132.70 

TCP on Alloy 0.145 7.460 

Doped TCP on Alloy 1.200 21.840 

TCP on Mg 0.092 4.825 

Doped TCP on Mg 0.840 21.400 

A representation of the results obtained from the indentation tests performed on the 

ceramic targets and the deposited films are illustrated in Figure 4.23 through Figure 4.25. 
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Figure 4.23 Hardness and modulus of the ceramic targets. 

Nanoindentation test performed on the bulk ceramic targets revealed an increase in both 
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hardness and modulus as a result of dopant addition. Doping with the ternary compound 

increased the hardness slightly, by 6.92 %, and the modulus of elasticity by 15.69 %. 
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Figure 4.24 Hardness and modulus of TCP and doped TCP coated magnesium substrates. 
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Figure 4.25 Hardness and modulus of TCP and doped TCP coated alloy substrates. 

As inferred from Figure 4.25, doped TCP doped magnesium alloys have higher hardness 
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values than its counterpart coated with undoped TCP and the magnesium coated with both 

compositions, Figure 2.5. TCP coated magnesium is the softest, with a hardness of only 0.092 

GPa, followed by TCP coated on the magnesium alloy, with a hardness of 0.145 GPa. Doped 

TCP coated on the magnesium alloy has the highest hardness of 1.2 GPa and doped TCP coated 

on the magnesium alloy is next at 4.1 GPa. 

The elastic moduli of the four substrates are listed in Table 4.3. Similarly the doped TCP 

coating on the magnesium alloys exhibits the highest modulus of 21.84 GPa and doped TCP 

coating on magnesium is next with a modulus of 21.4 GPa. TCP coated on magnesium shows the 

minimum modulus of 4.83 GPa, followed by the undoped TCP coated magnesium substrate, with 

a modulus of 7.46 GPa. The somewhat lower modulus of deposited films, relative to bulk form 

(which is 114.7 and 132.7 GPa), is due to the fact that the TCP layers deposited by physical 

vapor deposition are amorphous. 

From these results it can deduced that the addition of dopants to TCP resulted in an 

increase in both hardness and modulus of elasticity, thus, improving the mechanical properties of 

these materials to be used as load bearing implant materials. 

4.5.2 Potentiodynamic polarization measurement. Electrochemical test was conducted 

in the SBF solution at room temperature. A three-electrode cell was used for the electrochemical 

measurements. The counter electrode made of platinum and a standard Ag/AgCl electrode was 

used as the reference electrode. The sample with an exposed area of 0.18 cm2 was taken as the 

working electrode. The polarization scan was started from 300 mV below the anode corrosion 

potential at a constant voltage scan rate of 0.5 mV/s. Figure 4.26 through Figure 4.29 show the 

potentiodynamic polarization of the bare substrates and undoped TCP and doped TCP coated 

samples in SBF. 
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Figure 4.26 Potentiodynamic polarization curves for TCP coated magnesium samples in SBF 

solution. 
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Figure 4.27 Potentiodynamic polarization curves for doped TCP coated magnesium samples in 

SBF solution. 

The corrosion potential (Ecorr) and corrosion current density (icorr) obtained from these 
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curves are listed in Table 4.4. Coating the bare substrate with TCP showed a shifted toward to 

positive current by 0.3126 mA/cm2, while the corrosion potential showed no change. These 

results are in agreement with results found in literature (Y. W. Song et al., 2008) who showed 

that coating metal implants with Ca-P inhibits the corrosion. When the magnesium substrate was 

coated with the doped TCP an improvement of 0.031 mA/cm2 was seen in the current density as 

well a positive shift of 0.04 V in the corrosion potential when compared to that coated with the 

undoped TCP, so the addition of dopants would be beneficial since our results indicated that 

coating with the doped TCP will inhibit the degradation of magnesium in SBF. 

Table 4.4 

Corrosion current density (icorr) and corrosion potential (Ecorr) of coated magnesium substrates 

Element Ecorr (V) icorr (A/cm2)  Element Ecorr (V) icorr (A/cm2) 

Bare Mg -1.66 3.66E-04  Bare Mg -1.66 3.66E-04 

TCP on Mg -1.66 5.34E-05  Doped TCP on Mg -1.62 2.27E-05 
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Figure 4.28 Potentiodynamic polarization curves for TCP coated alloy samples in SBF solution. 
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Figure 4.29 Potentiodynamic polarization curves for doped TCP coated alloy samples in SBF 

solution. 

Similar trends can be seen on the magnesium alloy substrate as those seen on the 

magnesium substrates. The corrosion current density of the coated alloy is shifted toward to 

positive potential by 0.4596 mA/cm2 when coated with TCP and 0.4523 mA/cm2 when coated 

with doped TCP. Furthermore, coating with the doped TCP showed a positive shift in the values 

of the corrosion potential of the coated magnesium alloy, confirming that the corrosion resistance 

of the coated magnesium alloy should be enhanced. This is because the cathodic hydrogen 

evolution reaction is reduced after the magnesium alloy substrate is covered with doped β-TCP 

coating (Y. W. Song et al., 2008). The polarization analysis indicates that the coating can prevent 

the penetration of solution and effectively protect the magnesium and magnesium alloy from 

corrosion in physiological environment, thus coatings magnesium with the doped TCP can very 

well inhibit the anodic dissolution, indicating that the corrosion should be more difficult to 

happen on the coated substrates in the same medium. Table 4.5 summarizes the reduction in 
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corrosion rates of the magnesium alloys with different coatings. 

Table 4.5 

Corrosion current density (icorr) and corrosion potential (Ecorr) of coated magnesium alloy 

Element Ecorr (V) icorr (A/cm2)  Element Ecorr (V) icorr (A/cm2) 

Bare Alloy -1.67 4.76E-04  Bare Alloy -1.67 4.76E-04 

TCP on Alloy -1.67 1.64E-05  Doped TCP on Alloy -1.63 2.37E-05 

4.6 Biological Characterization 

4.6.1 Mineralization studies. The formation of a bone like apatite layer on biomaterials 

is thought to promote osteo-conductivity, inducing bone formation on the biomaterials (van 

Blitterswijk et al., 2008). Bioactivity of bioceramics relies on their ability to induce 

hydroxyapatite formation in simulated body fluid (SBF). This ability is an indication of 

bioactivity for bioceramics (Ramila & Vallet-Regi, 2001). Beside the formation of HA other 

phases of calcium phosphate may be formed in the physiological environment (W. E. Brown, 

Eidelman, & Tomazic, 1987). Other forms of calcium phosphate phases may be present as a 

result of exposure to SBF. Such calcium phosphates may consist of octacalcium phosphate 

(OCP) and dicalcium phosphate dehydrate (DCPD), these ceramics are considered as a precursor 

phase of HA formation (J. Elliot, 1994; Leng, Chen, & Qu, 2003). Because OCP and DCPD are 

the kinetically more favorable phases, the stable thermodynamic structure of apatite does not 

ensure that the most favorable precipitation phase from the calcium and phosphorous solutions is 

HA (Berland, Boistelle, & Olmer, 1990). Theoretical analysis based on nucleation kinetics 

indicated that the OCP nucleation rates could be much faster than that of HA in the physiological 

environment (Lu & Leng, 2005). 

For this research, characterization of the apatite formation was not done due to the 
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complications of the process; however, we concluded that the apatite is more favorable to be 

HCA or OCP, based on literature. The apatites found in this experiment had different 

morphologies; further research is needed to pinpoint what calcium phosphate phase each 

morphology represents. 

Films were fabricated on silicon wafers to determine the mineralization on the surface 

and to remove the effect of magnesium corrosion when studying the properties of the deposited 

films. All disk samples were subjected to biological study in simulated body fluid up to 10 weeks 

and the films were exposed to SBF for 4 weeks. Scanning electron micrographs were recorded at 

the 0, 2, 4, 8, and 10 weeks points of the experiment for the ceramics and at the 2, 3, 4, 7, 14, and 

21 days points for the films. Figure 4.30 through Figure 4.35 illustrate the apatite growth on the 

ceramic compacts after soaking in SBF for ten weeks, and those of the deposited films after 

soaking for three weeks. 

At each time point, samples of each composition were taken out, washed with distilled 

water, and then dried for two days. Once dried, the weight of each sample was carefully recorded 

and compared with their dry weight before immersion. Surface microstructures of the samples 

were observed using SEM to determine the morphology of the apatite layers. Some samples 

revealed formation of an apatite layer on the surface, which is good for cell adhesion and 

provides sites for exceptional implant-tissue interfacial bonding. 

Undoped TCP as shown in Figure 4.30 was used as control in the SBF solution to 

visualize the effect of the dopants in reference to the undoped compacts. 

TCP exhibited less ability to induce calcium phosphate apatite formation on its surface 

than the doped samples; Xin has also reported similar trends with TCP in SBF (Xin, Leng, Chen, 

& Zhang, 2005). Kotani et al. investigated the bone bonding ability to β-TCP and showed that 
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there’s a strong bond despite the lack of apatite formation on the surface (Kotani et al., 1991). 

  

Figure 4.30 Apatite growth on undoped TCP compacts in SBF for 10 weeks, high and low 

magnification. 

After ten weeks the samples were filled with apatite. The apatite formation may have 

been due to the local release of calcium and phosphorous, which may be more favorable to 

promote apatite growth. We can conclude that apatite formation was actively occurring in the 

TCP ceramics over the ten week SBF treatment. 

   

Figure 4.31 Apatite growth of TCP - 1 % TiO2 compacts in SBF for ten weeks, high and low 

magnification. 

Beginning at the two weeks point there is growth of apatite layer on the surface of the 

compacts; due to significant apatite growth the grain structure could hardly be seen. A flake-like 
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apatite layer was formed on the surface of these samples; we believe that the phase of this bone-

like apatite is either HCA or OCP. There was enough apatite formation to cover the entire 

surface of the sample. We concluded that the presence of TiO2 (1 wt %) increased the bioactivity 

of TCP due to the increased amount of apatite on the surface after soaking for 10 weeks in SBF, 

as shown in Figure 4.31. This layer would be ideal for osteoblast cell adhesion, thus, providing 

good cell-material interfacial bonding. 

  

Figure 4.32 Apatite growth of TCP - 0.5 % ZnO in SBF for ten weeks, high and low 

magnification. 

In Figure 4.32 the surface microstructure of TCP-ZnO composition showed changes as 

well throughout the experiment. There was no visible degradation of the grain boundaries. There 

was also an apatite layer formation and no significant increase in surface porosity. 

  

Figure 4.33 Apatite growth of TCP - 1 % MgO in SBF for ten weeks, high and low 

magnification. 
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In the case of the TCP-MgO composition, as shown in Figure 4.33 we observed very 

distinct apatite growth on the grain boundaries. We also observed very unique crystal-like apatite 

formation on the surface microstructure up to 10 weeks. These crystals are similar to the OCP 

crystals found by the electrochemical method (E. Zhang et al., 2005). 

  

Figure 4.34 Apatite growth on the ternary compound doped TCP in SBF for ten weeks, high and 

low magnification. 

The TCP-ternary composition in Figure 4.34 showed a significant ability to promote 

apatite formation on the surface, apatite was found to confluence and cover the surface of the 

ceramic compact where the grain boundaries were no longer visible. The increase in weight after 

ten weeks of soaking in SBF correlates the apatite growth on the surface in this combination of 

dopants. 

  

Figure 4.35 (a) TCP film before SBF exposure, (b) Apatite growth after 3 weeks in SBF. 
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Figure 4.36 (a) doped TCP films before SBF exposure, (b) Apatite growth after 3 weeks in SBF. 

Figure 4.35 and Figure 4.36 show SEM images of the coated Si before and after 

immersion in the SBF solution for 23 days. It can be seen from Figure 4.35 (a) and (b) that the 

morphology is obviously different than that of the coating before immersion. After 21 days 

immersion, a bulk-structure phase is formed on the surface shown in Figure 4.36 (a) and (b). 

4.6.2 Weight change. In this experiment weight change was used to determine apatite 

formation and/or degradation of TCP/ doped TCP ceramics. The data collected was the weight 

change of the post SBF compression compacts. An initial weight was measured before SBF 

treatment and compared to the final weight after treatment. Weight loss is a sign of occurring 

dissolution because ions are being released from the ceramic compacts causing a slight decrease 

in bulk sample weight; however, when these Ca-P ions react with other ions in the SBF solution 

it is possible to form a calcium phosphate apatite layer on the surface or inside the sample; when 

this happens the apatite formation has a greater effect on the weight property of the ceramic than 

does the dissolution effect. 

As expected, the samples that showed an increase in weight also showed apatite 

formation on the surface and inside the samples. Similarly, samples that revealed no significant 

change in weight also did not show apatite formation. 
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Figure 4.37 Weight gain of ceramic compacts as a result of exposure to SBF for 10 weeks. 

