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ABSTRACT 

 

Suliman, Ahmed Abdelgadir. VARIABLE BLOCK SIZE MOTION 

COMPENSATION IN THE REDUNDANT WAVELET DOMAIN. (Major Advisor: 

Dr. Robert Li), North Carolina Agricultural and Technical State University. 

 

Video is one of the most powerful forms of multimedia because of the extensive 

information it delivers. Video sequences are highly correlated both temporally and 

spatially, a fact which makes the compression of video possible. Modern video systems 

employ motion estimation and motion compensation (ME/MC) to de-correlate a video 

sequence temporally. ME/MC forms a prediction of the current frame using the frames 

which have been already encoded. Consequently, one needs to transmit the corresponding 

residual image instead of the original frame, as well as a set of motion vectors which 

describe the scene motion as observed at the encoder. 

The redundant wavelet transform (RDWT) provides several advantages over the 

conventional wavelet transform (DWT). The RDWT overcomes the shift invariant 

problem in DWT. Moreover, RDWT retains all the phase information of wavelet 

coefficients and provides multiple prediction possibilities for ME/MC in wavelet domain. 

The general idea of variable size block motion compensation (VSBMC) technique is to 

partition a frame in such a way that regions with uniform translational motions are 

divided into larger blocks while those containing complicated motions into smaller 

blocks, leading to an adaptive distribution of motion vectors (MV) across the frame. 



 

The research proposed new adaptive partitioning schemes and decision criteria in 

RDWT that utilize more effectively the motion content of a frame in terms of various 

block sizes. The research also proposed a selective subpixel accuracy algorithm for the 

motion vector using a multiband approach. The selective subpixel accuracy reduces the 

computations produced by the conventional subpixel algorithm while maintaining the 

same accuracy. In addition, the method of overlapped block motion compensation 

(OBMC) is used to reduce blocking artifacts. Finally, the research extends the 

applications of the proposed VSBMC to the 3D video sequences. The experimental 

results obtained here have shown that VSBMC in the RDWT domain can be a powerful 

tool for video compression. 
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CHAPTER 1  

INTRODUCTION 

 

 

Video is one of the most powerful forms of multimedia because of the extensive 

information it delivers. Each video sequence contains substantial visual information, 

thereby requiring vast resources for storage and communication. Therefore, the 

compression of video sequences has been the focus of work by many researchers for 

several decades. Video sequences are highly correlated both temporally and spatially, a 

fact which makes the compression of video possible. Video compression exploits the 

temporal correlation, because the temporal interval between every two consecutive video 

frames is very small, and most likely the two frames will exhibit high similarity. To 

decorrelate a video sequence temporally, modern video coders employ motion estimation 

and motion compensation (ME/MC). ME/MC forms a prediction of the current frame 

using the frames which have been already encoded. Consequently, one needs to transmit 

the corresponding residual image instead of the original frame, as well as a set of motion 

vectors which describe the scene motion as observed at the encoder. Since the residual 

frame typically contains much less signal energy than the original frame and the motion 

vectors are relatively few, the total bit rate to encode the motion-estimated frame is 

usually much less than the total bit rate to encode each frame as a still image. 

A number of motion-estimation algorithms (ME) have been developed in order to 

provide efficient prediction of scene motion between frames. ME schemes can generally 
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be categorized as either feature matching or region matching [1]. The most widely 

used region matching technique is the block matching method, in which the current frame 

is divided into small blocks. The previous frame, called the reference frame, is searched 

for the best matching block for a given block in the current frame, and the resulting 

motion vector, ),( yx   indicates the position of the best-matching block. To limit the 

computational complexity of the ME process, the search is usually limited to some 

window surrounding the block position in the reference frame. The procedure of block 

matching is illustrated in Figure 1.1 and the calculation of the residual frame is 

 

                 ),,(),,(),,,( Diff ttyyxxftyxfttyx                         (1.1) 

 

where ),,,( Diff ttyx  denotes the calculated residual image at a position ),( yx  in a time 

period t- t , while ),,( tyxf  denotes the frame value at position ),( yx  and time t . This 

block-based ME/MC approach to video coding was first introduced in [1]. 

 

 

 
Figure 1.1 The block-matching algorithm. The dashed block shows the search window. 
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The block matching motion compensation can generally be categorized as either 

fixed block matching (FSBM) or variable size block matching (VSBM).  The general 

idea of VSBM technique is to partition a frame in such a way that regions with uniform 

translational motions are divided into larger blocks while those containing complicated 

motions into smaller blocks, leading to an adaptive distribution of motion vectors (MV) 

across the frame. The VSBMC technique generally relies on a binary tree or a quadtree 

decomposition structure. Such a scheme is efficient in representing the partitioning, but 

the resulting blocks are restricted to be rectangular, and the sizes and locations of the 

blocks are also restricted by the tree structure. 

Subpixel motion estimation plays an important role in compression efficiency 

within modern video codecs such as H.263 [2], [3] and MPEG-4 [4]. Subpixel motion 

estimation is implemented within these standards using interpolated values at 1/2 or 1/4 

subpixel accuracy. Such interpolation gives a good reduction in residual energy for each 

predicted macroblock and therefore, improves compression. However, this leads to a 

significant increase in computational complexity at the encoder. 

The research proposed a new adaptive partitioning scheme and decision criterion 

in the redundant wavelet domain that utilizes more effectively the motion content of a 

frame in terms of various block sizes. The proposed VSBMC deploys in two steps; 

splitting and merging. The redundant wavelet transform (RDWT) provides several 

advantages over the conventional wavelet transform (DWT). The RDWT overcomes the 

shift invariant problem in DWT. Moreover, RDWT retains all the phase information of 

wavelet coefficients and provides multiple prediction possibilities for ME/MC in wavelet 
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domain.  As refinement for the block matching system, the research proposed a selective 

subpixel refinement algorithm for the motion vector using a multiband decision. The 

selective subpixel refinement reduces the computations produced by the conventional 

subpixel algorithm while maintaining the same accuracy. 

In addition, the research extends the applications of the proposed VSBMC to the 

3D video sequences. The 3D technology has been one of the fastest growing technologies 

in the recent years. Our approach is based on ME/MC techniques and the usage of depth-

based rendering technique to reconstruct the desired stereoscopic views for each video 

frame. The depth image has a low energy and does not have sharp boundaries; therefore, 

it is not an easy task to obtain an accurate motion vector. Fortunately, the redundant 

wavelet domain provides a good solution by retaining all the phase information and 

provides a multiple prediction possibilities for motion techniques. Typically, a depth map 

is estimated from two images by calculating the parallax motion of pixels between the 

views. Consequently, a combination of only one texture and one depth video sequence is 

sufficient to provide appropriate rendering quality.  
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CHAPTER 2  

REDUNDANT DISCRETE WAVELET TRANSFORM 

 

 

2.1  Introduction 

The main drawback of the DWT in the video compression is the shift variant that 

generates high frequency blocking artifacts which have big impact on the quality of 

ME/MC process when deployed in wavelet domain. To demonstrate the difficulty that the 

shift variance of the DWT poses in the task of tracking motion, consider the example 

illustrated in Figures 2.1 and 2.2. Shown in Figure 2.1 is a signal )(ns  and a shifted 

version of the signal )1( ns . When Daubechies-Feauveau 9-7 filter is used to perform a 

1-scale DWT on both )(ns and )1( ns , the effect of the shift variant, and the motion of 

the signal waveform is easily determined by comparing )1( ns to )(ns . However, in the 

wavelet domain, the low-band and high-band signals suffer from the shift-variant 

characteristic of the DWT [12]. In any event, the obtaining of accurate motion vectors for 

ME will not be possible using either the low-band or high-band signals in the DWT 

domain. 

In order to overcome the shift variance of DWT, a number of proposals [5–10] 

have been made to use an overcomplete, or redundant, wavelet transform for ME/MC 

since such a redundant discrete wavelet transform (RDWT) lacks subsampling and is thus 

shift invariant.  
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Figure 2.1 Signal )(ns and its shifted version )1( ns . 

 

 

 
Figure 2.2 Wavelet-domain representation of )(ns and )1( ns . 
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2.2  RDWT versus DWT 

The RDWT can be considered to be an approximation to the continuous wavelet 

transform that removes the downsampling operation from the conventional critically 

sampled DWT to produce an overcomplete representation [11]. The shift-variance 

characteristic of the DWT arises from its use of downsampling; while the RDWT is shift 

invariant since the spatial sampling rate is fixed across scale. To depict the 

implementation of the RDWT in terms of filter-banks, let us first illustrate the same for 

the DWT. A 1D DWT and its inverse are illustrated in Figure. 2.3. Consider ][nf  is the 

1D input signal and ][' nf  is the reconstructed signal. ][ kh   and ][ kg   are the lowpass 

and highpass analysis filters, while the corresponding lowpass and highpass synthesis 

filters are ][kh  and ][kg .  jc  and jd  are the lowband and highband output coefficients at 

level j . DWT analysis, or decomposition, is, mathematically [11], 

 

              2])[][(][ 1   khkckc jj        and       2])[][(][ 1   kgkckd jj         (2.1) 

 

where   denotes convolution, and 2  denotes downsampling by a factor of two. That 

is, if 2][][  nxny , then ]2[][ nxny  . 

The corresponding operation of DWT synthesis, or reconstruction, is 

 

                             ][)2][(][)2][(][1 kgkdkhkckc jjj                                  (2.2) 

 

where 2  denotes upsampling by a factor of two. That is, if 2][][  nxny , then 
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




odd                      ,0

even                ],2[
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n

nnx
ny                                                (2.3) 

 

 

 
Figure 2.3 Two level 1-D DWT analysis and synthesis filter banks. 

 

 

In contrast, a 1D- RDWT and its inverse are illustrated in Figure 2.4. The RDWT 

eliminates downsampling and upsampling of coefficients, and at each scale, the number 

of output coefficients doubles that of the input. The filters themselves are upsampled to 

fit the growing date length [12]. Specifically, the filters for scale j  are: 

 

                 2][][ 1   khkh jj               and           2][][ 1   kgkg jj                           (2.4) 

 

RDWT analysis is then  

 

                  ])[][(][ 1 khkckc jjj       and       ])[][(][ 1 kgkckd jjj                      (2.5) 
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While the RDWT synthesis is  

 

                                 ])[][][][(
2

1
][1 kgkdkhkckc jjjjj                                       (2.6) 

 

Equations (2.4) through (2.6) are known as the algorithme `a trous [13], since the filter-

upsampling procedure inserts “holes” (“trous” in French) between the filter taps. 

 

 

 
Figure 2.4 Two level 1-D RDWT analysis and synthesis filter banks. 

 

 

2.3  RDWT Implementation and Coefficient Representation 

There are several ways to implement the RDWT, and several ways to represent 

the resulting overcomplete set of coefficients. The most obvious implementation is a 

direct implementation of the algorithme `a trous, and results in subbands that are exactly 

the same size as the original signal, as is illustrated for a 1D signal in Figure 2.5. The 

advantage of this “spatially coherent” representation is that each RDWT coefficient is 
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located within its subband in its spatially correct position. Through appropriately 

subsampling each subband of an RDWT, one can produce exactly the same coefficients 

as does a critically sampled DWT applied to the same input signal. In fact, in a j -scale 

1D- RDWT, there exist j2  distinct critically sampled DWTs corresponding to the choice 

between even- and odd-phase subsampling at each scale of decomposition [14]. 

The most popular coefficient-representation scheme employed in RDWT-based 

video coders is that of a “coefficient tree,” as illustrated in Figure 2.6 for a 1D signal. 

This tree representation is easily created by employing filtering and downsampling as in 

the usual critically sampled DWT; however, all “phases” of downsampled coefficients 

are retained and arranged as “children” of the signal that was decomposed. The process is 

repeated on the lowpass bands of all nodes to achieve multiple decomposition scales. 

Figure 2.6 shows an approximation and detail coefficients at scale J, as Lj and Hj, 

respectively. E indicates even-phase subsampling; O indicates odd-phase subsampling 

[14]. A path from root to leaf indicates a distinct critically sampled DWT; a j-scale 

RDWT consists of j2  such DWTs. It is straightforward to see that each path from root to 

leaf in the RDWT tree constitutes a distinct critically sampled DWT, and there are j2  

such critically sampled DWTs in a j -scale decomposition [15]. 

An alternative, and equivalent, implementation of the RDWT tree representation 

comes from employing consistent subsampling phase and shifting the lowpass bands by 

one sample to generate children in the tree. 
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Figure 2.5 Spatially coherent representation of a two-scale 1D- RDWT. 

 

 

 

 
Figure 2.6 Tree representation of a two-scale RDWT of 1D-signal x . 

 

 

The situation is similar for 2D decompositions implemented with separable 1D 

transforms, as illustrated in Figure 2.7.  Figure 2.7 shows a j -scale 2D RDWT   

consisting of j4  distinct critically sampled DWTs. The spatially coherent representation 



12 

 

of this two-scale 2D-RDWT means that the wavelet coefficients retain their correct 

spatial location within each subband, and each subband is the same size as the original 

image. In Figure 2.8 the notations Bj, Hj, Vj and Dj, denote the baseband, horizontal, 

vertical, and diagonal subbands, respectively, at scale j. This figure shows an example of 

RDWT process applied to the first frame of “Susie” sequence. 

 

 

 

 
Figure 2.7 Spatially coherent representation of a two-scale 2D-RDWT. 
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Figure 2.8 An example of a two-scale 2D-RDWT. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



14 

 

CHAPTER 3  

BLOCK MATCHING ALGORITHM 

 

 

3.1  Introduction 

Motion estimation is a type of video compression scheme. The motion estimation 

process is designed to find the motion vector pointing to the best prediction macroblock 

in a reference frame. Compression redundancy between adjacent frames can be exploited 

whenever a frame is selected as a reference and subsequent frames are predicted from the 

reference using motion estimation. Block-based matching algorithms are the most 

popular methods for motion estimation and have been applied to most of video 

applications. 

 

3.2  Block Matching Motion Estimation 

In block-matching, a frame is divided into an array of macroblocks (MBs) [16]. 

Each MB has the size of  NN   and is then compared with the candidate blocks in the 

reference frame. The candidate MB that is selected is the one that matches closest to the 

current block. Typically, two measurements, mean of absolute differences (MAD) and 

sum of squared differences (SSD) are adopted to evaluate how closely a candidate MB 

matches the current one [17]. Some video compression standards limit the maximum 

number of bits to encode each motion vector, thus restricting a motion vector’s 

magnitude and its horizontal and vertical components’ maximum value. In such case, the 

maximum value of the distance between a macroblock and its candidate reference blocks 

http://www.webopedia.com/TERM/F/frame.html
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is also limited. Usually, motion estimation is carried out only within a region of the 

reference frame, which is called the “search area”. This also reduces the amount of 

computation for motion estimation. 

The search for the best matching MB is confined to a search area whose size is 

decided by the search parameter p. The search range is up to p pixels on all four sides of 

the corresponding MB in the reference frame. Figure 3.1 demonstrates a block-matching 

with search parameter p = P. The square in gray is the search area for block-matching. 

Usually, faster motions require a larger p value. The larger the search parameter, the 

more computationally intensive the process of motion estimation becomes. 

 

                                  ||
1

MAD ),(

),(
2 vjui

currentji

block

ij RC
N





                                             (3.1) 

                                     2
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where ijC  and  ),( vjuiR   are the pixels being compared in the current MB and the MB on 

the reference frame, respectively. N is the size of the MB. 

The most direct way to perform motion estimation is to exhaustively check every 

possible candidate MB within the search area on the reference frame, and chose the best 

matching one. This method is called full search block-matching algorithm (FSBMA) 

[20]. After block-matching, a motion vector (MV) is obtained for each MB. 
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Figure 3.1 Block-matching with search parameter p = P. 

 

 

The motion vector is the displacements from the location of the current MB to the 

location of the best matching MB on the reference frame. Different coding techniques are 

usually used here to encode the MVs and generate bits for the video bit stream. MVs are 

used in motion compensation to construct the motion compensated frames. The 

difference between the current MB and the best-matching block is the prediction error 

which is usually encoded using the techniques that are used for compressing still-images. 

Notice that the reference frame is not necessarily the frame displayed before the current 

frame. Sometime, multiple reference frames are used. For example, if two reference 

frames are used: one frame before the current frame and one frame after the current frame 

in the display order but encoded previously. Thus the block matching is implemented on 

both reference frames, and the best matching-block is the one that has the least error 

among the candidate blocks on both reference frames. 
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3.3  Three-Step Search 

Three-step search (TSS) [19, 20] is a fast searching algorithm to find the MVs. 

TSS consists of three steps, each step uses a fixed search pattern of nine uniformly spaced 

search points. In the first step, the point giving the least error is chosen and becomes the 

new search center for the next step search. The size of the search pattern is reduced by 

half from one step to the other, and the search points get closer after every step. The 

algorithm halts in three steps. TSS requires a fixed (9+8+8) = 25 search points for each 

block chosen as shown in Figure 3.2.  

 

 

 
Figure 3.2 Three-step search process. 
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3.4  Group of  Pictures 

If a frame is decoded with error, all the frames that use it as the reference frame 

will be affected and decoded wrongly, thus the error propagates. To avoid such problem, 

one kind of video frame “I” frame is used. This type of frame doesn’t use reference 

frames for encoding and is encoded by itself as a still-image. In the case when a frame is 

decoded not correctly, the error propagation will stop at the next I frame and the frames 

after that I frame in the encoding order will not be affected. Besides I frames, there are 

other two types of frames, “P frames” and “B frames”. P frames use only a previously 

displayed frame as the reference frame [18, 21]. B frames use frames both in future and 

previous position in the display order as the reference frames. Figure 3.3 gives an 

example sequence of video frames. 

