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Abstract 

Laboratory services in healthcare delivery systems play a vital role in inpatient care. Studies 

have shown that laboratory data affects approximately 65% of the most critical decisions on 

admission, discharge, and medication. Laboratory testing accounts for approximately 10% of 

hospital billing. Reducing laboratory costs would contribute to reducing total healthcare cost, 

which is one of the major goals for the U.S. healthcare delivery system.  

This research focuses on improving the performance of the hospital laboratory in a large hospital 

system. The intention of this study is to identify and then optimize the most critical stage to 

improve the entire laboratory testing process. Using analytic hierarchy process (AHP) and 

analytic network process (ANP) modeling, the preanalytical stage was identified as most critical. 

Then, a two-stage stochastic integer linear programming (SILP) model was formulated to 

determine better weekly phlebotomist schedules and blood collection assignments in the 

preanalytical stage. The objective of the two-stage SILP is to balance the workload of the 

phlebotomists within and between shifts, as reducing workload imbalance would result in 

improved patient care. Due to the size of the two-stage SILP problem, a scenario reduction 

model and a heuristic algorithm were proposed to solve the problem. The performance 

evaluation results show that for practical cases the heuristic algorithm proposed could find near-

optimal solutions with a relative gap less than 3.5% within 20 minutes. The two-stage SILP 

model and the heuristic algorithm proposed will assist laboratory management in balancing 

phlebotomist workload, which could reduce the risk of poor phlebotomist performance and 

patient neglect caused by work overload. By implementing the recommendations of this study, 

hospital laboratories should see significant improvements in workload balance and resource 

utilization, which are both considered cost savings strategies. 
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CHAPTER 1 

Introduction 

1.1 Background 

Laboratory services in healthcare delivery systems play a vital role in inpatient care. 

Studies have shown that laboratory data affects approximately 65% of the most critical decisions 

on admission, discharge, and medication (Mario, 1999). Laboratory medicine which can also be 

described as clinical pathology is a field where pathologists provide testing of patient samples 

(generally blood or urine). For example, the presence of bacteria can be detected from a patient 

sample, which provides information for the necessary treatment. A clinical test can be conducted 

on a sample to determine the level of enzymes in the blood to see if a patient has a risk of a heart 

attack or if the level of glucose in the blood of a patient is related to diabetes. Hospital 

laboratories are facilities within healthcare delivery systems where laboratory medicine is 

conducted. 

Most hospital laboratories are divided into divisions based on the categories of tests 

performed. A hospital laboratory usually includes the following nine divisions: 

 Hematology: This division conducts tests on patients’ blood samples, and the most 

frequently conducted test is the complete blood count also called a full blood count. 

This type of test gives information about the cells in a patient's blood. Abnormal high 

or low counts could indicate the existence of many types of diseases. This is the 

reason this test is amongst the most frequently performed blood test in hematology, as 

it provides a synopsis of a patient's general health condition.  

 Urinalysis: This division performs tests to evaluate urine samples from patients. 

Urinalysis is used to detect a variety of disorders, including but not limited to urinary 
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tract infection, diabetes, and kidney disease. Urinalysis includes analyzing the 

appearance, concentration, and content of urine. Results from abnormal urinalysis 

could indicate whether there is a disease or illness present in the patient’s body. 

Abnormal results of a urinalysis frequently indicate that additional testing and further 

evaluation to discover the source of the problem will be required. 

 Chemistry: The clinical chemistry division in laboratory medicine conducts analysis 

of bodily fluids. This area utilizes a broad field of analytical techniques that detect 

and measure chemicals in body fluids, cells, or tissues, such as enzymes, hormones, 

proteins, and drugs. There are a plethora of diagnostics comprising tests that detect 

and determine changes in the chemical composition of body fluids and tissues to 

diagnose or predict the course of a disease. All biochemical tests fall under chemical 

pathology, and these tests are performed mainly on serum or plasma.  

 Blood Bank: This division in a hospital laboratory is comprised of blood donations, 

stored and preserved for later use in blood transfusions. Proper testing is performed to 

reduce the risk of transfusion related errors. It is imperative for blood banks to pass 

all the eligibility guidelines as mandated by the National Health Service (NHS) and 

Food and Drug Administration (FDA) in order to provide blood transfusions for 

inpatients.  

 Microbiology: The microbiology division conducts tests to identify microorganisms 

such as, bacteria, viruses, fungi, and parasites that are of medical significance and 

capable of causing infectious diseases in patients. Through the advancement of 

vaccines, deadly and incapacitating diseases have been either eradicated or are more 

treatable because of the efforts of researchers in the area of medical microbiology. 
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 Histology: This division performs testing to determine the form of structures seen 

under the microscope. Histology focuses on the tissues of the body, including body 

cells. Often referred to as microscopic anatomy, histology studies the relationships of 

the minuscule structures of cells, tissues, and organs with their functions. For 

example, histological analysis of liver biopsy samples is helpful in the diagnosis of 

possible liver damage. 

 Cytology: This division in laboratory medicine focuses on the medical and scientific 

analysis of cells. Cytology is a sub-division of pathology where examinations are 

performed on body fluids. A frequent example of diagnostic cytology is the 

evaluation of cervical smears. In order for a cytology evaluation to be conducted, the 

matter to be examined is placed on glass slides and then stained. A pathologist uses a 

microscope to analyze the individual cells in the sample. 

 Pathology: This medical division focuses on the temperament and causes of diseases. 

It includes diagnostic testing and monitoring of chronic diseases. Studies have 

indicated that pathology is a vital component to the diagnosis of every cancer. 

General pathology is an extensive and complex scientific field which seeks to identify 

injuries to cells and tissues, and the body's method of responding to these injuries. 

 Point of Care: This area is described as medical testing at the bed of the patient. This 

enhances the likelihood that the physician will obtain the results faster. Point of Care 

Testing includes but is not limited to: blood glucose testing, electrolytes analysis, 

rapid coagulation testing, drug abuse screening, pregnancy testing, food pathogens 

screening, hospital diagnostics, infectious disease testing, and cholesterol screening. 



6 

 

In the hospital laboratory process there are three core stages: Preanalytical Stage, 

Analytical Stage, and Postanalytical Stage. Resources needed vary among the stages. The 

resources for the Preanalytical stage consist of the phlebotomists, tubes, and personal digital 

assistants (PDAs). The phlebotomists are medically trained staff to collect blood from the 

patients. During the blood collection process certain tubes must be used due to the chemicals in 

each tube type. The type of tube to use is dependent on the test that has been ordered by the 

physician. The PDAs used by the phlebotomists are the hand held devices which provide the 

blood collection schedule they are to follow during their shift. The resources for the Analytical 

stage consist of the medical technicians who perform the test on the patient sample, and the 

instrumentation, which is the equipment required to conduct the test. Lastly, the resources 

needed for the Postanalytical stage consists of the Laboratory Information System (LIS), which 

evaluates the test results. The medical technicians then check for normal/abnormal ranges in the 

test results. The pathologists at that moment examine the test results and provide the diagnosis 

for the patient. Issues that occur in the laboratory process are often identified as bottlenecks for 

other departments in the hospital. In the following section, the motivation and importance of 

conducting this research is discussed.  

1.2 Motivation   

Laboratory medicine plays an imperative role in clinicians being able to reach a diagnosis 

for patients. Therefore, laboratory medicine is a key component in healthcare delivery systems 

due to the amount of spending that occurs and the medical decisions that are involved. There is a 

great need to reduce healthcare costs as much as possible and improve service quality. This study 

has addressed both of those needs. 
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 Laboratory testing accounts for approximately 10% of hospital billing. A goal for the 

U.S. managed healthcare delivery system is to considerably reduce laboratory spending. There 

are two methods to reduce costs, which consist of the technological approach and the 

pathophysiology based approach (Plebani, 1999).  The technological approach aims to reduce 

costs by consolidating laboratories, making improvements in laboratory automation, etc. The 

pathophysiology based approach strives to lower cost through the improvement of the diagnostic 

performance of tests, developing effective diagnostic strategies, and effective utilization of 

laboratory resources for the treatment of patients. The advantage of these cost reduction 

strategies is that they compel people from different areas within healthcare to come together to 

thoroughly understand all facets of patient care, most importantly understanding what it takes to 

provide patient care effectively and efficiently while still delivering high quality service. This 

research study has addressed balancing workload amongst phlebotomists and maximizing 

phlebotomist utilization in hospital laboratories that are apart of large healthcare systems. 

Maximizing phlebotomist utilization and balancing workload, are both considered cost reduction 

strategies. 

If a patient-centered vision predominates in laboratory medicine, the clinical laboratory 

will be linked to physicians and patients, making it more tangible to the latter (Pansini, Di Serio, 

& Tampoia, 2003). Improving service quality is a critical part of laboratory medicine. Medical 

errors in healthcare delivery systems account for approximately 100,000 deaths each year, which 

indicate improvements in service quality are needed. Most inaccuracies in hospital laboratories 

occur in the preanalytical or postanalytical stages, whereas a small portion (13–32%) takes place 

in the analytical stage (Mario, 2009). Errors that occur in one of the core stages will affect the 

stages following. The preanalytical, analytical, and postanalytical stages, when conducted 
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properly, play a vital role in preventing laboratory errors. Yet, if any of the stages is improved, it 

will improve the stages following and the entire testing process. With a proper quality control 

system, the service quality in the entire testing process will be increased. Seven improvement 

recommendations for clinical laboratories have been proposed in the literature (Hollensead, 

Lockwood, & Elin, 2004).  

 Establish a continuous quality improvement initiative, which focuses on improving 

laboratory medicine and pathology. 

  Have user-friendly computer systems, which allows for direct physician ordering of 

laboratory tests. 

  Incorporate a quality wristband policy that uses bar codes on both the wristband and 

specimen tubes to insure proper patient identification. 

  Develop quality programs to continuously assess personnel competency. 

  Incorporate automated systems where feasible. 

  A system for error detection in patient reports should be in place for all laboratory 

departments. 

 Policies and procedures should be laid out and properly disclosed to all laboratory 

personnel.    

 This research has addressed achieving phlebotomist workload balance, resource 

utilization, service quality, and patient satisfaction through optimizing the most critical stage in 

the laboratory process. According to the literature, optimizing scheduling in laboratory medicine 

has not been regarded as a necessity for laboratory management. In actuality, without optimal 

scheduling policies in place for laboratory medicine, there is a great risk for patients to be 

negatively affected due to work overload. When work overload is present, patient neglect has the 
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potential to be introduced due to patients not receiving the time and attention required. Also, 

with work overload there is a risk for the optimal performance of the phlebotomist to decrease. 

Phlebotomist performance is critical in laboratory medicine because in the event of an error this 

could result in serious and even fatal consequences for the patient. By balancing workload, 

phlebotomists can provide the necessary time and attention required for each patient. Balancing 

phlebotomist workload, resource utilization, patient satisfaction, high service quality, and 

accurate laboratory performance are vital necessities for healthcare delivery systems as 

laboratory medicine is a pivotal part of the intricate decision making process, influencing close 

to 70% of medical diagnosis (Da Rin, 2009).  

1.3 Objectives and Boundary 

In order to increase patient satisfaction and patient safety, hospital laboratories must 

improve their overall effectiveness. To accomplish this, there are specific objectives in place for 

this research study. There are three main stages in the hospital laboratory process and one of the 

objectives is to determine which stage is the most critical for improvement purposes. After the 

stage to improve is identified, a mathematical model is formulated for that stage. The boundary 

of the study is that a mathematical model is developed only for the stage identified to improve. 

This is due to the assumption that the improvement of one stage has an indirect improvement on 

the other two stages.  

1.4 Research Questions  

 Research Question I: Which of the three stages in the hospital laboratory: 

preanalytical, analytical, or postanalytical is the most critical for optimization 

purposes? Mathematically, how can this be determined? How can this be validated? 
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 Research Question II: How should the phlebotomists be scheduled to balance their 

workload considering the uncertainty associated with the number of blood collections 

needing to be fulfilled? 

 Research Question III: Based on the number of blood draws required for each hour, 

how can blood draw collections be assigned to balance phlebotomist workload? 

1.5 Dissertation Overview  

The following chapters detail a mathematical modeling framework for phlebotomist 

scheduling and blood draw assignments in laboratory medicine.  This dissertation is divided into 

six chapters.   

Chapter 1 provided a brief overview of the background on laboratory medicine, the 

motivation of this study, the objective and boundaries of this research, and lastly the research 

questions addressed in this dissertation. Chapter 2 provides an extensive literature review on the 

hospital laboratory process, measures of performance, and approaches applied to improving 

laboratory medicine.  All of these areas are addressed in rigor because this chapter serves as the 

drive in recognizing the research gap, while identifying notable research advancements in the 

area as a whole. Chapter 3 presents the AHP and ANP models that are developed to identify the 

laboratory stage to be selected for optimization. The AHP and ANP models are compared to one 

another in the stage selection process to ensure the proper stage is selected. Chapter 4 presents a 

two-stage stochastic integer linear programming (SILP) model for phlebotomist scheduling and 

blood draw collection assignments that balances workload within and between shifts in the 

preanalytical stage of the laboratory process. This model determines the number of 

phlebotomists that should be scheduled for each shift and the number of blood draw collections 

that should be assigned to each phlebotomist on each shift. This scheduling and assignment 
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model allows management to develop a weekly scheduling template that accounts for the 

uncertainty associated with the number of blood collections required for inpatients. Chapter 5 

details the experimental study performed on the two-stage SILP model. In the experimental 

study, the two-stage SILP model is used to investigate three experimental questions. The first 

question addresses how the workload varies from hour to hour i.e. are there hours that have 

higher workloads than others. The second question addresses how the change in phlebotomist 

utilization and service time affect the number of phlebotomists to schedule during each shift. The 

last question addresses whether there is significant variation in the number of phlebotomists 

scheduled each day, i.e. are there days that seem to have a higher workload than others. The 

experimental study is performed to provide support in formulating conclusions for the two-stage 

SILP model developed.  Lastly, Chapter 6 concludes this dissertation study and discusses future 

research to be performed.  
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CHAPTER 2 

Literature Review 

2.1 Introduction  

 Hospital laboratories have suffered many challenges, one being producing high quality 

test results in the most efficient and effective manner possible. One main target is to never 

decrease the overall quality of the care and service provided. A decrease in total quality and its 

negative effects on patient outcomes may cause economic loss (Pansini, et al., 2003). The aim is 

to decrease costs while still maintaining quality. The need to reduce the costs within laboratory 

medicine can be accomplished by possibly reducing test requests (Vegting et al., 2012). Many 

researchers in this area have proposed a patient-focused care strategy, with a goal to increase the 

time that nurses and physicians spend in patient care and decrease the number of employees who 

have direct contact with an individual patient (Pansini, et al., 2003). It is believed that this could 

decrease the amount of errors that are experienced. By implementing this strategy, improvements 

through reorganization, re-engineering, and laboratory automation have been seen in the 

analytical stage. Improvements were also seen in the preanalytical stage by evaluating the 

workload and error rate within this stage. It could be concluded that better communication 

between physicians and laboratory medicine staff should take place within the preanalytical stage 

in order to experience continuous improvement throughout the entire testing process. 

 In Section 2.2, an overview of the laboratory process is discussed. This section provides a 

synopsis of the entire testing process, and each of the three stages conducted in hospital 

laboratories. Activities in each stage, goals, and challenges faced are also discussed. Section 2.3 

provides insights on the measures of performance, and how the staff members of the laboratory 

know if there should be improvements put in place or if they are operating at the optimum level. 
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Section 2.4 introduces the approaches and methodologies that have been proposed to improve 

laboratory medicine. Lastly, Section 2.5 discusses the research gap in the laboratory medicine 

area. 

2.2 Overview of Laboratory Process 

 Once the hospital laboratory receives the test orders from the physicians, the 

phlebotomists are each assigned a schedule that details the samples to be collected from the 

patients. When they are to collect the sample is dependent upon whether the order is a STAT or 

regular order. When a STAT test is ordered, someone should immediately collect, process, and 

report the test without delay. Blood collections for regular ordered tests are performed as 

scheduled or as soon as work flow allows. Within hospital laboratories, there are three major 

stages which include: Preanalytical, Analytical, and Postanalytical. Each of these stages will be 

discussed in detail in the following sections. 

2.2.1 Preanalytical stage.  The preanalytical stage includes the physician order, patient 

identification, dietary and medication considerations, coordination of care and treatment, 

assessment of physical status (IVs, access ports, etc.), selecting tube types, and the actual blood 

collection process which has a multitude of conditions within itself.  Most of the errors occur at 

this stage. Specimen processing, which is getting the sample ready for testing, is part of the 

preanalytical stage.  This involves centrifuging and pouring off samples for processing in the lab 

or sending out to other labs. This may involve refrigeration or freezing for transport. Some 

samples are not centrifuged but still have to be prepared for testing. Figure 2.1 illustrates each 

step in the preanalytical stage. 

The goal for many hospital laboratories is to have a more efficient laboratory overall. In 

order to accomplish this goal, objectives are put in place for each of the three laboratory stages. 
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For the Preanalytical stage, the aim is to decrease the amount of errors that occur within this 

stage of the laboratory process. It has been determined that over 60% of the errors that occur in 

the hospital laboratory take place in the preanalytical stage (Carraro & Plebani, 2007). Since 

most of the errors in the Total Testing Process (TTP) occur in the preanalytical stage, priority 

should be placed on the preanalytical part of the testing process. The attention of laboratory 

professionals, physicians, and nurses should also be focused on the source of the error and not 

just the error itself (Mario, 2009). Once the source is identified and addressed, this should reduce 

the occurrence of these medical errors. Instead of trying to fix the errors, the intent is to prevent 

them. Preanalytical errors can contribute to 32-75% of total laboratory errors and analytical 

errors can account for 13-32% of total laboratory errors. One of the main sources of preanalytical 

errors is the differences in the test ordering patterns of physicians.  

 

Figure 2.1. Preanalytical stage in hospital laboratory. 
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A reduction in errors could be achieved through improving specimen quality and 

standardizing  the test ordering process (Vegting, et al., 2012). Essentially, proper training is 

needed for all phlebotomists in order to minimize errors and optimize resource utilization, as this 

will allow for improvement of the entire testing process. A reduction in errors could also be 

achieved through proper workstation design (Da Rin, 2009). Automation of the preanalytical 

stage is a method of preventing and reducing errors. When selecting an automated preanalytical 

workstation, certain performance and quality measures should be guaranteed, such as ensuring 

patient and specimen identification. This will increase accuracy throughout the entire testing 

process.  

It is of great importance to understand the different types of errors that occur and how 

often they occur. Once this analysis is performed, clinical laboratory personnel can begin to 

study the root cause of these errors and address them. Many researchers have studied the 

frequency and types of preanalytical inaccuracies found in hospital laboratories by evaluating 

and monitoring specimens requested (Hollensead, et al., 2004). Most errors occur before samples 

are analyzed during the sampling process or during the preparation for analysis.  

2.2.2 Analytical stage.  The analytical stage involves the testing aspect.  There are 

several different testing methods used depending on the test request.  The main divisions within a 

hospital laboratory are as follows: Hematology, Urinalysis, Chemistry, Blood Bank, 

Microbiology, Histology, Cytology, Pathology, and Point of Care Testing. There are hundreds of 

different tests that could be ordered at any given time.  The medical technologist or technician is 

responsible for tasks pertaining to the instrumentation or testing requirements, instrumentation 

calibrations, and on-the-spot maintenance. The analytical stage consists of running tests on the 

specimen and retrieving the results. Figure 2.2 illustrates each step in the analytical stage. 
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Figure 2.2. Analytical stage in hospital laboratory. 

 2.2.3 Postanalytical stage.  The postanalytical stage involves review of the results prior 

to sending them out.  Medical technicians are involved in this process by reviewing the lab 

results for normal or abnormal ranges. A pathologist review might also be required. Results are 

sent to the ordering or referring physician once they have been analyzed for abnormalities.  

There are strict guidelines on how the results can be sent or transmitted. An implementation that 
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verification. Rules can be written in the Laboratory Information System (LIS) to evaluate the 
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Figure 2.3. Postanalytical stage in hospital laboratory. 

2.3 Measures of Performance 

 Performance metrics in hospital laboratories are based on cost, time, and customer 

satisfaction. In each of the stages it is important to consider the amount of cost saving that can be 
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 Customer Satisfaction: In laboratory medicine there are two main customers, the 

physician and the patient. In order to ensure customer satisfaction for both parties, a 

critical attribute identified was the accuracy of laboratory results. The accuracy of test 

results emphasizes the importance of quality testing performance as a significant 

performance measure essential for all laboratory tests. 

 Turnaround Time (TATs): Laboratory test TATs are the most imperative performance 

measure for many clinical laboratories. TAT is the time from when the physician 

places a test order for a patient to the time the results are received. It is very common 

for laboratory staff to hear from displeased physicians that the test TATs are not fast 

enough.  