Figure 4.37 shows the effects of weight change on TCP versus the various combination 

of doped TCP. All samples showed an increase in weight up until week 8, where the undoped 

TCP showed a decrease due to the dissolution of the ceramic in the physiological environment. 

4.6.3 Cell viability tests. Cell culture was done using osteoblast precursor cell line 

(MC3T3-E1) to determine if there were any toxic effects caused by the addition of dopants into 

TCP. It is important that the dopants do not compromise the biocompatibility of TCP by causing 

any cytotoxicity. If the osteoblast cells are not affected by the dopants then they would tend to 

spread out and occupy as much surface area as possible, thus, having a more flattened structure. 

However, if there were some toxicity on the surface of the material; the cells would rather adhere 

to themselves than the material’s surface therefore; they form a sort of ball structure that would 

have the least amount of interaction with the surface. This cell culture experiment was done at 

two intervals, 1 day for the films and 5 days for the ceramics. 

Pre-osteoblastic mouse calvaria-derived cells (MC3T3-E1) were used to study the cell–

material interactions. All samples were sterilized by autoclaving under a UV light for 30 min. 
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Cells were seeded onto the disk compacts, bare metals, and ceramic coated metals placed in 24 

well plates. The base medium for this cell line is α-MEM supplemented with 10 % fetal bovine 

serum (FBS) and 1 % penicillin-streptomycin solution (without phenol red). Cultures were 

maintained at 37 °C under an atmosphere of 5 % CO2. 

Cell viability 

To determine the cell viability after seeding onto different substrates, the cultures were 

incubated with calcein-AM and ethidium homodimer for 30 min and monitored under a 

fluorescence microscope at each stage of cell culture. Figure 4.38 through Figure 4.40 show the 

overlapping green and red fluorescence observed when the living cells were incubated with the 

dye mixture. Ethidium homodimer penetrates dead/permeable cells and gives a red fluorescence, 

while calceine fluorescence green. In our experiments we found the red fluorescence was 

negligible on the bulk ceramics and the coated metals, while the bare metals showed a significant 

number of dead cells, suggesting that most of the cells attached to the ceramics and coated 

metals were healthy and evolved continuously. 

Since magnesium is very well known to have high dissolution rates and the solubility of 

apatite is inversely related to its crystallinity, it was expected that all the doped coatings, being 

amorphous, would not endure a 5-day test, thus, the tests for the coated and uncoated metals was 

conducted for 1 day, while the ceramics were cultured for 5. The stability of the TCP coating is 

crucial in the early stage of the bone mineralization process. If the TCP coating dissolves too 

rapidly in vivo, osteoblast contact with the implant surface is likely to be reduced. In contrast, an 

excessively crystalline coating will inhibit cell proliferation. 

Samples tested for osteoblast viability included: (A) Magnesium substrates, (B) 

Mg2Zn0.3Ca substrates, (C) β-TCP coated on both (A) and (B) substrates, and (D) doped β-TCP 
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coated on both metal substrates. All coated samples statistically increased osteoblast adhesion 

above that for the uncoated metals. 

  

(a) Undoped TCP ceramic        (b) Doped TCP ceramic 

Figure 4.38 Live-dead fluorescence images of the ceramic compacts after 5 days cell seeding. 

  

(a) Undoped TCP on Mg         (b) Undoped TCP on alloy 

  

(c) Doped TCP on Mg          (d) Doped TCP on alloy 

Figure 4.39 Live-dead fluorescence images of the coated metals after 1 day cell seeding. 
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(a) bare Mg             (b) bare alloy 

Figure 4.40 Live-dead fluorescence images of the bare metals after 1 day cell seeding. 

After 5 days of culture, cells showed spreading on the surfaces of both undoped and 

doped β-TCP ceramic compacts as shown in Figure 4.38 (a) and (b), most cells fluoresced green 

indicating that most remained alive and there was a negligible amount of red fluorescence 

indicating dead cells. On both samples, cells formed a well-flattened confluent layer covering the 

entire surface. For the coated metals, the amount of live cells was more pronounced on the 

samples coated with the doped β-TCP when compared with bare substrates and those coated with 

β-TCP as shown in Figure 4.39 (a) though (d). Figure 4.40 show the fluorescent images of cells 

seeded on bare substrates and cultured for 1 day as inferred from the images, there was barely 

any cell attachment. 

It is presumed that such improvements in osteoblast adhesion may be attributed to the 

surface chemistry and grain size, which are the major difference between the TCP coating and 

the bare metals tested. The TCP coating has an average grain size of 2 to 3 μm, compared to 

those for the blank substrates. This translates into increased surface area and more 

defects/artifacts, which may be an important mechanism to enhance the interaction between 

osteoblasts and the coating. Also, the surface of the doped and undoped TCP coatings are 
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bioactive and well mimic the natural chemical environment in the bone tissue, which may also be 

favorable for cell attachment and growth. Therefore, reinforced TCP may be the most desirable 

coating to encourage cell attachment, because it is degradable and can stimulate bone in-growth 

as it dissolves gradually in the physiological environment. 
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CHAPTER 5 

Conclusions and Future Work 

5.1 Conclusions 

The objective of this research was to develop biodegradable Ca–P coatings mainly 

consisting of β-TCP, on magnesium and magnesium alloy substrates by pulsed laser deposition. 

To achieve this objective, a number of key steps were taken throughout the project. The first key 

step was to develop and fabricate a ceramic compound using β-TCP. The second key step was to 

dope β-TCP with metal oxides consisting of MgO, ZnO, and TiO2 to improve the sintering 

effect. 

The third step was to fabricate β-TCP coating by pulsed laser deposition technique. 

Following that, the samples were structurally, mechanically, and biologically characterized to 

investigate the effect of dopant addition. It was found that the doped calcium phosphate ceramics 

were the most favorable materials to be used as a coating to improve the corrosion properties of 

the magnesium alloys. Cell culture was also conducted to study the bioactivity of the β-TCP 

coated scaffolds. 

A number of conclusions can be drawn from this project: 

 The method of fabricating the β-TCP target was explored by doping with three metal 

oxides: MgO, ZnO, and TiO2. By varying the amount of dopant added into the β-TCP 

powder, it was discovered that the most favorable combination for making the TCP target 

was when 1 wt % MgO, 0.5 wt % ZnO, and 1 wt % TiO2 were added and sintered at 1250 

°C for 2 hours. This conclusion was supported by the relevant tests conducted throughout 

the project. 

 In order to improve the mechanical and corrosion properties of the implant, a magnesium 
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alloy Mg2Zn0.3Ca was used. Magnesium alloyed with zinc (Zn) and calcium (Ca) is 

known to improve on the corrosive nature of the material and inhibit hydrogen gas 

evolution during degradation. 

 To optimize the PLD deposition parameters, the laser fluence at the target was varied 

from 6 to 20 J/cm2 by varying the laser energy between 300 to 400 mJ and the use of an 

aperture at the site of the laser exit from no aperture to 10 ൈ 4 mm. By using these 

parameters, the laser fluence and spot size were calculated, and experiments were 

conducted to find the growth rate and roughness of the deposited films. The optimum 

smoothest film was achieved at room temperature, by introducing argon as a background 

gas at 3 ൈ 10ିଵ	mbar, the use of 20 ൈ 10 aperture, and input laser energy of 300 mJ 

producing a fluence of 7.5 J/cm2. 

 Two types of coatings were investigated, undoped β-TCP and β-TCP doped with ternary 

compound [1 wt % MgO, 0.5 wt % ZnO, and 1 wt % TiO2] used for enhancing the 

mechanical and corrosion properties. It was discovered that the magnesium substrate 

coated with the doped β-TCP had higher hardness (4.825 GPa) and modulus of elasticity 

(21.4 GPa) than the one coated with undoped β-TCP (0.092 GPa) and (0.84 GPa). 

Similarly, coatings on the magnesium alloy showed the ternary compound doped TCP to 

have a hardness of (21.84 GPa) and modulus of elasticity of (7.46 GPa), while the 

undoped TCP coatings had a hardness of (0.145 GPa) and a modulus of (1.2 GPa). 

Therefore, these devices could be potentially used as implant materials for bone 

formation. 

 One of the primary concerns about surface coating of magnesium alloys is their 

effectiveness in corrosion resistance. It can be seen that β-TCP ceramic coatings can 
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reduce the corrosion rate of the magnesium alloy substrate by approximately 88 %. In 

comparison, ternary compound coated samples showed more than 95 % reduction in 

corrosion rate could be obtained. 

 In terms of analyzing the bioactivity of the β-TCP coatings, the first major study was to 

evaluate the mineralization ability by soaking the samples in simulated body fluid and 

studying the resulting apatite formation on the surface, the weight gain as a result of the 

apatite formation, and investigation of any dissolution resulting from the exposure to the 

physiological environment over a period of ten weeks. It was found that the addition of 

dopants to β-TCP promoted apatite formation on all the samples studied in the present 

research. 

 The second major biological study was to determine the cell viability on the coated 

samples by utilizing live-dead assay and visualizing under a fluorescence microscope. 

Cell adhesion, proliferation and differentiation behavior are significantly improved for 

the doped TCP coated alloy compared with bare magnesium substrates, indicating that 

the β-TCP and ternary compound doped TCP coated samples offer a biologically 

favorable environment. Therefore applying β-TCP and ternary compound coatings on the 

surface of the magnesium alloy has shown that it is biocompatible, does not introduce 

any toxic element. In addition, the improved biological response to the doped TCP coated 

alloy is believed to be closely related to its corrosion resistance, since normally the 

cytotoxicity of magnesium alloys is due to the high corrosion rate resulting in gas pockets 

next to the implant site. 

In summary, coating with oxide-reinforced β-TCP might be promising for the 

surface treatment of magnesium alloys that exhibited good corrosion resistance and 
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surface biocompatibility. 

5.2 Recommendations for Future Work 

It is recommended that the findings of this study be utilized to help enhance the bone 

formation process. In future work, there are a few aspects that can be improved. In terms of 

fabrication, PLD being a very versatile method, offers great benefits for fabricating 

multicomponent thin films, however, there are several obstacles that must be overcome to 

improve and control the composition of the films over the selected substrate surface such as 

optimizing the fluence of the laser on the target, high energy input leads to splashing of the 

deposited species while low energy input leads to low deposition rates. In addition, new 

techniques have to be developed for fabricating films with better uniformity and improved 

stoichiometry. The impact of PLD coating on implant fabrication will be greatly enhanced with 

the development of new techniques that allow for coating of holes, grooves, and curved surfaces. 

Based on the promising results obtained from the current research arises the possibility of 

investigating the use of alternative dopants in TCP or combinations such as SrO, SiO2, Ag2O, 

NaF, and CaO to produce coatings that will promote bioactivity and improve on the mechanical 

properties, the TCP sintering process and enhance the corrosion resistance of the metal implants. 

Although attempts have been made to develop advanced engineering ceramic materials with 

improved or novel properties through the incorporation of the aforementioned oxides, no studies 

have been conducted to investigate their combined properties when applied as thin film coatings. 

It is expected that the inclusion of these metal oxides in a ceramic matrix will produce 

composites possessing high stiffness and improved mechanical properties compared with a 

single-phase ceramic material. 

The results showed that incorporating metal oxides into TCP ceramic material induced 
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improved mechanical properties and enhanced osteogenesis within the implants in in vitro 

testing. In future work different metal oxide components could be added into the TCP coating to 

help the promote bone formation and in vivo testing should be conducted to verify the results for 

clinical applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 131

References 

A.D.A.M., I. (2006). Fracture Fixation Devices. from http://health.allrefer.com/about/adam.html 

Abidin, N. I. Z., Martin, D., & Atrens, A. (2011). Corrosion of high purity Mg, AZ91, ZE41 and 

Mg2Zn0.2Mn in Hank's solution at room temperature. Corrosion Science, 53(3), 862-

872. doi: 10.1016/j.corsci.2010.10.008 

Agna, J. W., Knowles, H. C., Jr., & Alverson, G. (1958). The mineral content of normal human 

bone. J Clin Invest, 37(10), 1357-1361. doi: 10.1172/jci103725 

Ahn, J. S., Cha, J. O., Shin, C. H., Yeo, S. J., Im, H. J., Sakai, J., . . . Nam, T. H. (2007). Effect 

of ambient Ar gas on the composition control and crystalline properties of TiNi thin films 

fabricated by using pulsed laser deposition. Journal of the Korean Physical Society, 

50(6), 1750-1754.  

Akao, M., Aoki, H., Kato, K., & Sato, A. (1982). Dense polycrystalline beta-tricalcium 

phosphate for prosthetic applications. Journal of Materials Science, 17, 343-346.  