 

 

 

Figure 3.3 An example sequence of MPEG frames and the inter-frame dependencies. 
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3.5  Block-Based Motion Compensation 

When decoding a video, motion compensation is carried out. The process uses the 

reference frames and the motion vectors to reconstruct each MB of the current frame. For 

motion vectors having integer components, the predicted MB is a simple copy and paste 

of the matching-block in the reference frame. For motion vectors having non-integer 

components, interpolation is used to estimate the MB for non-integer locations. After 

obtaining the prediction of each MB, the prediction of the whole frame is also obtained. 

The prediction error is then decoded and added to the frame, and the final motion 

compensated frame is reconstructed. To evaluate the quality of a reconstructed image, a 

popular metric is mean-squared-error (MSE) [21], which is the sum of the squared error 

between the motion compensated image and the original one as given by 
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here N and M are the number of rows and columns of pixels of the frame, respectively. 

),( yxI  and ),(
~

yxI  are the values of the intensity of a pixel at the position ),( yx  in the 

original image and motion compensated picture, respectively. Another widely used 

metric for comparing various image compression techniques is the peak-signal-to-noise-

ratio (PSNR). The measurement evaluates the image quality based on the root of MSE of 

the reconstructed frame. The mathematical formulae for PSNR is 
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where maxI is the maximum possible value of the pixels on the image. When 8 bits sample 

precision is used, the value of maxI is 255. The higher the value of PSNR, the better the 

quality of the compensated image. 

Figure 3.4 illustrates the typical procedure of motion compensation. The 

computation requirement for motion compensation is much less than that of motion 

estimation. For each MB, motion estimation must calculate MAD or SSD on a number of 

NN  pixel blocks, whereas motion compensation just does the simple duplicate or 

interpolation of the selected matching block. This difference is critical and makes video 

decoding a much computationally simpler process than video encoding.  

 

 

         
Figure 3.4 An illustration of motion compensation. 
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3.6  Variable Size Block Matching  

In block matching motion compensation, there is a direct relationship between the 

size of the block and the error (or difference) between the current block and the best 

matching block in the reference frame [22]. As the block gets larger, the error is also 

likely to get larger because all the pixels in the block are unlikely to experience the same 

translational motion. Consequently, a single block size is then insufficient to control the 

error. An ideal VSBM technique should find the optimal tradeoff between the size of the 

blocks (and hence the number of blocks), and the total error associated with them. 

VSBM algorithm imposes a complete quad-tree on the block structure of a frame. 

Let us denote a square block by ),,( syx  where ),( yx  are the coordinates of the upper 

left-most pixel of the block, and s  is the length of one side of the block. The frame is 

initially divided into identical-sized small blocks of size mins , they constitute the leaves 

of the tree [23].  We refer to the root of a tree as node xE  , and the four children of a node 

as  ,, 24144  xxx EEE  and 34 xE .  The output of block matching motion estimation is a set 

of non-overlapping blocks which together will cover the entire frame. This principle is 

illustrated in Figure 3.5 [23]. Clearly, there are many tree structures, and one can easily 

observe that any tree with height less than n4log , where n is the total number of blocks of 

size mins , can be mapped uniquely to a set of non-overlapping blocks which covers the 

entire input frame. 
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Figure 3.5 Decomposition and the resulting quad-tree. 

 

 

 

The error of the tree (the total error of the matched blocks comprising the tree) is the 

error of the motion compensated frame. Given a required number of blocks B and two 

consecutive frames 1if  and if , the block matching requirement is to find a tree with B 

leaves whose error is minimal among all possible trees with B leaves.  Let )(BTx  be the 

tree whose root is x  and which covers only the area of the block corresponding to node x

. Let )(BEx  be the error of )(BTx . Let B  be the set of 4-tuple (i, j, k, l). Let )(BEx  be 

the error of the block corresponding to node x . By solving this equation below, we can 

calculate the minimum error )(0 BE and hence obtain the )(0 BT  for the entire frame. 
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3.7  Sub-pixel Motion Estimation 

A key performance issue in motion estimation is sub-pixel accuracy. The 

theoretical and experimental analysis, such as the work done in [26], have established 

that sub-pixel accuracy has a significant impact on motion compensated prediction error 

performance for a wide range of natural moving scenes. As a consequence, recent efforts 

to standardize the compression methodology in video compression [2-4] have embraced 

the principle of sub-pixel accuracy for motion estimation and motion compensated 

prediction. The most popular techniques for subpixel image registration are based on 

interpolation. In this approach, the reference frame is bilinearly interpolated to obtain a 

new reference frame in sub-pixel accuracy. This half-pixel interpolation is illustrated 

Figure 3.6, where A, B, C and D indicate the integer pixels, while a, b and c are the 

interpolated half pixels. a, b and c are obtained by bilinear interpolation from A, B, C and 

D as, 

                  2)( BAa              2)( CAb         4)( DCBAc                  (3.6) 

 

The block matching system is then modified so that the search is carried out with 

half-pixel accuracy in the interpolated reference frame. This incurs the addition of one 

more bit of precision to each component of the motion vectors. The concept of half-pixel 

accuracy can also be extended to quarter-pixel accuracy. 
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Figure 3.6 Half-pixel accuracy obtained by interpolation. 
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CHAPTER 4  

NEW APPROACH OF MOTION ESTIMATION/MOTION COMPENSATION IN 

REDUNDANT WAVELET DOMAIN 

 

 

4.1  Introduction 

The research presents in this chapter a novel approach to VSBMC in the 

redundant wavelet domain, which incorporate the idea of multiband and VSBMC. The 

new approach recognizes the different phases in RDWT coefficients, and views the 

motion from different perspectives. This method allows partitioning the video frame 

more flexibly according to its motion content. The new adaptive partitioning scheme can 

utilize more efficiently the motion content of a frame in terms of the size and shape of the 

blocks developed. The partitioning information is efficiently represented by a two-bit 

coding scheme. The frame partitioning process is accomplished using two steps: first, 

splitting; second, merging.  

As a refinement for the block matching system, the research proposed a selective 

algorithm for motion vector accuracy using a multiband-mode decision. The subpixel 

accuracy is a powerful tool to achieve more accurate coding, but it results in huge 

computational complexity since it uses a full search algorithm to find the accurate 

coordinate for each motion vector. The selective subpixel approach reduces the 

computations produced by the conventional subpixel algorithm while maintaining the 

same accuracy. 
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4.2  System Architecture for MB-VSBMC 

The encoder of our multi-band VSBMC video-coding system (MB-VSBMC) is 

depicted in Figure 4.1. The current and reference frames are transformed into RDWT 

coefficients, and both ME and MC take place in the redundant wavelet domain. In a J-

scale RDWT decomposition, each block in the original spatial domain corresponds to 3J 

+ 1 blocks of the same size, one for each subband. The collection of these co-located 

blocks is called a set. In the ME procedure, block matching algorithm is used to 

determine the MV of each set as a whole. Specifically, a block-matching procedure uses a 

cross-subband distortion measure that sums absolute differences for each block of the set. 

An adaptive variable size window is used for the block search. The all-phase correlation 

edge mask and approximation subband (LL) are used to construct a multiband decision 

criteria for choosing the block size. 

After the block size is determined, the motion from the reference frame to the 

current frame is estimated in the RDWT domain, and motion vectors are transmitted to 

the decoder. Multiband MC is accomplished by using a multiple reference frames 

(subbands) algorithm to generate bidirectional prediction. Residing in the RDWT 

domain, the motion-compensated residual is itself redundant; consequently, it is down- 

sampled before coding. The final encoding step for coder/decoder (CODEC) consists of a 

set partitioning in hierarchical trees (SPIHT) algorithm for still image compression [27]. 
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Figure 4.1 Block diagram of the MB-VSBMC video-coding system. CODEC uses the SPIHT  

                   algorithm. 

 

 

4.3  Proposed Decision Criterion 

  The research proposed a new decision criterion that partitions a given frame into 

variable size regions according to the motion information of the frame. The partitioning 

information is efficiently represented by a two-bit coding scheme. The frame partitioning 
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is accomplished by: first, potentially splitting a 16×16 block into 8×8 blocks, and then 

4×4 blocks; second, potentially merging four neighbors of 16×16 blocks into a 32×32 

block. 

4.3.1  Splitting Process  

The general idea of the splitting is to divide a certain 16×16 MB into up to four 

sub-MBs of 8×8, then divide a certain 8×8 MB into up to four sub-MBs of 4×4.  The 

research has developed five steps to accomplish that as shown in Figure 4.3: 

First: For a given 32×32 MB, decide which 16×16 MB is a candidate to be split. 

As it was mentioned before, each frame has at least four subbands in redundant wavelet 

domain. The direct multiplication of the RDWT coefficients at adjacent scales (all-phase 

correlation edge mask) distinguishes important features from the background due to the 

fact that wavelet-coefficients are correlated across scales. We will use an all-phase 

correlation edge mask of the current frame to determine which 16×16 MB is a candidate 

to be split by setting a number of thresholds. The correlation edge mask acts as a map for 

the decision making of the variable block size, since it highlights the edges. To create the 

correlation edge mask for the frame, we multiply the vertical )( jV , horizontal )( jH , and 

diagonal )( jD  bands together across scales and combine the products; i.e.  
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where 0J  and 1J  are the starting and ending scales, respectively, of the correlation 

operation. Note that mask(x, y) is the resulting correlation image with the same 

dimensions as the original image. See Figure 4.2 for an illustration of the correlation edge 

mask. 

 

 

 
(a) The fourth frame of “News” sequence. 

 
(b) Its corresponding correlation mask. 

Figure 4.2 An illustration of the correlation edge mask. 

 

 

Second: determine the global maximum of the mask, 

 

                                        )),(maskmax(Maskmax yx                                                   (4.2) 

 and set the threshold,   as: maxMask                        (4.3) 

where the threshold parameter is 10 ,  .  

Frame 1 Frame 4

Frame 2 with MV MC Prediction Error Frame

Correlation Mask
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Third: Divide the current correlation edge mask into 16×16 MBs and select each 

MB with an average value larger than the threshold for further splitting. 

                                                      1616

AvgBlock                                                            (4.4) 

 

Fourth: For the chosen 16×16 MB from the last step, divide the current and the 

reference correlation mask into 8×8 MBs, and subtract the co-located 8×8 MBs from 

each other and then test the result against correlation threshold 1  .  
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where  jiDiff ,  is the absolute difference between two correlation masks. i and j are the 

horizontal and vertical displacements. 
cur

ji,mask
 
and 

ref

ji.mask  are co-located 8×8 MBs for 

the current and reference frame,  respectively. Next, set the threshold 1 as:    
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Then, select any 8×8 MB with its average mask value larger than the threshold for further 

splitting. 

                                                         1

88 

AvgBlock .                                                        (4.7) 

 

Fifth: Those selected 8×8 MBs from the last step can be split further into 4×4 

MBs using the same procedure from above by changing the index from 8×8 to 4×4. The 

threshold becomes 2 . See Figure 4.3. 
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Figure 4.3 The splitting process. 

  

 

4.3.2  Merging Process 

The general idea of our merging process is to replace the potential four neighbors 

of 16×16 MBs that do not contain important motion content by a single 32×32 MB.  The 

main purpose of the merging process is to reduce the unnecessary MVs by merging the 

MVs of (two, three or four) 16×16 MBs (little motion content) into one MV to represent 

them. To complete the merging process, start by dividing the approximation subband 
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(LL) of the reference and the current frame into 16×16 blocks, and subtract the co-located 

16×16 blocks from each other and then test the result against the threshold 3 .   
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set the threshold 3 as:  FD 3   ,  where the threshold parameter is 10  ,   . 

The condition for merging is set to be: for each four neighbors of 16×16, if at least two of 

the four siblings (16×16) fall under the threshold, merge the siblings to a 32×32 block 

and calculate the MV for the 32 × 32 block. 

 

4.4  VSBM Tree Construction 

It is known that a quadtree data structure decomposes a maxmax 22
ll

 image frame 

into an )1( 0max  ll -level hierarchy, where a block at level l  has a size of ll 22  ,

max00 lll  . This structure corresponds to a tree, where each ll 22   block (called a 

node) either can be a leaf (i.e., it cannot be further subdivided) or can be subdivided into 

four subblocks, each of size 11 22   ll .  Thus, each subblock is a child node [49]. 

The tree can be represented by a bitstream where a “0” represents a leaf and a “1” 

represents a nonleaf node.  To efficiently encode such a partitioning, a two-bit coding 

scheme is essential. In this scheme, each leaf or nonleaf node of the tree is represented by 

a two-bit code (TBC) [50]. The first bit is used to distinguish between a leaf and a 
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nonleaf node, while the second is used to indicate whether a motion vector is being 

transmitted. In the first-bit position of the code, a 0 or 1 represents, respectively, a leaf or 

a nonleaf node; in the second-bit position, a 1 represents the transmission of a motion 

vector and a 0 the lack of it. For example, the code “10” represents a nonleaf node with 

no motion vector being transmitted, while the code “01” represents a leaf with its motion 

vector being transmitted. It is noted that for a leaf with no motion vector, the decoder 

uses its nearest direct ancestor’s motion vector as its own.  Figure 4.4 shows an example 

of TBC applied to a 32×32 MB and its sub-MBs. In this example we will transmits three 

MVs. The MVs for the 16×16 and 8×8 sub-MBs are obtained from the splitting process. 

The other MV for the 32×32 MB is obtained from the merging process. 

 

 

 
Figure 4.4 An example of the TBC applied to 32×32 MB and its sub-MBs. 
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4.5  Selective Refinement Algorithm  

 As a refinement for the block matching system, the research proposed a selective 

algorithm for motion vector accuracy to reduce its computational burden.  The subpixel 

accuracy is a powerful tool to achieve high coding, but it results in huge computational 

complexity since it uses a full search algorithm to find the accurate coordinate for each 

motion vector [38]. To perform the subpixel motion estimation, the encoder interpolates 

pixel values at subpixel positions using pixel values at integer pixel positions in reference 

frames. Although the coding accuracy is highly increased by the subpixel motion 

estimation, the computational complexity of this repetitive subpixel motion search is very 

large in comparison with fast integer-pixel motion search. In other words, the subpixel 

motion estimation without considering the macroblock characteristics is not efficient in 

terms of the computational complexity. To reduce this additional complexity, a new 

method of selective refinement algorithm (Figure 4.5) is developed. The basic procedure 

works in the following two steps: 

Step 1: Use the decision tree from the variable size block matching to decide the   

size of the block.  Notice that we do not include a 32×32 block in this procedure, because 

we assume that most 32×32 blocks do not have detailed texture and most likely its 

motion vector is close to zero. 

              Step 2:  Calculate the sum of absolute difference (SAD) for each 16×16 and 8×8 

MBs in the correlation edge mask, and test them against a threshold 1  for 16×16 MB, 

and 2  for 8×8 MB. If a selected 16×16 MB has a SAD value less than 1 , calculate  half 

pixel accuracy; otherwise, calculate quarter pixel accuracy. If a selected 8×8 MB has a 
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SAD value less than 2 , keep the integer accuracy unchanged; otherwise calculate half 

pixel accuracy. 

 

 

 
Figure 4.5 Selective refinement algorithm procedure. 

 

 

 The SAD is a sum of absolute difference between co-located MBs in the reference 

and current frame, and it can be calculated using the equation below. 
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where  jiSAD ,  is the sum of absolute difference at ),( ji -th MB, ),(),( nmM jicurr  is the 

current frame MB, and ),(),( nmM jiref  
is a co-located MB in the reference frame.  
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),( nm  is the pixel index within ),( ji -th MB, and N is 16 or 8 depending on the block 

size. We use the Equation 4.10 to calculate a combined SAD from the correlation edge 

mask and approximation band. To calculate the combined SAD, we calculate the SAD 

for each 16×16 MB in both the correlation edge mask and approximation band. Next, for 

every four neighbors of 16×16 MBs (32×32 block size), we pick a maximum and a 

minimum from these SAD values. Then, we plug these values in the equation below   
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where  max

,CorrLLSAD  is the summation of the maximum SAD values from the correlation 

edge mask and approximation band; and  min

,CorrLLSAD  is the summation of the minimum 

SAD values from the correlation edge mask and approximation band. Finally, we set the 

thresholds 1  and 2  as:  SADn  1  ; and  SADn  25.02  . The threshold 

parameter is n , where 10  n .  

 

4.6  Experimental Results  

For the experiment, we use 60 frames of 352×288 "News" sequence, with 

common intermediate format CIF (standard video format used in videoconferencing); and 

70 frames of 144×176 "Foreman" sequence, with quarter common intermediate format 

(QCIF). The sequences are grayscaled and have a temporal sampling of 25 frame/sec. 

The first frame is intra-encoded (I-frame) while all subsequent frames use ME/MC (P and 
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B-frames). All wavelet transforms (RDWT) use the Daubechies 9-7 filter with symmetric 

extension and a decomposition of J = 2 level. The parameters α, β and αn are 0.4, 0.68 

and 0.73, respectively. The core compression engine in all experiments is SPIHT.  Since 

SPIHT produces an embedded coding, each frame of the sequence is coded at exactly the 

specified target rate with a compression rate of 0.5 bpp for I frame and 0.25 bpp for P and 

B frames. For comparison purposes, we use the peak signal-to-noise ratio (PSNR) and the 

structural similarity index (SSIM) [39]. The SSIM is a method for measuring the 

similarity between two images. It can be viewed as a quality measure of one of the 

images being compared, provided that the other image is regarded as of perfect quality 

[39]. 
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The mean for image x or y can be obtained using: 
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The standard deviation for image x or y can be obtained using: 
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where N is the number of pixels, and the constant 1C  and 2C  are included to avoid 

instability when )( 22

yx    is very close to zero. 2

11 )( LKC   and 2

22 )( LKC  , where 

L  is the dynamic range of the pixel values (255 for 8-bit grayscale images), and both 

11 K  and 12 K are small constants. 

As shown in Tables 4.1 – 4.4, the PSNR and SSIM averages of all frames were 

calculated for the coding system in both spatial and RDWT domains. In RDWT, the 

results include our proposed MB-VSBMC method, conventional FSBMC method (8×8 

block size), and the conventional VSBMC wavelet method [40] by replacing the CODEC 

from DCT to SPIHT and applying the decision criteria to the wavelet approximation 

band. In addition subpixel accuracy and selective refinement algorithm are also included 

for comparison. For comparisons among FSBMC, conventional VSBMC, and MB-

VSBMC, all without any sub-pixel accuracy in the RDWT; the proposed MB-VSBMC 

performed the best in terms of SSIM and PSNR. For comparisons among FSBMC, 

conventional VSBMC, and MB-VSBMC with sub-pixel accuracy in the RDWT; the 

proposed MB-VSBMC again performed the best in terms of SSIM and PSNR. For 

comparison between MB-VSBMC with sub-pixel accuracy and MB-VSBMC with 

selective sub-pixel accuracy, the selective approach has computational advantage without 

sacrificing much performance in terms of SSIM and PSNR. 