 Accuracy of Wristband Identification:  Patients are normally identified by a 

wristband, and when the wristband isn’t accurate, there is an increased likelihood of 

medical errors. When specimens are collected for laboratory testing, if patients are 

identified improperly the errors in identification can result in deferred diagnosis, 

additional laboratory testing, treatment of the wrong patient for the wrong disease, 

and possibly death. 

 Proficiency Testing: Clinical laboratories in healthcare delivery facilities have 

utilized proficiency testing to document and improve the critical performance of 

laboratory testing. The College of American Pathologists (CAP) performs proficiency 

testing for hospital laboratories. This procedure allows laboratories to regularly assess 

their performance and improve the accuracy of the patient results they provide. This 

process involves CAP providing individual laboratories with unknown specimens for 

testing. The medical staff in the laboratory analyzes the specimens and provides the 
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results to the CAP for evaluation. In return, the laboratory receives a report of their 

performance. 

 Minimal Specimen Rejection: Correct patient specimens are required for accurate 

laboratory results. When specimens are not correct, they have to be rejected, and 

another specimen must be collected. It is important to minimize the number of 

specimens that are rejected to avoid excessive needle sticks for patients. When 

excessive blood specimens are obtained from patients, this increases their chances of 

needing blood transfusions. 

 Critical Values Reporting: Critical values, also known as panic values, have been 

implemented in all clinical laboratories in hospital systems. Critical values found in 

laboratory results indicate a life-threatening condition and require immediate action 

for the patient to survive. Therefore, it is imperative to communicate these results 

immediately to the proper physician in order to take the appropriate action for the 

patient. In hospital laboratories, on average 5% of the critical values found in test 

results are ignored because the appropriate physician cannot be located. The 

percentage of critical values ignored should be as close to 0 as possible.  

 Blood Utilization: Blood and blood products often are the most costly items in a 

clinical laboratory budget. It is important to ensure that all blood and blood products 

sent to healthcare delivery systems are used for patients and do not go to waste. 

 Blood Culture Contamination: Phlebotomists are directly related to this performance 

measure. If a blood sample is contaminated, it is due to the poor performance of the 

phlebotomist. Specimen samples associated with significantly lower contamination 

rates indicate the presence of dedicated phlebotomy service. 
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 In this research, the performance measures are workload balance and patient satisfaction. 

Mathematical modeling is used to balance the workload for the phlebotomists in the 

preanalytical stage. Balanced workload will directly have a positive effect on patient satisfaction, 

as this will allow patients to receive the time and attention they require.  

2.4 Approaches Applied in Improving Laboratory Medicine 

 In the literature regarding laboratory medicine, a variety of studies have been performed 

in order to improve laboratory medicine. The current studies utilize lean principles and quality 

improvement, where the focus is to eliminate waste and develop quality metrics to ensure safe, 

efficient, and effective processes. Additional research studies have been performed that have 

used simulation as an improvement technique, where the focus is to simulate and analyze 

different situations to determine where the most cost savings can be achieved. The automation 

approach has been studied, and is a technique that focuses on implementing automated 

preanalytical workstations in hospital laboratories to increase resource utilization and minimize 

laboratory errors. In the following sections, the approaches applied in improving laboratory 

medicine are discussed in detail. Table 2.1 provides a synopsis of the studies reviewed in this 

section. 

Table 2.1 

Synopsis of Literature Reviewed 

Approach Problem Study 

Lean Testing process cycle time too long (Persoon, Zaleski, & Frerichs, 

2006) 

Lean Negative patient experience/long wait 

time 

(Melanson et al., 2009) 

Lean Takes too long to receive test results  (Zito & Stewart, 2008) 

Lean Large number of blood stream 

infections 

(Shannon et al., 2006) 
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Table 2.1 (cont.) 

Approach Problem Study 

Lean Laboratory test defects (Zarbo & D’Angelo, 2007) 

Lean                Poor performance in the lab (Serrano, Hegge, Sato, 

Richmond, & Stahnke, 2010) 

Lean  Lack of processes standardization (Raab et al., 2008) 

Lean  Pap testing and diagnostic inaccuracies (Raab et al., 2008) 

Lean  Lack of validation measures for testing  (Das, 2011) 

Quality Large number of medical errors (Raab, 2006) 

Quality            Laboratory data misleading  (Nevalainen et al., 2000) 

Quality  Poor laboratory test quality (Westgard & Westgard, 2006) 

Quality  Lack of laboratory information systems     (Harrison & McDowell, 2008) 

Quality  Lack of understanding the role quality 

plays in surgical pathology 

(Nakhleh, 2006) 

Quality  Defects in microbiology laboratory  (Elder, 2008) 

Automation Excessive errors in preanalytical phase (Da Rin, 2009) 

Automation Current centrifugation system runs 

slowly 

(Yavilevich, 2002) 

Automation  Excessive errors associated with 

specimen sorting  

(Holman, Mifflin, Felder, & 

Demers, 2002) 

Automation  Increased staff workload (Tornel, Ayuso, & Martinez, 

2005) 

Automation  Staff shortage and excessive errors  (Melanson, Lindeman, & 

Jarolim, 2007) 

Simulation Need to reduce costs in laboratory (De Capitani, Marocchi, & 

Tolio, 2002) 

Simulation  Increased workload effecting staff 

performance time 

(Goldschmidt, de Vries, van 

Merode, & Derks, 1998) 

 

2.4.1 Lean and quality approach in laboratory medicine.  Many clinical laboratories 

have incorporated the lean and quality improvement strategy to increase patient safety and 

improve quality and workflow (Elder, 2008; Serrano, et al., 2010). It is essential to have constant 

improvement in these areas. In order to track improvement, many studies have incorporated 
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quality measures and indicators (Nevalainen, et al., 2000). The quality of the staff’s performance, 

as well as the quality of the testing, is essential to a patient’s safety.  If a phlebotomist has poor 

performance, this will produce poor test results (Westgard & Westgard, 2006). Quality 

improvement should be incorporated in every facet of hospital laboratories. This includes each 

stage of the entire testing process. The laboratory information system is also an important entity 

and tool utilized in the entire testing process. Effective laboratory information systems could 

support further healthcare quality improvement (Harrison & McDowell, 2008). In terms of 

improving quality, many staff members do not thoroughly understand the benefit or purpose of 

having quality control methods in place. Many researchers have stated, to alleviate this problem 

and have well informed healthcare professionals, training programs should be established 

(Nakhleh, 2006). Training programs help with the transition of making hospital laboratories 

continuous improvement environments. Studies have indicated, incorporating lean methods into 

hospital laboratories result in a decrease in turnaround time (Raab, et al., 2008) and a increase 

lab accuracy and efficiency (Das, 2011). Table 2.2 provides a synopsis of the lean and quality 

studies reviewed. 

Table 2.2 

Synopsis of Articles Reviewed for Lean and Quality Approach 

Study Objective Approach Recommendation Results 

(Nevalainen, et 

al., 2000) 

Identify the 

problems with 

the laboratory 

data 

Quality Normalize data to 

parts-per-million 

defects 

Significant 

improvements 

needed 

(Persoon, et al., 

2006) 

Reduce total 

testing process 

cycle time 

Lean One piece flow/ 

removes batching  

Cycle time 

reduced By 

30% 
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Table 2.2 (cont.) 

Study Objective Approach Recommendation Results 

(Shannon, et al., 

2006) 

Determine cause 

of blood stream 

infections 

Lean Implement best 

practice policies 

50% reduction 

in infections 

(Raab, 2006) Reduce medical 

errors/increase 

safety 

Quality Work flow 

process redesign 

Defects 

decreased from 

9.9% to 4.7% 

(Nakhleh, 2006) Increase the 

understanding of 

the role quality 

plays in surgical 

pathology 

Quality Provide training 

programs to staff 

More 

knowledgeable, 

informed staff 

(Westgard & 

Westgard, 2006) 

Assess the 

quality of 

laboratory tests  

Quality Quality of 

laboratory tests 

requires 

improvement   

More intense 

quality control 

(Zarbo & 

D’Angelo, 2007) 

Determine the 

cause of defects 

in tests 

Lean Implement ~100 

process 

improvements 

Defects 

decreased from 

30% to 12.5%  

(Zito & Stewart, 

2008) 

Reduce time to 

get results to 

physician 

Lean Single piece flow 

system 

Reduction in 

turnaround time 

(Harrison & 

McDowell, 

2008) 

Evaluate hospital 

Laboratory 

Information 

Systems (LIS) 

Quality Continue to invest 

in state of the art 

LIS 

Improved 

healthcare 

quality 

(Raab et al., 

2008) 

Measure the 

effect of lean on 

a histopathology 

laboratory 

Lean Convert to a lean 

laboratory  

Turnaround time 

decreased from 

9.7 to 9.0 hours 
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Table 2.2 (cont.) 

Study Objective Approach Recommendation Results 

(Raab et al., 

2008) 

Implement lean 

for  pap testing  

and diagnostic 

accuracy 

Lean Create a one 

piece workflow 

and record 

process 

completion with 

a Lean checklist 

Improved pap 

test quality and 

diagnostic 

accuracy 

 

(Elder, 2008) Investigate the 

importance of 

implementing 

quality/six 

sigma 

techniques 

Quality Refine the quality 

of the process 

Reduced cost 

and improved 

quality  

(Melanson, et 

al., 2009) 

Improve patient 

experience with 

laboratory 

Lean Remove non-value 

added steps 

Wait time 

decreased from 

21 to 5 minutes 

(Serrano, et al., 

2010) 

Increase patient 

safety and 

laboratory 

performance  

Lean Implement process 

redesign 

Achieved the 

CAP ISO-15189 

accreditation  

(Das, 2011) Determine how 

to develop 

validation 

measures for 

testing 

Lean Apply validation 

measures for all 

tests  

Improved 

accuracy  

 

 In a recent research study, the lean production methodology was applied to a hospital 

laboratory preanalytical process (Persoon, et al., 2006). Many of the laboratory’s customers 

(physicians) were not pleased with the turnaround time for receiving a patient’s test results. The 

researchers believed that the overall cycle time could be reduced if the preanalytical stage was 
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improved. Their goal was to report 80% of laboratory tests in less than one hour and to no longer 

acknowledge a distinction between STAT and routine tests. In their process redesign, they 

incorporated the concept of single piece flow, which indicates all activities must be performed on 

each object undergoing the process before the work starts on the next object. This method 

removes the notion of batching. How the work would be accomplished in the preanalytical stage 

was redesigned using four rules of the Toyota Production System (TPS). The results of the 

preanalytical stage redesign indicated significant improvements in the laboratory test turnaround 

time by approximately a 30% reduction. Phlebotomy customer (physicians and patients) 

satisfaction and workflow are important factors to consider in any type of clinical laboratory.  

 In the study of (Melanson, et al., 2009), they focused on how to improve the overall 

patient experience and methods to optimize the blood collection process in outpatient 

phlebotomy using lean techniques. The main problem faced at the Brigham and Women’s 

Hospital, teaching affiliate of the Harvard Medical School, was the excessive wait time patients 

had to experience before being served by a phlebotomist. There were also other problems that 

had to be addressed such as nonessential work functions, inefficiency of non-blood drawing 

activities, and reordering process steps. In order to address these problems, a lean expert team 

implemented a Kaizen Event (continuous improvement) in the outpatient department of this 

facility. They removed many non-value added work steps in this process and were able to 

conclude by implementing these improvements, patient wait times decreased from 21 minutes to 

5 minutes.  

 A study was performed that focused on how to incorporate lean practices in a clinical 

laboratory (Zito & Stewart, 2008). The problem under study was how to reduce the turnaround 

time when sending patient test results back to physicians. The facility was using a batching 
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mechanism for test orders, which adds a delay to receiving the test results for certain orders. The 

authors proposed that a single piece flow system be adopted in this clinical laboratory. The single 

piece flow system would allow each order to be handled and processed separately rather than 

having to wait for all other elements in a batch to be processed. When orders are performed in 

batch, multiple possibilities exist for errors to occur, which would require rework for the 

phlebotomists. The researchers of this study were able to implement the single piece flow system 

for many of the floors of the hospital, which allowed the batch sizes to be kept to a minimum. 

From the process redesign, the lean team saw a significant improvement and reduction in the 

turnaround time for sending test results to physicians.  

 Approximately 200,000 patients contract bloodstream infections from catheters each 

year. These infections have caused a mortality rate of approximately 18%. Researchers applied 

the TPS strategy to the central line placement and maintenance (Shannon, et al., 2006). Through 

an in depth analysis, the root cause of the bloodstream infections many patients were suffering 

from was determined. Best practices were developed to eliminate or at the very least reduce the 

number of infections that occur. Within a year, healthcare facilities saw a 50% reduction in 

infections by implementing the best practice techniques.  

 Another study (Raab, 2006) addresses the problem of reducing medical errors and 

increasing patient safety in anatomic pathology laboratories using quality tools and techniques. 

The researcher defines patient safety as freedom from accident or injury resulting from the 

delivery of health care. Medical error is described as the failure of a planned action to be carried 

out as intended or the use of the wrong process/plan to achieve a goal. One challenge in 

decreasing medical errors noticed by the author was the lack of standardization of quality 

assurance procedures across laboratories. In order to overcome this challenge, a process 
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improvement team developed a plan to incorporate TPS principles into the laboratory practices. 

The goal was to obtain a defect free test result for each patient. A one-by-one work flow process 

was created so that the test specimen was immediately accessioned, processed, and finally 

screened. After implementing this process redesign, the number of defects decreased from 9.9% 

to 4.7%. This data indicated that the TPS process improvements resulted in higher quality testing 

and a decrease in medical errors. 

 In the study of (Zarbo & D’Angelo, 2007), the authors determined there was 

approximately a 30% defect rate in the pathology department. Each process and procedure was 

thoroughly investigated to determine the cause of such defects. The researchers took the Henry 

Ford Production System strategies and applied them to the pathology department in order to 

reduce the amount of waste and rework encountered. After the implementation of nearly 100 

process improvements, the number of defects reduced from 30% to 12.5%.  

2.4.2 Automation approach in laboratory medicine.  Many research studies have 

discussed the importance of automating certain stages of hospital laboratories (Holman, et al., 

2002). Automation provides an opportunity to experience a decrease in errors faced in laboratory 

medicine. Research has shown with automation implemented in laboratory facilities, the total 

turnaround time and errors experienced could be greatly reduced (Tornel et al., 2005; Melanson 

et al., 2007). Table 2.3 below provides a synopsis of the automation studies reviewed.  

Table 2.3 

Synopsis of Articles Reviewed for Automation Approach 

Study Objective Recommendation Results 

(Yavilevich, 2002) Increase speed of 

centrifugation  

system 

Implement fast spin 

lab module 

Implemented in 

preanalytical stage 
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Table 2.3 (cont.) 

Study Objective Recommendation Results 

(Holman, et al., 

2002) 

Decrease laboratory 

errors that occur in 

the preanalytical 

stage  

Implement 

automated 

preanalytical 

processing unit 

Reduction in 

laboratory errors 

(Tornel, et al., 2005) Decrease workload in 

laboratory  

Implement automated 

system 

Staff workload was 

decreased 

(Melanson, et.al. 

2007) 

Select proper 

automation systems 

for hospital 

laboratories  

Decide on chemistry 

automation tool 

Decrease in 

laboratory errors  

(Da Rin, 2009) Reduce errors 

through workstation 

design 

Incorporate 

preanalytical 

workstations 

Improved accuracy  

 

Laboratory services in healthcare delivery systems play a vital role in inpatient care. 

Studies have shown that laboratory data affects approximately 65% of the most critical decisions 

on admission, discharge, and medication. In a recent research study (Da Rin, 2009), it was 

discussed how a reduction in errors could be obtained through proper workstation design. As in 

many studies, it was concluded most of the errors in the entire testing process occur in the 

preanalytical stage. Therefore, of the three stages (preanalytical, analytical, and postanalytical) 

priority should be placed on the preanalytical stage in the testing process. The author stated that 

automation of the preanalytical stage is a method of preventing and reducing errors. When 

selecting an automated preanalytical workstation, there should be certain performance and 

quality measures established, such as ensuring patient and specimen identification, etc. The 

authors proposed 13 components of a preanalytical workstation: specimen input area, sample 

identification, tube selection, transport system, sorting routing device, automated centrifuge, 
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level detection and evaluation of specimen adequacy, decapping station, aliquotter station, 

automated analyzer, specimen delivery, recapping station, and take out station. Strict adherence 

to blood collection procedures is the most effective way to guarantee quality during specimen 

collection and specimen processing. The automated preanalytical workstation the author 

proposed in this study was implemented at San Bassiano hospital. As a result, this hospital 

experienced improved accuracy and clinical efficiency in their laboratory processes.  

 The preanalytical stage is the most labor-intensive part of the overall testing process. In 

the study of (Yavilevich, 2002), the significant advances in blood testing accomplished in the last 

30 years were discussed. Many of these advances have been through laboratory automation, but 

the bottleneck of the process remains to be the low speed of the centrifugation system. 

Centrifugation allows for plasma to be separated from the red and white blood cells. Current 

automation systems allow for, on average, 500 tubes to be centrifuged per hour. The author has 

proposed an even powerful laboratory automation system, Fast Spin technology, which will 

allow for 2,500 tubes to be centrifuged per hour through combining several parts of the 

preanalytical process into one unit. There are three parts to the Fast-Spin Module. The first part 

allows for separation, then the centrifugal force rotates the holders and tubes so they are in a 

horizontal position, and lastly once the centrifugation has stopped the holders and tubes return to 

their initial position. There are several advantages to the Fast-Spin preanalytical module, which 

include: decreased processing time and significant cost savings for hospital laboratories. 

Increased attention to automate hospital laboratories is due to the need to reduce healthcare costs, 

specifically laboratory costs. Automation is believed to greatly reduce the errors that are 

experienced in each of the laboratory stages. Converting a hospital laboratory to a Total 
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Laboratory Automation (TLA) facility is a gradual process and should begin with preanalytical 

automation.  

2.4.3 Simulation approach in laboratory medicine.  In the study of (De Capitani, et al., 

2002), a simulation approach is investigated to analyze different scenarios considering personnel, 

preanalytical devices, and management policies. The goal of developing a simulation model is to 

understand how the future system will work and to provide a performance and economic 

assessment, prior to implementation. The first component of the study focuses on data collection 

and workflow analysis. The second component of the study consists of scenario design and the 

development of the simulation model. The final component is the simulation model validation 

and performance evaluation. The objective of the laboratory is to minimize the total cost 

associated with the preanalytical stage. Three scenarios were designed and the chosen scenario 

was the one with the lowest cost, while still meeting all constraints. The authors concluded that 

the optimal scenario was Scenario B with one operator for the loading/unloading of the tubes and 

three operators for inputting requests. If this scenario is implemented for the automation of the 

preanalytical stage in hospital laboratories, there would be cost savings of approximately 40%. 

 Management tools such as work flow analysis, workflow simulation, and scenario 

analysis are proving their effectiveness in laboratory medicine. Several studies have been 

conducted and show the usefulness of implementing such management tools in hospital 

laboratories. The goal of workflow analysis and design includes the adjustment of capacity and 

services, such that services are provided in the most efficient manner. High quality indicates that 

the level of work performed is done accurately, errors are minimized, and patients are satisfied. 

In a simulation study (Goldschmidt, et al., 1998), it was determined that workflow analysis could 

be applied in clinical laboratories using discrete event simulation. The purpose of the simulation 
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was to analyze how a growing workload affects the service times of the staff. The results from 

the study proved to be very beneficial as it allowed for proper resource allocation within hospital 

laboratories. 

2.5 Research Gap 

 There have been many studies that have focused on how to improve laboratory medicine. 

Most of these studies have provided improvements using lean manufacturing strategies, quality 

improvement methods, automation, and simulation. Yet in the literature, no study has applied 

mathematical modeling methods to improve laboratory processes and scheduling. Mathematical 

modeling has proven to be beneficial in many different areas of healthcare. These areas include: 

surgery scheduling, outpatient appointment scheduling, and cancer screening. Since laboratory 

medicine is such a major part of the healthcare delivery system, it is imperative to close this gap.  

The approaches utilized in this dissertation research include the development of an 

analytic hierarchy process (AHP) model, which was used to determine the ranking of the stages 

in the hospital laboratory. The stage with the highest rank was the stage selected to be optimized. 

An analytic network process (ANP) model was then developed to compare the results with the 

AHP model to ensure the proper stage was selected for improvement purposes. Next, a two-stage 

stochastic integer linear programming (SILP) model was formulated to optimize the selected 

stage from the AHP and ANP models. The two-stage SILP model determines a weekly 

scheduling policy and blood collection assignments that balance workload amongst the 

phlebotomists.  