Al-Abdullat, Y., Tsutsumi, S., Nakajima, N., Ohta, M., Kuwahara, H., & Ikeuchi, K. Surface 

modification of magnesium by NaHCO3 and corrosion behavior in Hank's solution for 

new biomaterial applications. MATERIALS TRANSACTIONS, 42(8), 1777 - 1780.  

Altieri, C., Flores, J., Gonzalez, V., & Rodríguez, A. Biomechanics of Orthopaedic Fixations.  

Ando, J. (1958). Phase Diagrams of Ca3(PO4)2-Mg3(PO4)2 and Ca3(PO4)2-CaNaPO4 

Systems. Bulletin of the Chemical Society of Japan, 31(2), 201-205.  

Antunes, R. A., & de Oliveira, M. C. L. (2009). Corrosion processes of physical vapor 

deposition-coated metallic implants. Critical reviews in biomedical engineering, 37(6), 

425-460.  



 132

Avedesian, M. M., Baker, H., & Committee, A. I. H. (1999). Magnesium and Magnesium Alloys: 

Asm International. 

Averbuch-Pouchot, T., & Durif, A. (1996). Topics in Phosphate Chemistry: World Scientific. 

Azevedo, C. R. F. (2003). Failure analysis of a commercially pure titanium plate for 

osteosynthesis. Engineering Failure Analysis, 10(2), 153-164. doi: 10.1016/s1350-

6307(02)00067-5 

Baker, H., & Committee, A. I. H. (1999). Magnesium and magnesium alloys: ASM International. 

Bandyopadhyay, A., Withey, E. A., Moore, J., & Bose, S. (2007). Influence of ZnO doping in 

calcium phosphate ceramics. Materials Science & Engineering C-Biomimetic and 

Supramolecular Systems, 27(1), 14-17. doi: 10.1016/j.msec.2005.11.004 

Banerjee, S. S., Tarafder, S., Davies, N. M., Bandyopadhyay, A., & Bose, S. (2010). 

Understanding the influence of MgO and SrO binary doping on the mechanical and 

biological properties of beta-TCP ceramics. Acta Biomater, 6(10), 4167-4174. doi: 

10.1016/j.actbio.2010.05.012 

Barralet, J. E., Gbureck, U., Grover, L. M., & Thull, R. (2004). Mechanically induced phase 

transformation of alpha- and beta-tricalcium phosphate. In M. A. Barbosa, F. J. Monteiro, 

R. Correia & B. Leon (Eds.), Bioceramics, Vol 16 (Vol. 254-2, pp. 277-280). 

Barrère, F., Mahmood, T. A., de Groot, K., & van Blitterswijk, C. A. (2008). Advanced 

biomaterials for skeletal tissue regeneration: Instructive and smart functions. Materials 

Science and Engineering: R: Reports, 59(1–6), 38-71. doi: 

http://dx.doi.org/10.1016/j.mser.2007.12.001 

Basting, D., & Stamm, U. (2001). The development of excimer laser technology - History and 

future prospects. Zeitschrift Fur Physikalische Chemie-International Journal of Research 



 133

in Physical Chemistry & Chemical Physics, 215, 1575-1599. doi: 

10.1524/zpch.2001.215.12.1575 

Bauer, S., Schmuki, P., von der Mark, K., & Park, J. (2013). Engineering biocompatible implant 

surfaces: Part I: Materials and surfaces. Progress in Materials Science, 58(3), 261-326. 

doi: http://dx.doi.org/10.1016/j.pmatsci.2012.09.001 

Ben-Hamu, G., Eliezer, D., Dietzel, W., & Shin, K. S. (2008). Stress corrosion cracking of new 

Mg–Zn–Mn wrought alloys containing Si. Corrosion Science, 50(5), 1505-1517. doi: 

http://dx.doi.org/10.1016/j.corsci.2008.02.012 

Berland, Y., Boistelle, R., & Olmer, M. (1990). Urinary supersaturation with respect to brushite 

in patients suffering calcium oxalate lithiasis. Nephrol Dial Transplant, 5(3), 179-184.  

Bettger, W. J., & Odell, B. L. (1993). Physiological roles of zinc in the plasma-membrane of 

mammalian-cells. Journal of Nutritional Biochemistry, 4(4), 194-207. doi: 10.1016/0955-

2863(93)90052-x 

Bigi, A., Fini, M., Bracci, B., Boanini, E., Torricelli, P., GiavareSi, G., . . . Giardino, R. (2008). 

The response of bone to nanocrystalline hydroxyapatite-coated Ti13Nb11Zr alloy in an 

animal model. Biomaterials, 29(11), 1730-1736. doi: 10.1016/j.biomaterials.2007.12.011 

Black, J., & Hastings, G. (1998). Handbook of Biomaterial Properties. London. 

Bloyer, D. R., McNaney, J. M., Cannon, R. M., Saiz, E., Tomsia, A. P., & Ritchie, R. O. (2007). 

Stress–corrosion crack growth of Si–Na–K–Mg–Ca–P–O bioactive glasses in simulated 

human physiological environment. Biomaterials, 28(33), 4901-4911. doi: 

http://dx.doi.org/10.1016/j.biomaterials.2007.08.005 

Blum, J., Eckert, K. L., Schroeder, A., Petitmermet, M., Ha, S. W., & Wintermantel, E. (1996). 

In vitro testing of porous titanium dioxide ceramics. Otsu, Japan: Pergamon. 



 134

Bobby Kannan, M., Singh Raman, R. K., Witte, F., Blawert, C., & Dietzel, W. (2011). Influence 

of circumferential notch and fatigue crack on the mechanical integrity of biodegradable 

magnesium-based alloy in simulated body fluid. Journal of biomedical materials 

research. Part B, Applied biomaterials, 96(2), 303-309. doi: 10.1002/jbm.b.31766 

Bobyn JD, S. G., Hacking SA, Tanzer M, Krygier JJ. (1999). Characteristics of bone ingrowth 

and interface mechanics of a new porous tantalum biomaterial. J Bone Joint Surg Br., 

81(5), 907-914.  

Bone, C., & Expressed, P. (1976). Protection from stress in bone and its effects.  

Bonfield, W. (1999). Developing New Materials for Replacement Surgery. Parliamentary and 

Scientific Committee Lecture, 4(56).  

Bonfield, W., Grynpas, M. D., Tully, A. E., Bowman, J., & Abram, J. (1981). Hydroxyapatite 

reinforced plyethylen - A mechanically compatible implant material for bone-

replacement. Biomaterials, 2(3), 185-186. doi: 10.1016/0142-9612(81)90050-8 

Böstman, O., & Pihlajamäki, H. (2000). Clinical biocompatibility of biodegradable orthopaedic 

implants for internal fixation: a review. Biomaterials, 21(24), 2615-2621. doi: 

http://dx.doi.org/10.1016/S0142-9612(00)00129-0 

Bragg, W., & Bragg, W. (1913). The reflection of X-rays by crystals. Proceedings of the Royal 

Society of London. Series A, 88(605), 428-438.  

Brown, M., & Farrar, D. (2008). Development of bioresorbable polymers in orthopaedics. 

Plastics, Rubber and Composites, 37(2-4), 2-4.  

Brown, P., & Hocker, N. (1991). Variations in solution chemistry during the low-temperature 

formation of HA. J Am Ceram Soc, 74(8), 1848-1854.  



 135

Brown, P. W., & Fulmer, M. (2005). Kinetics of hydroxyapatite formation at low temperature. 

Journal of the American Ceramic Society, 74(5), 934-940.  

Brown, W. E., Eidelman, N., & Tomazic, B. (1987). Octacalcium phosphate as a precursor in 

biomineral formation. Adv Dent Res, 1(2), 306-313.  

Brown, W. E., Mathew, M., & Tung, M. S. (1981). Crystal-chemistry of octacalcium phosphate. 

Progress in Crystal Growth and Characterization of Materials, 4(1-2), 59-87. doi: 

10.1016/0146-3535(81)90048-4 

Bulgakov, A. V., & Bulgakova, N. M. (1995). Dynamics of laser-induced plume expansion into 

an ambient gas during film deposition. Journal of Physics D-Applied Physics, 28(8), 

1710-1718. doi: 10.1088/0022-3727/28/8/022 

Bulgakov, A. V., & Bulgakova, N. M. (1998). Gas-dynamic effects of the interaction between a 

pulsed laser-ablation plume and the ambient gas: analogy with an underexpanded jet. 

Journal of Physics D-Applied Physics, 31(6), 693-703. doi: 10.1088/0022-3727/31/6/017 

Calderin, L., Xilin, Y., Stott, M. J., & Sayer, M. (2002). Density functional study of structural, 

electronic and vibrational properties of Mg- and Zn-doped tricalcium phosphate 

biomaterials. Biomaterials, 23(20), 4155-4163. doi: 10.1016/S0142-9612(02)00199-0 

Cao, W., & Hench, L. L. (1996). Bioactive materials. Ceramics International, 22(6), 493-507.  

Carbajal, L., Caballero, A., & Sainz, M. A. (2012). Design and processing of ZnO doped 

tricalcium phosphate based materials: Influence of β/α polymorph phase assemblage on 

microstructural evolution. Journal of the European Ceramic Society, 32(3), 569-577. doi: 

http://dx.doi.org/10.1016/j.jeurceramsoc.2011.09.025 

Caroff, F., Oh, K. S., Famery, R., & Boch, P. (1998). Sintering of TCP-TiO2 biocomposites: 

influence of secondary phases. Biomaterials, 19(16), 1451-1454.  



 136

Carrodeguas, R. G., De Aza, A. H., García‐Páez, I., De Aza, S., & Pena, P. (2010). Revisiting the 

Phase‐Equilibrium Diagram of the Ca3 (PO4) 2–CaMg (SiO3) 2 System. Journal of the 

American Ceramic Society, 93(2), 561-569.  

Carter, C. B., & Norton, G. (2007). Ceramic Materials: Science and Engineering: Springer 

Science+Business Media, LLC. 

Chao, J., & López, V. (2007). Failure analysis of a Ti6Al4V cementless HIP prosthesis. 

Engineering Failure Analysis, 14(5), 822-830. doi: 10.1016/j.engfailanal.2006.11.003 

Chen, X.-C., Yin, T.-A., He, J.-S., Ma, Q.-Y., Han, Z.-M., & Li, L.-X. (1985). Low levels of zinc 

in hair and blood, pica, anorexia, and poor growth in Chinese preschool children. The 

American journal of clinical nutrition, 42(4), 694-700.  

Chiu, K. Y., Wong, M. H., Cheng, F. T., & Man, H. C. (2007). Characterization and corrosion 

studies of fluoride conversion coating on degradable Mg implants. Surface and Coatings 

Technology, 202(3), 590-598. doi: http://dx.doi.org/10.1016/j.surfcoat.2007.06.035 

Choi, J. W., Kong, Y. M., Kim, H. E., & Lee, I. S. (1998). Reinforcement of hydroxyapatite 

bioceramic by addition of Ni3Al and Al2O3. Journal of the American Ceramic Society, 

81(7), 1743-1748.  

Chrisey, D. B., & Hubler, G. K. (1994). Pulsed Laser Deposition of Thin Films: John Wiley & 

Sons. 

Christel, P., Meunier, A., Dorlot, J. M., Crolet, J. M., Witvoet, J., Sedel, L., & Boutin, P. (1988). 

Biomechanical Compatibility and Design of Ceramic Implants for Orthopedic Surgery. 

Annals of the New York Academy of Sciences, 523(1), 234-256. doi: 10.1111/j.1749-

6632.1988.tb38516.x 



 137

Christen, H. M., & Eres, G. (2008). Recent advances in pulsed-laser deposition of complex 

oxides. Journal of Physics-Condensed Matter, 20(26). doi: 10.1088/0953-

8984/20/26/264005 

Claes, L., Heitemeyer, U., Krischak, G., Braun, H., & Hierholzer, G. (1999). Fixation technique 

influences osteogenesis of comminuted fractures. Clin Orthop Relat Res(365), 221-229.  

Clèries L, F.-P. J., Morenza JL. (2000). Behavior in simulated body fluid of calcium phosphate 

coatings obtained by laser ablation. Biomaterials., 21(18), 1861-1865.  

Damron, T. A. (2008). Oncology And Basic Science: Wolters Kluwer Health/Lippincott, 

Williams & Wilkins. 

de Groot, K. Effect of porosity and physicochemical properties on the stability, resorption and 

strength of calcium phosphate ceramics. 6, 227-234.  

Dean, C. (2012). Dietary Magnesium and Stroke Prevention. Natural Medicine Journal.  

