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Abstract 

In this dissertation, acoustic emission technique is examined as candidate for monitoring the 

integrity of polymer matrix structural members. Acoustic emission technique has so far been 

largely limited to laboratory tests and field applications have been mostly limited to qualification 

tests of aerospace structures. The lack of quantitative indications of damage in composite 

structural members associated with the complex nature of damage in these materials has been a 

limiting factor. Generally, a number of failure modes operate simultaneously at a site of damage, 

and each of these failure modes generates a different type of acoustic emission signal. In 

addition, issues including anisotropic wave propagation including variation velocities and 

attenuation in composites leads to difficulties in damage location and assessment of damage 

magnitude. Further, extraneous noise that is invariably present when the structure is experiencing 

cyclic loading, increases the uncertainty in interpreting acoustic emission data. The goal of the 

present work is to address a few of these issues individually. They include (a) experimental 

measurement of attenuation of fundamental Lamb wave modes and frequency components of 

acoustic emission signal in representative composite laminates, (b) experimental characterization 

of friction related acoustic emission signals between two metallic surfaces, (c) monitoring and 

characterization of acoustic emission signal from delamination growth in coupon specimens and 

(d) numerical modeling of acoustic emission signals generated by different failure modes in a 

cross-ply laminate, including mode I and delaminations and matrix cracks. In this report, results 

and findings from each of the above works, both numerical and experimental are included..
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CHAPTER 1 

Introduction 

Civil and mechanical structures are subjected to fatigue, overloading, impact and seismic 

loads, and environmental degrading agents which introduce damage. Design of the structures 

requires implementation of specific design and analysis procedures to ensure safety during 

operation. However, presence and growth of damage in a structure, whether metallic or 

composite, reduces the useful strength of the structure which affects safety and reliability at 

optimum capacity. Therefore, to ensure safety and extend operational life of a component, 

techniques of damage initiation and growth are needed.  

There are a number of nondestructive evaluation (NDE) techniques currently in use. Most 

of these methods have been developed for periodic inspections of damage growth in structures 

such as pressure vessels and aircrafts. In the past couple of decades, new techniques of 

continuously monitoring the integrity of structures, usually termed “Structural Health Monitoring 

(SHM) techniques” have gained the attention of researchers. Acoustic emissions (AE) based 

structural health monitoring has been one of the candidate techniques to monitor structural 

integrity in real time. The implementation of the technique to real field problem, however, has 

been limited because of its including inability to identify source mechanism, and accurately 

estimate the magnitude of damage. Some aspects of these issues are addressed in this 

dissertation.  

This research encompasses three topics which are related to the areas outlined above. 

These are attenuation of acoustic emission signals in composites, signatures of delaminations 

related acoustic emissions, and acoustic emissions generated due to friction. The materials of 

interest in this research include both composite materials, specifically carbon fiber reinforced 
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polymers (CFRP’s) and monolithic materials (Aluminum and Steel). In this chapter, overview of 

nondestructive evaluating mechanisms currently in use, background and objectives of this 

research and the outline of this manuscript are covered. 

1.1 Non-Destructive Evaluation and Structural Health Monitoring 

There are several NDE techniques which are currently in use for periodic maintenance 

and inspection. Table 1.1 shows some of these techniques. The basic mechanism of operation for 

some of the techniques involves sending energy in some form to the structure and measuring the 

response under different conditions. For example, infrared thermography sends energy in the 

form of heat and signals of radiation emitted from the structure are used to detect discontinuity in 

the structure. In the case of ultrasonic and acoustic detection, mechanical waves which either are 

introduced by means of transducers or emitted from the structure are used to identify presence of 

defects. Common behavior among these NDE methods is the periodic or routinely scheduled 

maintenance reduces the operational availability of the structure.  

Table 1.1 

NDE test methods 

Test Method Description 

Visual inspection Observation by human eye, also could be assisted by cameras 

Dye penetration Dye liquid seep into structural defects such as cracks, voids 

Thermography Heat applied to the structure and radiation used  

Eddy current testing Fluctuations in the current reading used to detect anomalies 

Radiography Electromagnetic radiation reveal internal defects 

Ultrasonic/Acoustic test  Mechanical waves used to detect defects in structures 
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Condition based maintenance, in contrast to periodic or routine maintenance is ideal to 

increase availability of the structure to longer periods of service. In condition based maintenance, 

the structure will be subject to inspection and maintenance based on information about its status 

of integrity. Successful SHM techniques will be superior to conventional NDE procedures for 

adopting condition based maintenance procedures. Sensors with real time monitoring capability 

are used for gathering in-situ real time data. 

Structural Health Monitoring (SHM) are analogous to human nervous system. 

Implementation of SHM involves installing a system in a structure which enables continuous 

monitoring of the state of integrity of the structure. The objective of an SHM system is providing 

information regarding damage initiation and propagation in the structure in real time. Damage 

identification process is commonly divided into five basic steps (Staszewski et al., 2004). These 

are damage detection, identification of damage location, definition of type or mechanism of 

damage, quantification of damage size and estimation of life of the structure. 

There are active and passive ways of implementing monitoring integrity of structures. 

The structure, in the case of active mechanisms, is excited by some form of energy from external 

sources (by means of transducers) and the response of the system is measured at selected spots. 

In passive approach, on the contrary, release of energy within the structure is detected by 

transducers. Signals emitted by initiation and growth of damage are monitored through this 

approach. Acoustic emission technique falls into the category of passive monitoring methods.  

1.2 Acoustic Emission Based Structural Health Monitoring 

“Acoustic emissions are defined as the class of phenomena whereby transient 

stress/displacement waves are generated by rapid release of energy from localized sources within 

a material, or the transient waves so generated” (E1316, 2013). A variety of processes could lead 
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to generation of such stress waves in solids. Formation of cracks, slip and twinning in crystalline 

solids and relative movement between surfaces in contact are some of the prominent sources of 

acoustic emissions. Different damage mechanisms in composites, such as delamination and fiber 

break result in acoustic emissions.  

Acoustic Emission Technique is a method which makes use of these emissions to detect 

initiation and growth of defects in structures. AE transducers mounted on the structural member 

can give an indication of damage location and rate of damage growth. Identification of source 

mechanisms from the received AE waveforms has been an area of considerable research. Some 

general features of acoustic emission testing are: 

 It is a dynamic method providing information about discontinuity growth. Static 

defects do not give rise to emissions. 

 Limited access to monitoring is required. Placing AE transducers in parts of 

components inaccessible to other methods underlines one advantage of AE based 

monitoring 

As nondestructive evaluation tool, AE have been used to monitor pressure vessels, 

aerospace structures and bridges (Shull, 2002). Acoustic emission structural health monitoring, 

however, has largely been limited for proof tests. Some of the major studies in this regard 

include Acoustic Emission Helicopter health and usage monitoring (AE-HUMS), a device which 

was used to detect damage in drive trains (Finlayson et al., 2000). A growing crack in a pinion 

gear was detected prior to its failure. In flight acoustic emission system has also been 

demonstrated on a Delta clipper technology demonstrator (Finlayson, et al., 2000). These tests 

indicated acoustic emissions have real place in aerospace SHM. Several challenges such as 

correlation between obtained data and source mechanisms or establishing baseline data and 
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interference by noise signals need to be addressed before applying acoustic emission technique 

(Miller et al., 2005).  

1.3 Background of the study 

Interpretation of the AE signals depends on several factors. These include the material 

properties, the geometry and the instrumentation used to detect, condition, and store the signals. 

A phenomenon common to propagating waves in solid media is attenuation. The intensity of 

acoustic emission signals decreases as they propagate with in the structure. The inherent effect of 

these phenomena is that the information contained within the waveforms changes with distance 

of propagation which is the distance between the AE source and sensor. Acoustic emission 

sensors placed at different distances provide different signal waveforms which vary primarily 

because of attenuation even though they originate from the same event. Thus, in acoustic 

emission analysis, consideration of attenuation behavior of the material and the geometry of 

wave propagation is crucial for correct interpretation of AE waveforms and estimate the source 

magnitude. Review of AE literature indicates that not much attention has been paid to the effect 

of attenuation in analyzing AE signals. The first part of this research focuses on measuring 

attenuation in composite laminates and evaluating its effect on detected signal amplitudes.  

AE has been used to monitor damage in composites. Delamination, the separation of two 

adjacent plies in composite laminates, represents one of the most critical failure modes. Several 

researches in the past focused on identifying and quantitatively analyzing the mechanisms of 

damage during delamination. The delamination behavior including the details of interfacial 

failure as well as the resulting AE waveforms depends on different parameters such as the 

location of delamination and the rate of separation between the plies. The second part of this 
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research deals with analysis of acoustic emissions from delamination in carbon fiber reinforced 

polymer (CFRP) test specimens 

Within a structure, multiple processes that emit acoustic waves take place 

simultaneously. An example could be generation of waves during fretting fatigue crack in 

mechanical parts. Rubbing between the contacting surfaces generates waves mainly due to 

interaction of irregularities on the surfaces. On the other hand, rubbing between the surfaces also 

leads to formation of cracks on the surfaces, which also give rise to emissions. The sensors 

mounted to pick signals from crack growth also pick signals from other sources, which are 

caused by internal or external processes. Thus, in analysis related to those signals from critical 

processes, the signals from other sources appear as noise signals or “false positives” and could 

severely affect the interpretation of the obtained data. It is thus necessary to differentiate the 

signals with respect to their leading sources. This helps to identify the pattern with which 

processes critical in identifying the remaining life of the material are growing in the material. 

The third part of this research deals with acoustic emission signals generated due to crack growth 

and friction between metallic surfaces.  

1.4 Specific objectives of the research 

Three important problems which form the basis for undertaking this research were 

discussed in the earlier section. Individual sections related to different aspects of AE based SHM 

are addressed separately. The general objective of this research is to develop methods for better 

quantification of AE signals for structural integrity assessment.  

The specific objectives are: 

Examine how attenuation behavior of CFRP materials affects acoustic emission 

wave propagation 
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The attenuation characteristics of crossply and quasi-isotropic CFRP panels with specific 

layup are studied. Attenuation coefficients for fundamental modes of elastic wave propagation in 

the composite were obtained for different frequency ranges of laminate directions. These values 

were applied to numerically simulated AE signal waveforms. 

Simulate different damage mechanisms in composite materials experimentally and 

characterize the acoustic emission behavior in relation to the damage mechanisms 

Mode I delamination tests on thin CFRP quasi-isotropic and crossply specimens were 

done under varying delamination parameters. The different damage mechanisms in composites 

were observed in these tests. Scanning electron microscope (SEM) images of the fracture 

surfaces for each test were taken to identify the mechanisms. Acoustic emission signals were 

obtained during the tests. Features of the acoustic emission data were used to relate the signals 

with the mechanisms. 

Differentiate acoustic emission signals from multiple sources occurring 

simultaneously in metallic materials 

Acoustic emission signals resulting from crack growth in steel bar were obtained. Also, 

friction between metallic surfaces was obtained using a test fixture developed for this test. The 

distinguishing features of the signals were identified. 

Some of the contributions from this research include:  

 Influence of attenuation on wave propagation modes and on acoustic emission 

events  

 Attenuation behavior dependence on laminate type and laminate direction  

 Effect of stacking sequence and interfacial properties on acoustic emission events 

during delamination  
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 Effect of delamination growth rate on acoustic emission signals during 

delamination 

 Characterize friction related acoustic emission signals in steel 

 Differentiating acoustic emission source mechanisms in steel material 

1.5 Research Rationale and Benefits 

The increasing use of composite materials in several areas has led to extensive research 

activities in the field of composites. Presence of damage, as mentioned earlier, affects load 

carrying capacity of structures. Methods which enable detection of dynamic response of a system 

in response to damage initiation and growth are quite important in overcoming some of these 

negative tendencies The results obtained from this research are aimed at advancing the 

implementation of acoustic emission based structural health monitoring in different areas. The 

target objects considered here are aerospace and civil structures. 

1.6 Structure of Dissertation 

The present dissertation has been organized on seven main levels with Chapter 1 

dedicated to the introduction of the subject matter and the specific objectives for the research 

work. Chapter 2 presents a thorough literature review on damage mechanisms and progression, 

acoustic emission and acoustic emission behavior of different failure mechanisms. Findings from 

previous researchers are also included. Chapter 3 presents the methods, materials and equipment 

used to successfully carry out the tests in this research work. The results from attenuation 

measurements on CFRP crossply and quasi-isotropic panels are presented in Chapter 4. 

Delamination tests performed on beam specimens cut from the panels used in the attenuation 

tests are presented in Chapter 5. Each of these chapters also discussed numerically simulated AE 

events. Chapter 6 presents acoustic emission signals from friction and crack growth experiments 
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in steel material. Methods used to differentiate the signals from these two sources are also 

discussed. Finally, a comprehensive conclusion and recommendations based on the results are 

presented in Chapter 7. References and appendices are presented in the final section of this 

manuscript.  
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CHAPTER 2 

Literature Review 

2.1 Fiber Reinforced Polymers Overview 

Composites are becoming important components of today's engineering materials 

because of the advantages they offer. They are broadening the horizon of designers in multiple 

branches of engineering. The constituents of composite materials are the reinforcing elements 

and the matrix. The constituent materials combine while retaining their physical properties. The 

combination of the materials, however, gives new materials that exhibit different mechanical 

properties as compared to the constituents. The matrix holds the reinforcement to form the 

desired shape while the reinforcement improves the overall mechanical properties of the matrix. 

The benefits of combining dissimilar materials to obtain better properties from the constituents 

have been understood for many years. Using straw to reinforce mud in brickmaking was 

mentioned in the book of Exodus.  

Of the many composite material types, fiber reinforced polymers (FRPs) have been the 

focus of extensive research and application in advancing materials technology particularly in the 

aerospace industry since the 1950’s. These materials combine fibers which could be made of 

glass, aramid or boron with matrix material to provide the new material. Epoxy, polyester, and 

urethane resins are some of the materials used as the matrix constituent.  The manufacturing 

processes used to produce the materials could vary depending on the application desired. The 

fundamental units of continuous fiber laminate are unidirectional or woven fiber laminae. 

Laminas are stacked on top of each other at various angles to form a multidirectional laminate. 

The composition of the materials for the airframe structure of the Boeing 787 Dreamliner 

proves the extent of the application of FRPs in the aerospace industry, Figure 2.1. About half of 
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the material used in the airframe structure consists of composites (CFRPs, glass fiber reinforced 

polymers (GFRPs) and Carbon Sandwiches). In addition, increasing portions of flight structures, 

both commercial and military, are being made of FRPs. Construction of composite crew model 

was completed by NASA in 2009, Figure 2.2. In 1998, 55% to 60% of the carbon fiber 

production was used in the aerospace industry (Donnet, 1998). In civil engineering applications, 

CFRPs are being used as reinforcing layers to increase the stiffness of structures. Several 

research projects are being carried out that show the advantage of having CFRPs as reinforcing 

or retrofitting components (Ghosh & Karbhari, 2007; Karbhari, 2004)  

 

Figure 2.1. Material breakouts on Boeing 787 Dreamliner (http://www.boeing.com). 

 The driving force behind the progress in the application of FRPs has been improved 

mechanical properties obtained from the materials, in comparison to traditional structural 

materials. The advantages of composites include high strength or stiffness to weight ratio and 

high resistance to fatigue and corrosion degradation. The specific strength and specific modulus 

of high strength fibers such as carbon are higher than those of traditional aerospace metallic 

http://www.boeing.com/commercial/aeromagazine/articles/qtr_4_06/article_04_2.html
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alloys. Fatigue cracking and corrosion difficulties experienced with traditional aluminum floor 

beams were minimized by replacing them with beams made of advanced composite materials in 

Boeing 777 airplanes. The weight savings are significant ranging from 25% to 45% of the weight 

of conventional metallic designs. This enables one to achieve structures with improved 

performance. 

 

Figure 2.2. Composite crew module at Alliant Techsystems (http://www.nasa.gov). 

 Table 2.1 shows some of the mechanical properties of polymer matrix composites and 

monolithic materials (Kaw, 2010). Other characteristic features of composites include that they 

are mostly orthotropic and inhomogeneous, are dimensionally stable (they have low thermal 

conductivity and low coefficient of thermal expansion), and can be tailored to work with a broad 

range of thermal expansion design requirements and to minimize thermal stresses.  
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Table 2.1 

Typical mechanical properties of polymer matrix composites and monolithic materials 

Property Graphite/epoxy Glass/Epoxy Steel  Aluminum 

Specific gravity 1.6 1.8 7.8 2.6 

Young’s modulus  (GPa) 181 38.6 206.8 68.95 

Ultimate tensile strength (MPa) 1500 1062 648.1 275.8 

Coeff. of thermal expansion (μm/m/°C) 0.02 8.6 11.7 23 

 

Despite their improved mechanical properties, composites have shortcomings which 

include high raw-material and fabrication costs and poor out-of-plane properties. The other 

major issue with FRP composites is susceptibility to impact induced damages.  Impact by foreign 

materials introduces fracture of the matrix material and interlaminar delaminations.   

Apart from impact, the presence of inherent defects that could be introduced at several 

stages in the life of composites could lead to severe consequences. During the pre-manufacturing 

phase, the resin material and the fiber could contain moisture and other inclusions. Fiber damage 

could also be present and later affects the total strength. Inclusion of voids, gaps, porosity, 

wrinkled or wavy fibers, and foreign materials are some of the major defects that can be 

introduced during manufacturing. During transportation and installation, abrasions indentations, 

and damaged edges could be introduced. The consequence of these defects in the composite 

material could be severe. The spots containing the defects create fields of higher stress and strain 

from which damage can initiate and propagate during fatigue or overloading conditions. The 

mechanism of damage initiation and propagation could vary depending on the loading conditions 

and the construction of composite layup. There are different modes in which damage can 

propagate in composite structures. The description of each is provided in the following section. 
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2.2 Damage/Failure Mechanisms in Composites 

The failure behavior of composites is complex and can be influenced by the composition 

of the matrix and fiber, the material for the fiber and the matrix, the fiber orientation, the 

stacking sequence and the angle and the type of load. Common mechanisms of damage initiation 

and propagation in composites include fiber breaking, matrix cracking, fiber-matrix debonding 

and delamination.(Milne et al., 2003; Scheirs, 2000) described the different failure modes using a 

single unidirectional lamina. A unidirectional lamina subjected to axial tension load in the 

direction of the fibers has a behavior governed by the fibers. The failure modes that could occur 

for such a case are fiber breaking, shown in Figure 2.3, and failure of the matrix-fiber interface. 

 

Figure 2.3. Fiber breaking (Milne, et al., 2003).  