 My research contribution to the literature is to improve laboratory medicine by 

developing an efficient heuristic algorithm to find a near-optimal solution to a two-stage SILP 

problem, which is a phlebotomist scheduling problem to determine a weekly shift schedule of 
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phlebotomists in a hospital laboratory in order to balance their workload between and within 

shifts. For the cases in the hospital laboratory motivating this research, the heuristic algorithm 

proposed could find near-optimal solutions (with a relative gap less than 3.5%) within 20 

minutes. The two-stage SILP model and the heuristic algorithm will assist laboratory 

management in balancing phlebotomist workload in hospital laboratories, which could reduce the 

risk of poor phlebotomist performance and patient neglect caused by work overload. The near 

optimal solutions to the two-stage SILP problem also provide insights to hourly blood collections 

assigned to the phlebotomists working during each hour. These insights generated the blood 

collection assignment rules, which could be easily implemented using any spreadsheet software 

such as Microsoft Excel. The results of this research, when implemented, will prove to be 

beneficial for improving phlebotomist workload, patient safety, and the effectiveness and 

efficiency of hospital laboratories overall. 
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CHAPTER 3 

AHP and ANP Modeling for Optimal Stage Selection in Hospital Laboratories  

The first research question to be addressed in this dissertation study consists of three sub-

questions: (1) Which of the three stages in the hospital laboratory (preanalytical, analytical, or 

postanalytical) is the most critical for optimization purposes? (2) Mathematically how can this be 

determined? (3) How can this be validated? The approach used to address these sub-questions 

includes the development of an AHP model, which will rank each of the stages from most 

critical to least critical. An ANP model is then developed to compare results with the AHP model 

to ensure the proper stage has been selected for optimization. In Chapter 3, the AHP and ANP 

models for optimal stage selection in hospital laboratories are discussed. A brief background on 

the AHP and ANP methodology is provided along with a review of literature for AHP and ANP 

modeling in medical decision making. These models for the hospital laboratory case are 

presented along with the stage selection results. Lastly, a brief conclusion for this chapter is 

provided.  

3.1 Background 

 The Analytic Hierarchy Process (AHP) model is a structured technique analyzing 

complex decisions. This model is based on a mathematical structure and was developed by 

Thomas L. Saaty; it has been extensively studied and refined since its establishment. Rather than 

identifying a "correct" decision, the AHP helps decision makers find one that best suits their goal 

and their understanding of the problem. It provides a comprehensive and rational framework for 

structuring a decision problem, representing and quantifying its elements, then relating those 

elements to overall goals, and evaluating alternatives. The Analytic Network Process (ANP) is a 

theory that extends the AHP to occurrences of dependence. It permits interactions within clusters 
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identified and between clusters as well. The ANP provides a thorough framework to include 

clusters of factors connected in any way to examine the process of obtaining ratio priorities from 

the distribution of influence among elements and among clusters. In AHP Modeling, every factor 

in the hierarchy is considered to be independent of the other factors, the decision criteria are 

considered to be independent of each other, and the alternatives are independent of the decision 

criteria and of each other. The concern with the AHP modeling technique is that with many real-

world and practical cases, interdependence is present among the items and the alternatives. ANP 

does not require independence among factors. Therefore, it is utilized as an effectual technique in 

these cases. 

 The expert feedback needed for the AHP and ANP models was provided by the hospital 

laboratory manager. These models have determined how four different methodologies can be 

utilized to improve the stages in hospital laboratories. The model results indicate the hierarchy of 

the stages from most critical to least critical. The results from the ANP model will be compared 

to the results from the AHP model to ensure proper stage selection for optimization purposes.  

 In the next section, a literature review on AHP and ANP modeling in medical decision 

making has been provided. From a review of the literature, it has been determined that AHP and 

ANP modeling has not been used in studies concerning laboratory medicine. Lastly, the AHP 

and ANP model developments for the hospital laboratory case and the corresponding results are 

presented.  

3.2 AHP and ANP Modeling in Medical Decision Making: Review of Literature 

Statistics published by the U.S. government indicate that healthcare spending is projected 

to reach $4.5 trillion by the year 2017. Improvements in healthcare decision making are needed 

in order to solidify benefits for patients and health care professionals. There are a variety of 
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popular tools that assist with the process of medical decision making, but the literature review in 

this section will focus on AHP and ANP modeling. This technique allows the decision maker to 

organize problems/decisions in the form of a hierarchy. There are a variety of researchers that 

have utilized the AHP modeling approach in respected studies in the healthcare field (Liberatore 

& Nydick, 2008). These studies include: therapy and treatment, healthcare evaluation, patient 

involvement, and project selection.  

From a review of the literature, it was determined that certain problems do not always 

indicate a hierarchical structure; therefore the problem should be modeled as a network. There 

are not many studies that utilize ANP modeling in medical decision making, although this 

approach has been used in determining the proper treatment for cancer (Carter et al., 1999) and 

the proper tests for certain symptoms (Saaty & Vargas, 1998). There are studies that have 

indicated decision problems are best investigated through both ANP and AHP (Saaty & Vargas, 

1998) . This allows for a thorough analysis and comparison to be conducted to determine if the 

same results are obtained from both models. If the same result is obtained, this will provide 

additional confirmation for the decision to be selected. 

 There have been a variety of models developed for assessment of quality management. 

While using these models, healthcare delivery systems recognized a large number of areas for 

improvement, in which they developed improvement projects and strategies to implement in 

their facilities. It is not feasible to implement all projects simultaneously, and therefore AHP and 

ANP modeling would prove to be beneficial in the effort of prioritization. Table 3.1 provides a 

synopsis of the AHP and ANP studies reviewed.  
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Table 3.1 

Synopsis of Articles Reviewed: AHP/ANP for Medical Decision Making 

Study Objective Approach Recommendation Results 

(Dolan & 

Bordley, 1994) 

Determine if 

isoniazid 

prophylaxis 

should be used as 

a treatment for 

patients 

AHP Use different 

treatment strategies  

Specific 

treatment was 

prescribed per 

patient 

(Saaty & Vargas, 

1998) 

Determine what 

tests to perform 

given certain 

symptoms 

AHP/ANP Use expert 

judgment to decide 

appropriate tests 

Approach 

supported 

physicians 

(Carter, et al., 

1999) 

Evaluate 

treatments for a 

patient with breast 

cancer 

AHP/ANP Choose the 

treatment with the 

highest ranking  

Radiation and 

tamoxifen was 

selected as the 

best treatment 

(Hummel, 

Rossum, 

Verkerke, & 

Rakhorst, 2000) 

Compare a variety 

of catheter pumps  

AHP Base assessment 

on medical, 

economic, and 

patient factors 

Selected the 

pump with the 

best safety and 

ease of use 

(Chatburn & 

Primiano, 2001) 

Decide the best 

method to buy a 

ventilator at a 

hospital 

AHP Utilize AHP aids 

in the decision 

making process 

Budget proposal 

developed at 

university 

hospital 

(Rossetti & 

Selandari, 2001) 

Decide if robots 

can replace 

humans in 

hospital 

pharmacies 

AHP Implement the use 

of robots in 

hospital 

pharmacies 

Analysis 

indicated the 

robots were 

preferred to 

humans 

(Longo & 

Masella, 2002) 

Examine 

processes adopted 

in different 

operating blocks 

AHP Importance of  

tasks in process 

should be 

measured 

Best practices 

identified 
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Table 3.1(cont.) 

Study Objective Approach Recommendation Results 

(Cho & Kim, 

2003) 

Select proper 

medical devices 

AHP Purchase only the 

highest ranked 

products 

The top 15 

products were 

funded 

(Chang, Cheng, & 

Su, 2004) 

Determine the best 

patient discharge 

planning approach 

AHP Redesign the 

discharge planning 

process 

Improvement 

in discharge 

planning 

management 

(Dey, Hariharan, 

Kumar, & 

Moseley, 2004) 

Measure the 

performance of ICU 

service reliability 

AHP AHP is a valuable 

tool to quantify the 

performance of an 

ICU division 

Successfully 

identified ICU 

performance 

(Ahsan & 

Bartlema, 2004) 

Evaluate the 

performance of 

healthcare complexes 

AHP Improvements in 

certain areas of the 

complexes are 

required 

Decision 

making 

process 

improved 

(Hariharan, Dey, 

Chen, Moseley, & 

Kumar, 2005) 

Develop a model for 

the performance 

measurement of three 

intensive care units 

AHP Improve the poor 

performance areas 

in each ICU 

AHP is a 

useful model 

to measure 

performance 

in the ICU 

(Hummel, Snoek, 

van Til, van 

Rossum, & 

Ijzerman, 2005) 

Evaluate two 

alternatives for 

people with 

tetraplegia  

AHP Obtain feedback 

from patients with 

tetraplegia for both 

alternatives 

Conventional 

surgery was 

preferred 

(Richman et al., 

2005) 

Evaluate prostate 

cancer treatment 

selection  

AHP Enhance the 

treatment selection 

by making this 

decision  evidence 

based 

Validated the 

use of AHP 

for prostate 

cancer 

treatment 

selection 

(Liberatore & 

Nydick, 2008) 

Determine screening 

vs. not screening 

effects for prostate 

cancer patients 

AHP Appropriate 

decision-

counseling 

protocols should be 

administered 

Increase in 

awareness of 

the benefit of 

screening 
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3.2.1 Therapy and treatment selection. AHP and ANP modeling has been used for the 

selection of the best and most appropriate medical treatments and therapies for healthcare 

patients. The AHP has been utilized to help decide on the preferred treatment for adults afflicted 

with a sore throat (Singh, Dolan, & Centor, 2006). The criteria considered were reducing 

symptom duration, preventing infectious complications, minimizing antibiotic side effects, and 

avoiding under and over treatment of a patient. The alternatives included no test, no treatment; 

rapid strep test and treat if positive; throat culture and treat if positive; rapid strep test and treat if 

positive, and if negative, throat culture and treat if positive. Data that had been published was 

used to estimate how each alternative fulfilled the evaluative criteria, and was the basis for the 

required pairwise comparisons. It was determined that the preferred treatment strategy depended 

on the patient. Many studies have utilized the AHP model to determine the best treatment for a 

variety of health conditions from tuberculosis (Dolan & Bordley, 1994) to breast cancer (Carter, 

et al., 1999).  The application of the AHP was also used as part of a case-based reasoning 

technique regarding discharge planning for patients in Taiwan healthcare facilities (Chang, et al., 

2004). The categories of long-term resources available were senior welfare institutions, 

community care resources, and home care resources. Using information obtained from experts, 

seven evaluation dimensions were chosen: functional conditions, physical conditions, caregivers, 

support systems, nursing care, basic information, and medical care awareness. The AHP model 

was used to establish the weights of each of the seven evaluators. In order to substantiate the 

feasibility of the recommended approach, it was applied to the discharge cases in the neurology 

and pulmonary division at the healthcare delivery system in Taiwan. Increased accuracy was 

achieved regarding the discharge planning for five sample cases. 
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3.2.2 Healthcare evaluation. Many studies have investigated the use of AHP modeling 

for the evaluation of health care facilities and health care policy analysis. In a particular study, 

the researchers studied how the AHP can be used to analyze the performance of healthcare 

delivery systems (Hariharan et al., 2004; Dey et al., 2004). The main criteria included: patient 

care, establishment, and administration. This modeling approach provided useful details 

regarding the performance of hospitals. 

 There were two tertiary care hospitals evaluated in Barbados and India. Dey et al. (2004) 

recognized areas where each hospital did not perform well and recommendations for 

improvement were provided using the AHP methodology. A similar AHP approach, to evaluate 

the performance of an intensive care unit, in a Barbados hospital was also conducted (Hariharan, 

et al., 2005). Using the AHP, Longo and Masella (2002) evaluated the performance of different 

organizational processes in a variety of operating blocks in eight different Italian hospitals. The 

analysis was based on cost, quality, and income. The judgments that were required for the study 

were provided by nurses and the clinician staff.  The results provided insights and the areas that 

should be improved within each facility.  

A research study was performed that utilized the AHP model to analyze the performance 

of Thana Health Complexes (THC) which are comprised of healthcare facilities (Ahsan & 

Bartlema, 2004). The five criteria included: THC activities, maternal care, child health, family 

planning, and management. Experts participated in the study and determined all criteria and 

subcriteria. Seven Thanas were analyzed based on collected data from a public health 

department. The results of the study were used to decide the Thanas that require improvements in 

certain areas.  
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3.2.3 Patient involvement. Patient involvement in the healthcare decision making 

process has been addressed in several studies. Liberatore & Nydick (2008) discuss how the AHP 

model is used to aid in a decision counseling practice for African American males deciding to 

take part in a prostate cancer screening examination. Studies have indicated that the risk of dying 

from prostate cancer is much higher among African American males.  

Hummel et al. (2005) investigates how the AHP model can help a rehabilitation team 

analyze the performance of two options, functional electrical stimulation (FES) and conventional 

surgery to progress the arm–hand functionalities of people with sixth cervical vertebra level 

Motor Group 2 tetraplegia. The criteria considered in this study included: ease of use, social 

acceptance, arm–hand function, minimal risks, and minimal load of treatment. The authors 

concluded that conventional surgery was preferred over FES.  

Richman et al. (2005) applied the AHP model to aid in selecting the most appropriate 

prostate cancer treatment. The criteria included: chance for cancer cure, risk of cancer 

progression, long-term survival, quality of life, limiting acute complications of treatment, risk 

from blood transfusion, and cost to patient. The expert physician panel provided weighted 

judgments connecting the different treatment options with each sub-objective. The results 

provided a prioritized list of the alternative treatments for the patients.  

3.2.4 Project selection. The AHP model for selection and evaluation of projects and 

technology in health care settings has been utilized in many research studies. Hummel et al. 

(2000) utilized the AHP model to conduct a practical medical technology assessment of a blood 

pump called a pulsatile catheter pump. The assessment was based on criteria that included 

medical, economic, and social factors. The results provided a helpful and useful assessment of 

this blood pump for the healthcare management staff.  
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Chatburn and Primiano (2001) utilized a decision-making tool identified as a multi-

attribute utility model to help determine how to buy a ventilator for a healthcare facility. The 

authors evaluated neonatal ventilators for a women’s health hospital utilizing the AHP modeling 

technique. The model was based on pairwise comparisons provided by the hospital’s director of 

respiratory therapy and clinical engineering. The categories of criteria included: safety, clinical 

factors, biomedical engineering factors, and cost. The alternatives included: the existing 

ventilator, an updated version, and a state-of-the-art unit. The contributors believed the AHP 

model to be easy to use and supported the decision to purchase the ventilator.  

Cho and Kim (2003) indicated how the AHP would be used for the selection of medical 

devices and materials for grants by the Korean Ministry of Health and Welfare. The three criteria 

included: marketability, technology applicability, and public benefits. Within the hierarchy, 88 

alternatives were organized. Funding priorities for the 88 alternatives were identified, and the top 

15 products were funded based on the results. Rossetti and Selandari (2001) focus on the 

application of the AHP model to determine if a fleet of mobile robots could be put in place to 

substitute an established human-based delivery system in hospital pharmacies. The proposed 

AHP model included economic and technical performance elements, social, human, and 

environmental factors. The results indicated that a fleet of mobile robots can be put in place to 

substitute the human-based transportation system. 

3.3 AHP Model for Hospital Laboratory Case 

 The AHP model for this study has been used to demonstrate how the best features from 

four different improvement strategies: Theory of Constraints, Lean, Critical Business Process, 

and Six Sigma, could be used to develop an approach for prioritizing and selecting the stage for 

optimization in a hospital laboratory. The AHP model is provide below in Figure 3.1. 



42 

 

 

Figure 3.1. AHP model for the hospital laboratory case. 

In the AHP model, i is the index for methodology and j is the index for stages in the 

laboratory process. wi  denotes the weight for methodology i and wij denotes the weight for 

methodology i and stage j. Weight wi and wij are determined using pairwise comparisons. These 

weights are presented in Table 3.2 and Table 3.3. Based on the weights, the overall score of each 

stage (Wj) is determined by Wj = 
1
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Table 3.2

 
Weights for Each Methodology 

 

Methodology Weight 

Lean= w1 0.3027 

Six Sigma=w2 0.4792 

Theory of Constraints=w3 0.1368 

Critical Business Process=w4 0.0813 
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Table 3.3 

Weights for Each Methodology i and Stage j 

 Preanalytical Stage 

j=1 

Analytical Stage 

j=2 

Postanalytical Stage 

j=3 

Lean               i=1 0.5492 0.3312 0.1196 

Six Sigma       i=2 0.5515 0.2767 0.1718 

Theory of 

Constraints    i=3 

0.5389 0.2972 0.1637 

Critical Business 

Process           i=4 

0.4670 0.3763 0.1567 

 

Once the weights were determined, a consistency check of the comparisons was 

completed. The consistency check involved calculating the ratio of the consistency index to the 

random index.  For the AHP model, the consistency index and random index are 0.067 and 0.90 

respectively. Thomas Saaty, founder of the AHP model, has proven that if the ratio is greater 

than 0.1, serious inconsistencies may exist and the AHP model may not yield meaningful results. 

If the ratio is less than 0.1, the degree of consistency is satisfactory. According to the ratio of 

0.0744, it can be concluded that the results provided from the AHP model in this study are 

meaningful. 

3.4 AHP Model Results 

Based on the results from the model, a hierarchy is determined for the three stages in the 

laboratory process. The results indicate the order of importance/criticality of the stages in the 

hospital laboratory. The results from the AHP model developed, state that the Preanalytical Stage 

should be selected first to optimize since it has the highest score (0.5422), then the Analytical 

Stage with the next highest score (0.3139), and lastly the Postanalytical Stage with the lowest 

score (0.1539). The results of the AHP model align with the conclusions from many studies, 

which is that the preanalytical stage is the most critical stage in the entire testing process. Since 
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the other two stages follow the first stage, it is presumed that improvements in the preanalytical 

stage will benefit the overall process similar to that of the “domino effect” concept. The results 

from the AHP model for the hospital laboratory case are provided in Table 3.4 below. For 

additional details regarding the AHP analysis reference Appendix A. 

Table 3.4 

Score for Each Laboratory Stage 

Laboratory Stage AHP Score 

Preanalytical 0.5422 

Analytical 0.3139 

Postanalytical 0.1539 

 

3.5 ANP Model for Hospital Laboratory Case 

The ANP model for this study was developed as a method of validation for the results 

from the AHP model discussed previously. It was formulated to demonstrate how the best 

features from four different improvement strategies: Theory of Constraints, Lean, Critical 

Business Process, and Six Sigma, could be used together to develop an approach for prioritizing 

and selecting the stage for improvement in a hospital laboratory. The modeling software used for 

the ANP model for the hospital laboratory case, was Super Decisions. The Super Decisions 

software is used for decision-making with dependence and feedback. This software uses an 

essential prioritization method based on deriving priorities through judgments on pairs of factors 

or from direct measurements. The authentication and success of the ANP has been seen in 

applications where the results produced corresponded with identified answers in the real world or 

from predicted outcomes. Therefore, this technique is a trustworthy and objective methodology 

for making decisions based on priorities and significance. Figure 3.2 illustrates the initial step of 

the ANP model, which is the development of the control network. In the control network, the 
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user determines the overall goal for the model, which in this case is to select the best stage to 

optimize in the hospital laboratory. Then, the user must develop the sub-networks of the model 

and indicate the relationship between the control network and the sub-networks. The four 

improvement techniques: Lean, Six Sigma, Theory of Constraints, and Critical Business Process 

each represent a sub-network for the model. Once the control network and sub-networks have 

been developed, the next step involves developing the clusters within each sub-network. There 

will be two clusters in each sub-network. The two clusters include the alternatives in one and the 

attributes of the methodology in the other. The alternatives for all of the sub-networks include:  

Preanalytical Stage, Analytical Stage, and Postanalytical Stage. Figures 3.3-3.6 illustrate each of 

the sub-networks for the ANP model. 

 

Figure 3.2. Control network for the ANP model. 

 

Figure 3.3. Sub-network for lean. 
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Figure 3.4. Sub-network for six sigma. 

 

Figure 3.5. Sub-network for theory of constraints.  
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Figure 3.6. Sub-network for critical business process. 

3.6 ANP Model Results 

From the results of the ANP model, a priority has been determined for the three stages in 

the entire testing process. The results indicate the order of criticality for the stages in the hospital 

laboratory. The results from the ANP model consist of the unweighted matrix, the priorities, and 

the sensitivity graph for each sub-network. The final result will indicate the priorities for the 

control network, which consists of the stages of the hospital laboratory. The results are provided 

and discussed below for each sub-network and control network. 