Figure 4.6 shows the comparison of the compressed 4
th

 frame for “News” 

sequence using three different block partitioning techniques in the redundant wavelet 

domain. Figure 4.6.a is the original 4
th

 frame. Figure 4.6.b is the compressed frame using 

FSBMC (8×8 MBs) with subpixel accuracy. Figure 4.6.c is the compressed frame using 
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MB-VSBMC with subpixel accuracy. Figure 4.6.d is the compressed frame using MB-

VSBMC with selective algorithm. Figure 4.7 also shows the comparison of a compressed 

6
th

 frame for “Forman” sequence using the same three block partitioning techniques in 

the redundant wavelet domain as explained in the Figure 4.6.  

Figure 4.8 shows an example of partitioning results using different approaches. 

Figure 4.8 (a) and (b) are the 4
th

 frame of the “News” sequence. Figure 4.8.a shows a 

MB-VSBMC partitioning using 16×16, 8×8 and 4×4 block sizes for the splitting process 

and 32×32 block size for merging process. The variation from the 32×32 to 4×4 block 

size will result in more accuracy by capturing the motion content. Figure 4.8.b shows a 

conventional VSBMC partitioning by starting to split from 32×32 down to 4×4 block 

size. Figure 4.8 (c) and (d) are the 6
th

 frame of the “Foreman” sequence. Figure 4.8.c 

shows a MB-VSBMC partitioning using 16×16 and 8×8 block sizes for the splitting 

process and 32×32 block size for merging process. Figure 4.8.d shows a conventional 

VSBMC partitioning by starting to split from 32×32 down to 8×8 block size. 

Figure 4.9 shows the frame by frame comparison of PSNR for “News” sequence 

using scalable compression rate of 0.5 bpp for I and P, and 0.25 bpp for B frames. Figure 

4.10 shows the frame by frame comparison of PSNR for “Foreman” sequence using 

scalable compression rate of 0.5 bpp for I and P, and 0.25 bpp for B frames. These two 

figures are related to the results in Table 4.4. 
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Table 4.1 Comparison between conventional VSBMC and FSBMC in spatial domain. 

Spatial Domain News Forman 

SSIM PSNR SSIM PSNR 

FSBMC 0.853 29.76 0.814 27.47 

VSBMC 0.920 32.68 0.908 29.01 

 

 

Table 4.2 Comparison between conventional VSBMC, FSBMC and MB-VSBMC without 

                  any sub-pixel accuracy. 

RDWT Domain News Forman 

SSIM PSNR SSIM PSNR 

FSBMC 0.870 30.46 0.834 27.89 

VSBMC 0.921 32.71 0.911 29.04 

MB-VSBMC 0.978 33.65 0.923 30.47 

 

 

Table 4.3 Comparison between conventional VSBMC, FSBMC and MB-VSBMC with sub- 

                 pixel accuracy. 

RDWT Domain News Forman 

SSIM PSNR SSIM PSNR 

FSBMC+Subpixel 0.884 32.02 0.866 29.70 

VSBMC+Subpixel 0.941 34.93 0.927 31.27 

MB-VSBMC+Subpixel 0.987 35.71 0.934 33.06 

 

 

Table 4.4 Comparison between conventional VSBMC, FSBMC and MB-VSBMC with  

                     either a sub-pixel accuracy or selective algorithm. 

RDWT Domain News Forman 

SSIM PSNR SSIM PSNR 

FSBMC+Subpixel 0.884 32.02 0.866 29.70 

VSBMC+Subpixel 0.941 34.93 0.927 31.27 

MB-VSBMC+Subpixel 0.987 35.71 0.954 33.06 

MB-VSBMC+Selective  0.986 35.56 0.942 32.81 
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(a) The original 4

th
 frame. 

 
(b) FSBMC with subpixel accuracy. 

 
(c) MB-VSBMC with subpixel accuracy. 

 
(d) MB-VSBMC with selective algorithm. 

Figure 4.6 The comparison of the compressed 4
th

 frame for “News” sequence using three 

                   different block  partitioning techniques. 

 

Original RDWT-Block 

VB-RDWT + Selective Algo. VB-RDWT + Half PelVB-RDWT + Selective Algo. VB-RDWT + Half Pel
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(a) The original 6

th
 frame. 

 
(b) FSBMC with subpixel accuracy. 

 
(c) MB-VSBMC with subpixel accuracy. 

 
(d) MB-VSBMC with selective algorithm. 

Figure 4.7 The comparison of the compressed 6
th

 frame for “Foreman” sequence using 

                    three different block  partitioning techniques. 
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(a) MB-VSBMC partitioning. 

 
(b) Conventional VSBMC partitioning. 

 
(c) MB-VSBMC partitioning. 

 
(d) Conventional VSBMC partitioning. 

Figure 4.8 An example of partitioning results using different approaches. 

 

 

 

Foreman Sequence Frame (4)

Proposed Algorithm

Foreman Sequence Frame (4)

Traditional  VSBM
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Figure 4.9 PSNR for “News” at 0.5 bpp for I and P, and 0.25 bpp for B frames. 

 

 

 
Figure 4.10 PSNR for “Forman” at 0.5 bpp for I and P, and 0.25 bpp for B frames. 
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CHAPTER 5  

OPTIMIZED MULTIBAND VARIABLE BLOCK SIZE MOTION COMPENSATION 

APPROACH 

 

 

5.1  Introduction 

The MB-VSBMC approach discussed in the last chapter has achieved superior 

performance than the other methods. However, the approach itself is not optimized in the 

sense that those threshold parameters are chosen empirically. In this chapter, we will use 

the rate allocation theory to choose those parameters in an optimizing fashion. 

 

5.2  Study of the Rate Allocation Theory 

Efficient compression algorithms must minimize rate as well as distortion. A 

choice between different MVs or different block sizes is equivalent to a choice between 

points in the rate-distortion (R-D) curve. Using a Lagrange multiplier 0 , we can find 

points on the convex hull of all possible R-D pairs by solving the unconstrained problem 

[28].  

 

                                            )()(min BRBD
SB




                                                        (5.1)      

               

where S is the set of admissible bit allocations, and D(B) and R(B) are the total distortion 

and rate associated with the particular allocation SB [29, 30]. Each convex hull point 

for 0  is optimal in the sense that it has a lower distortion than any other possible R-D 
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pair having the same rate or less. By segmenting the image into K blocks, we can express 

the total bit usage R and distortion D as: 

 

                                                    



K

k

kbBR
1

)(                                                               (5.2) 

                                              )()(
1

k

K

k

k bEBD 


                                                             (5.3) 

where kb  is the number of  bits used for coding the k-th block’s motion representation 

and )( kk bE  is the block’s resulting distortion. Combining (5.1) through (5.3), the 

unconstrained problem can be written as:      

     

                                           













K

k

kkk
SB

bbE
1

)(min                                                      (5.4) 

 

where each term may be minimized separately [28, 31]. The decisions can be made 

optimally by minimizing the objective function for each region k. 

 

                                                  kkk bbE  )(                                                               (5.5) 

 

This will sequentially, minimize )()( BRBD    over the entire image. This 

method is called the principle of separate minimization [28]. The minimizing of the 

objective function (5.5) for each separate region will result in a globally optimal solution 

for the unconstrained problem (5.1).  

The Lagrange multiplier   determines the relative importance of rate and 

distortion.  For 0 , the distortion alone is minimized, resulting in a relatively high 
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rate. For positive values of  , some increase in distortion is allowed, as long as it is 

accompanied by a saving in rate.  

 

5.3  R-D Optimized FBMC 

Consider a fixed size BMC. Denote the total distortion over the k-th block kX  

using motion vector ),( yx   as ),( yxd
kX  ; and assume that each motion vector can be 

represented by a variable-length codeword (e.g., from a Huffman code table) with a 

known number of bits ),( yxb
kX  .  

 

                               ),(),(minarg)~,~(
,

yxbyxdyx
kk XX

yx




                            (5.6) 

 

 This allows the optimized motion vector )~,~( yx   to be chosen on the basis of rate and 

distortion, rather than distortion alone.   

 

5.4  R-D Optimized VBMC 

Consider a variable size BMC and assume the quadtree structure [33-35] is 

represented in this manner, i.e., two bits per merge/split decision, and that the leaf node 

block X is associated with a motion vector ),( yx  , which uses ),( yxbX  bits and has 

distortion ),( yxd X  .
  

Consider a 11 22   ll sub-block 1lX  in the quadtree, composed of four adjacent 

ll 22  sub-blocks  4,3,2,1,, mX ml  at level 0ll   in the quadtree. Assume the optimal 
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sub-tree structure is known for each of the four sub-blocks, and that optimal motion 

vectors are known for each leaf node. Denote the total bit usage and distortion of these 

optimal constituent sub-trees as )( ,mlXb
 and )( ,mlXd 

. Next, find an optimal motion 

vector for the entire block 1lX  and its incurred bit usage )~,~(
1

yxb
lX 


 and distortion

)~,~(
1

yxd
lX 


. Using the principle of separate minimization (5.4) [28], the subtrees 

should be combined into a single leaf node whenever 

 

                     )()()()~,~( 1,

4

1

111 





   l

T

lml

m

l

T

lX XbXdXbyxd
l

                   (5.7) 

 

 The above condition can be expressed in a simpler form whenever        

        

                            

 

                                                        bd                                                                (5.8) 

 

where d  is the error reduction and b  is the increment in the coding bits under the 

condition that a block is to be divided. If the MVs are assumed to be fixed-length coded, 

and each MV required mvB  bits, then the total coding bits representing the motion 

information can be expressed as in [36]:  

 

                                                 qtmv CnBB                                                                (5.9) 

 

where n is the number of leaves in the tree and qtC  is the number of bits used for coding 

a tree. Since each splitting operation produces three additional blocks, therefore, three 

more motion vectors are added.  The splitting condition stated above can be rewritten as 
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where 
l

jD  represents the prediction error of the j-th block in level l. qtC , is the 

increment in the number of bits due to the partitioning of the block. Usually qtC  is 

equal to 4 bits. 

 

5.5  Rate-Distortion Curve 

The unconstrained rate and distortion values R(λ) and D(λ) are monotonic in the 

Lagrange multiplier λ. As λ is swept through, all the convex hull points of the composite 

R-D curve are traced out [66]. Thus λ could be interpreted as a quality index as it is swept 

from 0 (highest rate, lowest distortion) to ∞ (lowest rate, highest distortion). Therefore, 

the unconstrained problem becomes the minimization of the Lagrangian cost function 

)(J  defined as:           

                                       )()()(  RDJ                                               (5.11) 

 

All signal block combinations must be considered at a slope point λ on their R-D 

curves for a given λ = |∆D/∆R|.  Figure 5.1 shows an example of a composite R-D curve 

with combination choices for the convex-hull points, with optimal tree structure for a 

given budget constraint. In the example, we calculate the distortion and its associate bit 

rate for each block-splitting combination, and then we pick the best splitting combination 

that has not exceeded the bit rate budget line, and has simultaneously minimized both the 

distortion and the bit rate. More details on R-D curve can be found in [66]. In this 
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chapter, we applied the rate allocation theory to our proposed MB-VSMC algorithm by 

using the rate-distortion curve to optimize the threshold values for the splitting process.  

 

 

 
Figure 5.1 Example of a composite R-D curve. Each square on the convex hull 

           points represents a potential configuration for block partitions.  

 

 

5.6  Distortion Measurement in RDWT 

In a J -scale RDWT decomposition, each NN   block in the original spatial 

domain corresponds to 13 j  blocks of the same size, one in each subband [37]. The 

collection of these co-located blocks is called a set. Each set contains all the different 
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phases of RDWT coefficients. In the ME procedure, block matching is used to determine 

the motion of each set as a whole. Specifically, a block-matching procedure uses a cross-

subband distortion measure that sums absolute errors for each block of the set. The 

coefficients from all phases in both current and reference frames contribute to the 

distortion measurement [65]. Therefore, the mean absolute distortion (MADIST) can be 

obtained using, 

                     ),,,(
1

),,,(
2 yxyx lykxAE

N
yxMADIST                      (5.12) 

 

The absolute error (AE) is 
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  (5.13) 

 

where cur and ref denote subbands from the current and reference frames, respectively, 

and jB  , jH  , jV  , and jD  are the baseband, horizontal, vertical, and diagonal subbands, 

respectively, at scale j [65]. 

 

5.7  R-D Optimized MB-VBMC and Decision Criterion 

We apply the rate-distortion theory to our new MB-VBMC approach.  The whole 

process is again applied in the following five steps similar to those described in chapter 

four. The first three steps are basically identical to those not optimized before.  They are 
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listed below for reference. However, starting in the fourth step the concept of rate 

allocation theory is integrated into the splitting procedure. 

5.7.1  Splitting Process Using Rate Allocation Theory 

First: Create all phase correlation edge mask. The correlation edge mask acts as a 

map for the decision making of the variable block size, since it highlights the edges. 
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where 0J  and 1J  are the starting and ending scales, respectively, of the correlation 

operation. Note that mask(x, y) is the resulting correlation image with the same 

dimension as the original image. We will use all-phase correlation edge mask of the 

current frame to determine which 16×16 MB is the candidate to be split by setting a 

number of thresholds. 

Second: determine the global maximum of the mask, 

 

                                           )),(maskmax(Maskmax yx                                              (5.15) 

                and set the threshold,   as 

 

                                                 maxMask                          (5.16) 

 

where the threshold parameter is 10 ,  .  

Third: Divide the current correlation edge mask into 16×16 MBs and select each 

MB with a value larger than the threshold. 



53 

 

 

                                                1616

AvgBlock                                                                (5.17) 

 

Fourth: For the chosen MB, divide the current and the reference correlation 

masks into 8×8 MBs and subtract the co-located 8×8 MBs from each other and then test 

the result against the correlation threshold 1  .  
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where  jiDiff ,  is the absolute difference between two masks. i and j are the horizontal and 

vertical displacements. 
cur

ji,mask
 
and 

ref

ji.mask  are co-located 8×8 MBs for the current and 

reference frame, respectively. 

 

Thus, set the threshold 1 as:     
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 where d  is the prediction error reduction and b  is the increment in the coding bits 

under the condition that a block is to be divided. The prediction error can be expressed as  

 

                                                  





4

1

1

4

n

l

nj

l

j DDd                                                    (5.20)    

 



54 

 

where
l

jD  represents the prediction error of the j-th block in level l, 
1

4





l

njD  represents the 

prediction error of the j-th block in sub-level l+1; and n is the number of leaves in the 

tree. If the motion vectors are assumed to be fixed-length coded and each vector requires 

mvB  bits [6], then the total number of coding bits representing the motion information can 

be expressed as:  

                                                  qtmv CnBb                                                            (5.21) 

 

where n is the number of leaves in the tree and qtC  is the number of bits used for coding 

a tree. The parameter 1  will be iterated until the threshold value of 1  satisfies the 

optimization condition bd   . 

Fifth: The selected 8×8 MBs can be split again using the same procedures and 

equations above by changing the index 8×8 to 4×4 in block size. 

 

5.8  Experimental Results 

For the experiment, we use 60 frames of 352×288 "News" sequence (CIF); and 70 

frames of 144×176 "Foreman" sequence (QCIF). The sequences are grayscaled and have 

a temporal sampling of 25 frame/sec. The first frame is intra-encoded (I-frame) while all 

subsequent frames use ME/MC (P and B-frames). All wavelet transforms (RDWT) use 

the Daubechies 9-7 filter with symmetric extension and a decomposition of J = 2 level. 

The parameters α, β and αn are 0.4, 0.68 and 0.73 respectively. For comparison purposes, 

we use the peak signal-to-noise ratio (PSNR) and the structural similarity index (SSIM) 

[39].  The PSNR and SSIM values were calculated for the coding system and shown in 
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Tables 5.1. The results include our proposed MB-VSBMC and conventional FSBMC 

method (8×8 block size), in addition to the conventional VSBMC [40] by replacing the 

CODEC algorithm from DCT to SPIHT and applying decision criteria to the wavelet 

approximation band.  By comparing Table 5.1 to Table 4.4, one can see that approaches 

using R-D optimization have better PSNR and SSIM values. 

 

 

Table 5.1 Comparison between conventional VSBMC, FSBMC and MB-VSBMC with 

                  either a sub-pixel accuracy or selective algorithm. The R-D optimization method 

                  is applied to all algorithms. 

RDWT Domain News Forman 

SSIM PSNR SSIM PSNR 

FSBMC+Subpixel 0.887 32.72 0.867 30.42 

VSBMC+Subpixel 0.944 35.56 0.928 31.55 

MB-VSBMC+Subpixel 0.988 36.14 0.956 33.78 

MB-VSBMC+Selective  0.987 35.97 0.946 32.92 

 

 

We also did a study of the number of blocks used for each algorithm for the 

optimized approach.  For example, the comparison between the conventional VSBMC 

algorithm and the proposed algorithm MB-VSBMC algorithm is shown in Figure 5.2. 