DeGarmo, E. P., Black, J. T., & Kohser, R. A. (1997). Materials and processes in 

manufacturing: Prentice Hall. 

Dickens, B., Schroeder, L. W., & Brown, W. E. (1974). Crystallographic studies of the role of 

Mg as a stabilizing impurity in β-Ca3(PO4)2. The crystal structure of pure β-Ca3(PO4)2. 

Journal of Solid State Chemistry, 10(3), 232-248. doi: http://dx.doi.org/10.1016/0022-

4596(74)90030-9 

Disegi, J., & Wyss, H. (1989). Implant materials for fracture fixation: a clinical perspective. 

Orthopedics, 12(1), 75-79.  

Doerner, M., & Nix, W. (1986). A method for interpreting the data from depth-sensing 

indentation ins t rurnen ts. J. Mater. Res, 1(4).  



 138

Douard, N., Detsch, R., Chotard-Ghodsnia, R., Damia, C., Deisinger, U., & Champion, E. 

(2011). Processing, physico-chemical characterisation and in vitro evaluation of silicon 

containing β-tricalcium phosphate ceramics. Materials Science and Engineering: C, 

31(3), 531-539.  

Driessens, F. C. M., & Verbeeck, R. M. H. (1990). Biominerals: CRC-Pr. 

Ducheyne, P., Hench, L., Kagen, A., Martens, M., Bursens, A., & Mulier, J. (1980). J. Biomed. 

Mater., 225(14).  

Ducheyne, P., & Qiu, Q. (1999). Bioactive ceramics: the effect of surface reactivity on bone 

formation and bone cell function. Biomaterials, 20(23), 2287-2303.  

Eason, R. (2006). Pulsed laser deposition of thin films: applications-led growth of functional 

materials: Wiley-Interscience. 

El-Rahman, S. S. A. (2003). Neuropathology of aluminum toxicity in rats (glutamate and GABA 

impairment). Pharmacological research : the official journal of the Italian 

Pharmacological Society, 47(3), 189-194. doi: 10.1016/s1043-6618(02)00336-5 

Ellingsen, J. E. (1991). A study on the mechanism of protein adsorption to TiO2. Biomaterials, 

12(6), 593-596. doi: http://dx.doi.org/10.1016/0142-9612(91)90057-H 

Elliot, J. (1994). Structure and Chemistry of the Apatites and Other Calcium Orthophosphates. 

Amsterdam. 

Elliot, J. C. (1994). Structure and Chemistry of the Apatites and Other Calcium 

Orthophosphates: Elsevier Science Limited. 

Ellis Iii, E. (1993). Rigid skeletal fixation of fractures. Journal of Oral and Maxillofacial 

Surgery, 51(2), 163-173. doi: http://dx.doi.org/10.1016/S0278-2391(10)80016-3 



 139

Enderle, R., Götz-Neunhoeffer, F., Göbbels, M., Müller, F. A., & Greil, P. (2005). Influence of 

magnesium doping on the phase transformation temperature of β-TCP ceramics examined 

by Rietveld refinement. Biomaterials, 26(17), 3379-3384. doi: 

http://dx.doi.org/10.1016/j.biomaterials.2004.09.017 

Evans, F. G. (1976). Mechanical properties and histology of cortical bone from younger and 

older men. Anat Rec, 185(1), 1-11. doi: 10.1002/ar.1091850102 

EVOS, A. from http://amgmicro.com/products/microscopes/evos-fl/ 

Famery, R., Richard, N., & Boch, P. (1994). Preparation of α- and β-tricalcium phosphate 

ceramics, with and without magnesium addition. Ceramics International, 20(5), 327-336. 

doi: http://dx.doi.org/10.1016/0272-8842(94)90050-7 

Farlex, I. (2013). Immobilization.  

Feng, A., & Han, Y. (2010). The microstructure, mechanical and corrosion properties of calcium 

polyphosphate reinforced ZK60A magnesium alloy composites. Journal of Alloys and 

Compounds, 504(2), 585-593. doi: http://dx.doi.org/10.1016/j.jallcom.2010.06.013 

Fielding, G. A., Bandyopadhyay, A., & Bose, S. (2012). Effects of silica and zinc oxide doping 

on mechanical and biological properties of 3D printed tricalcium phosphate tissue 

engineering scaffolds. Dent. Mater., 28(2), 113-122. doi: 10.1016/j.dental.2011.09.010 

Fleck, C., & Eifler, D. (2010). Corrosion, fatigue and corrosion fatigue behaviour of metal 

implant materials, especially titanium alloys. International Journal of Fatigue, 32(6), 

929-935. doi: 10.1016/j.ijfatigue.2009.09.009 

Frankel, G. S., & Rohwerder, M. (2003). Experimental Techniques for Corrosion. In M. S. a. G. 

S. Frankel (Ed.), Corrosion and Oxide Films (Vol. 4). Weinheim, Germany: Wiley-VCH. 



 140

Gao, H. (2006). Application of Fracture Mechanics Concepts to Hierarchical Biomechanics of 

Bone and Bone-like Materials. International Journal of Fracture, 138(1-4), 101-137. doi: 

10.1007/s10704-006-7156-4 

Geiohegan, D. B. (1994). Pulsed laser deposition of thin films. In D. B. C. a. G. K. Hubler (Ed.), 

(pp. 115-165). New York: John Wiely & Sons, Inc. 

Geng, F., Tan, L., Zhang, B., Wu, C., He, Y., Yang, J., & Yang, K. (2009). Study on β-TCP 

coated porous Mg as a bone tissue engineering scaffold material. J. Mater. Sci. Technol., 

25(1).  

Geng, F., Tan, L. L., Jin, X. X., Yang, J. Y., & Yang, K. (2009). The preparation, 

cytocompatibility, and in vitro biodegradation study of pure beta-TCP on magnesium. 

Journal of Materials Science-Materials in Medicine, 20(5), 1149-1157. doi: 

10.1007/s10856-008-3669-x 

Geohegan, D. B., Puretzky, A. A., Duscher, G., & Pennycook, S. J. (1998). Photoluminescence 

from gas-suspended SiOx nanoparticles synthesized by laser ablation. Applied Physics 

Letters, 73(4), 438-440. doi: 10.1063/1.121892 

Geohegan, D. B., Puretzky, A. A., & Rader, D. J. (1999). Gas-phase nanoparticle formation and 

transport during pulsed laser deposition of YBa2Cu3O7 - d. Applied Physics Letters, 

74(25), 3788-3790.  

Gibson, I., Akao, M., Best, S., & Boneield, W. (1996). Bioceramics. 173(9).  

Gibson, L. J., & Ashby, M. F. (1999). Cellular Solids: Cambridge University Press. 

Giordani, E., Guimarães, V., Pinto, T., & Ferreira, I. (2004). Effect of precipitates on the 

corrosion fatigue crack initiation of ISSO 5832–9 stainless steel biomaterial. Int J 

Fatigue(26), 1129-1136.  



 141

Giori, N. J. (2010). Unexpected finding of a fractured metal prosthetic femoral head in a 

nonmodular implant during revision total hip arthroplasty. The Journal of Arthroplasty, 

25(4), 659.e613-655.  

Giovanni Iazzetti, E. R. (2002). Atlas of Human Anatomy. Diane Pub Co.  

Goodman, S. B., Ma, T., Chiu, R., Ramachandran, R., & Lane Smith, R. (2006). Effects of 

orthopaedic wear particles on osteoprogenitor cells. Biomaterials, 27(36), 6096-6101. 

doi: 10.1016/j.biomaterials.2006.08.023 

Goodwin, T. J., Leppert, V. J., Risbud, S. H., Kennedy, I. M., & Lee, H. W. H. (1997). Synthesis 

of gallium nitride quantum dots through reactive laser ablation. Applied Physics Letters, 

70(23), 3122-3124.  

Gray-Munro, J. E., & Strong, M. (2009). The mechanism of deposition of calcium phosphate 

coatings from solution onto magnesium alloy AZ31. Journal of Biomedical Materials 

Research Part A, 90A(2), 339-350. doi: 10.1002/jbm.a.32107 

Gu, X., Zheng, Y., Cheng, Y., Zhong, S., & Xi, T. (2009). In vitro corrosion and 

biocompatibility of binary magnesium alloys. Biomaterials, 30(4), 484-498. doi: 

10.1016/j.biomaterials.2008.10.021 

Gu, X. N., Li, N., Zhou, W. R., Zheng, Y. F., Zhao, X., Cai, Q. Z., & Ruan, L. (2011). Corrosion 

resistance and surface biocompatibility of a microarc oxidation coating on a Mg-Ca alloy. 

Acta Biomaterialia, 7(4), 1880-1889. doi: 10.1016/j.actbio.2010.11.034 

Gupta, R. K., Mensah-Darkwa, K., & Kumar, D. (2013). Effect of Post Heat Treatment on 

Corrosion Resistance of Phytic Acid Conversion Coated Magnesium. Journal of 

Materials Science & Technology, 29(2), 180-186. doi: 

http://dx.doi.org/10.1016/j.jmst.2012.12.014 



 142

Habibovic, P., Barrere, F., van Blitterswijk, C. A., de Groot, K., & Layrolle, P. (2002). 

Biomimetic hydroxyapatite coating on metal implants. Journal of the American Ceramic 

Society, 85(3), 517-522.  

Hanabusa, M. (1993). Paper presented at the Mater. Res. Soc. Symp. Proc. 

Harandi, S. E., Idris, M. H., & Jafari, H. (2011). Effect of forging process on microstructure, 

mechanical and corrosion properties of biodegradable Mg-1Ca alloy. Materials & 

Design, 32(5), 2596-2603. doi: 10.1016/j.matdes.2011.01.042 

Harilal, S. S. (2001). Expansion dynamics of laser ablated carbon plasma plume in helium 

ambient. Applied Surface Science, 172(1-2), 103-109. doi: 10.1016/s0169-

4332(00)00837-0 

Harilal, S. S., Bindhu, C. V., Nampoori, V. P. N., & Vallabhan, C. P. G. (1998). Influence of 

ambient gas on the temperature and density of laser produced carbon plasma. Applied 

Physics Letters, 72(2), 167-169. doi: 10.1063/1.120602 

Hartwig, A. (2001). Role of magnesium in genomic stability. Mutation Research-Fundamental 

and Molecular Mechanisms of Mutagenesis, 475(1-2), 113-121. doi: 10.1016/s0027-

5107(01)00074-4 

Hayes, J. S., & Richards, R. G. (2010). The use of titanium and stainless steel in fracture 

fixation. Expert Rev Med Devices, 7(6), 843-853. doi: 10.1586/erd.10.53 

Hench, L. L. (1998). Bioceramics. Journal of the American Ceramic Society, 81(7), 1705-1728.  

Hench, L. L., & Polak, J. M. (2002). Third-Generation Biomedical Materials. Science, 

295(5557), 1014-1017. doi: 10.1126/science.1067404 

Hench, L. L., & Wilson, J. (1993). An Introduction to Bioceramics: World Scientific Publishing 

C. Pte. Limited. 



 143

Hermawan, H. (2012). Introduction to Metallic Biomaterials. Biodegradable Metals, 1-11.  

Hermawan, H., & Mantovani, D. (2009). Degradable metallic biomaterials: the concept, current 

developments and future directions. Minerva Biotecnologica, 21(4), 207-216.  

High-Tech, H. SU8000 Series. 

Hing, K., Best, S., & Bonfield, W. (1999). Characterization of porous hydroxyapatite. Journal of 

Materials Science: Materials in Medicine, 10(3), 135-145.  

Holmes, D., & Bridges, A. (2004). Atomic Scale Structure of Materials. from 

http://www.doitpoms.ac.uk/tlplib/atomic-scale-structure/printall.php 

Hoppe, A., Gueldal, N. S., & Boccaccini, A. R. (2011). A review of the biological response to 

ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials, 

32(11), 2757-2774. doi: 10.1016/j.biomaterials.2011.01.004 

Huang, J., Best, S. M., Bonfield, W., & Buckland, T. (2010). Development and characterization 

of titanium-containing hydroxyapatite for medical applications. Acta Biomaterialia, 6(1), 

241-249. doi: http://dx.doi.org/10.1016/j.actbio.2009.06.032 

Hulbert, S., Bokros, J., Hench, L., Wilson, J., & Heimke, G. (1987). Ceramics in Clinical 

Applications: Past, Present and Future. 

Hutmacher, D., Hurzeler, M. B., & Schliephake, H. (1996). A review of material properties of 

biodegradable and bioresorbable polymers and devices for GTR and GBR applications. 

The International journal of oral & maxillofacial implants, 11(5), 667-678.  

Hyun Seung Yu, K. S. H., Hwan Kim, Dong Ho Lee, Choon Ki Lee, Bong Soon Chang, Deug 

Joong Kim, Jun Hyuk Seo, Jae Hyup Lee, Ki Soo Park. (2003). US Patent No. 