On the other hand, if the loading direction is turned perpendicular to the orientation of the 

fibers, the response will largely be determined by the matrix material. Hence, the applied 

transverse loads create higher strain in the resin material and this can cause formation of cracks 

in the matrix, see Figure 2.4.  

 

Figure 2.4. Matrix cracking (Milne, et al., 2003).  
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Delamination refers to the separation between adjacent plies of a composite laminate. It 

has been classified as the most common and the most dangerous failure mechanism in composite 

laminates (Martin et al., 1995; Milne, et al., 2003; Sridharan, 2008). It reduces the load carrying 

capacity of the laminates significantly. The phenomenon of delamination is explained by a model 

consisting of two laminae with fiber orientation orthogonal to each other. When the laminate is 

subjected to an axial load along any one of the fiber directions, the magnitude of the contraction 

or expansion experienced by the laminae is different. This creates a shear stress at the interface 

which tends to split the laminae apart causing delamination. Delaminations initiate from spots 

which are weak to resist the shear force such as edges, holes, and flaws. Impact loads are also 

significant sources of delaminations. A schematic of separation between layers is shown in 

Figure 2.5. 

 

Figure 2.5. Delamination in crossply laminate (Reifsnider & Case, 2002).  

2.3 Damage Progression in Composites 

(Reifsnider & Case, 2002) describes a material degradation process as shown in Figure 

2.6. The degradation process, in addition to being facilitated by mechanical loading, is facilitated 

by chemical and thermodynamic processes within the service environment. The ultimate effect 
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of these processes is a reduction in the useful strength of the component. Durability and damage 

tolerance analyses that deal with how long the engineering component lasts, how safe the 

engineering component is after some period of service and how reliable the engineering 

component is depend on the useful strength of the component. 

 

Figure 2.6. Degradation process in a material (Reifsnider & Case, 2002). 

Damage progression in composites proceeds with the accumulation of microdamages, 

which occur in different modes.  Failure does not always happen by the growth of single mico 

crack. The progression of damage is characterized by distribution of mechanisms over the 

dimensions of the laminates instead of being concentrated over smaller zones (Harris, 2003). The 

microstructural mechanisms of damage accumulation, discussed in the previous section, occur 

sometimes independently and sometimes interactively, and the relative presence of each may be 

affected by both materials variables and testing conditions. The accumulation and subsequent 

interaction of these microdamages is accompanied by the evolution of material states and stress 

states. Damage progression is characterized by a statistical nature of occurrence. 

Damage accumulation may not always immediately reduce the strength of the composite. 

However, at even lower stress levels, it reduces the stiffness. At low quasi-static load levels, or in 

the early life of a composite subjected to fatigue loading, damage spreads throughout the stressed 
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region. However, most composite systems sustain damage this stage. At a later stage, the 

accumulated damage in some region could be so great that the residual load-bearing capacity of 

the composite falls to the level of the maximum stress in the fatigue cycle, Figure 2.7. This does 

not necessarily relate to the propagation of a single crack, unlike the case with monolithic 

materials. 

 

Figure 2.7. Degradation of composite strength (Harris, 2003). 

Damage accumulation in composites begins with matrix microcracking in off-axis plies. 

The immediate effect of microcracks is degradation in the properties of the laminate including 

changes in stiffness (Figure 2.8), Poisson ratios, and thermal expansion coeffcients. They present 

the most pervasive type of damage modes in composites. 

 

Figure 2.8. Change in stiffness with matrix cracking (Reifsnider & Case, 2002). 
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The effect on the strength of the composite system is such that the strength is hardly 

affected by matrix cracking. These modes are densely populated modes which, with an eventual 

increase of load, get to state of saturation. This state is termed the characteristic damage state. 

Figure 2.9 shows the reduction in stiffness during fatigue loading of two quasi-isotropic 

laminates.  

 

Figure 2.9. Change in stiffness with matrix crack and delamination (Reifsnider & Case, 2002). 

The first part of reduction in the stiffness was caused by matrix cracking. During stage II, 

matrix cracking assumes a characteristic damage state; however, further reduction in stiffness 

goes on due to nucleation and growth of interlaminar delamination.  In fact, matrix cracking 

zones are considered spots for nucleation of delaminations in the plies, see Figure 2.10. 

 

Figure 2.10. Matrix cracking and delamination (Diao et al., 1997). 
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Adjacent plies of different fiber orientation experience different deformation and due to 

this difference, energy is stored that separates one ply from the other. Delaminations often start 

and spread from the edge of laminates. When delamination occurs, the adjacent plies experience 

different level of deformation and this leads to reduction in stiffness. In some cases, the 

reduction in stiffness caused by delaminations is larger than that caused by matrix cracking. The 

decrease in stiffness could be so large that areas that are least affected by delamination growth 

are forced to carry higher loads. This leads to a reduction in the strength or load carrying 

capability of the laminates. In many cases, zones of delamination in laminates are characterized 

by a higher number of fiber fractures and fiber-matrix interface failures. 

The design of most composite laminates is such that they depend primarily on the fibers 

for their stiffness and strength or they are fiber controlled. Therefore, fiber failure significantly 

affects the strength and stiffness behavior of the composite laminates. Within a composite 

system, an individual fiber can break many times. The reduction in stiffness and strength due to 

fiber failure is somehow complex to quantify. 

Collective interaction of the individual modes governs the long term response of the 

composite system. The interactions of the modes, as outlined earlier, are statistical and complex 

in nature. Matrix cracks are mentioned as causes of fiber fracture and serve as spots for 

nucleation of delamination. Delamination zones have significant local stress distribution which 

causes fiber overload and fracture. Depending on the matrix composition, fiber fractures cause 

fracture of neighboring fibers. During delamination, fiber fracture could also be present due to 

fiber bridging. This complex interaction characterizes typical damage progression in composites. 
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2.4 Acoustic Emissions and Wave Propagation 

The distinct features of acoustic emissions are that the energy that is detected by the 

transducers is generated within the material and that the method is sensitive to dynamic 

processes such as growing discontinuity. The stress level in a structure, under normal operating 

conditions, could be well below the design limit. However, the presence of structural 

discontinuity causes zones of higher strain to develop under these same loading conditions. The 

higher strain zones undergo deformation accompanied by the release of energy. Hence, 

propagating waves are generated from the deformation and the energy released due to the 

growing discontinuity.  Thus, the growing discontinuity becomes an active acoustic emission 

source. The propagation of the displacement generated waves is nondirectional resulting in 

spherical wavefront. As the leading events, in most cases, have a duration in the order of 

microseconds, the generated displacements are pulse type. These generated pulse type signals, 

however, change significantly as they propagate in the material. These waves are detected by the 

sensors and one of the focus areas in acoustic emission technique is to develop the relation 

between these signals and the source event.  The wave propagation behavior, thus, becomes 

important factor in acoustic emission analysis. Ultrasonic testing, as discussed earlier, is also a 

method based on the propagation of waves in solid materials. 

The physics of wave propagation in solids has been studied in the past. (Giurgiutiu, 2007; 

Rose, 2004; Shull, 2002) present the current state of our understanding of the phenomenon. A 

system of solid material perturbed from its equilibrium position experiences waves propagation. 

The basic types of wave propagation modes for the disturbance are dilatational (longitudinal) and 

distortional (transverse) modes. However, these are definitions applicable to bulk media. The 

interaction of the propagating waves with the material boundaries, however, results in different 
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modes. Depending on the direction of wave propagation and particle motion the waves can be 

classified into the following types and the schematic representation of each is provided in Figure 

2.11. 

1. Longitudinal waves 

2. Transverse waves 

3. Rayleigh waves 

4. Love waves 

(a) (b) 

(c) (d) 

Figure 2.11. Particle displacement and wave propagation in different types of waves 

(http://web.ics.purdue.edu). 

http://web.ics.purdue.edu/~braile/edumod/slinky/slinky.htm
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The particle displacement is along the direction of wave propagation for longitudinal waves 

(Figure 2.11a). The particle displacement is perpendicular to the direction of the waves in the 

case of transverse or shear waves (Figure 2.11b). A Rayleigh (or surface) wave has an elliptic 

particle motion in planes normal to the surface and parallel to the direction of the wave 

propagation (Figure 2.11c). A Love wave is the wave in a layered medium where particle motion 

is parallel to the plane layer and perpendicular to the wave propagation direction, Figure 2.11 d. 

Additional categories are also available in (Shull, 2002). 

A special case of wavemodes commonly observed in plate type materials are Lamb 

waves. Longitudinal and transverse waves, in principle, exist in bulk media. In structures of 

finite dimension mode conversion takes place and the waves attain a different pattern of 

propagation. Initially, the waves from a source in the material or from an external source start to 

propagate as longitudinal and transverse waves. An incident wave on a boundary produces 

longitudinal and transverse components, shown in Figure 2.12 and a series of such interactions 

within a reasonable distance produces constructive interferences that lead to different pattern of 

wave propagation, which are termed Lamb waves.  

 

Figure 2.12. Generation of lamb waves (Shull, 2002). 

The resulting constructive interference can produce a displacement pattern of particles 

such that the resulting displacements could be symmetric or antisymmetric about the mid plane 

or the plane of symmetry of the plate. The symmetric (S) and antisymmetric (A) modes are 
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shown in Figure 2.13. The speeds with which symmetric and antisymmetric modes travel or 

propagate vary depending on the material stiffness and density. The acoustic emission waves 

generated within a plate material propagate in either of the two modes or their combinations. The 

symmetric and antisymmetric modes have fundamental and higher order versions that vary in the 

displacement pattern. 

 

(a) 

 

 (b) 

Figure 2.13. Symmetric (a) and antisymmetric (b) modes (Wandowski et al., 2011). 

Practical considerations in solid wave propagation include phase and group velocity, 

attenuation, dispersion, scattering and reflections.  The concept of phase and group velocity is 

explained with the aid of Figure 2.14. Group velocity refers to the velocity of a group of waves 

that have same frequency. In the figure, the group velocity is depicted as the rate at which an 

envelope enclosing the group of waves advances (see the points referred to as G1, G2 and G3). 

Phase velocity, on the other hand, represents the velocity with which a phase of wave 

propagation advances (see the points referred to as P1, P2 and P3). Attenuation refers to the 

reduction in intensity or amplitude of the waves as they propagate in the structure. (Details are 
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presented in section 2.8) The waves propagating in a structure could consist of components of 

similar frequency but tending to advance at varying speeds. This, with increased distance of 

propagation leads to a separation of the components. This phenomenon is referred to as 

dispersion.  

 

Figure 2.14. Phase vs. group velocity (www.muravin.com). 

In wave propagation studies, dispersion curves like the one shown in Figure 2.15 are 

used. The curves depict the velocity of different modes, including higher order modes such as A1 

and S1, with respect to the frequency and thickness of the material.  Interaction of propagating 

waves with discontinuities in material geometries results in scattering and diffraction of waves. 

The curves are generated by solving Rayleigh-Lamb frequency equations (Rose, 2004) given as 

equations (2.1) and (2.2).  

                     
        

        
  

     

        
       for symmetric modes                                             (2.1) 

                     
        

        
  

        

     
       for antisymmetric modes                                       (2.2) 

p and q are given by 
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)
 

                                                       (2.3) 

http://www.muravin.com/
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In the equations,   and k represent the circular frequency and wavenumber respectively. 

The wavenumber k is equal to  /Cp, where Cp is the phase velocity of the Lamb wave mode. The 

phase velocity is related to the wavelength, λ, by the equation Cp = ( /2π)λ. CL and CT designate 

the longitudinal and transverse wave velocities in the material respectively.  The equations were 

derived for a plate with thickness 2h.  

 

Figure 2.15. Aluminum dispersion curve (Rose, 2004). 
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All the aforementioned phenomena affect the wave propagation characteristics of 

acoustic emissions generated by the different mechanisms. The measurement of the generated 

waves of signal waveforms is accomplished by bonding or attaching transducers on the surface 

of a structure being investigated. Surface displacements caused by the propagating waves are 

picked up by the transducers. 

2.5 AE Signal Characteristics 

An acoustic emission waveform is displayed on voltage vs. time plot. Figure 2.16 shows 

a typical AE waveform. The waveforms are defined by parameters that later are used for further 

analysis. Descriptions for some of the features (parameters) of the waveforms are provided. 

 

Figure 2.16. AE waveform. 

(http://www.mistrasgroup.com/products/technologies/acousticemission.aspx) 

Hit – individual signal burst produced by local material change 

Peak amplitude (amplitude) – the maximum signal excursion (positive or negative) 

during a hit 

http://www.mistrasgroup.com/products/technologies/acousticemission.aspx
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Threshold – A voltage level set during data acquisition such that only events exceeding 

this level will be recognized. The threshold detection level is set above the background 

noise level. 

Time of hit – the time at which the signal exceeds the threshold 

Counts – counts of the waveform signal excursions over the threshold or number of 

times the signal exceeds the threshold 

Duration –the time between the start of an AE event and end of the same event, 

calculated as the difference between the time of first threshold crossing and the time of 

the last threshold crossing 

Rise time – the interval between the time of first threshold crossing and the time at which 

the peak amplitude of the signal is recorded 

Average frequency – the ratio of the counts to the duration 

Peak frequency – the maximum frequency reading in the power spectrum of the signal  

Energy – integral of the rectified voltage over the duration of the acoustic emission hit or 

the area below the curve enclosing the waveform 

An AE signal waveform and its features are affected by the source type, geometry of the 

specimen, transducer characteristics, and measuring/acquisition system used. In some researches 

pertaining to acoustic emission source characterization in materials, distribution and cumulative 

plots of the above features are used. The other kind of analysis makes use of pattern recognition 

methods on a group of features. 

2.6 AE in Composites 

Any sudden structural change within a composite, such as matrix cracking, fiber fracture, 

debonding, or interlaminar cracking, causes dissipation of energy as acoustic emissions. There 
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are several ways to analyze the information obtained by AE monitoring of structures under load, 

some of which offer suitable quantitative procedures for proof testing or life prediction, and 

some of which provide deeper insight into the mechanisms of damage accumulation in 

composites. Acoustic emission data obtained from failure process under different kinds of tests 

can be analyzed to differentiate the mechanisms involved. Several researchers used this 

advantage to investigate the different mechanisms of failure using acoustic emission data. (Ni & 

Iwamoto, 2002; Ramirez-Jimenez et al., 2004) used frequency features of an AE data set that 

they obtained experimentally. (Bussiba et al., 2008) studied damage accumulation profile up to 

fracture in quasi-statically loaded composite specimens using counts rate. Wavelet transforms 

were used in addition to obtain frequency and time information about the different failure 

mechanisms. (Loutas & Kostopoulos, 2009) used features such as amplitude, number of AE 

events, cumulative AE energy and peak frequency for clustering AE data obtained from tensile 

tests and correlated the clusters with the different failure mechanisms. (Haselbach & Lauke, 

2003) was able to characterize acoustic emission signals accompanying debonding between fiber 

and matrix material using the amplitude and frequency of the signals. In the following section, 

past work regarding failure mechanism identification during delamination by means of acoustic 

emission data is presented. 

2.7 Delaminations and AE 

Delamination is an important mechanism that leads to a reduction of the strength of fiber 

reinforced polymers. Delamination growth involves a large number of microscopic damage 

events such as matrix cracking and fiber break. The macroscopic growth of interlaminar fracture 

can easily be identified. However, the microscopic behavior of the damage processes is more 

difficult to observe. Acoustic emission methods have been proved to have the potential for 
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detecting and characterizing delamination initiation and propagation. High intensity AE signals 

can be obtained from the different damage mechanisms that occur during interlaminar fracture 

(Sridharan, 2008). (Cesari et al., 2007; Huguet et al., 2002) showed that AE is an appropriate tool 

for monitoring delamination. However, the interpretation of AE signals and, thus the evaluation 

of the state of damage are major challenges in AE analysis.  

Much of the research reviewed here makes use of the (D5528, 2007) standard which is 

practically used to study or determine the fracture toughness of composite materials under mode 

I loading conditions for unidirectional layup of fibers. The standard recommends use of a double 

cantilever beam, as in Figure 2.17, which is fitted with insert film at the mid plane interface so as 

to initiate delamination. Hinges are bonded at the ends on the insert side. Quasistatic or fatigue 

type transverse loads are applied at the hinges. The displacement rates for the quasistatic load 

ranges from 0.5 mm/min to 5 mm/min. During the test, the axial load on the hinges, the crack 

opening displacement and delamination growth are recorded and these values eventually are used 

in the calculation of the fracture toughness. 

 

Figure 2.17. Double Cantilever Beam (DCB) test specimen. 

The above procedures are adapted to study of acoustic emissions related to mode I 

delaminations. Transducers are attached on the surface of the specimen and the acoustic emission 
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events released during the growth of delamination are recorded. Below are presented some of the 

literature that dealt with acoustic emissions associated with delaminations. 

(Arumugam et al., 2011) used the AE energy and peak frequency features of 

experimentally obtained acoustic emission events to classify them with respect to the 

corresponding failure mechanisms.  The mechanisms investigated were matrix cracking, fiber 

pullout, fiber breaking, and delamination. The tests were done on DCB specimens cut from 

unidirectional GFRP 6 ply panels. The crosshead velocity was maintained at 1mm/min. the test 

has shown that at earlier stages events obtained had lower energy, which could be attributed to 

matrix cracking. Increasing the AE energy of events with the growth of delamination was 

associated with occurrence of other failure modes. The peak frequency was also used to classify 

the events. In the analysis, events with different frequency ranges were classified as caused by 

matrix cracking, fiber pullout, failure of fiber-matrix interface and fiber failure.  

 (Oskouei et al., 2011) used the mechanical strain and acoustic energy to define a sentry 

function by means of which they were able to determine the fracture toughness for glass fiber 

composites. Three sets of specimens with different layup were used. These were woven-woven, 

woven-unidirectional, and unidirectional. The sentry function was defined as the logarithm of the 

ratio of the strain energy to the acoustic energy. Similar to earlier researchers, they tested five 

DCB specimens loaded at a crosshead speed of 5 mm/min. The strain energy was calculated 

using the axial load and the crack front displacement (delamination growth). The cumulative 

acoustic energy was calculated by taking the summation of the energy of the individual events 

with crack distance. Thus, at a specific crack front displacement, the sentry function can be 

calculated by taking specific values for the strain energy and cumulative acoustic energy. A Plot 

of mode I fracture toughness, GI, with the sentry function provides a curve consisting of two 
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straight lines connecting at a point forming “knee”. The corresponding reading of the GI to the 

“knee” point represented the actual fracture toughness of the specimen. 