The MB-VSBMC algorithm reduces the number of the blocks used for conventional 

VSBMC by about 8-11%.  
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Figure 5.2 The number of the blocks used vs. frames sequence number for “News” 

                         sequence. 
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CHAPTER 6  

OVERLAPPED BLOCK MATCHING IN REDUNDANT WAVELET DOMAIN 

 

 

6.1  Introduction 

Overlapped block-matching motion compensation (OBMC) is an enhancement to 

the conventional block matching algorithm, which allows the blocks in the grid to 

overlap. The pixel intensity for a pixel in a reconstructed frame is not only derived by 

translating a single pixel from the reference frame, but is also affected by translating 

pixels according to the MVs of neighboring blocks [67]. When the blocks overlap, the 

pixel intensities are combined linearly, with the weights taken from a window function 

over the block. 

 

6.2  Overlapped Block Motion Compensation  

In a conventional block-based motion prediction (Figure 6.1), each block is 

motion-compensated independently of other blocks. Consequently, the motion vector for 

a given block is not necessarily the same as the vectors of its adjacent blocks, even 

though it is likely that the motion of the neighboring blocks is similar. This disparity 

causes discontinuity among consecutive blocks in the motion-compensated frame, a 

major cause of blocking artifacts. To mitigate this effect, the OBMC approach was 

proposed in [41]. 
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Figure 6.1 Conventional block motion compensation. 

 

 

Figure 6.2 shows an OBMC approach, in which a weighted sum of multiple 

predictions is used to motion-compensate each block. Let ),( yxPi  be a prediction of the 

current block obtained from a reference block, which is weighted by matrix ),( jiWi . In 

OBMC, the Pi predictions of the current block are generated by using the motion vectors 

of neighboring blocks. Thus, the weighted prediction is the following [42-45], 

 

                                            ),(),(),(
~

jiWyxPyxP iii                                               (6.1) 

 

where × represents element-by-element multiplication. The final prediction of the current 

block is the following:      

                                                 
i

i yxPyxP ),(
~

),(                                                      (6.2) 
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Figure 6.2 Overlapped block motion compensation. 

 

 

6.3  Weight Windows Selection 

There are several types of weight windows that can be used for OBMC, and 

different windows have different performances.  The three popular overlapped windows 

are the trapezium window, bilinear window, and raised cosine window [47], as shown in 

Figure 6.3. The trapezium window is recommended in the H.263 standard [2]. Its weights 

are based on experience. The values of the weights at the four corners are all zeros. The 

weight values of the bilinear window are cone-like and those of the raised cosine window 

are very smooth. Expressions for the weight values for the raised cosine and the bilinear 

types of windows are as follows. Raised cosine: yx wwyxW ),(   
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Figure 6.3 Three OBMC weight windows. 
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6.4  OBMC Implementation in RDWT 

The implementation of OBMC in the RDWT is a straightforward adaptation of 

OBMC in the spatial domain. It is well known that OBMC in the spatial domain can 

increase performance greatly; thus, it has been adopted in the H.263 standard. Since 

RDWT coefficients retain the “spatial coherence” of the original image; therefore, 

OBMC in the RDWT domain is straightforward application. Since there are 3J +1 

subbands for a J-scale decomposition, we must deploy OBMC in all the subbands in the 

RDWT domain following the same procedure. The research in this section uses the 

trapezium weight window to obtain the weighted prediction MBs. 

  OBMC in RDWT domain uses a weighted sum of multiple predictions to motion-

compensate each block. Let ),( yxPi  be a prediction of the current block obtained from a 

reference block. Then, the Pi predictions of the current block are generated by using the 

motion vectors of itself and neighboring blocks. The weighted prediction is the following, 

                                             ),(),(),(
~

jiWyxPyxP iii                                                 (6.5) 

 

The final prediction of the current block is the following:                        

 

                                                  
i

i yxPyxP ),(
~

),(                                                     (6.6)    

  In each subband, we define 8×8 MBs which are further divided into four 4×4 sub-

MBs. As illustrated in Figure 6.4, four sub-MBs within the current MB and the 

neighboring eight MBs are used to form a prediction of the current MB.  
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The prediction of the selected sub-MB within the current MB, such as VA block, will be 

formed using the weighted sum of three MBs; obtained through the motion vector for the 

current MB ),( yx  , plus the motion vectors of the two nearest neighboring MBs, one 

from the vertical direction ),( V

y

V

x   and one from the horizontal direction ),( H

y

H

x  , as 

shown in Figure 6.4. Depending on the different locations of those prediction blocks, 

there are three 8×8 matrices of weighting values as illustrated in Figures 6.5 - 6.7. Those 

weighting matrices are explained in detail in [41, 65, and 67]. The prediction of ),( yxP  

is of 8×8 block size, and can be obtained using, 

 

                                           CyxPyxPyxPyxP HV /),(
~

),(
~
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~

),(                            (6.7) 

 

where C is a constant such as three or eight. The expression ),( k

y

k

x yxp   refers to 

the prediction value at the position ),( k

y

k

x yx   in the reference frame. The notation 

k can be null, H or V. Consequently, the weighted prediction for xV  is the following: 

 

                                        ),(),(),(
~
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The weighed prediction for the vertical displacement is the following:  

 

                                      ),(),(),(
~
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The weighed prediction for the horizontal displacement is the following: 
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Figure 6.4 The Block xV  is predicted using the MV for block xV  plus the MVs for blocks 

                  
V

xV and 
H

xV .  The notation x can be A, B, C or D. 

 

 

 

 
Figure 6.5 Weighting values Wx , for prediction with motion vector of current block. 
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Figure 6.6 Weighting values VW  , for prediction with motion vectors of the blocks on top or  

                   bottom of current block. 

 

 

 

 

Figure 6.7 Weighting values HW , for prediction with motion vectors of the blocks to the left  

                  or right of current block. 

 

 

6.5  Experimental Results 

For the experiment, we use 60-frames of 352×288 "News" sequence, with 

common intermediate format CIF (standard video format used in videoconferencing); and 

70-frames of 144×176 "Foreman" sequence, with quarter common intermediate format 
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(QCIF). The sequences are grayscaled and have a temporal sampling of 25 frame/ sec. 

The first frame is intra-encoded (I-frame) while all subsequent frames use ME/MC (P and 

B-frames). All wavelet transforms (RDWT) use the Daubechies 9-7 filter with symmetric 

extension and a decomposition of J = 2 level. The parameters α, β and αn are 0.4, 0.68 

and 0.73 respectively. The core compression engine in all experiments is SPIHT.  The 

SPIHT produces an embedded coding. Each frame of the sequence is coded at exactly the 

specified target rate with compression rate of 0.5 bpp for I frame and 0.25 bpp for P and 

B frames.  

Figure 6.8 shows the fast Fourier transform (FFT) analysis of the predicted frame. 

Figure 6.8.a shows the FFT analysis for MB-VSBMC predicted frame without OBMC 

algorithm. Figure 6.8.b shows the FFT analysis for MB-VSBMC predicted frame with 

OBMC algorithm.  In the comparison between (a) and (b), it is observed that the number 

of high frequency components (which represent more energy) is reduced. This means that 

the prediction error is also reduced. Figure 6.9 shows an example of the OBMC effect on 

the blocking edge artifacts. By comparing Figure 6.9.a and Figure 6.9.b, it shows that 

OBMC has reduced the blocking edge artifacts and has improved the quality.  

Table 6.1 shows the comparison in terms of PSNR and SSIM values for OBMC 

applied to the approaches of conventional VSBMC, FSBMC, and MB-VSBMC with 

either sub-pixel accuracy or selective algorithm. When we compare the results between 

Table 6.1 and Table 4.4, we can conclude that the OBMC algorithm produces better 

compression quality. Usually, the OBMC approach is better than the non-OBMC 

approach by about one to two dB. 
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(a) The FFT analysis for MB-VSBMC predicted frame without OBMC. 

 
(b) The FFT analysis for MB-VSBMC predicted frame with OBMC. 

Figure 6.8 FFT analysis for OBMC-related predicted frames. 
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(a) MB-VSBMC predicted frame without 

 OBMC 

 
(b) MB-VSBMC predicted frame with  

   OBMC 
Figure 6.9 OBMC effect on the blocking edge artifact. 

 

 

Table 6.1 OBMC comparisons between conventional VSBMC, FSBMC and MB-VSBMC 

                  with either a sub-pixel accuracy or selective algorithm. 

RDWT Domain News Forman 

SSIM PSNR SSIM PSNR 

FSBMC+Subpixel 0.891 33.82 0.875 31.68 

VSBMC+Subpixel 0.952 36.32 0.938 32.45 

MB-VSBMC+Subpixel 0.989 37.23 0.967 34.96 

MB-VSBMC+Selective  0.988 36.91 0.953 34.07 
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CHAPTER 7  

THREE-DIMENSIONAL VIDEO COMPRESSION IN REDUNDANT WAVELET 

DOMAIN 

 

 

7.1  Introduction  

The 3D video technology enables various views to be integrated into a single 3D 

video system. Specifically, in 3D-TV video applications, several 3D video systems have 

been introduced in [51-57]. They can be classified into two classes with respect to the 

amount of employed 3D geometry. A first class of 3D video systems is based on multiple 

texture views of the video scene, called N-texture representation format. The N-texture 

approach forms the basis for the emerging multi-view video coding (MVC) standard 

currently developed by the Joint Video Team (JVT) [52]. Figures 7.1 and 7.2 have some 

illustrations on this. 

However, due to the significant amount of data to be stored, the main challenge of 

the MVC standard is to define efficient coding and decoding tools. To this end, a number 

of H.264/MPEG-4 AVC coding tools have been proposed and evaluated within the MVC 

framework. The first coding tool exploits the similarity between the views by 

multiplexing the captured views and encoding the resulting video stream by a modified 

H.264/MPEG-4 AVC encoder [53, 54]. The second coding tool equalizes the inter-view 

illumination to compensate for mismatches across the views captured by different 

cameras [55].  The latest description of the standard can be found in the Joint Draft 8.0 on 

Multi-view Video Coding [51]. 
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Multi-view video acquisition      Coding, transmission and decoding               Image rendering 

Figure 7.1 The N-texture Multi-view Video Coding (MVC). 

 

 

 
Figure 7.2 Example of the N-texture Multi-view Video Coding (MVC). 
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One advantage of the above-mentioned N-texture representation format is that no 

3D geometric description of the scene is required. Because 3D geometry is not used, this 

3D video format allows a simple video processing chain at the encoder. However, such a 

3D video representation format involves a high complexity decoder for the following 

reason [56]; a multi-view display supports a varying number of views at the input, which 

makes it impractical to prepare these views prior to transmission. Instead, intermediate 

views should be interpolated from the transmitted reference views at the decoder, where 

the display characteristics are known. To obtain high-quality interpolated views, a 3D 

geometric description of the scene is necessary, thereby involving computationally 

expensive calculations at the receiver side. 

A second class of 3D video systems relies on a partial-3D geometric description 

of the scene [57]. The scene geometry is typically described by a depth map, or depth 

image, that specifies the distance between a point in the 3D world and the camera. 

Typically, a depth image is estimated from two images by identifying corresponding 

pixels in the multiple views; in other words, the point-correspondences that represent the 

same 3D scene point. Using depth images, new views can be subsequently rendered or 

synthesized using a depth Image based rendering (DIBR) algorithm. Here, the term DIBR 

corresponds to a class of rendering algorithms that use depth and texture images 

simultaneously to synthesize virtual images. Considering a 3D-TV application, it is 

assumed that the scene is observed from a narrow field of view (short baseline distance 

between cameras). As a result, a combination of only one texture and one depth video 

sequence is sufficient to provide appropriate rendering quality. The 1-depth/1-texture 
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approach was recently standardized by Part 3 of the MPEG-C video specification [58-

61]. This system is illustrated in Figure 7.3. The different approaches to video 

compression explained in previous chapters will be applied to texture image and depth 

image.  

 

 

 
Figure 7.3 1-depth/1-texture multiview video compression system. 

 

 

7.2  Stereo Constraints/ Epipolar Constraint 

When images of a scene are captured using two cameras simultaneously, these 

cameras are termed a stereo-pair and produce stereo-pairs of images. The properties of 

cameras so configured are determined by their epipolar geometry, which describes the 

relationship between world points observed in their fields of view and the images 
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imposing on their respective sensing planes. The image-plane locations of each world 

point as sensed by the camera pair are called corresponding or matched points [60, 61]. 

Corresponding points within stereo-pair images are connected by the fundamental matrix. 

If known, it provides fundamental information on the epipolar geometry of the stereo-pair 

setup. However, finding corresponding points between images is not a trivial task. There 

are many factors which can confound this process, such as occlusions, limited image 

resolution and quantization, distortions, noise and many others. Technically, matching is 

said to be under-constrained; in other words, there is not sufficient information available 

within the compared images to guarantee finding a unique match. However, matching can 

be made easier by applying a set of rules known as stereo constraints, of which the most 

important is the epipolar constraint, and this implies that corresponding points always lie 

on corresponding epipolar lines [62].  

The epipolar constraint limits the search for corresponding points from the entire 

2D space to a 1D space of epipolar lines. Although the positions of the epipolar lines are 

not known in advance; in the special case when stereo-pair cameras are configured with 

parallel optical axes  called the canonical or standard stereo system, the epipolar lines 

follow the image (horizontal) scan-lines. The problem of finding corresponding points is 

one of the essential tasks of computer vision. Figure 7.4 shows the epipolar geometry for 

parallel pin-hole cameras. 
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Figure 7.4 Epipolar geometry. 

 

 

In Figure 7.4, left epipole is the projection of Or on the left image plane. Right epipole is 

the projection of Ol on the right image plane. Epipolar plane is the plane defined by P, Ol 

and Or. Epipolar line is the intersection of the epipolar plane with the image plane. The 

camera frames are related by a translation vector T = (Or - Ol) and a rotation matrix R. 

The relation between Pl and Pr (projection of P in the left and right frames) is given by

)( TPRP lr  . The usual equations of perspective projection define the relation between 

3D points and their projections [57, 69]: 
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We assume the two cameras are parallel so fl = fr . Assume parallel optical axes, 

and known camera parameters (i.e., calibrated cameras), we can triangulate via similar 

triangles (pl, P, pr) and (Ol, P, Or):  
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        or             

lr xx
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fZ


                           (7.2) 

Thus:                                                       lr xxd                                                       (7.3) 

 

where T is the stereo baseline and d measures the difference in retinal position between 

two corresponding points. 

 

7.3  Multiview Image Acquisition 

To acquire multiview images, one possible approach is to capture a texture image 

and the corresponding 3-D geometry of the scene. The 3-D geometry can be acquired by 

recording the scene from several viewpoints. In practice, two points of view 

corresponding to a left and right camera are usually employed. By comparing differences 

between the two captured images, the depth (that corresponds to the 3-D geometry) can 

be estimated and represented in a so-called depth image. This depth image is represented 

by a gray-scale image: usually dark and bright pixels correspond to foreground and 

background distance, respectively. By using a texture image and a corresponding depth 

image, one can perform depth image based rendering. 
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7.4  Depth Image Based Rendering 

The DIBR is a key technology in an advanced 3D television system. Traditional 

3D TV system requires the transmission of two video streams, the left and right view, to 

construct 3D vision. Unlike the traditional method, the advanced 3D TV system proposed 

a novel technology DIBR to provide 3D vision. DIBR uses intermediate view and 

intermediate depth map to render left and right view. In this way, broadcast content 

providers only have to transmit the left view and gray level depth map of the intermediate 

view.  

Once intermediate image and depth image is given, any nearby image can be 

synthesized by mapping pixel coordinates one by one according to its depth value. 

However, there is an essential problem in DIBR that occlusion holes appear after pixel to 

pixel mapping. Holes do appear due to sharp horizontal changes in depth image, thus the 

location and size of holes differ from frame to frame. One solution to this problem is 

using 3D image warping technique [63, 64]. 3D image warping maps intermediate view 

pixel by pixel to left or right views according to the pixel’s depth value. In other words, 

3D image warping transforms pixel locations according to their depth values. Figure 7.5 

shows an example of the 3D image warping technique using the left frame and the 

corresponding depth map.  

 



76 

 

 
Figure 7.5 An example of the 3D image warping technique. 

 

 

7.5  System Architecture for MB-VSBMC  3-D System 

The encoder of our MB-VSBMC video-coding system is depicted in the block 

diagram in Figure 7.6. The depth frame is estimated using the left and right frame. The 

synchronized left texture frame and its corresponding depth frame are transformed into 

RDWT coefficients. Both ME and MC operations take place in the redundant wavelet 

domain for texture and depth images, as shown in the figure.  

In the ME procedure, block matching is used to determine the motion of each set. 

Specifically, a block-matching procedure uses a cross-subband distortion that measures 

the sums of absolute differences for each block of the set. An adaptive variable size 
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window is used for the block search. The all-phase correlation edge mask and 

approximation subband (LL) are used to construct a multiband decision criteria for 

choosing the block size. 

After the block size is determined, the motion from the reference frame to the 

current frame is estimated in the RDWT domain, and motion vectors are transmitted to 

the decoder. Multiband MC is accomplished by using a multiple reference frames 

(subbands) algorithm to generate a prediction frame. Residing in the RDWT domain, the 

motion-compensated residual is itself redundant; consequently, it is down-sampled before 

coding. The downsampling stage converts the overcomplete bands in RDWT to the 

critical DWT to be suitable for the encoding stage. The encoding step for CODEC 

consists of a set partitioning in hierarchical trees (SPIHT) algorithm for still image 

compression. We will use two synchronized encoders, one for the left view sequence and 

the other for its corresponding depth map. 