US7582310. 



 144

Itatani, K., Takahashi, M., Howell, F. S., & Aizawa, M. (2002). Effect of metal-oxide addition 

on the sintering of β-calcium orthophosphate. Journal of Materials Science: Materials in 

Medicine, 13(7), 707-713.  

Iwasaki, A., Torres, C., Ohashi, P. S., Robinson, H. L., & Barber, B. H. (1997). The dominant 

role of bone marrow-derived cells in CTL induction following plasmid DNA 

immunization at different sites. The Journal of Immunology, 159(1), 11-14.  

Jacobs, J., Hallab, N., Skipor, A., & Urban, R. (2003). Metal degradation products: a cause for 

concern in metal-metal bearings? Clin Orthop Relat Res., 417, 139-147.  

Jacobs, J. J., Skipor, A. K., Patterson, L. M., Hallab, N. J., Paprosky, W. G., Black, J., & 

Galante, J. O. (1998). Metal release in patients who have had a primary total hip 

arthroplasty. A prospective, controlled, longitudinal study. J Bone Joint Surg Am., 

80(10), 1447-1458.  

Jamesh, M., Kumar, S., & Narayanan, T. S. N. S. (2011). Corrosion behavior of commercially 

pure Mg and ZM21 Mg alloy in Ringer's solution - Long term evaluation by EIS. 

Corrosion Science, 53(2), 645-654. doi: 10.1016/j.corsci.2010.10.011 

Jarcho, M. (1985). Calcium phosphate ceramics as hard tissue prosthetics. Clin. Orthop. Relat. 

Res., 157, 259.  

Jarcho, M., Salsbury, R., Thomas, M., & Doremus, R. (1979). Synthesis and fabrication of beta-

TCP (Whitlockite) ceramics for potential prosthetic applications. J. Mater. Sci., 14, 142-

150.  

Jarco, M., Kay, J., Gumaer, K., & Doremus, R. (1977). J. Bioeng., 79(1).  

Jardim, P. M., Solorzano, G., & Vander Sande, J. B. (2004). Second phase formation in melt-

spun Mg-Ca-Zn alloys. Materials Science and Engineering a-Structural Materials 



 145

Properties Microstructure and Processing, 381(1-2), 196-205. doi: 

10.1016/j.msea.2004.04.043 

Jay, E. E., Mallinson, P. M., Fong, S. K., Metcalfe, B. L., & Grimes, R. W. (2011). Partitioning 

of dopant cations between @b-tricalcium phosphate and fluorapatite. JNM, 414(3), 7-7. 

doi: 10.1016/j.jnucmat.2011.05.003 

Jennifer, W., & Michael, P. (2003). Osteoblast response to pure titanium and titanium alloy Bio-

Implant Interface: CRC Press. 

JJ., J., JL., G., & RM., U. (1998). Corrosion of metal orthopaedic implants. J Bone Joint Surg 

Am., 80(2), 268-282.  

Jones, D. A. (1996). Principles and Prevention of Corrosion 2nd Ed. Upper Saddle River, NJ. 

Kalita, S. J., Bhardwaj, A., & Bhatt, H. A. (2007). Nanocrystalline calcium phosphate ceramics 

in biomedical engineering. Materials Science and Engineering: C, 27(3), 441-449.  

Kasuga, T., Kondo, H., & Nogami, M. (2002). Apatite formation on TiO2 in simulated body 

fluid. Journal of Crystal Growth, 235(1-4), 235-240. doi: 10.1016/s0022-0248(01)01782-

1 

Kawamura, H., Ito, A., Miyakawa, S., Layrolle, P., Ojima, K., Ichinose, N., & Tateishi, T. 

(2000). Stimulatory effect of zinc-releasing calcium phosphate implant on bone 

formation in rabbit femora. Journal of Biomedical Materials Research, 50(2), 184-190. 

doi: 10.1002/(SICI)1097-4636(200005)50:2<184::AID-JBM13>3.0.CO;2-3 

Kelly, R., & Miotello, A. (1996). Comments on explosive mechanisms of laser sputtering. Paper 

presented at the Laser Ablation. Symposium F: Third International Symposium on Laser 

Ablation (COLA'95) 1995 E-MRS Spring Conference, 22-26 May 1995, Netherlands. 



 146

Kelly, R. G., Scully, J. R., Shoesmith, D. W., & Buchheit, R. G. (2003). Electrochemical 

Techniques in Corrosion Science and Engineering. New York. 

Koch, C. F., Johnson, S., Kumar, D., Jelinek, M., Chrisey, D. B., Doraiswamy, A., . . . 

Mihailescu, I. N. (2007). Pulsed laser deposition of hydroxyapatite thin films. Materials 

Science and Engineering: C, 27(3), 484-494. doi: 

http://dx.doi.org/10.1016/j.msec.2006.05.025 

Koh, Y.-H., Lee, E.-J., Yoon, B.-H., Song, J.-H., Kim, H.-E., & Kim, H.-W. (2006). Effect of 

polystyrene addition on freeze casting of ceramic/camphene slurry for ultra-high porosity 

ceramics with aligned pore channels. Journal of the American Ceramic Society, 89(12), 

3646-3653. doi: 10.1111/j.1551-2916.2006.01311.x 

Kotani, S., Fujita, Y., Kitsugi, T., Nakamura, T., Yamamuro, T., Ohtsuki, C., & Kokubo, T. 

(1991). Bone bonding mechanism of β-tricalcium phosphate. Journal of Biomedical 

Materials Research, 25(10), 1303-1315. doi: 10.1002/jbm.820251010 

Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F., & Smalley, R. E. (1985). C60: 

Buckminsterfullerene. Nature, 318(6042), 162-163.  

Kruth, J.-P., Wang, X., Laoui, T., & Froyen, L. (2003). Lasers and materials in selective laser 

sintering. Assembly Automation, 23(4), 357-371.  

Ku, C. H., Piolettli, D. P., Browne, M., & Gregson, P. J. (2002). Effect of different Ti-6A1-4V 

surface treatments on osteoblasts behaviour. Biomaterials, 23(6), 1447-1454. doi: 

10.1016/s0142-9612(01)00266-6 

Lacefield, W. R. (1998). Current status of ceramic coatings for dental implants. Implant 

Dentistry, 7(4), 315.  



 147

Lahann, J., Klee, D., Thelen, H., Bienert, H., Vorwerk, D., & Hocker, H. (1999). Improvement 

of haemocompatibility of metallic stents by polymer coating. Journal of Materials 

Science-Materials in Medicine, 10(7), 443-448. doi: 10.1023/a:1008939400812 

Lambotte, A. (1909). Technique et indication des prothèses dans le traitement des fractures. 

Presse Med, 17, 132.  

Lambotte, A. (1932). L'utilisation du magnesium comme materiel perdu dans l’osteosynthese`. 

Bull Me ́ m Soc Nat Chir, 28, 1325-1334.  

Lane, W. A. (1895). Some remarks on the treatment of fractures. BMJ, 1(1790), 861-863. doi: 

10.1136/bmj.1.1790.861 

Langstaff, S., Sayer, M., Smith, T. J. N., Pugh, S. M., Hesp, S. A. M., & Thompson, W. T. 

(1999). Resorbable bioceramics based on stabilized calcium phosphates. Part I: rational 

design, sample preparation and material characterization. Biomaterials, 20(18), 1727-

1741. doi: http://dx.doi.org/10.1016/S0142-9612(99)00086-1 

Larry L. Hench, J. W. (October 1993). An Introduction to Bioceramics Volume One. World 

Scientific, London, UK.  

Lausmaa, J., Kasemo, B., & Mattsson, H. (1990). Surface spectroscopic characterization of 

titanium implant materials. Applied Surface Science, 44(2), 133-146. doi: 

http://dx.doi.org/10.1016/0169-4332(90)90100-E 

Lee, D. D., Rey, C., & Aiolova, M. (2000). Bioresorbable ceramic composites: Google Patents. 

Lee, W. J., Lee, S. W., Kim, H. L., Kim, D. J., & Han, J. S. (2005). J. Korean Phys. Soc., 47, 

152.  

Lemons, J. (1993). Inorganic and organic composition for treatment of bone lesions: Google 

Patents. 



 148

Leng, Y., Chen, J., & Qu, S. (2003). TEM study of calcium phosphate precipitation on HA/TCP 

ceramics. Biomaterials, 24(13), 2125-2131. doi: http://dx.doi.org/10.1016/S0142-

9612(03)00036-X 

Lhotka, C., Szekeres, T., Steffan, I., Zhuber, K., & Zweymuller, K. (2003). Four-year study of 

cobalt and chromium blood levels in patients managed with two different metal-on-metal 

total hip replacements. Journal of Orthopaedic Research, 21(2), 189-195. doi: 

10.1016/s0736-0266(02)00152-3 

Li, H., Khor, K. A., & Cheang, P. (2002). Titanium dioxide reinforced hydroxyapatite coatings 

deposited by high velocity oxy-fuel (HVOF) spray. Biomaterials, 23(1), 85-91. doi: 

10.1016/s0142-9612(01)00082-5 

Li, L., Gao, J., & Wang, Y. (2004). Evaluation of cyto-toxicity and corrosion behavior of alkali-

heat-treated magnesium in simulated body fluid. Surface and Coatings Technology, 

185(1), 92-98. doi: http://dx.doi.org/10.1016/j.surfcoat.2004.01.004 

Li, Y., Lee, I.-S., Cui, F.-Z., & Choi, S.-H. (2008). The biocompatibility of nanostructured 

calcium phosphate coated on micro-arc oxidized titanium. Biomaterials, 29(13), 2025-

2032. doi: http://dx.doi.org/10.1016/j.biomaterials.2008.01.009 

Li, Z., Gu, X., Lou, S., & Zheng, Y. (2008). The development of binary Mg-Ca alloys for use as 

biodegradable materials within bone. Biomaterials, 29(10), 1329-1344. doi: 

10.1016/j.biomaterials.2007.12.021 

Liao, Y. (2006). Practical Electron Microscopy and Database.  

Lin, F. H., Lin, C. C., Lu, C. M., Liu, H. C., Sun, J. S., & Wang, C. Y. (1995). Mechanical 

properties and histological evaluation of sintered beta-Ca2P2O7 with Na4P2O7 center 

dot 10H2O addition. Biomaterials, 16(10), 793-802. doi: 10.1016/0142-9612(95)99642-y 



 149

Lindberg, J., Zobitz, M., Poindexter, J., & Pak, C. (1990). Magnesium bioavailability from 

magnesium citrate and magnesium oxide. J Am Coll Nutr, 9(1), 48-55.  

Linder, L., Carlsson, A., Marsal, L., Bjursten, L. M., & Branemark, P. I. (1988). Clinical aspects 

of osseointegration in joint replacement - A histological study of titanium implants. 

Journal of Bone and Joint Surgery-British Volume, 70(4), 550-555.  

Lu, X., & Leng, Y. (2005). Theoretical analysis of calcium phosphate precipitation in simulated 

body fluid. Biomaterials, 26(10), 1097-1108. doi: 10.1016/j.biomaterials.2004.05.034 

Lusvardi, G., Zaffe, D., Menabue, L., Bertoldi, C., Malavasi, G., & Consolo, U. (2009). In vitro 

and in vivo behaviour of zinc-doped phosphosilicate glasses. Acta Biomaterialia, 5(1), 

419-428. doi: 10.1016/j.actbio.2008.07.007 

Magnissalis, E. A., Zinelis, S., Karachalios, T., & Hartofilakidis, G. (2003). Failure analysis of 

two Ti-alloy total hip arthroplasty femoral stems fractured in vivo. Journal of Biomedical 

Materials Research Part B-Applied Biomaterials, 66B(1), 299-305. doi: 

10.1002/jbm.b.10003 

Mansfeld, F. (1976). The polarization resistance technique for measuring corrosion currents. In 

M. G. F. a. R. W. Staehle (Ed.), Advances in Corrosion Science and Technology. Plenum, 

New York. 

Mao, L., Wang, Y., Wan, Y., He, F., & Huang, Y. (2009). Effects of Zn on microstructure and 

mechanical properties of biomedical Mg–Ca–Zn alloys. Heat Treat Metal, 34(10), 19-22.  

Maret, W., & Sandstead, H. H. (2006). Zinc requirements and the risks and benefits of zinc 

supplementation. Journal of Trace Elements in Medicine and Biology, 20(1), 3-18.  