Figure 3.7 represents the unweighted supermatrix for the lean sub-network.  The 

unweighted supermatrix contains the local priorities derived from the pairwise comparisons 

throughout the lean sub-network.  The attributes, elimination of non-value added activities, 

minimization of cost, quality control, and reduction of total cycle time, have the following 

priorities with respect to the analytical stage: 0.390525, 0.276142, 0.195262, and 0.138071, 

respectively. These priorities are shown in the four bottom cells of the first column. This may be 

interpreted with the following statement, "The elimination of non-value added activities in the 
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analytical stage is the more dominant attribute when compared to the other attributes in the lean 

sub-network."  This dominant attribute is the most critical when utilizing the lean technique to 

obtain improvements in the analytical stage. The same results were obtained in the unweighted 

matrix for both the preanalytical and postanalytical stages. With respect to the elimination of 

non-value added activities, the priorities of the three alternatives (analytical stage, postanalytical 

stage, and preanalytical stage) are shown in the three top cells of the fourth column, which are 

0.126007, 0.416117, and 0.457875, respectively. This could be interpreted with the following 

statement, "The preanalytical stage, when incorporating the elimination of non-value added 

activities, will benefit the most when compared to the other alternatives."   

 

Figure 3.7. The unweighted supermatrix for the lean sub-network. 

 The priorities of the three alternatives (analytical, postanalytical, and preanalytical) with 

respect to the lean sub-network are shown in Figure 3.8.  These priorities, as the result of doing 

pairwise comparisons, are referred to as local priorities. The preanalytical stage has the highest 

priority with a value of 0.506618. 
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Figure 3.8. The priorities for the alternatives with respect to lean sub-network. 

 Figure 3.9 illustrates the sensitivity graph for the lean sub-network. The sensitivity 

analysis for the Lean sub-network indicates how the priorities of the three alternatives, which are 

the stages in the entire testing process of the hospital laboratory, change as the priority of the 

Lean independent variable changes. The results indicate that the change in the priority of Lean 

does not affect the priorities of the alternatives. The preanalytical stage has the highest priority, 

followed by the postanalytical and analytical stages respectively.  

 

Figure 3.9. The sensitivity graph with lean as the independent variable. 
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 Figure 3.10 represents the unweighted supermatrix for the six sigma sub-network. This 

unweighted supermatrix contains the local priorities derived from the pairwise comparisons 

throughout the six sigma sub-network.  The attributes, gather key aspects of current process, 

perform statistical data analysis, propose optimization method, specify project goal, and sustain 

the future state of the system, have the following priorities with respect to the analytical stage: 

0.322856, 0.244679, 0.140531, 0.185432 and 0.106503, respectively. These priorities are shown 

in the five bottom cells of the first column. This could be interpreted with the following 

statement, "The gathering of key aspects of the current process is the more dominant attribute 

when compared to the other attributes in the six sigma sub-network."  This dominant attribute is 

the most critical when utilizing the six sigma technique to obtain improvements in the analytical 

stage. The same results were obtained in the unweighted matrix for both the preanalytical and 

postanalytical stages. With respect to the gathering of key aspects of the current process, the 

priorities of the three alternatives (analytical stage, postanalytical stage, and preanalytical stage), 

are shown in the three top cells of the fourth column, which are 0.163424, 0.296961, and 

0.539615, respectively. This could be interpreted with the following statement, "The 

preanalytical stage, when incorporating the gathering of key aspects of the current process, will 

benefit the most when compared to the other alternatives."   

 The priorities with respect to the six sigma sub-network are shown in Figure 3.11.  These 

priorities, as the result of pairwise comparisons, are referred to as local priorities. When 

comparing the three stages in the laboratory process, the preanalytical stage has the highest 

priority with a value of 0.558465. 

 The sensitivity analysis for the six sigma sub-network indicates how the priorities of the 

three alternatives will change as the priority of the six sigma independent variable changes. 
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Figure 3.12 illustrates the sensitivity graph for the six sigma sub-network. The results 

demonstrate the change in the priority of six sigma does not affect the preanalytical stage having 

the highest priority, but as the priority of six sigma changes from 0 to 1, the second and third 

largest priorities change. When the priority of six sigma is less than 0.6, the postanalytical stage 

has the second highest priority and the analytical stage ranks last; otherwise the analytical stage 

has the second highest priority and the postanalytical stage ranks last. 

 

Figure 3.10. The unweighted supermatrix for the six sigma sub-network. 

 

Figure 3.11. The priorities for the alternatives with respect to six sigma sub-network. 
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Figure 3.12. The sensitivity graph with six sigma as the independent variable. 

 Figure 3.13 represents the unweighted supermatrix for the theory of constraints sub-

network. This unweighted supermatrix contains the local priorities derived from the pairwise 

comparisons throughout the theory of constraints sub-network.  The attributes, constraint 

elevation, constraint exploitation, constraint identification, and system alignment, have the 

following priorities with respect to the analytical stage: 0.104701, 0.229236, 0.482683, and 

0.183381, respectively. These priorities are shown in the four bottom cells of the first column. 

This could be interpreted with the following statement, "Constraint identification is the more 

dominant attribute when compared to the other attributes in the theory of constraints sub-

network."  This dominant attribute is the most critical when utilizing the theory of constraints 

technique to obtain improvements in the analytical stage. The same results were obtained in the 

unweighted matrix for both the preanalytical and postanalytical stages. With respect to constraint 

elevation, the priorities of the three alternatives (analytical stage, postanalytical stage, and 
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preanalytical stage) are shown in the three top cells of the fourth column, 0.238476, 0.136498, 

and 0.625026, respectively. This could be interpreted with the following statement, "The 

preanalytical stage, when selecting constraint elevation, will benefit the most when compared to 

the other alternatives."   

 

Figure 3.13. The unweighted supermatrix for the theory of constraints sub-network.  

 The priorities with respect to the theory of constraints sub-network are shown in Figure 

3.14.  These priorities, as the result of doing pairwise comparisons, are referred to as local 

priorities. The preanalytical stage has the highest priority with a value of 0.635158.   

 Figure 3.15 illustrates the sensitivity graph for the theory of constraints sub-network. The 

sensitivity analysis for the theory of constraints sub-network indicates how the priorities of the 

three alternatives change as the priority of the theory of constraints independent variable 

changes. The results demonstrate that the change in the priority of theory of constraints does not 

affect the preanalytical stage having the highest priority, but as the priority of theory of 

constraints changes from 0 to 1 the second and third largest priorities change. When the priority 
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of theory of constraints is less than 0.57, the postanalytical stage has the second highest priority 

and the analytical stage ranks last; otherwise the analytical stage has the second highest priority 

and the postanalytical stage ranks last. The sensitivity graph allows one to see how sensitive the 

rank for alternatives is when a change in the priority occurs. 

 

Figure 3.14. The priorities for alternatives with respect to theory of constraints sub-network. 

 

Figure 3.15. The sensitivity graph with theory of constraints as the independent variable. 



55 

 

 Figure 3.16 illustrates the unweighted supermatrix for the critical business process sub-

network. This unweighted supermatrix contains the local priorities derived from the pairwise 

comparisons throughout the critical business process sub-network.  The attributes, obtaining 

business effectiveness, final process optimization, and identification of most critical system 

components, have the following priorities with respect to the analytical stage: 0.296958, 

0.163417 and 0.539626, respectively. The priorities are shown in the three bottom cells of the 

first column. This could be interpreted with the following statement, "The identification of the 

most critical system components in the analytical stage is the more dominant attribute when 

compared to the other attributes in the critical business process sub-network."  This dominant 

attribute is the most significant when utilizing the critical business process technique to obtain 

improvements in the analytical stage. The same results were obtained in the unweighted matrix 

for both the preanalytical and postanalytical stage. With respect to the identification of the most 

critical system components, the priorities of the three alternatives (analytical stage, postanalytical 

stage, and preanalytical stage), are shown in the top three cells of the six column. These values 

are 0.104728, 0.258273, and 0.636999 respectively. For example, this could be interpreted with 

the following statement, "The preanalytical stage, when identifying the most critical system 

components, will benefit the most when compared to the other alternatives."   

 The priorities of the three alternatives with respect to the critical business process sub-

network are shown in Figure 3.17.  These priorities, as the result of doing pairwise comparisons, 

are referred to as local priorities. The preanalytical stage has the highest priority with a value of 

0.636999. 

 The sensitivity analysis for the critical business process sub-network indicates how the 

priorities of the three alternatives change as the priority of the critical business process 
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independent variable changes. Figure 3.18 illustrates the sensitivity graph for the critical business 

process sub-network. The results indicate that the change in the priority of critical business 

process does not affect the preanalytical stage having the highest priority. On the other hand, 

when the priority of critical business process is less than 0.2 the analytical stage has the second 

highest priority and the postanalytical stage ranks last; otherwise the postanalytical stage has the 

second highest priority and the analytical stage ranks last.  

 

Figure 3.16. The unweighted supermatrix for the critical business process sub-network. 

 

Figure 3.17. The priorities for alternatives in respect to critical business process sub-network. 
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-  

Figure 3.18. The sensitivity graph with critical business process as the independent variable. 

 The overall priorities for the control network are shown in Figure 3.19.  These are the 

final priorities for the ANP model. The preanalytical stage has the highest priority with a value 

of 0.607916, the postanalytical stage has the second highest priority with a value of 0.207558, 

and lastly is the analytical stage with a value of 0.184526. For additional details regarding the 

ANP analysis reference Appendix B. 

 

Figure 3.19. The overall priorities for the alternatives. 



58 

 

3.7 Conclusions 

 The results from both the AHP and ANP models indicate that the preanalytical stage is 

the most critical stage in the entire testing process.  The results from the AHP model rank the 

analytical stage as the second most critical stage and the postanalytical stage as the least critical. 

However, the ANP model selects the postanalytical stage as the second most critical and the 

analytical stage as the least critical. Although from the two models, the overall ranking of the 

three stages are not exact, the first priority in both models is the preanalytical stage. Therefore, 

the preanalytical stage should be improved first. In Chapter 4, optimization modeling is used to 

foster better decision making at the preanalytical stage.  
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CHAPTER 4 

Two-Stage Stochastic Integer Linear Programming Model for Phlebotomist Scheduling 

and Blood Draw Assignments 

 In Chapter 4, a two-stage SILP model for phlebotomist scheduling and blood draw 

assignments is presented. A brief background on stochastic programming is provided, along with 

a review of literature on stochastic programming in healthcare scheduling. The review of 

literature indicates that stochastic programming has not been explored in regards to phlebotomist 

scheduling and blood draw assignments in the laboratory medicine area. Next, the problem is 

defined, along with the approach taken to alleviate the problems faced in the preanalytical stage. 

The objective to be accomplished and the assumptions for the problem are also provided. In the 

section following, the formulation for a two-stage SILP model is presented to address the defined 

problems. The solution approach, which includes the scenario reduction model and heuristic 

algorithm, is then discussed in detail. Lastly, a brief conclusion is presented to summarize the 

performance of the solution approach.  

4.1 Background    

One of the analytical approaches used in the study of scheduling systems is mathematical 

programming. In a mathematical programming or optimization problem, one seeks to minimize 

or maximize a real function of real or integer variables, subject to constraints on the variables. 

The term mathematical programming refers to the study of the development and implementation 

of algorithms to solve optimization problems, and the application of these algorithms to real 

world problems. This is a popular approach used in scheduling studies due to the rapid 

advancements in optimization. Different optimization solvers can be used to obtain the optimal 

solution to a variety of mathematical programming models. There are several types of 
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mathematical programming methods used in scheduling studies, and one of the main methods 

utilized in this research area is stochastic programming. Stochastic programming investigates the 

state in which some of the constraints or parameters depend on random variables, and assumes 

there’s a level of uncertainty associated with the system under study.  

 To address the second and third research questions, a two- stage SILP model has been 

developed. This model has been formulated to determine the number of phlebotomists to 

schedule during each shift and the number of blood draw collections that should be assigned to 

each phlebotomist, in order to balance workload within and between shifts.   

4.2 Stochastic Programming in Healthcare Scheduling: Review of Literature 

According to the review of literature, stochastic programming is used mainly in 

appointment scheduling studies. A sequential bounding approach for optimal appointment 

scheduling was proposed in a study conducted by Denton and Gupta (2003). The researchers 

determined the optimal appointment times for a series of tasks with uncertain durations using a 

two-stage stochastic linear programming model. This model was used due to the flexibility 

associated with modeling different types of cost considerations. The benefit of this model is that 

it is generalized to any two stage stochastic linear program for which the upper bounds on dual 

multipliers can be computed on a partition of the space of random variables.  

Scheduling patient appointments has also been studied using optimal and empirically-

based heuristics (Robinson & Chen, 2003). In this study, the authors focus on how to achieve a 

balance between physician idle time and patient waiting time. Heuristic rules were used to aid 

outpatient facilities in determining appropriate appointment times. The results indicated the 

heuristic developed achieved a solution within 2% of the optimal policy for patient appointment 

scheduling. 
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The nurse assignment problem is investigated using a stochastic integer programming 

model (Punnakitikashem, Rosenberger, & Buckley Behan, 2008). The researchers in this study 

have an objective of minimizing the excess workload on the nurses scheduled. The results 

indicate the scheduling templates for several different cases that minimize the excess workload 

experienced by the nurses. Through the implementation of the scheduling templates from this 

study, 273 hours of excess workload on nurses per year was saved.  

A two-stage stochastic programming model, for scheduling and allocating cross trained 

workers, has been investigated for multi-department service environments with random demands 

(Campbell, 2010). The researcher investigates how this model will be useful in hospital nurse 

scheduling. The objective was to determine the days off to allocate to each nurse and also the 

number of nurses to schedule for each day in order to meet the realized demand. The scheduling 

and allocation models presented in this study have the potential to help managers better utilize 

cross-trained workers.  

Nurse rostering falls under the umbrella of scheduling and is a challenge for many 

healthcare delivery facilities (Burke, De Causmaecker, Berghe, & Van Landeghem, 2004). The 

researchers in this study discuss how stochastic programming is a viable approach for evaluating 

nurse scheduling and rostering. The specific skills and the demand uncertainty are all considered 

in the stochastic programming model. The results indicate this method is beneficial in staff 

planning and scheduling for many hospital systems.  

The optimization of surgery sequencing and scheduling decisions under uncertainty was  

investigated to determine optimal operating room scheduling policies (Denton, Viapiano, & 

Vogl, 2007). In this study, the authors used a two-stage stochastic linear programming model to 

determine the optimal surgery schedule. This model was utilized in order to prevaricate against 
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the uncertainty associated with surgery durations. The benefit of this model is that it provided 

significant improvements to daily operating room schedules.  

Operating room and parallel surgery scheduling was studied using a two-stage stochastic 

mixed integer linear programming model to minimize operating cost (Batun, Denton, Huschka, 

& Schaefer, 2011).  The researchers want to determine the optimal schedule, which indicates the 

number of operating rooms to open each day, how surgeries should be allocated to operating 

rooms, and the start time for each surgeon. In order to reach a near optimal solution, the authors 

solve both the stochastic and mean value problem using L-shaped and branch and bound 

algorithms. After testing different resource scenarios, the authors can conclude the impact of 

parallel surgery processing and the benefit of operating pooling are significant. Operating 

pooling could result in significant cost savings for many hospital systems.  

A stochastic model was developed to study operating room planning with elective and 

emergency demand for surgery (Lamiri, Xie, Dolgui, & Grimaud, 2008). In this study, the 

authors address the different scheduling policies that should be in place for the surgeries that are 

planned (elective) and the surgeries that are random (emergency). The objective of this study 

was to reduce the cost associated with performing a surgery and the associated overtime cost.  

Monte Carlo optimization methods were used to solve the stochastic model. From this study, the 

authors were able to conclude the planning model proposed is best useful in healthcare delivery 

systems that use a blocked advance scheduling system, which allocates blocks of operating room 

time to surgical specialties. Table 4.1 provides a synopsis of the studies reviewed on stochastic 

programming in healthcare scheduling. 

There are many studies that have utilized stochastic programming to improve scheduling 

in healthcare systems. Studies that are closely related to this research include nurse scheduling. 
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Table 4.1 

Synopsis of Articles Reviewed for Stochastic Programming in Healthcare Scheduling 

Study Objective Recommendation Results 

(Denton & Gupta, 

2003) 

Determine optimal 

appointment times 

for a sequence of 

jobs 

Optimal scheduling of 

jobs can increase 

utilization and reduce 

costs 

Illustrate properties 

of the optimal 

solution with 

respect to 

distribution type 

and number of jobs 

(Robinson and 

Chen, 2003) 

Identify optimal 

appointment times  

Apply heuristics to get 

close to optimal 

solutions 

Developed 

scheduling policy 

within 2% of 

optimal policy 

(Burke, De 

Causmaecker et al. 

2004) 

Evaluate nurse 

scheduling 

Add constraints that 

indicate pair 

scheduling for nurses 

Better scheduling 

templates 

(Denton, Viapiano 

et al., 2007) 

Determine the 

optimal surgery 

scheduling policy 

under uncertainty 

Simple sequencing rule 

for surgery duration 

variance can be used to 

gain reductions in cost, 

idle, and waiting times 

Optimal schedule 

determined for the 

hospital under 

study 

(Lamiri, et al., 

2008) 

Identify optimal 

surgery schedule for 

elective and 

emergency cases 

Apply Monte Carlo 

optimization 

techniques to reach 

near optimal solution 

Best results seen in 

blocked advance 

scheduling systems 

(Punnakitikashem, 

Rosenberger et al. 

2008) 

Develop a stochastic 

integer 

programming model 

to  assign nurses to 

patients 

Utilize scheduling 

template to minimize 

excess workload 

273 hours of excess 

workload on nurses 

per year was saved 
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Table 4.1 (cont.) 

Study Objective Recommendation Results 

(Campbell, 2010) Develop a two stage 

stochastic scheduling 

model for cross 

trained worker 

assignments  

Implement nurse 

scheduling templates 

provided from the 

model results 

Allows  managers to 

better utilize cross-

trained workers 

 

(Batun, et al., 2011) Develop a two stage 

stochastic mixed 

integer programming 

model to address 

operating room and 

parallel surgery 

scheduling  

Implement operating 

room pooling along 

with parallel surgery 

scheduling 

Determined 

operating cost 

reductions between 

21% and 59% could 

be achieved 

 

4.3 Problem Definition  

The major problems faced in the preanalytical stage of hospital laboratories are how to 

schedule the phlebotomists for each shift while accounting for the uncertainty associated with the 

number of tests that will be ordered, and how to assign blood draw collections to each 

phlebotomist in order to balance workload. In order to alleviate the problems faced in hospital 

laboratories, the phlebotomist shift scheduling and blood draw assignment problem is studied to 

determine the optimal number of phlebotomists to schedule and the optimal number of blood 

collections to assign during each shift. Poor scheduling policies can result in work overload for 

the phlebotomists. Work overload can lead to patient neglect as each patient will not get the time 

and attention they require. Therefore, the objective is to balance workload amongst 

phlebotomists between and within shifts. The only resource considered in this problem is the 

service providers, which are the phlebotomists. In the phlebotomist shift scheduling and blood 

draw assignment problem studied, the following assumptions have been made:  

 There are only K phlebotomists available. 
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 There are a total of N shifts in which phlebotomists could be scheduled. 

 Each phlebotomist must work one shift per day and five days per week. 

 Each shift is eight hours in length. 

 The service time to perform a regular blood draw and a STAT blood draw is the 

same.  

 A regular blood draw can be delayed up to three hours and a STAT blood draw has to 

be collected in the hour ordered without delay. 

 The phlebotomists are divided into three levels: beginner, average, and experienced. 

 A phlebotomist could not be scheduled in two consecutive shifts. 

 N shifts are separated into three groups: Morning, Afternoon, and Night shifts.  

 The service time for the phlebotomists correspond to the level they are associated 

with. 

 The same weekly scheduling template is used for each week. 

 Only one resource (Phlebotomists) is considered. 

