
North Carolina Agricultural and Technical State University North Carolina Agricultural and Technical State University

Aggie Digital Collections and Scholarship Aggie Digital Collections and Scholarship

Dissertations Electronic Theses and Dissertations

2011

Variable Block Size Motion Compensation In The Redundant Variable Block Size Motion Compensation In The Redundant

Wavelet Domain Wavelet Domain

Ahmed Abdelgadir Suliman
North Carolina Agricultural and Technical State University

Follow this and additional works at: https://digital.library.ncat.edu/dissertations

 Part of the Electrical and Computer Engineering Commons, and the Mechanics of Materials Commons

Recommended Citation Recommended Citation
Suliman, Ahmed Abdelgadir, "Variable Block Size Motion Compensation In The Redundant Wavelet
Domain" (2011). Dissertations. 135.
https://digital.library.ncat.edu/dissertations/135

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Aggie
Digital Collections and Scholarship. It has been accepted for inclusion in Dissertations by an authorized
administrator of Aggie Digital Collections and Scholarship. For more information, please contact iyanna@ncat.edu.

https://digital.library.ncat.edu/
https://digital.library.ncat.edu/dissertations
https://digital.library.ncat.edu/etds
https://digital.library.ncat.edu/dissertations?utm_source=digital.library.ncat.edu%2Fdissertations%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digital.library.ncat.edu%2Fdissertations%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/283?utm_source=digital.library.ncat.edu%2Fdissertations%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digital.library.ncat.edu/dissertations/135?utm_source=digital.library.ncat.edu%2Fdissertations%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:iyanna@ncat.edu

VARIABLE BLOCK SIZE MOTION COMPENSATION IN THE

REDUNDANT WAVELET DOMAIN

by

Ahmed Abdelgadir Suliman

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department: Electrical Engineering

Major: Electrical Engineering

Major Professor: Dr. Robert Y. Li

North Carolina A&T State University

Greensboro, North Carolina

2011

ABSTRACT

Suliman, Ahmed Abdelgadir. VARIABLE BLOCK SIZE MOTION

COMPENSATION IN THE REDUNDANT WAVELET DOMAIN. (Major Advisor:

Dr. Robert Li), North Carolina Agricultural and Technical State University.

Video is one of the most powerful forms of multimedia because of the extensive

information it delivers. Video sequences are highly correlated both temporally and

spatially, a fact which makes the compression of video possible. Modern video systems

employ motion estimation and motion compensation (ME/MC) to de-correlate a video

sequence temporally. ME/MC forms a prediction of the current frame using the frames

which have been already encoded. Consequently, one needs to transmit the corresponding

residual image instead of the original frame, as well as a set of motion vectors which

describe the scene motion as observed at the encoder.

The redundant wavelet transform (RDWT) provides several advantages over the

conventional wavelet transform (DWT). The RDWT overcomes the shift invariant

problem in DWT. Moreover, RDWT retains all the phase information of wavelet

coefficients and provides multiple prediction possibilities for ME/MC in wavelet domain.

The general idea of variable size block motion compensation (VSBMC) technique is to

partition a frame in such a way that regions with uniform translational motions are

divided into larger blocks while those containing complicated motions into smaller

blocks, leading to an adaptive distribution of motion vectors (MV) across the frame.

The research proposed new adaptive partitioning schemes and decision criteria in

RDWT that utilize more effectively the motion content of a frame in terms of various

block sizes. The research also proposed a selective subpixel accuracy algorithm for the

motion vector using a multiband approach. The selective subpixel accuracy reduces the

computations produced by the conventional subpixel algorithm while maintaining the

same accuracy. In addition, the method of overlapped block motion compensation

(OBMC) is used to reduce blocking artifacts. Finally, the research extends the

applications of the proposed VSBMC to the 3D video sequences. The experimental

results obtained here have shown that VSBMC in the RDWT domain can be a powerful

tool for video compression.

ii

School of Graduate Studies

North Carolina Agricultural and Technical State University

This is to certify that the Doctoral Dissertation of

Ahmed Abdelgadir Suliman

has met the dissertation requirements of

North Carolina Agricultural and Technical State University

Greensboro, North Carolina

2011

Approved by:

_________________________________ ________________________________

Dr. Robert Y. Li Dr. Jung H. Kim

Major Professor Committee Member

_________________________________ ________________________________

Dr. M. U. Bikdash Dr. Clinton B. Lee

Committee Member Committee Member

_________________________________ ________________________________

Dr. Kenneth Williams Dr. John Kelly

Committee Member Department Chairperson

Dr. Sanjiv Sarin

Dean of Graduate Studies

iii

BIOGRAPHICAL SKETCH

 Ahmed Abdelgadir Suliman was born on May 13, 1974, in Khartoum, Sudan. He

received the Bachelor of Science degree in Telecommunication and Control Systems

from Gazira University in 1998, an Associate degree in Telecommunication and Network

Engineer Technology from the Guilford Technical Community College in 2002 and

Master degree in Electrical Engineering from North Carolina A & T State University in

2007. He is a candidate for the PhD. degree in Electrical Engineering.

iv

ACKNOWLEDGMENTS

 I would like to express my most sincere gratitude to my advisor, Dr. Robert Y. Li,

for all his great advice, guidance, patience, and his continuing support and

encouragement which helped the completion of this dissertation. I am also grateful to my

doctoral advisory committee members: Dr. Jung Kim, Dr. M. Bikdash, Dr. Clinton Lee,

and Dr. Kenneth Williams for reviewing my dissertation and providing many corrections

and helpful comments.

v

TABLE OF CONTENTS

LIST OF FIGURES ... viii

LIST OF TABLES ... xi

CHAPTER 1. INTRODUCTION .. 1

CHAPTER 2. REDUNDANT DISCRETE WAVELET TRANSFORM.......................... 5

2.1 Introduction .. 5

2.2 RDWT versus DWT .. 7

2.3 RDWT Implementation and Coefficient Representation ... 9

CHAPTER 3. BLOCK MATCHING ALGORITHM ... 14

3.1 Introduction .. 14

3.2 Block Matching Motion Estimation .. 14

3.3 Three-Step Search .. 17

3.4 Group of Pictures ... 18

3.5 Block-Based Motion Compensation .. 19

3.6 Variable Size Block Matching ... 21

3.7 Sub-pixel Motion Estimation ... 23

CHAPTER 4. NEW APPROACH OF MOTION ESTIMATION/MOTION

 COMPENSATION IN REDUNDANT WAVELET DOMAIN 25

4.1 Introduction .. 25

4.2 System Architecture for MB-VSBMC .. 26

4.3 Proposed Decision Criterion .. 27

4.3.1 Splitting Process.. 28

vi

4.3.2 Merging Process.. 31

4.4 VSBM Tree Construction .. 32

4.5 Selective Refinement Algorithm ... 34

4.6 Experimental Results ... 36

CHAPTER 5. OPTIMIZED MULTIBAND VARIABLE BLOCK SIZE MOTION

 COMPENSATION APPROACH ... 45

5.1 Introduction .. 45

5.2 Study of the Rate Allocation Theory ... 45

5.3 R-D Optimized FBMC... 47

5.4 R-D Optimized VBMC .. 47

5.5 Rate-Distortion Curve .. 49

5.6 Distortion Measurement in RDWT .. 50

5.7 R-D Optimized MB-VBMC and Decision Criterion ... 51

5.7.1 Splitting Process Using Rate Allocation Theory .. 52

5.8 Experimental Results ... 54

CHAPTER 6. OVERLAPPED BLOCK MATCHING IN REDUNDANT

 WAVELET DOMAIN ... 57

6.1 Introduction .. 57

6.2 Overlapped Block Motion Compensation ... 57

6.3 Weight Windows Selection ... 59

6.4 OBMC Implementation in RDWT .. 61

6.5 Experimental Results ... 64

vii

CHAPTER 7. THREE-DIMENSIONAL VIDEO COMPRESSION IN

 REDUNDANT WAVELET DOMAIN .. 68

7.1 Introduction .. 68

7.2 Stereo Constraints/ Epipolar Constraint .. 71

7.3 Multiview Image Acquisition .. 74

7.4 Depth Image Based Rendering .. 75

7.5 System Architecture for MB-VSBMC 3-D System .. 76

7.6 Experimental Results ... 78

CHAPTER 8. CONCLUSION... 85

REFERENCES ... 87

APPENDIX. MATLAB CODE ... 94

viii

LIST OF FIGURES

FIGURE PAGE

1.1 The block-matching algorithm. The dashed block shows the search window. 2

2.1 Signal)(ns and its shifted version)1(ns . .. 6

2.2 Wavelet-domain representation of)(ns and)1(ns . .. 6

2.3 Two level 1-D DWT analysis and synthesis filter banks. ... 8

2.4 Two level 1-D RDWT analysis and synthesis filter banks. .. 9

2.5 Spatially coherent representation of a two-scale 1D- RDWT. 11

2.6 Tree representation of a two-scale RDWT of 1D-signal x 11

2.7 Spatially coherent representation of a two-scale 2D-RDWT. 12

2.8 An example of a two-scale 2D-RDWT. .. 13

3.1 Block-matching with search parameter p = P. .. 16

3.2 Three-step search process. .. 17

3.3 An example sequence of MPEG frames and the inter-frame dependencies. 18

3.4 An illustration of motion compensation. .. 20

3.5 Decomposition and the resulting quad-tree. ... 22

3.6 Half-pixel accuracy obtained by interpolation. ... 24

4.1 Block diagram of the MB-VSBMC video-coding system. CODEC uses the SPIHT

 algorithm. .. 27

4.2 An illustration of the correlation edge mask. .. 29

4.3 The splitting process. .. 31

ix

4.4 An example of the TBC applied to 32×32 MB and its sub-MBs.............................. 33

4.5 Selective refinement algorithm procedure. ... 35

4.6 The comparison of the compressed 4
th

 frame for “News” sequence using three

 different block partitioning techniques. .. 41

4.7 The comparison of the compressed 6
th

 frame for “Foreman” sequence using three

 different block partitioning techniques ... 42

4.8 An example of partitioning results using different approaches. 43

4.9 PSNR for “News” at 0.5 bpp for I and P, and 0.25 bpp for B frames. 44

4.10 PSNR for “Forman” at 0.5 bpp for I and P, and 0.25 bpp for B frames. 44

5.1 Example of a composite R-D curve. Each square on the convex hull points

 represents a potential configuration for block partitions .. 50

5.2 The number of the blocks used vs. frames sequence number for “News” sequence. 56

6.1 Conventional block motion compensation.. 58

6.2 Overlapped block motion compensation. ... 59

6.3 Three OBMC weight windows. .. 60

6.4 The block xV is predicted using the MV for block xV plus the MVs for blocks

 V

xV and H

xV . The notation x can be A, B, C or D. ... 63

6.5 Weighting values Wx , for prediction with motion vector of current block. 63

6.6 Weighting values VW , for prediction with motion vectors of the blocks on top or

 bottom of current block. .. 64

6.7 Weighting values HW , for prediction with motion vectors of the blocks to the left

 or right of current block. ... 64

6.8 FFT analysis for OBMC-related predicted frames. .. 66

6.9 OBMC effect on the blocking edge artifact. ... 67

x

7.1 The N-texture Multi-view Video Coding (MVC). .. 69

7.2 Example of the N-texture Multi-view Video Coding (MVC). 69

7.3 1-depth/1-texture multiview video compression system. ... 71

7.4 Epipolar geometry. .. 73

7.5 An example of the 3D image warping technique. ... 76

7.6 Block diagram of the MB-VSBMC 3D-video-coding system. 78

7.7 Example of an acquisition of 1-depth/1-texture.. 80

7.8 Example of MB-VSBMC block partitionings. ... 81

7.9 The comparison between two partitioning techniques for the depth map. 82

7.10 The 1-texture/ 1-depth comparison of the synthesized frames from different

 compression techniques. .. 83

7.11 The frame by frame PSNR comparison with a CODEC bit rate of 1 bpp. 84

xi

LIST OF TABLES

TABLE PAGE

4.1 Comparison between conventional VSBMC and FSBMC in spatial domain. 40

4.2 Comparison between conventional VSBMC, FSBMC and MB-VSBMC without

 any sub-pixel accuracy. ... 40

4.3 Comparison between conventional VSBMC, FSBMC and MB-VSBMC with sub-

 pixel accuracy. ... 40

4.4 Comparison between conventional VSBMC, FSBMC and MB-VSBMC with

 either a sub-pixel accuracy or selective algorithm. ... 40

5.1 Comparison between conventional VSBMC, FSBMC and MB-VSBMC with

 either a sub-pixel accuracy or selective algorithm. The R-D optimization method

 is applied to all algorithms. ... 55

6.1 OBMC comparisons between conventional VSBMC, FSBMC and MB-VSBMC

 with either a sub-pixel accuracy or selective algorithm. .. 67

7.1 An average PSNR comparison.. 84

1

CHAPTER 1

INTRODUCTION

Video is one of the most powerful forms of multimedia because of the extensive

information it delivers. Each video sequence contains substantial visual information,

thereby requiring vast resources for storage and communication. Therefore, the

compression of video sequences has been the focus of work by many researchers for

several decades. Video sequences are highly correlated both temporally and spatially, a

fact which makes the compression of video possible. Video compression exploits the

temporal correlation, because the temporal interval between every two consecutive video

frames is very small, and most likely the two frames will exhibit high similarity. To

decorrelate a video sequence temporally, modern video coders employ motion estimation

and motion compensation (ME/MC). ME/MC forms a prediction of the current frame

using the frames which have been already encoded. Consequently, one needs to transmit

the corresponding residual image instead of the original frame, as well as a set of motion

vectors which describe the scene motion as observed at the encoder. Since the residual

frame typically contains much less signal energy than the original frame and the motion

vectors are relatively few, the total bit rate to encode the motion-estimated frame is

usually much less than the total bit rate to encode each frame as a still image.

A number of motion-estimation algorithms (ME) have been developed in order to

provide efficient prediction of scene motion between frames. ME schemes can generally

2

be categorized as either feature matching or region matching [1]. The most widely

used region matching technique is the block matching method, in which the current frame

is divided into small blocks. The previous frame, called the reference frame, is searched

for the best matching block for a given block in the current frame, and the resulting

motion vector,),(yx  indicates the position of the best-matching block. To limit the

computational complexity of the ME process, the search is usually limited to some

window surrounding the block position in the reference frame. The procedure of block

matching is illustrated in Figure 1.1 and the calculation of the residual frame is

),,(),,(),,,(Diff ttyyxxftyxfttyx  (1.1)

where),,,(Diff ttyx  denotes the calculated residual image at a position),(yx in a time

period t- t , while),,(tyxf denotes the frame value at position),(yx and time t . This

block-based ME/MC approach to video coding was first introduced in [1].

Figure 1.1 The block-matching algorithm. The dashed block shows the search window.

3

The block matching motion compensation can generally be categorized as either

fixed block matching (FSBM) or variable size block matching (VSBM). The general

idea of VSBM technique is to partition a frame in such a way that regions with uniform

translational motions are divided into larger blocks while those containing complicated

motions into smaller blocks, leading to an adaptive distribution of motion vectors (MV)

across the frame. The VSBMC technique generally relies on a binary tree or a quadtree

decomposition structure. Such a scheme is efficient in representing the partitioning, but

the resulting blocks are restricted to be rectangular, and the sizes and locations of the

blocks are also restricted by the tree structure.

Subpixel motion estimation plays an important role in compression efficiency

within modern video codecs such as H.263 [2], [3] and MPEG-4 [4]. Subpixel motion

estimation is implemented within these standards using interpolated values at 1/2 or 1/4

subpixel accuracy. Such interpolation gives a good reduction in residual energy for each

predicted macroblock and therefore, improves compression. However, this leads to a

significant increase in computational complexity at the encoder.

The research proposed a new adaptive partitioning scheme and decision criterion

in the redundant wavelet domain that utilizes more effectively the motion content of a

frame in terms of various block sizes. The proposed VSBMC deploys in two steps;

splitting and merging. The redundant wavelet transform (RDWT) provides several

advantages over the conventional wavelet transform (DWT). The RDWT overcomes the

shift invariant problem in DWT. Moreover, RDWT retains all the phase information of

wavelet coefficients and provides multiple prediction possibilities for ME/MC in wavelet

4

domain. As refinement for the block matching system, the research proposed a selective

subpixel refinement algorithm for the motion vector using a multiband decision. The

selective subpixel refinement reduces the computations produced by the conventional

subpixel algorithm while maintaining the same accuracy.

In addition, the research extends the applications of the proposed VSBMC to the

3D video sequences. The 3D technology has been one of the fastest growing technologies

in the recent years. Our approach is based on ME/MC techniques and the usage of depth-

based rendering technique to reconstruct the desired stereoscopic views for each video

frame. The depth image has a low energy and does not have sharp boundaries; therefore,

it is not an easy task to obtain an accurate motion vector. Fortunately, the redundant

wavelet domain provides a good solution by retaining all the phase information and

provides a multiple prediction possibilities for motion techniques. Typically, a depth map

is estimated from two images by calculating the parallax motion of pixels between the

views. Consequently, a combination of only one texture and one depth video sequence is

sufficient to provide appropriate rendering quality.

5

CHAPTER 2

REDUNDANT DISCRETE WAVELET TRANSFORM

2.1 Introduction

The main drawback of the DWT in the video compression is the shift variant that

generates high frequency blocking artifacts which have big impact on the quality of

ME/MC process when deployed in wavelet domain. To demonstrate the difficulty that the

shift variance of the DWT poses in the task of tracking motion, consider the example

illustrated in Figures 2.1 and 2.2. Shown in Figure 2.1 is a signal)(ns and a shifted

version of the signal)1(ns . When Daubechies-Feauveau 9-7 filter is used to perform a

1-scale DWT on both)(ns and)1(ns , the effect of the shift variant, and the motion of

the signal waveform is easily determined by comparing)1(ns to)(ns . However, in the

wavelet domain, the low-band and high-band signals suffer from the shift-variant

characteristic of the DWT [12]. In any event, the obtaining of accurate motion vectors for

ME will not be possible using either the low-band or high-band signals in the DWT

domain.

In order to overcome the shift variance of DWT, a number of proposals [5–10]

have been made to use an overcomplete, or redundant, wavelet transform for ME/MC

since such a redundant discrete wavelet transform (RDWT) lacks subsampling and is thus

shift invariant.

6

Figure 2.1 Signal)(ns and its shifted version)1(ns .

Figure 2.2 Wavelet-domain representation of)(ns and)1(ns .

7

2.2 RDWT versus DWT

The RDWT can be considered to be an approximation to the continuous wavelet

transform that removes the downsampling operation from the conventional critically

sampled DWT to produce an overcomplete representation [11]. The shift-variance

characteristic of the DWT arises from its use of downsampling; while the RDWT is shift

invariant since the spatial sampling rate is fixed across scale. To depict the

implementation of the RDWT in terms of filter-banks, let us first illustrate the same for

the DWT. A 1D DWT and its inverse are illustrated in Figure. 2.3. Consider][nf is the

1D input signal and][' nf is the reconstructed signal.][kh  and][kg  are the lowpass

and highpass analysis filters, while the corresponding lowpass and highpass synthesis

filters are][kh and][kg . jc and jd are the lowband and highband output coefficients at

level j . DWT analysis, or decomposition, is, mathematically [11],

 2])[][(][1   khkckc jj and 2])[][(][1   kgkckd jj (2.1)

where  denotes convolution, and 2 denotes downsampling by a factor of two. That

is, if 2][][ nxny , then]2[][nxny  .

The corresponding operation of DWT synthesis, or reconstruction, is

][)2][(][)2][(][1 kgkdkhkckc jjj  (2.2)

where 2 denotes upsampling by a factor of two. That is, if 2][][ nxny , then

8






odd ,0

even],2[
][

n

nnx
ny (2.3)

Figure 2.3 Two level 1-D DWT analysis and synthesis filter banks.

In contrast, a 1D- RDWT and its inverse are illustrated in Figure 2.4. The RDWT

eliminates downsampling and upsampling of coefficients, and at each scale, the number

of output coefficients doubles that of the input. The filters themselves are upsampled to

fit the growing date length [12]. Specifically, the filters for scale j are:

 2][][1   khkh jj and 2][][1   kgkg jj (2.4)

RDWT analysis is then

])[][(][1 khkckc jjj   and])[][(][1 kgkckd jjj   (2.5)

9

While the RDWT synthesis is

])[][][][(
2

1
][1 kgkdkhkckc jjjjj  (2.6)

Equations (2.4) through (2.6) are known as the algorithme `a trous [13], since the filter-

upsampling procedure inserts “holes” (“trous” in French) between the filter taps.