Matthews, N. S., Khambay, B. S., Ayoub, A. F., Koppel, D., & Wood, G. (2003). Preliminary 

assessment of skeletal stability after sagittal split mandibular advancement using a 



 150

bioresorbable fixation system. British Journal of Oral and Maxillofacial Surgery, 41(3), 

179-184. doi: http://dx.doi.org/10.1016/S0266-4356(03)00048-2 

Maurus, P. B., & Kaeding, C. C. (2004). Bioabsorbable implant material review. Operative 

Techniques in Sports Medicine, 12(3), 158-160. doi: 10.1053/j.otsm.2004.07.015 

McBride, E. D. (1938). Absorbable metal in bone surgery - A further report on the use of 

magnesium alloys. Journal of the American Medical Association, 111(27), 2464-2466.  

Mckee, M. D., & Nanci, A. (1996). Osteopontin: an interfacial extracellular matrix protein in 

mineralized tissues. Connective tissue research, 35(1-4), 197-205.  

Mensah-Darkwa, K. (2012). Experimental setup for electrochemical corrosion testing. 

Metev, S., & Meteva, K. (1989). Nucleation and growth of laser-plasma deposited thin-films. 

Applied Surface Science, 43, 402-408. doi: 10.1016/0169-4332(89)90247-x 

Metev, S. M., & Veĭko, V. P. (1994). Laser-assisted microtechnology: Springer-Verlag. 

Meyer, J., & Fowler, B. (1997). Lattice defects in nonstoichiometric calcium hydroxyapatites. 

Inorg Chem, 21, 3029-3035.  

Miao, S., Cheng, K., Weng, W., Du, P., Shen, G., Han, G., . . . Zhang, S. (2008). Fabrication and 

evaluation of Zn containing fluoridated hydroxyapatite layer with Zn release ability. Acta 

Biomaterialia, 4(2), 441-446. doi: http://dx.doi.org/10.1016/j.actbio.2007.08.013 

Monma, H., & Goto, M. (1983). Behavior of the alpha<=>beta phase transformation in 

tricalcium phosphate. Yogyo Kyokai Shi, 91, 473-475.  

Moritz, N., Jokinen, M., Peltola, T., Areva, S., & Yli-Urpo, A. (2003). Local induction of 

calcium phosphate formation on TiO2 coatings on titanium via surface treatment with a 

CO2 laser. Journal of Biomedical Materials Research Part A, 65A(1), 9-16. doi: 

10.1002/jbm.a.10434 



 151

Morra, M., Cassinelli, C., Meda, L., Fini, M., Giavaresi, G., & Giardino, R. (2005). Surface 

analysis and effects on interfacial bone microhardness of collagen-coated titanium 

implants: a rabbit model. The International journal of oral & maxillofacial implants, 

20(1), 23.  

Mow, H. (2005). Basic Orthoaedic Biomechanics and Mechano-Biology. Biomed Eng Online, 

4(28).  

Namiki, A., Kawai, T., & Ichige, K. (1986). Angle-resolved time-of-flight spectra of neutral 

particles desorbed from laser irradiated CdS. Surface Science, 166(1), 129-140. doi: 

http://dx.doi.org/10.1016/0039-6028(86)90536-4 

Navarro, M., Michiardi, A., Castaiio, O., & Planell, J. A. (2008). Biomaterials in orthopaedics. 

Journal of the Royal Society Interface, 5(27), 1137-1158. doi: 10.1098/rsif.2008.0151 

Ng, B. D., Annergren, I., Soutar, A. M., Khor, K. A., & Jarfors, A. E. W. (2005). 

Characterisation of a duplex TiO2/CaP coating on Ti6Al4V for hard tissue replacement. 

Biomaterials, 26(10), 1087-1095. doi: 10.1016/j.biomaterials.2004.04.022 

Niinomi, M. (2002). Recent metallic materials for biomedical applications. Metallurgical and 

Materials Transactions a-Physical Metallurgy and Materials Science, 33(3), 477-486. 

doi: 10.1007/s11661-002-0109-2 

Niinomi, M. (2007). Fatigue characteristics of metallic biomaterials. International Journal of 

Fatigue, 29(6), 992-1000. doi: 10.1016/j.ijfatigue.2006.09.021 

Ogawa, M., Tohma, Y., Ohgushi, H., Takakura, Y., & Tanaka, Y. (2012). Early Fixation of 

Cobalt-Chromium Based Alloy Surgical Implants to Bone Using a Tissue-engineering 

Approach. Int J Mol Sci, 13(5), 5528-5541. doi: 10.3390/ijms13055528 

Ogawa, T. (2006). Medical Implants: Google Patents. 



 152

Ohring, M. (2002). Materials science of thin films : deposition and structure (2nd ed.). San 

Diego, CA: Academic Press. 

Okuma, T. (2001). Magnesium and bone strength. Nutrition, 17(7-8), 679-680. doi: 

10.1016/s0899-9007(01)00551-2 

Oliver, W. C., & Pharr, G. M. (1992). Improved technique for determining hardness and elastic 

modulus using load and displacement sensing indentation experiments. Journal of 

Materials Research, 7(6), 1564-1583.  

Onoki, T., Yamamoto, S. y., Onodera, H., & Nakahira, A. (2011). New technique for bonding 

hydroxyapatite ceramics and magnesium alloy by hydrothermal hot-pressing method. 

Materials Science & Engineering C-Materials for Biological Applications, 31(2), 499-

502. doi: 10.1016/j.msec.2010.09.002 

Oonishi, H., Yamamoto, M., Ishimaru, H., Tsuji, E., Kushitani, S., Aono, M., & Ukon, Y. 

(1989). The effect of hydroxyapatite coating on bone growth into porous titanium alloy 

implants. Journal of Bone & Joint Surgery, British Volume, 71(2), 213-216.  

OpenCourseWare, P. A. M. a. M. Materials for Biomedical Applications. 

Ortega, Y., Monge, M. A., & Pareja, R. (2008). The precipitation process in Mg–Ca–(Zn) alloys 

investigated by positron annihilation spectroscopy. Journal of Alloys and Compounds, 

463(1–2), 62-66. doi: http://dx.doi.org/10.1016/j.jallcom.2007.09.044 

Park, J. (2000). Metallic Biometerials in The Biomedical Engineering Handbook. 2nd ed. Edited 

by Brozino JD, CRC Press and IeEEE Press, 37(20), 1-37.  

Percival, M. (1999). Bone health and osteoporosis. Appl. Nutr. Sci. Rep., 5, 1-5.  



 153

Perera, F. H., Martínez-Vázquez, F. J., Miranda, P., Ortiz, A. L., & Pajares, A. (2010). Clarifying 

the effect of sintering conditions on the microstructure and mechanical properties of β-

tricalcium phosphate. Ceramics International, 36(6), 1929-1935.  

Pilliar, R. M., Lee, J. M., & Maniatopoulos, C. (1986). OBSERVATIONS ON THE EFFECT 

OF MOVEMENT ON BONE INGROWTH INTO POROUS-SURFACED IMPLANTS. 

Clinical Orthopaedics and Related Research(208), 108-113.  

Piveteau, L. D., Girona, M. I., Schlapbach, L., Barboux, P., Boilot, J., & Gasser, B. (1999). Thin 

films of calcium phosphate and titanium dioxide by a sol-gel route: a new method for 

coating medical implants. Journal of Materials Science-Materials in Medicine, 10(3), 

161-167. doi: 10.1023/a:1008985423644 

Puleo, D. A., & Huh, W. W. (1995). Acute toxicity of metal-ions in cultures of osteogenic cells 

derived from bone-marrow stromal cells. Journal of Applied Biomaterials, 6(2), 109-116. 

doi: 10.1002/jab.770060205 

Quadir, T. (1994). Use of ethylene/vinyl acetate polymer binders as drying pressing aids for 

ceramic powders: Google Patents. 

Rabadjieva, D., Tepavitcharova, S., Gergulova, R., Sezanova, K., Titorenkova, R., Petrov, O., & 

Dyulgerova, E. (2011). Mg- and Zn-modified calcium phosphates prepared by 

biomimetic precipitation and subsequent treatment at high temperature. J Mater Sci 

Mater Med, 22(10), 2187-2196. doi: 10.1007/s10856-011-4415-3 

Ramaswamy, Y., Wu, C., Zhou, H., & Zreiqat, H. (2008). Biological response of human bone 

cells to zinc-modified Ca-Si-based ceramics. Acta Biomaterialia, 4(5), 1487-1497. doi: 

10.1016/j.actbio.2008.04.014 



 154

Ramila, A., & Vallet-Regi, M. (2001). Static and dynamic in vitro study of a sol-gel glass 

bioactivity. Biomaterials, 22(16), 2301-2306.  

Ramires, P. A., Romito, A., Cosentino, F., & Milella, E. (2001). The influence of 

titania/hydroxyapatite composite coatings on in vitro osteoblasts behaviour. Biomaterials, 

22(12), 1467-1474. doi: 10.1016/s0142-9612(00)00269-6 

Ramirez, C., & Lei, K. S. (1996). Evaluation of the reliability and corrosivity of VOC-free, no-

clean fluxes using standard, modified and electrochemical methods. Soldering & Surface 

Mount Technology, 8(1), 6-9.  

Rayburn, G. L., Riffle, R. G., Walburn, F. J., & Williams, B. G. (1998). Endoscopic device and 

method for reinforcing surgical staples: Google Patents. 

Raynaud, S., Champion, E., Lafon, J., & Bernache-Assollant, D. (2002). Calcium phosphate 

apatites with variable Ca/P atomic ratio III. Mechanical properties and degradation in 

solution of hot pressed ceramics. Biomaterials, 23(4), 1081-1089.  

Revell, P. A., Damien, E., Zhang, X. S., Evans, P., & Howlett, C. R. (Dec). The effect of 

magnesium ions on bone bonding to hydroxyapatite coating on titanium alloy implants. 

Key Engineering Materials, Bioceramics 16, 447-450. doi: 

10.4028/www.scientific.net/KEM.254-256.447 

Roberto, V. S. (1995). The carbonate content in high-temperature apatite: An analytical method 

applied to apatite from the Jacupiranga alkaline complex. American Mineralogist, 80, 

336-344.  

Robins, S. P., Woitge, H., Hesley, R., Ju, J., Seyedin, S., & Seibel, M. J. (2009). Direct, enzyme‐

linked immunoassay for urinary deoxypyridinoline as a specific marker for measuring 

bone resorption. Journal of Bone and Mineral Research, 9(10), 1643-1649.  



 155

Rogel, M. R., Qiu, H., & Ameer, G. A. (2008). The role of nanocomposites in bone regeneration. 

Journal of Materials Chemistry, 18(36), 4233-4241.  

Rude, R. K. (1998). Magnesium deficiency: A cause of heterogenous disease in humans. Journal 

of Bone and Mineral Research, 13(4), 749-758. doi: 10.1359/jbmr.1998.13.4.749 

Ruksudjarit, A., Pengpat, K., Rujijanagul, G., & Tunkasiri, T. (2008). The fabrication of 

nanoporous hydroxyapatite ceramics. Advanced Materials Research, 47, 797-800.  

Ryu, H. S., Youn, H. J., Hong, K. S., Chang, B. S., Lee, C. K., & Chung, S. S. (2002). An 

improvement in sintering property of beta-tricalcium phosphate by addition of calcium 

pyrophosphate. Biomaterials, 23(3), 909-914.  

Safronova, T., Shekhirev, M., & Putlyaev, V. (2007). Ceramics based on calcium hydroxyapatite 

synthesized in the presence of PVA. Glass and Ceramics, 64(11), 408-412.  

Sainz, M. A., Pena, P., Serena, S., & Caballero, A. (2010). Influence of design on bioactivity of 

novel CaSiO3-CaMg(SiO3)(2) bioceramics: In vitro simulated body fluid test and 

thermodynamic simulation. Acta Biomaterialia, 6(7), 2797-2807. doi: 

10.1016/j.actbio.2010.01.003 

Santos, J., Jha, L., & Monteiro, F. (1996). Surface modifications of glass-reinforced 

hydroxyapatite composites. J. Mater. Sci., 7, 181-185.  

Saris, N.-E. L., Mervaala, E., Karppanen, H., Khawaja, J. A., & Lewenstam, A. (2000). 

Magnesium: An update on physiological, clinical and analytical aspects. Clinica Chimica 

Acta, 294(1–2), 1-26. doi: 10.1016/S0009-8981(99)00258-2 

Saris, N. E. L., Mervaala, E., Karppanen, H., Khawaja, J. A., & Lewenstam, A. (2000). 

Magnesium - An update on physiological, clinical and analytical aspects. Clinica 

Chimica Acta, 294(1-2), 1-26. doi: 10.1016/s0009-8981(99)00258-2 



 156

Satomi, K., Akagawa, Y., Nikai, H., & Tsuru, H. (1988). Bone-implant interface structures after 

nontapping and tapping insertion of screw-type titanium-alloy endosseous implants. 