The fracture toughness results that were obtained were compared to values obtained by 

other means. It was found that the suggested method using sentry function provided results that 

were in good agreement with 5% method of fracture toughness calculations provided by ASTM 

standards. In a similar work, (Davijani et al., 2011) investigated the initiation of delamination 

and propagation by means of a sentry function. SEM images were used to verify the results from 

the sentry function. (Fotouhi et al., 2011) simulated delaminations that occur during the drilling 

of glass epoxy laminates. Rectangular plates with a blind hole were loaded in three-point 

bending such that the hole was pushed by a thrust force at speeds of 0.2 mm/min and 2 mm/min. 

The bottom of the hole was provided with thin insert film so as to initiate delamination during 

loading. Two resonant type PICO resonant sensors recorded the acoustic emission events 

generated during the tests. The sensors were mounted on the side of the plate from which the 

thrust force was applied. The sentry function, AE energy and counts of the events were analyzed 

in association with the growth of delamination. SEM images were taken to observe the damage 

mechanisms. 

(Ndiaye et al., 2000) used acoustic emission signals during delamination tests on 

unidirectional CFRPs under three different conditions. The three conditions are original 

specimen at room temperature, a specimen that was delaminated all along its length but rebonded 

with resin, and a third specimen heated above the glass transition temperature and cooled down 

to room temperature. Double cantilever beams were considered for the three cases and were 

loaded at an opening displacement rate of 0.9 mm/min. Cumulative energy plots for the samples 

indicate that the sample heated above the transition temperature has more resin damage (matrix 
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crack). The amplitude histograms for the three cases also indicate matrix cracking and fiber 

breaking in the original sample while matrix cracking occurred predominantly in the sample in 

which the delaminated specimens were put together by resin. 

(Sause et al., 2012) used pattern recognition techniques to distinguish the different failure 

mechanisms occurring during interlaminar separation. Five DCB CFRP and GFRP specimens 

were tested with opening an displacement rate of 10 mm/min and the acoustic emission signals 

generated in the process were recorded by WD type sensors. Three failure mechanisms, which 

include fiber breakage, matrix cracking and interfacial failures (fiber-matrix debonding, fiber 

pullout) were studied. Features including average frequency, initiation frequency, peak 

frequency, and the frequency centroid of the AE signals were used in pattern recognition in order 

to group the events into three clusters, which correspond to the above three failure mechanisms. 

Wavelet transforms of waveforms from finite element simulation were also compared with those 

of selected waveforms from the test.  

(Kostopoulos et al., 2007)  studied the influence introducing dopants (carbon nano fibers 

and PZT particles) on the epoxy material for CFRP materials. The damage mechanisms 

associated with each of the samples were studied by means of acoustic emission techniques. 

CFRP double cantilever beam specimens were tested with an opening displacement rate of 2 

mm/min and the acoustic emission events were recorded by means of a NANO 30 resonant 

sensor. The collected AE events were clustered into different groups by means of NOESIS 

software. Four classes of events were obtained. The description of the classified events was 

provided on the basis of AE energy, number of hits and time. The first class of events were 

observed to come in very large numbers and were attributed to matrix cracking. The second class 

of events consisted of higher energy and were more active after some initial period. This group 
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of events was considered to be caused by fiber break. The third group of events occurred in 

numbers as high as the second group of events and were thought to be caused by debonding at 

the fiber/matrix interface. The last group of events were shown to be least connected to any 

leading event and were determined to be noise signals. 

In summary, tests that were mostly based on the double cantilevered beam (DCB) tests 

were presented. The objective in most cases has been to identify different failure modes in 

composites. Different sets of specimens, glass fiber and carbon fiber based are investigated. The 

major failure modes considered in the investigations are matrix cracking, fiber breaking, and 

interfacial debonding. Different sets of sensors were used for recording data, and the features of 

the acoustic emission events used for analysis vary. Amplitudes, numbers of hits, counts, and 

frequency based features were some of them. In most studies, however, the energy of the 

acoustic emission signals was the feature used for analysis. 

2.8 Attenuation Studies 

Interpretation of the information contained in acoustic emission signals needs to consider 

several factors. The features or characteristics of the generated waves vary depending on the 

source type, material type and geometry of the solid structure, and the instrumentation used to 

record the signals. As mentioned in Section 2.4, a phenomenon common to propagating waves in 

solid media is attenuation. Attenuation behavior of materials causes reduction in amplitude of 

signals as they propagate with in the structure. There are several mechanisms that lead to 

amplitude reduction as Lamb waves propagate in structures. Some of these mechanisms are 

associated with energy loss while others cause redistribution of energy.   

Geometric spreading involves spreading of the acoustic energy carried by the waves 

along the geometry of the structure. For Lamb waves propagating in plates, particularly, in 
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planar isotropic materials, the wavefronts tend to spread in circumferential path. From 

conservation of energy, the reduction in amplitude due to geometric spreading can be given by 

the equation: 

                          √
 

 
                                                                      (2.4) 

Ao is the amplitude at the source of the signal, and r and A are the distance and the 

amplitude at the point of measurement. This equation is valid for both symmetric and 

antisymmetric modes. The second factor in attenuation is material damping (intrinsic 

attenuation), which causes conversion of acoustic energy or the energy carried by the elastic 

waves to some other forms of energy in the material. The waves propagate in successive 

alternate cycles of exchange between kinetic and potential energies. This exchange is 

accompanied by losses into other forms of energy. The other factors in attenuation are scattering 

and dispersion. A propagating wave in a material is scattered up on encountering a discontinuity 

in material composition or the presence of voids and flaws. This contributes to reduction in 

intensity of the signals. An acoustic emission signal may contain waveforms or modes of 

different frequency component that tend to move at varying speeds and subsequently separate 

out as they traverse along the structure (dispersion) and this causes the amplitude of the signal to 

decrease.  

The acoustic emissions generated due to some leading event consist of different wave 

modes that propagate at different central frequencies. Each of the constituent modes experiences 

attenuation as it traverses along the material. The inherent effect of these phenomena is that the 

information contained within the waveforms changes with the distance of propagation or source-

to-sensor distance. Acoustic emission sensors placed at different distances provide different 

signal waveforms which vary primarily because of attenuation even though they originate from 



37 

 

the same event. Thus, in acoustic emission analysis, consideration of the attenuation behavior of 

the material and the geometry of wave propagation becomes relevant to validate the 

interpretation of the waveforms.  

There has been some work in the past regarding the measurement of attenuation in 

aluminum and composite structures. (Ramadas et al., 2011) modeled the attenuation of lamb 

waves using Rayleigh Damping. This model decouples the mass and stiffness portions of 

damping behavior of materials. The study involved numerical simulations and experiments on 

GFRP crossply panels. (Pandya et al., 2012) experimentally studied the reduction in peak values 

of strain waveforms (attenuation) in composites during a ballistic impact. (Drinkwater et al., 

2003) studied the effect of compressively loaded elastomer on wave propagation of Ao and So 

modes. It was demonstrated that attenuation of the guided waves increased due to leakage of 

energy.  

(Schubert & Herrmann, 2011) studied the influence of viscoelastic material properties on 

the measurement of lamb waves. A theoretical model that takes into account dispersive 

propagation and the effect of sensor size on wave excitation and measurement was considered. 

MATLAB code was created to implement the model. A test was conducted on a unidirectional 

CFRP in which the plate was excited by Hann-windowed sinusoidal bursts. The measurements 

for the responses of the plate were measured at angles of 0, 45 and 90 degrees for input 

excitations of frequencies between 15 and 400 kHz at steps of 15 kHz. The normalized 

amplitudes and attenuation coefficients predicted by the numerical model and those obtained 

from experiment were found to be in good agreement. The normalized amplitudes and the 

attenuation coefficients were obtained for both symmetric and antisymmetric modes. 
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(Wandowski, et al., 2011) conducted attenuation measurements on a composite specimen 

as part of a study on guided wave based detection of damage in composite laminates. The 

specimen was excited with PZT transducers with a Hanning window of five complete cycles at 

several frequencies ranging from 100 to 150 kHz, with increments of 10 kHz. It was found that 

the attenuation increases with increasing frequency. 

(Kerber et al., 2010) used a Chirplet transform in attenuation analysis of symmetric and 

antisymmetric lamb wave modes. Numerically simulated lamb wave signals were used for the 

analysis. Amplitude ratios and attenuation coefficients due to geometric attenuation were 

calculated using the CT (Chirplet transform) algorithm and in the regions of the model, where Ao 

and So modes were clearly separated, the results obtained were quiet comparable to those 

expected from theoretical predictions. However, the method showed considerably less accuracy 

when the method was applied to experimental data due to noise. 

(Biwa et al., 2003) studied a theoretical model for attenuation of wave modes in 

viscoelastic composite materials. The model takes into account scattering and absorption 

(viscoelastic) losses. The attenuation coefficient was defined in terms of scattering, absorption 

loss in the matrix, and absorption in the reinforcing element for a single inclusion. As an 

example, attenuation coefficients of longitudinal and transverse waves were computed for 

unidirectional CFRP specimens. The results showed that the attenuation coefficients show high 

dependence on frequency and that the matrix material is the major element affecting the results. 

(Sun et al., 2009) studied the effects of attenuation due to the presence of viscoelastic 

material by modeling an isotropic plate with varying viscoelastic properties. They discovered 

that the viscoelasticity had no effect on the velocity of the lamb wave but decreased the 
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amplitude of the waveform. More specifically, they discovered that the higher frequency 

components of the Ao mode showed more attenuation than the lower frequency components. 

In summary, the literature reviewed here focused on  

 Theoretical models to quantify the reduction in amplitude 

 FE models to model propagation of lamb waves 

 Experimental work to validate the findings in the theoretical and numerical 

approaches 

2.9 AE from friction in Materials 

In the previous sections, it was discussed that AE signals are generated during several 

processes in composites. Incremental crack growth in monolithic materials is also source of these 

emissions. Processes that involve relative motion in bearings, gears, and turbine blade root joints 

as well as bolted and riveted joints also give rise to acoustic emissions. The contacting surfaces 

in these parts, while smooth on a macroscopic scale, have roughness or asperities whose 

dimensions may be of the order of microns. During the relative motion between two surfaces in 

contact, the asperities on one surface attempt to slide past the asperities on the opposite surface, 

which results in the collision between these asperities and the sudden loading and unloading of 

regions in their immediate vicinity. The interactions between pairs of asperities may last a very 

short duration, of the order of few microseconds. The transient forces accompanying such 

interactions between asperities are a prolific source of elastic waves that are sensed as acoustic 

emission signals. Further, such relative displacement between surfaces can also lead to plastic 

deformation and fracture of asperities and the accumulation of wear particles between surfaces, 

all of which can also generate acoustic emission signals. (V.M. Baranov et al., 2011) summarizes 

the sources of AE during friction conventionally into three groups: impact of the friction surface 
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at the microscopic level (asperity collision), surface damage and formation and rupture of 

adhesion junctions. 

Repetitive relative motion of the surfaces over longer periods leads to change in the 

roughness and texture of the surface, and it can be expected that acoustic emission signals may 

be indicative of these changes. The first group of papers reviewed here examines the relationship 

between the acoustic emission signal characteristics and the conditions prevailing at the 

contacting surfaces. (Dornfeld & Handy, 1987) performed early studies to understand the 

relationship between the AE signals and sliding friction. (Jibiki et al., 2001) studied AE signals 

generated by friction over a small contact area between two cylinders arranged such that their 

axes were 90 degree apart.  The friction noise for repetitive cycles of sliding at “point” contact of 

the cylinders was recorded using a microphone. The main frequency component of the detected 

acoustical signal was a little over 1 kHz. The amplitude of the AE signal was found to increase 

as the fretting stroke or the frequency was increased.  Further, the amplitude of the AE signal 

was also found to increase with the level of surface wear. (Ferrer et al., 2010) studied the 

acoustic emission waves generated during transition from static to dynamic friction. Resonant 

frequency AE sensors were used in these experiments to record the signals. They experimentally 

simulated stick-slip conditions between a pair of pads and a flat plate during a single stroke and 

recorded the resulting acoustic emission signals. The different segments of the recorded 

waveforms were related to different segments of the slip process including micro-slip, partial slip 

and gross slip. (Ben Abdelounis et al., 2010) examined the noise generated by friction between 

two flat surfaces using microphones. As the surface roughness was increased, the amplitude of 

the acoustical signal was found to increase as a logarithmic function of the surface roughness.  

The relationship between AE signal characteristics and friction and wear was also studied by 
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(Hase et al., 2008; Hisakado & Warashina, 1998). Parameters of the signals, such as count, count 

rate, amplitude, were considered in the analyses. 

Theoretical models of acoustic emission signal generation due to friction are also 

available.  (Fan et al., 2010) analyzed the relationship between AE energy and the surface 

characteristics, contact load, and sliding velocity. (V. M. Baranov et al., 1997) determined the 

AE activity levels in terms of acoustic emission counts, count rate, and the energy corresponding 

to different conditions that exist at the contact surfaces. (Alam & Sundaresan, 2010) numerically 

simulated the AE signal generation and propagation in a flat plate. Detailed characteristics of AE 

signals corresponding to different conditions prevailing at the contact surface were determined. 

The second group of papers addresses the use of acoustic emission for diagnosis of the 

condition of machinery, specifically surface degradation in bearings and gear trains. (Li, 1995) 

used pattern classification to monitor defects in bearings using AE signals. (Al-Dossary et al., 

2009) investigated the variation in RMS voltage of AE bursts to quantify implanted defects in 

roller bearings. Measurement and analysis of AE signals were used in condition monitoring of 

gears (Al-Balushi, 2002; Toutountzakis et al., 2005). Experiments based on back-to-back 

gearbox setup were used to monitor changes in AE RMS voltage and energy.  

(Jayakumar et al., 2005) provided a review of application of AE technique for online 

monitoring of a variety of manufacturing processes. It was found that acoustic emissions 

generated during different forming processes provide useful information for detecting die wear 

and cracking, friction properties, state of lubrication, and others. (Meriaux et al., 2010) studied 

crack propagation mechanisms in fretting fatigue using acoustic emissions. 

In summary, the above studies considered acoustic emission signals due to relative 

motion between surfaces in contact. The first group of papers reviewed here examines the 
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relationship between the acoustic emission signal characteristics and the conditions prevailing at 

the contacting surfaces.  The second group of papers is on the use of acoustic emission for 

diagnosis of the condition of machinery, specifically surface degradation in bearings and gear 

trains. Theoretical models of acoustic emission signal generation due to friction are also 

available.  In addition, some findings from other studies, which directly look at the relationship 

between the surface features and coefficient of friction, were also relevant for interpreting 

acoustic emission signals.  

2.10 Summary 

Several issues regarding acoustic emission for the implementation of SHM systems have 

been discussed in this chapter. Researchers in the past dealt with different segments of these 

issues. In this chapter, previous studies regarding acoustic emissions and attenuation, 

delamination, and friction were summarized. The summary of the results from each section were 

considered for the coming chapters which focus on attenuation, delamination and friction tests. 
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CHAPTER 3 

Test Materials and AE Instrumentation 

3.1 Introduction 

The features or characteristics of acoustic emission signals vary depending on the source 

type, material type, geometry of the solid structure, and the instrumentation used to record the 

signals. The wave propagation characteristics exhibited by different materials are dependent on 

the level of homogeneity and anisotropy exhibited by the material. In this chapter, the 

instrumentation used for the tests reported in subsequent chapters are discussed. Comparative 

analysis between AE transducers is also presented. Wave propagation in aluminum and 

composite panels, excited under the same input signal were compared with each other.  Results 

from sample lead break tests on steel are also presented.  

3.2 CFRP Test Laminates 

Two CFRP panels, labeled as panel A and panel C, were used for measuring attenuation 

coefficients and for performing delamination tests. Panel A had crossply [0/90]6s layup with total 

of 24 plies and panel C was a quasi-isotropic laminate having [+45/90/-45/0]3s layup which also 

had total of 24 plies. The dimensions for the panel A were 600 mm by 600 mm by 3 mm. Panel 

C had dimensions of 425 mm by 425 mm by 3 mm. The panels were manufactured by the 

process of vacuum bagging at NASA Dryden center. Before the tests were done, the panels were 

checked for presence of any major defects by thermography scan. Figure 3.1 shows the thermal 

images for the two panels.  

The thermal images were taken by dividing the panels into scan areas of 100 mm by 100 

mm. The images shown in Figure 3.1were assembled from a series of such smaller images. In the 

two images, there is a strip of darker region seen near the bottom edge which corresponds to a 
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teflon film inserted at the mid thickness to initiate delamination.  Apart from these, the figure 

shows mostly uniform color distribution throughout the panels with some irregularities. Those 

could be attributed to presence of minor voids. 

 

Figure 3.1. Thermal images of panel A (left) and panel C (right). 

3.3 AE Instrumentation 

Bonded PZT transducers (Figure 3.2). Bonded PZT transducers were the first set of 

transducers used for measuring stress waves in this study. The dimensions for these sensors are 

20 mm by 10 mm by 0.5 mm. They are bonded on to specimens with cyanoacrylate adhesive. A 

reasonably strong bond can be formed between these sensors and the substrate after 24 hours of 

cure. The bonded PZT sensors were shown to have wide band characteristics and  are sensitive to 

stress wave components in the range between 100 and 700 kHz. Wavelet analysis of some 

signals obtained using these sensors, from crack growth and friction related experiments, 

revealed components of the signals with frequency of 500 kHz and above (K. Asamene & 

Sundaresan, 2012). For crack growth and friction tests, Chapter 6, two bonded PZT sensors were 

used for source location. 
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Figure 3.2. Bonded PZT sensors on CFRP specimen. 

Wideband Ultrasonic and Resonant Frequency AE Transducers (Figure 3.3). The 

attenuation tests (Chapter 4) were done using both bonded PZT transducers and V110 6 mm 

diameter, 5MHz highly damped ultrasonic transducers that exhibited reasonably flat frequency 

response between 100 and 700 kHz. However, these sensors were nearly an order of magnitude 

less sensitive than the PZT sensors.  Different types of Couplant were tested to ascertain good 

connection between these transducers and the test panels. Ultrasonic gel, a low temperature melt 

solid Couplant-salol, and commercially available 3M-double sided tapes were tested. It was 

found that connections with less level of rigidity (double sided tape, ultrasonic gel) provide high 

amplitude Ao modes while connections with higher level of rigidity (Salol) give higher So modes. 

Attenuation measurements reported in Chapter4 were obtained using 3M-double sided tape. The 

PAC R30 resonant transducers were used in the friction tests. The primary purpose of their use in 

the tests was source location. In identifying the geometrical position of AE events, signals from 

multiple channels were used. They have operating frequency range between 100 to 400 kHz 

(PCI-2 based AE system manual 2004).  
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Figure 3.3. Ultrasonic wide band and resonant transducers. 