Figure 2.4 Two level 1-D RDWT analysis and synthesis filter banks.

2.3 RDWT Implementation and Coefficient Representation

There are several ways to implement the RDWT, and several ways to represent

the resulting overcomplete set of coefficients. The most obvious implementation is a

direct implementation of the algorithme `a trous, and results in subbands that are exactly

the same size as the original signal, as is illustrated for a 1D signal in Figure 2.5. The

advantage of this “spatially coherent” representation is that each RDWT coefficient is

10

located within its subband in its spatially correct position. Through appropriately

subsampling each subband of an RDWT, one can produce exactly the same coefficients

as does a critically sampled DWT applied to the same input signal. In fact, in a j -scale

1D- RDWT, there exist j2 distinct critically sampled DWTs corresponding to the choice

between even- and odd-phase subsampling at each scale of decomposition [14].

The most popular coefficient-representation scheme employed in RDWT-based

video coders is that of a “coefficient tree,” as illustrated in Figure 2.6 for a 1D signal.

This tree representation is easily created by employing filtering and downsampling as in

the usual critically sampled DWT; however, all “phases” of downsampled coefficients

are retained and arranged as “children” of the signal that was decomposed. The process is

repeated on the lowpass bands of all nodes to achieve multiple decomposition scales.

Figure 2.6 shows an approximation and detail coefficients at scale J, as Lj and Hj,

respectively. E indicates even-phase subsampling; O indicates odd-phase subsampling

[14]. A path from root to leaf indicates a distinct critically sampled DWT; a j-scale

RDWT consists of j2 such DWTs. It is straightforward to see that each path from root to

leaf in the RDWT tree constitutes a distinct critically sampled DWT, and there are j2

such critically sampled DWTs in a j -scale decomposition [15].

An alternative, and equivalent, implementation of the RDWT tree representation

comes from employing consistent subsampling phase and shifting the lowpass bands by

one sample to generate children in the tree.

11

Figure 2.5 Spatially coherent representation of a two-scale 1D- RDWT.

Figure 2.6 Tree representation of a two-scale RDWT of 1D-signal x .

The situation is similar for 2D decompositions implemented with separable 1D

transforms, as illustrated in Figure 2.7. Figure 2.7 shows a j -scale 2D RDWT

consisting of j4 distinct critically sampled DWTs. The spatially coherent representation

12

of this two-scale 2D-RDWT means that the wavelet coefficients retain their correct

spatial location within each subband, and each subband is the same size as the original

image. In Figure 2.8 the notations Bj, Hj, Vj and Dj, denote the baseband, horizontal,

vertical, and diagonal subbands, respectively, at scale j. This figure shows an example of

RDWT process applied to the first frame of “Susie” sequence.

Figure 2.7 Spatially coherent representation of a two-scale 2D-RDWT.

13

Figure 2.8 An example of a two-scale 2D-RDWT.

14

CHAPTER 3

BLOCK MATCHING ALGORITHM

3.1 Introduction

Motion estimation is a type of video compression scheme. The motion estimation

process is designed to find the motion vector pointing to the best prediction macroblock

in a reference frame. Compression redundancy between adjacent frames can be exploited

whenever a frame is selected as a reference and subsequent frames are predicted from the

reference using motion estimation. Block-based matching algorithms are the most

popular methods for motion estimation and have been applied to most of video

applications.

3.2 Block Matching Motion Estimation

In block-matching, a frame is divided into an array of macroblocks (MBs) [16].

Each MB has the size of NN  and is then compared with the candidate blocks in the

reference frame. The candidate MB that is selected is the one that matches closest to the

current block. Typically, two measurements, mean of absolute differences (MAD) and

sum of squared differences (SSD) are adopted to evaluate how closely a candidate MB

matches the current one [17]. Some video compression standards limit the maximum

number of bits to encode each motion vector, thus restricting a motion vector’s

magnitude and its horizontal and vertical components’ maximum value. In such case, the

maximum value of the distance between a macroblock and its candidate reference blocks

http://www.webopedia.com/TERM/F/frame.html

15

is also limited. Usually, motion estimation is carried out only within a region of the

reference frame, which is called the “search area”. This also reduces the amount of

computation for motion estimation.

The search for the best matching MB is confined to a search area whose size is

decided by the search parameter p. The search range is up to p pixels on all four sides of

the corresponding MB in the reference frame. Figure 3.1 demonstrates a block-matching

with search parameter p = P. The square in gray is the search area for block-matching.

Usually, faster motions require a larger p value. The larger the search parameter, the

more computationally intensive the process of motion estimation becomes.

 ||
1

MAD),(

),(
2 vjui

currentji

block

ij RC
N





  (3.1)

 2

),(

),(

)(SSD vjui

currentji

block

ij RC 



  (3.2)

where ijC and),(vjuiR  are the pixels being compared in the current MB and the MB on

the reference frame, respectively. N is the size of the MB.

The most direct way to perform motion estimation is to exhaustively check every

possible candidate MB within the search area on the reference frame, and chose the best

matching one. This method is called full search block-matching algorithm (FSBMA)

[20]. After block-matching, a motion vector (MV) is obtained for each MB.

16

Figure 3.1 Block-matching with search parameter p = P.

The motion vector is the displacements from the location of the current MB to the

location of the best matching MB on the reference frame. Different coding techniques are

usually used here to encode the MVs and generate bits for the video bit stream. MVs are

used in motion compensation to construct the motion compensated frames. The

difference between the current MB and the best-matching block is the prediction error

which is usually encoded using the techniques that are used for compressing still-images.

Notice that the reference frame is not necessarily the frame displayed before the current

frame. Sometime, multiple reference frames are used. For example, if two reference

frames are used: one frame before the current frame and one frame after the current frame

in the display order but encoded previously. Thus the block matching is implemented on

both reference frames, and the best matching-block is the one that has the least error

among the candidate blocks on both reference frames.

17

3.3 Three-Step Search

Three-step search (TSS) [19, 20] is a fast searching algorithm to find the MVs.

TSS consists of three steps, each step uses a fixed search pattern of nine uniformly spaced

search points. In the first step, the point giving the least error is chosen and becomes the

new search center for the next step search. The size of the search pattern is reduced by

half from one step to the other, and the search points get closer after every step. The

algorithm halts in three steps. TSS requires a fixed (9+8+8) = 25 search points for each

block chosen as shown in Figure 3.2.

Figure 3.2 Three-step search process.

18

3.4 Group of Pictures

If a frame is decoded with error, all the frames that use it as the reference frame

will be affected and decoded wrongly, thus the error propagates. To avoid such problem,

one kind of video frame “I” frame is used. This type of frame doesn’t use reference

frames for encoding and is encoded by itself as a still-image. In the case when a frame is

decoded not correctly, the error propagation will stop at the next I frame and the frames

after that I frame in the encoding order will not be affected. Besides I frames, there are

other two types of frames, “P frames” and “B frames”. P frames use only a previously

displayed frame as the reference frame [18, 21]. B frames use frames both in future and

previous position in the display order as the reference frames. Figure 3.3 gives an

example sequence of video frames.

Figure 3.3 An example sequence of MPEG frames and the inter-frame dependencies.

19

3.5 Block-Based Motion Compensation

When decoding a video, motion compensation is carried out. The process uses the

reference frames and the motion vectors to reconstruct each MB of the current frame. For

motion vectors having integer components, the predicted MB is a simple copy and paste

of the matching-block in the reference frame. For motion vectors having non-integer

components, interpolation is used to estimate the MB for non-integer locations. After

obtaining the prediction of each MB, the prediction of the whole frame is also obtained.

The prediction error is then decoded and added to the frame, and the final motion

compensated frame is reconstructed. To evaluate the quality of a reconstructed image, a

popular metric is mean-squared-error (MSE) [21], which is the sum of the squared error

between the motion compensated image and the original one as given by

 
 


M

y

N

x

yxIyxI
MN

MSE
1 1

2)),(
~

),((
1

 (3.3)

here N and M are the number of rows and columns of pixels of the frame, respectively.

),(yxI and),(
~

yxI are the values of the intensity of a pixel at the position),(yx in the

original image and motion compensated picture, respectively. Another widely used

metric for comparing various image compression techniques is the peak-signal-to-noise-

ratio (PSNR). The measurement evaluates the image quality based on the root of MSE of

the reconstructed frame. The mathematical formulae for PSNR is

























MSE

I
PSNR

2

max

10

2

10 .log10
error squaredmean

)data original of peak value peak to(
log10 (3.4)

20

where maxI is the maximum possible value of the pixels on the image. When 8 bits sample

precision is used, the value of maxI is 255. The higher the value of PSNR, the better the

quality of the compensated image.

Figure 3.4 illustrates the typical procedure of motion compensation. The

computation requirement for motion compensation is much less than that of motion

estimation. For each MB, motion estimation must calculate MAD or SSD on a number of

NN  pixel blocks, whereas motion compensation just does the simple duplicate or

interpolation of the selected matching block. This difference is critical and makes video

decoding a much computationally simpler process than video encoding.

Figure 3.4 An illustration of motion compensation.

21

3.6 Variable Size Block Matching

In block matching motion compensation, there is a direct relationship between the

size of the block and the error (or difference) between the current block and the best

matching block in the reference frame [22]. As the block gets larger, the error is also

likely to get larger because all the pixels in the block are unlikely to experience the same

translational motion. Consequently, a single block size is then insufficient to control the

error. An ideal VSBM technique should find the optimal tradeoff between the size of the

blocks (and hence the number of blocks), and the total error associated with them.

VSBM algorithm imposes a complete quad-tree on the block structure of a frame.

Let us denote a square block by),,(syx where),(yx are the coordinates of the upper

left-most pixel of the block, and s is the length of one side of the block. The frame is

initially divided into identical-sized small blocks of size mins , they constitute the leaves

of the tree [23]. We refer to the root of a tree as node xE , and the four children of a node

as ,, 24144  xxx EEE and 34 xE . The output of block matching motion estimation is a set

of non-overlapping blocks which together will cover the entire frame. This principle is

illustrated in Figure 3.5 [23]. Clearly, there are many tree structures, and one can easily

observe that any tree with height less than n4log , where n is the total number of blocks of

size mins , can be mapped uniquely to a set of non-overlapping blocks which covers the

entire input frame.

22

Figure 3.5 Decomposition and the resulting quad-tree.

The error of the tree (the total error of the matched blocks comprising the tree) is the

error of the motion compensated frame. Given a required number of blocks B and two

consecutive frames 1if and if , the block matching requirement is to find a tree with B

leaves whose error is minimal among all possible trees with B leaves. Let)(BTx be the

tree whose root is x and which covers only the area of the block corresponding to node x

. Let)(BEx be the error of)(BTx . Let B be the set of 4-tuple (i, j, k, l). Let)(BEx be

the error of the block corresponding to node x . By solving this equation below, we can

calculate the minimum error)(0 BE and hence obtain the)(0 BT for the entire frame.

)}()()()({min)(3424144
),,,(

lEkEjEiEBE xxxx
lkji

x
B







 (3.5)

23

3.7 Sub-pixel Motion Estimation

A key performance issue in motion estimation is sub-pixel accuracy. The

theoretical and experimental analysis, such as the work done in [26], have established

that sub-pixel accuracy has a significant impact on motion compensated prediction error

performance for a wide range of natural moving scenes. As a consequence, recent efforts

to standardize the compression methodology in video compression [2-4] have embraced

the principle of sub-pixel accuracy for motion estimation and motion compensated

prediction. The most popular techniques for subpixel image registration are based on

interpolation. In this approach, the reference frame is bilinearly interpolated to obtain a

new reference frame in sub-pixel accuracy. This half-pixel interpolation is illustrated

Figure 3.6, where A, B, C and D indicate the integer pixels, while a, b and c are the

interpolated half pixels. a, b and c are obtained by bilinear interpolation from A, B, C and

D as,

 2)(BAa  2)(CAb  4)(DCBAc  (3.6)

The block matching system is then modified so that the search is carried out with

half-pixel accuracy in the interpolated reference frame. This incurs the addition of one

more bit of precision to each component of the motion vectors. The concept of half-pixel

accuracy can also be extended to quarter-pixel accuracy.

24

Figure 3.6 Half-pixel accuracy obtained by interpolation.

25

CHAPTER 4

NEW APPROACH OF MOTION ESTIMATION/MOTION COMPENSATION IN

REDUNDANT WAVELET DOMAIN

4.1 Introduction

The research presents in this chapter a novel approach to VSBMC in the

redundant wavelet domain, which incorporate the idea of multiband and VSBMC. The

new approach recognizes the different phases in RDWT coefficients, and views the

motion from different perspectives. This method allows partitioning the video frame

more flexibly according to its motion content. The new adaptive partitioning scheme can

utilize more efficiently the motion content of a frame in terms of the size and shape of the

blocks developed. The partitioning information is efficiently represented by a two-bit

coding scheme. The frame partitioning process is accomplished using two steps: first,

splitting; second, merging.

As a refinement for the block matching system, the research proposed a selective

algorithm for motion vector accuracy using a multiband-mode decision. The subpixel

accuracy is a powerful tool to achieve more accurate coding, but it results in huge

computational complexity since it uses a full search algorithm to find the accurate

coordinate for each motion vector. The selective subpixel approach reduces the

computations produced by the conventional subpixel algorithm while maintaining the

same accuracy.

26

4.2 System Architecture for MB-VSBMC

The encoder of our multi-band VSBMC video-coding system (MB-VSBMC) is

depicted in Figure 4.1. The current and reference frames are transformed into RDWT

coefficients, and both ME and MC take place in the redundant wavelet domain. In a J-

scale RDWT decomposition, each block in the original spatial domain corresponds to 3J

+ 1 blocks of the same size, one for each subband. The collection of these co-located

blocks is called a set. In the ME procedure, block matching algorithm is used to

determine the MV of each set as a whole. Specifically, a block-matching procedure uses a

cross-subband distortion measure that sums absolute differences for each block of the set.

An adaptive variable size window is used for the block search. The all-phase correlation

edge mask and approximation subband (LL) are used to construct a multiband decision

criteria for choosing the block size.

After the block size is determined, the motion from the reference frame to the

current frame is estimated in the RDWT domain, and motion vectors are transmitted to

the decoder. Multiband MC is accomplished by using a multiple reference frames

(subbands) algorithm to generate bidirectional prediction. Residing in the RDWT

domain, the motion-compensated residual is itself redundant; consequently, it is down-

sampled before coding. The final encoding step for coder/decoder (CODEC) consists of a

set partitioning in hierarchical trees (SPIHT) algorithm for still image compression [27].

27

Figure 4.1 Block diagram of the MB-VSBMC video-coding system. CODEC uses the SPIHT

 algorithm.

4.3 Proposed Decision Criterion

 The research proposed a new decision criterion that partitions a given frame into

variable size regions according to the motion information of the frame. The partitioning

information is efficiently represented by a two-bit coding scheme. The frame partitioning

28

is accomplished by: first, potentially splitting a 16×16 block into 8×8 blocks, and then

4×4 blocks; second, potentially merging four neighbors of 16×16 blocks into a 32×32

block.

4.3.1 Splitting Process

The general idea of the splitting is to divide a certain 16×16 MB into up to four

sub-MBs of 8×8, then divide a certain 8×8 MB into up to four sub-MBs of 4×4. The

research has developed five steps to accomplish that as shown in Figure 4.3:

First: For a given 32×32 MB, decide which 16×16 MB is a candidate to be split.

As it was mentioned before, each frame has at least four subbands in redundant wavelet

domain. The direct multiplication of the RDWT coefficients at adjacent scales (all-phase

correlation edge mask) distinguishes important features from the background due to the

fact that wavelet-coefficients are correlated across scales. We will use an all-phase

correlation edge mask of the current frame to determine which 16×16 MB is a candidate

to be split by setting a number of thresholds. The correlation edge mask acts as a map for

the decision making of the variable block size, since it highlights the edges. To create the

correlation edge mask for the frame, we multiply the vertical)(jV , horizontal)(jH , and

diagonal)(jD bands together across scales and combine the products; i.e.

 |),(||),(||),(|),(mask
1

0

1

0

1

0

yxDyxHyxVyx
J

Jj

j

J

Jj

j

J

Jj

j 


 (4.1)

29

where 0J and 1J are the starting and ending scales, respectively, of the correlation

operation. Note that mask(x, y) is the resulting correlation image with the same

dimensions as the original image. See Figure 4.2 for an illustration of the correlation edge

mask.

(a) The fourth frame of “News” sequence.

(b) Its corresponding correlation mask.

Figure 4.2 An illustration of the correlation edge mask.

Second: determine the global maximum of the mask,

)),(maskmax(Maskmax yx (4.2)

 and set the threshold,  as: maxMask   (4.3)

where the threshold parameter is 10 ,  .

Frame 1 Frame 4

Frame 2 with MV MC Prediction Error Frame

Correlation Mask

30

Third: Divide the current correlation edge mask into 16×16 MBs and select each

MB with an average value larger than the threshold for further splitting.

 1616

AvgBlock (4.4)

Fourth: For the chosen 16×16 MB from the last step, divide the current and the

reference correlation mask into 8×8 MBs, and subtract the co-located 8×8 MBs from

each other and then test the result against correlation threshold 1 .

 |mask||mask| .

8

,

,,

ref

ji

ji

cur

jijiDiff  (4.5)

where jiDiff , is the absolute difference between two correlation masks. i and j are the

horizontal and vertical displacements.
cur

ji,mask

and

ref

ji.mask are co-located 8×8 MBs for

the current and reference frame, respectively. Next, set the threshold 1 as:

2

min

,

max

,

1

jiji DiffDiff 
 (4.6)

Then, select any 8×8 MB with its average mask value larger than the threshold for further

splitting.

 1

88 

AvgBlock . (4.7)

Fifth: Those selected 8×8 MBs from the last step can be split further into 4×4

MBs using the same procedure from above by changing the index from 8×8 to 4×4. The

threshold becomes 2 . See Figure 4.3.

31

Figure 4.3 The splitting process.

4.3.2 Merging Process

The general idea of our merging process is to replace the potential four neighbors

of 16×16 MBs that do not contain important motion content by a single 32×32 MB. The

main purpose of the merging process is to reduce the unnecessary MVs by merging the

MVs of (two, three or four) 16×16 MBs (little motion content) into one MV to represent

them. To complete the merging process, start by dividing the approximation subband

32

(LL) of the reference and the current frame into 16×16 blocks, and subtract the co-located

16×16 blocks from each other and then test the result against the threshold 3 .

 |||| .

16

,

,,

ref

ji

ji

cur

ji

LL

ji LLLLDL  (4.8)

2

min

,

max

, jiji DLDL
FD


 (4.9)

set the threshold 3 as: FD 3   , where the threshold parameter is 10 ,   .

The condition for merging is set to be: for each four neighbors of 16×16, if at least two of

the four siblings (16×16) fall under the threshold, merge the siblings to a 32×32 block

and calculate the MV for the 32 × 32 block.

4.4 VSBM Tree Construction

It is known that a quadtree data structure decomposes a maxmax 22
ll

 image frame

into an)1(0max  ll -level hierarchy, where a block at level l has a size of ll 22  ,

max00 lll  . This structure corresponds to a tree, where each ll 22  block (called a

node) either can be a leaf (i.e., it cannot be further subdivided) or can be subdivided into

four subblocks, each of size 11 22   ll . Thus, each subblock is a child node [49].

The tree can be represented by a bitstream where a “0” represents a leaf and a “1”

represents a nonleaf node. To efficiently encode such a partitioning, a two-bit coding

scheme is essential. In this scheme, each leaf or nonleaf node of the tree is represented by

a two-bit code (TBC) [50]. The first bit is used to distinguish between a leaf and a

33

nonleaf node, while the second is used to indicate whether a motion vector is being

transmitted. In the first-bit position of the code, a 0 or 1 represents, respectively, a leaf or

a nonleaf node; in the second-bit position, a 1 represents the transmission of a motion

vector and a 0 the lack of it. For example, the code “10” represents a nonleaf node with

no motion vector being transmitted, while the code “01” represents a leaf with its motion

vector being transmitted. It is noted that for a leaf with no motion vector, the decoder

uses its nearest direct ancestor’s motion vector as its own. Figure 4.4 shows an example

of TBC applied to a 32×32 MB and its sub-MBs. In this example we will transmits three

MVs. The MVs for the 16×16 and 8×8 sub-MBs are obtained from the splitting process.