The final step is DIBR which enables us to render the final frame to be ready for 

viewing by using the synchronized predicted left frame and its corresponding predicted 

depth frame.  

As shown in Figure 7.6, the depth estimation process has been done in a spatial 

domain before the transformation in the redundant wavelet domain. Also in Figure 7.6, 

we divided the ME and MC blocks into two blocks, to indicate separate processes for the 

left texture frame and its corresponding depth frame. 
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Figure 7.6 Block diagram of the MB-VSBMC 3D-video-coding system.  

 

 

7.6  Experimental Results 

In the experimental results we use the right and the left views for "Tiger" video, 

320 frames of 352×288 pixels, with audio video interleave (AVI) DVD video format. The 

sequence is RGB24 and has a temporal sampling of 30 frame/ sec. For each synchronized 

right and left frame, we produced an estimated depth map. We perform ME/MC for each 

left frame and its estimated depth map separately. The first frame is intra-encoded (I-
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frame) while all subsequent frames use ME/MC (P and B-frames). All wavelet 

transforms (RDWT) use the Daubechies 9-7 filter with symmetric extension and a 

decomposition of J = 2 level. The parameters α and β are 0.67 and 0.58 respectively. The 

core compression engine in all experiments is SPIHT. SPIHT produces an embedded 

coding rate with compression rate of 1 bpp. We used the 3D image warping technique to 

render and synthesize images, using a reference texture image and its corresponding 

depth image.  

The depth image has a low energy and does not have sharp boundaries; therefore, 

it is not an easy task to obtain an accurate motion vector. Fortunately, the redundant 

wavelet domain provides a good solution by retaining all the phase information and 

providing a multiple prediction possibilities for motion techniques. Consequently, the 

proposed MB-VSBMC approach in a 3-D system may capture more motion contents of a 

depth map, and may result in better performance in terms of PSNR. 

Figure 7.7 shows an example of an acquisition of 1-depth/1-texture. Figure 7.7.a 

and Figure 7.7.b are the 1
st
 and 11

th
 left-frame of the “Tiger” sequence, respectively. 

Figure 7.7.c and Figure 7.7.d are the corresponding depth map frames for the 1
st
 and 11

th
 

frame, respectively. They are produced from the left and right texture frames using a 

depth estimation technique.  
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(a) 1st 

left-frame of the “Tiger” sequence. 
 

(b) 11
th 

 
 
left-frame of the “Tiger” sequence. 

 
(c) The corresponding depth map for the 1

st
. 

 
(d) The corresponding depth map for the 11

th
. 

Figure 7.7 Example of an acquisition of 1-depth/1-texture.   

 

 

 

Figure 7.8 shows an example of MB-VSBMC block partitioning. Figure 7.8.a and 

Figure 7.8.c are the correlation edge masks of the 11
th

 left-frame and its corresponding 

depth map frame of the “Tiger” sequence, respectively. Figure 7.8.b and Figure 7.8.d are 

the MB-VSBMC block partitionings for the 11
th

 left-frame and its corresponding depth 

map frame, respectively. 

Frame 1 Frame 11

Frame 1 Depth Map Frame 11 Depth Map

Frame 1 Frame 11

Frame 1 Depth Map Frame 11 Depth Map

Frame 1 Frame 11

Frame 1 Depth Map Frame 11 Depth Map

Frame 1 Frame 11

Frame 1 Depth Map Frame 11 Depth Map
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(a) The correlation mask of the texture frame. 

 
(b) The texture frame block partitioning. 

 
(c) The correlation mask of depth frame. 

 
(d) The depth frame block partitioning. 

Figure 7.8 Example of MB-VSBMC block partitionings. 

 

 

Figure 7.9 shows the comparison between two partitioning techniques for the 

depth map for the 11
th

 frame of the “Tiger” sequence. Figure 7.9.a is the result of using a 

MB-VSBMC partitioning technique. Figure 7.9.b is the result of using a conventional 

VSBMC partitioning technique. Note that the MB-VSBMC approach shows superior 

performance for capturing the motion content. 

Correlation Mask of Original

Frame 11

Original Frame 11 with

Variable Blocks Matching

Correlation Mask of Original

Frame 11

Original Frame 11 with

Variable Blocks Matching

Correlation Mask of Depth Map

(frame 11)
Depth Map with Variable Size Block

(frame 11)

Correlation Mask of Depth Map

(frame 11)
Depth Map with Variable Size Block

(frame 11)
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(a) The MB-VSBMC approach. 

 
(b) The conventional VSBMC approach. 

Figure 7.9 The comparison between two partitioning techniques for the depth map. 

 

 

Figure 7.10 shows the 1-texture/ 1-depth comparison of the synthesized frame 

using three different block partitioning approaches in the redundant wavelet domain. 

Figure 7.10.a is the original synthesized 11
th

-frame of the “Tiger” sequence from left and 

right frames using the N-texture technique. Figure 7.10.b is the synthesized frame 

produced using the FSBMC approach with subpixel accuracy. Figure 7.10.c is the 

synthesized frame produced using the MB-VSBMC approach with subpixel accuracy. 

Figure 7.10.d is the synthesized frame produced using the MB-VSBMC approach with 

selective algorithm. 

 

 

Correlation Mask of Depth Map

(frame 11)
Depth Map with Variable Size Block

(frame 11)

Depth Map with Traditional VSBMC

(frame 11)
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(a) N-texture technique. 

 
(b) FSBMC approach. 

 
(c) MB-VSBMC with subpixel accuracy. 

 
(d) MB-VSBMC with selective algorithm. 

Figure 7.10 The 1-texture/ 1-depth comparison of the synthesized frames from different 

                       compression techniques. 

 

 

Figure 7.11 shows the frame by frame PSNR comparisons for the “Tiger” 

sequence using the FSBMC with subpixel accuracy, the conventional VSBMC with 

subpixel accuracy, and the MB-VSBMC with either subpixel accuracy or selective 

algorithm. Table 7.1 shows an average PSNR comparison using the same techniques 

Original Frame 1 RDWT-Block

VB-RDWT + Selective Algo VB-RDWT + Half-Pel Algo

Original Frame 1 RDWT-Block

VB-RDWT + Selective Algo VB-RDWT + Half-Pel Algo

Original Frame 1 RDWT-Block

VB-RDWT + Selective Algo VB-RDWT + Half-Pel Algo

Original Frame 1 RDWT-Block

VB-RDWT + Selective Algo VB-RDWT + Half-Pel Algo
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mentioned above. The MB-VSBMC approach shows better performance than both the 

FSBMC and the conventional VSBMC in terms of PSNR. The results discussed here 

have included the OBMC approach. 

 

 

 
Figure 7.11 The frame by frame PSNR comparison with a CODEC bit rate of 1 bpp. 

 

 

Table 7.1 An average PSNR comparison. 

RDWT Domain PSNR 

FSBMC+Subpixel +OBMC 22.851 

VSBMC+Subpixel+OBMC 27.329 

MB-VSBMC+Subpixel+OBMC 30.011 

MB-VSBMC+Selective +OBMC 29.567 
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CHAPTER 8  

CONCLUSION 

 

 

In this dissertation, we proposed a high performance video coding system based 

on the idea of ME/MC in the redundant wavelet domain. As demonstrated in a number of 

prior investigations in the RDWT domain, the shift variance of the usual critically 

sampled DWT no longer poses a problem for the estimation of object motion. However, 

as the research has demonstrated in this dissertation, the redundancy of RDWT can be 

exploited for advantages other than just its mere shift invariance. Specifically, the RDWT 

retains all the phases’ information of a wavelet transform and facilitates the deployment 

of multiple-band evaluations for VSBMC. 

The research presents a new adaptive partitioning scheme and decision criteria 

that utilizes more effectively the motion content of a frame in terms of the various block 

sizes. The new decision criterion partitions a given frame into variable size regions 

according to the motion information of the frame. The partitioning information is 

efficiently represented by a two-bit quadtree coding scheme. The frame partitioning is 

accomplished by first splitting and then merging processes. 

  In addition, the research investigates the rate allocation theory in the redundant 

wavelet domain to optimize the selection process of the block size. In view of the fact 

that an optimal partitioning scheme should minimize the coding rate as well as the 

prediction error of a frame, a choice between different MVs or different block sizes is 
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equivalent to a choice between points in the Rate-Distortion plane. This can be achieved 

by using the Lagrange multiplier method and solving the unconstrained problem. 

The dissertation also proposed a selective subpixel accuracy algorithm for 

estimating the motion vector with a multiband approach. The selective subpixel approach 

reduces the computations produced by the conventional subpixel approach while 

maintaining almost the same accuracy. To enhance the quality of the system, the research 

applies the OBMC approach to mitigate the effects of blocking artifacts caused by the 

discontinuity among consecutive blocks in the motion-compensated frame. 

In view of the fact that the 3D technology has been one of the fastest growing 

technologies in the recent years, the research extends the applications of the proposed 

MB-VSBMC to the 3D stereoscopic video coding system. The research approach is 

based on the structure of 1-texture/1-depth techniques and has employed the depth-based 

rendering to reconstruct the desired stereo views for each video frame. 

Finally, the MB-VSBMC in redundant wavelet domain proposed in this 

dissertation follows the fact that the modern video systems are built upon a large 

collection of diverse techniques, all of which improve the system performance to various 

degrees. On future trend is to study the effectiveness of the algorithm using a content-

driven rate-quality approach. In this case, the mean square error approach is no longer a 

valid criterion or measure of quality. The focus will change from rate distortion to rate 

quality optimization. It will require new quality assessment metrics and artifact detection 

methods related to the human perceptual  responses. 
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APPENDIX 

MATLAB CODE 

 

 
% Main code for 2D MB-VSBMC in RDWT 
% Ahmed Suliman 23 Feb 2010 
clear all 
close all 
clc 
tic 

  
% Create a new AVI file to store the output AVI file 
aviobj = avifile('test_out.avi','fps',25,'COMPRESSION','None'); 
% Initialize motion Vectors for splitting process 
motionVect=zeros(2,256); 
motionVect1=zeros(2,1024); 
motionVect2=zeros(2,4096); 
%flag to tell if B frame was predicted from I or P frame  
%flag=1 P frame & flag=0 I frame & flag=2 both I & P 
flag=0; 
% Collect info about input file 
mov=aviread('test.avi'); 
movinfo=aviinfo('test.avi'); 
noframe=movinfo.NumFrames; 
% 3 Steps ME algo initialization 
% mbSize indicate the Max MB size used for ME (splitting process) 
mbSize = 16; 
%p for search area 
p = 7; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
global I1d_LH P4d_LH P7d_LH I10d_LH B2d_LH B3d_LH B5d_LH B6d_LH B8d_LH 

B9d_LH 
global I1d_HH P4d_HH P7d_HH I10d_HH B2d_HH B3d_HH B5d_HH B6d_HH B8d_HH 

B9d_HH 
global I1d_HL P4d_HL P7d_HL I10d_HL B2d_HL B3d_HL B5d_HL B6d_HL B8d_HL 

B9d_HL 
global I1d P4d P7d I10d B2d B3d B5d B6d B8d B9d 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Extract I frame 
framedata=aviread('test.avi',1); 
I1=frame2im(framedata); 
I_1=imresize(I1,[256 256]); 
I1=rgb2gray(I_1); 
I1=double(I1); 
% Transfer I frame into RDWT 
h = daubcqf(6); 
[ll_lev2,yh,L] = mrdwt(I1,h,1);  
N = 256; 
lh = yh(:,1:N); 
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hl = yh(:,N+1:2*N); 
hh = yh(:,2*N+1:3*N); 
% Store the feedback buffer frame 
JQ=ll_lev2; 
bufferI1= mirdwt(JQ,yh,h,1); 
c= makeLayers(JQ); 
% Calling decoder 
identifier=1; 
decoder1(c,motionVect,identifier,flag); 
identifier=1; 
decoder_I(c,1,motionVect,identifier,flag); 
% Calculat frame by frame PSNR 
ESpsnr(1) = imgPSNR(I1_Dec, frame_1, 255); 
%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
% Group frames intio I, P and B 
% Initialization 
 k=1; 
% Extracting frames from input 
for i=1:10:10 
    i 
    if i~=1 
        j=i-round(i/10); 
        [B2,B3,P4,B5,B6,P7,B8,B9,I10]=GOP(j); 
    elseif i==1 
        j=i; 
        [B2,B3,P4,B5,B6,P7,B8,B9,I10]=GOP(j); 
    end 

     
% Start to predict P4 from I1 
% Obtain all phase correlation mask 
Mask_R=Corr_Mask(I1); 
Mask_t=Corr_Mask(P4); 
% ME/MC for all bands in frame 4 
[bufferP4,streamP4,motionVect]=compensatedFrame_Mod(P4,I1,Mask_R,mbSize

,p);  
c4= makeLayers(streamP4); 
%calling decoder         
identifier=4; 
%decoder 
decoder1(c4,motionVect,identifier,flag); 
[bufferP4_LH,streamP4_LH,motionVect,motionVect14]=compensatedFrame_LH_M

od(P4,I1,Mask_R,Mask_t,mbSize,p,motionVect,1);  
c_LH= makeLayers(streamP4_LH); 
%calling decoder 
identifier=4; 
%decoder 
decoder_LH(c_LH,1,motionVect,identifier,flag); 
[bufferP4_HL,streamP4_HL,motionVect]=compensatedFrame_HL_Mod(P4,I1,Mask

_R,Mask_t,mbSize,p,motionVect,1);  
c_HL= makeLayers(streamP4_HL); 
%calling decoder 
identifier=4; 
%decoder 
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decoder_HL(c_HL,1,motionVect,identifier,flag); 
[bufferP4_HH,streamP4_HH,motionVect]=compensatedFrame_HH_Mod(P4,I1,Mask

_R,Mask_t,mbSize,p,motionVect,1);  
c_HH= makeLayers(streamP4_HH); 
%calling decoder 
identifier=4; 
%decoder 
decoder_HH(c_HH,1,motionVect,identifier,flag); 
% Retrived reconstructed frame 
yh1=[P4d_LH,P4d_HL,P4d_HH]; 
frame_4= mirdwt(P4d,yh1,h,1); 
% Calculate frame by frame PSNR 
ESpsnr(k+3) = imgPSNR(P4, frame_4, 255); 

  
% ME/MC for all bands in frame 2  
[B2t ,motionVect,motionVect1] = 

bFrameProc_Mod(B2,bufferI1,bufferP4,Mask_R,Mask_t,mbSize,p); 
c= makeLayers(B2t); 
%calling decoder 
flag=2; 
identifier=2; 
decoder1(c,motionVect,identifier,flag); 
[B2t_LH ,motionVect,motionVect1, flag] = 

bFrameProc1_LH_Mod(B2,bufferI1,bufferP4_LH,Mask_R,Mask_t,mbSize,p); 
c_LH= makeLayers(B2t_LH); 
%calling decoder 
identifier=2; 
%decoder 
decoder_LH(c_LH,1,motionVect,identifier,flag); 
[B2t_HL ,motionVect,motionVect1, flag] = 

bFrameProc1_HL_Mod(B2,bufferI1,bufferP4_HL,Mask_R,Mask_t,mbSize,p); 
c_HL= makeLayers(B2t_HL); 
identifier=2; 
%decoder 
decoder_HL(c_HL,1,motionVect,identifier,flag); 
[B2t_HH ,motionVect,motionVect1, flag] = 

bFrameProc1_HH_Mod(B2,bufferI1,bufferP4_HH,Mask_R,Mask_t,mbSize,p); 
c_HH= makeLayers(B2t_HH); 
%calling decoder 
identifier=2; 
%decoder 
decoder_HH(c_HH,1,motionVect,identifier,flag); 
% Retrived reconstructed frame 
yh2=[B2d_LH,B2d_HL,B2d_HH]; 
frame_2= mirdwt(B2d,yh2,h,1); 
% Calculate frame by frame PSNR 
ESpsnr(k+1) = imgPSNR(B2, frame_2, 255); 

  
% ME/MC for all bands in frame 3             
[B3t ,motionVect,motionVect1] = 

bFrameProc_Mod(B3,bufferI1,bufferP4,Mask_R,Mask_t,mbSize,p); 
c= makeLayers(B3t);     
%calling decoder 
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identifier=3; 
decoder1(c,motionVect,identifier,flag); 
[B3t_LH ,motionVect,motionVect1, flag] = 

bFrameProc1_LH_Mod(B3,bufferI1,bufferP4_LH,Mask_R,Mask_t,mbSize,p); 
c_LH= makeLayers(B3t_LH); 
%calling decoder 
identifier=3; 
%decoder 
decoder_LH(c_LH,1,motionVect,identifier,flag); 
[B3t_HL ,motionVect,motionVect1, flag] = 

bFrameProc1_HL_Mod(B3,bufferI1,bufferP4_HL,Mask_R,Mask_t,mbSize,p); 
c_HL= makeLayers(B3t_HL); 
%calling decoder 
identifier=3; 
%decoder 
decoder_HL(c_HL,1,motionVect,identifier,flag); 
[B3t_HH ,motionVect,motionVect1, flag] = 

bFrameProc1_HH_Mod(B3,bufferI1,bufferP4_HH,Mask_R,Mask_t,mbSize,p); 
c_HH= makeLayers(B3t_HH); 
%calling decoder 
identifier=3; 
%decoder 
decoder_HH(c_HH,1,motionVect,identifier,flag); 
% Retrived reconstructed frame 
yh3=[B3d_LH,B3d_HL,B3d_HH]; 
frame_3= mirdwt(B3d,yh3,h,1); 
% Calculate frame by frame PSNR 
ESpsnr(k+2) = imgPSNR(B3, frame_3, 255); 

  
% ME/MC for all bands in frame 7 
% Predicting p7 from p4 
[bufferP7,streamP7,motionVect]=compensatedFrame_Mod(P7,P4,Mask_t,mbSize