Preamplifiers (Figure 3.4). The acoustic emission signals from the sensors were first 

amplified by PAC 2/4/6 preamplifiers before acquisition. These amplifiers have three options to 

multiply an input signal. These are 20 dB (10 X), 40 dB (100 X), and 60 dB (1000 X). The 

choice of amplification was made based on characteristics of the signals.  These preamplifiers 

have internal filters which eliminate frequency components of signals beyond certain limit. The 

two types of filters were 100 – 400 kHz bandpass filters and 50 kHz highpass filters.  

 

Figure 3.4. PAC preamplifiers. 

Function Generator and Oscilloscope (Figure 3.5). In the attenuation studies and trial 

tests reported in this chapter, input signals to excite test panels were generated using personal 

PAC R30 

Resonant 

Sensors 

Olympus 

Ultrasonic V110 

Transducers 
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computer and HP 33120 function generator. In some cases, it was necessary to further amplify 

the signals from the function generator. ENI model 2100 NL 50 dB (316 X) was used for this 

purpose.  The frequencies and amplitudes of the signals applied to the transmitting transducer 

were monitored using Lecroy LT344 Oscilloscope. 

 

Figure 3.5. Function generator and oscilloscope. 

PCI-2 Data Acquisition and AEwin3.2 Software (Figure 3.6). All the signals from the 

receiving sensors were recorded by PCI-2 data acquisition system. AEwin 3.2 software was used 

for data acquisition and replay. This software is capable of recording the waveforms from AE 

sensors and extracting AE features. 

 

Figure 3.6. PCI-2 data acquisition system. 
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Material Test system (MTS 810) – Delamination tests and friction tests were done using 

MTS 810’s. The machines are capable of applying loads of 20 kips (88 kN) and 50 kips (222 kN) 

respectively. Load, displacement and strain values measured by the sensors in the MTS machines 

were directly connected to the PCI-2 data acquisition system so that the parameters 

corresponding to each AE event could be recorded. 

3.4 Comparison between Transducers 

The characteristics of signals are dependent on the type of transducer used in a test. A 

comparative study was done on the three types of transducers discussed in the earlier section. 

The transducers were mounted on an aluminum test panel. The panel was excited by Gaussian 

pulse of know frequency. Each of the transducers were located at a distance of 150 mm away 

from the source of excitation. An ultrasonic transducer was used as the transmitting transducer. 

Stress wave signals received by the three sensors for a range of frequencies between 100 and 700 

kHz were compared. Figure 3.7 shows the signals received for input pulse at 300 kHz.  

The figures indicate that the bonded sensors provide an amplitude response which is far 

higher than the ultrasonic and resonant transducers. Bonded PZT sensors were found to have an 

order of magnitude higher sensitivity compared to other sensors in some frequencies. The 

amplitude readings over some frequency ranges go beyond 10 times that of the amplitude from 

the ultrasonic and resonant transducers. All the sensors had weak response to So modes for 

frequency ranges less than 150 kHz. On the other hand, the Ao modes had the least of presence 

above 400 kHz. The resonant sensor, as expected, had its peak oscillation near 300 kHz and it 

was particularly sensitive to Ao modes. With sufficient distance of propagation, the symmetric 

and antisymmetric modes of wave propagation were distinguishable in the case of ultrasonic and 

PZT transducers which are displayed as the initial two pulses.  
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Figure 3.7. Comparison of the three different sensor responses to 300 kHz pulse in a 3 mm    

aluminum panel. 
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Sensitivity of receiving transducers to different frequency components and modes were 

examined. A series of experiments were conducted in which Gaussian pulses with frequencies 

ranging from 100 kHz to 700 kHz were applied to the transmitting V110 ultrasonic transducer 

attached to the crossply laminate. The resulting stress waves were measured by the transducers 

after propagation distance of 75 mm in the 0 degree direction of the laminate.  The Bonded PZT 

transducer was highly sensitive to frequencies below 400 kHz and in particular for So mode.   

Response of the transducers to different frequency components of a signal may not be uniform 

and is an important characteristic feature. Similar to the earlier section, Gaussian pulses which 

vary in central frequency were used to excite the crossply laminate and the responses were 

obtained. Figure 3.8 shows the relative amplitude distribution of the response waveforms 

obtained using the bonded PZT and ultrasonic V110 transducers.  

 

 

Figure 3.8. Receiving transducer’s efficiency across the frequency band for the different modes.  
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The PZT transducers have higher amplitude response at 250 kHz for So mode and the 

amplitude decays faster as the frequency increases. They have peak amplitude response at 200 

kHz for Ao modes. However, the reduction in amplitude response to Ao modes is moderate as 

compared to PZT transducers. The ultrasonic transducers have peak amplitude response to So 

modes at 350 kHz and the percentage reduction of amplitude with increase in frequency is lower 

than PZT transducers. To take advantage of high amplitude response of PZT transducers lower 

frequency ranges, i. e. frequency range less than 300 kHz, combination of these two sensors was 

used in the attenuation studies.  

3.5 Lead Break Tests 

It is a common practice to use lead-break tests to verify performance of acoustic emission 

sensors and systems before the loading of test specimens. In this research, before conducting any 

of the tests reported in the later chapters and the preliminary tests reported in this chapter, lead 

break tests were conducted on the test specimens to check connection of the sensors and examine 

the noise level exhibited in the signal waveforms. Breaking lead on the specimen is assumed to 

simulate discrete events such as crack growth. The signals from lead break tests also serve as 

base line for comparison and this helps to interpret signals of interest. Figure 3.9 shows a 

waveform obtained from lead break test on a steel bar. PZT sensors were bonded on the steel bar 

surface.  A 3 mm long and 0.5 mm diameter HB pencil lead was broken 50 mm away from the 

PZT sensors to generate the waveform. Here both the waveform and its wavelet transform are 

included. AGU Vallen wavelet software was used to obtain the wavelet diagram. These 

waveforms had peak amplitude of nearly 2 volts and started with large amplitude which drops 

rapidly. There is a second segment after about 110 µs, due to reflections from the ends of the bar. 

There is a period of very little signal amplitude between the initial pulses and the reflections. 
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Figure 3.9. Waveform and wavelet from a lead break acoustic emission event. 

3.6 Cases of Wave Propagation in Aluminum and Composite Panels 

The properties of guided waves such as the group velocities and dispersion of the 

different modes depend on the geometry and material properties of the wave guide along the 

propagation path. Figure 2.15 showed the dispersion curves for aluminum plate. Similar 

dispersion curves which were generated experimentally for the two types of CFRP panels. The 

results are presented in figure 3.10. Here the curves are generated for the fundamental Ao and So 

modes along 0 deg direction for the two laminates. 
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Figure 3.10. Dispersion curves for crossply (top) and quasiisotropic (bottom) panels along 0 

degree directions.  

The influence of difference in the dispersion characteristics and attenuation is depicted by 

variations of the response waveforms obtained under similar test conditions, i.e. same type of 

transducers, input signals and data acquisition settings. Sample waveforms received in aluminum 

panel and crossply laminate are in Figure 3.11 for the purpose of comparison. The initial series 

of pulses seen in these waveforms correspond to different modes arriving at different times 

because of the differences in their velocities. Pulses in the later portion of the waveforms 

correspond to multiple reflections from the edges of the panels. Reflections decay more rapidly 

in the composite laminates because of higher level of attenuation. 
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Figure 3.11. Response waveforms at 400 kHz as detected by an ultrasonic transducer after 

propagation of 75 mm. 
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CHAPTER 4 

Attenuation Tests 

4.1 Introduction   

Influence of attenuation on acoustic emission signals in CFRP panels is examined in this 

chapter. Acoustic emission events occur as combinations of several modes of wave propagation 

over varying frequency ranges. The features of these signals as well as the constituent modes 

change with distance of propagation. It was mentioned in the second chapter that attenuation due 

to different mechanisms affects the features of acoustic emission signals. Attenuation 

coefficients were determined experimentally for the two types of CFRP panels, A &C, described 

in the earlier chapter. The coefficients were determined for the fundamental symmetric and 

antisymmetric wave propagation modes. The panels were excited at different frequencies and the 

responses were measured at different distances along different directions. The objective of this 

part of the research has been to characterize the attenuation behavior of the panels with respect to 

distance, direction and frequency, and demonstrate how the attenuation due to material 

absorption and scattering affect the features of acoustic emission signals. Acoustic emission 

events consisting of the fundamental modes were numerically simulated for the panels. The 

numerical simulations considered geometric spreading and dispersion experienced by the wave 

modes during propagation. The attenuation coefficients obtained experimentally were applied to 

the numerical waveforms to include the effect of material absorption and scattering. The energy 

feature of the resulting waveforms was calculated and plotted with respect to distance of 

propagation to show influence of attenuation on the signals. The details are presented in the 

following sections. 
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4.2 Experimental Setup 

Attenuation coefficients for two different laminate configurations were measured. They 

consisted of a cross-ply laminate with stacking sequence of [0/90]6s and a quasi-isotropic 

laminate with stacking sequence of [+45/90/-45/0]3s , both of which had a total of 24 plies. The 

dimensions of the cross-ply and quasi-isotropic laminates were 600mm x 600 mm x3 mm and 

425 mm x 425 mm x 3 mm respectively. The laminates were inspected using thermography to 

ensure that they were free from major defects.  

Single frequency gated sine pulses at frequencies ranging from 100 kHz to 700 kHz, in 

50 kHz increments, were introduced at locations selected to minimize the effect of reflections 

from the edges and the amplitudes of received pulses were measured along the directions along 

0, 30, 45, 60, and 90 orientations as shown in Figure 4.1. Along each of these directions, the 

received signal amplitude was measured at points spaced 25mm apart up to a maximum distance 

of 200 mm. 

 

Figure 4.1. Gaussian pulse at 100 kHz. 

At each of these locations, the amplitudes of the received signals were measured on both 

surfaces of the laminate, so that the symmetric and antisymmetric components of the signals 

could be separated by the addition and subtraction of the signals. The stress wave signal was 
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introduced into the laminate in the majority of cases using a 5 MHz, 6 mm diameter, damped 

ultrasonic V110 transducer. It was used to generate Ao modes in cases. The amplitude of the 

received signals, for all cases, were measured over the entire range of frequencies using a similar 

ultrasonic transducer. To efficiently generate So mode, particularly below 350 kHz, bonded PZT 

wafer bonded to the surface of the laminate was used.  

Depending on the laminate stacking sequence, direction of wave propagation, lamb wave 

mode, and frequency of excitation, the excitation signal amplitude and gain applied to received 

signal were varied to obtain adequate signal to noise ratio. The received waveforms were 

amplified by a preamplifier with 50 kHz high pass filter and recorded in a commercial AE 

monitoring system set to 5 MHz sampling rate. 

 

Figure 4.2. Schematic representation of attenuation measurement. 

Depending on the panel or laminate type, mode type and direction of measurement, the 

amplitude and preamplification of the input signal to excite the panels were varied. To measure 

Ao mode attenuation, 200 mV peak-to-peak Gaussian pulses amplified by 50 dB gain was 

applied. For So mode measurement in panel C, Gaussian pulse of 5V peak-to-peak amplitude 

without amplification was used. Similarly, For Ao mode measurement in panel A, Gaussian pulse 

of 5V peak-to-peak amplitude was used without amplification. However, for degrees of 30, 45, 
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60 degrees, 100 mV peak-to-peak amplitude pulse which was enhanced by 50 dB gain power 

amplifier was applied to excite the panels. Peak-to-peak voltage levels were chosen based on the 

resolution level in the waveforms and saturation magnitudes of the data acquisition system.  

 

Figure 4.3. Angles of measurement for panel A. 

4.3 Data Analysis 

4.3.1 Identification of wave modes. The Ao and So modes were identified from a signal 

waveform by making use of two waveforms obtained from opposite faces of a panel. Two points 

at exactly same distance from the source, but located on opposite faces, experience out of plane 

displacement which is symmetric with respect to the mid plane of the panel in the case of So 

mode propagation. The displacement pattern is antisymmetric in the case of Ao mode 

propagation. Thus, the z-displacements or strains detected by transducers on opposite faces are 

in-phase with each other for So mode propagation and out of phase with each other for Ao mode 

propagation. Figure 4.4 shows two waveforms obtained at the same location but on opposite 

faces. The waveforms were obtained for measurement on panel A along 0 degree direction at 
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frequency of 200 kHz. At the beginning the two waves are coincident with each other - So mode. 

After about 50 sec, the displacements become out of phase - Ao mode.  

 

Figure 4.4. Identification of So and Ao modes. 

4.3.2 Calculation of attenuation coefficients. The procedure to calculate attenuation 

coefficients from the experiments are detailed in this section. The attenuation behavior, as 

discussed earlier, is affected by geometric spreading, material absorption, dispersion and 

scattering. Using two points, located at distance x1 and x2 from source, Equation 3.1 is used to 

calculate the attenuation coefficient ().  

   
 

     
     

  √  

  √  
                                              (4.1) 

In the equation, v1 and v2 represent the voltage amplitudes of the waveforms obtained at 

the two locations. In this test, peak amplitudes of both Ao and So modes correspond to the vi’s  

used for the calculation of the attenuation coefficients. At a given direction, measurements of 

points were made at multiple points located 25 mm from one another. Hence, multiple 

attenuation coefficients were obtained for a given frequency along that direction.  
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Least squares method was used to obtain the value which minimizes the error function 

(equation 4.2). vi represents the voltage measure at a location and xi is the distance from the 

source to the location. V refers to the strength of the signal at the source. 

  ∑  |  |  | |       
           (4.2) 

Thus, when multiple attenuation coefficients are available, the following equation (4.3) 

was used to determine an attenuation coefficient at a specific central frequency. N represents the 

number of locations at which signal waveform, and hence signal amplitude was measured for 

attenuation calculation.  

{

 

      
}  [

∑   
  

   ∑   
 
   

∑   
 
    

]

  

{
∑         

 
   

∑       
 
   

}     (4.3) 

For So modes, despite the measurements were taken at ten different locations, at a 

specific frequency, the measurements of the waveforms made at seven different locations were 

chosen. Six attenuation coefficients were obtained from these. The coefficient which best 

averages the different values was obtained using equation (4.3). Similarly, there were four 

locations chosen for the Ao modes. For both Panel A and Panel C, the attenuation coefficients 

were calculated using these procedures along the five directions discussed earlier. For the So 

modes, the range of frequencies chosen were between 200 and 500 kHz, while for the Ao modes, 

the range considered was between 100 and 300 kHz.  

4.3.3 Amplitude vs distance. The symmetric modes were identified from each of the 

measured waveforms along all directions. Figures 4.5 (a) and (b), and Figures 4.6 (a) and (b) 

show the reduction in amplitude and the percentage reduction in amplitude of So modes for panel 

A and C. The results are obtained for measurement at angle of 0 degrees.  
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(a) 

 

 (b) 

Figure 4.5. So mode for panel A (a) amplitude vs. displacement (b) percentage of reduction in 

amplitude with distance. 
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(a) 

 

 (b) 

Figure 4.6. So mode for panel C (a) amplitude vs. displacement (b) percentage of reduction in 

amplitude with distance. 

50 100 150 200 250
0

50

100

150

200

250

300

350

400

Distance, mm

A
m

p
lit

u
d
e
, 
m

V

Quasi 0 deg So amplitude vs distance

 

 

200 kHz

250 kHz

300 kHz

350 kHz

400 kHz

450 kHz

500 kHz

50 100 150 200 250
0

20

40

60

80

100

Distance, mm

P
e
rc

e
n
t 
D

e
c
re

a
s
e

Quasi 0 deg So percentage decrease

 

 

200 kHz

250 kHz

300 kHz

350 kHz

400 kHz

450 kHz

500 kHz



63 

 

The waveforms obtained for panels A and C indicate that the maximum amplitudes for So 

modes occur at frequencies of 300 and 350 kHz. The amplitudes increase with increase in 

frequency up to these values and start to fall down with further increase in frequency. The 

amplitude of the So modes remains comparable with respect to angle variation for the quasi-

isotropic laminate (panel C). However, the amplitudes vary significantly with angle of 

measurement for the case of crossply laminate (panel A). At 45 degrees of measurement, the 

maximum amplitude at 300 kHz is about a tenth of the maximum amplitude at the same 

frequency for 0 degree of measurement. In crossply laminates, the amplitude of So mode signals 

at angles of 30
o
, 45

o
, and 60

o 
over a wide frequency range was about 1/6

th
 of the amplitudes at 0 

degrees. The percentage of decrease in amplitude, as can be seen in Figures 4.5 and 4.6 (b), 

increases with increasing frequency. In both cases, it was shown that the amplitudes decay faster 

at 500 kHz than any other signal frequency. The percentage decrease in amplitude was slightly 

lower for 0 and 90 degrees for panel A, while it was nearly similar or consistent along all 

directions for panel C. 

Similar to the case of symmetric modes, the antisymmetric modes were identified from 

each of the measured waveforms. Figures 4.7 (a) and (b), and Figures 4.8 (a) and (b) show the 

reduction in amplitude and the percentage reduction in amplitude of Ao modes for both panel A 

and panel C. The results are obtained for measurement at angle of 0 degrees.  

The range of frequencies and distances chosen for the two panels were different because 

of considerations of reflections. For panel C, the reflections of So modes from the boundaries 

were found to interfere with Ao modes for distances of 85 mm and beyond. Thus, the 

measurements were taken up to distance of 75 mm only. At distance of 25 mm, for frequencies 

of 250 and 300 kHz, there is slight merger of the So and Ao modes. However, the occurrence of 
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the peak points for the modes were well separated and the amount by which the interference 

affects the Ao amplitude is less than 2%.  

 

(a) 

 

 (b) 

Figure 4.7. Ao mode for panel A (a) amplitude vs. displacement (b) percentage of reduction in 

amplitude with distance. 
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(a) 

 

 (b) 

Figure 4.8. Ao mode for panel C (a) amplitude vs. displacement (b) percentage of reduction in 

amplitude with distance. 
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The highest Ao mode amplitude in both panels occurred at frequency of 200 kHz at all 

distances at and at all directions. Similar to the case of So modes, the amplitudes were nearly 

direction independent for the quasi-isotropic panel (panel C). The lowest percentage decrease 

occurred along 0 deg direction for panel A and slightly lower percentage decrease was noticed in 

Ao modes measured along 45 degree direction for panel C. The reduction in Ao mode 

amplitudes for frequencies of 150 kHz and above is quite drastic in which is in contrast to So 

modes. 40%  to 60% reduction in amplitude occurs over the first 25 mm of propagation distance, 

and 70% to 90 % reduction occurs over 75 mm of distance. In So modes, depending on the 

frequency of excitation, it takes a propagation distance of 225 mm and beyond to experience 

70% to 90 % reduction in amplitude which is three times the propagation distance for Ao modes. 