The other MV for the 32×32 MB is obtained from the merging process.

Figure 4.4 An example of the TBC applied to 32×32 MB and its sub-MBs.

34

4.5 Selective Refinement Algorithm

 As a refinement for the block matching system, the research proposed a selective

algorithm for motion vector accuracy to reduce its computational burden. The subpixel

accuracy is a powerful tool to achieve high coding, but it results in huge computational

complexity since it uses a full search algorithm to find the accurate coordinate for each

motion vector [38]. To perform the subpixel motion estimation, the encoder interpolates

pixel values at subpixel positions using pixel values at integer pixel positions in reference

frames. Although the coding accuracy is highly increased by the subpixel motion

estimation, the computational complexity of this repetitive subpixel motion search is very

large in comparison with fast integer-pixel motion search. In other words, the subpixel

motion estimation without considering the macroblock characteristics is not efficient in

terms of the computational complexity. To reduce this additional complexity, a new

method of selective refinement algorithm (Figure 4.5) is developed. The basic procedure

works in the following two steps:

Step 1: Use the decision tree from the variable size block matching to decide the

size of the block. Notice that we do not include a 32×32 block in this procedure, because

we assume that most 32×32 blocks do not have detailed texture and most likely its

motion vector is close to zero.

 Step 2: Calculate the sum of absolute difference (SAD) for each 16×16 and 8×8

MBs in the correlation edge mask, and test them against a threshold 1 for 16×16 MB,

and 2 for 8×8 MB. If a selected 16×16 MB has a SAD value less than 1 , calculate half

pixel accuracy; otherwise, calculate quarter pixel accuracy. If a selected 8×8 MB has a

35

SAD value less than 2 , keep the integer accuracy unchanged; otherwise calculate half

pixel accuracy.

Figure 4.5 Selective refinement algorithm procedure.

 The SAD is a sum of absolute difference between co-located MBs in the reference

and current frame, and it can be calculated using the equation below.

 |),(),(|),(

0 0

),(, nmMnmMSAD jiref

N

m

N

n

jicurrji 
 

 (4.10)

where jiSAD , is the sum of absolute difference at),(ji -th MB,),(),(nmM jicurr is the

current frame MB, and),(),(nmM jiref
is a co-located MB in the reference frame.

36

),(nm is the pixel index within),(ji -th MB, and N is 16 or 8 depending on the block

size. We use the Equation 4.10 to calculate a combined SAD from the correlation edge

mask and approximation band. To calculate the combined SAD, we calculate the SAD

for each 16×16 MB in both the correlation edge mask and approximation band. Next, for

every four neighbors of 16×16 MBs (32×32 block size), we pick a maximum and a

minimum from these SAD values. Then, we plug these values in the equation below

4

.

min

,

.

max

,  


ji

CorrLL

ji

CorrLL SADSAD

SAD (4.11)

where  max

,CorrLLSAD is the summation of the maximum SAD values from the correlation

edge mask and approximation band; and  min

,CorrLLSAD is the summation of the minimum

SAD values from the correlation edge mask and approximation band. Finally, we set the

thresholds 1 and 2 as:  SADn 1  ; and  SADn 25.02  . The threshold

parameter is n , where 10  n .

4.6 Experimental Results

For the experiment, we use 60 frames of 352×288 "News" sequence, with

common intermediate format CIF (standard video format used in videoconferencing); and

70 frames of 144×176 "Foreman" sequence, with quarter common intermediate format

(QCIF). The sequences are grayscaled and have a temporal sampling of 25 frame/sec.

The first frame is intra-encoded (I-frame) while all subsequent frames use ME/MC (P and

37

B-frames). All wavelet transforms (RDWT) use the Daubechies 9-7 filter with symmetric

extension and a decomposition of J = 2 level. The parameters α, β and αn are 0.4, 0.68

and 0.73, respectively. The core compression engine in all experiments is SPIHT. Since

SPIHT produces an embedded coding, each frame of the sequence is coded at exactly the

specified target rate with a compression rate of 0.5 bpp for I frame and 0.25 bpp for P and

B frames. For comparison purposes, we use the peak signal-to-noise ratio (PSNR) and the

structural similarity index (SSIM) [39]. The SSIM is a method for measuring the

similarity between two images. It can be viewed as a quality measure of one of the

images being compared, provided that the other image is regarded as of perfect quality

[39].

))((

)2)(2(
),(

2

22

1

22

21

CC

CC
yxSSIM

yxyx

xyyx









 (4.12)

The mean for image x or y can be obtained using:

 



N

i

ix x
N 1

1
 (4.13)

The standard deviation for image x or y can be obtained using:

  
2/1

2

11

1

















 



N

i

xix x
N

 (4.14)

38

where N is the number of pixels, and the constant 1C and 2C are included to avoid

instability when)(22

yx   is very close to zero. 2

11)(LKC  and 2

22)(LKC  , where

L is the dynamic range of the pixel values (255 for 8-bit grayscale images), and both

11 K and 12 K are small constants.

As shown in Tables 4.1 – 4.4, the PSNR and SSIM averages of all frames were

calculated for the coding system in both spatial and RDWT domains. In RDWT, the

results include our proposed MB-VSBMC method, conventional FSBMC method (8×8

block size), and the conventional VSBMC wavelet method [40] by replacing the CODEC

from DCT to SPIHT and applying the decision criteria to the wavelet approximation

band. In addition subpixel accuracy and selective refinement algorithm are also included

for comparison. For comparisons among FSBMC, conventional VSBMC, and MB-

VSBMC, all without any sub-pixel accuracy in the RDWT; the proposed MB-VSBMC

performed the best in terms of SSIM and PSNR. For comparisons among FSBMC,

conventional VSBMC, and MB-VSBMC with sub-pixel accuracy in the RDWT; the

proposed MB-VSBMC again performed the best in terms of SSIM and PSNR. For

comparison between MB-VSBMC with sub-pixel accuracy and MB-VSBMC with

selective sub-pixel accuracy, the selective approach has computational advantage without

sacrificing much performance in terms of SSIM and PSNR.

Figure 4.6 shows the comparison of the compressed 4
th

 frame for “News”

sequence using three different block partitioning techniques in the redundant wavelet

domain. Figure 4.6.a is the original 4
th

 frame. Figure 4.6.b is the compressed frame using

FSBMC (8×8 MBs) with subpixel accuracy. Figure 4.6.c is the compressed frame using

39

MB-VSBMC with subpixel accuracy. Figure 4.6.d is the compressed frame using MB-

VSBMC with selective algorithm. Figure 4.7 also shows the comparison of a compressed

6
th

 frame for “Forman” sequence using the same three block partitioning techniques in

the redundant wavelet domain as explained in the Figure 4.6.

Figure 4.8 shows an example of partitioning results using different approaches.

Figure 4.8 (a) and (b) are the 4
th

 frame of the “News” sequence. Figure 4.8.a shows a

MB-VSBMC partitioning using 16×16, 8×8 and 4×4 block sizes for the splitting process

and 32×32 block size for merging process. The variation from the 32×32 to 4×4 block

size will result in more accuracy by capturing the motion content. Figure 4.8.b shows a

conventional VSBMC partitioning by starting to split from 32×32 down to 4×4 block

size. Figure 4.8 (c) and (d) are the 6
th

 frame of the “Foreman” sequence. Figure 4.8.c

shows a MB-VSBMC partitioning using 16×16 and 8×8 block sizes for the splitting

process and 32×32 block size for merging process. Figure 4.8.d shows a conventional

VSBMC partitioning by starting to split from 32×32 down to 8×8 block size.

Figure 4.9 shows the frame by frame comparison of PSNR for “News” sequence

using scalable compression rate of 0.5 bpp for I and P, and 0.25 bpp for B frames. Figure

4.10 shows the frame by frame comparison of PSNR for “Foreman” sequence using

scalable compression rate of 0.5 bpp for I and P, and 0.25 bpp for B frames. These two

figures are related to the results in Table 4.4.

40

Table 4.1 Comparison between conventional VSBMC and FSBMC in spatial domain.

Spatial Domain News Forman

SSIM PSNR SSIM PSNR

FSBMC 0.853 29.76 0.814 27.47

VSBMC 0.920 32.68 0.908 29.01

Table 4.2 Comparison between conventional VSBMC, FSBMC and MB-VSBMC without

 any sub-pixel accuracy.

RDWT Domain News Forman

SSIM PSNR SSIM PSNR

FSBMC 0.870 30.46 0.834 27.89

VSBMC 0.921 32.71 0.911 29.04

MB-VSBMC 0.978 33.65 0.923 30.47

Table 4.3 Comparison between conventional VSBMC, FSBMC and MB-VSBMC with sub-

 pixel accuracy.

RDWT Domain News Forman

SSIM PSNR SSIM PSNR

FSBMC+Subpixel 0.884 32.02 0.866 29.70

VSBMC+Subpixel 0.941 34.93 0.927 31.27

MB-VSBMC+Subpixel 0.987 35.71 0.934 33.06

Table 4.4 Comparison between conventional VSBMC, FSBMC and MB-VSBMC with

 either a sub-pixel accuracy or selective algorithm.

RDWT Domain News Forman

SSIM PSNR SSIM PSNR

FSBMC+Subpixel 0.884 32.02 0.866 29.70

VSBMC+Subpixel 0.941 34.93 0.927 31.27

MB-VSBMC+Subpixel 0.987 35.71 0.954 33.06

MB-VSBMC+Selective 0.986 35.56 0.942 32.81

41

(a) The original 4

th
 frame.

(b) FSBMC with subpixel accuracy.

(c) MB-VSBMC with subpixel accuracy.

(d) MB-VSBMC with selective algorithm.

Figure 4.6 The comparison of the compressed 4
th

 frame for “News” sequence using three

 different block partitioning techniques.

Original RDWT-Block

VB-RDWT + Selective Algo. VB-RDWT + Half PelVB-RDWT + Selective Algo. VB-RDWT + Half Pel

42

(a) The original 6

th
 frame.

(b) FSBMC with subpixel accuracy.

(c) MB-VSBMC with subpixel accuracy.

(d) MB-VSBMC with selective algorithm.

Figure 4.7 The comparison of the compressed 6
th

 frame for “Foreman” sequence using

 three different block partitioning techniques.

43

(a) MB-VSBMC partitioning.

(b) Conventional VSBMC partitioning.

(c) MB-VSBMC partitioning.

(d) Conventional VSBMC partitioning.

Figure 4.8 An example of partitioning results using different approaches.

Foreman Sequence Frame (4)

Proposed Algorithm

Foreman Sequence Frame (4)

Traditional VSBM

44

Figure 4.9 PSNR for “News” at 0.5 bpp for I and P, and 0.25 bpp for B frames.

Figure 4.10 PSNR for “Forman” at 0.5 bpp for I and P, and 0.25 bpp for B frames.

0 10 20 30 40 50 60
28

29

30

31

32

33

34

35

36

37

38

39

Frames Sequence Number

P
S

N
R

PSNR vs. Frames Sequence Number for News Sequences

MB-VSBMC+Subpixel

MB-VSBMC+Selective

VSBMC+Subpixel

FSBMC+Subpixel

0 10 20 30 40 50 60 70
27

28

29

30

31

32

33

34

35

36

37

Frames Sequence Number

P
S

N
R

PSNR vs. Frames Sequence Number for Fomeman Sequences

MB-VSBMC+Subpixel

MB-VSBMC+Selective

VSBMC+Subpixel

FSBMC+Subpixel

45

CHAPTER 5

OPTIMIZED MULTIBAND VARIABLE BLOCK SIZE MOTION COMPENSATION

APPROACH

5.1 Introduction

The MB-VSBMC approach discussed in the last chapter has achieved superior

performance than the other methods. However, the approach itself is not optimized in the

sense that those threshold parameters are chosen empirically. In this chapter, we will use

the rate allocation theory to choose those parameters in an optimizing fashion.

5.2 Study of the Rate Allocation Theory

Efficient compression algorithms must minimize rate as well as distortion. A

choice between different MVs or different block sizes is equivalent to a choice between

points in the rate-distortion (R-D) curve. Using a Lagrange multiplier 0 , we can find

points on the convex hull of all possible R-D pairs by solving the unconstrained problem

[28].

  )()(min BRBD
SB




 (5.1)

where S is the set of admissible bit allocations, and D(B) and R(B) are the total distortion

and rate associated with the particular allocation SB [29, 30]. Each convex hull point

for 0 is optimal in the sense that it has a lower distortion than any other possible R-D

46

pair having the same rate or less. By segmenting the image into K blocks, we can express

the total bit usage R and distortion D as:

 



K

k

kbBR
1

)((5.2)

)()(
1

k

K

k

k bEBD 


 (5.3)

where kb is the number of bits used for coding the k-th block’s motion representation

and)(kk bE is the block’s resulting distortion. Combining (5.1) through (5.3), the

unconstrained problem can be written as:

  













K

k

kkk
SB

bbE
1

)(min  (5.4)

where each term may be minimized separately [28, 31]. The decisions can be made

optimally by minimizing the objective function for each region k.

 kkk bbE  )((5.5)

This will sequentially, minimize)()(BRBD   over the entire image. This

method is called the principle of separate minimization [28]. The minimizing of the

objective function (5.5) for each separate region will result in a globally optimal solution

for the unconstrained problem (5.1).

The Lagrange multiplier  determines the relative importance of rate and

distortion. For 0 , the distortion alone is minimized, resulting in a relatively high

47

rate. For positive values of  , some increase in distortion is allowed, as long as it is

accompanied by a saving in rate.

5.3 R-D Optimized FBMC

Consider a fixed size BMC. Denote the total distortion over the k-th block kX

using motion vector),(yx  as),(yxd
kX  ; and assume that each motion vector can be

represented by a variable-length codeword (e.g., from a Huffman code table) with a

known number of bits),(yxb
kX  .

  ),(),(minarg)~,~(
,

yxbyxdyx
kk XX

yx




 (5.6)

 This allows the optimized motion vector)~,~(yx  to be chosen on the basis of rate and

distortion, rather than distortion alone.

5.4 R-D Optimized VBMC

Consider a variable size BMC and assume the quadtree structure [33-35] is

represented in this manner, i.e., two bits per merge/split decision, and that the leaf node

block X is associated with a motion vector),(yx  , which uses),(yxbX  bits and has

distortion),(yxd X  .

Consider a 11 22   ll sub-block 1lX in the quadtree, composed of four adjacent

ll 22  sub-blocks  4,3,2,1,, mX ml at level 0ll  in the quadtree. Assume the optimal

48

sub-tree structure is known for each of the four sub-blocks, and that optimal motion

vectors are known for each leaf node. Denote the total bit usage and distortion of these

optimal constituent sub-trees as)(,mlXb
 and)(,mlXd 

. Next, find an optimal motion

vector for the entire block 1lX and its incurred bit usage)~,~(
1

yxb
lX 


 and distortion

)~,~(
1

yxd
lX 


. Using the principle of separate minimization (5.4) [28], the subtrees

should be combined into a single leaf node whenever

)()()()~,~(1,

4

1

111 





   l

T

lml

m

l

T

lX XbXdXbyxd
l

 (5.7)

 The above condition can be expressed in a simpler form whenever

 bd   (5.8)

where d is the error reduction and b is the increment in the coding bits under the

condition that a block is to be divided. If the MVs are assumed to be fixed-length coded,

and each MV required mvB bits, then the total coding bits representing the motion

information can be expressed as in [36]:

 qtmv CnBB  (5.9)

where n is the number of leaves in the tree and qtC is the number of bits used for coding

a tree. Since each splitting operation produces three additional blocks, therefore, three

more motion vectors are added. The splitting condition stated above can be rewritten as

49

)3()(1

34

1

24

1

14

1

4 qtmv

l

j

l

j

l

j

l

j

l

j CBDDDDD  











  (5.10)

where
l

jD represents the prediction error of the j-th block in level l. qtC , is the

increment in the number of bits due to the partitioning of the block. Usually qtC is

equal to 4 bits.

5.5 Rate-Distortion Curve

The unconstrained rate and distortion values R(λ) and D(λ) are monotonic in the

Lagrange multiplier λ. As λ is swept through, all the convex hull points of the composite

R-D curve are traced out [66]. Thus λ could be interpreted as a quality index as it is swept

from 0 (highest rate, lowest distortion) to ∞ (lowest rate, highest distortion). Therefore,

the unconstrained problem becomes the minimization of the Lagrangian cost function

)(J defined as:

)()()( RDJ  (5.11)

All signal block combinations must be considered at a slope point λ on their R-D

curves for a given λ = |∆D/∆R|. Figure 5.1 shows an example of a composite R-D curve

with combination choices for the convex-hull points, with optimal tree structure for a

given budget constraint. In the example, we calculate the distortion and its associate bit

rate for each block-splitting combination, and then we pick the best splitting combination

that has not exceeded the bit rate budget line, and has simultaneously minimized both the

distortion and the bit rate. More details on R-D curve can be found in [66]. In this

50

chapter, we applied the rate allocation theory to our proposed MB-VSMC algorithm by

using the rate-distortion curve to optimize the threshold values for the splitting process.

Figure 5.1 Example of a composite R-D curve. Each square on the convex hull

 points represents a potential configuration for block partitions.

5.6 Distortion Measurement in RDWT

In a J -scale RDWT decomposition, each NN  block in the original spatial

domain corresponds to 13 j blocks of the same size, one in each subband [37]. The

collection of these co-located blocks is called a set. Each set contains all the different

51

phases of RDWT coefficients. In the ME procedure, block matching is used to determine

the motion of each set as a whole. Specifically, a block-matching procedure uses a cross-

subband distortion measure that sums absolute errors for each block of the set. The

coefficients from all phases in both current and reference frames contribute to the

distortion measurement [65]. Therefore, the mean absolute distortion (MADIST) can be

obtained using,

),,,(
1

),,,(
2 yxyx lykxAE

N
yxMADIST   (5.12)

The absolute error (AE) is





















),(),(),(),(

),(),(),(),(

2

1

),,,(

1111

1111

yx

refcur

yx

refcur

yx

refcur

yx

refcur

yx

yxByxByxDyxD

yxHyxHyxVyxV

yxAE

 (5.13)

where cur and ref denote subbands from the current and reference frames, respectively,

and jB , jH , jV , and jD are the baseband, horizontal, vertical, and diagonal subbands,

respectively, at scale j [65].

5.7 R-D Optimized MB-VBMC and Decision Criterion

We apply the rate-distortion theory to our new MB-VBMC approach. The whole

process is again applied in the following five steps similar to those described in chapter

four. The first three steps are basically identical to those not optimized before. They are

52

listed below for reference. However, starting in the fourth step the concept of rate

allocation theory is integrated into the splitting procedure.

5.7.1 Splitting Process Using Rate Allocation Theory

First: Create all phase correlation edge mask. The correlation edge mask acts as a

map for the decision making of the variable block size, since it highlights the edges.

|),(||),(||),(|),(mask
1

0

1

0

1

0

yxDyxHyxVyx
J

Jj

j

J

Jj

j

J

Jj

j 


 (5.14)

where 0J and 1J are the starting and ending scales, respectively, of the correlation

operation. Note that mask(x, y) is the resulting correlation image with the same

dimension as the original image. We will use all-phase correlation edge mask of the

current frame to determine which 16×16 MB is the candidate to be split by setting a

number of thresholds.

Second: determine the global maximum of the mask,

)),(maskmax(Maskmax yx (5.15)

 and set the threshold,  as

 maxMask   (5.16)

where the threshold parameter is 10 ,  .

Third: Divide the current correlation edge mask into 16×16 MBs and select each

MB with a value larger than the threshold.

53

 1616

AvgBlock (5.17)

Fourth: For the chosen MB, divide the current and the reference correlation

masks into 8×8 MBs and subtract the co-located 8×8 MBs from each other and then test

the result against the correlation threshold 1 .

 |mask||mask| .

8

,

,,

ref

ji

ji

cur

jijiDiff  (5.18)

where jiDiff , is the absolute difference between two masks. i and j are the horizontal and

vertical displacements.
cur

ji,mask

and

ref

ji.mask are co-located 8×8 MBs for the current and

reference frame, respectively.