4.4 Mathematical Model Formulation 

The phlebotomist shift scheduling and blood draw assignment problem has been 

formulated as a two-stage SILP model. The indices, sets, parameters, random variables, and 

decision variables for the two-stage SILP model are defined in Table 4.2. The decision variables 

jknx are the first-stage decision variables, while yik (ω) are the second-stage decision variables.  
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Table 4.2 

Indices, Sets, Parameters, Random Variables and Decision Variables  

Indices 

i Time block index;      iI 
j Days worked;             j{1, … , J} 
k Phlebotomist index;   k{1, … , K} 
n Hospital shift;            nN 

 Sets 

I1                    Set for time blocks with no task delay 

 I2 Set for time blocks with an up to one time block task delay 

 I3 Set for time blocks with an up to two time block task delay 
I4 Set for time blocks with an up to three time block task delay 

I I1   I2   I3 I4 

N1 Set of morning shifts  

N2 Set of afternoon shifts  
N3 Set of night shifts  

N        = N1   N2   N3 
Parameters 

aijn         = 
 

1,  if  time block  is included in shift  on day  

0,  otherwise

i n j



 

bi Max number of STAT tests ordered in time block i 

D Total number of days required to work 

F Max hours for which a regular blood draw could be delayed in subset I3 

F’ Max hours for which a regular blood draw could be delayed in subset I4 

J Total number of days available 

K Total number of phlebotomists available  

ks  Average time for phlebotomist k to perform a task 

Ti  Total time for time block i 

Random Variables 

Xi (ω)
 

Number of tasks occurring in time block i under realization ω 

Decision Variables 

yik (ω) Number of tasks assigned to phlebotomist k in time block i under realization ω 

jknx
 

=  
1,  if  phlebtomist  works on day  during shift  

0,  otherwise

k j n

  

zi (ω)
 

Number of tasks left over at the end of time block i under realization ω 

max ( )t   
Maximum phlebotomist workload in each shift under realization ω 
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 The phlebotomist shift scheduling and blood draw assignment problem defined in Section 

4.3 is formulated as follows: 

min    max[ ( )]E t                                                                                                                     (1) 

s.t.     
1
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jkn

n N k
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          0,1jknx  ,                                                         {1,..., }j J  , {1,..., }k K  , n N  (14) 

          int,0)( iky ,                                                         Ii , {1,..., }k K  ,   (15) 

          int,0)( iz ,                                                                                   Ii ,       (16) 

           
max ( ) 0t   ,                                                                                                    (17) 

The objective function (1) aims to minimize the expected maximum workload of the 

phlebotomists in each shift. Constraints (2) enforce the total number of phlebotomists scheduled 

for all shifts to be less than or equal to the total number of phlebotomists available. Constraints 

(3) and (4) guarantees that each phlebotomist works at most one shift per day. Constraints (5) 

enforce each phlebotomist to work five days a week. Constraints (6) are stage linkage constraints 

and guarantee that all blood draws assigned can be completed based on the phlebotomist time 

availability. Constraints (7) determine the number of blood draw collections left over at the end 

of each time block. Constraints (8) force all STAT blood collections to be completed in the time 

block requested. Constraints (9-12) place restrictions on the number of tests that can be left over 

at the end of each time block. Constraints (13) determine the maximum workload amongst the 

phlebotomists and shifts. Constraints (14-17) ensure binary, integer, and non-negativity 

variables. In this model, the decision variables )(iky are non-negative integer variables and xjkn 

are binary variables. Meanwhile, the number of patients requiring a blood draw during time 

block i (Xi) is a random variable. Therefore, the model formulated is a two-stage SILP model.  

4.5 Solution Approach  

 The two-stage SILP model is solved using a scenario reduction model and a heuristic 

algorithm. The scenarios in the two-stage SILP model represent the different combinations of the 

number of blood draws that could be requested in each time block. For example, if there are a 
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total of N time blocks, one scenario would represent the number of blood collections ordered in 

each block, for blocks one through N. For this study, there are 15 time blocks, where each time 

block includes one to five hours. The number of blood draw collections in each time block is 

treated as a random demand. An assumption for this study is the blood collection demands in 

time blocks are independent of one another. 

A new heuristic algorithm is proposed to solve the phlebotomist shift scheduling and 

blood draw assignment problem. In the two-stage SILP model, the heuristic algorithm has used 

the results from the scenario reduction model to determine a schedule that balances the workload 

amongst the phlebotomists in hospital laboratories. The scenario reduction model and heuristic 

algorithm, along with the results, are discussed in detail in the following sections.  

 4.5.1 Scenario reduction model. Due to thousands of possible scenarios in the two-stage 

SILP model, a scenario reduction model has been formulated and solved to reduce the number of 

scenarios to be considered. The scenario reduction model is a heuristic often utilized to reduce 

the number of scenarios in two-stage stochastic programming models (Karuppiah, Martín, & 

Grossmann, 2010). The idea behind the scenario reduction model is to select only the scenarios 

with the highest probability of occurrence. The authors of this study tested four different cases 

and determined by implementing this heuristic, a high quality solution would be achieved within 

10% of the best solution.  

 The scenario reduction problem has been formulated as a linear programming (LP) 

model.  In Table 4.3, the indices, sets, parameters, and decision variables are defined for the 

scenario reduction LP model.  
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Table 4.3 

Indices, Sets, Parameters, and Decision Variables 

Indices 

i Time block index;      i{1, … , |I|} 

mi Value index;             mi{1, … , |Vi|} 

Sets 

I Set of time blocks 

Vi                  Set of possible values for the number of blood draws requested in time block i  

Parameters 

im

iv                   Value of the mi
th

 element in Vi 

im

ip                   
Probability that the number of blood draws requested in time block i equals im

iv  

over all scenarios 

Decision Variables 

||21 ,,, Immmp 
 Probability of a scenario with the numbers of blood draws in time blocks 1, ..., |I| 

equal to 1

1

m
v ,… , ||

||
Im

Iv , respectively, in the reduced scenario set  

 

 The scenario reduction LP model is formulated as follows: 
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||21 ,,, Immmp   ≥ 0,                                m1{1, … , |V1|}, …, m|I|{1, … , |V|I||}   (22) 

The objective function (18) includes the known probabilities of the existing set of 

scenarios and these are present to force the optimization to reduce the number of scenarios, while 

selecting the scenarios that have the reasonably larger probabilities. Constraints (19-1) – (19-|I|) 

enforce the sum of the probabilities of the scenarios selected in which im

iv appear to be equal to

im

ip . Constraints (20) force the sum of the probabilities of the scenarios selected to be equal to 

one. Constraints (21) guarantee the probabilities of all scenarios selected to be less than or equal 

to one. Constraints (22) guarantee the probabilities of all scenarios selected to be larger than or 

equal to zero. 

 The scenario reduction model was solved using the optimization software package, 

General Algebraic Modeling System (GAMS). GAMS is a high level modeling software for 

mathematical programming and optimization problems. GAMS is tailored for complex, large 

scale modeling applications and allows the user to build large maintainable models that can be 

adapted quickly to new situations. The scenarios selected by the scenario reduction model are 

considered in the two-stage SILP model.  

 4.5.2 Heuristic algorithm. The two-stage SILP model, considering the scenarios selected 

by the scenario reduction model, was first solved using a commercial solver. It took the 

commercial solver several days to find a few feasible solutions to the two-stage SILP model. 

Their objective function values were far from the estimated lower bound. To verify the estimated 

lower bound, the two-stage SILP model was reduced by only considering a single scenario. After 

the reduced two-stage SILP model was solved under each selected scenario, it is realized that for 

each selected scenario, the objective function value of the best feasible solution found is close to 

the estimated lower bound. Based on this discovery, an efficient heuristic algorithm is developed. 
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Figure 4.1. Procedure of the proposed heuristic algorithm.  

 The procedure of the heuristic algorithm is provided in Figure 4.1. The key idea of this 

heuristic algorithm is to achieve a schedule that works for all selected scenarios, such that the 

relative gap between the lower bound for each scenario and the best objective function for each 

scenario is less than 5%. The lower bound for each scenario represents the best possible case 

with phlebotomist workload completely balanced. This lower bound is calculated using the 

following equation, where D is the blood draw demand, J is the total number of days, S is the 

average phlebotomist service time, K is the total number of phlebotomists available, and N is the 

total number of shifts required to work for each phlebotomist: 

 

Step 0: Initialization. Input the lower bounds, LB(ω), to the maximum workload per 
phlebotomist per shift for each scenario. Input solution quality requirements, i.e. the desired 
relative gap, β(ω), between the lower bound and the best objective function value to the single 
scenario model. Ωlimit represents the maximum number of scenarios considered.

Step 1: Find a starting feasible solution, x , to the model. 

Step 2: Set the scenario index ω = 1.

Step 3. Evaluate. In scenario ω, if x is a feasible solution to the single scenario model for 
scenario ω and its objective function value is within β(ω), go to step 5, otherwise go to step 
4.  

Step 4. Improve. Find a feasible solution, x`, to the single scenario model for scenario ω, so 
that its objective function value is within β(ω). Update x = x`.

Step 5. Calculate the maximum number of phlebotomists scheduled on each day in the 
current solution x. Set it to Kmax(ω).

Step 6. If ω < Ωlimit , update ω = ω+1 and go to step 3, otherwise go to step 7.

Step 7. Evaluate the objective function value of x to the two-stage SILP model. If it is within  
the relative gap, β, stop, otherwise go to step 8

Step 8. Add the cutting planes,                                                                                              

to the single scenario model. Go to step 2.    

max{ ( )} {1.... },max
1

K
x K j J

jknn N k
      

 
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Thus, the lower bound to the optimal objective function of the two-stage SILP model is 

calculated using the sum of the probabilities of each scenario multiplied by the lower bound for 

each scenario. 

 4.5.3 Evaluation of algorithm performance. There are two metrics for evaluating 

algorithm performance: computation time and solution quality. When the heuristic algorithm in 

Figure 4.1 was implemented to solve the two-stage SILP model, a computation time of 12 

minutes was achieved. In comparison to the computation time achieved by the commercial solver 

of several days, this is a significant improvement. The next performance metric for the heuristic 

algorithm includes comparing the solution quality to that of a commercial solver solution. The 

heuristic algorithm significantly outperformed the commercial solver in this regard as well.  

 It was important to determine how the heuristic algorithm performed against an existing 

optimization solver. The performance of the proposed heuristic algorithm was first compared to 

that of the CPLEX solver in the GAMS software package under the base case. The base case 

represents the current state of the hospital laboratory.  For the base case, there are 34 

phlebotomists available to schedule. The shift availability is 400 minutes for each phlebotomist, 

which represents the amount of time available to perform blood collections. There are 15 time 

blocks, which do not overlap and cover all 24 hours. The time blocks are presented in Table 4.4. 

There are ten shifts in which phlebotomists could be scheduled. Table 4.5 presents the working 

hours of the ten shifts, which are grouped into morning, afternoon, and evening shifts. Lastly, the 

blood collection demand in each time block is presented in Table 4.6.  
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Table 4.4 

Time Blocks for Hospital Laboratory 

Time Block Index  Hours 

T1 

2 

10pm-11pm 

T2 11pm-4am 

T3 4am-5am 

T4 5am-6am 

T5 6am-7am 

T6 7am-8am 

T7 8am-11am 

T8 11am-12pm 

T9 12pm-1pm 

T10 1pm-2pm 

T11 2pm-3pm 

T12 3pm-4pm 

T13 4pm-7pm 

T14 7pm-8pm 

T15 8pm-10pm 

 

Table 4.5 

Shifts for Hospital Laboratory 

Group Shifts Hours 

Morning Shifts 1 

2 

4am-12pm 

2 5am-1pm 

3 6am-2pm 

4 7am-3pm 

5 8am-4pm 

Afternoon Shifts  6 11am-7pm 

7 12pm-8pm 

8 2pm-10pm 

Evening Shifts 9 10pm-6am 

10 11pm-7am 
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Table 4.6 

Blood Collection Demand for Selected Scenarios 

Scenario Blood Collection Demand in Each Time Block Probability 

S(T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,T12,T13,T14,T1

5) 
1 S(4,98,4,3,5,7,52,13,10,12,9,9,22,5,8) .001 

2 S(4,98,4,3,5,7,52,13,10,8,9,9,22,5,8) .518 

3 S(4,98,4,5,5,7,52,13,10,12,9,9,22,5,8) .020 

4 S(4,113,4,5,5,7,52,13,10,12,9,9,22,5,8) .049 

5 S(4,113,4,5,5,7,64,13,10,12,9,9,22,5,8) .006 

6 S(4,113,4,5,5,7,64,13,10,12,9,9,30,5,8) .034 

7 S(4,113,4,5,5,7,64,13,15,12,9,9,30,5,13) .009 

8 S(4,113,4,5,5,7,64,13,15,12,9,9,30,5,8) .012 

9 S(4,113,4,5,5,7,64,19,15,12,9,9,30,5,13) .015 

10 S(4,113,4,5,5,7,64,19,15,12,14,9,30,5,13) .061 

11 S(4,113,4,5,5,7,64,19,15,12,14,14,30,5,13) .054 

12 S(4,113,4,5,5,12,64,19,15,12,14,14,30,5,13) .036 

13 S(7,113,4,5,5,12,64,19,15,12,14,14,30,5,13) .007 

14 S(7,113,7,5,5,12,64,19,15,12,14,14,30,5,13) .094 

15 S(7,113,7,5,10,12,64,19,15,12,14,14,30,5,13) .051 

16 S(7,113,7,5,10,12,64,19,15,12,14,14,30,10,13) .033 

 

 In Table 4.7 the performance comparison of the proposed heuristic algorithm and the 

commercial solver is presented. From the results in Table 4.7, it can be concluded that the 

heuristic algorithm outperforms the commercial solver regarding the best objective function 

value found and the computation time.  

Table 4.7 

Performance Comparison between Proposed Heuristic Algorithm and CPLEX Solver in GAMS  

Solution 

Approach 

Estimated 

Lower Bound 

Best Objective 

Function Value 

Found 

Relative Gap Computation 

Time 

Commercial 

Solver 

90.47 157.34 73.90% 72 hours 

Heuristic 

Algorithm 

90.47   92.85   2.63% 12 minutes 
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 The performance of the proposed heuristic algorithm was also evaluated under two 

extended cases. The first extended case includes increasing phlebotomist utilization to 33%, 

which involves decreasing capacity to 25 phlebotomists, but keeping all remaining inputs the 

same as the base case. The second extended case includes increasing phlebotomist utilization to 

50%, which involves decreasing capacity to 17 phlebotomists, but keeping all remaining inputs 

the same as the base case. The performance comparison of all three cases is provided in Table 

4.8. From the results in Table 4.8, it can be concluded the heuristic algorithm can achieve a high 

quality solution with a relative gap less than 3.5% within 12 minutes for each of the three cases. 

Table 4.8 

Performance Comparison of the Proposed Heuristic Algorithm under the Base Case and Two 

Extended Cases  

Phlebotomist 

Capacity 

Estimated 

Lower Bound 

Best Objective 

Function Value 

Found 

Relative Gap Computation 

Time  

34 (Base Case) 90.47 92.85 2.63% 12 minutes 

25 (Ext. 1) 123.05 127.30 3.46% 12 minutes 

17 (Ext. 2) 180.95 187.09 3.39% 12 minutes 

 

 For the base case, there is a corresponding scheduling template, which is presented in 

Table 4.9. The scheduling templates for the two extended cases can be found in Appendix E. The 

scheduling templates were determined using the proposed heuristic algorithm. Each template 

represents the number of phlebotomists that should be scheduled in each shift on each day to 

achieve balanced workload.  Figure 4.2 also illustrates how close the maximum workload per 

shift in each scenario compares to the estimated lower bound for each scenario. This figure 

indicates for each scenario, the maximum workload achieved is relatively close to the estimated 

lower bound. For additional details regarding the performance measure analysis reference 
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Appendix E. For the base case and the two extended cases, it can be concluded that more 

phlebotomists are needed during Shifts 9 and 10, which correspond to the evening shifts. This is 

due to the demand of blood collections being highest during these shifts. The blood collection 

demand is highest during these times because most physicians place blood test orders during the 

evening shifts. This will allow them to have the results by the time they start working in the 

following morning.  

Table 4.9 

Phlebotomist Scheduling Template for the Base Case  

 04:00 

-

12:00 

05:00 

-

13:00 

06:00 

-

14:00 

07:00 

-

15:00 

08:00 

-

16:00 

11:00 

-

19:00 

12:00 

-

20:00 

14:00 

-

22:00 

22:00 

-

06:00 

23:00 

-

07:00 

Shift 

1 

Shift 

2 

Shift 

3 

Shift 

4 

Shift 

5 

Shift 

6 

Shift 

7 

Shift 

8 

Shift 

9 

Shift 

10 

Monday 0 0 1 2 0 1 0 2 3 3 

Tuesday 2 0 2 0 0 0 2 1 1 5 

Wednesday 1 2 1 0 0 0 1 2 2 4 

Thursday 0 1 2 0 0 1 1 1 5 1 

Friday 1 2 0 0 1 0 1 1 3 2 

Saturday 1 2 1 0 0 1 1 1 4 1 

Sunday 3 0 0 0 0 1 1 2 2 3 

 

 

Figure 4.2. Estimated lower bound and heuristic algorithm workload for the base case. 
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4.6 Conclusions   

In order to solve the two-stage SILP model, a scenario reduction model was formulated 

and solved. The scenario reduction model selected the scenarios with the highest probability of 

occurrence and the selected scenarios were considered in the two-stage SILP model. This is a 

high quality solution approach according to Karuppiah et al. (2010). This technique allows one to 

achieve a solution within 10% of the best solution.  

A new heuristic algorithm has been developed to solve the two-stage SILP model with 

the reduced set of scenarios. The purpose of developing the heuristic algorithm was due to the 

inability of commercial solvers being able to find a near optimal solution. The heuristic 

algorithm developed in this study was evaluated in terms of computation time and solution 

quality. For each of these performance measures, the heuristic algorithm proved that it 

outperforms existing commercial solvers. It can be concluded that the heuristic algorithm 

proposed can find a high quality solution.  
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CHAPTER 5 

Experimental Study 

5.1 Overview  

In this research, an experimental study is conducted. There are three questions addressed 

in this experimental study. The first question gives insight into how workload varies from hour to 

hour. The results of this question will provide managerial insights into the hours that typically 

have the highest blood draw collections. This will aid laboratory managers in making appropriate 

shift assignments when developing the weekly schedule. The second question addresses how the 

change in phlebotomist capacity and service time affects the number of phlebotomists to 

schedule in each shift. This will assist the hospital laboratory in determining proper shift 

scheduling rules if they desire to increase phlebotomist utilization. The final question addresses 

how the change in phlebotomist capacity and service time affect the number of phlebotomists 

scheduled on each day. This will allow laboratory management to determine if there is 

significant variance in the number of phlebotomists to schedule for each day, i.e. are there certain 

days that require more phlebotomists than others. The results of each question in the 

experimental design will serve as support in formulating conclusions for the phlebotomist shift 

scheduling and blood draw assignment problem. The experimental design to address these 

questions is provided in the following section. In this chapter, the data collection and analysis 

required for this study is provided. Next, the experimental design is presented. After that, the 

experimental results are discussed. 

5.2 Data Collection and Analysis   

For this dissertation study, data was collected from the laboratory facility of a large urban 

hospital system over a three month period. The data collected consisted of patient fake id, patient 
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location, order code, order date, order time, and priority type. The number of patients in the data 

set totaled 18,169. Data pre-processing was performed on the data, which resulted in a final 

usable data set consisting of approximately 17,500 patients. The final data set was then grouped 

into fifteen time blocks, with each block representing the number of patients needing a blood 

draw in that period for each day. A probability distribution fitting was performed on the data to 

determine the most appropriate probability distribution. The Poisson distribution had the best fit 

for the data according to the chi-square test and was therefore used to calculate the probability 

that a certain number of blood draws would be requested in each time block.  

5.3 Experimental Design 

 To address the three experimental questions, an experimental design is developed and 

presented in Table 5.1. The independent variables are the blood collection demand, phlebotomist 

capacity, and phlebotomist service time. The dependent variable for the first experimental 

question is workload, while the dependent variable for the last two questions is the number of 

phlebotomists to schedule.  

Table 5.1 

Experimental Design 

Independent Variables Levels 

Blood Draw Demand 16 scenarios selected by the scenario reduction 

model  
Phlebotomist Capacity (34, 25, 17) 

Phlebotomist Service Time/Hour (50 minutes, 45 minutes, 40 minutes) 

 

5.4 Results and Discussion  

 5.4.1 Workload distribution over hours. How does the workload differ from hour to 

hour, i.e. are there typically hours with higher workloads? With this question, the goal is to 

determine if there are hours that have higher workloads, such that laboratory management can 
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schedule accordingly. For the time blocks with multiple hours, the average workload per time 

block has been divided by the number of hours in the time block to accurately represent the 

hourly workload. The hourly workload is represented in numbers of blood collections assigned. 

Figures 5.1-5.3 show the range of hourly workloads over the 16 selected scenarios. Each figure 

indicates the hours that correspond to time blocks two and seven have the highest workload. 

Time blocks three, four, five, fourteen, and fifteen seem to have the lowest workload. The trend 

shown in all figures is that there is a higher blood collection demand during the evening time 

blocks. This trend is attributed to the fact that most physicians would like to have the blood test 

results available when they start working in the morning. Therefore, it is necessary to request the 

blood collection for a patient to be performed during the time blocks of the previous evening or 

in the early morning. Hence, it can be concluded that shifts which include time blocks with lower 

workloads, should have less phlebotomists scheduled. Shifts that include time blocks with higher 

workloads should have more phlebotomists scheduled to ensure workload balance. When 

developing the weekly schedule, the hospital laboratory management should schedule 

phlebotomists based on the workload required in each time block. For additional details 

regarding the experimental results analysis reference Appendix F. 