4.3.4 Attenuation coefficients for the CFRP panels. Equation 4.3 was used to calculate 

the attenuation coefficients. Figures 4.9 (a) and (b) show the So mode attenuation coefficients 

obtained for panels A and C along directions of 0 degrees. Similarly, Figures 4.10 (a) and (b) 

show the Ao mode attenuation coefficients for the same panels along direction of 0 degrees. 

Attenuation coefficient plots generated for other cases are attached in Appendix A. 

 

(a)                                                                  (b) 

Figure 4.9. So mode attenuation coefficients (a) Crossply (b) Quasi-isotropic. 
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(a) 

 
(b) 

Figure 4.10. Ao mode attenuation coefficients (a) Crossply (b) Quasi-isotropic. 

A0 mode attenuation coefficients in crossply specimens:  Because of the steep increase in 

attenuation with frequency seen in A0 modes, measurements could be made only to a maximum 

frequency of 300 kHz in the composite laminates. At 100 kHz frequency, attenuation was 

observed to be lower in the 0 and 90 directions with a value of about 3 Nepers/m while along 30, 

45, and 60 degree directions, the attenuation was over 10 Nepers/m. The rates of increase of the 

attenuation with frequency were found to be different for different directions. The attenuation 

coefficient at 300 kHz was found to lie between 17 to 23 Nepers/m along the five directions 

considered here. 

S0 mode attenuation coefficients in crossply specimens: Attenuation in S0 modes were 

found to be much smaller compared to A0 modes and could be measured between the 

frequencies of 100 kHz and 500 kHz. There was significant variation of attenuation levels in the 

5 different directions considered. At 100 kHz the attenuation was in the range of 0 to 2 Nepers/m 

in all the five directions. However, at 500 kHz, the attenuation was found to be only 2.5 

Nepers/m along 60 degree direction while along 90 degree direction it was about 8 Neper/m. In 

the other three directions, attenuation values were between these two values. 
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A0 mode attenuation coefficients in Quasi-isotropic specimens: As in the case of cross-

ply specimens, there was a steep increase in attenuation with frequency of A0 modes, in quasi-

isotropic laminates as well. At 100 kHz frequency, attenuation values varied between 6 and 11 

Nepers/m. The values had lower values at 30 and 60 degrees direction. The attenuation values at 

300 kHz varied between 13 and 31 Nepers/m. Similar to the case of crossply laminates, the rate 

at which attenuation increased frequency was different along the different directions.  

S0 mode attenuation coefficients in crossply specimens: Attenuation values of S0 modes 

in quasi-isotropic laminate were much lower compared to A0 modes. Attenuation values of 100 

kHz signal in the five directions considered here were about 1 Neper/m. However, the rate at 

which S0 mode attenuation increased differed with frequency significantly among different 

directions. Along the 60 degree direction, attenuation remained unaffected by the frequency 

within the range considered. Along the other four directions, the attenuation values at 500 kHz 

ranged from 6 Nepers/m to 10 Nepers/m. 

In general, A0 modes were found to have significantly higher levels of attenuation 

compared to S0 modes in both the cross-ply and quasi-isotropic laminates. In these polymer 

matrix composite laminates, each combination of modes and frequency is likely to result in a 

different state of strain including in-plane strain components and their variation across the 

thickness. The resulting deformation of the material is unevenly distributed between the 

reinforcing fibers and the polymer matrix. It is expected that when the matrix material shares the 

bulk of deformation, the viscoelastic nature of the matrix will result in greater attenuation of the 

propagating stress wave. Variations in the modes and frequencies result in changes in the strain 

and deformation components among the different laminae within the laminate which in turn will 

affect the attenuation values. 



69 

 

The directionality of attenuation behavior was exhibited to a limited extent. Comparison 

of So mode attenuation values gave results which were very comparable with each other, for both 

laminates. However, attenuation values for 30 and 60 degrees in both laminates were higher 

particularly for crossply laminates as shown in Figure 4.11. 

 

(a) 

 

 (b) 

Figure 4.11. Ao mode attenuation coefficients vs direction (a) Crossply (b) Quasi-isotropic. 
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4.4 Numerical Simulation 

Wave propagation due to an acoustic emission event was simulated using VPG and 

ANSYS LS-DYNA and the results were displayed on LS-PREPOST. The simulation mainly 

consisted of symmetric and antisymmetric modes of wave propagation in the composite panels. 

The method used here considers that the energy released during an acoustic emission event can 

equivalently be represented by short duration impulse type load applied on the numerical model. 

Hence, in the models, triangular impulse having width of 1us was used to simulate the acoustic 

energy release. Application of the pulse type load at the neutral axis of the numerical model 

gives rise to symmetric modes while when the impulse is applied at a surface node of the model, 

symmetric and antisymmetric modes of wave propagation were noticed. The method was tested 

on aluminum model and sample waveform is shown in figure 4.12.  

 

Figure 4.12. AE waveform and its wavelet in aluminum. 
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The waveforms from the aluminum model displayed a dispersion behavior quite in 

agreement with aluminum dispersion curves available in literature (Rose, 2004). The curved 

lines on the wavelet represent the respective symmetric and antisymmetric modes of wave 

propagation. In the plot, the displacement/strain pattern was of interest and assignment of interest 

and assignment of specific quantity has been omitted from the time domain waveform both here 

and in a similar plot shown later for the CFRP models. 

For CFRP panels, however, the method was slightly modified. The application of pulse 

load on the numerical model gave rise to additional oscillation components. The presence of 

such components affected the features of symmetric and antisymmetric modes, which are the 

principal focus of this study. Hence, to remove these oscillation components, the numerical 

model was modified by appending a “dummy” isotropic material having modulus of elasticity 

the same as the stiffness along the principal direction of the CFRPs. The pulse type load was 

applied on the isotropic segment of the model and this enabled to propagate a wave displacement 

pattern consisting primarily of symmetric and antisymmetric parts.  

Simulations were done on 2D plane strain model, which was assumed to represent the 

wave propagation along one of the principal stiffness direction for the panels. The length of the 

model, both in the CFRP and isotropic part was maintained long enough to avoid reflections 

from either edge. The lamina material properties used for both panel A and panel C in the models 

are listed in Table 4.1 (Barbero, 2008). In the simulations, the average laminate properties were 

used in the models. The shell element size used for the 2D simulations was 0.5 by 0.5 mm. The 

element size was chosen based on literature (Moser et al., 1999; Rose, 2004) The velocity of 

wave propagation from the experiments (CFRP dispersion curves in section 3.5) and the 

numerical simulation were compared to verify validity of the model. LS-DYNA explicit finite 
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element analysis was used to determine the response of the panels to the applied the pulse type 

loads.  

Table 4.1 

Lamina Properties 

E1, Pa E2, Pa E3, Pa G12, Pa G23, Pa G13, Pa Nu12 Nu23 Nu13 

133.86e9  7.706e9  7.706e9  4.306e9  2.76e9  4.306e9  0.301 0.396 0.301 

 

The pulse was applied at a location such that the symmetric and antisymmetric parts were 

clearly separated before hitting the composite part. The modes which were generated this way 

continued to propagate on the composite part with the antisymmetric mode showing significant 

deviation in wave velocity as compared to the isotropic part. This method enabled the 

elimination of the higher oscillation components noted when the pulse was applied directly on 

the CFRP model. 

Responses of the models to the applied pulse type loads depend particularly on the shape 

and pulse width. In these simulations, as mentioned earlier, triangular pulse load of 1µs width 

was used. The small pulse width applied here enabled generation of waveforms with frequency 

components in hundreds of kilohertz’s which are typical of AE signals. The triangular shape 

gave rise to signals with frequency component over a wide range. Figure 8 shows a waveform 

and its wavelet obtained at distance of 50 mm from the interface between the isotropic segment 

and the CFRP part. 

It can be seen that the generated waveform consisted of waveforms with symmetric and 

antisymmetric modes of wave propagation. During the analysis, the symmetric (first strong 

pulse) and antisymmetric (second strong pulse) parts of the waveforms were identified using the 
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method discussed earlier. The frequency range for each component was mostly between 100 to 

400 kHz. The symmetric components had a slightly higher frequency range.  

 

Figure 4.13. AE waveform and its wavelet in CFRP panel. 

The waveforms were filtered to avoid low frequency components i.e, below 100 kHz 

which practically are not picked by solid piezoelectric sensors. The dispersion behaviors of the 

generated waveforms were compared with those obtained experimentally and happened to be in 

good agreement. For wide frequency range, between 100 kHz and 500 kHz, the wave velocity 

for So and Ao modes in quasi-isotropic panels were found to be about 5.7 and 1.5 km/s 

respectively. The velocities in the crossply laminates were slightly higher with 6 and 1.65 km/s 

respectively for the two modes.  
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4.5 Effect of Material Absorption in the Acoustic Emission Waveforms 

4.5.1 So and Ao mode attenuation. The attenuation coefficients determined 

experimentally revealed that the symmetric and antisymmetric modes behave differently. On the 

other side, AE events occur as combination of symmetric and antisymmetric modes. The 

numerically simulated waveforms were free of any material damping influence. Also, as the 

simulations were 2D along the wave propagation direction, the geometric spreading had no 

influence on the signals. Thus, the only factor which is expected to affect the waveforms along 

the wave propagation direction is dispersion which occurs due to the presence of multiple 

frequency components.  

In this and later sections, how material absorption progressively affects the signals with 

the distance of propagation is quantitatively detailed. The attenuation coefficients obtained from 

the experiments were applied to the numerical waveforms to incorporate the effect of material 

absorption. Several waveforms at different distances were taken to see how the material 

absorption effect goes with distance. The effect, at first, is seen separately on the two modes, i. e. 

the symmetric and antisymmetric modes. The combined effect on the acoustic emission event is 

considered later. The symmetric and antisymmetric modes from the event, as discussed earlier, 

were separated and conditioned using bandpass 100-500 kHz Chebyshev type II filter to filter 

frequency components outside this range using MATLAB. 

The method used here considers the frequency range for the waveforms. The acoustic 

emission event simulated consisted of frequency components over a wide range. The FFT’s (Fast 

Fourier Transforms) for the waveforms were obtained.  The amplitude of the discrete frequency 

component was multiplied by the attenuation coefficient obtained from experiments for that 

specific frequency component. The attenuated signal waveforms, hence, were obtained through 
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inverse transform of the product of the attenuation coefficients and the FFT amplitudes. This 

approach was applied to the Ao and So modes separately since the range of attenuation values for 

these two modes are different.  

  

  

  

  
Figure 4.14. Amplitude reduction with and without material absorption. 

050 100150-10-505Time,secAmplitudeSo mode



76 

 

Figure 4.14 shows So and Ao waveforms obtained from the numerical simulations, free of 

material absorption in combination with waveforms obtained by superposing the effect of 

material attenuation. The waveforms were taken at different distances from the source stretching 

up to distance of 250 mm. The waveforms shown here were obtained from the quasi-isotropic 

panel simulation results. The outcomes were shown to have the same tendency in C-ply 

laminates.  

It is quite evident that the effect of material attenuation is more severe in the Ao modes. 

Even under the condition which is free of material absorption, the reduction in amplitude for Ao 

modes is higher than So modes. Figure 4.15 (blue curve), shows the reduction in amplitude from 

the numerical simulations. In the figure, it is shown that the reduction in amplitude for So modes 

was about 8% after 250 mm distance of propagation while it was about 50 % reduction in 

amplitude for Ao modes. As mentioned earlier, since the only cause of reduction in amplitude 

reduction in the numerical simulations is dispersion, it is evident that the Ao modes are more 

dispersive than the So modes.  

  

Figure 4.15. Amplitude reduction in Ao and So modes. 

When the attenuation coefficients were imposed on the So modes, the waveform 

characteristics exhibited minimal changes. The envelope enclosing the mode waveforms was 

shown to vary slightly. Figure 4.15 shows that under the effect of material attenuation, the 



77 

 

amplitude of the So modes, even after propagation of 250 mm, was reduced by an additional 4% 

to the reduction which was caused by dispersion. 

This makes the total reduction of amplitude due to dispersion and material attenuation to 

12% after 250 mm distance of propagation. The effect of both dispersion and attenuation was 

different in the case of antisymmetric modes. Figure 4.14 shows the waveform shapes, and hence 

the envelopes enclosing the waveforms changed over distance. The accompanying reduction in 

peak amplitude was very high as compared to So modes. Within a distance of 100 mm, material 

attenuation, combined with dispersion had decreased the peak amplitude by about 70%.  

The results displayed in Figures 4.14 and 4.15 indicate that the effect of both dispersion 

and material attenuation had more severe effect in the Ao modes. Numerical simulations on the 

CFRP panels were done to determine the influence of the mechanical properties on the wave 

propagation characteristics. The in-plane principal stiffness (E1, and E2) of the panels were 

shown to affect the nature of So mode propagation. On the other hand, the shear stiffness 

(modulus, G12) properties were shown to affect the nature of Ao mode propagation. Particularly, 

the group velocity and dispersion in the waveforms were very sensitive to the fluctuation in these 

stiffness values. Taking into account the constituent materials of the CFRP panels, the fibers 

provide higher in-plane stiffness. This enabled the So mode propagation to advance over a longer 

distance. On the other hand, the viscoelastic matrix material provides weak shear stiffness and is 

characterized by lower G12 values. Comparison of the material properties of aluminum with 

average laminate principal stiffness of the crossply laminates indicates the in-plane stiffness was 

equivalent to the modulus of elasticity of aluminum. The shear modulus, however, was only 

about 20% of aluminum that makes the panels far less stiff for propagation of flexural type 

modes. Similar comparison with quasi-isotropic panels indicates the average in-plane principal 
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stiffness was about 80 % of that of aluminum. The viscoelastic properties of the matrix as well as 

the least stiffness could contribute to the higher level of dispersion and material absorption 

shown in the case of Ao modes. 

4.5.2 Geometric Spreading. Two important causes of attenuation have been considered 

so far: material absorption and dispersion. The third most important factor is geometric 

spreading. This is caused by energy redistribution which takes place during wave propagation in 

planar structures. The simulations discussed earlier were 2D plain strain models for the panels. 

Hence, the effect of geometric spreading was omitted as the wavefront was considered to 

traverse along the principal stiffness direction alone. On the other hand, when dealing with wave 

propagation in plates, the pattern of propagation is such that the wavefront tends to propagate 

circumferentially outward from the source. This has significant effect when recording waveforms 

along some direction. The amplitude reduction is mode independent and is affected by the 

distance from the source. 

  
Figure 4.16. Amplitude reduction due to geometric spreading, absorption and dispersion. 

Figure 4.16 shows the amplitude reduction obtained when the effect of geometric 

spreading was imposed on to the waveforms. Here it should be noted that, the frequencies at 

which peak amplitudes of the waveforms could shift. The wavelets for the consecutive 

waveforms from the numerical simulations indicated the frequencies at which peak coefficients 
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obtained shifted, however, by small margins. When calculating the effect of geometric spreading, 

it was assumed that the peak amplitudes were peaked at a specific central average frequency. It is 

evident that the geometric spreading has a more severe effect on So mode than the effect noticed 

due to material attenuation and dispersion. The combined effect of dispersion and material 

attenuation was 12% reduction in peak amplitude for distance of propagation equal to 225 mm. 

However, the reduction in amplitude grew to 70 % when the geometric spreading effect was 

included. This makes geometric spreading as the major factor contributing to amplitude 

reduction of So modes in the CFRP panels.  

In the Ao modes also, the influence of geometric spreading was quiet significant. 

However, the combined effect of dispersion and material attenuation was the major contributing 

factor to decrease he amplitude. For example, after propagation distance of 100 mm, as shown in 

the figures, the peak amplitude had reduction of 70% due to dispersion and material attenuation. 

However, this reduction grew to 85% with inclusion of the effect of material spreading. This 

indicates combination of material absorption and dispersion had more influence. Also, over a 

distance of 100 mm, the Ao modes had reduction of amplitude by 70 % within 65 mm distance of 

propagation, while it took over 225 mm for So modes to experience reduction by the same 

percentage. 

4.5.3 AE event consisting of the fundamental modes. The earlier subsections discussed 

attenuation with reference to the fundamental symmetric and antisymmetric modes of wave 

propagation. Also, the influence of the different mechanisms of attenuation on these modes is 

also discussed. An acoustic emission event, in actual conditions occurs as combination of the 

fundamental and higher order modes of wave propagation. All the attenuation mechanisms 

discussed here also affect the acoustic emission wave propagation. 
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An important feature used in AE analysis is energy of the signal waveforms. In the earlier 

discussions, it was mentioned that the amplitude and frequency features of the signal waveforms 

were affected by the different attenuation mechanisms. In Figure 4.17,the energy of waveforms 

taken at intervals of 25 mm are plotted as function of signals. The waveforms were separated to 

their constituent Ao and So modes and the values were summed to obtain the energy of the 

simulated AE event. Energy of the signals were calculated according to the following equation. 

However, the threshold level, which sets the integration limits, is neglected in these calculations. 

Nonetheless, reasonable approximations of signal energy were obtained.  

                       ∫   
       

  

  
∫   

      
  

  
                                                 (6.1) 

 

Figure 4.17. Energy of AE signals with distance. 

It can be seen that there is a reduction in energy of the waveforms modes by about 80% 

and more within a distance of 100mm and will be more with further increase in distance. This 

reduction in energy will have significant impact in the interpretation and analysis of waveforms 

obtained from an acoustic emission event. The same tendency is expected to be shown in other 

parameters used in acoustic emission analysis. This indicates the need to pay much consideration 

to the inclusion of attenuation in acoustic emission analysis. 
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4.6 Summary 

In this part of the research, the influence of attenuation on acoustic emission signals, their 

constituent wave propagation modes and features of their waveforms was analyzed. Two 

representative laminates of crossply and quasi-isotropic layup were used for experiments. The 

panels were excited by Gaussian type pulses at different frequencies. The response of the 

laminates were measured along different directions and distances. 

 The attenuation coefficients obtained from the experiments indicated that the 

fundamental modes of wave propagation had varying attenuation levels. The antisymmetric wave 

propagation modes in the signals had attenuation levels, which were three to four times that of 

the symmetric modes. The distance of propagation for the symmetric modes, because of less 

attenuation levels, was about three times that of antisymmetric modes. 

The two laminates exhibited different amplitude distribution with direction. The quasi-

isotropic laminates had in plane isotropy and because of which amplitudes measured at different 

directions, for both symmetric and antisymmetric modes were, for similar input amplitude and 

frequency, were of equivalent magnitude. However, the amplitudes of the signals measured 

along the non-principal directions were much smaller than the amplitudes from the principal 

directions. 