,p); 
c= makeLayers(streamP7);  
%calling decoder 
identifier=7; 
decoder1(c,motionVect,identifier,flag); 
[bufferP7_LH,streamP7_LH,motionVect,motionVect17]=compensatedFrame_LH_M

od(P7,P4,Mask_t,Mask_t2,mbSize,p,motionVect,1);  
c_LH= makeLayers(streamP7_LH); 
%calling decoder 
identifier=7; 
%decoder 
decoder_LH(c_LH,1,motionVect,identifier,flag); 
[bufferP7_HL,streamP7_HL,motionVect]=compensatedFrame_HL_Mod(P7,P4,Mask

_t,Mask_t2,mbSize,p,motionVect,1);  
c_HL= makeLayers(streamP7_HL); 
%calling decoder 
identifier=7; 
%decoder 
decoder_HL(c_HL,1,motionVect,identifier,flag); 
[bufferP7_HH,streamP7_HH,motionVect]=compensatedFrame_HH_Mod(P7,P4,Mask

_t,Mask_t2,mbSize,p,motionVect,1);  
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c_HH= makeLayers(streamP7_HH); 
%calling decoder 
identifier=7; 
%decoder 
decoder_HH(c_HH,1,motionVect,identifier,flag); 
% Retrived reconstructed frame 
yh7=[P7d_LH,P7d_HL,P7d_HH]; 
frame_7= mirdwt(P7d,yh7,h,1); 
% Calculate frame by frame PSNR 
ESpsnr(k+6) = imgPSNR(P7, frame_7, 255); 

  
% ME/MC for all bands in frame 5 
[B5t, motionVect ,motionVect1] = 

bFrameProc_Mod(B5,P4,bufferP7,Mask_t,Mask_t2,mbSize,p); 
c= makeLayers(B5t); 
flag=0; 
%calling decoder 
identifier=5; 
decoder1(c,motionVect,identifier,flag);  
[B5t_LH ,motionVect,motionVect1, flag] = 

bFrameProc1_LH_Mod(B5,P4,bufferP7_LH,Mask_t,Mask_t2,mbSize,p); 
c_LH= makeLayers(B5t_LH); 
%calling decoder 
identifier=5; 
%decoder 
decoder_LH(c_LH,1,motionVect,identifier,flag); 
[B5t_HL ,motionVect,motionVect1, flag] = 

bFrameProc1_HL_Mod(B5,P4,bufferP7_HL,Mask_t,Mask_t2,mbSize,p); 
c_HL= makeLayers(B5t_HL); 
%calling decoder 
identifier=5; 
%decoder 
decoder_HL(c_HL,1,motionVect,identifier,flag); 
[B5t_HH ,motionVect,motionVect1, flag] = 

bFrameProc1_HH_Mod(B5,P4,bufferP7_HH,Mask_t,Mask_t2,mbSize,p); 
c_HH= makeLayers(B5t_HH); 
%calling decoder 
identifier=5; 
%decoder 
decoder_HH(c_HH,1,motionVect,identifier,flag); 
% Retrived reconstructed frame 
yh5=[B5d_LH,B5d_HL,B5d_HH]; 
frame_5= mirdwt(B5d,yh5,h,1); 
% Calculate frame by frame PSNR 
ESpsnr(k+4) = imgPSNR(B5, frame_5, 255); 

  
% ME/MC for all bands in frame 6            
[B6t, motionVect,motionVect1] = 

bFrameProc_Mod(B6,P4,bufferP7,Mask_t,Mask_t2,mbSize,p); 
c= makeLayers(B6t);   
%calling decoder 
identifier=6; 
decoder1(c,motionVect,identifier,flag); 
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[B6t_LH ,motionVect,motionVect1, flag] = 

bFrameProc1_LH_Mod(B6,P4,bufferP7_LH,Mask_t,Mask_t2,mbSize,p); 
c_LH= makeLayers(B6t_LH); 
%calling decoder 
identifier=6; 
%decoder 
decoder_LH(c_LH,1,motionVect,identifier,flag); 
[B6t_HL ,motionVect,motionVect1, flag] = 

bFrameProc1_HL_Mod(B6,P4,bufferP7_HL,Mask_t,Mask_t2,mbSize,p); 
c_HL= makeLayers(B6t_HL); 
%calling decoder 
identifier=6; 
%decoder 
decoder_HL(c_HL,1,motionVect,identifier,flag); 
[B6t_HH ,motionVect,motionVect1, flag] = 

bFrameProc1_HH_Mod(B6,P4,bufferP7_HH,Mask_t,Mask_t2,mbSize,p); 
c_HH= makeLayers(B6t_HH); 
%calling decoder 
identifier=6; 
%decoder 
decoder_HH(c_HH,1,motionVect,identifier,flag); 
% Retrived reconstructed frame 
yh6=[B6d_LH,B6d_HL,B6d_HH]; 
frame_6= mirdwt(B6d,yh6,h,1); 
% Calculate frame by frame PSNR 
ESpsnr(k+5) = imgPSNR(B6, frame_6, 255); 

  
% Processing on I10 frame 
% Transfer I frame into RDWT 
h = daubcqf(6); 
[ll_lev221,yh2,L] = mrdwt(I10,h,1);  
N = 256; 
lh_le = yh2(:,1:N); 
hl_le = yh2(:,N+1:2*N); 
hh_le = yh2(:,2*N+1:3*N); 
streamI10=ll_lev221; 
bufferI10=mirdwt(streamI10,yh2,h,1); 
% Obtain all phase correlation mask   
Mask_le=Corr_Mask(I10); 
c= makeLayers(streamI10); 
%calling decoder 
identifier=10; 
decoder1(c,motionVect,identifier,flag); 
identifier=10; 
decoder_LH(lh_le,1,motionVect,identifier,flag); 
decoder_HL(hl_le,1,motionVect,identifier,flag); 
decoder_HH(hh_le,1,motionVect,identifier,flag); 
% Retrived reconstructed frame 
yh10=[I10d_LH,I10d_HL,I10d_HH]; 
frame_10= mirdwt(I10d,yh10,h,1); 
% Calculate frame by frame PSNR 
ESpsnr(k+9) = imgPSNR(I10, frame_10, 255); 
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% ME/MC for all bands in frame 8  
[B8t, motionVect, motionVect1] = 

bFrameProc_Mod(B8,P7,streamI10,Mask_le,Mask_t2,mbSize,p); 
c= makeLayers(B8t); 
flag=2; 
%calling decoder 
identifier=8; 
decoder1(c,motionVect,identifier,flag); 
[B8t_LH ,motionVect, motionVect1, flag] = 

bFrameProc1_LH_Mod(B8,P7,I10d_LH,Mask_le,Mask_t2,mbSize,p); 
c_LH= makeLayers(B8t_LH); 
%calling decoder 
identifier=8; 
%decoder 
decoder_LH(c_LH,1,motionVect,identifier,flag); 
[B8t_HL ,motionVect, motionVect1, flag] = 

bFrameProc1_HL_Mod(B8,P7,I10d_HL,Mask_le,Mask_t2,mbSize,p); 
c_HL= makeLayers(B8t_HL); 
%calling decoder 
identifier=8; 
%decoder 
decoder_HL(c_HL,1,motionVect,identifier,flag); 
[B8t_HH ,motionVect, motionVect1, flag] = 

bFrameProc1_HH_Mod(B8,P7,I10d_HH,Mask_le,Mask_t2,mbSize,p); 
c_HH= makeLayers(B8t_HH); 
%calling decoder 
identifier=8; 
%decoder 
decoder_HH(c_HH,1,motionVect,identifier,flag); 
% Retrived reconstructed frame 
yh8=[B8d_LH,B8d_HL,B8d_HH]; 
frame_8= mirdwt(B8d,yh8,h,1); 
% Calculate frame by frame PSNR 
ESpsnr(k+7) = imgPSNR(B8, frame_8, 255); 

         
% ME/MC for all bands in frame 9          
[B9t, motionVect,  motionVect1] = 

bFrameProc_Mod(B9,P7,streamI10,Mask_le,Mask_t2,mbSize,p); 
c= makeLayers(B9t); 
%calling decoder 
identifier=9; 
decoder1(c,motionVect,identifier,flag); 
[B9t_LH ,motionVect, motionVect1, flag] = 

bFrameProc1_LH_Mod(B9,P7,I10d_LH,Mask_le,Mask_t2,mbSize,p); 
c_LH= makeLayers(B9t_LH); 
%calling decoder 
identifier=9; 
%decoder 
decoder_LH(c_LH,1,motionVect,identifier,flag); 
[B9t_HL ,motionVect, motionVect1, flag] = 

bFrameProc1_HL_Mod(B9,P7,I10d_HL,Mask_le,Mask_t2,mbSize,p); 
c_HL= makeLayers(B9t_HL); 
%calling decoder 
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identifier=9; 
%decoder 
decoder_HL(c_HL,1,motionVect,identifier,flag); 
[B9t_HH ,motionVect, motionVect1, flag] = 

bFrameProc1_HH_Mod(B9,P7,I10d_HH,Mask_le,Mask_t2,mbSize,p); 
c_HH= makeLayers(B9t_HH); 
%calling decoder 
identifier=9; 
%decoder 
decoder_HH(c_HH,1,motionVect,identifier,flag); 
% Retrived reconstructed frame 
yh9=[B9d_LH,B9d_HL,B9d_HH]; 
frame_9= mirdwt(B9d,yh9,h,1); 
% Calculate frame by frame PSNR 
ESpsnr(k+8) = imgPSNR(B9, frame_9, 255); 
k=k+9; 

  
% Reorder the frames to reconstruct the output sequence 
if i==1 
    imshow(uint8(frame_1),[]) 
    aviobj = addframe(aviobj,getframe); 
    imshow(uint8(frame_2),[]) 
    aviobj = addframe(aviobj,getframe); 
    imshow(uint8(frame_3),[]) 
    aviobj = addframe(aviobj,getframe); 
    imshow(uint8(frame_4),[]) 
    aviobj = addframe(aviobj,getframe); 
    imshow(uint8(frame_5),[]) 
    aviobj = addframe(aviobj,getframe); 
    imshow(uint8(frame_6),[]) 
    aviobj = addframe(aviobj,getframe); 
    imshow(uint8(frame_7),[]) 
    aviobj = addframe(aviobj,getframe); 
    imshow(uint8(frame_8),[]) 
    aviobj = addframe(aviobj,getframe); 
    imshow(uint8(frame_9),[]) 
    aviobj = addframe(aviobj,getframe); 
    imshow(uint8(frame_10),[]) 
    aviobj = addframe(aviobj,getframe); 
else 
    imshow(uint8(frame_2),[]) 
    aviobj = addframe(aviobj,getframe); 
    imshow(uint8(frame_3),[]) 
    aviobj = addframe(aviobj,getframe); 
    imshow(uint8(frame_4),[]) 
    aviobj = addframe(aviobj,getframe); 
    imshow(uint8(frame_5),[]) 
    aviobj = addframe(aviobj,getframe); 
    imshow(uint8(frame_6),[]) 
    aviobj = addframe(aviobj,getframe); 
    imshow(uint8(frame_7),[]) 
    aviobj = addframe(aviobj,getframe); 
    imshow(uint8(frame_8),[]) 



102 

 

    aviobj = addframe(aviobj,getframe); 
    imshow(uint8(frame_9),[]) 
    aviobj = addframe(aviobj,getframe); 
    imshow(uint8(frame_10),[]) 
    aviobj = addframe(aviobj,getframe); 
end 
I1=I10; 
bufferI1=bufferI10; 
I1d=I10d; 
end 
aviobj = close(aviobj); 
toc 
 

 

function Mask=Corr_Mask(I1) 
% Construct the all phase correlation mask 

  
h = daubcqf(6); 
[ll_lev2,yh,L] = mrdwt(I1/max(max(I1)),h,1);  
N = 256; 
lh = yh(:,1:N); 
hl = yh(:,N+1:2*N); 
hh = yh(:,2*N+1:3*N); 
lh_lev2 = yh(:,3*N+1:4*N); 
hl_lev2 = yh(:,4*N+1:5*N); 
hh_lev2 = yh(:,5*N+1:6*N); 
Mask=abs(lh.*lh_lev2 )+abs(hl.*hl_lev2)+abs(hh.*hh_lev2); 

 

 
function 

[bufferImageP,streamP,motionVect]=compensatedFrame_Mod(Im,bufferImage,M

ask,mbSize,p) 
% Function ME/MC LL-band 

  
h = daubcqf(6); 
[ll_lev2,yh,L] = mrdwt(Im,h,1);  
Im=ll_lev2; 
[ll_lev22,yh1,L1] = mrdwt(bufferImage,h,1);  
bufferImage=ll_lev22; 
% 3-steps ME 
motionVect = motionEstTSS(Im,bufferImage,mbSize,p); 
% MC 
imgComp = motionComp(bufferImage, motionVect, mbSize); 
% obtain Resduial 
imageSubtract=imsubtract_W(abs(Im),abs(imgComp)); 
bufferImageP=(imadd(abs(Im),abs(imgComp))); 
bufferImageP= mirdwt(bufferImageP,yh1,h,1); 
streamP=imageSubtract; 

 

function 

[bufferImageP,streamP,motionVect,motionVect1]=compensatedFrame_LH_Mod(I

m,bufferImage,Mask,Mask_1,mbSize,p,motionVect,level) 
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% Function to ME/MC LH-band 

  
h = daubcqf(6); 
[ll_lev2,yh,L] = mrdwt(Im,h,1);  
N = 256; 
lh = yh(:,1:N); 
hl = yh(:,N+1:2*N); 
hh = yh(:,2*N+1:3*N); 
lh_lev2 = yh(:,3*N+1:4*N); 
hl_lev2 = yh(:,4*N+1:5*N); 
hh_lev2 = yh(:,5*N+1:6*N); 

  
if level==1 
    Im=lh; 
else 
    Im=lh_lev2; 
end 

  
[ll_lev22,yh1,L1] = mrdwt(bufferImage,h,1);  
lh1 = yh1(:,1:N); 
hl1 = yh1(:,N+1:2*N); 
hh1 = yh1(:,2*N+1:3*N); 
lh_lev21 = yh1(:,3*N+1:4*N); 
hl_lev21 = yh1(:,4*N+1:5*N); 
hh_lev21 = yh1(:,5*N+1:6*N); 

  
if level==1 
    bufferImage =lh1; 
else 
    bufferImage =lh_lev21; 
end 

  
motionVect = motionEstTSS(Im,bufferImage,mbSize,p); 
motionVect1 = motionEstTSS_Mod_1(Im,bufferImage,Mask,Mask_1,8,4); 
imgComp = motionComp(bufferImage, motionVect, mbSize); 
imgComp1 = motionComp_1(imgComp, motionVect1, 8); 

  
if level==1 
    imgComp=(imgComp+imgComp1)/2; 
else 
    imgComp=imgComp1; 
end 

  
imageSubtract=imsubtract_W(abs(Im),abs(imgComp)); 
bufferImageP=(imadd(abs(Im),abs(imgComp))); 
bufferImageP= mirdwt(bufferImageP,yh1,h,1); 
streamP=imageSubtract; 

 

function decoder1(c,motionVect,identifier,flag) 

  
global I1d P4d P7d I10d B2d B3d B5d B6d B8d B9d 
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blocksize=16; 
i = 0; 
h = daubcqf(6); 
[ll_lev2,yh,L] = mrdwt(c,h,2);  
c=ll_lev2; 
if identifier==1 
    I1d = Idecoder1(c,yh,h); 
end 

  
if identifier==4 
    P4d = pDecoder1(c,yh,h,I1d,motionVect); 
end 

   
if identifier==7 
    P7d = pDecoder1(c,yh,h,P4d,motionVect); 
end 

  
if identifier==2 
    if flag==0 
        B2d = bDecoder1(c,yh,h,I1d,motionVect); 
    elseif flag==1 
        B2d = bDecoder1(c,yh,h,P4d,motionVect); 
    end 
end 

  
if identifier==3 
    if flag==0 
        B3d = bDecoder1(c,yh,h,I1d,motionVect); 
    elseif flag==1 
        B3d = bDecoder1(c,yh,h,P4d,motionVect); 
    end 
end 

  
if identifier==5  
    if flag==0 
        B5d = bDecoder1(c,yh,h,P4d,motionVect); 
    elseif flag==1 
        B5d = bDecoder1(c,yh,h,P7d,motionVect); 
    end 
end 

  
if identifier==6 
    if flag==0 
        B6d = bDecoder1(c,yh,h,P4d,motionVect); 
    elseif flag==1 
        B6d = bDecoder1(c,yh,h,P7d,motionVect); 
    end 
end 

  
if identifier==10 
    I10d = Idecoder1(c,yh,h); 
    I1d=I10d; 
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end 

  
if identifier==8  
    if flag==0 
        B8d = bDecoder1(c,yh,h,P7d,motionVect); 
    elseif flag==1 
        B8d = bDecoder1(c,yh,h,I10d,motionVect); 
    end 
end 

  
if identifier==9 
    if flag==0 
        B9d = bDecoder1(c,yh,h,P7d,motionVect); 
    elseif flag==1 
        B9d = bDecoder1(c,yh,h,I10d,motionVect); 
    end 
end 

  

 
% Computes motion compensated image using the given motion vectors 
% 
% Input 
%   imgI : The reference image  
%   motionVect : The motion vectors 
%   mbSize : Size of the macroblock 
% 
% Ouput 
%   imgComp : The motion compensated image 
% 
% Written by Aroh Barjatya 

  
function imgComp = motionComp(imgI, motionVect, mbSize) 

  
% imgI=P4; 
% motionVect=motionVect1; 
% mbSize=8; 

  
[row col] = size(imgI); 