Thus, set the threshold 1 as:

Otherwise
2

 if
2

min

,

max

,

min

,

max

,

1























 













 



jiji

jiji

DiffDiff

bd
DiffDiff






 (5.19)

 where d is the prediction error reduction and b is the increment in the coding bits

under the condition that a block is to be divided. The prediction error can be expressed as

 





4

1

1

4

n

l

nj

l

j DDd (5.20)

54

where
l

jD represents the prediction error of the j-th block in level l,
1

4





l

njD represents the

prediction error of the j-th block in sub-level l+1; and n is the number of leaves in the

tree. If the motion vectors are assumed to be fixed-length coded and each vector requires

mvB bits [6], then the total number of coding bits representing the motion information can

be expressed as:

 qtmv CnBb  (5.21)

where n is the number of leaves in the tree and qtC is the number of bits used for coding

a tree. The parameter 1 will be iterated until the threshold value of 1 satisfies the

optimization condition bd   .

Fifth: The selected 8×8 MBs can be split again using the same procedures and

equations above by changing the index 8×8 to 4×4 in block size.

5.8 Experimental Results

For the experiment, we use 60 frames of 352×288 "News" sequence (CIF); and 70

frames of 144×176 "Foreman" sequence (QCIF). The sequences are grayscaled and have

a temporal sampling of 25 frame/sec. The first frame is intra-encoded (I-frame) while all

subsequent frames use ME/MC (P and B-frames). All wavelet transforms (RDWT) use

the Daubechies 9-7 filter with symmetric extension and a decomposition of J = 2 level.

The parameters α, β and αn are 0.4, 0.68 and 0.73 respectively. For comparison purposes,

we use the peak signal-to-noise ratio (PSNR) and the structural similarity index (SSIM)

[39]. The PSNR and SSIM values were calculated for the coding system and shown in

55

Tables 5.1. The results include our proposed MB-VSBMC and conventional FSBMC

method (8×8 block size), in addition to the conventional VSBMC [40] by replacing the

CODEC algorithm from DCT to SPIHT and applying decision criteria to the wavelet

approximation band. By comparing Table 5.1 to Table 4.4, one can see that approaches

using R-D optimization have better PSNR and SSIM values.

Table 5.1 Comparison between conventional VSBMC, FSBMC and MB-VSBMC with

 either a sub-pixel accuracy or selective algorithm. The R-D optimization method

 is applied to all algorithms.

RDWT Domain News Forman

SSIM PSNR SSIM PSNR

FSBMC+Subpixel 0.887 32.72 0.867 30.42

VSBMC+Subpixel 0.944 35.56 0.928 31.55

MB-VSBMC+Subpixel 0.988 36.14 0.956 33.78

MB-VSBMC+Selective 0.987 35.97 0.946 32.92

We also did a study of the number of blocks used for each algorithm for the

optimized approach. For example, the comparison between the conventional VSBMC

algorithm and the proposed algorithm MB-VSBMC algorithm is shown in Figure 5.2.

The MB-VSBMC algorithm reduces the number of the blocks used for conventional

VSBMC by about 8-11%.

56

Figure 5.2 The number of the blocks used vs. frames sequence number for “News”

 sequence.

0 2 4 6 8 10 12 14 16 18 20
150

200

250

300

350

400

450

500

Frames Sequence Number

N
u
m

b
e
r

o
f

B
lo

c
k
s
 U

s
e
d

Number of Blocks Used vs. Frames Sequence Number

for News Sequence

Conventional VSBMC

Proposed MB-VSBMC

57

CHAPTER 6

OVERLAPPED BLOCK MATCHING IN REDUNDANT WAVELET DOMAIN

6.1 Introduction

Overlapped block-matching motion compensation (OBMC) is an enhancement to

the conventional block matching algorithm, which allows the blocks in the grid to

overlap. The pixel intensity for a pixel in a reconstructed frame is not only derived by

translating a single pixel from the reference frame, but is also affected by translating

pixels according to the MVs of neighboring blocks [67]. When the blocks overlap, the

pixel intensities are combined linearly, with the weights taken from a window function

over the block.

6.2 Overlapped Block Motion Compensation

In a conventional block-based motion prediction (Figure 6.1), each block is

motion-compensated independently of other blocks. Consequently, the motion vector for

a given block is not necessarily the same as the vectors of its adjacent blocks, even

though it is likely that the motion of the neighboring blocks is similar. This disparity

causes discontinuity among consecutive blocks in the motion-compensated frame, a

major cause of blocking artifacts. To mitigate this effect, the OBMC approach was

proposed in [41].

58

Figure 6.1 Conventional block motion compensation.

Figure 6.2 shows an OBMC approach, in which a weighted sum of multiple

predictions is used to motion-compensate each block. Let),(yxPi be a prediction of the

current block obtained from a reference block, which is weighted by matrix),(jiWi . In

OBMC, the Pi predictions of the current block are generated by using the motion vectors

of neighboring blocks. Thus, the weighted prediction is the following [42-45],

),(),(),(
~

jiWyxPyxP iii  (6.1)

where × represents element-by-element multiplication. The final prediction of the current

block is the following:

 
i

i yxPyxP),(
~

),((6.2)

59

Figure 6.2 Overlapped block motion compensation.

6.3 Weight Windows Selection

There are several types of weight windows that can be used for OBMC, and

different windows have different performances. The three popular overlapped windows

are the trapezium window, bilinear window, and raised cosine window [47], as shown in

Figure 6.3. The trapezium window is recommended in the H.263 standard [2]. Its weights

are based on experience. The values of the weights at the four corners are all zeros. The

weight values of the bilinear window are cone-like and those of the raised cosine window

are very smooth. Expressions for the weight values for the raised cosine and the bilinear

types of windows are as follows. Raised cosine: yx wwyxW ),(

60

 12,...,0for
)21(

cos1
2

1








 
 Nx

N

x
ww yx


 (6.3)

Bilinear: yx wwyxW ),(






















 12,...for

1,...0for)21(
1

12 NNxw

Nxx
Nww

xN

yx (6.4)

Figure 6.3 Three OBMC weight windows.

61

6.4 OBMC Implementation in RDWT

The implementation of OBMC in the RDWT is a straightforward adaptation of

OBMC in the spatial domain. It is well known that OBMC in the spatial domain can

increase performance greatly; thus, it has been adopted in the H.263 standard. Since

RDWT coefficients retain the “spatial coherence” of the original image; therefore,

OBMC in the RDWT domain is straightforward application. Since there are 3J +1

subbands for a J-scale decomposition, we must deploy OBMC in all the subbands in the

RDWT domain following the same procedure. The research in this section uses the

trapezium weight window to obtain the weighted prediction MBs.

 OBMC in RDWT domain uses a weighted sum of multiple predictions to motion-

compensate each block. Let),(yxPi be a prediction of the current block obtained from a

reference block. Then, the Pi predictions of the current block are generated by using the

motion vectors of itself and neighboring blocks. The weighted prediction is the following,

),(),(),(
~

jiWyxPyxP iii  (6.5)

The final prediction of the current block is the following:

 
i

i yxPyxP),(
~

),((6.6)

 In each subband, we define 8×8 MBs which are further divided into four 4×4 sub-

MBs. As illustrated in Figure 6.4, four sub-MBs within the current MB and the

neighboring eight MBs are used to form a prediction of the current MB.

62

The prediction of the selected sub-MB within the current MB, such as VA block, will be

formed using the weighted sum of three MBs; obtained through the motion vector for the

current MB),(yx  , plus the motion vectors of the two nearest neighboring MBs, one

from the vertical direction),(V

y

V

x  and one from the horizontal direction),(H

y

H

x  , as

shown in Figure 6.4. Depending on the different locations of those prediction blocks,

there are three 8×8 matrices of weighting values as illustrated in Figures 6.5 - 6.7. Those

weighting matrices are explained in detail in [41, 65, and 67]. The prediction of),(yxP

is of 8×8 block size, and can be obtained using,

   CyxPyxPyxPyxP HV /),(
~

),(
~

),(
~

),( (6.7)

where C is a constant such as three or eight. The expression),(k

y

k

x yxp  refers to

the prediction value at the position),(k

y

k

x yx  in the reference frame. The notation

k can be null, H or V. Consequently, the weighted prediction for xV is the following:

),(),(),(
~

jiWyxpyxP xyx  (6.8)

The weighed prediction for the vertical displacement is the following:

),(),(),(
~

jiWyxpyxP V

V

y

V

xV  (6.9)

The weighed prediction for the horizontal displacement is the following:

),(),(),(

~
jiWyxpyxP H

H

y

H

xH  (6.10)

63

Figure 6.4 The Block xV is predicted using the MV for block xV plus the MVs for blocks

V

xV and
H

xV . The notation x can be A, B, C or D.

Figure 6.5 Weighting values Wx , for prediction with motion vector of current block.

64

Figure 6.6 Weighting values VW , for prediction with motion vectors of the blocks on top or

 bottom of current block.

Figure 6.7 Weighting values HW , for prediction with motion vectors of the blocks to the left

 or right of current block.

6.5 Experimental Results

For the experiment, we use 60-frames of 352×288 "News" sequence, with

common intermediate format CIF (standard video format used in videoconferencing); and

70-frames of 144×176 "Foreman" sequence, with quarter common intermediate format

65

(QCIF). The sequences are grayscaled and have a temporal sampling of 25 frame/ sec.

The first frame is intra-encoded (I-frame) while all subsequent frames use ME/MC (P and

B-frames). All wavelet transforms (RDWT) use the Daubechies 9-7 filter with symmetric

extension and a decomposition of J = 2 level. The parameters α, β and αn are 0.4, 0.68

and 0.73 respectively. The core compression engine in all experiments is SPIHT. The

SPIHT produces an embedded coding. Each frame of the sequence is coded at exactly the

specified target rate with compression rate of 0.5 bpp for I frame and 0.25 bpp for P and

B frames.

Figure 6.8 shows the fast Fourier transform (FFT) analysis of the predicted frame.

Figure 6.8.a shows the FFT analysis for MB-VSBMC predicted frame without OBMC

algorithm. Figure 6.8.b shows the FFT analysis for MB-VSBMC predicted frame with

OBMC algorithm. In the comparison between (a) and (b), it is observed that the number

of high frequency components (which represent more energy) is reduced. This means that

the prediction error is also reduced. Figure 6.9 shows an example of the OBMC effect on

the blocking edge artifacts. By comparing Figure 6.9.a and Figure 6.9.b, it shows that

OBMC has reduced the blocking edge artifacts and has improved the quality.

Table 6.1 shows the comparison in terms of PSNR and SSIM values for OBMC

applied to the approaches of conventional VSBMC, FSBMC, and MB-VSBMC with

either sub-pixel accuracy or selective algorithm. When we compare the results between

Table 6.1 and Table 4.4, we can conclude that the OBMC algorithm produces better

compression quality. Usually, the OBMC approach is better than the non-OBMC

approach by about one to two dB.

66

(a) The FFT analysis for MB-VSBMC predicted frame without OBMC.

(b) The FFT analysis for MB-VSBMC predicted frame with OBMC.

Figure 6.8 FFT analysis for OBMC-related predicted frames.

67

(a) MB-VSBMC predicted frame without

 OBMC

(b) MB-VSBMC predicted frame with

 OBMC
Figure 6.9 OBMC effect on the blocking edge artifact.

Table 6.1 OBMC comparisons between conventional VSBMC, FSBMC and MB-VSBMC

 with either a sub-pixel accuracy or selective algorithm.

RDWT Domain News Forman

SSIM PSNR SSIM PSNR

FSBMC+Subpixel 0.891 33.82 0.875 31.68

VSBMC+Subpixel 0.952 36.32 0.938 32.45

MB-VSBMC+Subpixel 0.989 37.23 0.967 34.96

MB-VSBMC+Selective 0.988 36.91 0.953 34.07

68

CHAPTER 7

THREE-DIMENSIONAL VIDEO COMPRESSION IN REDUNDANT WAVELET

DOMAIN

7.1 Introduction

The 3D video technology enables various views to be integrated into a single 3D

video system. Specifically, in 3D-TV video applications, several 3D video systems have

been introduced in [51-57]. They can be classified into two classes with respect to the

amount of employed 3D geometry. A first class of 3D video systems is based on multiple

texture views of the video scene, called N-texture representation format. The N-texture

approach forms the basis for the emerging multi-view video coding (MVC) standard

currently developed by the Joint Video Team (JVT) [52]. Figures 7.1 and 7.2 have some

illustrations on this.

However, due to the significant amount of data to be stored, the main challenge of

the MVC standard is to define efficient coding and decoding tools. To this end, a number

of H.264/MPEG-4 AVC coding tools have been proposed and evaluated within the MVC

framework. The first coding tool exploits the similarity between the views by

multiplexing the captured views and encoding the resulting video stream by a modified

H.264/MPEG-4 AVC encoder [53, 54]. The second coding tool equalizes the inter-view

illumination to compensate for mismatches across the views captured by different

cameras [55]. The latest description of the standard can be found in the Joint Draft 8.0 on

Multi-view Video Coding [51].

69

Multi-view video acquisition Coding, transmission and decoding Image rendering

Figure 7.1 The N-texture Multi-view Video Coding (MVC).

Figure 7.2 Example of the N-texture Multi-view Video Coding (MVC).

70

One advantage of the above-mentioned N-texture representation format is that no

3D geometric description of the scene is required. Because 3D geometry is not used, this

3D video format allows a simple video processing chain at the encoder. However, such a

3D video representation format involves a high complexity decoder for the following

reason [56]; a multi-view display supports a varying number of views at the input, which

makes it impractical to prepare these views prior to transmission. Instead, intermediate

views should be interpolated from the transmitted reference views at the decoder, where

the display characteristics are known. To obtain high-quality interpolated views, a 3D

geometric description of the scene is necessary, thereby involving computationally

expensive calculations at the receiver side.

A second class of 3D video systems relies on a partial-3D geometric description

of the scene [57]. The scene geometry is typically described by a depth map, or depth

image, that specifies the distance between a point in the 3D world and the camera.

Typically, a depth image is estimated from two images by identifying corresponding

pixels in the multiple views; in other words, the point-correspondences that represent the

same 3D scene point. Using depth images, new views can be subsequently rendered or

synthesized using a depth Image based rendering (DIBR) algorithm. Here, the term DIBR

corresponds to a class of rendering algorithms that use depth and texture images

simultaneously to synthesize virtual images. Considering a 3D-TV application, it is

assumed that the scene is observed from a narrow field of view (short baseline distance

between cameras). As a result, a combination of only one texture and one depth video

sequence is sufficient to provide appropriate rendering quality. The 1-depth/1-texture

71

approach was recently standardized by Part 3 of the MPEG-C video specification [58-

61]. This system is illustrated in Figure 7.3. The different approaches to video

compression explained in previous chapters will be applied to texture image and depth

image.

Figure 7.3 1-depth/1-texture multiview video compression system.

7.2 Stereo Constraints/ Epipolar Constraint

When images of a scene are captured using two cameras simultaneously, these

cameras are termed a stereo-pair and produce stereo-pairs of images. The properties of

cameras so configured are determined by their epipolar geometry, which describes the

relationship between world points observed in their fields of view and the images

72

imposing on their respective sensing planes. The image-plane locations of each world

point as sensed by the camera pair are called corresponding or matched points [60, 61].

Corresponding points within stereo-pair images are connected by the fundamental matrix.

If known, it provides fundamental information on the epipolar geometry of the stereo-pair

setup. However, finding corresponding points between images is not a trivial task. There

are many factors which can confound this process, such as occlusions, limited image

resolution and quantization, distortions, noise and many others. Technically, matching is

said to be under-constrained; in other words, there is not sufficient information available

within the compared images to guarantee finding a unique match. However, matching can

be made easier by applying a set of rules known as stereo constraints, of which the most

important is the epipolar constraint, and this implies that corresponding points always lie

on corresponding epipolar lines [62].

The epipolar constraint limits the search for corresponding points from the entire

2D space to a 1D space of epipolar lines. Although the positions of the epipolar lines are

not known in advance; in the special case when stereo-pair cameras are configured with

parallel optical axes called the canonical or standard stereo system, the epipolar lines

follow the image (horizontal) scan-lines. The problem of finding corresponding points is

one of the essential tasks of computer vision. Figure 7.4 shows the epipolar geometry for

parallel pin-hole cameras.

73

Figure 7.4 Epipolar geometry.

In Figure 7.4, left epipole is the projection of Or on the left image plane. Right epipole is

the projection of Ol on the right image plane. Epipolar plane is the plane defined by P, Ol

and Or. Epipolar line is the intersection of the epipolar plane with the image plane. The

camera frames are related by a translation vector T = (Or - Ol) and a rotation matrix R.

The relation between Pl and Pr (projection of P in the left and right frames) is given by

)(TPRP lr  . The usual equations of perspective projection define the relation between

3D points and their projections [57, 69]:

 l

l

l
l P

Z

f
p  and r

r

r
r P

Z

f
p  (7.1)

74

We assume the two cameras are parallel so fl = fr . Assume parallel optical axes,

and known camera parameters (i.e., calibrated cameras), we can triangulate via similar

triangles (pl, P, pr) and (Ol, P, Or):

Z

T

fZ

xxT rl 



 or

lr xx

T
fZ


 (7.2)

Thus: lr xxd  (7.3)

where T is the stereo baseline and d measures the difference in retinal position between

two corresponding points.

7.3 Multiview Image Acquisition

To acquire multiview images, one possible approach is to capture a texture image

and the corresponding 3-D geometry of the scene. The 3-D geometry can be acquired by

recording the scene from several viewpoints. In practice, two points of view

corresponding to a left and right camera are usually employed. By comparing differences

between the two captured images, the depth (that corresponds to the 3-D geometry) can

be estimated and represented in a so-called depth image. This depth image is represented

by a gray-scale image: usually dark and bright pixels correspond to foreground and

background distance, respectively. By using a texture image and a corresponding depth

image, one can perform depth image based rendering.

75

7.4 Depth Image Based Rendering

The DIBR is a key technology in an advanced 3D television system. Traditional

3D TV system requires the transmission of two video streams, the left and right view, to

construct 3D vision. Unlike the traditional method, the advanced 3D TV system proposed

a novel technology DIBR to provide 3D vision. DIBR uses intermediate view and

intermediate depth map to render left and right view. In this way, broadcast content

providers only have to transmit the left view and gray level depth map of the intermediate

view.

Once intermediate image and depth image is given, any nearby image can be

synthesized by mapping pixel coordinates one by one according to its depth value.

However, there is an essential problem in DIBR that occlusion holes appear after pixel to

pixel mapping. Holes do appear due to sharp horizontal changes in depth image, thus the

location and size of holes differ from frame to frame. One solution to this problem is

using 3D image warping technique [63, 64]. 3D image warping maps intermediate view

pixel by pixel to left or right views according to the pixel’s depth value. In other words,

3D image warping transforms pixel locations according to their depth values. Figure 7.5

shows an example of the 3D image warping technique using the left frame and the

corresponding depth map.

76

Figure 7.5 An example of the 3D image warping technique.

7.5 System Architecture for MB-VSBMC 3-D System

The encoder of our MB-VSBMC video-coding system is depicted in the block

diagram in Figure 7.6. The depth frame is estimated using the left and right frame. The

synchronized left texture frame and its corresponding depth frame are transformed into

RDWT coefficients. Both ME and MC operations take place in the redundant wavelet

domain for texture and depth images, as shown in the figure.

In the ME procedure, block matching is used to determine the motion of each set.

Specifically, a block-matching procedure uses a cross-subband distortion that measures

the sums of absolute differences for each block of the set. An adaptive variable size

77

window is used for the block search. The all-phase correlation edge mask and

approximation subband (LL) are used to construct a multiband decision criteria for

choosing the block size.

After the block size is determined, the motion from the reference frame to the

current frame is estimated in the RDWT domain, and motion vectors are transmitted to

the decoder. Multiband MC is accomplished by using a multiple reference frames

(subbands) algorithm to generate a prediction frame. Residing in the RDWT domain, the

motion-compensated residual is itself redundant; consequently, it is down-sampled before

coding. The downsampling stage converts the overcomplete bands in RDWT to the

critical DWT to be suitable for the encoding stage. The encoding step for CODEC

consists of a set partitioning in hierarchical trees (SPIHT) algorithm for still image

compression. We will use two synchronized encoders, one for the left view sequence and

the other for its corresponding depth map.

The final step is DIBR which enables us to render the final frame to be ready for

viewing by using the synchronized predicted left frame and its corresponding predicted

depth frame.