Examination of the influence of the different attenuation mechanisms indicated that 

significant reduction in amplitude of So modes resulted from geometric spreading. The other 

attenuation mechanisms such as dispersion and material attenuation had comparable effect on the 

antisymmetric modes. The antisymmetric modes were also found to be more dispersive than their 

symmetric counterparts were. 
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The last section of the chapter discussed one of the most important features of AE 

signals, i.e energy of the signals. It was found to change much with reasonably short distance of 

propagation. Several sources in the literature are available which make use of energy and other 

features. However, the effect of attenuation with distance or sensor location is missing in the 

analyses. This affects the accuracy of results from analyses of AE data. Analyses of data from 

acoustic emission tests should, therefore, include attenuation effects. 
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 CHAPTER 5 

Delamination Tests 

5.1 Introduction 

Damage progression during delamination is examined experimentally in this chapter. 

Carbon Fiber Reinforced Polymer (CFRP) double cantilever beams (DCB) were used to simulate 

delamination and the acoustic emission events generated in the process were analyzed. In 

Chapter 2, it was discussed that the different failure mechanisms affect the stiffness and strength 

of a structure in different ways. Signatures from acoustic emission signals could be used to 

identify these failure mechanisms. In addition,  in previous studies, the fracture toughness or 

delamination resistance of the laminates was shown to vary with different parameters such as the 

rate of loading or, in this case, the rate at which crack tip opening displacement occurs 

(Corigliano et al., 2006; Corigliano & Ricci, 2001). The resistance is also affected by fiber 

orientation of the laminae bounding the delamination. (Johnson et al., 1989). These factors 

determine the nature of the damage that evolves in the structure. In addition, it is expected that 

the acoustic emission signatures from delaminations will be affected by these factors.  

The objectives of this part of the research are to monitor the acoustic emission activity 

during initiation and growth of delamination in the CFRP specimens and distinguish the different 

failure mechanisms occurring within the delamination process using the acoustic emission data. 

Scanning Electron Microscopy (SEM) images were also used for identifying the failure 

mechanisms. Influence of loading rate and the lamina orientations on acoustic emission signals 

and fracture surface morphology are examined in detail. Details of the tests and analyses are 

presented in the following sections.  
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5.2 Test Specimens and Test Procedure 

Two types of DCB test specimens were cut from an orthotropic laminate (panel A) and a 

quasiisotropic laminate (panel C), described in Chapter 2. The dimensions for the specimens 

were in accordance with the D5528 ASTM test standard for mode I delamination. The beams 

were cut from the edge of the panels which was provided with a thin insert film that extended up 

to length of 55 mm from the edge. The thin film serves the purpose of initiating delamination 

during loading of the specimens. Ten specimens were cut from each panel.  Five of the 

specimens are shown in Figure 5.2. Each arm of the beams was transversely loaded in tension by 

means of a hinge bonded at one edge. The respective dimensions of the test specimens are shown 

in Figure 5.1. 

 

Figure 5.1. Dimensions of delamination test specimens. 

PZT sensors were bonded to the specimens at distance of 75 mm from the tip of the film 

insert. As mentioned in the earlier chapter, the amplitude of the antisymmetric mode of a wave 

propagating in these CFRP specimens reduces significantly over short distances. The 

delamination in these tests was made to grow up to 50 mm. Thus, with the selected location of 

the sensor, the distance between the crack front and the sensor reduces from 75 mm to 25 mm 

when the crack growth reaches 50 mm. This enables collection of AE signals without losing 

much of the antisymmetric components.  
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Figure 5.2. Delamination test specimens. 

The tests were done under displacement-control. As listed in Table 5.1, individual 

specimens were tested at different displacement rates applied at the hinges that include 0.5, 2, 5, 

10 mm/min. Acoustic emission signals, the applied opening displacement, and the transverse 

load applied to the specimens were continuously recorded by the acoustic emission data 

acquisition system while the delamination grew by 50 mm.   

Table 5.1 

Displacement rates for delamination tests 

Delamination tests  

Cross-Ply Quasi-Static 

Test No Specimen Displacement Test No Specimen Displacement 

1 A1 10 mm/min 6 C1 10 mm/min 

2 A2 5 mm/min 7 C2 5 mm/min 

3 A3 5 mm/min 8 C3 5 mm/min 

4 A4 2 mm/min 9 C4 2 mm/min 

5 A5 2 mm/min 10 C5 2 mm/min 

11 A6  0.5 mm/min 12 C6 0.5 mm/min 
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The acoustic emission signals and their features were recorded during the tests by a PCI-2 

data acquisition system. The signals were preamplified at 40 dB gain before acquisition, and the 

threshold for avoiding noise signals was set at 35 dB. Each AE waveform was recorded for a 

duration of 1 ms with a sampling rate of 5X10
6
 samples per second. In addition, the edges of the 

specimens were painted white and inscribed with marker for monitoring the position of the crack 

tip. Videos of the delamination growth were recorded for tests A1, A2, A4, A6, C1, C2, C4 and 

C6. The displacement and time readings from these videos were used to plot the delamination 

growth with time. 

5.3 Data Analysis 

5.3.1 Damage progression. The initial delamination due to the film insert in the crossply 

specimens was between two 90 degree laminae while in the quasi-isotropic specimens, it was 

between two 0 degree laminae. Hence, the delamination crack front was parallel to the fiber 

direction in crossply specimens and perpendicular to fiber direction in quasi-isotropic specimens. 

The effect of this fiber orientation on the delamination growth direction is shown in the 

snapshots of videos for the two types of laminates, Figure 5.3. The snapshots were taken from 

specimens A2 and C2. 

 

(a) 

 

(b) 

Figure 5.3. Delamination trajectory (a) Crossply (b) Quasi-isotropic. 
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As can be seen in the figures, a planar delamination growth is seen in the quasi-isotropic 

specimens. The crossply specimens, however, exhibited delamination growth that had an uneven 

fracture profile in which the delamination appeared to wander through the thickness of the 90 

degree laminae. The crack growth displacement for the crossply specimen is shown in Figure 

5.4. As these delaminations grow, the different damage mechanisms including matrix cracking, 

fiber break and debonding accumulate and interact with each other. In the case of the quasi-

isotropic laminates, the delamination front is forced to propagate nearly along the interface 

between the adjacent 0 degree laminae by the resistance offered by the fibers. However, in the 

case of the cross-ply laminates, the matrix crack could propagate both parallel and transverse to 

the delamination growth. Thus, the interface at which delamination advances could jump from 

one lamina to the next due to cracking in the resin material. Figure 5.3 (a) shows the resulting 

zigzag path of the interlaminar. In the quasi-isotropic tests, as the fibers are aligned along the 

delamination growth direction, bridging caused by the fibers between two adjacent plies is also 

possible.  

 

Figure 5.4. Delamination growth with time for test A2. 
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5.3.2 Delaminations and AE bahavior. When the DCB specimens were gradually 

loaded under displacement control, there was short delay before the delamination started 

propagating from the tip of the film insert. This start of propagation was marked by a 

simultaneous increase in the AE events. For delamination growth by 50 mm, cumulative event 

counts in the order of tens of thousands were obtained. In some cases, 500 signals, on average, 

were recorded for a delamination growth of 1 mm. This confirms acoustic emission as a useful 

means to detect onset and growth of delamination in CFRP structures. The cumulative 

occurrence of events was, however, dependent on different parameters, as explained in later 

sections. Several features of these events were recorded, which eventually are used for analysis 

in identifying the different damage mechanisms involved. 

Occurrence of the different damage mechanisms in the specimens was verified with the 

help of SEM images. Several images of the fracture surfaces, from both the quasi-isotropic and 

crossply laminates, and from the tests under different loading rates were taken. The images of the 

fracture surfaces were taken at a magnification of 500X. Figure 5.5 shows an SEM image of a 

quasi-isotropic specimen fracture surface. Three major failure mechanisms were identified from 

the images. These are matrix crack, fiber breakage, and debonding at the fiber-matrix interface. 

Presence of voids, which were displayed in the thermal images of the laminates, shown in figure 

3.1, was also noted. In addition, the images revealed the uneven fracture growth in the crossply 

specimens, which rather have occurred in steps. Each of these damage modes have been source 

of AE signals, and the thousands of AE events revealed the occurrence of the modes in the 

thousands during the delamination growth. Despite the density of the damage mechanisms on a 

unit area varied from one area to another, the presence of the mechanisms in higher numbers was 

supportive of generation of the thousands of AE events. 
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Figure 5.5. SEM image of quasi-isotropic specimen fracture at 500X magnification. 

5.3.3 Delamination growth rate and AE behavior. The rate of delamination growth 

determined the fracture surface morphology as well as the acoustic emission signals. In this 

section, we examine how the acoustic emission data changed in response.Load-displacement 

curves such as the one in Figure 5.6 were generated for each test. Displacement, here, refers to 

the opening displacement applied at the hinges. The points at which the load-displacement 

curves deviate from linearity were visually compared to assess the resistance to delamination 

initiation from the insert tip (ASTM D5528). The range of velocities used here was narrow, in 

contrast to those considered in (Corigliano & Ricci, 2001), so that the delamination resistance of 

the laminates has hardly changed with the opening rates. However, delamination resistance of 

the crossply specimens was higher than that of the quasi-isotropic specimens. The load level 

required to initiate delamination (deviation from linearity) from the crack (insert film), was, on 

average, 16 N for the quasi-isotropic specimens and 30 N for the crossply specimens. It was 

noted that, the load-displacement drops after initiation of delamination in the quasi-isotropic 
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specimens, while it the curve went up with further growth of the delamination length  in crossply 

laminates. 

 

Figure 5.6. Load-diaplacement curve for test C2. 

Despite the insignificant differences in the fracture toughness behavior, some features of 

the signals were sensitive to the rate of delamination growth. The Amplitude density distribution, 

i.e, the distribution of the number of events having a specified range of amplitude with a unit 

time was indicative of how damage accumulation and interaction varied depending on the rate of 

delamination growth. Figure 5.7 shows the amplitude density plots for the quasi-isotropic 

laminate at opening rates of 5 mm/min, 2 mm/min, and 0.5 mm/min. Depending on the 

displacement rates used, the number of AE events generated were different. To facilitate 

processing of the waveforms afterwards with a limited number of events, the acquisition data 

files were split into two or more files. Thus, ordinate scales of the plots shown in the figures 

were accordingly different. In addition, the plots shown in Figures 5.7 (b) and (c) are generated 

from files that contained waveforms after delamination has already started to grow unlike Figure 

5(a) which included the waveforms from the initiation of delamination. Thus, the initial faint 

region in Figure 5.7 (a) before time of 200 µs is not shown in Figures 5.7 (b) and (c). 
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(a) 

 

 (b) 

 

(c) 

Figure 5.7. Amplitude density plots for quasi-isotropic specimens (a) 5 mm/min (b) 2 mm/min 

(c) 0.5 mm/min. 
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The figures indicate that, distinct amplitude density plots were obtained corresponding to 

each displacement rate. When the rate is 5 mm/min, figure 5.7 (a), the density plot indicates that 

events with amplitude in the range 60 to 75 dB occur in large numbers as compared to events in 

lower amplitude range. A similar tendency is shown for the test at 2 mm/min, Figure 5.7 (b). 

However, events with amplitude range 35 – 60 dB have higher presence in comparison with the 

previous case. In the third case, Figure 5.7(c), peak densities are shown in intermittent fashion 

unlike the previous two cases. The range of events from 35 to 70 dB shows peak densities, 

however, occurring at intervals, instead of the continuous high amplitude and high density 

fashion exhibited in the earlier two cases. Scatter plots of the amplitudes of these events were 

also indicative of these variations.  

In the case of quasi-isotropic specimens, faster displacement rates, 10 mm/min and 5 

mm/min, resulted in higher amplitude AE events at a steady rate, indicating that the crack growth 

rate was nearly constant. The slowest displacement rates resulted in smaller amplitude signals 

and the event rates fluctuated indicating nonuniform delamination growth rate.  Intermittent 

emission of events in large numbers was typical behavior of damage progression in crossply 

specimens for which the fiber orientation was perpendicular to the direction of delamination 

growth. Amplitude density plots for the crossply specimens are shown in Figure 5.8. For the 

crossply specimen loaded at 0.5 mm/min rate, there were zones of intense AE activity separated 

by intervals of markedly lower AE activity. As the loading rate increased, the duration of the 

lower activity decreased and at the loading rate of 10 mm/min, the rate of AE activity exhibited a 

nearly uniform behavior. At loading rate of 10 mm/min, both the crossply and the quasi-isotropic 

specimens exhibited uniform generation of events. However, the amplitude distribution shown 

by amplitude density was different. 
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(a) 

 

 (b) 

 

(c) 

Figure 5.8. Amplitude density plots for crossply specimens (a) 5 mm/min (b) 2 mm/min (c) 0.5 

mm/min. 
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In addition to amplitude, other features of the signals were examined to reveal the 

changes in acoustic emission behavior due to variations in the crack growth rates. Feature 

selection was made based on an examination of the scatter and cumulative distributions of the 

recorded AE features. In Figures 5.9 and 5.10, the energy of the AE signals is shown for two of 

the tests. 

 

(a) 

 

(b) 

Figure 5.9. Energy of AE signals from test A1 (a) scatter plot (b) cumulative distribution. 
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(a) 

 

(b) 

Figure 5.10. Energy of AE signals from test C1 (a) scatter plot (b) cumulative distribution. 
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Scatter plots of energy in Figures 5.9(a) and 5.10 (a) shows discrete segments of events 

on the time scale. However, the size of the intervals between the segments in the case of quasi-

isotrpic specimen is much smaller than in the case of the crossply specimen. This is also 

confirmed by the cumulative distribution of events, Figures 5.9(b) and 5.10 (b). In  the quasi-

isotropic specimen, the curve increases steadily with the increase in delamination length or time. 

This  indicates the increment in the cumulative energy caused by a new event or by a group of 

events at an instant of time is bound by values that maintain the uniform slope of the curve. 

However, in the crossply specimens, abrupt increments in the cumulative plot were seen. Unlike 

the case of quasi-isotropic specimens,  a group of events at some instant or over a narrow interval 

of time had relatively higher energy which adds significantly to the cummulative plot. This 

causes a jump in the cumulative plot curve causing a shift in the slope. A similar description 

holds true for the duration of the signals.   

5.4 Evolution of Damage Mechanisms with Delamination Growth Rate 

The observations from the density, scatter and cumulative plots of the acoustic emission 

signal features are indicative of variations in the damage accumulation and interaction among the 

different cases considered.  The abrupt increase in the cumulative energy and duration of events 

for crossply specimens shows the release of higher energy in the delamination area which results 

in longer duration events. The region between the abrupt changes indicates a stable release of 

energy or increment of delamiantion growth. In this section, the failure mechanisms involved 

and their impact on the damage progression have been examined. Multiple SEM images of the 

fracture surfaces of the specimens, both crossply and quasi-isotropic were taken.The SEM 

images were used to correlate the different failure mechanisms with the acoustic emission 

patterns displayed in Figures 5.7 through 5.10.  
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In the amplitude density plots, it was shown that, for test C2, the amplitude density in the 

amplitude range 65 – 75 dB was stronger and the amplitude density for the same amplitude range 

was weaker with decrease in the opening rates. SEM images of the fracture surfaces were taken 

for tests C2 and C6 which were tests corresponding to opening rates of 5 mm/sec and 0.5 

mm/sec. Images were taken at equal intervals of 1 mm from the insert film tip where 

delamination started to grow. Figure 5.11 shows some of the images taken for both types 

specimen. 

  

  

  

Figure 5.11. SEM images of fracture surface from specimens C2 (left) and C6 (right) at 500X. 

50 µm 
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The images revealed that three types of damage mechanisms were noticed along the 

entire scan area covered. The relative composition of the damage mechanisms, however, varied 

from one scan area to another. Matrix cracking and debonding between the fiber and the resin 

material were very prevalent over the fracture surfaces. This has been true with the fracture 

surfaces of both specimens C2 and C6.  However, the distribution of one type of damage 

mechanism, i.e, fiber fracture, was different for the two cases. The images revealed that, the 

fracture surfaces of specimen C2 had more density of fiber fracture, which occurred either 

individually or in a group. While there were hardly any visible fiber cracks in the Figure 

5.11(left), in the figure to the right, noticeable number of fiber cracks were visible. In the images 

compared for this, a larger number of fiber breaks were observed in the case of specimen C2. It 

was found from the amplitude density plots that, events with amplitude above 60 dB were 

dominantly present for specimen C2. Correlation of these two findings indicates that, the fiber 

fractures made a significant contribution to the strength of the amplitude density over the 

specified range.  Also, the SEM images from the whole range of scan areas indicated the 

presence of matrix cracking and debonding between the fibers and the matrix material.  For all 

amplitude density plots, events in the amplitude range less than 60 dB had a strong presence. 

These signals were, thus, correlated with resin cracking and failure of the bond between the 

fibers and the matrix material. 

As part of this research, a series of tensile tests were done on specimens of similar size. It 

was found that, when the tensile specimens are subject to quasi-static type of load, at the 

beginning, consistent with the discussion of chapter two, the matrix cracking events were very 

dominant. However, an eventual shift was noticed in the concentration of events. As the damage 

progresses further, more number of fiber fracture events were recorded. The amplitude range for 
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these series of events was examined and found to be consistent with the amplitude distribution of 

Figures 5.7 and 5.8. 

The delamination growth for the crossply specimens was characterized by abrupt changes 

of the delamination profile. The cumulative energy and duration plots confirmed these were 

zones where high energy and high duration events were generated. A series of images taken near 

such zones revealed that breaking of fiber bundles occurs with the release of massive energy 

resulting in high energy and longer duration events, as seen in Figure 5.12. Thus, the fiber 

breaks, under the settings used for data acquisition appeared to be the driving mechanisms for the 

emission of high amplitude and high energy events. Also, they occur in large numbers when the 

opening rates are higher.  A shift or jumping of fracture propagation from one interface to 

another or one ply to another was also shown in the same image. 

 

Figure 5.12. SEM image of fracture surfaces from specimen A5 (500X). 

In the cumulative and scatter energy plots, the majority of events were shown to be of 

lower energy. The SEM images show contours on the resin material that are indicative of the 
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formation of new crack surfaces due to successive incremental failure. These events occur in 

quiet large numbers and the images depict such contours in several parts. Thus, the lower energy 

events were associated with matrix cracking. The remaining events were associated with 

debonding which occurs at fiber-matrix interface.   