Journal of Prosthetic Dentistry, 59(3), 339-342. doi: 10.1016/0022-3913(88)90187-4 

Saw, B. A. (2003). Corrosion Resistance of Magnesium Alloys (Vol. 13). 

Scully, J. R. (2000). Polarization resistance method for determination of instantaneous corrosion 

rates. Corrosion (Houston), 56, 199-218.  

Seeley, Z., Bandyopadhyay, A., & Bose, S. (2007). Influence of TiO2 and Ag2O addition on 

tricalcium phosphate ceramics. Journal of Biomedical Materials Research Part A, 

82A(1), 113-121. doi: 10.1002/jbm.a.31077 

Seeley, Z., Bandyopadhyay, A., & Bose, S. (2008). Tricalcium phosphate based resorbable 

ceramics: Influence of NaF and CaO addition. Materials Science and Engineering: C, 

28(1), 11-17. doi: http://dx.doi.org/10.1016/j.msec.2006.12.010 

Shadanbaz, S., & Dias, G. J. (2012). Calcium phosphate coatings on magnesium alloys for 

biomedical applications: A review. Acta Biomaterialia, 8(1), 20-30. doi: 

http://dx.doi.org/10.1016/j.actbio.2011.10.016 

Sharma, A., Kalyanaraman, R., Narayan, R., Oktyabrsky, S., & Narayan, J. (2001). Carbon 

nanotube composites synthesized by ion-assisted pulsed laser deposition. Materials 

Science and Engineering: B, 79(2), 123-127.  

Shea, J. E., & Miller, S. C. (2005). Skeletal function and structure: Implications for tissue-

targeted therapeutics. Advanced Drug Delivery Reviews, 57(7), 945-957.  

Sherman, W. (1912). Vanadium steel bone plates and screws. Surg Gynecol Obstet, 14, 629-634.  

Shi, D. (2004). Biomaterials and Tissue Engineering. Springer Berlin Heidelberg New York, 2-

200.  



 157

Shi, P., Ng, W. F., Wong, M. H., & Cheng, F. T. (2009). Improvement of corrosion resistance of 

pure magnesium in Hanks’ solution by microarc oxidation with sol–gel TiO2 sealing. 

Journal of Alloys and Compounds, 469(1–2), 286-292. doi: 

http://dx.doi.org/10.1016/j.jallcom.2008.01.102 

Singh, R. K., & Carignan, J. (1991). Theoretical aspects on spatial thickness variations in laser-

deposited thin films. MRS Online Proceedings Library, 236, null-null.  

Singh, R. K., Holland, O. W., & Narayan, J. (1990). Theoretical model for deposition of thin 

films using pulsed laser evaporation technique. Journal of Applied Physics, 68, 233-247.  

Singh, R. K., & Narayan, J. (1990). Pulsed-laser evaporation technique for deposition of thin-

films-physics and theoretical-model. Physical Review B, 41(13), 8843-8859. doi: 

10.1103/PhysRevB.41.8843 

Slinde, F., Grönberg, A., Engström, C., Rossander-Hulthén, L., & S., L. (2002). Individual 

dietary intervention in patients with COPD during multidisciplinary rehabilitation. Respir 

Med., 96(5), 330-336.  

Sneddon, I. N. (1965). The relation between load and penetration in the axisymmetric 

Boussinesq problem for a punch of arbitrary profile. International Journal of Engineering 

Science, 3(1), 47-57.  

Song, G. (2007). Control of biodegradation of biocompatable magnesium alloys. Corrosion 

Science, 49(4), 1696-1701. doi: 10.1016/j.corsci.2007.01.001 

Song, G. L., & Atrens, A. (1999). Corrosion Mechanisms of Magnesium Alloys. Advanced 

Engineering Materials, 1(1), 11-33. doi: 10.1002/(SICI)1527-2648(199909)1:1<11::AID-

ADEM11>3.0.CO;2-N 



 158

Song, Y. W., Shan, D. Y., & Han, E. H. (2008). Electrodeposition of hydroxyapatite coating on 

AZ91D magnesium alloy for biomaterial application. Materials Letters, 62(17–18), 3276-

3279. doi: http://dx.doi.org/10.1016/j.matlet.2008.02.048 

Staiger, M. P., Pietak, A. M., Huadmai, J., & Dias, G. (2006). Magnesium and its alloys as 

orthopedic biomaterials: A review. Biomaterials, 27(9), 1728-1734. doi: 

10.1016/j.biomaterials.2005.10.003 

Stern, M., & Geary, A. L. (1957). Electrochemical polarization .1. A theoretical analysis of the 

shape of polarization curves. Journal of the Electrochemical Society, 104(1), 56-63. doi: 

10.1149/1.2428496 

Suchanek, W., & Yoshimura, M. (1998). Processing and properties of hydroxyapatite-based 

biomaterials for use as hard tissue replacement implants. Journal of Materials Research, 

13(1), 94-117.  

Sudarshan, T. S., Srivatsan, T. S., & Harvey, D. P. (1990). Fatigue processes in metals - Role of 

aqueous enviroments. Engineering Fracture Mechanics, 36(6), 827-852. doi: 

10.1016/0013-7944(90)90262-f 

Sun, Y., Zhang, B., Wang, Y., Geng, L., & Jiao, X. (2012). Preparation and characterization of a 

new biomedical Mg-Zn-Ca alloy. Materials & Design, 34, 58-64. doi: 

10.1016/j.matdes.2011.07.058 

Suresh, S. (2004). Fatigue of materials. 2nd ed. Cambridge: Cambridge University Press.  

Tabor, D. (1951). The Hardness of Metals: Clarendon Press. 

Tampieri, A., Fiorani, D., & Barone, A. (1995). Euro-ceramics.  



 159

Tanaka, H., Yamamoto, A., Shimoyama, J.-i., Ogino, H., & Kishio, K. (2012). Strongly 

connected ex situ MgB2 polycrystalline bulks fabricated by solid-state self-sintering. 

Superconductor Science & Technology, 25(11). doi: 10.1088/0953-2048/25/11/115022 

Tang, Y., Chappell, H. F., Dove, M. T., Reeder, R. J., & Lee, Y. J. (2009). Zinc incorporation 

into hydroxyapatite. Biomaterials, 30(15), 2864-2872. doi: 

10.1016/j.biomaterials.2009.01.043 

Tapiero, H., & Tew, K. D. (2003). Trace elements in human physiology and pathology: zinc and 

metallothioneins. Biomed Pharmacother, 57(9), 399-411.  

Technology, A. Schematic diagram of multi-target PLD method. 

Thamaraiselvi, T., & Rajeswari, S. (2004). Biological evaluation of bioceramic materials - A 

review. Carbon, 24(31), 172.  

Troitskii, V. V., & Tsitrin, D. N. (1944). The resorbing metallic alloy ‘Osteosinthe- zit’ as 

material for fastening broken bone. Khirurgiia(8), 41-44.  

Uchida, A., Araki, N., Shinto, Y., Yoshikawa, H., Kurisaki, E., & Ono, K. (1990). The use of 

calcium hydroxyapatite ceramic in bone tumour surgery. Journal of Bone & Joint 

Surgery, British Volume, 72(2), 298-302.  

Vadiraj, A., & Kamaraj, M. (2007). Effect of surface treatments on fretting fatigue damage of 

biomedical titanium alloys. Tribology International, 40(1), 82-88. doi: 

10.1016/j.triboint.2006.02.064 

van Blitterswijk, C., De Boer, J., Thomsen, P., Hubbell, J., Cancedda, R., de Bruijn, J. D., . . . 

Williams, D. F. (2008). Tissue Engineering: Elsevier Science. 

van Dijk, K., Schaeken, H. G., Marée, C. H. M., Verhoeven, J., Wolke, J. C. G., Habraken, F. H. 

P. M., & Jansen, J. A. (1995). Influence of Ar pressure on r.f. magnetron-sputtered 



 160

Ca5(PO4)3OH layers. Surface and Coatings Technology, 76–77, Part 1(0), 206-210. doi: 

http://dx.doi.org/10.1016/0257-8972(95)02590-1 

van Dijk, K., Verhoeven, J., Marée, C. H. M., Habraken, F. H. P. M., & Jansen, J. A. (1997). 

Study of the influence of oxygen on the composition of thin films obtained by r.f. 

sputtering from a Ca5(PO4)3 OH target. Thin Solid Films, 304(1–2), 191-195. doi: 

http://dx.doi.org/10.1016/S0040-6090(97)00104-1 

Vormann, J. (2003). Magnesium: nutrition and metabolism. Molecular Aspects of Medicine, 

24(1–3), 27-37. doi: 10.1016/S0098-2997(02)00089-4 

Vu, T., & Heimann, R. B. (1997). Influence of the CaO/TiO2 ratio on thermal stability of 

hydroxyapatite in the system Ca5(PO4)3OH-CaO-TiO2. Journal of Materials Science 

Letters, 16(20), 1680-1682. doi: 10.1023/A:1018534300072 

Walker, C. F., & Black, R. E. (2004). Zinc and the risk for infectious disease. Annu. Rev. Nutr., 

24, 255-275.  

Wallace, D. G., Smestad, T. L., McPherson, J. M., Piez, K. A., Seyedin, S., & Armstrong, R. 

(1988). Methods of bone repair using collagen: Google Patents. 

Walz, L., Salzmann, G. M., Fabbro, T., Eichhorn, S., & Imhoff, A. B. (2008). The anatomic 

reconstruction of acromioclavicular joint dislocations using 2 TightRope devices a 

biomechanical study. The American Journal of Sports Medicine, 36(12), 2398-2406.  

Wan, Y., Xiong, G., Luo, H., He, F., Huang, Y., & Zhou, X. (2008). Preparation and 

characterization of a new biomedical magnesium-calcium alloy. Materials & Design, 

29(10), 2034-2037. doi: 10.1016/j.matdes.2008.04.017 

Wan, Y. Z., Xiong, G. Y., Luo, H. L., He, F., Huang, Y., & Wang, Y. L. (2008). Influence of 

zinc ion implantation on surface nanomechanical performance and corrosion resistance of 



 161

biomedical magnesium-calcium alloys. Applied Surface Science, 254(17), 5514-5516. 

doi: 10.1016/j.apsusc.2008.02.117 

Wang, H. X., Guan, S. K., Wang, X., Ren, C. X., & Wang, L. G. (2010). In vitro degradation and 

mechanical integrity of Mg–Zn–Ca alloy coated with Ca-deficient hydroxyapatite by the 

pulse electrodeposition process. Acta Biomaterialia, 6(5), 1743-1748. doi: 

http://dx.doi.org/10.1016/j.actbio.2009.12.009 

Wang, M. (2003). Developing bioactive composite materials for tissue replacement. 

Biomaterials, 24(13), 2133-2151. doi: 10.1016/s0142-9612(03)00037-1 

Wang, X. L., Fan, H. S., & Zhang, X. D. (2005). An improvement in sintering property of β-

tricalcium phosphate by addition of calcium pyrophosphate and calcium carbonate. 

Paper presented at the Materials Science Forum. 

Wang, Y. B., Xie, X. H., Li, H. F., Wang, X. L., Zhao, M. Z., Zhang, E. W., . . . Qin, L. (2011). 

Biodegradable CaMgZn bulk metallic glass for potential skeletal application. Acta 

Biomaterialia, 7(8), 3196-3208. doi: http://dx.doi.org/10.1016/j.actbio.2011.04.027 

Waris, E., Konttinen, Y. T., Ashammakhi, N., Suuronen, R., & Santavirta, S. (2004). 

Bioabsorbable fixation devices in trauma and bone surgery: current clinical standing. 

Expert review of medical devices, 1(2), 229-240.  

Watzinger, F., Luksch, J., Millesi, W., Schopper, C., Neugebauer, J., Moser, D., & Ewers, R. 

(2000). Guided bone regeneration with titanium membranes: a clinical study. Br J Oral 

Maxillofac Surg, 38(4), 312-315. doi: 10.1054/bjom.1999.0228 

Webnode. The human skeletal system. 



 162

Weckbach, S., Losacco, J. T., Hahnhaussen, J., Gebhard, F., & Stahel, P. F. (2012). [Challenging 

the dogma on inferiority of stainless steel implants for fracture fixation. An end of the 

controversy?]. Unfallchirurg, 115(1), 75-79. doi: 10.1007/s00113-011-2145-0 

Welch, J., & Gutt, W. (1961). High-temperature studies of the system calcium oxide–phosphorus 

pentoxide. Journal of the Chemical Society (Resumed), 4442-4444.  