As shown in Figure 7.6, the depth estimation process has been done in a spatial

domain before the transformation in the redundant wavelet domain. Also in Figure 7.6,

we divided the ME and MC blocks into two blocks, to indicate separate processes for the

left texture frame and its corresponding depth frame.

78

Figure 7.6 Block diagram of the MB-VSBMC 3D-video-coding system.

7.6 Experimental Results

In the experimental results we use the right and the left views for "Tiger" video,

320 frames of 352×288 pixels, with audio video interleave (AVI) DVD video format. The

sequence is RGB24 and has a temporal sampling of 30 frame/ sec. For each synchronized

right and left frame, we produced an estimated depth map. We perform ME/MC for each

left frame and its estimated depth map separately. The first frame is intra-encoded (I-

79

frame) while all subsequent frames use ME/MC (P and B-frames). All wavelet

transforms (RDWT) use the Daubechies 9-7 filter with symmetric extension and a

decomposition of J = 2 level. The parameters α and β are 0.67 and 0.58 respectively. The

core compression engine in all experiments is SPIHT. SPIHT produces an embedded

coding rate with compression rate of 1 bpp. We used the 3D image warping technique to

render and synthesize images, using a reference texture image and its corresponding

depth image.

The depth image has a low energy and does not have sharp boundaries; therefore,

it is not an easy task to obtain an accurate motion vector. Fortunately, the redundant

wavelet domain provides a good solution by retaining all the phase information and

providing a multiple prediction possibilities for motion techniques. Consequently, the

proposed MB-VSBMC approach in a 3-D system may capture more motion contents of a

depth map, and may result in better performance in terms of PSNR.

Figure 7.7 shows an example of an acquisition of 1-depth/1-texture. Figure 7.7.a

and Figure 7.7.b are the 1
st
 and 11

th
 left-frame of the “Tiger” sequence, respectively.

Figure 7.7.c and Figure 7.7.d are the corresponding depth map frames for the 1
st
 and 11

th

frame, respectively. They are produced from the left and right texture frames using a

depth estimation technique.

80

(a) 1st

left-frame of the “Tiger” sequence.

(b) 11
th

left-frame of the “Tiger” sequence.

(c) The corresponding depth map for the 1

st
.

(d) The corresponding depth map for the 11

th
.

Figure 7.7 Example of an acquisition of 1-depth/1-texture.

Figure 7.8 shows an example of MB-VSBMC block partitioning. Figure 7.8.a and

Figure 7.8.c are the correlation edge masks of the 11
th

 left-frame and its corresponding

depth map frame of the “Tiger” sequence, respectively. Figure 7.8.b and Figure 7.8.d are

the MB-VSBMC block partitionings for the 11
th

 left-frame and its corresponding depth

map frame, respectively.

Frame 1 Frame 11

Frame 1 Depth Map Frame 11 Depth Map

Frame 1 Frame 11

Frame 1 Depth Map Frame 11 Depth Map

Frame 1 Frame 11

Frame 1 Depth Map Frame 11 Depth Map

Frame 1 Frame 11

Frame 1 Depth Map Frame 11 Depth Map

81

(a) The correlation mask of the texture frame.

(b) The texture frame block partitioning.

(c) The correlation mask of depth frame.

(d) The depth frame block partitioning.

Figure 7.8 Example of MB-VSBMC block partitionings.

Figure 7.9 shows the comparison between two partitioning techniques for the

depth map for the 11
th

 frame of the “Tiger” sequence. Figure 7.9.a is the result of using a

MB-VSBMC partitioning technique. Figure 7.9.b is the result of using a conventional

VSBMC partitioning technique. Note that the MB-VSBMC approach shows superior

performance for capturing the motion content.

Correlation Mask of Original

Frame 11

Original Frame 11 with

Variable Blocks Matching

Correlation Mask of Original

Frame 11

Original Frame 11 with

Variable Blocks Matching

Correlation Mask of Depth Map

(frame 11)
Depth Map with Variable Size Block

(frame 11)

Correlation Mask of Depth Map

(frame 11)
Depth Map with Variable Size Block

(frame 11)

82

(a) The MB-VSBMC approach.

(b) The conventional VSBMC approach.

Figure 7.9 The comparison between two partitioning techniques for the depth map.

Figure 7.10 shows the 1-texture/ 1-depth comparison of the synthesized frame

using three different block partitioning approaches in the redundant wavelet domain.

Figure 7.10.a is the original synthesized 11
th

-frame of the “Tiger” sequence from left and

right frames using the N-texture technique. Figure 7.10.b is the synthesized frame

produced using the FSBMC approach with subpixel accuracy. Figure 7.10.c is the

synthesized frame produced using the MB-VSBMC approach with subpixel accuracy.

Figure 7.10.d is the synthesized frame produced using the MB-VSBMC approach with

selective algorithm.

Correlation Mask of Depth Map

(frame 11)
Depth Map with Variable Size Block

(frame 11)

Depth Map with Traditional VSBMC

(frame 11)

83

(a) N-texture technique.

(b) FSBMC approach.

(c) MB-VSBMC with subpixel accuracy.

(d) MB-VSBMC with selective algorithm.

Figure 7.10 The 1-texture/ 1-depth comparison of the synthesized frames from different

 compression techniques.

Figure 7.11 shows the frame by frame PSNR comparisons for the “Tiger”

sequence using the FSBMC with subpixel accuracy, the conventional VSBMC with

subpixel accuracy, and the MB-VSBMC with either subpixel accuracy or selective

algorithm. Table 7.1 shows an average PSNR comparison using the same techniques

Original Frame 1 RDWT-Block

VB-RDWT + Selective Algo VB-RDWT + Half-Pel Algo

Original Frame 1 RDWT-Block

VB-RDWT + Selective Algo VB-RDWT + Half-Pel Algo

Original Frame 1 RDWT-Block

VB-RDWT + Selective Algo VB-RDWT + Half-Pel Algo

Original Frame 1 RDWT-Block

VB-RDWT + Selective Algo VB-RDWT + Half-Pel Algo

84

mentioned above. The MB-VSBMC approach shows better performance than both the

FSBMC and the conventional VSBMC in terms of PSNR. The results discussed here

have included the OBMC approach.

Figure 7.11 The frame by frame PSNR comparison with a CODEC bit rate of 1 bpp.

Table 7.1 An average PSNR comparison.

RDWT Domain PSNR

FSBMC+Subpixel +OBMC 22.851

VSBMC+Subpixel+OBMC 27.329

MB-VSBMC+Subpixel+OBMC 30.011

MB-VSBMC+Selective +OBMC 29.567

0 10 20 30 40 50 60
10

15

20

25

30

35

40
PSNR Vs. Frames Sequence Number For Tiger 3D Video

Frames Sequence Number

P
S

N
R

MB-VSBMC+Subpixel

MB-VSBMC+Selective

FSBMC+Subpixel

VSBMC+Subpixel

85

CHAPTER 8

CONCLUSION

In this dissertation, we proposed a high performance video coding system based

on the idea of ME/MC in the redundant wavelet domain. As demonstrated in a number of

prior investigations in the RDWT domain, the shift variance of the usual critically

sampled DWT no longer poses a problem for the estimation of object motion. However,

as the research has demonstrated in this dissertation, the redundancy of RDWT can be

exploited for advantages other than just its mere shift invariance. Specifically, the RDWT

retains all the phases’ information of a wavelet transform and facilitates the deployment

of multiple-band evaluations for VSBMC.

The research presents a new adaptive partitioning scheme and decision criteria

that utilizes more effectively the motion content of a frame in terms of the various block

sizes. The new decision criterion partitions a given frame into variable size regions

according to the motion information of the frame. The partitioning information is

efficiently represented by a two-bit quadtree coding scheme. The frame partitioning is

accomplished by first splitting and then merging processes.

 In addition, the research investigates the rate allocation theory in the redundant

wavelet domain to optimize the selection process of the block size. In view of the fact

that an optimal partitioning scheme should minimize the coding rate as well as the

prediction error of a frame, a choice between different MVs or different block sizes is

86

equivalent to a choice between points in the Rate-Distortion plane. This can be achieved

by using the Lagrange multiplier method and solving the unconstrained problem.

The dissertation also proposed a selective subpixel accuracy algorithm for

estimating the motion vector with a multiband approach. The selective subpixel approach

reduces the computations produced by the conventional subpixel approach while

maintaining almost the same accuracy. To enhance the quality of the system, the research

applies the OBMC approach to mitigate the effects of blocking artifacts caused by the

discontinuity among consecutive blocks in the motion-compensated frame.

In view of the fact that the 3D technology has been one of the fastest growing

technologies in the recent years, the research extends the applications of the proposed

MB-VSBMC to the 3D stereoscopic video coding system. The research approach is

based on the structure of 1-texture/1-depth techniques and has employed the depth-based

rendering to reconstruct the desired stereo views for each video frame.

Finally, the MB-VSBMC in redundant wavelet domain proposed in this

dissertation follows the fact that the modern video systems are built upon a large

collection of diverse techniques, all of which improve the system performance to various

degrees. On future trend is to study the effectiveness of the algorithm using a content-

driven rate-quality approach. In this case, the mean square error approach is no longer a

valid criterion or measure of quality. The focus will change from rate distortion to rate

quality optimization. It will require new quality assessment metrics and artifact detection

methods related to the human perceptual responses.

87

REFERENCES

[1] J. R. Jain and A. K. Jain, “Displacement measurement and its application interframe

 image coding,” IEEE Transactions on Communications, vol. 29, no. 12, pp.1799–

 1808, December 1981.

[2] ITU-T, Video Coding for Low Bitrate Communication, November 1995, ITU-T

 Recommendation H.263, Version 1.

[3] ITU-T, Video Coding for Low Bitrate Communication, January 1998, ITU-T

 Recommendation H.263, Version 2.

[4] ISO/IEC 14496-2, Information Technology—Coding of Audio-Visual Objects— Part

 2: Visual, 1999, MPEG-4 Coding Standard.

[5] H. W. Park and H. S. Kim, “Motion estimation using low-band-shift method for

 wavelet-based moving-picture coding,” IEEE Transactions on Image Processing,

 vol. 9, no. 4, pp. 577–587, April 2000.

[6] H. S. Kim and H. W. Park, “Wavelet-based moving-picture coding using shift

 invariant motion estimation in wavelet domain,” Signal Processing: Image

 Communication, vol. 16, no. 7, pp. 669–679, April 2001.

[7] X. Li, L. Kerofsky, and S. Lei, “All-phase motion compensated prediction in the

 wavelet domain for high performance video coding,” in Proceedings of the

 International Conference on Image Processing, Thessaloniki, Greece, October

 2001, vol. 2, pp. 538–541.

[8] X. Li and L. Kerofsky, “High-performance resolution-scalable video coding via all-

 phase motion-compensated prediction of wavelet coefficients,” in Visual

 Communications and Image Processing, C.-C. J. Kuo, Ed. Proc. SPIE 4671, January

 2002, pp. 1080–1090.

[9] X. Li and S. Lei, “Efficient motion field representation in the wavelet domain for

 video compression,” in Proceedings of the International Conference on Image

 Processing, Rochester, NY, September 2002, vol. 3, pp. 257–260.

[10] G. Van der Auwera, A. Munteanu, P. Schelkens, and J. Cornelius, “Scalable

 wavelet video-coding with in-band prediction—The bottom-up overcomplete

 discrete wavelet transform,” in Proceedings of the International Conference on

 Image Processing, Rochester, NY, September 2002, vol. 3, pp. 725–728.

88

[11] James E. Fowler, “Analysis of Redundant-Wavelet Multihypothesis for Motion

 Compensation,” In Proceedings of the IEEE Data Compression Conference, J. A.

 Storer and M. Cohn, Eds., Snowbird, UT, March 2006, pp. 352.361.

[12] Suxia Cui and Yonghui Wang, "Redundant Wavelet Transform in Video Signal

 Processing," International Conference on Image Processing, Computer Vision, &

 Pattern Recognition (IPCV.06).

[13] P. Dutilleux, “An implementation of the “algorithme `a trous” to compute the

 wavelet transform,” in Wavelets: Time-FrequencyMethods and Phase Space, J.-

 M.Combes, A. Grossman, and P. Tchamichian,Eds., pp. 298–304. Springer Verlag,

 Berlin, Germany, 1989, Proceedings of the International Conference, Marseille,

 France, December 14–18, 1987.

[14] S. Cui, Y. Wang, and J. E. Fowler, “Multihypothesis motion compensation in the

 redundant wavelet domain,” In Proceedings of the International Conference on

 Image Processing, Barcelona, Spain, September 2003, vol. 2, pp. 53.56.

[15] James E. Fowler, Suxia Cui and Yonghui Wang, “Motion Compensation Via

 Redundant- Wavelet Multihypothesis,” IEEE Transactions on Image Processing,

 October 2006 vol. 15, pp. 3102-3113.

[16] T. Koga, K. Iinuma, A. Hirano, Y. Iijima and T. Ishiguro, "Motion compensated

 interframe coding for video conferencing,” in Proc. Nat. Telecommun. Conf., New

 Orleans, LA, 1981, pp .G5.3.1-G5.3.5.

[17] J. Jain and A. Jain, "Displacement measurement and its application in interframe

 image coding," Communications, IEEE Transactions, vol. 29, pp. 1799-1808,

 1981.

[18] L. Reoxiang, Z. Bing, and M. L. Liou, "A new three-step search algorithm for

 block motion estimation," Circuits and Systems for Video Technology, IEEE

 ransactions, vol. 4, pp. 438-442, 1994.

[19] P. Lai-Man and M. Wing-Chung, "A novel four-step search algorithm for fast

 block motion estimation," Circuits and Systems for Video Technology, IEEE

 Transactions, vol. 6, pp. 313-317, 1996.

[20] K. Jong-Nam, B. Sung-Cheal, and A. Byung-Ha, "Fast full search motion

 estimation algorithm using various matching scans in video coding," Systems,

 Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions, vol.

 31, pp. 540-548, 2001.

89

[21] Y. Wang, J. Ostermann, and Y. Q. Zhang, Video Processing and Communications:

 Prentice Hall, 2002.

[22] R. Injong, G. Martin, S. Muthukrishnan, and R. Packwood, "Quad-tree structured

 variable-size block-matching motion estimation with minimal error," Circuits and

 Systems for Video Technology, IEEE Transactions, vol. 10, pp. 42-50, 2000.

[23] G. R. Martin, R. A. Packwood, and I. Rhee, "Variable size block matching motion

 estimation with minimal error," in Proceedings of SPIE, Digital Video

 Compression: Algorithms and Technologies 1996, pp. 324-333.

[24] K.H. Lee, J.H. Choi, B.K. Lee, and D.G. Kim “Fast Two-Step Half-Pixel Accuracy

 Motion Vector Prediction,” Electronics Letters, vol. 36, pp. 625-627, Mar. 2000.

[25] X. Li and C. Gonzales, “A Locally Quadratic Model of the Motion Estimation

 Error Criterion Function and Its Application to Subpixel Interpolation,” IEEE

 Trans. Circuts Syst. Video Technol., vol. 6, pp. 118-122, Feb. 1996.

[26] B. Girod, “Motion-compensating prediction with fractional-peel accuracy”, IEEE

 Trans. Comm., vol. 41, no. 4, pp. 604–612, Apr. 1993.

[27] A. Said and W. A. Pearlman, “A new, fast, and efficient image codec based on set

 partitioning in hierarchical trees,” IEEE Transactions on Circuits and Systems for

 Video Technology, vol. 6, no. 3, pp. 243–250, June 1996.

[28] Gary J. Sullivan and Richard L. Baker, “Rate – Distortion Optimized Motion

 Compensation For Video Compression Using Fixed or Variable Size Blocks,”

 Global Telecommunications Conference, 1991, pp. 85-90.

[29] Y. Shoham and A. Gersho, “Efficient codebook allocation for an arbitrary set of

 vector quantizers,” in IEEE Int. Conf. on Acoust., Speech, Signal Processing

 (ICASSP), pp. 43.7.1-4, 1985.

[30] Y. Shoham and A. Gersho, “Efficient bit allocation for an arbitrary set of

 quantizes,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-36, pp.

 1445-1453, Sept. 1988.

[31] H. Everett III, “Generalized Lagrange multiplier method for solving problems of

 optimum allocation of resources,” Operations Research, vol. 11, pp. 399- 417,

 1963.

[32] M. H. Chan, Y. B. Yu, and A. G. Constantinides, “Variable size block matching

 motion compensation with applications to video coding,” IEE Proceedings, vol.

 137, Part 1, pp. 205-212, Aug. 1990.

90

[33] G. J. Sullivan and R. L. Baker, “Efficient quadtree coding of images and video,” in

 IEEE Int. Conf. on Acoust., Speech, Signal Processing (ICASSP), pp. 2661-2664,

 May 1991.

[34] D. J. Vaisey and A. Gersho, “Variable block-size image coding,” IEEE Int. Conf.

 on Acoust., Speech, Signal Processing (ICASSP), pp. 25.1.1-4, Apr. 1987.

[35] P. Strobach, “Tree-structured scene adaptive coder,” IEEE Trans. Commun., vol.

 COM-38, pp. 477-486, Apr. 1990.

[36] J. Zhang, M. Omair and M. Swamy, "New windowing techniques for variable-size

 block motion compensation," IEEE Proc.Vis. Image Signal Processing, vol. 145,

 No. 6, December 1998.

[37] S. Cui, Y. Wang, and J. E. Fowler, “Mesh-based motion estimation and

 compensation in the wavelet domain using a redundant transform,” in Proceedings

 of the International Conference on Image Processing, Rochester, NY, September

 2002, vol. 1, pp. 693–696.

[38] Jooyoung Jung, et al. "Fast Subpel Motion Estimation Using Selective Motion

 Vector Accuracy of Inter-Mode Decision for H.264/AVC,” IEEE International

 Symposium on Industrial Electronics (ISlE 2009) Seoul Olympic Parktel, Seoul,

 Korea July 5-8, 2009.

[39] Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, "Image quality

 assessment: From error visibility to structural similarity," IEEE Transactions on

 Image Processing 13, 600-612 (2004).

[40] J. Lee, “Optimal quadtree for variable block size motion estimation,” ICIP.96,

 1996, vol.3, pp. 480 .483.

[41] S. Nogaki and M. Ohta, “An overlapped block motion compensation for high

 quality motion picture coding,” in Proceedings of the IEEE International

 Symposium on Circuits and Systems, San Diego, CA, May 1992, vol. 1, pp. 184–

 187.

[42] M. T. Orchard and G. J. Sullivan, “Overlapped block motion compensation: An

 estimation-theoretic approach,” IEEE Transactions on Image Processing, vol. 3,

 no. 5, pp. 693–699, September 1994.

[43] J. K. Su and R. M. Mersereau, “Motion estimation methods for overlapped block

 motion compensation,” IEEE Trans. Image Processing, vol. 9, pp. 1509–1521,

 2000.

91

[44] W. Zheng, Y. Shishikui, and M. Naemura, “Analysis of overlapped block motion

 compensation based on a statistical motion distribution model,” Proceedings of the

 International Conference on Image Processing, vol. 3, pp. 522–525, 2001.

[45] R. Rajagopalan, E. Feig, T. Orchard and J. Watson, “Motion Optimization of

 Ordered Blocks for Overlapped Block Motion Compensation,” Circuits and

 Systems for Video Technology, IEEE Transactions on Apr 1998, pp. 119 – 123.

[46] Gary J. Sullivan and Michael T. Orchard, “Methods of reduced-complexity

 overlapped block motion compensation,” Proceedings. ICIP-94., IEEE

 International Conference, vol.2, pp. 957-961.

[47] J. Chen, J. Xu, D. Xiang and C. Geng, “Implementation of Multiple Macroblock

 Mode Overlapped Block Motion Compensation for Wavelet Video Coding,” Circuits

 Systems Signal Processing, vol. 26, No. 1, 2007, pp. 55–67.

[48] H. Watanabe and S. Singhal, “Windowed Motion Compensation,” In Proc. of SPIE

 Conf. on Visual Commun. and Image Proc., vol. 1605, Pt. 2, pp. 582-589, Nov.

 1991.

[49] J. Zhang, M. Omair, and M. Swamy," A New Variable Size Block Motion

 Compensation," In Proceedings of the IEEE1997, pp. 164-167.

[50] J. Zhang, M. Omair, and M. Swamy, “New windowing techniques for variable-size

 block motion compensation,” IEEE Proc.Vis. Image Signal Process., vol. 145, No.