  
% for i = mbSize:mbSize:row-mbSize-1 
%     for j = mbSize:mbSize:col-mbSize-1 
% we start off from the top left of the image 
% we will walk in steps of mbSize 
% for every marcoblock that we look at we will read the motion vector 
% and put that macroblock from refernce image in the compensated image 

  
mbCount = 1; 
for i = 1:mbSize:row-mbSize+1 
    for j = 1:mbSize:col-mbSize+1 

         
        % dy is row(vertical) index 
        % dx is col(horizontal) index 
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        % this means we are scanning in order 

         
        dy = motionVect(1,mbCount); 
        dx = motionVect(2,mbCount); 

     
        refBlkVer = i + dy; 
        refBlkHor = j + dx;   

     
        imageComp(i:i+mbSize-1,j:j+mbSize-1) = 

imgI(refBlkVer:refBlkVer+mbSize-1, refBlkHor:refBlkHor+mbSize-1); 

     
        mbCount = mbCount + 1; 
    end 
end 

  
imgComp = imageComp; 

 
% Computes the Mean Absolute Difference (MAD) for the given two blocks 
% Input 
%       currentBlk : The block for which we are finding the MAD 
%       refBlk : the block w.r.t. which the MAD is being computed 
%       n : the side of the two square blocks 
% 
% Output 
%       cost : The MAD for the two blocks 
% 
% Written by Aroh Barjatya 

  

  
function cost = costFuncMAD(currentBlk,refBlk, n) 

  
%currentBlk=double(currentBlk); 
%refBlk=double(refBlk); 
err = 0; 
for i = 1:n 
    for j = 1:n 
        err = err + abs((currentBlk(i,j) - refBlk(i,j))); 
    end 
end 
cost = err / (n*n); 

 

 

 
function 

[totaltime,avgMBSearch,avgMAD,avgMSE,PSNR]=HBMA(Target_Img,Anchor_Img,I

mg_Height,Img_Width,BlockSize,rangs,range,figureon) 
% 
%function 

[totaltime,avgMBSearch,avgMAD,avgMSE,PSNR]=HBMA(Target_Img,Anchor_Img,I

mg_Height,Img_Width,BlockSize,rangs,range,figureon) 
% 
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%This function calculate block motion vectors (with integer pel 

accuracy), using hierarchical block matching algorithm. 
%An example of main function calling this function is "MEMBA", which 

can be entered on the command window. 
%The function also use the function "EBMA" for motion estimation of 

every macroblock 
% 
%   TargetName,AnchorName:  
%       File Names of Target Frame and Anchor Frame 
%   Img_Height,Img_Width:   
%       Image Height and Width of a Frame 
%  BlockSize:              
%       The size of Macro Block in Frame is BlockSize(1) by 

BlockSize(2) 
%   rangs,range:       
%       The Search Field in Frame A is from (rangs(1),rangs(2)) to 

(range(1),range(2)) 
%  Target_Img,Anchor_Img,Predict_Img: 
%       Image Matrix for Target Frame, Anchor Frame, Predicted Frame 
%   ox,oy,pxx,pyy: 
%       The location of Motion vector is (ox,oy), (pxx,pyy) for the 

direction  
%   PSNR: 
%       The peak signal and noise ratio between original image and 

predicted image 
%   L: 
%       The search level 
%   Author: Xiaofeng Xu, Polytechnic University  4/21/2002 
%   totaltime: 
%       The total time of ME algorithm execution between original and 

predicted images (platform depended) 
%   avgMBSearch: 
%        The average number of Macro Block matching stages between 

original and predicted images 
%   avgMAD: 
%       The average MAD between original and predicted images 
%   avgMSE: 
%       The average MSE between original and predicted images 
%   Author: Evgeny Kaminsky, Ben Gurion University 12/18/2002 
L=3; 
%Number of MB searches; 
c_MB_search=0; 
%Read images from files 
%fid = fopen(Target_Img,'r'); 
%Target_Img= fread(fid,[Img_Height,Img_Width]); 
%fclose(fid); 
Target_Img=double(Target_Img); 

  
%fid = fopen(Anchor_Img,'r'); 
%Anchor_Img= fread(fid,[Img_Height,Img_Width]); 
%fclose(fid); 
Anchor_Img=double(Anchor_Img); 
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if (figureon) 
    %Display the results 
    figure; 
    imshow(uint8(Target_Img)); 
    title('Target Image')  
end 
t0 = clock; 
m=1; 
Factor=2.^(L-1); 
%Downsample Image with different resolution 
Up_Target_Img=zeros(Img_Height*2,Img_Width*2); 
Up_Target_Img(1:2:Img_Height*2,1:2:Img_Width*2)=Target_Img; 
Up_Target_Img(1:2:Img_Height*2-1,2:2:Img_Width*2-

1)=(Target_Img(:,1:Img_Width-1)+Target_Img(:,2:Img_Width))/2; 
Up_Target_Img(2:2:Img_Height*2-1,1:2:Img_Width*2-

1)=(Target_Img(1:Img_Height-1,:)+Target_Img(2:Img_Height,:))/2; 
Up_Target_Img(2:2:Img_Height*2-1,2:2:Img_Width*2-

1)=(Target_Img(1:Img_Height-1,1:Img_Width-1)+Target_Img(1:Img_Height-

1,2:Img_Width)+Target_Img(2:Img_Height,1:Img_Width-

1)+Target_Img(2:Img_Height,2:Img_Width))/4; 

  
TargetDown=zeros(3,Img_Height,Img_Width); 
%AnchorDown=TargetDown; 
TargetDown1=Target_Img; 
AnchorDown1=Anchor_Img; 

  
AnchorDown2(1:Img_Height/2,1:Img_Width/2)=Anchor_Img(1:2:Img_Height,1:2

:Img_Width); 
AnchorDown3(1:Img_Height/4,1:Img_Width/4)=AnchorDown2(1:2:Img_Height/2,

1:2:Img_Width/2); 

  
TargetDown2(1:Img_Height/2,1:Img_Width/2)=Target_Img(1:2:Img_Height,1:2

:Img_Width); 
TargetDown3(1:Img_Height/4,1:Img_Width/4)=TargetDown2(2:2:Img_Height/2,

1:2:Img_Width/2); 

  
Predict_Img=Target_Img; 

  
rangs(1)=rangs(1)/Factor; 
range(1)=range(1)/Factor; 

  
rangs(2)=rangs(2)/Factor; 
range(2)=range(2)/Factor; 

  
Img_Height=Img_Height/Factor; 
Img_Width=Img_Width/Factor; 

  

  
%Search for all the blocks in Anchor Images of 1st level 
for i=1:BlockSize(1):Img_Height-BlockSize(1)+1 
   RangeStart(1)=i+rangs(1); 
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   RangeEnd(1)=i+BlockSize(1)-1+range(1); 
   if RangeStart(1)<1 
      RangeStart(1)=1; 
   end    
   if RangeEnd(1)>Img_Height 
      RangeEnd(1)=Img_Height; 
   end 
   for j=1:BlockSize(2):Img_Width-BlockSize(2)+1 
      RangeStart(2)=j+rangs(2); 
      RangeEnd(2)=j+BlockSize(2)-1+range(2); 
       if RangeStart(2)<1 
       RangeStart(2)=1; 
       end    
    if RangeEnd(2)>Img_Width 
        RangeEnd(2)=Img_Width; 
      end 
      tmpt(:,:)=TargetDown3(:,:); 
      tmpa(:,:)=AnchorDown3(:,:); 
      [px(m), 

py(m),MB_search]=EBMA(tmpt,tmpa,BlockSize,[i,j],RangeStart,RangeEnd); 
      c_MB_search=MB_search+c_MB_search; 
      ox(m)=j; 
      oy(m)=i; 
      m=m+1; 
   end 
end 
if (figureon) 
%Disfplay the results 
    figure; 
    imshow(uint8(TargetDown3)); 
    title('TargetDown3') 
    figure; 
    imshow(uint8(AnchorDown3)); 
    title('AnchorDown3') 

  
    hold on 
    quiver(ox,oy,px,py); 

  
    hold off 
    axis image 
end 
%Search for all the blocks in Anchor Images of all levels 
for ii=L-1:-1:1 
   %Update all parameters for the currenet level. 
   px=px*2; 
   py=py*2; 
   Img_Height=Img_Height*2; 
   line_width=floor(Img_Width/BlockSize(2)); 
   Img_Width=Img_Width*2; 
   ttt=size(py); 

    
     m=1; 
    %Search for all the blocks in Anchor Images in the iith level 
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    for i=1:BlockSize(1):Img_Height-BlockSize(1)+1 

       
      baseline=double(uint32(i/2/BlockSize(1)))*double(line_width); 
      for j=1:BlockSize(2):Img_Width-BlockSize(2)+1 
         %Caculate the search range in Target Images. 
         mindx=floor(baseline+double(uint32(j/2/BlockSize(2)))+1); 
         if mindx>ttt(2) 
            mindx=ttt(2); 
         end 

          
         RangeStart(1)=i+py(mindx)+rangs(1); 
        RangeEnd(1)=i+py(mindx)+BlockSize(1)-1+range(1); 
        if RangeStart(1)<1 
        RangeStart(1)=1; 
        end    
        if RangeEnd(1)>Img_Height 
        RangeEnd(1)=Img_Height; 
        end 

          
         RangeStart(2)=j+px(mindx)+rangs(2); 
          RangeEnd(2)=j+px(mindx)+BlockSize(2)-1+range(2);          
         if RangeStart(2)<1 
           RangeStart(2)=1; 
           end    
        if RangeEnd(2)>Img_Width 
            RangeEnd(2)=Img_Width; 
         end 

          
         if ii==2 
             tmpt=TargetDown2(:,:); 
              tmpa=AnchorDown2(:,:); 

               
         end  

            
         if ii==1 
             tmpt=TargetDown1(:,:); 
              tmpa=AnchorDown1(:,:); 

               
          end 

           
                [pxx(m), pyy(m),MB_search, 

Predict_Img(i:i+BlockSize(1)-1,j:j+BlockSize(1)-

1)]=EBMA(tmpt,tmpa,BlockSize,[i,j],RangeStart,RangeEnd); 
                c_MB_search=MB_search+c_MB_search; 

  
                  %Refine final result by half-pel accuracy search    
         if(ii==1)                   
            RangeStart(1)=(i+pyy(m))*2-1-2; 
                RangeEnd(1)=(i+pyy(m))*2-1+BlockSize(1)*2-1+2; 
            if RangeStart(1)<1 
            RangeStart(1)=1; 
            end    
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            if RangeEnd(1)>Img_Height*2 
            RangeEnd(1)=Img_Height*2; 
            end 

          
            RangeStart(2)=(j+pxx(m))*2-1-2; 
              RangeEnd(2)=(j+pxx(m))*2-1+BlockSize(2)*2-1+2;          
          if RangeStart(2)<1 
               RangeStart(2)=1; 
            end    
            if RangeEnd(2)>Img_Width*2 
               RangeEnd(2)=Img_Width*2; 
           end 
              tmpa=AnchorDown1(:,:); 
                [pxx(m), pyy(m),MB_search,Predict_Img(i:i+BlockSize(1)-

1,j:j+BlockSize(1)-

1)]=EBMA(Up_Target_Img,tmpa,BlockSize,[i,j],RangeStart,RangeEnd,2); 
               c_MB_search=MB_search+c_MB_search; 
      end 
            ox(m)=j; 
          oy(m)=i; 
        m=m+1; 
      end 
    end 
   px=pxx; 
   py=pyy; 

    
end 
totaltime=etime(clock,t0); 
imgsize = Img_Height*Img_Width; 
%Caculate error image 
Error_Img=Anchor_Img-Predict_Img; 
%Calculate totalerror 
totalerror=sum(sum(abs(Error_Img))); 
%Calculate average MAD 
avgMAD=totalerror/imgsize; 
%Calculate average MSE 
avgMSE=mean(mean((Error_Img.^2))); 
%Caculate PSNR 
PSNR=10*log10(255*255/avgMSE); 
%Claculate average number of searching stages for each Macro Block 
MB_total=imgsize/(BlockSize(1)*BlockSize(2)); 
avgMBSearch = c_MB_search/MB_total; 

  

 
function [Out] = Idecoder1(mat,yh,h); 

  
sphit_main_encode 
sphit_main_decode 

 
%----------------------------------------------------- 

% Reference : A New, Fast, Efficient Image Codec using Set Partitioning 

of Hierarchical Trees 
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%:- Amir. Said, W. A Pearlman 
%----------------------------------------------------------------------

------ 
function sphit_main_encode 
load indices 
format short 
mat=trans_1(x,'bior3.7'); 
mat=fix(mat); 
seqt(xm)=mat; 
T=(2^fix(log2(max(max(abs(mat))))))/2; 
global maxy 
maxy=T; 
LIS=[]; 
% 

=======================================================================

====== 
% Initial lists 
for jh=65:256 
    LIS=[LIS jh 0];%[2 0 3 0 4 0];    % List of Insignificant Sets ,A-0 

& B-1, Co-ordinates 
end 
LIP=[1:256];%[1 2 3 4];          % List of Insignificant Pixels, Co-

ordinates 
LSP=[];               % List of Significant Pixels, Co-ordinates 
output=[]; 

  
% Initializaton complete, Starting processing 
bit_number=1; 

  
for xx=1:8 

  
    sendlsp=LSP; 
%---------------------------------------------------------------------- 
for ii=1:length(LIP) % i.e for each entry in the LIP, do 
    if abs(seqt(LIP(ii)))>=T 
        output=[output '1']; 
        LSP=[LSP LIP(ii)]; % Moving ii to LSP, Removing ii from LSP 

done later 
        % Output sign 
        if seqt(LIP(ii))>=0 
            output=[output '0']; 
        else 
            output=[output '1']; 
        end 
    else 
        output=[output '0']; 
    end 
end 
%---------------------------------------------------------------------- 
% Now remove the common elements i.e perform LIP-LSP 
% D(i,j) means all descendants of (i,j), Function Descendants does this 
% O(i,j) means offsprings of (i,j), Function offspring does this 
% L(i,j) = D(i,j) - O(i,j), Done by mark_proper 
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LIP=mark_proper(LIP,LSP); 
track=[]; 
ij=1; 
while ij<=length(LIS) 
%for ij=1:2:length(LIS) % For each entry in LIS 

  
    if LIS(ij+1)==0 % A type         

       
        out=0;out1=0;% LIS(ij)  % problem 
        %-------------------------------------------------------------- 
        if ~isempty(find(abs(seqt(descendants_1(LIS(ij))))>=T))  

% Check for offsprings of ii 
            output=[output '1']; 
            out=1; 
        else 
            output=[output '0']; 
        end 

         
        if out==1 
            % Star 1 
            var1=offspring_1(LIS(ij)); 
            for kl=1:4 
                if abs(seqt(var1(kl)))>=T 
                    output=[output '1']; 
                    out1=1; 
                else 
                    output=[output '0']; 
                end 

                 
                if out1==1 
                    LSP=[LSP var1(kl)]; 

                     
                    % sign 
                    if seqt(var1(kl))>=0 
                        output=[output '0']; 
                    else 
                        output=[output '1']; 
                    end 

                     
                else 
                    LIP=[LIP var1(kl)]; 
                end 
                out1=0; 
            end 

             
            % Star 2 
            

lij=mark_proper(descendants_1(LIS(ij)),offspring_1(LIS(ij))); 

             
            if ~isempty(lij) 
                % Move ij to the end of LIS as an entry of type B 
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                LIS=[LIS LIS(ij) 1]; 
                track=[track ij]; 
            else 
                track=[track ij]; 
            end    
        end 
    end 

     
    if LIS(ij+1)==1 % B type 
        out=0; 
        lij=mark_proper(descendants_1(LIS(ij)),offspring_1(LIS(ij))); 
        if ~isempty(find(abs(seqt(lij))>=T)) 
            output=[output '1']; 
            out=1; 
        else 
            output=[output '0']; 
        end 

         
        if out==1 
            var1=offspring_1(LIS(ij)); 
            for mn=1:4 
                LIS=[LIS var1(mn) 0]; 
            end 
            track=[track ij]; 
        end    
        out=0; 
    end 
    ij=ij+2; 
end 
% ---------------------------------------------------- 
% Remove repeating elements 
if ~isempty(LIS) 

     
    for z=1:length(track) 
        LIS(track(z):track(z)+1)=9999; 
    end 
    % ---------------------------------------------------- 
    LIS=LIS(find(LIS~=9999)); 

  
end 

  
if ~isempty(sendlsp) 
    output=refinement(output,sendlsp,seqt,bit_number); 
end 
bit_number=bit_number+1; 
[  T  length(LSP) length(find(abs(seqt)>=T))] 
T=T/2;  
end 

  
disp(' OVER ') 
save filename output 
% output 
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%LSP 
%LIP 
%LIS 

 
%---------------------------------------------------------------------- 

% Reference : A New, Fast, Efficient Image Codec using Set Partitioning 

of Hierarchical Trees 
%:- Amir. Said, W. A Pearlman 
%---------------------------------------------------------------------- 
function sphit_main_decode 
load filename output 
format long 
load indices 

  
orig=x; 
T=1024;  % For barbara 2048 % else 1024 
mmx=T; 
xm=mapping_256; 
xm=xm(:); 
%========================================== 
mat=trans_1(x,'bior3.7'); 
mat=fix(mat); 
dect(xm)=mat;  % Original 
%========================================== 
seqt(256*256)=0; 
global iii 
iii=0; 
LIS=[]; 
% 

======================================================================= 
% Initial lists 
for jh=65:256 
    LIS=[LIS jh 0];%[2 0 3 0 4 0]; % List of Insignificant Sets ,A-0 & 