 

Figure 5.1. Comparison of hourly workload in the base case. 
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Figure 5.2.  Comparison of hourly workload in the case with 25 phlebotomists, who each has 50  

 minutes per hour available for blood collections. 

 

Figure 5.3. Comparison of hourly workload in the case with 17 phlebotomists, who each has 50  

  minutes per hour available for blood collections.  

 5.4.2 Impact of phlebotomist capacity on the number of phlebotomists scheduled in 

each shift. How does the change in phlebotomist capacity affect the number of phlebotomists 

scheduled for each shift? This question studies how changing phlebotomist capacity, from 34 to 

25 to 17 and phlebotomist service time per hour from 50 minutes to 45 minutes to 40 minutes, 

will affect the number of phlebotomists to schedule during each shift. Currently, the base case 

considers 34 phlebotomists with a service time of 50 minutes per hour. It is important to study 

how a change in phlebotomist capacity will affect phlebotomist scheduling, essentially the 
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scheduled blood draw assignments would allow the phlebotomists to have more time available 

for STAT tests, which could handle an even higher level of uncertainty. The results are presented 

as the number of phlebotomists scheduled for each shift and the percentage of phlebotomists 

scheduled for each shift. The results illustrated in Figures 5.4 and 5.5 include the number and 

percentage of phlebotomists, respectively, to be scheduled for each shift over the course of a 

week. The results in Figures 5.4 and 5.5 show that the number of phlebotomists scheduled in 

each shift is positively correlated with phlebotomist capacity, and is negatively correlated with 

the numbers of phlebotomists scheduled in its adjacent shifts. The results indicate that for all 

nine cases, shifts nine and ten remain to have the highest number of phlebotomists scheduled. 

This holds true whether there is a change in phlebotomist capacity or service time availability. 

This trend is attributed to the fact that shifts nine and ten correspond to the evening shifts and 

again physicians will place more blood draw collection requests during the evening to have the 

tests results by the time they come in the following morning. Therefore, more phlebotomists 

should be scheduled during the evening shifts. 

 

Figure 5.4. Number of phlebotomists scheduled per shift for all cases. 
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Figure 5.5. Percentage of phlebotomists scheduled per shift for all cases. 
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Figure 5.6. Number of phlebotomists scheduled daily for all cases. 

 

Figure 5.7. Percentage of phlebotomists scheduled daily for all cases. 

5.5 Tools for Blood Draw Assignment 

 In order for laboratory management to balance workload within each hour, blood draw 

assignments for phlebotomists should be determined using the automated blood draw assignment 

template. The blood draw assignment template requires the laboratory manager to input the 

phlebotomists who are scheduled to work during each hour, which is displayed in Figure 5.8. 

Next, the demand for the current hour, which is based on task type, should be provided. Blood 

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28

N
u

m
b

e
r
 o

f 
P

h
le

b
o

to
m

is
ts

 S
c
h

e
d

u
le

d

Total Number of Phlebotomists Scheduled 

Daily

BASE

25_50MINS

17_50MINS

34_45MINS

25_45MINS

17_45MINS

34_40MINS

25_40MINS

17_40MINS

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

P
e
r
c
e
n

ta
g

e
 o

f 
P

h
le

b
o

to
m

is
ts

 S
c
h

e
d

u
le

d

Percentage of Phlebotomists Scheduled Daily

BASE CASE

25_50MINS

17_50MINS

34_45MINS

25_45MINS

17_45MINS

34_40MINS

25_40MINS

17_40MINS

 



86 

 

collection tasks are grouped by no delay, one hour delay, and two hour delay. This information is 

illustrated in Figure 5.9.  Using these inputs, the blood draw assignment model will allocate 

blood collections to the phlebotomists based on their skill level. Any blood collections that are 

left undone will roll over to the following hour and will be categorized under a new task level. 

For example, if there are 20 type three blood collections left over at 1pm, then these 20 tasks will 

roll over to 2pm and become type 2 blood collections. This model also keeps track of the tasks 

that have been assigned to each phlebotomist in previous hours. This is to ensure the number of 

blood collections allocated does not exceed the specified balanced workload for phlebotomists. 

This model should be run hourly, as the blood collection demand changes from hour to hour. The 

automated blood draw assignment template is provided in Figure 5.10. This efficient blood draw 

assignment model could be developed using any spreadsheet software such as Microsoft Excel or 

Microsoft Access. By implementing the blood draw assignment model, laboratory management 

should see significant improvements in the hourly workload balance of the phlebotomists 

scheduled.   

 

Figure 5.8: Phlebotomist schedule for one day. 

Phlebotomist k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 k16 k17

Service time 10 10 10 10 10 8 8 8 8 8 8 8 5 5 5 5 5

Maximum Collections/Hour 5 5 5 5 5 6 6 6 6 6 6 6 10 10 10 10 10

12am 1 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0

1am 1 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0

2am 1 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0

3am 1 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0

4am 1 1 1 0 0 1 1 0 0 0 0 0 1 0 0 1 0

5am 1 1 1 0 0 1 1 0 0 0 0 0 1 0 0 1 0

6am 1 1 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0

7am 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0

8am 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0

9am 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0

10am 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0

11am 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1

12pm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

1pm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

2pm 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1

3pm 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1

4pm 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1

5pm 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1

6pm 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1

7pm 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0

8pm 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

9pm 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

10pm 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11pm 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
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Figure 5.9. Blood collection demand for one day. 

 

Figure 5.10. Automated template for blood draw assignment. 

 

 

 

Previuos day

12am 13 0 53

1am 1 0 6

2am 1 0 4

3am 1 0 3

4am 0 0 5

5am 0 0 3

6am 2 0 2

7am 6 0 2

8am 4 0 14

9am 4 0 9

10am 4 0 7

11am 1 0 12

12pm 2 0 7

1pm 6 0 8

2pm 2 0 7

3pm 3 0 12

4pm 5 0 5

5pm 3 0 9

6pm 0 0 4

7pm 2 0 3

8pm 1 0 2

9pm 0 0 5

10pm 0 0 4

11pm 2 0 3

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 k16 k17

Type 1 Type 2 Type 3 Total Type 1 Type 2 Type 3

Previuos day 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12am 13 0 53 66 5 5 5 0 0 6 0 0 0 0 0 0 10 0 0 0 0 0 0 35

1am 1 35 6 42 5 5 5 0 0 6 0 0 0 0 0 0 8 0 0 0 0 0 7 6

2am 8 6 4 18 3 3 3 0 0 3 0 0 0 0 0 0 3 0 0 0 0 0 0 3

3am 1 3 3 7 1 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 2

4am 0 2 5 7 1 1 1 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0

5am 0 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

6am 2 3 2 7 1 1 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 1

7am 6 1 2 9 0 0 0 0 0 0 3 0 0 0 0 0 3 0 0 3 0 0 0 0

8am 4 0 14 18 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 9 0 0 0 3

9am 4 3 9 16 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 8 0 0 0 2

10am 4 2 7 13 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 6 0 0 0 1

11am 1 1 12 14 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 4 4 0 0 2

12pm 2 2 7 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 5 0 0 1

1pm 6 1 8 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 7 0 0 1

2pm 2 1 7 10 0 0 0 0 0 0 0 2 2 0 0 0 0 0 2 0 2 0 0 2

3pm 3 2 12 17 0 0 0 0 0 0 0 4 4 0 0 0 0 0 4 0 4 0 0 1

4pm 5 1 5 11 0 0 0 0 0 0 0 2 2 0 0 0 0 0 2 0 2 0 0 3

5pm 3 3 9 15 0 0 0 0 0 0 0 3 3 0 0 0 0 0 3 0 3 0 0 3

6pm 0 3 4 7 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 3

7pm 2 3 3 8 0 0 0 0 0 0 0 2 2 0 0 0 0 0 2 0 0 0 0 2

8pm 1 2 2 5 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 1

9pm 0 1 5 6 0 0 0 0 0 0 0 3 3 0 0 0 0 0 0 0 0 0 0 0

10pm 0 0 4 4 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11pm 2 0 3 5 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Blood Draw Assignment

Demand Tasks undone
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CHAPTER 6 

Conclusions and Future Work  

6.1 Conclusions 

Laboratory medicine plays an imperative role in clinicians being able to reach a diagnosis 

for patients. Therefore, laboratory medicine is a key component in healthcare delivery systems 

due to the amount of spending that occurs and the medical decisions that are involved. As the 

healthcare industry continues to grow rapidly, obtaining both efficiency and effectiveness within 

healthcare delivery systems has become a major priority. Healthcare scheduling remains one of 

the main obstacles in providing timely access to medical services and improving the efficiency of 

healthcare delivery.  

In order to increase patient satisfaction and patient safety, hospital laboratories must 

improve their overall effectiveness. There are three main stages in the total testing process 

conducted in hospital laboratories, and one of the objectives of this study was to determine which 

stage was the most critical for improvement purposes. The AHP and ANP models developed in 

this study indicated the most critical stage in the entire testing process of hospital laboratories. 

The stage selected was the preanalytical stage, which confirms what has been stated in the 

literature. The preanalytical stage was then improved using mathematical modeling to optimize 

phlebotomist scheduling. The two-stage SILP model presented in this research study was 

formulated to determine the number of phlebotomists to be scheduled and the amount of blood 

draw collections to be assigned for each shift to balance phlebotomist workload within and 

between shifts.  

A commercial solver was first used to solve the two stage SILP model, but proved to be 

inefficient. Therefore, a heuristic algorithm was developed to solve the two-stage SILP model. 
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According to the performance measures, the heuristic algorithm proposed is an efficient and 

effective method to solve the phlebotomist shift scheduling and blood draw assignment problem 

achieving a relative gap of 3.5% or less in all cases. Using the two-stage SILP model and the 

heuristic algorithm developed, an experimental study was conducted to investigate the workload 

distribution over hours and the impact of the phlebotomist capacity on their shift schedule.   

The results of the experimental study provide insight into scheduling policies that will be 

most beneficial to the phlebotomists and the patients. Regarding workload distribution over 

hours, there are certain hours with a higher workload. Therefore, the number of phlebotomists 

scheduled should match the workload. The hours with the highest workload correspond to the 

evening shifts. Changing phlebotomist capacity and service time does present an evident trend in 

the number of phlebotomists to be scheduled during each shift. More phlebotomists should be 

scheduled for shifts 9 and 10 to balance phlebotomist workload. Changing phlebotomist capacity 

and service time availability also presents an evident trend for the number of phlebotomists to be 

scheduled on each day, but not between days. As the available capacity decreases, the number of 

phlebotomists to schedule decreases as well. It is imperative for laboratory management to 

remember to match the number of phlebotomists scheduled with the workload required. The 

higher the workload, the more phlebotomists they should schedule. This is a major finding that 

was not practiced in the hospital laboratory motivating this study. Without optimal scheduling 

policies in place for laboratory medicine, there is a great risk for patients to be negatively 

affected due to work overload. Work overload causes patient neglect and is introduced when 

patients do not receive the time and attention they require. Also, with work overload there is a 

risk of decrease in the phlebotomist performance. Phlebotomist performance is critical in 

laboratory medicine because in the event of an error this could result in serious consequences for 
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the patient. If laboratory management does not consider balancing workload when scheduling 

phlebotomists, they may miss an opportunity to provide safe and quality healthcare services to 

hospital patients. Through balancing workload, phlebotomists can provide the necessary time 

and attention required for each patient.  

Furthermore, it is imperative to consider increasing phlebotomist utilization. The hospital 

laboratory motivating this study is only utilizing each phlebotomist 25% of the time they are 

available. Therefore, to meet their blood draw demand, they do not need the full capacity 

currently available. If laboratory management is only utilizing each phlebotomist 25% of the 

time they are available, they could reduce their phlebotomist capacity by 50% and still have 

enough phlebotomists to meet their blood draw demand. Reducing phlebotomist capacity would 

significantly reduce the costs associated with resource capacity. If reducing phlebotomist 

capacity is not a desire for laboratory management, they should at the very least find other areas 

where the phlebotomists can serve. An option would be to cross train the phlebotomists such that 

they could serve in other stages of the testing process.  

In conclusion, there have been methods used to improve laboratory medicine. Yet, there 

are currently not any studies that focus on balancing phlebotomist workload using mathematical 

modeling. This dissertation study has closed that gap due to the development of a two-stage SILP 

model to address phlebotomist scheduling and blood draw assignments in laboratory medicine. 

The two-stage SILP model and the heuristic algorithm developed in this study demonstrated that 

it is possible to improve scheduling in laboratory medicine through balancing phlebotomist 

workload and increasing phlebotomist utilization. As hospital laboratories in healthcare delivery 

systems need to improve phlebotomist scheduling policies, the two-stage SILP model presented 

in this study can help healthcare schedulers and laboratory administrators plan accordingly. The 
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two-stage SILP model is generalized in order to be applicable to other hospital laboratories. The 

parameter values can be altered in order to represent the system being evaluated, and an optimal 

phlebotomist scheduling template can be determined.  

6.2 Future Work 

 The limitation of this study is that only the stage selected from the AHP and ANP models 

is optimized. This is due to the assumption that improving the stage selected will have an indirect 

effect on improving the other two stages. Future work will consist of testing the performance of 

the heuristic algorithm proposed for the two-stage SILP model under more varying cases. Also, 

using the two-stage SILP model and heuristic algorithm developed in this research study, optimal 

staff scheduling for medical technicians and pathologists will be explored for the analytical and 

postanalytical stages of the laboratory process to balance shift workload.  
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Appendix A 

AHP Analysis 

Table A.1 

Pairwise Comparisons of the Methodologies 

Pairwise Comparison 

MATRIX 

Lean Six Sigma Theory of 

Constraints 

Critical 

Business 

Process Lean 1  

 
 

3 5 

Six Sigma 3 1 3 4 

Theory of Constraints  

 
 

 

 
 

1 2 

Critical Business 

Process 

 

 
 

 

 
 

 

 
 

1 

 

 

Table A.2 

Normalized Pairwise Comparison Matrix  

Pairwise Comparison 

Matrix Normalized 

Lean Six Sigma Theory of 

Constraints 

Critical 

Business 

Process 

Lean 0.220588 0.173913043 0.4 0.416666667 

Six Sigma 0.661765 0.52173913 0.4 0.333333333 

Theory of Constraints 0.073529 0.173913043 0.133333333 0.166666667 

Critical Business Process 0.044118 0.130434783 0.066666667 0.083333333 

 

 

Table A.3 

Pairwise Comparison for Stages Using Lean 

Pairwise Matrix  Preanalytical 

Process 

Analytical Process Postanalytical 

Process 

Preanalytical Process 1 3 3 

Analytical Process 1/3 1 5 

Postanalytical Process 1/3 1/5 1 
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Table A.4 

Normalized Pairwise Comparison Matrix for Stages Using Lean 

 

Pairwise Matrix  Preanalytical 

Process 

Analytical Process Postanalytical 

Process 

Preanalytical Process 0.6 0.714285714 0.333333333 

Analytical Process 0.2 0.238095238 0.555555556 

Postanalytical Process 0.2 0.047619048 0.111111111 

 

 

Table A.5 

Pairwise Comparison for Stages Using Six Sigma 

 

Pairwise Matrix  Preanalytical 

Process 

Analytical Process Postanalytical 

Process 

Preanalytical Process 1 4 2 

Analytical Process 1/4 1 3 

Postanalytical Process 1/2 1/3 1 

 

 

Table A.6 

Normalized Pairwise Comparison Matrix for Stages Using Six Sigma 

Pairwise Matrix  Preanalytical 

Process 

Analytical Process Postanalytical 

Process 

Preanalytical Process 0.571428571 0.75 0.333333333 

Analytical Process 0.142857143 0.1875 0.5 

Postanalytical Process 0.285714286 0.0625 0.166666667 

 

 

Table A.7 

Pairwise Comparison for Stages Using Theory of Constraints 

 

Pairwise Matrix  Preanalytical 

Process 

Analytical Process Postanalytical 

Process 

Preanalytical Process 1 2 3 

Analytical Process 1/2 1 2 

Postanalytical Process 1/3 1/2 1 
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Table A.8 

Normalized Pairwise Comparison Matrix for Stages Using Theory of Constraints 

Pairwise Matrix 

(Normalized) 

Preanalytical 

Process 

Analytical Process Postanalytical 

Process 

Preanalytical Process 0.545454545 0.571428571 0.5 

Analytical Process 2/7 0.285714286 0.333333333 

Postanalytical Process 0.181818182 0.142857143 0.166666667 

 

 

Table A.9 

Pairwise Comparison for Stages Using Critical Business Process 

Pairwise Matrix  Preanalytical 

Process 

Analytical Process Postanalytical 

Process 

Preanalytical Process 1 2 2 

Analytical Process 1/2 1 4 

Postanalytical Process 1/2 1/4 1 

 

Table A.10 

Normalized Pairwise Comparison Matrix for Stages Using Critical Business Process 

Pairwise Matrix 

(Normalized) 

Preanalytical 

Process 

Analytical Process Postanalytical 

Process 

Preanalytical Process 0.5 0.615384615 0.285714286 

Analytical Process 1/4 0.307692308 0.571428571 

Postanalytical Process 0.25 0.076923077 0.142857143 
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Appendix B 

ANP Analysis 

 

Figure B.1. Comparisons in the questionnaire mode for the alternatives under quality control. 

 

Figure B.2. The priorities for the alternatives with respect to quality control. 

 

Figure B.3.  Comparisons in the questionnaire mode for the alternatives under reduction of 

 total cycle time. 
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Figure B.4. The priorities for the alternatives with respect to reduction of total cycle time. 

 

Figure B.5. Comparisons in the questionnaire mode for the alternatives under elimination of 

 non-value added activities. 

 

Figure B.6. The priorities for the alternatives with respect to the elimination of non-value 

 added activities. 
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Figure B.7. Comparisons in the questionnaire mode for the alternatives under minimization of 

 cost. 

 

Figure B.8. The priorities for the alternatives with respect to minimization of cost. 

 

Figure B.9. Comparisons in the questionnaire mode for the alternatives under specify project 

 goal. 



105 

 

 

Figure B.10. The priorities for the alternatives with respect to specifying project goal. 

 

Figure B.11. Comparisons in the questionnaire mode for the alternatives under gather key 

 aspects of current process. 

 

Figure B.12. The priorities for the alternatives with respect to gathering key aspects of current 

 process. 
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Figure B.13. Comparisons in the questionnaire mode for the alternatives under perform 

 statistical data analysis. 

 

Figure B.14. The priorities for the alternatives with respect to performing statistical data 

 analysis. 

 

Figure B.15. Comparisons in the questionnaire mode for the alternatives under propose 

 optimization method. 
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Figure B.16. The priorities for the alternatives with respect to proposing an optimization method. 

 

Figure B.17. Comparisons in the questionnaire mode for the alternatives under sustain future 

 state of the system. 

 

Figure B.18. The priorities for the alternatives with respect to sustaining future state of the 

 system. 
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Figure B.19. Comparisons in the questionnaire mode for the alternatives under constraint 

 identification. 

 

Figure B.20. The priorities for the alternatives with respect to constraint identification. 

 

Figure B.21. Comparisons in the questionnaire mode for the alternatives under constraint 

 exploitation. 
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Figure B.22. The priorities for the alternatives with respect to constraint exploitation. 

 

Figure B.23. Comparisons in the questionnaire mode for the alternatives under system 

 alignment. 

 

Figure B.24. The priorities for the alternatives with respect to system alignment. 
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Figure B.25. Comparisons in the questionnaire mode for the alternatives under constraint 

 elevation. 

 

Figure B.26. The priorities for the alternatives with respect to constraint elevation. 

 

Figure B.27. Comparisons in the questionnaire mode for the alternatives under the 

 identification of most critical system components.  
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Figure B.28. The priorities for the alternatives with respect to identification of most critical 

 system components. 

 

Figure B.29. Comparisons in the questionnaire mode for the alternatives under developing 

 strategies to obtain business effectiveness. 

 

Figure B.30. The priorities for the alternatives with respect to developing strategies to obtain 

 business effectiveness. 
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Figure B.31. Comparisons in the questionnaire mode for the alternatives under final process 

 optimization. 