 6, December 1998.

[51] W. Matusik and H. Pfister, “3D TV: a scalable system for real-time acquisition,

 transmission, and autostereoscopic display of dynamic scenes,” ACM Transactions

 on Graphics, vol. 23, no. 3, pp. 814–824, 2004.

[52] A. Vetro, P. Pandit, H. Kimata, A. Smolic, and Y.-K.Wang, “Joint draft 8.0 on

 multiview video coding.” Joint Video Team (JVT) of ISO/IEC MPEG ITU-T VCEG

 ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6, July 2008.

[53] U. Fecker and A. Kaup, “H.264/AVC compatible coding of dynamic light fields

 using transposed picture ordering,” in Proceedings of the European Signal

 Processing Conference (EUSIPCO), vol. 1, (Antalya, Turkey), September 2005.

[54] P. Merkle, K. Mueller, A. Smolic, and T.Wiegand, “Efficient compression of multi-

 view video exploiting inter-view dependencies based on H.264/MPEG4-AVC,” in

 IEEE International Conference on Multimedia and Expo, (Toronto, Canada), pp.

 1717–1720, July 2006.

92

[55] J. H. Kim, P. Lai, J. Lopez, A. Ortega, Y. Su, P. Yin, and C. Gomila, “New coding

 tools for illumination and focus mismatch compensation in multiview video

 coding,” IEEE Transactions on Circuits and Systems for Video Technology, vol.

 17, No. 11, pp. 1519–1535, 2007.

[56] Yannick Morvan, Dirk Farin and Peter H.N,"System Architecture for Free-

 Viewpoint Video and 3D-TV," IEEE Transactions on Consumer Electronics, Vol.

 54, No. 2, May 2008.

[57] C. Fehn, “Depth-image-based rendering (DIBR), compression, and transmission

 for a new approach on 3D-TV,” in Proceedings of the SPIE, Stereoscopic Displays

 and Virtual Reality Systems XI, vol. 5291, pp. 93–104, 2004.

[58] A. Bourge and C. Fehn, “White paper on ISO/IEC 23002-3 auxiliary video data

 representations,” ISO/IEC JTC1/SC29/WG11/N8039, April 2006.

[59] Y. Luo, Z. Zhang, and P. An, “Stereo video coding based on frame estimation and

 interpolation,” IEEE Trans. on Broadcast. 49, pp. 14.21, 2003.

[60] Y. Morvan, D. Farin, and P. H. N. deWith, “Design considerations for a 3D-TV

 video coding architecture,” in IEEE International Conference on Consumer

 Electronics, January 2008.

[61] Y. Morvan, “Acquisition, compression and rendering of depth and texture for

 multi-view video”, PhD thesis, Eindhoven University of Technology, 2009.

[62] Applications and Requirements for Stereo-scopic Video (SSV). ISO/IEC JTC1/

 SC29/ WG11 Bangkok, Thailand, January 2006.

[63] Y. Morvan, P. H. N. de With, and D. Farin, “Platelet-based coding of depth maps

 for the transmission of multiview images,” in Proceedings of the SPIE,

 Stereoscopic Displays and Virtual Reality Systems XIII, vol. 6055, (San Jose,

 USA), p. 60550K, January 2006.

[64] L. McMillan, “An Image-Based Approach to Three-Dimensional Computer

 Graphics,” PhD thesis, University of North Carolina, Chapel Hill, USA, April

 1997.

[65] S. Cui, “Motion Estimation and Compensation in the Redundant Wavelet Domain,”

 PhD thesis, Mississippi State University, 2003.

[66] Kannan Ramchandran and Martin Vetterli, “Best Wavelet Packet Bases in a Rate-

93

 Distortion Sense,” IEEE Trans. On image processing. Vol. 2, NO. 2, pp. 160-175,

 April 1993.

[67] H. Watanabe and S. Singhal. “Windowed motion compensation,” In Visual

 Communications and Image Processing 91, Vol. 1605, pp. 582-589, 1991.

[68] Y. Morvan, D. Farin, P. H. N. de With, “Depth-Image Compression based on an R-

 D Optimized Quadtree Decomposition for the Transmission of Multiview Images,”

 in Proceedings of the IEEE International Conference on Image Processing (ICIP),

 San Antonio, TX, USA, September 2007, pp. V-105–108.

[69] Y. Mori, N. Fukushima, T. Fujii, and M. Tanimoto, “View Generation with 3D

 Warping Using Depth Information for FTV,” in Proceedings of 3DTV-Conference,

 pp. 229-232, 2008.

94

APPENDIX

MATLAB CODE

% Main code for 2D MB-VSBMC in RDWT
% Ahmed Suliman 23 Feb 2010
clear all
close all
clc
tic

% Create a new AVI file to store the output AVI file
aviobj = avifile('test_out.avi','fps',25,'COMPRESSION','None');
% Initialize motion Vectors for splitting process
motionVect=zeros(2,256);
motionVect1=zeros(2,1024);
motionVect2=zeros(2,4096);
%flag to tell if B frame was predicted from I or P frame
%flag=1 P frame & flag=0 I frame & flag=2 both I & P
flag=0;
% Collect info about input file
mov=aviread('test.avi');
movinfo=aviinfo('test.avi');
noframe=movinfo.NumFrames;
% 3 Steps ME algo initialization
% mbSize indicate the Max MB size used for ME (splitting process)
mbSize = 16;
%p for search area
p = 7;
%%%
global I1d_LH P4d_LH P7d_LH I10d_LH B2d_LH B3d_LH B5d_LH B6d_LH B8d_LH

B9d_LH
global I1d_HH P4d_HH P7d_HH I10d_HH B2d_HH B3d_HH B5d_HH B6d_HH B8d_HH

B9d_HH
global I1d_HL P4d_HL P7d_HL I10d_HL B2d_HL B3d_HL B5d_HL B6d_HL B8d_HL

B9d_HL
global I1d P4d P7d I10d B2d B3d B5d B6d B8d B9d
%%%
% Extract I frame
framedata=aviread('test.avi',1);
I1=frame2im(framedata);
I_1=imresize(I1,[256 256]);
I1=rgb2gray(I_1);
I1=double(I1);
% Transfer I frame into RDWT
h = daubcqf(6);
[ll_lev2,yh,L] = mrdwt(I1,h,1);
N = 256;
lh = yh(:,1:N);

95

hl = yh(:,N+1:2*N);
hh = yh(:,2*N+1:3*N);
% Store the feedback buffer frame
JQ=ll_lev2;
bufferI1= mirdwt(JQ,yh,h,1);
c= makeLayers(JQ);
% Calling decoder
identifier=1;
decoder1(c,motionVect,identifier,flag);
identifier=1;
decoder_I(c,1,motionVect,identifier,flag);
% Calculat frame by frame PSNR
ESpsnr(1) = imgPSNR(I1_Dec, frame_1, 255);
%+++
% Group frames intio I, P and B
% Initialization
 k=1;
% Extracting frames from input
for i=1:10:10
 i
 if i~=1
 j=i-round(i/10);
 [B2,B3,P4,B5,B6,P7,B8,B9,I10]=GOP(j);
 elseif i==1
 j=i;
 [B2,B3,P4,B5,B6,P7,B8,B9,I10]=GOP(j);
 end

% Start to predict P4 from I1
% Obtain all phase correlation mask
Mask_R=Corr_Mask(I1);
Mask_t=Corr_Mask(P4);
% ME/MC for all bands in frame 4
[bufferP4,streamP4,motionVect]=compensatedFrame_Mod(P4,I1,Mask_R,mbSize

,p);
c4= makeLayers(streamP4);
%calling decoder
identifier=4;
%decoder
decoder1(c4,motionVect,identifier,flag);
[bufferP4_LH,streamP4_LH,motionVect,motionVect14]=compensatedFrame_LH_M

od(P4,I1,Mask_R,Mask_t,mbSize,p,motionVect,1);
c_LH= makeLayers(streamP4_LH);
%calling decoder
identifier=4;
%decoder
decoder_LH(c_LH,1,motionVect,identifier,flag);
[bufferP4_HL,streamP4_HL,motionVect]=compensatedFrame_HL_Mod(P4,I1,Mask

_R,Mask_t,mbSize,p,motionVect,1);
c_HL= makeLayers(streamP4_HL);
%calling decoder
identifier=4;
%decoder

96

decoder_HL(c_HL,1,motionVect,identifier,flag);
[bufferP4_HH,streamP4_HH,motionVect]=compensatedFrame_HH_Mod(P4,I1,Mask

_R,Mask_t,mbSize,p,motionVect,1);
c_HH= makeLayers(streamP4_HH);
%calling decoder
identifier=4;
%decoder
decoder_HH(c_HH,1,motionVect,identifier,flag);
% Retrived reconstructed frame
yh1=[P4d_LH,P4d_HL,P4d_HH];
frame_4= mirdwt(P4d,yh1,h,1);
% Calculate frame by frame PSNR
ESpsnr(k+3) = imgPSNR(P4, frame_4, 255);

% ME/MC for all bands in frame 2
[B2t ,motionVect,motionVect1] =

bFrameProc_Mod(B2,bufferI1,bufferP4,Mask_R,Mask_t,mbSize,p);
c= makeLayers(B2t);
%calling decoder
flag=2;
identifier=2;
decoder1(c,motionVect,identifier,flag);
[B2t_LH ,motionVect,motionVect1, flag] =

bFrameProc1_LH_Mod(B2,bufferI1,bufferP4_LH,Mask_R,Mask_t,mbSize,p);
c_LH= makeLayers(B2t_LH);
%calling decoder
identifier=2;
%decoder
decoder_LH(c_LH,1,motionVect,identifier,flag);
[B2t_HL ,motionVect,motionVect1, flag] =

bFrameProc1_HL_Mod(B2,bufferI1,bufferP4_HL,Mask_R,Mask_t,mbSize,p);
c_HL= makeLayers(B2t_HL);
identifier=2;
%decoder
decoder_HL(c_HL,1,motionVect,identifier,flag);
[B2t_HH ,motionVect,motionVect1, flag] =

bFrameProc1_HH_Mod(B2,bufferI1,bufferP4_HH,Mask_R,Mask_t,mbSize,p);
c_HH= makeLayers(B2t_HH);
%calling decoder
identifier=2;
%decoder
decoder_HH(c_HH,1,motionVect,identifier,flag);
% Retrived reconstructed frame
yh2=[B2d_LH,B2d_HL,B2d_HH];
frame_2= mirdwt(B2d,yh2,h,1);
% Calculate frame by frame PSNR
ESpsnr(k+1) = imgPSNR(B2, frame_2, 255);

% ME/MC for all bands in frame 3
[B3t ,motionVect,motionVect1] =

bFrameProc_Mod(B3,bufferI1,bufferP4,Mask_R,Mask_t,mbSize,p);
c= makeLayers(B3t);
%calling decoder

97

identifier=3;
decoder1(c,motionVect,identifier,flag);
[B3t_LH ,motionVect,motionVect1, flag] =

bFrameProc1_LH_Mod(B3,bufferI1,bufferP4_LH,Mask_R,Mask_t,mbSize,p);
c_LH= makeLayers(B3t_LH);
%calling decoder
identifier=3;
%decoder
decoder_LH(c_LH,1,motionVect,identifier,flag);
[B3t_HL ,motionVect,motionVect1, flag] =

bFrameProc1_HL_Mod(B3,bufferI1,bufferP4_HL,Mask_R,Mask_t,mbSize,p);
c_HL= makeLayers(B3t_HL);
%calling decoder
identifier=3;
%decoder
decoder_HL(c_HL,1,motionVect,identifier,flag);
[B3t_HH ,motionVect,motionVect1, flag] =

bFrameProc1_HH_Mod(B3,bufferI1,bufferP4_HH,Mask_R,Mask_t,mbSize,p);
c_HH= makeLayers(B3t_HH);
%calling decoder
identifier=3;
%decoder
decoder_HH(c_HH,1,motionVect,identifier,flag);
% Retrived reconstructed frame
yh3=[B3d_LH,B3d_HL,B3d_HH];
frame_3= mirdwt(B3d,yh3,h,1);
% Calculate frame by frame PSNR
ESpsnr(k+2) = imgPSNR(B3, frame_3, 255);

% ME/MC for all bands in frame 7
% Predicting p7 from p4
[bufferP7,streamP7,motionVect]=compensatedFrame_Mod(P7,P4,Mask_t,mbSize

,p);
c= makeLayers(streamP7);
%calling decoder
identifier=7;
decoder1(c,motionVect,identifier,flag);
[bufferP7_LH,streamP7_LH,motionVect,motionVect17]=compensatedFrame_LH_M

od(P7,P4,Mask_t,Mask_t2,mbSize,p,motionVect,1);
c_LH= makeLayers(streamP7_LH);
%calling decoder
identifier=7;
%decoder
decoder_LH(c_LH,1,motionVect,identifier,flag);
[bufferP7_HL,streamP7_HL,motionVect]=compensatedFrame_HL_Mod(P7,P4,Mask

_t,Mask_t2,mbSize,p,motionVect,1);
c_HL= makeLayers(streamP7_HL);
%calling decoder
identifier=7;
%decoder
decoder_HL(c_HL,1,motionVect,identifier,flag);
[bufferP7_HH,streamP7_HH,motionVect]=compensatedFrame_HH_Mod(P7,P4,Mask

_t,Mask_t2,mbSize,p,motionVect,1);

98

c_HH= makeLayers(streamP7_HH);
%calling decoder
identifier=7;
%decoder
decoder_HH(c_HH,1,motionVect,identifier,flag);
% Retrived reconstructed frame
yh7=[P7d_LH,P7d_HL,P7d_HH];
frame_7= mirdwt(P7d,yh7,h,1);
% Calculate frame by frame PSNR
ESpsnr(k+6) = imgPSNR(P7, frame_7, 255);

% ME/MC for all bands in frame 5
[B5t, motionVect ,motionVect1] =

bFrameProc_Mod(B5,P4,bufferP7,Mask_t,Mask_t2,mbSize,p);
c= makeLayers(B5t);
flag=0;
%calling decoder
identifier=5;
decoder1(c,motionVect,identifier,flag);
[B5t_LH ,motionVect,motionVect1, flag] =

bFrameProc1_LH_Mod(B5,P4,bufferP7_LH,Mask_t,Mask_t2,mbSize,p);
c_LH= makeLayers(B5t_LH);
%calling decoder
identifier=5;
%decoder
decoder_LH(c_LH,1,motionVect,identifier,flag);
[B5t_HL ,motionVect,motionVect1, flag] =

bFrameProc1_HL_Mod(B5,P4,bufferP7_HL,Mask_t,Mask_t2,mbSize,p);
c_HL= makeLayers(B5t_HL);
%calling decoder
identifier=5;
%decoder
decoder_HL(c_HL,1,motionVect,identifier,flag);
[B5t_HH ,motionVect,motionVect1, flag] =

bFrameProc1_HH_Mod(B5,P4,bufferP7_HH,Mask_t,Mask_t2,mbSize,p);
c_HH= makeLayers(B5t_HH);
%calling decoder
identifier=5;
%decoder
decoder_HH(c_HH,1,motionVect,identifier,flag);
% Retrived reconstructed frame
yh5=[B5d_LH,B5d_HL,B5d_HH];
frame_5= mirdwt(B5d,yh5,h,1);
% Calculate frame by frame PSNR
ESpsnr(k+4) = imgPSNR(B5, frame_5, 255);

% ME/MC for all bands in frame 6
[B6t, motionVect,motionVect1] =

bFrameProc_Mod(B6,P4,bufferP7,Mask_t,Mask_t2,mbSize,p);
c= makeLayers(B6t);
%calling decoder
identifier=6;
decoder1(c,motionVect,identifier,flag);

99

[B6t_LH ,motionVect,motionVect1, flag] =

bFrameProc1_LH_Mod(B6,P4,bufferP7_LH,Mask_t,Mask_t2,mbSize,p);
c_LH= makeLayers(B6t_LH);
%calling decoder
identifier=6;
%decoder
decoder_LH(c_LH,1,motionVect,identifier,flag);
[B6t_HL ,motionVect,motionVect1, flag] =

bFrameProc1_HL_Mod(B6,P4,bufferP7_HL,Mask_t,Mask_t2,mbSize,p);
c_HL= makeLayers(B6t_HL);
%calling decoder
identifier=6;
%decoder
decoder_HL(c_HL,1,motionVect,identifier,flag);
[B6t_HH ,motionVect,motionVect1, flag] =

bFrameProc1_HH_Mod(B6,P4,bufferP7_HH,Mask_t,Mask_t2,mbSize,p);
c_HH= makeLayers(B6t_HH);
%calling decoder
identifier=6;
%decoder
decoder_HH(c_HH,1,motionVect,identifier,flag);
% Retrived reconstructed frame
yh6=[B6d_LH,B6d_HL,B6d_HH];
frame_6= mirdwt(B6d,yh6,h,1);
% Calculate frame by frame PSNR
ESpsnr(k+5) = imgPSNR(B6, frame_6, 255);

% Processing on I10 frame
% Transfer I frame into RDWT
h = daubcqf(6);
[ll_lev221,yh2,L] = mrdwt(I10,h,1);
N = 256;
lh_le = yh2(:,1:N);
hl_le = yh2(:,N+1:2*N);
hh_le = yh2(:,2*N+1:3*N);
streamI10=ll_lev221;
bufferI10=mirdwt(streamI10,yh2,h,1);
% Obtain all phase correlation mask
Mask_le=Corr_Mask(I10);
c= makeLayers(streamI10);
%calling decoder
identifier=10;
decoder1(c,motionVect,identifier,flag);
identifier=10;
decoder_LH(lh_le,1,motionVect,identifier,flag);
decoder_HL(hl_le,1,motionVect,identifier,flag);
decoder_HH(hh_le,1,motionVect,identifier,flag);
% Retrived reconstructed frame
yh10=[I10d_LH,I10d_HL,I10d_HH];
frame_10= mirdwt(I10d,yh10,h,1);
% Calculate frame by frame PSNR
ESpsnr(k+9) = imgPSNR(I10, frame_10, 255);

100

% ME/MC for all bands in frame 8
[B8t, motionVect, motionVect1] =

bFrameProc_Mod(B8,P7,streamI10,Mask_le,Mask_t2,mbSize,p);
c= makeLayers(B8t);
flag=2;
%calling decoder
identifier=8;
decoder1(c,motionVect,identifier,flag);
[B8t_LH ,motionVect, motionVect1, flag] =

bFrameProc1_LH_Mod(B8,P7,I10d_LH,Mask_le,Mask_t2,mbSize,p);
c_LH= makeLayers(B8t_LH);
%calling decoder
identifier=8;
%decoder
decoder_LH(c_LH,1,motionVect,identifier,flag);
[B8t_HL ,motionVect, motionVect1, flag] =

bFrameProc1_HL_Mod(B8,P7,I10d_HL,Mask_le,Mask_t2,mbSize,p);
c_HL= makeLayers(B8t_HL);
%calling decoder
identifier=8;
%decoder
decoder_HL(c_HL,1,motionVect,identifier,flag);
[B8t_HH ,motionVect, motionVect1, flag] =

bFrameProc1_HH_Mod(B8,P7,I10d_HH,Mask_le,Mask_t2,mbSize,p);
c_HH= makeLayers(B8t_HH);
%calling decoder
identifier=8;
%decoder
decoder_HH(c_HH,1,motionVect,identifier,flag);
% Retrived reconstructed frame
yh8=[B8d_LH,B8d_HL,B8d_HH];
frame_8= mirdwt(B8d,yh8,h,1);
% Calculate frame by frame PSNR
ESpsnr(k+7) = imgPSNR(B8, frame_8, 255);

% ME/MC for all bands in frame 9
[B9t, motionVect, motionVect1] =

bFrameProc_Mod(B9,P7,streamI10,Mask_le,Mask_t2,mbSize,p);
c= makeLayers(B9t);
%calling decoder
identifier=9;
decoder1(c,motionVect,identifier,flag);
[B9t_LH ,motionVect, motionVect1, flag] =

bFrameProc1_LH_Mod(B9,P7,I10d_LH,Mask_le,Mask_t2,mbSize,p);
c_LH= makeLayers(B9t_LH);
%calling decoder
identifier=9;
%decoder
decoder_LH(c_LH,1,motionVect,identifier,flag);
[B9t_HL ,motionVect, motionVect1, flag] =

bFrameProc1_HL_Mod(B9,P7,I10d_HL,Mask_le,Mask_t2,mbSize,p);
c_HL= makeLayers(B9t_HL);
%calling decoder