Wen, C., Guan, S., Peng, L., Ren, C., Wang, X., & Hu, Z. (2009). Characterization and 

degradation behavior of AZ31 alloy surface modified by bone-like hydroxyapatite for 

implant applications. Applied Surface Science, 255(13-14), 6433-6438. doi: 

10.1016/j.apsusc.2008.09.078 

Wen, C. E., Mabuchi, M., Yamada, Y., Shimojima, K., Chino, Y., & Asahina, T. (2001). 

Processing of biocompatible porous Ti and Mg. Scripta Materialia, 45(10), 1147-1153. 

doi: 10.1016/S1359-6462(01)01132-0 

Wen, Z., Wu, C., Dai, C., & Yang, F. (2009). Corrosion behaviors of Mg and its alloys with 

different Al contents in a modified simulated body fluid. Journal of Alloys and 

Compounds, 488(1), 392-399. doi: 10.1016/j.jallcom.2009.08.147 

Weng, J., Liu, X. G., Zhang, X. D., & Ji, X. Y. (1994). Thermal-decomposition of 

hydroxyapatite structure induced by titanium and its dioxide. Journal of Materials 

Science Letters, 13(3), 159-161. doi: 10.1007/bf00278148 

Wiese, A., & Pape, H. C. (2010). Bone defects caused by high-energy injuries, bone loss, 

infected nonunions, and nonunions. Orthop Clin North Am, 41(1), 1-4, table of contents. 

doi: 10.1016/j.ocl.2009.07.003 

Willmott, P. R. (2004). Deposition of complex multielemental thin films. Progress in Surface 

Science, 76(6–8), 163-217. doi: http://dx.doi.org/10.1016/j.progsurf.2004.06.001 



 163

Willmott, P. R., Timm, R., & Huber, J. R. (1997). Reactive crossed beam scattering of a Ti 

plasma and a <equation><font face='verdana'>N</font><sub>2</sub></equation> pulse 

in a novel laser ablation method. Journal of Applied Physics, 82(5), 2082-2092. doi: 

10.1063/1.366018 

Winter, M. (1993-2012). from http://www.webelements.com/compounds/ 

Wise, D., Trantolo, D., Lewandrowski, K., Gresser, J., Cattaneo, M., & Yaszemski, M. (2000). 

Biomaterials engineering and devices human applications. Volume Two, Humana Press, 

Inc. New Jersey, 7-101.  

Witte, F., Crostack, H. A., Nellesen, J., & Beckmann, F. (2011). Characterization of degradable 

magnesium alloys as orthopaedic implant material by synchrotron-radiation-based 

microtomography. HASYLAB at DESY.  

Witte, F., Fischer, J., Nellesen, J., Crostack, H. A. H. A., Kaese, V., Pisch, A., . . . Windhagen, 

H. (2006). In vitro and in vivo corrosion measurements of magnesium alloys. 

Biomaterials, 27(7), 1013-1018. doi: 10.1016/j.biomaterials.2005.07.037 

Witte, F., Fischer, J., Nellesen, J., Vogt, C., Vogt, J., Donath, T., & Beckmann, F. (2010). In vivo 

corrosion and corrosion protection of magnesium alloy LAE442. Acta Biomaterialia, 

6(5), 1792-1799. doi: http://dx.doi.org/10.1016/j.actbio.2009.10.012 

Witte, F., Hort, N., Vogt, C., Cohen, S., Kainer, K. U., Willumeit, R., & Feyerabend, F. (2008). 

Degradable biomaterials based on magnesium corrosion. Current Opinion in Solid State 

& Materials Science, 12(5-6), 63-72. doi: 10.1016/j.cossms.2009.04.001 

Witte, F., Hort, N., Vogt, C., Cohen, S., Kainer, K. U., Willumeit, R., & Feyerabend, F. (2009). 

Degradable biomaterials based on magnesium corrosion: Elsevier. 



 164

Witte, F., Kaese, V., Haferkamp, H., Switzer, E., Meyer-Lindenberg, A., Wirth, C. J., & 

Windhagen, H. (2005). In vivo corrosion of four magnesium alloys and the associated 

bone response. Biomaterials, 26(17), 3557-3563. doi: 10.1016/j.biomaterials.2004.09.049 

Wolf, F. I., & Cittadini, A. (2003). Chemistry and biochemistry of magnesium. Molecular 

Aspects of Medicine, 24(1-3), 3-9. doi: 10.1016/s0098-2997(02)00087-0 

Wolff, D. M. B., Ramalho, E. G., & Acchar, W. (2006). Phase transition behaviour of tricalcium 

phosphate (TCP) doped with MgO and TiO2 as additives. Paper presented at the 

Materials science forum. 

Wong, H. M., Yeung, K. W. K., Lam, K. O., Tam, V., Chu, P. K., Luk, K. D. K., & Cheung, K. 

M. C. (2010). A biodegradable polymer-based coating to control the performance of 

magnesium alloy orthopaedic implants. Biomaterials, 31(8), 2084-2096. doi: 

10.1016/j.biomaterials.2009.11.111 

Wood, D. S., Zollman, J., Reuben, J. P., & Brandt, P. W. (1975). Human skeletal muscle: 

properties of the" chemically skinned%" fiber. Science (New York, NY), 187(4181), 1075.  

Wu, C., Ramaswamy, Y., Chang, J., Woods, J., Chen, Y., & Zreiqat, H. (2008). The effect of Zn 

contents on phase composition, chemical stability and cellular bioactivity in Zn-Ca-Si 

system ceramics. Journal of Biomedical Materials Research Part B-Applied 

Biomaterials, 87B(2), 346-353. doi: 10.1002/jbm.b.31109 

Xin, R., Leng, Y., Chen, J., & Zhang, Q. (2005). A comparative study of calcium phosphate 

formation on bioceramics in vitro and in vivo. Biomaterials, 26(33), 6477-6486. doi: 

http://dx.doi.org/10.1016/j.biomaterials.2005.04.028 



 165

Xu, L., Pan, F., Yu, G., Yang, L., Zhang, E., & Yang, K. (2009). In vitro and in vivo evaluation 

of the surface bioactivity of a calcium phosphate coated magnesium alloy. Biomaterials, 

30(8), 1512-1523. doi: http://dx.doi.org/10.1016/j.biomaterials.2008.12.001 

Xu, L., Yu, G., Zhang, E., Pan, F., & Yang, K. (2007). In vivo corrosion behavior of Mg-Mn-Zn 

alloy for bone implant application. Journal of Biomedical Materials Research Part A, 

83A(3), 703-711. doi: 10.1002/jbm.a.31273 

Xu, L., Zhang, E., Yin, D., Zeng, S., & Yang, K. (2008). In vitro corrosion behaviour of Mg 

alloys in a phosphate buffered solution for bone implant application. Journal of Materials 

Science-Materials in Medicine, 19(3), 1017-1025. doi: 10.1007/s10856-007-3219-y 

Xue, W., Dahlquist, K., Banerjee, A., Bandyopadhyay, A., & Bose, S. (2008). Synthesis and 

characterization of tricalcium phosphate with Zn and Mg based dopants. J Mater Sci 

Mater Med, 19(7), 2669-2677. doi: 10.1007/s10856-008-3395-4 

Yamamoto, A., & Tsubakino, H. (2003). Surface treatment of magnesium alloys by artificial 

corrosion-oxidization method. MATERIALS TRANSACTIONS, 44(4), 511-517.  

Yamamoto, A., Watanabe, A., Sugahara, K., Tsubakino, H., & Fukumoto, S. (2001). 

Improvement of corrosion resistance of magnesium alloys by vapor deposition. Scripta 

Materialia, 44(7), 1039-1042.  

Yamasaki, Y., Yoshida, Y., Okazaki, M., Shimazu, A., Kubo, T., Akagawa, Y., & Uchida, T. 

(2003). Action of FGMgCO3Ap-collagen composite in promoting bone formation. 

Biomaterials, 24(27), 4913-4920. doi: 10.1016/S0142-9612(03)00414-9 

Yamasaki Y, Y. Y., Okazaki M, Shimazu A, Uchida T, Kubo T, Akagawa Y, Hamada Y, 

Takahashi J, Matsuura N. (2002 Oct). Synthesis of functionally graded MgCO3 apatite 

accelerating osteoblast adhesion. J Biomed Mater Res., 62(1), 99-105.  



 166

Yamashita, K., Arashi, T., Kitagaki, K., Yamada, S., Umegaki, T., & Ogawa, K. (2005). 

Preparation of Apatite Thin Films through rf‐Sputtering from Calcium Phosphate 

Glasses. Journal of the American Ceramic Society, 77(9), 2401-2407.  

Yang, J., Cui, F.-z., Lee, I. S., & Wang, X. (2010). Plasma surface modification of magnesium 

alloy for biomedical application. Surface & Coatings Technology, 205, S182-S187. doi: 

10.1016/j.surfcoat.2010.07.045 

Yang, W., Zhang, P., Liu, J., & Xue, Y. (2006). Effect of long-term intake of Y3+ in drinking 

water on gene expression in brains of rats. Journal of Rare Earths, 24(3), 369-373. doi: 

10.1016/s1002-0721(06)60126-9 

Yue, S., Pilliar, R. M., & Weatherly, G. C. (1984). The fatigue strength of porous-coated Ti–6% 

Al–4% V implant alloy. Journal of Biomedical Materials Research, 18(9), 1043-1058. 

doi: 10.1002/jbm.820180908 

Zeng, R., Dietzel, W., Witte, F., Hort, N., & Blawert, C. (2008). Progress and challenge for 

magnesium alloys as biomaterials. Advanced Engineering Materials, 10(8), B3-B14. doi: 

10.1002/adem.200800035 

Zhang, E., Xu, L., & Yang, K. (2005). Formation by ion plating of Ti-coating on pure Mg for 

biomedical applications. Scripta Materialia, 53(5), 523-527. doi: 

http://dx.doi.org/10.1016/j.scriptamat.2005.05.009 

Zhang, E., Yang, L., Xu, J., & Chen, H. (2010). Microstructure, mechanical properties and bio-

corrosion properties of Mg-Si(-Ca, Zn) alloy for biomedical application. Acta 

Biomaterialia, 6(5), 1756-1762. doi: 10.1016/j.actbio.2009.11.024 

Zhang, E., Yin, D., Xu, L., Yang, L., & Yang, K. (2009). Microstructure, mechanical and 

corrosion properties and biocompatibility of Mg-Zn-Mn alloys for biomedical 



 167

application. Materials Science and Engineering C, 29(3), 987-993. doi: 

10.1016/j.msec.2008.08.024 

Zhang, F., Chang, J., Lu, J., Lin, K., & Ning, C. (2007). Bioinspired structure of bioceramics for 

bone regeneration in load-bearing sites. Acta Biomaterialia, 3(6), 896-904.  

Zhang, S., Zhang, X., Zhao, C., Li, J., Song, Y., Xie, C., . . . Bian, Y. (2010). Research on an 

Mg-Zn alloy as a degradable biomaterial. Acta Biomaterialia, 6(2), 626-640. doi: 

10.1016/j.actbio.2009.06.028 

Zhang, Y., Yang, J. X., Cui, F. Z., Lee, I. S., & Lee, G. H. (2010). Characterization and 

degradation comparison of DLC film on different magnesium alloys. Surface & Coatings 

Technology, 205, S15-S20. doi: 10.1016/j.surfcoat.2010.02.069 

Zhou, W., Zhong, X., Wu, X., Yuan, L., Shu, Q., Xia, Y., & Ostrikov, K. K. (2007). Plasma-

controlled nanocrystallinity and phase composition of TiO2: a smart way to enhance 

biomimetic response. J Biomed Mater Res A, 81(2), 453-464. doi: 10.1002/jbm.a.30987 

Znamenskii, M. (1945). Metallic osteosynthesis by means of an apparatus made of absorbing 

metal. Khirurgiia(12), 60-63.  

Zreiqat, H., Howlett, C. R., Zannettino, A., Evans, P., Schulze-Tanzil, G., Knabe, C., & 

Shakibaei, M. (2002). Mechanisms of magnesium-stimulated adhesion of osteoblastic 

cells to commonly used orthopaedic implants. J Biomed Mater Res., 62(2), 175-184.  

Zreiqat, H., Ramaswamy, Y., Wu, C., Paschalidis, A., Lu, Z., James, B., . . . Dunstan, C. R. 

(2010). The incorporation of strontium and zinc into a calcium-silicon ceramic for bone 

tissue engineering. Biomaterials, 31(12), 3175-3184. doi: 

10.1016/j.biomaterials.2010.01.024 

 



 168

 


	Effect of Doping on β-Tricalcium Phosphate Bioresorbable Bulk Material and Thin Film Coatings
	Recommended Citation

	Microsoft Word - Suhaila_Abdalla_PHD Dissertation_2013_Final_Rev4