 

Figure B.32. The priorities for the alternatives with respect to final process optimization. 
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Appendix C 

Scenario Reduction Model Code 

Sets 

         i1      "# of routine tests ordered during hour 1" /4,7/ 

         i2      "# of routine tests ordered during hour 2" /98,113/ 

         i3      "# of routine tests ordered during hour 3" /4,7/ 

         i4      "# of routine tests ordered during hour 4" /3,5/ 

         i5      "# of routine tests ordered during hour 5" /5,10/ 

         i6      "# of routine tests ordered during hour 6" /7,12/ 

         i7      "# of routine tests ordered during hour 7" /52,64/ 

         i8      "# of routine tests ordered during hour 8" /13,19/ 

         i9      "# of routine tests ordered during hour 9" /10,15/ 

         i10     "# of routine tests ordered during hour 10" /8,12/ 

         i11     "# of routine tests ordered during hour 11" /9,14/ 

         i12     "# of routine tests ordered during hour 12" /9,14/ 

         i13     "# of routine tests ordered during hour 13" /22,30/ 

         i14     "# of routine tests ordered during hour 14" /5,10/ 

         i15     "# of routine tests ordered during hour 15" /8,13/ 

         ; 

 

 

Parameters 

 

         P1(i1) probability that random variable 1 will take on a certain value 

/ 

4        0.814602302 

7        0.185397698 

/ 

 

        P2(i2) probability that random variable 2 will take on a certain value 

/98        0.539097673 

113        0.460902327 

/ 

 

        P3(i3) probability that random variable 3 will take on a certain value 

/4        0.821709197 

7        0.178290803 

/ 

 

         P4(i4) probability that random variable 4 will take on a certain value 

/3        0.519334999 

 5        0.480665001 

/ 
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         P5(i5) probability that random variable 5 will take on a certain value 

/5        0.916164268 

10        0.083835732 

/ 

 

         P6(i6) probability that random variable 6 will take on a certain value 

/7        0.778250441 

12        0.221749559 

/ 

 

         P7(i7) probability that random variable 7 will take on a certain value 

/52        0.587839135 

 64        0.412160865 

/ 

 

 

         P8(i8) probability that random variable 8 will take on a certain value 

/13        0.648473521 

 19        0.351526479 

/ 

 

 

        P9(i9) probability that random variable 9 will take on a certain value 

/10        0.627466538 

 15        0.372533462 

/ 

 

         P10(i10) probability that random variable 10 will take on a certain value 

/ 8        0.517636022 

 12        0.482363978 

/ 

 

     P11(i11) probability that random variable 11 will take on a certain value 

/ 9        0.663323237 

 14        0.336676763 

/ 

 

       P12(i12) probability that random variable 12 will take on a certain value 

/9        0.723933495 

14        0.276066505 

/ 

 

       P13(i13) probability that random variable 13 will take on a certain value 

/22        0.59389199 

 30        0.40610801 
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      P14(i14) probability that random variable 14 will take on a certain value 

/ 5        0.967404814 

 10        0.032595186 

/ 

      P15(i15) probability that random variable 15 will take on a certain value 

/  8        0.639345154 

  13        0.360654846 

/ 

 

; 

 

Variables 

 

z minimize the number of  scenarios 

p(i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,i15) probability of scenario sets 

 

positive variable 

p; 

 

free variable 

z; 

 

Equations 

 

minimize_scenarios objective function 

con1(i1) scenario set 1 

con2(i2) scenario set 2 

con3(i3) scenario set 3 

con4(i4) scenario set 4 

con5(i5) scenario set 5 

con6(i6) scenario set 6 

con7(i7) scenario set 7 

con8(i8) scenario set 8 

con9(i9) scenario set 9 

con10(i10) scenario set 10 

con11(i11) scenario set 11 

con12(i12) scenario set 12 

con13(i13) scenario set 13 

con14(i14) scenario set 14 

con15(i15) scenario set 15 

con16 Total Probability ; 

 

 

minimize_scenarios..  z =e= sum((i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,i15),(1-

(P1(i1)*P2(i2)*P3(i3)*P4(i4)*P5(i5)*P6(i6)*P7(i7)*P8(i8)*P9(i9)*P10(i10)*P11(i11)*P12(i

12)*P13(i13)*P14(i14)*P15(i15)))*(p(i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,i15))) ; 
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con1(i1)..  

sum((i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,i15),p(i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i1

4,i15)) =e= P1(i1); 

 

con2(i2)..  

sum((i1,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,i15),p(i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i1

4,i15)) =e= P2(i2); 

 

con3(i3)..  

sum((i1,i2,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,i15),p(i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i1

4,i15)) =e= P3(i3); 

 

con4(i4)..  

sum((i1,i2,i3,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,i15),p(i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i1

4,i15)) =e= P4(i4); 

 

con5(i5)..  

sum((i1,i2,i3,i4,i6,i7,i8,i9,i10,i11,i12,i13,i14,i15),p(i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i1

4,i15)) =e= P5(i5); 

 

con6(i6)..  

sum((i1,i2,i3,i4,i5,i7,i8,i9,i10,i11,i12,i13,i14,i15),p(i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i1

4,i15)) =e= P6(i6); 

 

con7(i7)..  

sum((i1,i2,i3,i4,i5,i6,i8,i9,i10,i11,i12,i13,i14,i15),p(i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i1

4,i15)) =e= P7(i7); 

 

con8(i8)..  

sum((i1,i2,i3,i4,i5,i6,i7,i9,i10,i11,i12,i13,i14,i15),p(i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i1

4,i15)) =e= P8(i8); 

 

con9(i9)..  

sum((i1,i2,i3,i4,i5,i6,i7,i8,i10,i11,i12,i13,i14,i15),p(i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i1

4,i15)) =e= P9(i9); 

 

con10(i10)..  

sum((i1,i2,i3,i4,i5,i6,i7,i8,i9,i11,i12,i13,i14,i15),p(i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,

i15)) =e= P10(i10); 

 

con11(i11)..  

sum((i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i12,i13,i14,i15),p(i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,

i15)) =e= P11(i11); 
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con12(i12)..  

sum((i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i13,i14,i15),p(i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,

i15)) =e= P12(i12); 

 

con13(i13)..  

sum((i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i14,i15),p(i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,

i15)) =e= P13(i13); 

 

con14(i14)..  

sum((i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i15),p(i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,

i15)) =e= P14(i14); 

 

con15(i15)..  

sum((i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14),p(i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,

i15)) =e= P15(i15); 

 

con16.. 

sum((i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,i15),(p(i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13

,i14,i15))) =e= 1; 

 

 

Model Test_Model_3 /all/; 

 

Solve Test_Model_3 using LP minimizing z; 

 

Display p.l, z.l, p.m, z.m; 
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Appendix D 

Two-Stage Stochastic Integer Linear Programming Model Code 

Sets 

         i       time block index/ 

         i1      "10pm-11pm on Day 1" 

         i2      "11pm-4am  on Day 1" 

         i3      "4am-5am   on Day 1" 

         i4      "5am-6am   on Day 1" 

         i5      "6am-7am   on Day 1" 

         i6      "7am-8am   on Day 1" 

         i7      "8am-11am  on Day 1" 

         i8      "11am-12pm on Day 1" 

         i9      "12pm-1pm  on Day 1" 

         i10     "1pm-2pm   on Day 1" 

         i11     "2pm-3pm   on Day 1" 

         i12     "3pm-4pm   on Day 1" 

         i13     "4pm-7pm   on Day 1" 

         i14     "7pm-8pm   on Day 1" 

         i15     "8pm-10pm  on Day 1" 

         i16     "10pm-11pm on Day 2" 

         i17     "11pm-4am  on Day 2" 

         i18     "4am-5am   on Day 2" 

         i19     "5am-6am   on Day 2" 

         i20     "6am-7am   on Day 2" 

         i21     "7am-8am   on Day 2" 

         i22     "8am-11am  on Day 2" 

         i23     "11am-12pm on Day 2" 

         i24     "12pm-1pm  on Day 2" 

         i25     "1pm-2pm   on Day 2" 

         i26     "2pm-3pm   on Day 2" 

         i27     "3pm-4pm   on Day 2" 

         i28     "4pm-7pm   on Day 2" 

         i29     "7pm-8pm   on Day 2" 

         i30     "8pm-10pm  on Day 2" 

         i31     "10pm-11pm on Day 3" 

         i32     "11pm-4am  on Day 3" 

         i33     "4am-5am   on Day 3" 

         i34     "5am-6am   on Day 3" 

         i35     "6am-7am   on Day 3" 

         i36     "7am-8am   on Day 3" 

         i37     "8am-11am  on Day 3" 

         i38     "11am-12pm on Day 3" 

         i39     "12pm-1pm  on Day 3" 

         i40     "1pm-2pm   on Day 3" 

         i41     "2pm-3pm   on Day 3" 

         i42     "3pm-4pm   on Day 3" 

         i43     "4pm-7pm   on Day 3" 

         i44     "7pm-8pm   on Day 3" 

         i45     "8pm-10pm  on Day 3" 

         i46     "10pm-11pm on Day 4" 

         i47     "11pm-4am  on Day 4" 

         i48     "4am-5am   on Day 4" 

         i49     "5am-6am   on Day 4" 
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         i50     "6am-7am   on Day 4" 

         i51     "7am-8am   on Day 4" 

         i52     "8am-11am  on Day 4" 

         i53     "11am-12pm on Day 4" 

         i54     "12pm-1pm  on Day 4" 

         i55     "1pm-2pm   on Day 4" 

         i56     "2pm-3pm   on Day 4" 

         i57     "3pm-4pm   on Day 4" 

         i58     "4pm-7pm   on Day 4" 

         i59     "7pm-8pm   on Day 4" 

         i60     "8pm-10pm  on Day 4" 

         i61     "10pm-11pm on Day 5" 

         i62     "11pm-4am  on Day 5" 

         i63     "4am-5am   on Day 5" 

         i64     "5am-6am   on Day 5" 

         i65     "6am-7am   on Day 5" 

         i66     "7am-8am   on Day 5" 

         i67     "8am-11am  on Day 5" 

         i68     "11am-12pm on Day 5"- 

         i69     "12pm-1pm  on Day 5" 

         i70     "1pm-2pm   on Day 5" 

         i71     "2pm-3pm   on Day 5" 

         i72     "3pm-4pm   on Day 5" 

         i73     "4pm-7pm   on Day 5" 

         i74     "7pm-8pm   on Day 5" 

         i75     "8pm-10pm  on Day 5" 

         i76     "10pm-11pm on Day 6" 

         i77     "11pm-4am  on Day 6" 

         i78     "4am-5am   on Day 6" 

         i79     "5am-6am   on Day 6" 

         i80     "6am-7am   on Day 6" 

         i81     "7am-8am   on Day 6" 

         i82     "8am-11am  on Day 6" 

         i83     "11am-12pm on Day 6" 

         i84     "12pm-1pm  on Day 6" 

         i85     "1pm-2pm   on Day 6" 

         i86     "2pm-3pm   on Day 6" 

         i87     "3pm-4pm   on Day 6" 

         i88     "4pm-7pm   on Day 6" 

         i89     "7pm-8pm   on Day 6" 

         i90     "8pm-10pm  on Day 6" 

         i91     "10pm-11pm on Day 7" 

         i92     "11pm-4am  on Day 7" 

         i93     "4am-5am   on Day 7" 

         i94     "5am-6am   on Day 7" 

         i95     "6am-7am   on Day 7" 

         i96     "7am-8am   on Day 7" 

         i97     "8am-11am  on Day 7" 

         i98     "11am-12pm on Day 7" 

         i99     "12pm-1pm  on Day 7" 

         i100    "1pm-2pm   on Day 7" 

         i101    "2pm-3pm   on Day 7" 

         i102    "3pm-4pm   on Day 7" 

         i103    "4pm-7pm   on Day 7" 

         i104    "7pm-8pm   on Day 7" 

         i105    "8pm-10pm  on Day 7"/ 
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         i_1(i)  "set with no delay" 

         /i2,i7,i13,i17,i22,i28,i32,i37,i43,i47,i52,i58,i62, 

         i67,i73,i77,i82,i88,i92,i97,i103/ 

 

         i_2(i)  "set with 1 time block delay" 

         /i1,i6,i12,i15,i16,i21,i27,i30,i31,i36,i42,i45,i46,i51,i57, 

         i60,i61,i66,i72,i75,i76,i81,i87,i90,i91,i96,i102,i105/ 

 

         i_3(i)  "set with 2 time block delay" 

         /i5,i11,i14,i20,i26,i29,i35,i41,i44,i50,i56,i59,i65, 

         i71,i74,i80,i86,i89,i95,i101,i104/ 

 

         i_4(i)  "set with 3 time block delay" /i3,i4,i8,i9,i10,i18,i19,i23, 

         i24,i25,i33,i34,i38,i39,i40,i48,i49,i53,i54,i55,i63,i64,i68,i69,i70, 

         i78,i79,i83,i84,i85,i93,i94,i98,i99,i100/ 

 

 

         j       days worked/ 

         j1      "Monday" 

         j2      "Tuesday" 

         j3      "Wednesday" 

         j4      "Thursday" 

         j5      "Friday" 

         j6      "Saturday" 

         j7      "Sunday" 

         / 

 

         k       phlebotomist index/ 

         k1      "phlebotomist 1" 

         k2      "phlebotomist 2" 

         k3      "phlebotomist 3" 

         k4      "phlebotomist 4" 

         k5      "phlebotomist 5" 

         k6      "phlebotomist 6" 

         k7      "phlebotomist 7" 

         k8      "phlebotomist 8" 

         k9      "phlebotomist 9" 

         k10     "phlebotomist 10" 

         k11     "phlebotomist 11" 

         k12     "phlebotomist 12" 

         k13     "phlebotomist 13" 

         k14      "phlebotomist 14" 

         k15      "phlebotomist 15" 

         k16      "phlebotomist 16" 

         k17      "phlebotomist 17" 

         k18      "phlebotomist 18" 

         k19      "phlebotomist 19" 

         k20      "phlebotomist 20" 

         k21     "phlebotomist 21" 

         k22     "phlebotomist 22" 

         k23     "phlebotomist 23" 

         k24      "phlebotomist 24" 

         k25      "phlebotomist 25" 

         k26      "phlebotomist 26" 

         k27      "phlebotomist 27" 

         k28      "phlebotomist 28" 

         k29      "phlebotomist 29" 
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         k30      "phlebotomist 30" 

         k31     "phlebotomist 31" 

         k32     "phlebotomist 32" 

         k33     "phlebotomist 33" 

         k34      "phlebotomist 34"/ 

 

         n       hospital shift/ 

         n1      "04:00-12:00" 

         n2      "05:00-13:00" 

         n3      "06:00-14:00" 

         n4      "07:00-15:00" 

         n5      "08:00-16:00" 

         n6      "11:00-19:00" 

         n7      "12:00-20:00" 

         n8      "14:00-22:00" 

         n9      "22:00-06:00" 

         n10     "23:00-07:00" 

         / 

         n_1(n) "first shift" / n1, n2, n3, n4, n5/ 

         n_2(n) "second shift" / n6, n7, n8/ 

         n_3(n) "third shift"   /n9 , n10/ 

 

          o       scenarios/ 

         o1      "scenario 1" 

         o2      "scenario 2" 

         o3      "scenario 3" 

         o4      "scenario 4" 

         o5      "scenario 5" 

         o6      "scenario 6" 

         o7      "scenario 7" 

         o8      "scenario 8" 

         o9      "scenario 9" 

         o10     "scenario 10" 

         o11     "scenario 11" 

         o12     "scenario 12" 

         o13     "scenario 13" 

         o14     "scenario 14" 

         o15     "scenario 15" 

         o16     "scenario 16"/ 

          ; 

 

Parameters 

 

LB(o) lower bound for scenario o 

 

/ 

o1         82.39411765 

o2         81.13137255 

o3         83.0254902 

o4         87.76078431 

o5         91.54901961 

o6         94.0745098 

o7         97.23137255 

o8         95.65294118 

o9         99.1254902 

o10        100.7039216 

o11        102.2823529 
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o12        103.8607843 

o13        104.8078431 

o14        105.754902 

o15        107.3333333 

o16        108.9117647 

 

         b(i) max number of stat tests ordered in time block i 

/ 

i1        1 

i2        18 

i3        1 

i4        1 

i5        2 

i6        3 

i7        13 

i8        3 

i9        3 

i10       2 

i11       2 

i12       2 

i13       5 

i14       1 

i15       3 

i16       1 

i17       18 

i18       1 

i19       1 

i20       2 

i21       3 

i22       13 

i23       3 

i24       3 

i25       2 

i26       2 

i27       2 

i28       5 

i29       1 

i30       3 

i31       1 

i32       18 

i33       1 

i34       1 

i35       2 

i36       3 

i37       13 

i38       3 

i39       3 

i40       2 

i41       2 

i42       2 

i43       5 

i44       1 

i45       3 

i46       1 

i47       18 

i48       1 

i49       1 
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i50       2 

i51       3 

i52       13 

i53       3 

i54       3 

i55       2 

i56       2 

i57       2 

i58       5 

i59       1 

i60       3 

i61       1 

i62       18 

i63       1 

i64       1 

i65       2 

i66       3 

i67       13 

i68       3 

i69       3 

i70       2 

i71       2 

i72       2 

i73       5 

i74       1 

i75       3 

i76       1 

i77       18 

i78       1 

i79       1 

i80       2 

i81       3 

i82       13 

i83       3 

i84       3 

i85       2 

i86       2 

i87       2 

i88       5 

i89       1 

i90       3 

i91       1 

i92       18 

i93       1 

i94       1 

i95       2 

i96       3 

i97       13 

i98       3 

i99       3 

i100      2 

i101      2 

i102      2 

i103      5 

i104      1 

i105      3 

 / 
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T(i) total time of time block i 

/ 

i1        50 

i2        250 

i3        50 

i4        50 

i5        50 

i6        50 

i7        150 

i8        50 

i9        50 

i10       50 

i11       50 

i12       50 

i13       150 

i14       50 

i15       100 

i16       50 

i17       250 

i18       50 

i19       50 

i20       50 

i21       50 

i22       150 

i23       50 

i24       50 

i25       50 

i26       50 

i27       50 

i28       150 

i29       50 

i30       100 

i31       50 

i32       250 

i33       50 

i34       50 

i35       50 

i36       50 

i37       150 

i38       50 

i39       50 

i40       50 

i41       50 

i42       50 

i43       150 

i44       50 

i45       100 

i46       50 

i47       250 

i48       50 

i49       50 

i50       50 

i51       50 

i52       150 
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i53       50 

i54       50 

i55       50 

i56       50 

i57       50 

i58       150 

i59       50 

i60       100 

i61       50 

i62       250 

i63       50 

i64       50 

i65       50 

i66       50 

i67       150 

i68       50 

i69       50 

i70       50 

i71       50 

i72       50 

i73       150 

i74       50 

i75       100 

i76       50 

i77       250 

i78       50 

i79       50 

i80       50 

i81       50 

i82       150 

i83       50 

i84       50 

i85       50 

i86       50 

i87       50 

i88       150 

i89       50 

i90       100 

i91       50 

i92       250 

i93       50 

i94       50 

i95       50 

i96       50 

i97       150 

i98       50 

i99       50 

i100      50 

i101      50 

i102      50 

i103      150 

i104      50 

i105      100 / 
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s(k) average time for phlebotomist k to perform a task 

              /k1*k5    10 

               k6*k30   8 

               k31*k34  5 

               / 

 

u(i) blood draw demand for scenario  / 

i1        4 

i2        98 

i3        4 

i4        3 

i5        5 

i6        7 

i7        52 

i8        13 

i9        10 

i10        12 

i11        9 

i12        9 

i13        22 

i14        5 

i15        8 

i16        4 

i17        98 

i18        4 

i19        3 

i20        5 

i21        7 

i22        52 

i23        13 

i24        10 

i25        12 

i26        9 

i27        9 

i28        22 

i29        5 

i30        8 

i31        4 

i32        98 

i33        4 

i34        3 

i35        5 

i36        7 

i37        52 

i38        13 

i39        10 

i40        12 

i41        9 

i42        9 

i43        22 

i44        5 

i45        8 

i46        4 

i47        98 

i48        4 

i49        3 

i50        5 
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i51        7 

i52        52 

i53        13 

i54        10 

i55        12 

i56        9 

i57        9 

i58        22 

i59        5 

i60        8 

i61        4 

i62        98 

i63        4 

i64        3 

i65        5 

i66        7 

i67        52 

i68        13 

i69        10 

i70        12 

i71        9 

i72        9 

i73        22 

i74        5 

i75        8 

i76        4 

i77        98 

i78        4 

i79        3 

i80        5 

i81        7 

i82        52 

i83        13 

i84        10 

i85        12 

i86        9 

i87        9 

i88        22 

i89        5 

i90        8 

i91        4 

i92        98 

i93        4 

i94        3 

i95        5 

i96        7 

i97        52 

i98        13 

i99        10 

i100        12 

i101        9 

i102        9 

i103        22 

i104        5 

i105        8 

/ 

 