101

identifier=9;
%decoder
decoder_HL(c_HL,1,motionVect,identifier,flag);
[B9t_HH ,motionVect, motionVect1, flag] =

bFrameProc1_HH_Mod(B9,P7,I10d_HH,Mask_le,Mask_t2,mbSize,p);
c_HH= makeLayers(B9t_HH);
%calling decoder
identifier=9;
%decoder
decoder_HH(c_HH,1,motionVect,identifier,flag);
% Retrived reconstructed frame
yh9=[B9d_LH,B9d_HL,B9d_HH];
frame_9= mirdwt(B9d,yh9,h,1);
% Calculate frame by frame PSNR
ESpsnr(k+8) = imgPSNR(B9, frame_9, 255);
k=k+9;

% Reorder the frames to reconstruct the output sequence
if i==1
 imshow(uint8(frame_1),[])
 aviobj = addframe(aviobj,getframe);
 imshow(uint8(frame_2),[])
 aviobj = addframe(aviobj,getframe);
 imshow(uint8(frame_3),[])
 aviobj = addframe(aviobj,getframe);
 imshow(uint8(frame_4),[])
 aviobj = addframe(aviobj,getframe);
 imshow(uint8(frame_5),[])
 aviobj = addframe(aviobj,getframe);
 imshow(uint8(frame_6),[])
 aviobj = addframe(aviobj,getframe);
 imshow(uint8(frame_7),[])
 aviobj = addframe(aviobj,getframe);
 imshow(uint8(frame_8),[])
 aviobj = addframe(aviobj,getframe);
 imshow(uint8(frame_9),[])
 aviobj = addframe(aviobj,getframe);
 imshow(uint8(frame_10),[])
 aviobj = addframe(aviobj,getframe);
else
 imshow(uint8(frame_2),[])
 aviobj = addframe(aviobj,getframe);
 imshow(uint8(frame_3),[])
 aviobj = addframe(aviobj,getframe);
 imshow(uint8(frame_4),[])
 aviobj = addframe(aviobj,getframe);
 imshow(uint8(frame_5),[])
 aviobj = addframe(aviobj,getframe);
 imshow(uint8(frame_6),[])
 aviobj = addframe(aviobj,getframe);
 imshow(uint8(frame_7),[])
 aviobj = addframe(aviobj,getframe);
 imshow(uint8(frame_8),[])

102

 aviobj = addframe(aviobj,getframe);
 imshow(uint8(frame_9),[])
 aviobj = addframe(aviobj,getframe);
 imshow(uint8(frame_10),[])
 aviobj = addframe(aviobj,getframe);
end
I1=I10;
bufferI1=bufferI10;
I1d=I10d;
end
aviobj = close(aviobj);
toc

function Mask=Corr_Mask(I1)
% Construct the all phase correlation mask

h = daubcqf(6);
[ll_lev2,yh,L] = mrdwt(I1/max(max(I1)),h,1);
N = 256;
lh = yh(:,1:N);
hl = yh(:,N+1:2*N);
hh = yh(:,2*N+1:3*N);
lh_lev2 = yh(:,3*N+1:4*N);
hl_lev2 = yh(:,4*N+1:5*N);
hh_lev2 = yh(:,5*N+1:6*N);
Mask=abs(lh.*lh_lev2)+abs(hl.*hl_lev2)+abs(hh.*hh_lev2);

function

[bufferImageP,streamP,motionVect]=compensatedFrame_Mod(Im,bufferImage,M

ask,mbSize,p)
% Function ME/MC LL-band

h = daubcqf(6);
[ll_lev2,yh,L] = mrdwt(Im,h,1);
Im=ll_lev2;
[ll_lev22,yh1,L1] = mrdwt(bufferImage,h,1);
bufferImage=ll_lev22;
% 3-steps ME
motionVect = motionEstTSS(Im,bufferImage,mbSize,p);
% MC
imgComp = motionComp(bufferImage, motionVect, mbSize);
% obtain Resduial
imageSubtract=imsubtract_W(abs(Im),abs(imgComp));
bufferImageP=(imadd(abs(Im),abs(imgComp)));
bufferImageP= mirdwt(bufferImageP,yh1,h,1);
streamP=imageSubtract;

function

[bufferImageP,streamP,motionVect,motionVect1]=compensatedFrame_LH_Mod(I

m,bufferImage,Mask,Mask_1,mbSize,p,motionVect,level)

103

% Function to ME/MC LH-band

h = daubcqf(6);
[ll_lev2,yh,L] = mrdwt(Im,h,1);
N = 256;
lh = yh(:,1:N);
hl = yh(:,N+1:2*N);
hh = yh(:,2*N+1:3*N);
lh_lev2 = yh(:,3*N+1:4*N);
hl_lev2 = yh(:,4*N+1:5*N);
hh_lev2 = yh(:,5*N+1:6*N);

if level==1
 Im=lh;
else
 Im=lh_lev2;
end

[ll_lev22,yh1,L1] = mrdwt(bufferImage,h,1);
lh1 = yh1(:,1:N);
hl1 = yh1(:,N+1:2*N);
hh1 = yh1(:,2*N+1:3*N);
lh_lev21 = yh1(:,3*N+1:4*N);
hl_lev21 = yh1(:,4*N+1:5*N);
hh_lev21 = yh1(:,5*N+1:6*N);

if level==1
 bufferImage =lh1;
else
 bufferImage =lh_lev21;
end

motionVect = motionEstTSS(Im,bufferImage,mbSize,p);
motionVect1 = motionEstTSS_Mod_1(Im,bufferImage,Mask,Mask_1,8,4);
imgComp = motionComp(bufferImage, motionVect, mbSize);
imgComp1 = motionComp_1(imgComp, motionVect1, 8);

if level==1
 imgComp=(imgComp+imgComp1)/2;
else
 imgComp=imgComp1;
end

imageSubtract=imsubtract_W(abs(Im),abs(imgComp));
bufferImageP=(imadd(abs(Im),abs(imgComp)));
bufferImageP= mirdwt(bufferImageP,yh1,h,1);
streamP=imageSubtract;

function decoder1(c,motionVect,identifier,flag)

global I1d P4d P7d I10d B2d B3d B5d B6d B8d B9d

104

blocksize=16;
i = 0;
h = daubcqf(6);
[ll_lev2,yh,L] = mrdwt(c,h,2);
c=ll_lev2;
if identifier==1
 I1d = Idecoder1(c,yh,h);
end

if identifier==4
 P4d = pDecoder1(c,yh,h,I1d,motionVect);
end

if identifier==7
 P7d = pDecoder1(c,yh,h,P4d,motionVect);
end

if identifier==2
 if flag==0
 B2d = bDecoder1(c,yh,h,I1d,motionVect);
 elseif flag==1
 B2d = bDecoder1(c,yh,h,P4d,motionVect);
 end
end

if identifier==3
 if flag==0
 B3d = bDecoder1(c,yh,h,I1d,motionVect);
 elseif flag==1
 B3d = bDecoder1(c,yh,h,P4d,motionVect);
 end
end

if identifier==5
 if flag==0
 B5d = bDecoder1(c,yh,h,P4d,motionVect);
 elseif flag==1
 B5d = bDecoder1(c,yh,h,P7d,motionVect);
 end
end

if identifier==6
 if flag==0
 B6d = bDecoder1(c,yh,h,P4d,motionVect);
 elseif flag==1
 B6d = bDecoder1(c,yh,h,P7d,motionVect);
 end
end

if identifier==10
 I10d = Idecoder1(c,yh,h);
 I1d=I10d;

105

end

if identifier==8
 if flag==0
 B8d = bDecoder1(c,yh,h,P7d,motionVect);
 elseif flag==1
 B8d = bDecoder1(c,yh,h,I10d,motionVect);
 end
end

if identifier==9
 if flag==0
 B9d = bDecoder1(c,yh,h,P7d,motionVect);
 elseif flag==1
 B9d = bDecoder1(c,yh,h,I10d,motionVect);
 end
end

% Computes motion compensated image using the given motion vectors
%
% Input
% imgI : The reference image
% motionVect : The motion vectors
% mbSize : Size of the macroblock
%
% Ouput
% imgComp : The motion compensated image
%
% Written by Aroh Barjatya

function imgComp = motionComp(imgI, motionVect, mbSize)

% imgI=P4;
% motionVect=motionVect1;
% mbSize=8;

[row col] = size(imgI);

% for i = mbSize:mbSize:row-mbSize-1
% for j = mbSize:mbSize:col-mbSize-1
% we start off from the top left of the image
% we will walk in steps of mbSize
% for every marcoblock that we look at we will read the motion vector
% and put that macroblock from refernce image in the compensated image

mbCount = 1;
for i = 1:mbSize:row-mbSize+1
 for j = 1:mbSize:col-mbSize+1

 % dy is row(vertical) index
 % dx is col(horizontal) index

106

 % this means we are scanning in order

 dy = motionVect(1,mbCount);
 dx = motionVect(2,mbCount);

 refBlkVer = i + dy;
 refBlkHor = j + dx;

 imageComp(i:i+mbSize-1,j:j+mbSize-1) =

imgI(refBlkVer:refBlkVer+mbSize-1, refBlkHor:refBlkHor+mbSize-1);

 mbCount = mbCount + 1;
 end
end

imgComp = imageComp;

% Computes the Mean Absolute Difference (MAD) for the given two blocks
% Input
% currentBlk : The block for which we are finding the MAD
% refBlk : the block w.r.t. which the MAD is being computed
% n : the side of the two square blocks
%
% Output
% cost : The MAD for the two blocks
%
% Written by Aroh Barjatya

function cost = costFuncMAD(currentBlk,refBlk, n)

%currentBlk=double(currentBlk);
%refBlk=double(refBlk);
err = 0;
for i = 1:n
 for j = 1:n
 err = err + abs((currentBlk(i,j) - refBlk(i,j)));
 end
end
cost = err / (n*n);

function

[totaltime,avgMBSearch,avgMAD,avgMSE,PSNR]=HBMA(Target_Img,Anchor_Img,I

mg_Height,Img_Width,BlockSize,rangs,range,figureon)
%
%function

[totaltime,avgMBSearch,avgMAD,avgMSE,PSNR]=HBMA(Target_Img,Anchor_Img,I

mg_Height,Img_Width,BlockSize,rangs,range,figureon)
%

107

%This function calculate block motion vectors (with integer pel

accuracy), using hierarchical block matching algorithm.
%An example of main function calling this function is "MEMBA", which

can be entered on the command window.
%The function also use the function "EBMA" for motion estimation of

every macroblock
%
% TargetName,AnchorName:
% File Names of Target Frame and Anchor Frame
% Img_Height,Img_Width:
% Image Height and Width of a Frame
% BlockSize:
% The size of Macro Block in Frame is BlockSize(1) by

BlockSize(2)
% rangs,range:
% The Search Field in Frame A is from (rangs(1),rangs(2)) to

(range(1),range(2))
% Target_Img,Anchor_Img,Predict_Img:
% Image Matrix for Target Frame, Anchor Frame, Predicted Frame
% ox,oy,pxx,pyy:
% The location of Motion vector is (ox,oy), (pxx,pyy) for the

direction
% PSNR:
% The peak signal and noise ratio between original image and

predicted image
% L:
% The search level
% Author: Xiaofeng Xu, Polytechnic University 4/21/2002
% totaltime:
% The total time of ME algorithm execution between original and

predicted images (platform depended)
% avgMBSearch:
% The average number of Macro Block matching stages between

original and predicted images
% avgMAD:
% The average MAD between original and predicted images
% avgMSE:
% The average MSE between original and predicted images
% Author: Evgeny Kaminsky, Ben Gurion University 12/18/2002
L=3;
%Number of MB searches;
c_MB_search=0;
%Read images from files
%fid = fopen(Target_Img,'r');
%Target_Img= fread(fid,[Img_Height,Img_Width]);
%fclose(fid);
Target_Img=double(Target_Img);

%fid = fopen(Anchor_Img,'r');
%Anchor_Img= fread(fid,[Img_Height,Img_Width]);
%fclose(fid);
Anchor_Img=double(Anchor_Img);

108

if (figureon)
 %Display the results
 figure;
 imshow(uint8(Target_Img));
 title('Target Image')
end
t0 = clock;
m=1;
Factor=2.^(L-1);
%Downsample Image with different resolution
Up_Target_Img=zeros(Img_Height*2,Img_Width*2);
Up_Target_Img(1:2:Img_Height*2,1:2:Img_Width*2)=Target_Img;
Up_Target_Img(1:2:Img_Height*2-1,2:2:Img_Width*2-

1)=(Target_Img(:,1:Img_Width-1)+Target_Img(:,2:Img_Width))/2;
Up_Target_Img(2:2:Img_Height*2-1,1:2:Img_Width*2-

1)=(Target_Img(1:Img_Height-1,:)+Target_Img(2:Img_Height,:))/2;
Up_Target_Img(2:2:Img_Height*2-1,2:2:Img_Width*2-

1)=(Target_Img(1:Img_Height-1,1:Img_Width-1)+Target_Img(1:Img_Height-

1,2:Img_Width)+Target_Img(2:Img_Height,1:Img_Width-

1)+Target_Img(2:Img_Height,2:Img_Width))/4;

TargetDown=zeros(3,Img_Height,Img_Width);
%AnchorDown=TargetDown;
TargetDown1=Target_Img;
AnchorDown1=Anchor_Img;

AnchorDown2(1:Img_Height/2,1:Img_Width/2)=Anchor_Img(1:2:Img_Height,1:2

:Img_Width);
AnchorDown3(1:Img_Height/4,1:Img_Width/4)=AnchorDown2(1:2:Img_Height/2,

1:2:Img_Width/2);

TargetDown2(1:Img_Height/2,1:Img_Width/2)=Target_Img(1:2:Img_Height,1:2

:Img_Width);
TargetDown3(1:Img_Height/4,1:Img_Width/4)=TargetDown2(2:2:Img_Height/2,

1:2:Img_Width/2);

Predict_Img=Target_Img;

rangs(1)=rangs(1)/Factor;
range(1)=range(1)/Factor;

rangs(2)=rangs(2)/Factor;
range(2)=range(2)/Factor;

Img_Height=Img_Height/Factor;
Img_Width=Img_Width/Factor;

%Search for all the blocks in Anchor Images of 1st level
for i=1:BlockSize(1):Img_Height-BlockSize(1)+1
 RangeStart(1)=i+rangs(1);

109

 RangeEnd(1)=i+BlockSize(1)-1+range(1);
 if RangeStart(1)<1
 RangeStart(1)=1;
 end
 if RangeEnd(1)>Img_Height
 RangeEnd(1)=Img_Height;
 end
 for j=1:BlockSize(2):Img_Width-BlockSize(2)+1
 RangeStart(2)=j+rangs(2);
 RangeEnd(2)=j+BlockSize(2)-1+range(2);
 if RangeStart(2)<1
 RangeStart(2)=1;
 end
 if RangeEnd(2)>Img_Width
 RangeEnd(2)=Img_Width;
 end
 tmpt(:,:)=TargetDown3(:,:);
 tmpa(:,:)=AnchorDown3(:,:);
 [px(m),

py(m),MB_search]=EBMA(tmpt,tmpa,BlockSize,[i,j],RangeStart,RangeEnd);
 c_MB_search=MB_search+c_MB_search;
 ox(m)=j;
 oy(m)=i;
 m=m+1;
 end
end
if (figureon)
%Disfplay the results
 figure;
 imshow(uint8(TargetDown3));
 title('TargetDown3')
 figure;
 imshow(uint8(AnchorDown3));
 title('AnchorDown3')

 hold on
 quiver(ox,oy,px,py);

 hold off
 axis image
end
%Search for all the blocks in Anchor Images of all levels
for ii=L-1:-1:1
 %Update all parameters for the currenet level.
 px=px*2;
 py=py*2;
 Img_Height=Img_Height*2;
 line_width=floor(Img_Width/BlockSize(2));
 Img_Width=Img_Width*2;
 ttt=size(py);

 m=1;
 %Search for all the blocks in Anchor Images in the iith level

110

 for i=1:BlockSize(1):Img_Height-BlockSize(1)+1

 baseline=double(uint32(i/2/BlockSize(1)))*double(line_width);
 for j=1:BlockSize(2):Img_Width-BlockSize(2)+1
 %Caculate the search range in Target Images.
 mindx=floor(baseline+double(uint32(j/2/BlockSize(2)))+1);
 if mindx>ttt(2)
 mindx=ttt(2);
 end

 RangeStart(1)=i+py(mindx)+rangs(1);
 RangeEnd(1)=i+py(mindx)+BlockSize(1)-1+range(1);
 if RangeStart(1)<1
 RangeStart(1)=1;
 end
 if RangeEnd(1)>Img_Height
 RangeEnd(1)=Img_Height;
 end

 RangeStart(2)=j+px(mindx)+rangs(2);
 RangeEnd(2)=j+px(mindx)+BlockSize(2)-1+range(2);
 if RangeStart(2)<1
 RangeStart(2)=1;
 end
 if RangeEnd(2)>Img_Width
 RangeEnd(2)=Img_Width;
 end

 if ii==2
 tmpt=TargetDown2(:,:);
 tmpa=AnchorDown2(:,:);

 end

 if ii==1
 tmpt=TargetDown1(:,:);
 tmpa=AnchorDown1(:,:);

 end

 [pxx(m), pyy(m),MB_search,

Predict_Img(i:i+BlockSize(1)-1,j:j+BlockSize(1)-

1)]=EBMA(tmpt,tmpa,BlockSize,[i,j],RangeStart,RangeEnd);
 c_MB_search=MB_search+c_MB_search;

 %Refine final result by half-pel accuracy search
 if(ii==1)
 RangeStart(1)=(i+pyy(m))*2-1-2;
 RangeEnd(1)=(i+pyy(m))*2-1+BlockSize(1)*2-1+2;
 if RangeStart(1)<1
 RangeStart(1)=1;
 end

111

 if RangeEnd(1)>Img_Height*2
 RangeEnd(1)=Img_Height*2;
 end

 RangeStart(2)=(j+pxx(m))*2-1-2;
 RangeEnd(2)=(j+pxx(m))*2-1+BlockSize(2)*2-1+2;
 if RangeStart(2)<1
 RangeStart(2)=1;
 end
 if RangeEnd(2)>Img_Width*2
 RangeEnd(2)=Img_Width*2;
 end
 tmpa=AnchorDown1(:,:);
 [pxx(m), pyy(m),MB_search,Predict_Img(i:i+BlockSize(1)-

1,j:j+BlockSize(1)-

1)]=EBMA(Up_Target_Img,tmpa,BlockSize,[i,j],RangeStart,RangeEnd,2);
 c_MB_search=MB_search+c_MB_search;
 end
 ox(m)=j;
 oy(m)=i;
 m=m+1;
 end
 end
 px=pxx;
 py=pyy;

end
totaltime=etime(clock,t0);
imgsize = Img_Height*Img_Width;
%Caculate error image
Error_Img=Anchor_Img-Predict_Img;
%Calculate totalerror
totalerror=sum(sum(abs(Error_Img)));
%Calculate average MAD
avgMAD=totalerror/imgsize;
%Calculate average MSE
avgMSE=mean(mean((Error_Img.^2)));
%Caculate PSNR
PSNR=10*log10(255*255/avgMSE);
%Claculate average number of searching stages for each Macro Block
MB_total=imgsize/(BlockSize(1)*BlockSize(2));
avgMBSearch = c_MB_search/MB_total;

function [Out] = Idecoder1(mat,yh,h);

sphit_main_encode
sphit_main_decode

%---

% Reference : A New, Fast, Efficient Image Codec using Set Partitioning

of Hierarchical Trees

112

%:- Amir. Said, W. A Pearlman
%--

function sphit_main_encode
load indices
format short
mat=trans_1(x,'bior3.7');
mat=fix(mat);
seqt(xm)=mat;
T=(2^fix(log2(max(max(abs(mat))))))/2;
global maxy
maxy=T;
LIS=[];
%

===

======
% Initial lists
for jh=65:256
 LIS=[LIS jh 0];%[2 0 3 0 4 0]; % List of Insignificant Sets ,A-0

& B-1, Co-ordinates
end
LIP=[1:256];%[1 2 3 4]; % List of Insignificant Pixels, Co-

ordinates
LSP=[]; % List of Significant Pixels, Co-ordinates
output=[];