B-1, Co-ordinates 
end 
LIP=[1:256];%[1 2 3 4];        % List of Insignificant Pixels, Co-

ordinates 
LSP=[];                        % List of Significant Pixels, Co-

ordinates 

  
% Initializaton complete, Starting processing 

  
for xx=1:8 

  
    getlsp=LSP; 
%---------------------------------------------------------------------- 
for ii=1:length(LIP) % i.e for each entry in the LIP, do 
    bit=input_bit; 
    if bit=='1' 
        LSP=[LSP LIP(ii)];        
        bit=input_bit; 
        if bit=='1' 
            seqt(LIP(ii))=-mean([T 2*T]); 
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        else 
            seqt(LIP(ii))=mean([T 2*T]); 
        end 
    end 
end 
%----------------------------------------------------------------------  
% Now remove the common elements i.e perform LIP-LSP 
% D(i,j) means all descendants of (i,j), Function Descendants does this 
% O(i,j) means offsprings of (i,j), Function offspring does this 
% L(i,j) = D(i,j) - O(i,j), Done by mark_proper 

  
LIP=mark_proper(LIP,LSP); 

  
track=[]; 
ij=1; 
while ij<=length(LIS) 
%for ij=1:2:length(LIS) % For each entry in LIS 

  
    if LIS(ij+1)==0 % A type         

       
        out=0;out1=0;% LIS(ij)  % problem 
        %-------------------------------------------------------------- 
        bit=input_bit; 
        if bit=='1' % Check for offsprings of ii 
            out=1; 
        end 

         
        if out==1 
            % Star 1 
            var1=offspring_1(LIS(ij)); 
            for kl=1:4 
                bit=input_bit; 
                if bit=='1' 
                    out1=1; 
                end 

                 
                if out1==1 
                    LSP=[LSP var1(kl)]; 

                     
                    % sign 
                    bit=input_bit; 
                    if bit=='0' 
                        seqt(var1(kl))=mean([T 2*T]); 
                    else 
                        seqt(var1(kl))=-mean([T 2*T]); 
                    end 

                     
                else 
                    LIP=[LIP var1(kl)]; 
                end 
                out1=0; 
            end 
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            % Star 2 
            

lij=mark_proper(descendants_1(LIS(ij)),offspring_1(LIS(ij))); 

             
            if ~isempty(lij) 
                % Move ij to the end of LIS as an entry of type B 
                LIS=[LIS LIS(ij) 1]; 
                track=[track ij]; 
            else 
                track=[track ij]; 
            end    
        end 
    end 

     
    if LIS(ij+1)==1 % B type 
        out=0; 
        lij=mark_proper(descendants_1(LIS(ij)),offspring_1(LIS(ij))); 
        bit=input_bit; 
        if bit=='1' 
            out=1; 
        end 

         
        if out==1 
            var1=offspring_1(LIS(ij)); 
            for mn=1:4 
                LIS=[LIS var1(mn) 0]; 
            end 
            track=[track ij]; 
        end    
        out=0; 
    end 
    ij=ij+2; 
end 

  
if ~isempty(LIS) 
    % ---------------------------------------------------- 
    % Remove repeating elements 
    for z=1:length(track) 
        LIS(track(z):track(z)+1)=9999; 
    end 
    % ---------------------------------------------------- 
    LIS=LIS(find(LIS~=9999)); 
end 

  
if ~isempty(getlsp) 
    seqt=irefinement(seqt,T,getlsp); 
end 

  
% rec=round(reshape(seqt(xm(:)),128,128)); 
rec=round(reshape(seqt(xm(:)),256,256)); 
%xr=idwt2d(rec,fopt,4); 
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xr=itrans_1(rec,'bior3.7'); 
%axis tight 
set(gca,'nextplot','replacechildren'); 
figure%,imshow(mat2gray(fix(xr)))  
% Record the movie 
    imshow(mat2gray(fix(xr))); 
    F = getframe; 

  
% Play the movie ten times 
movie(F) 
[snr , msr]=PSNR(xr,orig); 
% ****************************************************** 
format short g 
[T iii snr msr max(abs(abs(seqt)-abs(dect)))]  
format long 
% ****************************************************** 
T=T/2; 
end 
%round(reshape(seqt(x(:)),128,128)) 

  

  
function [mvX mvY] = mvFrame(tFrame,fFrame,mbSize,limitSad,sadLimit) 
% Configuration 
% Perform sequential search, log search, or hierarchical search 
sType = 0; % 0 = sequential search 
% 1 = log search 
% 2 = hierarchical search 
% Default size to search over 
stepSize = 64; 
[vPixel hPixel] = size(fFrame); 
for hPos = 16:mbSize:hPixel 
    for vPos = 16:mbSize:vPixel 
        [mvX(vPos/mbSize,hPos/mbSize) mvY(vPos/mbSize,hPos/mbSize) 

minVal] = ... 
            mvMacroblock(tFrame(vPos-15:vPos,hPos-

15:hPos),fFrame,mbSize, ... 
            hPos,vPos,stepSize,sType); 
        if limitSad && minVal > sadLimit 
            % The motion vector search could not find a "good enough" 
            % estimate. Ignore the results. 
            mvX(vPos/mbSize,hPos/mbSize) = inf; 
            mvY(vPos/mbSize,hPos/mbSize) = inf; 
        end 
    end 
end 

  

  
function [xVec yVec minVal] = mvMacroblock(mb, fFrame, mbSize, hPos, 

vPos, stepSize, sType) 
[vPixel hPixel] = size(fFrame); 
global l1Frame; 
global l2Frame; 
if sType == 0 
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    % Sequential search 
    x = hPos - mbSize + 1; 
    y = vPos - mbSize + 1; 
    minVal = inf; 
    for distance = 0:stepSize-1 
        if distance == 0 
            mvXNdx = 0; mvYNdx = 0; 
        else 
            mvXNdx = [ones(1,distance*2+1)*distance 

ones(1,distance*2+1)*-distance ... 
                (-distance+1:distance-1) (-distance+1:distance-1)]; 
            mvYNdx = [-distance:distance -distance:distance 

ones(1,distance*2-1)*distance ... 
                ones(1,distance*2-1)*-distance]; 
        end 
        x1 = mvXNdx + x; 
        x2 = mvXNdx + x + mbSize - 1; 
        y1 = mvYNdx + y; 
        y2 = mvYNdx + y + mbSize - 1; 
        delNdx = find(x1 <= 0 | x2 > hPixel | y1 <=0 | y2 > vPixel); 
        x1(delNdx) = []; x2(delNdx)=[]; y1(delNdx)=[]; y2(delNdx)=[]; 
        for sadNdx = 1:length(x1) 
            val = sum(sum(abs(mb-fFrame(y1(sadNdx):y2(sadNdx),... 
                x1(sadNdx):x2(sadNdx))))); 
            if val < minVal 
                minVal = val; 
                xVec = x1(sadNdx)-x; yVec = y1(sadNdx)-y; 
            end 
        end 
    end 
elseif sType == 1 
    % Logarithmic search 
    % The search vector order below makes sure we take the shortest 

distance 
    % in the case of a tie 
    stepSize = stepSize/2; 
    x = hPos; y = vPos; 
    sVect = [0 0 0 1 -1 1 -1 1 -1; 0 1 -1 0 0 1 1 -1 -1]; 
    while stepSize >= 1 
        sad = ones(1,9)*inf; 
        for sVectLoc = 1:9 
            x2 = sVect(1,sVectLoc) * stepSize + x; 
            x1 = sVect(1,sVectLoc) * stepSize + x - mbSize + 1; 
            y2 = sVect(2,sVectLoc) * stepSize + y; 
            y1 = sVect(2,sVectLoc) * stepSize + y - mbSize + 1; 
            if x1 <= 0 || x2 > hPixel || y1 <= 0 || y2 > vPixel 
                continue; 
            else 
                sad(sVectLoc) = sum(sum(abs(mb-fFrame(y1:y2,x1:x2)))); 
            end 
        end 
        [dummy ndx] = min(sad); 
        ndx = ndx(1); 
        x = x + sVect(1,ndx) * stepSize; 
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        y = y + sVect(2,ndx) * stepSize; 
        stepSize = stepSize/2; 
    end 
    xVec = x - hPos; 
    yVec = y - vPos; 
elseif sType == 2 
    % Hierarchical search 
    l1Mb = mb(1:2:end,1:2:end); 
    l2Mb = l1Mb(1:2:end,1:2:end); 
    l2hPos = hPos/4; l2vPos = vPos/4; 
    [mvX2 mvY2] = mvMacroblock(l2Mb, l2Frame, mbSize/4, l2hPos, l2vPos, 

stepSize/4, 0); 
    l1hPos = l2hPos*2 + mvX2*2; l1vPos = l2vPos*2 + mvY2*2; 
    [mvX1 mvY1] = mvMacroblock(l1Mb, l1Frame, mbSize/2, l1hPos, l1vPos, 

2, 0); 
    l0hPos = l1hPos*2 + mvX1*2; l0vPos = l1vPos*2 + mvY1*2; 
    [mvX mvY] = mvMacroblock(mb, fFrame, mbSize, l0hPos, l0vPos, 2, 0); 
    xVec = mvX2*4 + mvX1*2 + mvX; 
    yVec = mvY2*4 + mvY1*2 + mvY; 
else 
    error('Invalid search type'); 
end 
x = hPos - mbSize + 1 + xVec; 
y = vPos - mbSize + 1 + yVec; 
minVal = sum(sum(abs(mb-fFrame(y:y+mbSize-1,x:x+mbSize-1)))); 

 

 

function [JT,DT,RT]= lagrangian_cost(I,lambda) 

  
% Transfer I frame into RDWT 
h = daubcqf(6); 
[ll_lev2,yh,L] = mrdwt(I,h,1);  
N = 256; 
lh = yh(:,1:N); 
hl = yh(:,N+1:2*N); 
hh = yh(:,2*N+1:3*N); 
img = ll_lev2; 
dim = size(img,1); 
step =16;                     %% Step Size 
%   *(1) = 16x16 blocks 
%   *(2) = 8x8 blocks 
%   *(3) = 4x4 blocks 
M = [16, 8, 4]              %% Size of block 
B_cnt = dim./M         %% # of blocks per image  
B_opt = size(M,2)      %% # of block sizes available 
img_recon = zeros(dim,dim); 
img_final = zeros(dim,dim); 
%lambda = 0 
lambda_sz = size(lambda, 2); 
J = zeros(B_cnt(1),B_cnt(1));    %% Block Cost Function 
D = zeros(B_cnt(1),B_cnt(1));    %% Block Distortion 
R = zeros(B_cnt(1),B_cnt(1));    %% Block Rate 
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% QUADTREE CODE-  
%   | 0 | 0 0 0 0 | - use 16x16 block (0 bits per 16x16 pixels) 
%   | 1 | 0 0 0 0 | - use 4 8x8 blocks (1 bit per 16x16 pixels) 
%   | 1 | 1 0 0 0 | - use 3 8x8 blocks & 4 4x4 blocks (5 bits per 16x16 

pixels) 
%   | 1 | 1 0 1 0 | - use 3 8x8 blocks & 4 4x4 blocks (5 bits per 16x16 

pixels) 
QTcode = zeros(B_cnt(1),5,B_cnt(1),lambda_sz); 
% per pixel QTrate 
QTrate = [0,1,5]/(M(1)*M(1));      
B16 = zeros(M(1),M(1));         % 16x16 block 
B8  = zeros(M(2), M(2),4);      % 8x8 block 
B4  = zeros(M(3), M(3),4);      % 4x4 block 

  
for w=1:lambda_sz 

  
   % Loop through each 16x16 block and make the decision whether or 
   %  not to break down the block into 8x8 and/or 4x4 blocks 

  
   for i=1:B_cnt(1) 
      for j=1:B_cnt(1) 
         row = M(1)*(i-1); 
         col = M(1)*(j-1); 

  
         % Create  16x16 block 
         B16(:,:) = img(row+1:row+M(1),col+1:col+M(1)); 

  
         %Subdivide the 16x16 block into 4 8x8 blocks 
         B8(:,:,1) = img(row+1:row+M(2), col+1:col+M(2)); 
         B8(:,:,3) = img(row+1:row+M(2), col+1+M(2):col+2*M(2)); 
         B8(:,:,2) = img(row+1+M(2):row+2*M(2), col+1:col+M(2)); 
         B8(:,:,4) = img(row+1+M(2):row+2*M(2), col+1+M(2):col+2*M(2)); 

  
     % For 16x16 block, find the distortion, bitrate and cost function 
         [D16, R16, B_Cost16 ] = blk_calc(B16, step); 
         J16 = D16 + lambda(w).*R16; 

  
   % For each 8x8 block, find the distortion, bitrate and cost function 
         for p=1:4 
            [D8(p), R8(p), B_Cost8(:,:,p)] = blk_calc(B8(:,:,p), step); 
            J8(p)  = D8(p) + lambda(w).*R8(p); 
         end 

  
     % Find the average distortion,bitrate, & cost for the 4 8x8 blocks  
         % Note that for the cost, you must add the additional bits for 
         %   the quadtree code 
         J8_QT = sum(J8)/4 + lambda(w)*QTrate(2); 

  
         % Compare costs; if the cost of 4 8x8 blocks is less than the 
         %  the cost of a single 16x16 block, break up the block 
         if J16 > J8_QT 
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            % Update the quadtree code 
            QTcode(i,1,j,w) = 1; 

  
        % Now, compare each 8x8 block with its corresponding 4x4 blocks 
            for q=1:4 

  
               %Subdivide the 8x8 block into 4 4x4 blocks 
               B4(:,:,1) = B8(1:4,1:4,q); 
               B4(:,:,2) = B8(1:4,5:8,q); 
               B4(:,:,3) = B8(5:8,1:4,q); 
               B4(:,:,4) = B8(5:8,5:8,q); 

  
   % For each 4x4 block, find the distortion, bitrate and cost function 
               for p=1:4 
              [D4(p,q), R4(p,q), B_Cost4(:,:,p)] = blk_calc(B4(:,:,p), 

step); 
                  J4(p,q) = D4(p,q) + lambda(w).*R4(p,q); 
               end 

  
               J4_QT =  sum(J4(:,q))/4 + lambda(w)*QTrate(3); 

  
          % Compare costs; if the cost of 4 4x4 blocks is less than the 
               %  the cost of a single 8x8 block, break up the block 
               if J8(q) > J4_QT 

  
                  % Update the quadtree code 
                  QTcode(i,1+q,j,w) = 1; 

  
                  % Create a "new" 8x8 block made up of 4x4 blocks  
                  B8_new(1:4,1:4,q) = B_Cost4(:,:,1); 
                  B8_new(1:4,5:8,q) = B_Cost4(:,:,2); 
                  B8_new(5:8,1:4,q) = B_Cost4(:,:,3); 
                  B8_new(5:8,5:8,q) = B_Cost4(:,:,4); 
                  J8_new(q) = J4_QT; 
                  D8_new(q) = sum(sum(D4(:,q)))/4; 
                  R8_new(q) = sum(sum(R4(:,q)))/4 + QTrate(3); 

  
               % If it costs less to use this 8x8 block, don't split it 
               else 
                  B8_new(:,:,q) = B_Cost8(:,:,q); 
                  J8_new(q) = J8(q); 
                  D8_new(q) = D8(q); 
                  R8_new(q) = R8(q) + QTrate(2); 
               end 
            end % for q 

             
            % Create a "new" 16x16 block made up of 8x8 blocks  
            B16_new(1:8,1:8) = B8_new(:,:,1); 
            B16_new(1:8,9:16) = B8_new(:,:,2); 
            B16_new(9:16,1:8) = B8_new(:,:,3); 
            B16_new(9:16,9:16) = B8_new(:,:,4); 
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            % Store the cost, distortion and rate for the new image 
            J(i,j) = sum(J8_new)/4; 
            D(i,j) = sum(D8_new)/4; 
            R(i,j) = sum(R8_new)/4; 

  
            % Add the created 16x16 block to the reconstructed image 
            img_recon(row+1:row+M(1),col+1:col+M(1)) = B16_new; 

  
         % If it costs less to use the 16x16 block, don't split it 
         else 

  
            % Add the 16x16 block to the reconstructed image 
            img_recon(row+1:row+M(1),col+1:col+M(1)) = B_Cost16; 

  
            J(i,j) = J16; 
            D(i,j) = D16; 
            R(i,j) = R16; 
         end 
         % Update Lamba 
          lambda=max(D(i,j))-Min(D(i,j))/max(R(i,j))-Min(R(i,j)); 
      end  % for j 
   end  % for i 

  
   % find the total cost function, rate and distortion for the entire 

image 
   %   (4x4, 8x8, 16x16, best)  
   JT(w) = sum(sum(J(:,:)))/(B_cnt(1)*B_cnt(1)) 
   DT(w) = sum(sum(D(:,:)))/(B_cnt(1)*B_cnt(1)) 
   RT(w) = sum(sum(R(:,:)))/(B_cnt(1)*B_cnt(1)) 
end % f 

 

function [Dist, Rate,B_Cost] = blk_calc(B, step) 

  
  % PER BIT VALUES FOR DISTORTION & RATE 
   M = size(B, 2); 
   h = daubcqf(6); 
   [ll_lev2,yh,L] = mrdwt(I1,h,1);  
   B_LL = ll_lev2; 
   B_q = quant(B_LL, step);  
   B_Cost = mirdwt(B_q,yh,h,1);  
   % Find the average distortion 
   Dist = sum(sum((B_q - B_LL).^2))/(M*M);  
   % Find the B_q bitrate 
   range = max(max(B_q)) - min(min(B_q)); 
   pmf = zeros(range, 1); 
   temp_pmf = hist(B_q, range); 
   for n=1:size(temp_pmf,2) 
      pmf = temp_pmf(:,n) + pmf; 
   end 
   pmfsize = size(pmf); 
   pmf = pmf/sum(pmf); 
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   % bits/pixel*M*M = bits/B_q 
   Rate = sum( -pmf.*log2(pmf + (pmf ==0)) ); 
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