5.5 AE in Crossply vs Quasi-isotropic laminates 

The acoustic emission behavior in the two types of laminates differed largely due to the 

difference in the fiber orientation at the delamination interface. The fracture toughness or 

delamination resistance of the crossply laminates was larger than that of quasi-isotropic 

laminates. Because of a higher resistance to delamination, the crossply tests took nearly double 

the time that was required for the quasi-isotropic specimens to achieve a delamination length of 

50 mm. Under the settings used for the acquisition, however, the cumulative number of events 

has not shown much variation. The amplitude distribution for each of the tests indicated that, the 

peak values of the amplitude density were equivalent among tests under similar loading rates. 

The pattern of displacement and the pattern of damage accumulation in response to the different 

opening rates were, however, different. As discussed in section 5.2, the fracture propagation 

exhibited a steady growth in the quasi-isotropic specimens while the progress was uneven in the 

case of the cross ply specimens.   Related to this; the acoustic emission plots in the earlier section 

indicated that, due to the contrast in the fiber orientation with respect to the delamination growth 

direction in the two types of specimens, the pattern with which events occurred in the two 

laminates varied. In the pattern of amplitude density distribution, it was learned that high 

amplitude signals were coming in large numbers continuously particularly at higher opening 

rates for the quasi-isotropic laminates which, otherwise exhibited an intermittent occurrence of 

events which happens at certain intervals in the crossply laminates.  



101 

 

5.6 Numerical Simulation of Failure Modes in Composites 

5.6.1 Geometry and material properties. In the earlier chapter, acoustic emission 

events consisting of symmetric and antisymmetric modes of wave propagation were numerically 

simulated. A similar method of simulating AE events was used here to simulate transverse 

matrix cracking and interlaminar separations between plies. The focus of this chapter has been to 

see how acoustic emission waveform features change depending on the rate at which damage 

advances. Energy release during an acoustic emission event in the previous chapter was 

mimicked by pulse type loads applied to the numerical model. A numerical study (Rajendra et 

al., 2011) based on this idea has shown that the width of the pulse type load has strong influence 

on the features of the resulting waveforms. The frequency feature, in particular, was highly 

sensitive to the pulse width. Two values for the pulse width were used for the simulation of the 

interlaminar separation discussed in the following subsections. The material properties used here 

are similar to those used in the previous chapter.  Quasi-isotropic laminate with slightly different  

layup from the one used in the experiments was modeled in the simulations. The geometry of the 

model used for the simulations is shown in figure 5.13.  

 

Figure 5.13. Geometry of FE model. 
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5.6.2 Transverse matrix cracking. A 5 mm long transverse crack is assumed to 

propagate at the center of the laminate and is assumed to be confined to the middle of two 

laminae with fibers orientated along the 0 degree direction. Since these two laminae are 

symmetrically located with respect to the neutral axis, the center of the transverse crack 

coincides with the neutral axis of the laminate. Acoustic emission generated by this transverse 

crack propagation was simulated with a series of 25 impulses applied sequentially to consecutive 

nodes 0.2 mm apart along the path of the transverse crack. The shape of each impulse is set such 

that effectively a constant amplitude impulse travels both in time and space without amplitude 

fluctuations to represent a crack that propagates with uniform velocity. Figures 5.14 and 5.15 

show snapshots of the 3D and 2D animation, respectively, of the y-strain (in-plane strain) 

animation from the simulations. 

 

 
 

 

 

Figure 5.14. Snapshots of 3D animation of y-strain in matrix cracking. 
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Figure 5.15. Snapshots of 2D animation of y-strain in matrix cracking. 

5.6.3 Mode I interlaminar fracture. Mode I delaminations are assumed to result in 

excitations normal to the plane of the laminate but acting on the surfaces of the participating 

laminae. As in the case of transverse crack propagation within a lamina, delaminations were 

simulated as a series of seventeen impulses, each with a width of 2 μs. Figures 5.16 shows 

snapshots of the 2D animation of the y-strain (in-plane strain) from the simulations.  

 

Figure 5.16. Snapshots of 2D animation of y-strain in delamination. 
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Two cases were considered to simulate the delaminations. The width for the pulse type 

loads applied on the numerical model had two values. In the first case, the pulse had width of 2 

µs, while in the second case, the pulse width was reduced to 1.5 µs. The waveforms forms from 

each case are presented in the following section. 

5.6.4. Waveforms corresponding to individual failure modes. Simulated acoustic 

emission waveforms corresponding to the different failure modes are shown in figure 5.17. Only 

the waveform shapes were considered in these simulations, without considering the amplitude of 

the source event or the energy released. Widely different features are seen in these figures. The 

basic Lamb wave modes including the So, Ao, and shear modes, appear to be prominent in the 

waveforms. Their participation in waveforms vary depending on the source event and the 

inclination of the propagation path to the normal to the crack plane. When the propagation path 

is at or close to the normal to the crack plane, So and Ao Lamb wave modes appear to dominate. 

But, when the propagation path deviates from the crack plane’s normal, the shear wave mode 

become significant and appear to reach maximum amplitude around an inclination of 45 degrees, 

encircled in the figure. 

The frequency content and the dispersion characteristics depend on the duration of the 

source event. The composition of features is recognizable within these waveforms and is useful 

in identifying the corresponding source mechanism. In addition, the source-to-sensor distance 

and the angle of incidence of the waveform with respect to the sensors vary over a large extent, 

and such variations are likely to introduce significant variations in the detected signal 

characteristics. The features from these events were used for classification of the source events in 

(K. Asamene, Knighton, T., Rajendra, D., Ali, B., Whitlow, T., Sundaresan, M., , 2011). 
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(a) 

  

(b) 

  

(c) 

Figure 5.17. Waveforms from simulated damage modes (a) matrix cracking (b) delamination at 2 

µs pulse width and (c) delamination at 1.5 µs pulse width. 
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It can be seen that the shear wave component, encircled in figure 5.17 (a) to the right, has 

a strong presence at an angle of 45 degrees. Figures 5.17 (b) and (c) show the delamination 

waveforms obtained under the application of pulses of different width. In these cases, the pulse 

width applied on the model was varied to simulate variations in the crack growth rate. Past 

studies at classifying the waveforms according to the source mechanisms relied on empirical 

features of acoustic emission signals such as amplitude, rise-time, duration, frequency content 

etc. It was shown in the plots that these features such as amplitude, frequency content and the 

duration and energy of the signals (by definition) varied significantly for the two cases. In 

addition, the quantity used here to display the waveform patterns is the in-plane strain. 

Traditional AE sensors are quite sensitive to out of plane displacements. A similar trend in the 

variation among the waveforms is expected in other quantities as well. These are important 

findings as these features of signals have been used in most of traditional AE analysis regarding 

source identification and pattern recognition. 

(Rajendra, et al., 2011) classified acoustic emission signals in a similar fashion based on 

the constituent modes present in the waveforms. Thus, the relative composition of the waveforms 

or the relative presence of the modes in the waveforms becomes an important parameter. The 

numerical waveforms obtained here exhibited difference in the type and magnitude of the 

different modes present. The numerical waveforms from the simulation reported here are subject 

to further refinement. Due to the complex nature of wave propagation in anisotropic media, 

assumptions have been introduced that could affect the accuracy of the reported results. 

Nonetheless, dispersion properties of the waveforms were compared with the experimentally 

generated dispersion curves for the CFRP panels, (Section 3.5), and were found to be in good 

agreement.  
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5.7 Summary 

In this part of the research, acoustic emission events from the growth of delamination in 

CFRP structures were analyzed. Delamination test specimens were prepared according to test 

standards and instrumented with AE sensors. Tests under different sets of parameters, viz., 

delamination growth rates and fiber layups were done. The AE signals and their features from 

the tests were recorded and evaluated. The signals were characterized with regard to damage 

growth rates and fiber orientation at damage growth zones. The features of the signals were also 

correlated with the different damage mechanisms in composites. 

Some features of the acoustic emission signals were indicative of delamination growth 

even with a narrow margin of variation. The amplitude density was sensitive to the delamination 

growth rate. Cumulative and scatter energy plots were also sensitive to the rate at which damage 

was propagating in the laminates. 

Differences in the fiber layup at the delamination growth zones were apparent. The load 

at which delamination initiated was nearly doubled as the fiber orientation was changed from a 

direction parallel to the delamination growth to a perpendicular direction. The pattern of damage 

progression and the associated acoustic emission were also different. 

The different failure mechanisms were classified based on the AE signals and their 

features. Events from fiber breaks were classified into high amplitude and high energy events. 

Based on the distribution and cumulative presence on the SEM images and energy plots, matrix 

crack events were related with low energy and low amplitude signals. 

Different types of wave propagation modes were identified with waveforms from 

numerically simulated acoustic events. The relative presence of the modes was affected by the 

location where the measurement was taken. Consistent with the experimental waveforms, the 
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features of the numerical waveforms were sensitive to the damage growth rate, which in this 

research was simulated by varying the width of the impulse type load applied on the numerical 

models. 

Characterization of AE signals with regard to different parameter values at which damage 

could advance in a material is considered an essential step towards establishing a baseline for AE 

based monitoring of composite structures. Correlation of the signals with the damage 

mechanisms is also useful in assessing the stiffness and strength of the structures. 
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CHAPTER 6 

Friction and Crack Growth Related Acoustic Emission Tests 

6.1 Introduction 

Crack growth and friction between surfaces are two of the processes in metallic materials, 

which give rise to acoustic emissions. In some structures such as bearings, gears, and turbine 

blade root joints as well as bolted and riveted joints, these processes could occur simultaneously. 

In such cases, it becomes important to differentiate the signals from the two sources. On the 

other hand, the characteristic features of acoustic emission signals generated by sliding friction 

between two surfaces could vary depending on the conditions prevailing at contact. Thus, this 

part of the research had two main objectives: to characterize friction related signals with respect 

to parameters of the friction process, and to differentiate characteristic features of crack and 

friction related acoustic emission signals. To accomplish these, a test fixture to simulate 

reciprocating motion between the two surfaces under controlled conditions is developed. Sliding 

friction under several combinations of surface roughness, relative velocity, and normal pressure 

was examined. Also, a steel bar was fatigue loaded under three point bending test to propagate 

crack growth. The acoustic emission signals generated in the process were recorded. The features 

of the signals were compared with those of the signals from friction. The details of each test are 

presented in the following sections. 

6.2 Friction Test Fixture and AE Instrumentation 

Figure 6.1 shows the test fixture designed for studying acoustic emission signals 

generated due to friction. This fixture is capable of simulating friction between surfaces under 

controlled conditions including normal pressure and sliding velocity. The fixture consisted of 

two identical friction pads pressed against the opposite surfaces of a long steel bar near its 
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midpoint. The relative motion between the friction pads and the steel bar could be controlled 

from about five microns to several millimeters. 

 

Figure 6.1. Friction test fixture. 

The fixture is mounted on 810 Material Test System (Ch.3) machine and the friction pads 

could be subjected to either unidirectional or oscillatory motion with respect to the steel bar, as 

shown in Figure 6.2. The results reported in this paper were obtained while the pads were 

subjected to sinusoidal motion relative to the steel bar. 

Cyclic loading resulted in repeated stick-slip motion between the pads and the bar. The 

bar’s dimensions were 530 mm X 50 mm X 3 mm, as shown in Figure 6.3, and it was cut from 

precision ground A2 tool steel bar with surface roughness, Rab, of 0.48 µm and Rzb of 2.76 m.  

Pairs of friction pads with two different surface roughness values were used in this study. The 

surface roughness values, Rap, of the first and second pairs were, respectively, 0.15 µm and 1.54 
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µm. These surface roughness measurements were taken parallel to the direction of relative 

sliding between the pads and the bar. The steel friction pads were 50 mm long and their contact 

surfaces were flat with round corners, as shown in Figure 6.4. The Rockwell hardness values for 

the pads and the steel bar were respectively HRB 123 and HRB 96. 

 

 

Figure 6.2. Schematic representation of the test fixture. 

The bar was instrumented with wide band and resonant frequency acoustic emission 

sensors placed on either side of the friction region. The side mountings which held the friction 

pads were designed to be stiff compared to the steel bar participating in the friction process. The 

contact pressure between the pads and the bar was monitored using a load cell. The readings of 

the load cell during the cyclic motion were monitored on an oscilloscope. 
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Figure 6.3. Steel bar dimensions. 

 

Figure 6.4. Dimensions of friction pads. 

Four AE transducers were used to detect the friction related acoustic emission signals. 

The first set of transducers were PAC R30 (Ch.3) sensors. The second set of transducers were 

piezoelectric wafers (Ch.3) bonded to the surface of the steel bar as shown in Figure 6.3. The two 

types of sensors had comparable sensitivities, but their frequency responses were widely 

different. Sensor locations are also shown in the figure. AE source location capability with 

sensors positioned on opposite sides of the friction region helped in isolating signals of interest 

in the present study. The results included in this paper were obtained using the bonded 
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piezoelectric wafer sensors. Most of the data acquisition was performed using PAC preamplifiers 

with 40 dB gain and PIC-2 data acquisition system (Ch.3).The complete waveforms were 

acquired at a rate of 5 x 10
6
 samples/second and a 35 dB threshold was set for acquisition. These 

waveforms were further processed on a personal computer. 

6.3 Friction Test Procedure 

The results included in this paper correspond to sinusoidal motion of the friction pads 

while the steel bar was held stationary by gripping at its top end. The steel bar was free at the 

bottom end. Acoustic emission signals corresponding to different combinations of parameters 

such as surface roughness, normal pressure, stroke length, and velocity were recorded and 

examined. The range of variations in these parameters governing the friction condition is listed 

in Table 6.1. 

Table 6.1 

Parameters for which AE signals were generated 

Friction Parameter Value 1 Value 2 

Contact pressure, P, MPa 2 4 

Loading frequency, F, Hz 0.5 1 

Axial grip disp. amplitude, A, mm 0.25 0.5 

Bar surface roughness, Rab, µm 0.48 --- 

Friction pad roughness, Rap, µm 0.15 1.54 

 

Table 6.2 lists the eight different combinations of friction parameters for which acoustic 

emission data were acquired. The first four tests with prefixes RS, involved the steel bar with 

relatively rough surface (Rab = 0.48 m) and friction pad with relatively smooth surface (Rap = 
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0.15 m). The last four tests with prefixes RR involved the same steel bar with relatively rough 

surface and friction pads of comparable roughness (Rap = 1.54 m). These four tests had the 

same pattern of normal pressure, stroke length applied at the lower grip, and cyclic frequency as 

the first four tests.  The axial load generated in the bar depended on the contact pressure, surface 

roughness, axial displacement, and the stick-slip conditions prevailing at the frictional interface. 

The axial load was measured by the MTS load cell. The relative displacements of the lower grip 

as well as the frictional force transferred through the friction pads during the reciprocating 

motion were recorded by the acoustic emission data acquisition system. 

Table 6.2 

Combinations of parameters for which AE signals were generated 

Test Roughness, Rap, µm Pressure, P, MPa Frequency, F, Hz Amplitude, A, mm 

RST1 0.15 2 0.5 0.25 

RST2 0.15 2 1 0.5 

RST3 0.15 4 0.5 0.25 

RST4 0.15 4 1 0.5 

RRT1 1.54 2 0.5 0.25 

RRT2 1.54 2 1 0.5 

RRT3 1.54 4 0.5 0.25 

RRT4 1.54 4 1 0.5 

 

Two sets of experiments, termed Set A and Set B, were performed separately to measure 

different parameters of interest. The contact surfaces used in these two sets had nominally 

identical roughness values.  Tests on Set A were performed to check if measurable surface 
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degradation was taking place during the tests RST1 to RST4 listed in table 6.2. Surface 

roughness values at the initial condition as well after 1000, 1300, 1600, 1900, and 2200 cycles 

were measured.  Both Ra and Rz values were measured for the pair of pads and the bar at 40 

different spots distributed over the contact area. These results, presented in the next section, 

indicate that the surface roughness values remained essentially unchanged during these 

experiments. Further since the hardness of the bar was significantly lower than the friction pads 

(HRB 96 for the bar versus HRB 123 for friction pads), if measurable wear occurred during these 

experiments, the bar surface would have been the first to indicate such changes.  Hence at the 

end of eight segments of cyclic loading used in Set B, the final roughness values of the steel bar, 

were measured at 40 locations and was found to be substantially same as that of its initial value. 

Individual tests corresponding to each of the eight combinations of parameters listed in 

Table 6.2 lasted only 300 cycles of reciprocating motion to ensure that the surface roughness 

remained nearly constant during these tests. The pair of surfaces comprising of the bar (Rab = 

0.48 m) and smooth pad (Rap = 0.15 m) were subjected to 1000 cycles for initial test setup and 

four segments of 300 cycles each for the four tests RST1 to RST4. Similarly the pair of surfaces 

comprising of the bar (Rab =0.48 m) and rough  pad (Rap = 1.54 m) were subjected 1000 

cycles for initial test setup and four segments of 300 cycles each for the four tests RRT1 to 

RRT4. Further, these surfaces were also cleaned before the fixture was reassembled for the next 

segment of the test. 

6.4 Roughness of Contact Surfaces 

The results from cyclic loading of surfaces in set A are shown in Figure 6.5. The surface 

roughness values Ra and Rz were measured for the friction pads corresponding to the conditions 

in tests RST1 to RST4, each lasting 300 cycles, and their variation is plotted in Figure 6.5 (a) and 
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(b). The percentage variation in the values of Ra and Rz over the 1200 cycles, respectively were 

5.8 % and 5.4 %, suggesting that the surface conditions remained nearly constant. This level of 

variability was seen between different regions of the same surface.  

 

(a) 

 

(b) 

Figure 6.5. Surface roughness measurements (a) Ra and (b) Rz. 

6.5 Stick-slip and Acoustic Emission Events 

Figure 6.6 shows the variation of bottom grip displacement as well as the load transferred 

through the frictional interfaces for different test conditions. While the bottom grip was 

undergoing sinusoidal displacement, the load transferred across the frictional interface, as 
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measured by the MTS load cell, was deviating significantly from the sinusoidal shape, indicating 

slip at the frictional interfaces. In these figures, downward displacements are considered positive.  

 

(a) 

 

(b) 

 

(c) 

 

 (d) 

Figure 6.6. Relationship between the lower grip displacement and axial load in the steel bar 

indicating repetitive stick-slip motion during cyclic loading of four different tests. 