% Initializaton complete, Starting processing
bit_number=1;

for xx=1:8

 sendlsp=LSP;
%--
for ii=1:length(LIP) % i.e for each entry in the LIP, do
 if abs(seqt(LIP(ii)))>=T
 output=[output '1'];
 LSP=[LSP LIP(ii)]; % Moving ii to LSP, Removing ii from LSP

done later
 % Output sign
 if seqt(LIP(ii))>=0
 output=[output '0'];
 else
 output=[output '1'];
 end
 else
 output=[output '0'];
 end
end
%--
% Now remove the common elements i.e perform LIP-LSP
% D(i,j) means all descendants of (i,j), Function Descendants does this
% O(i,j) means offsprings of (i,j), Function offspring does this
% L(i,j) = D(i,j) - O(i,j), Done by mark_proper

113

LIP=mark_proper(LIP,LSP);
track=[];
ij=1;
while ij<=length(LIS)
%for ij=1:2:length(LIS) % For each entry in LIS

 if LIS(ij+1)==0 % A type

 out=0;out1=0;% LIS(ij) % problem
 %--
 if ~isempty(find(abs(seqt(descendants_1(LIS(ij))))>=T))

% Check for offsprings of ii
 output=[output '1'];
 out=1;
 else
 output=[output '0'];
 end

 if out==1
 % Star 1
 var1=offspring_1(LIS(ij));
 for kl=1:4
 if abs(seqt(var1(kl)))>=T
 output=[output '1'];
 out1=1;
 else
 output=[output '0'];
 end

 if out1==1
 LSP=[LSP var1(kl)];

 % sign
 if seqt(var1(kl))>=0
 output=[output '0'];
 else
 output=[output '1'];
 end

 else
 LIP=[LIP var1(kl)];
 end
 out1=0;
 end

 % Star 2

lij=mark_proper(descendants_1(LIS(ij)),offspring_1(LIS(ij)));

 if ~isempty(lij)
 % Move ij to the end of LIS as an entry of type B

114

 LIS=[LIS LIS(ij) 1];
 track=[track ij];
 else
 track=[track ij];
 end
 end
 end

 if LIS(ij+1)==1 % B type
 out=0;
 lij=mark_proper(descendants_1(LIS(ij)),offspring_1(LIS(ij)));
 if ~isempty(find(abs(seqt(lij))>=T))
 output=[output '1'];
 out=1;
 else
 output=[output '0'];
 end

 if out==1
 var1=offspring_1(LIS(ij));
 for mn=1:4
 LIS=[LIS var1(mn) 0];
 end
 track=[track ij];
 end
 out=0;
 end
 ij=ij+2;
end
% --
% Remove repeating elements
if ~isempty(LIS)

 for z=1:length(track)
 LIS(track(z):track(z)+1)=9999;
 end
 % --
 LIS=LIS(find(LIS~=9999));

end

if ~isempty(sendlsp)
 output=refinement(output,sendlsp,seqt,bit_number);
end
bit_number=bit_number+1;
[T length(LSP) length(find(abs(seqt)>=T))]
T=T/2;
end

disp(' OVER ')
save filename output
% output

115

%LSP
%LIP
%LIS

%--

% Reference : A New, Fast, Efficient Image Codec using Set Partitioning

of Hierarchical Trees
%:- Amir. Said, W. A Pearlman
%--
function sphit_main_decode
load filename output
format long
load indices

orig=x;
T=1024; % For barbara 2048 % else 1024
mmx=T;
xm=mapping_256;
xm=xm(:);
%==
mat=trans_1(x,'bior3.7');
mat=fix(mat);
dect(xm)=mat; % Original
%==
seqt(256*256)=0;
global iii
iii=0;
LIS=[];
%

===
% Initial lists
for jh=65:256
 LIS=[LIS jh 0];%[2 0 3 0 4 0]; % List of Insignificant Sets ,A-0 &

B-1, Co-ordinates
end
LIP=[1:256];%[1 2 3 4]; % List of Insignificant Pixels, Co-

ordinates
LSP=[]; % List of Significant Pixels, Co-

ordinates

% Initializaton complete, Starting processing

for xx=1:8

 getlsp=LSP;
%--
for ii=1:length(LIP) % i.e for each entry in the LIP, do
 bit=input_bit;
 if bit=='1'
 LSP=[LSP LIP(ii)];
 bit=input_bit;
 if bit=='1'
 seqt(LIP(ii))=-mean([T 2*T]);

116

 else
 seqt(LIP(ii))=mean([T 2*T]);
 end
 end
end
%--
% Now remove the common elements i.e perform LIP-LSP
% D(i,j) means all descendants of (i,j), Function Descendants does this
% O(i,j) means offsprings of (i,j), Function offspring does this
% L(i,j) = D(i,j) - O(i,j), Done by mark_proper

LIP=mark_proper(LIP,LSP);

track=[];
ij=1;
while ij<=length(LIS)
%for ij=1:2:length(LIS) % For each entry in LIS

 if LIS(ij+1)==0 % A type

 out=0;out1=0;% LIS(ij) % problem
 %--
 bit=input_bit;
 if bit=='1' % Check for offsprings of ii
 out=1;
 end

 if out==1
 % Star 1
 var1=offspring_1(LIS(ij));
 for kl=1:4
 bit=input_bit;
 if bit=='1'
 out1=1;
 end

 if out1==1
 LSP=[LSP var1(kl)];

 % sign
 bit=input_bit;
 if bit=='0'
 seqt(var1(kl))=mean([T 2*T]);
 else
 seqt(var1(kl))=-mean([T 2*T]);
 end

 else
 LIP=[LIP var1(kl)];
 end
 out1=0;
 end

117

 % Star 2

lij=mark_proper(descendants_1(LIS(ij)),offspring_1(LIS(ij)));

 if ~isempty(lij)
 % Move ij to the end of LIS as an entry of type B
 LIS=[LIS LIS(ij) 1];
 track=[track ij];
 else
 track=[track ij];
 end
 end
 end

 if LIS(ij+1)==1 % B type
 out=0;
 lij=mark_proper(descendants_1(LIS(ij)),offspring_1(LIS(ij)));
 bit=input_bit;
 if bit=='1'
 out=1;
 end

 if out==1
 var1=offspring_1(LIS(ij));
 for mn=1:4
 LIS=[LIS var1(mn) 0];
 end
 track=[track ij];
 end
 out=0;
 end
 ij=ij+2;
end

if ~isempty(LIS)
 % --
 % Remove repeating elements
 for z=1:length(track)
 LIS(track(z):track(z)+1)=9999;
 end
 % --
 LIS=LIS(find(LIS~=9999));
end

if ~isempty(getlsp)
 seqt=irefinement(seqt,T,getlsp);
end

% rec=round(reshape(seqt(xm(:)),128,128));
rec=round(reshape(seqt(xm(:)),256,256));
%xr=idwt2d(rec,fopt,4);

118

xr=itrans_1(rec,'bior3.7');
%axis tight
set(gca,'nextplot','replacechildren');
figure%,imshow(mat2gray(fix(xr)))
% Record the movie
 imshow(mat2gray(fix(xr)));
 F = getframe;

% Play the movie ten times
movie(F)
[snr , msr]=PSNR(xr,orig);
% **
format short g
[T iii snr msr max(abs(abs(seqt)-abs(dect)))]
format long
% **
T=T/2;
end
%round(reshape(seqt(x(:)),128,128))

function [mvX mvY] = mvFrame(tFrame,fFrame,mbSize,limitSad,sadLimit)
% Configuration
% Perform sequential search, log search, or hierarchical search
sType = 0; % 0 = sequential search
% 1 = log search
% 2 = hierarchical search
% Default size to search over
stepSize = 64;
[vPixel hPixel] = size(fFrame);
for hPos = 16:mbSize:hPixel
 for vPos = 16:mbSize:vPixel
 [mvX(vPos/mbSize,hPos/mbSize) mvY(vPos/mbSize,hPos/mbSize)

minVal] = ...
 mvMacroblock(tFrame(vPos-15:vPos,hPos-

15:hPos),fFrame,mbSize, ...
 hPos,vPos,stepSize,sType);
 if limitSad && minVal > sadLimit
 % The motion vector search could not find a "good enough"
 % estimate. Ignore the results.
 mvX(vPos/mbSize,hPos/mbSize) = inf;
 mvY(vPos/mbSize,hPos/mbSize) = inf;
 end
 end
end

function [xVec yVec minVal] = mvMacroblock(mb, fFrame, mbSize, hPos,

vPos, stepSize, sType)
[vPixel hPixel] = size(fFrame);
global l1Frame;
global l2Frame;
if sType == 0

119

 % Sequential search
 x = hPos - mbSize + 1;
 y = vPos - mbSize + 1;
 minVal = inf;
 for distance = 0:stepSize-1
 if distance == 0
 mvXNdx = 0; mvYNdx = 0;
 else
 mvXNdx = [ones(1,distance*2+1)*distance

ones(1,distance*2+1)*-distance ...
 (-distance+1:distance-1) (-distance+1:distance-1)];
 mvYNdx = [-distance:distance -distance:distance

ones(1,distance*2-1)*distance ...
 ones(1,distance*2-1)*-distance];
 end
 x1 = mvXNdx + x;
 x2 = mvXNdx + x + mbSize - 1;
 y1 = mvYNdx + y;
 y2 = mvYNdx + y + mbSize - 1;
 delNdx = find(x1 <= 0 | x2 > hPixel | y1 <=0 | y2 > vPixel);
 x1(delNdx) = []; x2(delNdx)=[]; y1(delNdx)=[]; y2(delNdx)=[];
 for sadNdx = 1:length(x1)
 val = sum(sum(abs(mb-fFrame(y1(sadNdx):y2(sadNdx),...
 x1(sadNdx):x2(sadNdx)))));
 if val < minVal
 minVal = val;
 xVec = x1(sadNdx)-x; yVec = y1(sadNdx)-y;
 end
 end
 end
elseif sType == 1
 % Logarithmic search
 % The search vector order below makes sure we take the shortest

distance
 % in the case of a tie
 stepSize = stepSize/2;
 x = hPos; y = vPos;
 sVect = [0 0 0 1 -1 1 -1 1 -1; 0 1 -1 0 0 1 1 -1 -1];
 while stepSize >= 1
 sad = ones(1,9)*inf;
 for sVectLoc = 1:9
 x2 = sVect(1,sVectLoc) * stepSize + x;
 x1 = sVect(1,sVectLoc) * stepSize + x - mbSize + 1;
 y2 = sVect(2,sVectLoc) * stepSize + y;
 y1 = sVect(2,sVectLoc) * stepSize + y - mbSize + 1;
 if x1 <= 0 || x2 > hPixel || y1 <= 0 || y2 > vPixel
 continue;
 else
 sad(sVectLoc) = sum(sum(abs(mb-fFrame(y1:y2,x1:x2))));
 end
 end
 [dummy ndx] = min(sad);
 ndx = ndx(1);
 x = x + sVect(1,ndx) * stepSize;

120

 y = y + sVect(2,ndx) * stepSize;
 stepSize = stepSize/2;
 end
 xVec = x - hPos;
 yVec = y - vPos;
elseif sType == 2
 % Hierarchical search
 l1Mb = mb(1:2:end,1:2:end);
 l2Mb = l1Mb(1:2:end,1:2:end);
 l2hPos = hPos/4; l2vPos = vPos/4;
 [mvX2 mvY2] = mvMacroblock(l2Mb, l2Frame, mbSize/4, l2hPos, l2vPos,

stepSize/4, 0);
 l1hPos = l2hPos*2 + mvX2*2; l1vPos = l2vPos*2 + mvY2*2;
 [mvX1 mvY1] = mvMacroblock(l1Mb, l1Frame, mbSize/2, l1hPos, l1vPos,

2, 0);
 l0hPos = l1hPos*2 + mvX1*2; l0vPos = l1vPos*2 + mvY1*2;
 [mvX mvY] = mvMacroblock(mb, fFrame, mbSize, l0hPos, l0vPos, 2, 0);
 xVec = mvX2*4 + mvX1*2 + mvX;
 yVec = mvY2*4 + mvY1*2 + mvY;
else
 error('Invalid search type');
end
x = hPos - mbSize + 1 + xVec;
y = vPos - mbSize + 1 + yVec;
minVal = sum(sum(abs(mb-fFrame(y:y+mbSize-1,x:x+mbSize-1))));

function [JT,DT,RT]= lagrangian_cost(I,lambda)

% Transfer I frame into RDWT
h = daubcqf(6);
[ll_lev2,yh,L] = mrdwt(I,h,1);
N = 256;
lh = yh(:,1:N);
hl = yh(:,N+1:2*N);
hh = yh(:,2*N+1:3*N);
img = ll_lev2;
dim = size(img,1);
step =16; %% Step Size
% *(1) = 16x16 blocks
% *(2) = 8x8 blocks
% *(3) = 4x4 blocks
M = [16, 8, 4] %% Size of block
B_cnt = dim./M %% # of blocks per image
B_opt = size(M,2) %% # of block sizes available
img_recon = zeros(dim,dim);
img_final = zeros(dim,dim);
%lambda = 0
lambda_sz = size(lambda, 2);
J = zeros(B_cnt(1),B_cnt(1)); %% Block Cost Function
D = zeros(B_cnt(1),B_cnt(1)); %% Block Distortion
R = zeros(B_cnt(1),B_cnt(1)); %% Block Rate

121

% QUADTREE CODE-
% | 0 | 0 0 0 0 | - use 16x16 block (0 bits per 16x16 pixels)
% | 1 | 0 0 0 0 | - use 4 8x8 blocks (1 bit per 16x16 pixels)
% | 1 | 1 0 0 0 | - use 3 8x8 blocks & 4 4x4 blocks (5 bits per 16x16

pixels)
% | 1 | 1 0 1 0 | - use 3 8x8 blocks & 4 4x4 blocks (5 bits per 16x16

pixels)
QTcode = zeros(B_cnt(1),5,B_cnt(1),lambda_sz);
% per pixel QTrate
QTrate = [0,1,5]/(M(1)*M(1));
B16 = zeros(M(1),M(1)); % 16x16 block
B8 = zeros(M(2), M(2),4); % 8x8 block
B4 = zeros(M(3), M(3),4); % 4x4 block

for w=1:lambda_sz

 % Loop through each 16x16 block and make the decision whether or
 % not to break down the block into 8x8 and/or 4x4 blocks

 for i=1:B_cnt(1)
 for j=1:B_cnt(1)
 row = M(1)*(i-1);
 col = M(1)*(j-1);

 % Create 16x16 block
 B16(:,:) = img(row+1:row+M(1),col+1:col+M(1));

 %Subdivide the 16x16 block into 4 8x8 blocks
 B8(:,:,1) = img(row+1:row+M(2), col+1:col+M(2));
 B8(:,:,3) = img(row+1:row+M(2), col+1+M(2):col+2*M(2));
 B8(:,:,2) = img(row+1+M(2):row+2*M(2), col+1:col+M(2));
 B8(:,:,4) = img(row+1+M(2):row+2*M(2), col+1+M(2):col+2*M(2));

 % For 16x16 block, find the distortion, bitrate and cost function
 [D16, R16, B_Cost16] = blk_calc(B16, step);
 J16 = D16 + lambda(w).*R16;

 % For each 8x8 block, find the distortion, bitrate and cost function
 for p=1:4
 [D8(p), R8(p), B_Cost8(:,:,p)] = blk_calc(B8(:,:,p), step);
 J8(p) = D8(p) + lambda(w).*R8(p);
 end

 % Find the average distortion,bitrate, & cost for the 4 8x8 blocks
 % Note that for the cost, you must add the additional bits for
 % the quadtree code
 J8_QT = sum(J8)/4 + lambda(w)*QTrate(2);

 % Compare costs; if the cost of 4 8x8 blocks is less than the
 % the cost of a single 16x16 block, break up the block
 if J16 > J8_QT

122

 % Update the quadtree code
 QTcode(i,1,j,w) = 1;

 % Now, compare each 8x8 block with its corresponding 4x4 blocks
 for q=1:4

 %Subdivide the 8x8 block into 4 4x4 blocks
 B4(:,:,1) = B8(1:4,1:4,q);
 B4(:,:,2) = B8(1:4,5:8,q);
 B4(:,:,3) = B8(5:8,1:4,q);
 B4(:,:,4) = B8(5:8,5:8,q);

 % For each 4x4 block, find the distortion, bitrate and cost function
 for p=1:4
 [D4(p,q), R4(p,q), B_Cost4(:,:,p)] = blk_calc(B4(:,:,p),

step);
 J4(p,q) = D4(p,q) + lambda(w).*R4(p,q);
 end

 J4_QT = sum(J4(:,q))/4 + lambda(w)*QTrate(3);

 % Compare costs; if the cost of 4 4x4 blocks is less than the
 % the cost of a single 8x8 block, break up the block
 if J8(q) > J4_QT

 % Update the quadtree code
 QTcode(i,1+q,j,w) = 1;

 % Create a "new" 8x8 block made up of 4x4 blocks
 B8_new(1:4,1:4,q) = B_Cost4(:,:,1);
 B8_new(1:4,5:8,q) = B_Cost4(:,:,2);
 B8_new(5:8,1:4,q) = B_Cost4(:,:,3);
 B8_new(5:8,5:8,q) = B_Cost4(:,:,4);
 J8_new(q) = J4_QT;
 D8_new(q) = sum(sum(D4(:,q)))/4;
 R8_new(q) = sum(sum(R4(:,q)))/4 + QTrate(3);

 % If it costs less to use this 8x8 block, don't split it
 else
 B8_new(:,:,q) = B_Cost8(:,:,q);
 J8_new(q) = J8(q);
 D8_new(q) = D8(q);
 R8_new(q) = R8(q) + QTrate(2);
 end
 end % for q

 % Create a "new" 16x16 block made up of 8x8 blocks
 B16_new(1:8,1:8) = B8_new(:,:,1);
 B16_new(1:8,9:16) = B8_new(:,:,2);
 B16_new(9:16,1:8) = B8_new(:,:,3);
 B16_new(9:16,9:16) = B8_new(:,:,4);

123

 % Store the cost, distortion and rate for the new image
 J(i,j) = sum(J8_new)/4;
 D(i,j) = sum(D8_new)/4;
 R(i,j) = sum(R8_new)/4;

 % Add the created 16x16 block to the reconstructed image
 img_recon(row+1:row+M(1),col+1:col+M(1)) = B16_new;

 % If it costs less to use the 16x16 block, don't split it
 else

 % Add the 16x16 block to the reconstructed image
 img_recon(row+1:row+M(1),col+1:col+M(1)) = B_Cost16;

 J(i,j) = J16;
 D(i,j) = D16;
 R(i,j) = R16;
 end
 % Update Lamba
 lambda=max(D(i,j))-Min(D(i,j))/max(R(i,j))-Min(R(i,j));
 end % for j
 end % for i

 % find the total cost function, rate and distortion for the entire

image
 % (4x4, 8x8, 16x16, best)
 JT(w) = sum(sum(J(:,:)))/(B_cnt(1)*B_cnt(1))
 DT(w) = sum(sum(D(:,:)))/(B_cnt(1)*B_cnt(1))
 RT(w) = sum(sum(R(:,:)))/(B_cnt(1)*B_cnt(1))
end % f

function [Dist, Rate,B_Cost] = blk_calc(B, step)

 % PER BIT VALUES FOR DISTORTION & RATE
 M = size(B, 2);
 h = daubcqf(6);
 [ll_lev2,yh,L] = mrdwt(I1,h,1);
 B_LL = ll_lev2;
 B_q = quant(B_LL, step);
 B_Cost = mirdwt(B_q,yh,h,1);
 % Find the average distortion
 Dist = sum(sum((B_q - B_LL).^2))/(M*M);
 % Find the B_q bitrate
 range = max(max(B_q)) - min(min(B_q));
 pmf = zeros(range, 1);
 temp_pmf = hist(B_q, range);
 for n=1:size(temp_pmf,2)
 pmf = temp_pmf(:,n) + pmf;
 end
 pmfsize = size(pmf);
 pmf = pmf/sum(pmf);

124

 % bits/pixel*M*M = bits/B_q
 Rate = sum(-pmf.*log2(pmf + (pmf ==0)));

	Variable Block Size Motion Compensation In The Redundant Wavelet Domain
	Recommended Citation

	tmp.1588278046.pdf.UV0K5