128 

 

p(o) probabilities for each scenario o / 

         o1  .001 

         o2  .518 

         o3  .020 

         o4  .049 

         o5  .006 

         o6  .034 

         o7  .009 

         o8  .012 

         o9  .015 

         o10 .061 

         o11 .054 

         o12 .036 

         o13 .007 

         o14 .094 

         o15 .051 

         o16 .033/ 

; 

 

Table 

R(i,o) amount of blood draws requested in time block i under scenario o 

 

 

o1 o2 o3 o4 o5 o6 o7 o8 o9 o10 o11 o12 o13 o14 o15 o16 

i1 4 4 4 4 4 4 4 4 4 4 4 4 7 7 7 7 

i2 98 98 98 113 113 113 113 113 113 113 113 113 113 113 113 113 

i3 4 4 4 4 4 4 4 4 4 4 4 4 4 7 7 7 

i4 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

i5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 10 10 

i6 7 7 7 7 7 7 7 7 7 7 7 12 12 12 12 12 

i7 52 52 52 52 64 64 64 64 64 64 64 64 64 64 64 64 

i8 13 13 13 13 13 13 13 13 19 19 19 19 19 19 19 19 

i9 10 10 10 10 10 10 15 15 15 15 15 15 15 15 15 15 

i10 12 8 12 12 12 12 12 12 12 12 12 12 12 12 12 12 

i11 9 9 9 9 9 9 9 9 9 14 14 14 14 14 14 14 

i12 9 9 9 9 9 9 9 9 9 9 14 14 14 14 14 14 

i13 22 22 22 22 22 30 30 30 30 30 30 30 30 30 30 30 

i14 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 10 

i15 8 8 8 8 8 8 13 8 13 13 13 13 13 13 13 13 

i16 4 4 4 4 4 4 4 4 4 4 4 4 7 7 7 7 

i17 98 98 98 113 113 113 113 113 113 113 113 113 113 113 113 113 

i18 4 4 4 4 4 4 4 4 4 4 4 4 4 7 7 7 

i19 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

i20 5 5 5 5 5 5 5 5 5 5 5 5 5 5 10 10 

i21 7 7 7 7 7 7 7 7 7 7 7 12 12 12 12 12 

i22 52 52 52 52 64 64 64 64 64 64 64 64 64 64 64 64 

i23 13 13 13 13 13 13 13 13 19 19 19 19 19 19 19 19 

i24 10 10 10 10 10 10 15 15 15 15 15 15 15 15 15 15 

i25 12 8 12 12 12 12 12 12 12 12 12 12 12 12 12 12 
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i26 9 9 9 9 9 9 9 9 9 14 14 14 14 14 14 14 

i27 9 9 9 9 9 9 9 9 9 9 14 14 14 14 14 14 

i28 22 22 22 22 22 30 30 30 30 30 30 30 30 30 30 30 

i29 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 10 

i30 8 8 8 8 8 8 13 8 13 13 13 13 13 13 13 13 

i31 4 4 4 4 4 4 4 4 4 4 4 4 7 7 7 7 

i32 98 98 98 113 113 113 113 113 113 113 113 113 113 113 113 113 

i33 4 4 4 4 4 4 4 4 4 4 4 4 4 7 7 7 

i34 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

i35 5 5 5 5 5 5 5 5 5 5 5 5 5 5 10 10 

i36 7 7 7 7 7 7 7 7 7 7 7 12 12 12 12 12 

i37 52 52 52 52 64 64 64 64 64 64 64 64 64 64 64 64 

i38 13 13 13 13 13 13 13 13 19 19 19 19 19 19 19 19 

i39 10 10 10 10 10 10 15 15 15 15 15 15 15 15 15 15 

i40 12 8 12 12 12 12 12 12 12 12 12 12 12 12 12 12 

i41 9 9 9 9 9 9 9 9 9 14 14 14 14 14 14 14 

i42 9 9 9 9 9 9 9 9 9 9 14 14 14 14 14 14 

i43 22 22 22 22 22 30 30 30 30 30 30 30 30 30 30 30 

i44 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 10 

i45 8 8 8 8 8 8 13 8 13 13 13 13 13 13 13 13 

i46 4 4 4 4 4 4 4 4 4 4 4 4 7 7 7 7 

i47 98 98 98 113 113 113 113 113 113 113 113 113 113 113 113 113 

i48 4 4 4 4 4 4 4 4 4 4 4 4 4 7 7 7 

i49 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

i50 5 5 5 5 5 5 5 5 5 5 5 5 5 5 10 10 

i51 7 7 7 7 7 7 7 7 7 7 7 12 12 12 12 12 

i52 52 52 52 52 64 64 64 64 64 64 64 64 64 64 64 64 

i53 13 13 13 13 13 13 13 13 19 19 19 19 19 19 19 19 

i54 10 10 10 10 10 10 15 15 15 15 15 15 15 15 15 15 

i55 12 8 12 12 12 12 12 12 12 12 12 12 12 12 12 12 

i56 9 9 9 9 9 9 9 9 9 14 14 14 14 14 14 14 

i57 9 9 9 9 9 9 9 9 9 9 14 14 14 14 14 14 

i58 22 22 22 22 22 30 30 30 30 30 30 30 30 30 30 30 

i59 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 10 

i60 8 8 8 8 8 8 13 8 13 13 13 13 13 13 13 13 

i61 4 4 4 4 4 4 4 4 4 4 4 4 7 7 7 7 

i62 98 98 98 113 113 113 113 113 113 113 113 113 113 113 113 113 

i63 4 4 4 4 4 4 4 4 4 4 4 4 4 7 7 7 

i64 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

i65 5 5 5 5 5 5 5 5 5 5 5 5 5 5 10 10 

i66 7 7 7 7 7 7 7 7 7 7 7 12 12 12 12 12 

i67 52 52 52 52 64 64 64 64 64 64 64 64 64 64 64 64 

i68 13 13 13 13 13 13 13 13 19 19 19 19 19 19 19 19 
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i69 10 10 10 10 10 10 15 15 15 15 15 15 15 15 15 15 

i70 12 8 12 12 12 12 12 12 12 12 12 12 12 12 12 12 

i71 9 9 9 9 9 9 9 9 9 14 14 14 14 14 14 14 

i72 9 9 9 9 9 9 9 9 9 9 14 14 14 14 14 14 

i73 22 22 22 22 22 30 30 30 30 30 30 30 30 30 30 30 

i74 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 10 

i75 8 8 8 8 8 8 13 8 13 13 13 13 13 13 13 13 

i76 4 4 4 4 4 4 4 4 4 4 4 4 7 7 7 7 

i77 98 98 98 113 113 113 113 113 113 113 113 113 113 113 113 113 

i78 4 4 4 4 4 4 4 4 4 4 4 4 4 7 7 7 

i79 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

i80 5 5 5 5 5 5 5 5 5 5 5 5 5 5 10 10 

i81 7 7 7 7 7 7 7 7 7 7 7 12 12 12 12 12 

i82 52 52 52 52 64 64 64 64 64 64 64 64 64 64 64 64 

i83 13 13 13 13 13 13 13 13 19 19 19 19 19 19 19 19 

i84 10 10 10 10 10 10 15 15 15 15 15 15 15 15 15 15 

i85 12 8 12 12 12 12 12 12 12 12 12 12 12 12 12 12 

i86 9 9 9 9 9 9 9 9 9 14 14 14 14 14 14 14 

i87 9 9 9 9 9 9 9 9 9 9 14 14 14 14 14 14 

i88 22 22 22 22 22 30 30 30 30 30 30 30 30 30 30 30 

i89 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 10 

i90 8 8 8 8 8 8 13 8 13 13 13 13 13 13 13 13 

i91 4 4 4 4 4 4 4 4 4 4 4 4 7 7 7 7 

i92 98 98 98 113 113 113 113 113 113 113 113 113 113 113 113 113 

i93 4 4 4 4 4 4 4 4 4 4 4 4 4 7 7 7 

i94 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

i95 5 5 5 5 5 5 5 5 5 5 5 5 5 5 10 10 

i96 7 7 7 7 7 7 7 7 7 7 7 12 12 12 12 12 

i97 52 52 52 52 64 64 64 64 64 64 64 64 64 64 64 64 

i98 13 13 13 13 13 13 13 13 19 19 19 19 19 19 19 19 

i99 10 10 10 10 10 10 15 15 15 15 15 15 15 15 15 15 

i100 12 8 12 12 12 12 12 12 12 12 12 12 12 12 12 12 

i101 9 9 9 9 9 9 9 9 9 14 14 14 14 14 14 14 

i102 9 9 9 9 9 9 9 9 9 9 14 14 14 14 14 14 

i103 22 22 22 22 22 30 30 30 30 30 30 30 30 30 30 30 

i104 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 10 

i105 8 8 8 8 8 8 13 8 13 13 13 13 13 13 13 13 

 

Scalar 

 

 

          KT /34/ 

          D /5/ 

          MaxScenarios /16/ 

; 
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Parameter 

a(i,j,n) 1 if timeblock i is included in shift n on day j 0 otherwise 

 

 /i3*i8.j1.n1    1 

  i4*i9.j1.n2    1 

  i5*i10.j1.n3    1 

  i6*i11.j1.n4    1 

  i7*i12.j1.n5    1 

  i8*i13.j1.n6    1 

  i9*i14.j1.n7    1 

  i11*i15.j1.n8    1 

  i16*i19.j1.n9    1 

  i17*i20.j1.n10    1 

  i18*i23.j2.n1    1 

  i19*i24.j2.n2    1 

  i20*i25.j2.n3    1 

  i21*i26.j2.n4    1 

  i22*i27.j2.n5    1 

  i23*i28.j2.n6    1 

  i24*i29.j2.n7    1 

  i26*i30.j2.n8    1 

  i31*i34.j2.n9    1 

  i32*i35.j2.n10    1 

  i33*i38.j3.n1    1 

  i34*i39.j3.n2    1 

  i35*i40.j3.n3    1 

  i36*i41.j3.n4    1 

  i37*i42.j3.n5    1 

  i38*i43.j3.n6    1 

  i39*i44.j3.n7    1 

  i41*i45.j3.n8    1 

  i46*i49.j3.n9    1 

  i47*i50.j3.n10    1 

  i48*i53.j4.n1    1 

  i49*i54.j4.n2    1 

  i50*i55.j4.n3    1 

  i51*i56.j4.n4    1 

  i52*i57.j4.n5    1 

  i53*i58.j4.n6    1 

  i54*i59.j4.n7    1 

  i56*i60.j4.n8    1 

  i61*i64.j4.n9    1 

  i62*i65.j4.n10    1 

  i63*i68.j5.n1    1 

  i64*i69.j5.n2    1 

  i65*i70.j5.n3    1 

  i66*i71.j5.n4    1 

  i67*i72.j5.n5    1 

  i68*i73.j5.n6    1 

  i69*i74.j5.n7    1 

  i71*i75.j5.n8    1 

  i76*i79.j5.n9    1 

  i77*i80.j5.n10    1 

  i78*i83.j6.n1    1 

  i79*i84.j6.n2    1 
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  i80*i85.j6.n3    1 

  i81*i86.j6.n4    1 

  i82*i87.j6.n5    1 

  i83*i88.j6.n6    1 

  i84*i89.j6.n7    1 

  i86*i90.j6.n8    1 

  i91*i94.j6.n9    1 

  i92*i95.j6.n10   1 

  i93*i98.j7.n1    1 

  i94*i99.j7.n2    1 

  i95*i100.j7.n3   1 

  i96*i101.j7.n4   1 

  i97*i102.j7.n5   1 

  i98*i103.j7.n6   1 

  i99*i104.j7.n7   1 

  i101*i105.j7.n8  1 

  i1*i4.j7.n9    1 

  i2*i5.j7.n10   1    /; 

 

Parameter R_MIN(j,n) minimum number of phlebotomists in each shift on each 

day 

/ j1*j7.n1*n10  0 

/; 

 

Parameter WL_MAX(o) maximum workload in scenario o 

/ o1*o16  400 

/; 

 

Parameter KT_MAX(o) maximum workload in scenario o 

/ o1*o16  34 

/; 

 

Variables 

     q difference between max. and min. workload 

     x(j,k,n) whether phlebotomist k works on day j during shift n 

     y(i,k)the number of tasks assigned to phlebotomist k in time block i 

under the realization o 

     z(i) the number of tasks left over at the end of time block i under the 

realization o 

     workload(j,k,n,o) workload of phlebotomist k in shift n on day j in 

scenario o 

     workload_single(j,k,n) workload of phlebotomist k in shift n on day j in 

a scenario 

     tmax maximum expected workload in each shift 

     tmin minimum expected workload in each shift 

     flag control variable 

     ; 

 

positive variables y, z, tmax, tmin; 

 

binary variable x; 

 

free variable  q, flag; 

 

 

Equations 
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         balanceworkload  objective function 

         con0 minimum number of phlebotomists in each shift on each day 

         con1 phlebotomist capacity constraint 

         con2 shift limit per day for each phlebotomist constraint 

         con3 consecutive shift restriction constraint 

         con4 total shift requirement for phlebotomists constraint 

         con5 stage link constraint 

         con6 task inventory balance constraint 

         con7 stat test constraint 

         con8 inventory constraint 

         con9 inventory constraint II 

         con10 inventory constraint III 

         con11 inventory constraint IV 

         con12 maximum workload constraint 

         con13 workload of each phlebotomist in each shift on each day 

; 

 

 

balanceworkload..  q =e= tmax; 

 

con0(j,n).. sum(k,x(j,k,n)) =g= R_MIN(j,n); 

 

con1(j).. sum(n,sum(k,x(j,k,n))) =l= KT; 

 

con2(j,k).. sum(n,x(j,k,n)) =l= 1; 

 

con3(j,k,n_1,n_3).. x(j,k,n_1)+ x(j-1,k,n_3) =l= 1; 

 

con4(k).. sum((j,n),x(j,k,n)) =e= D; 

 

con5(i,k).. (s(k)*y(i,k)) =l= T(i)*sum((j,n),(a(i,j,n))*x(j,k,n)); 

 

con6(i).. z(i) =e= z(i-1) + u(i)- sum(k,y(i,k)); 

 

con7(i).. sum(k,y(i,k)) =g= b(i); 

 

con8(i_1).. z(i_1) =e= 0; 

 

con9(i)$i_2(i).. z(i) =l= sum(k,y(i+1,k)); 

 

con10(i)$i_3(i).. z(i)=l= sum(k,y(i+1,k)+y(i+2,k)); 

 

con11(i)$i_4(i).. z(i)=l= sum(k,y(i+1,k)+y(i+2,k)+y(i+3,k)); 

 

con12(j,k,n).. tmax =g= workload_single(j,k,n); 

 

con13(j,k,n).. workload_single(j,k,n) =e= sum(i,s(k)*y(i,k)*a(i,j,n)); 

 

OPTION RESLIM = 200; 

Option Bratio = 1; 

 

Model TSSPS_Model1 /all/; 

 

Solve TSSPS_Model1 using MIP minimizing q; 

 

WL_MAX("o1") = tmax.l; 
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TSSPS_Model1.optfile=1; 

 

flag.l = 0; 

while ((flag.l le 0.5), 

         flag.l = 1; 

 

         loop(o, 

                 u(i) = R(i,o); 

 

                 x.lo(j,k,n) = x.l(j,k,n); 

                 x.up(j,k,n) = x.l(j,k,n); 

                 Solve TSSPS_Model1 using MIP minimizing q; 

 

                 if ((((TSSPS_Model1.modelstat ne 1) and 

(TSSPS_Model1.modelstat ne 2) and (TSSPS_Model1.modelstat ne 8)) or (tmax.l 

ge (LB(o)+5))), 

                    flag.l = 0; 

                    while ((((TSSPS_Model1.modelstat ne 1) and 

(TSSPS_Model1.modelstat ne 2) and (TSSPS_Model1.modelstat ne 8)) or (tmax.l 

ge (LB(o)+5))), 

                         x.lo(j,k,n) = 0; 

                         x.up(j,k,n) = 1; 

                         OPTION RESLIM = 4000; 

                         Solve TSSPS_Model1 using MIP minimizing q; 

                         ); 

                 ); 

 

                 WL_MAX(o) = tmax.l; 

 

                 KT_MAX(o) = 0; 

                 loop(j, 

                    if ((KT_MAX(o) lt sum((k,n),x.l(j,k,n))), 

                         KT_MAX(o) = sum((k,n),x.l(j,k,n))  ); 

                 ); 

 

                 workload.l(j,k,n,o) = workload_single.l(j,k,n); 

                 loop(j, loop(n, 

                    if ((R_MIN(j,n) le 

(sum(k,workload.l(j,k,n,o)*x.l(j,k,n))/WL_MAX(o))), 

                         R_MIN(j,n) = 

floor(sum(k,workload.l(j,k,n,o)*x.l(j,k,n))/WL_MAX(o))); 

                 ); ); 

 

             ); 

 

         KT = 0; 

         loop(o, 

                 if((KT lt ceil(KT_MAX(o))), KT = ceil(KT_MAX(o)) ); 

         ); 

 

         loop(o, 

                 u(i) = R(i,o); 

 

                 x.lo(j,k,n) = x.l(j,k,n); 

                 x.up(j,k,n) = x.l(j,k,n); 

                 Solve TSSPS_Model1 using MIP minimizing q; 
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                 WL_MAX(o) = tmax.l; 

                 if (((TSSPS_Model1.modelstat ne 1) and 

(TSSPS_Model1.modelstat ne 2) and (TSSPS_Model1.modelstat ne 8)), WL_MAX(o) = 

400); 

         ); 

 

         if ((sum(o,p(o)*WL_MAX(o)) lt 1.05*sum(o, p(o)*LB(o))), flag.l = 1); 

); 

 

Display x.L, y.L, z.L, q.L, tmax.L; 
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Appendix E 

Performance Measure Analysis 

Table E.1 

Phlebotomist Scheduling Template for Ext. Case 1 

 04:00 -

12:00 

05:00 -

13:00 

06:00 -

14:00 

07:00 -

15:00 

08:00 -

16:00 

11:00 -

19:00 

12:00 -

20:00 

14:00 -

22:00 

22:00 -

06:00 

23:00 -

07:00 

Shift 1 Shift 2 Shift 3 Shift 4 Shift 5 Shift 6 Shift 7 Shift 8 Shift 9 Shift 10 

Monday 2 1 1 2 0 1 1 3 2 5 

Tuesday 1 2 1 0 1 2 0 3 4 3 

Wednesday 1 1 1 1 2 1 2 1 5 3 

Thursday 0 1 1 2 2 1 1 2 5 3 

Friday 1 3 1 0 0 1 0 5 2 5 

Saturday 2 1 2 1 0 1 3 1 4 3 

Sunday 2 1 0 1 1 3 0 2 3 5 

 

 

Figure E.1. Estimated lower bound and heuristic algorithm workload for ext. case 1. 
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Table E.2 

Phlebotomist Scheduling Template for Ext. Case 2 

 04:00 -

12:00 

05:00 -

13:00 

06:00 -

14:00 

07:00 -

15:00 

08:00 -

16:00 

11:00 -

19:00 

12:00 -

20:00 

14:00 -

22:00 

22:00 -

06:00 

23:00 -

07:00 

Shift 1 Shift 2 Shift 3 Shift 4 Shift 5 Shift 6 Shift 7 Shift 8 Shift 9 Shift 10 

Monday 0 0 1 2 0 1 0 2 3 3 

Tuesday 2 0 2 0 0 0 2 1 1 5 

Wednesday 1 2 1 0 0 0 1 2 2 4 

Thursday 0 1 2 0 0 1 1 1 5 1 

Friday 1 2 0 0 1 0 1 1 3 2 

Saturday 1 2 1 0 0 1 1 1 4 1 

Sunday 3 0 0 0 0 1 1 2 2 3 

 

 

Figure E.2. Estimated lower bound and heuristic algorithm workload for ext. case 2. 
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Appendix F 

Experimental Results Analysis 

 

Figure F.1.  Comparison of hourly workload in the case with 34 phlebotomists, who each has 45  

  minutes per hour available for blood collections. 

 

Figure F.2.  Comparison of hourly workload in the case with 25 phlebotomists, who each has 45  

 minutes per hour available for blood collections. 

 

Figure F.3.  Comparison of hourly workload in the case with 17 phlebotomists, who each has 45  

  minutes per hour available for blood collections. 
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Figure F.4.  Comparison of hourly workload in the case with 34 phlebotomists, who each has 40  

  minutes per hour available for blood collections. 

 

Figure F.5.  Comparison of hourly workload in the case with 25 phlebotomists, who each has 40  

 minutes per hour available for blood collections. 

 

Figure F.6.  Comparison of hourly workload in the case with 17 phlebotomists, who each has 40  

  minutes per hour available for blood collections. 
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