In Figure 6.6(a), as the bottom grip moves from point A to point B, there is a proportional 

increase in axial load induced in the bar, indicating that the steel bar’s surface that is in contact 

with the friction pad was experiencing essentially the same displacement as the pad – stick 

phenomenon. However, at point B, the proportionality between the displacement and the load 

ceases. In the segment B to C, the axial load induced in the steel bar essentially remains constant 
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while the displacement keeps increasing – this is the slip phenomenon. As the grip reverses 

direction at point C and moves towards point D, the load starts following the displacement in a 

proportional manner – this is the stick phenomenon.  At point D, there is slip between the plate 

and the friction pad in the reverse direction. This stick-slip phenomenon repeated itself without 

recognizable variation throughout the nearly 300 cycles applied at this load. Stick-slip 

phenomenon for other combinations of surface roughness and normal pressure are shown in 

Figures 6.6 (b) to (d). A comparison of figures 6.6 (a) and (b) or (c) and (d) indicates that the 

surface roughness of the friction pad (Rap = 1.54 µm vs. Rap = 0.15 µm) has a small influence on 

the load level at which gross slip begins. 

The displacement of the friction pads appeared to follow the same sinusoidal shape of the 

bottom grip. However, the magnitude of displacement was much smaller because during the 

“stick” period, the bar was extending and contracting due to the applied load. Based on the 

maximum load generated on the steel bar and corresponding displacement of the steel bar’s 

surface that is in contact with the friction pads, the amplitude of displacement of the friction pads 

for each of the cases RST1 and RRT1 shown in Figure 6.6 is estimated to be about 27 m.  The 

estimated distance of slip for the cases of RST1 and RRT1 is about 18 m; for the cases of RST3 

and RRT3 is about 4 m. 

Figure 6.7 shows the plot of the time of occurrence of AE events during the stick-slip 

cycles for the case of RRT2 (F = 1 Hz, Rap = 1.54 µm, A = 0.5 mm, P = 2 MPa).  Red circles on 

the load curve indicate the instants at which AE events were recorded. AE events occurred 

predominantly during the slip portions. No significant variation of the AE pattern was seen over 

the nearly 100 cycles, corresponding to the duration of the test.  
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Figure 6.7. The time of occurrence and amplitudes of AE events for RRT2. 

During each of the slip segments of the cyclic motion, such as BC in Figure 6.6(a), whose 

duration is one second, a large number of acoustic emission events are likely to be generated 

because of the numerous collisions of asperities present on the friction pads with those on the 

steel bar. However, in these tests, on average about 5 acoustic emission events of varying 

amplitudes and durations were recorded per half cycle. It is likely that among many AE events 

generated during this period, only a few that exceeded the threshold value were recorded. In 

addition, for the events recorded, there might be a superposition of a number of acoustic 

emission signals corresponding to numerous individual collisions occurring either 

simultaneously or in short succession within a few tens of microseconds of each other.  

6.6 Friction Related Waveforms 

Nearly 70% of the AE events recorded during these tests originated from the region of 

frictional contact between the friction pads and the steel bar.  Signals originating from other 

locations were excluded from this analysis based on source location. Figure 6.8 shows a typical 

waveform corresponding to friction related AE event obtained during the slip phase of test RST4 
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(Rap = 0.15 µm, P = 4 MPa, A = 0.5 mm, F = 1 Hz).  Most waveforms are characterized by large 

amplitude at the start of the waveform followed by gradually decreasing amplitude, which 

extended to a little over 500 µs.  Further, as in lead-break tests, the arrival of the reflections from 

the ends of the bar could also be observed. A major difference is that the quiet period between 

the initial pulse and reflections seen in the lead-break events was not present in the friction 

related events. 

 

 

Figure 6.8. AE waveform and wavelet diagram for friction related event from test RST4. 
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The peak amplitudes of individual friction related AE events rarely exceeded a level of 

50 dB for the frequency band above the 100 kHz used in these tests. The amplitudes of friction 

related events corresponding to RRT2 are shown in Figure 6.7. Friction related events under 

other conditions reported in this paper were also having similar amplitude distributions. The 

relatively low amplitudes seen in these experiments can be attributed to the modest normal 

pressures used in these experiments, chosen mainly to avoid surface damage during these 

experiments and the deliberate choice of frequency band above 100 kHz to avoid ambient noise. 

6.7 Characterization of the Friction Related Acoustic Emission Waveforms 

Recent studies have revealed that acoustic emission technique can be useful tool to 

monitor surface damage in bearings and gears. In the following section, we will examine whether 

the features embedded in the acoustic emission waveform are indicative of differences in the 

operating conditions at the interface of such surfaces during their relative motion. The study 

included the acquisition and analysis of AE signals corresponding to different combinations of 

the parameters listed in table 6.1. The effect of the surface roughness of the friction pad, the 

normal pressure between the contact surfaces, and the sliding velocity on the acoustic emission 

waveform and its frequency content are examined. 

The amplitude distributions of AE events did not have recognizable variations for the 

different tests performed under this study.  Figure 6.9 shows the amplitude distribution for the 

cases RST2 and RRT2. However, it should be noted that the normal pressure values used in these 

experiments were relatively small with limited range of variation. Further, the frequency range 

that is considered here is above 100 kHz for the most part so as to avoid ambient sources of 

acoustical signal which dominate in the lower frequencies.  
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(a) 

 

 (b) 

Figure 6.9. Comparison of amplitude distribution for different tests (a) RST2 and (b) RRT2. 

6.7.1 Effect of surface roughness. The features of the AE signals corresponding to 

variations in the operating conditions such as surface roughness, normal pressure, and sliding 

velocity that are highlighted in the following sections were identified after examining a 

collection of waveforms and their wavelet diagrams corresponding to each type of test. To obtain 

a consistent interpretation, for each test condition, the average pattern seen in 25 randomly 

selected waveforms was used. The selection of the waveforms considered the amplitude of the 

signal waveforms which helped to compare signals of equivalent amplitude. 

The differences between the acoustic emission signals generated in test RST1 (Rap = 0.15 

µm) and test RRT1 (Rap = 1.54 µm) are considered first. The only difference between these two 

tests was the surface roughness of the friction pads. The randomly selected waveforms obtained 

during each of the two tests were used to examine the frequency-time patterns of the AE signals. 

To highlight the common features found in these tests and make comparison between the two, 

representative waveforms and their wavelet diagrams from the tests are shown in Figure 6.10. A 

similar comparison between test RST3 and RRT3 is also in Figure 6.11. 
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(a) 

 

 (b) 

Figure 6.10. Effect of roughness shown by wavelet diagrams (a) test RST1 (b) test RRT1. 

(a) 
(b) 

Figure 6.11 Effect of surface roughness shown by wavelet diagrams (a) test RST3 (b) test RRT3. 
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The wavelet diagrams corresponding to AE signals from the RS cases included in Figure 

6.10 and Figure 6.11 show the presence of components in excess of 500 kHz at the leading edge 

of the signals whereas the wavelet diagrams corresponding to AE signals from the RR cases had 

no significant amplitude above this frequency range. It was found that, for tests involving smooth 

pads, more than 70% the signals had this distinct high frequency component while only 20% of 

the waveforms for rough pads had such components, irrespective of the amplitude of the signal.  

It should also be noted that the sensors used in these experiments were not sensitive to 

frequencies greater than 700 kHz. Further, as noted earlier, the instrumentation used for these 

experiments had reduced sensitivity for frequency components outside 200 kHz to 400 kHz 

band. The presence of frequency components from 600 kHz to 700 kHz for RST1 and RST3 are 

significant considering that the gain at 600 and 700 kHz were only 33% and 21% of the gain in 

the frequency band spanning 200 to 400 kHz. These differences in the frequency content seen in 

the wavelet diagrams were not easily observable in the FFT diagram of these signals. The 

dependence of the frequency content of the AE signal on the surface roughness was predicted 

from an earlier numerical simulation of friction process (Alam & Sundaresan, 2010) 

Another observation from these tests is that RS combination gave rise to larger number of 

AE signals compared to RR combinations for otherwise similar conditions.  The envelopes 

connecting the peaks of individual oscillations in the AE signal indicate the presence of multiple 

events and reflections of the waveforms from specimen ends. There were only minor differences 

in the envelopes of the AE signals obtained within each test. In addition, apart from the 

differences observed in the frequency content described above, there were no other recognizable 

differences between the envelopes enclosing the waveforms obtained for the smooth pad versus 

those for rough pads.  
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6.7.2 Effect of sliding velocity. The velocity during the relative motion between the 

mating surfaces in the present study depended on the frequency and amplitude of the 

reciprocating motion while the other parameters were held constant. For such a comparison, the 

wavelet diagrams corresponding to the RRT1 case (F=0.5 Hz, A = 0.25 mm) is presented with 

those for the RRT2 case (F=1 Hz, A = 0.5 mm). The doubling of the loading frequency and 

displacement amplitude for RRT2 results in quadrupling of the average sliding velocity from 

RRT1 to RRT2. Corresponding waveforms and wavelet diagrams are shown in Figure 6.12 (a) 

and (b).  

 

(a) 

 

 (b) 

Figure 6.12. Effect of sliding velocity shown by wavelet diagrams (a) test RRT1 (b) test RRT2. 

These figures show that signals with frequency content in the range of 100 to 300 kHz 

decrease and those in the range of 400 kHz and above increase as the sliding velocity is 

increased. A similar influence of the increase in the sliding velocity on the increase in the AE 

frequency components was observed also between RST1 and RST2. These tendencies were seen 
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in a majority of the signals collected. However, there were exceptions to these trends in a few of 

the AE signals.  

6.7.3 Effect of normal pressure. The influence of the normal pressure on the AE signal 

is examined by comparing the results for RRT1 for which the normal pressure was 2 MPa with 

those of RRT3 for which the normal pressure was 4 MPa. These results are shown in Figures 

6.13 (a) and (b).  

 

(a) 

 

(b) 

Figure 6.13. Effect of pressure shown by wavelet diagrams (a) test RRT1 (b) test RRT3. 

The main difference between the two waveforms was in the intensity of the AE signal 

between the first arrival and the reflections from the specimen ends. For the case of RRT3, there 

was significantly greater signal strength before the arrival of the reflection. At higher normal 

pressures, greater interference between the asperities in the surfaces in contact is likely to be 

present. As a result, a greater number of asperities are likely to participate in generating the AE 

signals. Changes in the normal pressure did not seem to affect the frequency of the signals.  
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6.8 Crack Growth Test 

A crack was initiated and grown in a steel bar with properties similar to the one used for 

the friction test. In order to initiate crack, a 0.4 mm deep notch was cut with EDM wire of 0.05 

mm (0.002”) diameter. The bar was loaded under three-point bending, figure 6.14, using 

642.10B roller block assembly for MTS testing machine (MTS810 reference manual)  

 

Figure 6.14. Schematic representation of crack growth test. 

The bar was loaded under progressively increasing load amplitudes until the load at 

which crack growth was first noticed. The minimum and maximum values of the load at which 

crack initiated were 550 N and 1900 N respectively. The frequency of loading was increased to 

10 Hz and maintained at this value for approximately 1 and 1/2 Hrs. Noticeable size of crack, 

figure 6.15, was obtained at this stage. In the following loading phase, at loading frequency of 2 

Hz, crack growth continued up to fracture. Approximately, not more than 2000 cycles were 

required to cause fracture of the bar. 

 

(a)                                       (b) 

Figure 6.15. Steel bar: (a) before initiation of crack (b) after crack was fully grown (10X). 
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Similar to the case of the friction experiment, the bar was instrumented with bonded PZT 

sensors. The signals generated during incremental crack growth were picked by these sensors 

and recorded by PCI-2 data acquisition system. The acquisition settings used in this experiment 

were similar to those used in the friction experiments. Figure 6.16 shows a waveform and its 

wavelet diagram obtained from incremental crack growth test. 

 

Figure 6.16. AE waveform and wavelet diagram for crack growth event. 

Since the sensors were placed in similar manner to the sensors in the friction test, the 

activities beyond 120 µs from trigger point are reflections of the “first components” from the end 

of the bar. Depending on the increment in crack size, the strength of the signal varies and in this 

experiment, the amplitude distribution for the signals varied between 35and 99dB. Most signals 



129 

 

at the beginning of the test had amplitude distribution bound between 35 and 60dB. However, at 

stages close to rupture, the strength of the signals shifted to the higher values. 

6.9 Friction AE Signals vs Crack Related AE waveforms 

6.9.1 Identification of symmetric and anti-symmetric modes. One of the most visible 

differences between crack and friction signals, found during the experiment, is distinguishability 

of symmetric and antisymmetric modes. Comparison of Figure 6.8 and Figure 6.16 reveals that 

the symmetric and antisymmetric modes of the waves were clearly present, at the point of 

trigger, in the crack related signals while the same components could not be distinguished in 

friction related signals. Survey of 360 friction related waveforms and 70 crack related waveforms 

indicated that these modes of wave propagation were present in 89% (62/70) of the crack signals, 

and were missing in 83% of friction related waveforms. 

Acoustic emissions from crack growth, as the bar is loaded under fatigue, are associated 

with the release of strain energy due to new surface formation. The experimental results prove 

that the waves generated during this process depict a single event behavior in which the 

symmetric and antisymmetric modes can be identified. In addition to the above crack signals, 

visual assessment of more than 500 waveforms proves most of the signals show this behavior. 

The relative presence of the symmetric and antisymmetric modes of wave propagation is affected 

by the location of crack growth along the thickness and the mode of crack growth. For example, 

a bar, for which crack was simulated at the neutral axis, revealed stronger symmetric modes 

(Rajendra, et al., 2011) 

The mechanism behind generation of AE events during friction is at most attributed to 

collisions of asperities present on the surfaces. Superposition of a number of acoustic emission 

signals corresponding to numerous individual collisions occurring either simultaneously or in 
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short succession within a few tens of microseconds of each other makes the waveform patterns 

different from crack growth waveforms. This makes the distinguishability of the fundamental 

modes difficult in friction related signals. The difference in AE activity is further discussed in the 

next section.  

6.9.2 Duration of waveforms. Presence of stronger AE activity following the “first” 

pulses contributes to higher duration signals. The illustration of this fact is shown in Figure 6.8 

and Figure 6.16. The strength of AE activity following the initial pulses is stronger in the case of 

friction related signals. Randomly selected waveforms were visually compared for duration. 

Fretting waveforms from the different cases were selected and visual comparison was done with 

10 crack signals. Figure 6.17 shows, during the interval 70 to 160 µs, the activity in the fretting 

signal is stronger than that of the crack signal. Comparison of the points at which the strength of 

the signal passes the threshold level shows fretting related signals stay on average of 20us and 

more beyond that of crack related signals. 

 

Figure 6.17. Duration comparison. 
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Waveforms of similar amplitude from each friction experiment were selected and the 

duration for the group was compared with duration of a group of crack signals of similar 

amplitude. Figure 6.18 shows the comparison of the group of waveforms at 37dB and 38dB. The 

interpretation of the graph is: for example, among those friction signals having amplitude of 

37dB, 55% of them have duration of 20 µs or less, while 97% of the crack events have duration 

of 20 µs or less. Similarly, of those friction waveforms at amplitude of 38dB, 50% have duration 

of 20 µs or less. However, 92% of crack signals at the same amplitude have duration of 5 µs or 

less.  Such analyses were carried out for amplitudes 36-41 dB, and the same tendency was 

witnessed in all the cases. The extended AE activity region shown in fretting signals, which is 

attributed to multiple AE sources in friction was seen in the duration of these signals Results 

from numerical simulation (Alam 2010) also proved continued AE activity zones as compared to 

the crack signals. 

 

(a) 

 

 (b) 

Figure 6.18. Events vs duration: a) 37dB amplitude b) 38dB amplitude. 

6.9.3 Correlation with simulated AE signals. To show the difference between the 

source mechanisms in these two cases, a single event acoustic emission was simulated on steel 

bar for which the material properties were exactly the same as the one used in the tests. The 

simulation was done by applying an impulse load discussed in chapter four to the FEM model. 
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The duration for the pulse type load applied on the model was 2µs. Figure 6.19 shows the crack 

signal and the numerical AE event signal plotted together. 

 

Figure 6.19. Numerically simulated and experimental crack growth signal. 

It can be seen on the figure that, the basic pattern of the waveforms, both numerically 

simulated and experimentally obtained crack growth signal waveforms, are similar. The 

symmetric and antisymmetric modes can be seen, even though affected by the reflections from 

side edges. This indicates that the crack related signals largely exhibit single event behavior. 

Sample crack growth and friction related signal waveforms were correlated with the 

numerical signals to examine the above stated fact of single event vs multiple event behavior. 

MATLAB code was generated which resamples the numerical signals at 0.2 µs which is equal to 

the data acquisition rate for the experimental signals and correlates the resampled numerical 

waveforms and the experimental signals. The code is attached in Appendix B of this manuscript.  

Several crack and friction waveforms at amplitude of 38dB, 43dB and 47 dB were 

selected and correlated with the numerical waveforms. It was found that the crack signals, on 

average, have shown 65% correlation with the numerical waeforms, while, the level of 

correlation with the friction related signals remained, on average, at 40%. The numerical models 

did not take into account the attenuation or material damping effects on the waveforms, even 
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though, these effects are far less in steel as compared to CFRP panels. In addition, the waveform 

for an acoustic emission event during crack growth is dependent on the location. Thus, these 

factors could have effect on the correlation of crack signals with the numerical signals which 

remained at 65%. Also, definition of appropriate boundary condition and material definition 

could have an impact. Nonetheless, comparison of the two average correlation coefficients 

indicates difference in the characteristics of the two types of waveforms. 

6.10 Summary 

In this part of the research, we explored if the parameters controlling the interaction of 

two contacting surfaces during the friction process were recognizable in the acoustic emission 

waveforms and if those features could be clearly identified. A test fixture to simulate the 

reciprocating motion between two flat surfaces in contact was developed. In this fixture, the 

parameters such as normal pressure, surface roughness, sliding velocity could be closely 

controlled. Acoustic emission signals generated by the friction process for different combinations 

of surface roughness, normal pressure, and the velocity of sliding were evaluated.   

Friction related waveforms, in general, depicted patterns that were consistent with 

multiple asperity interactions during slip. The basic features of friction related AE signals were 

distinct from those of other AE sources. Clear and systematic changes in the signal 

characteristics that could be related to the parameters operating at the frictional interface were 

found. Acoustic emission frequency components well in excess of 700 kHz were generated by 

the friction process. Frequency of the signals was found to increase as the roughness of one of 

the surfaces was decreased. In addition, the frequency content was also found to increase with 

the increase in sliding velocity. AE signal duration appears to increase with an increase in normal 

pressure. 
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Crack related events were, in some respects, similar to that of lead-break waveforms. 

These waveforms are characterized by a strong initial component followed by a relatively quiet 

period after which reflected signals are seen. This, however, is in contrast to friction related 

signals for which there is sustained signal amplitude between the initial segment and the segment 

due to reflections.  Comparison of the wavelet diagrams corresponding to the lead break test and 

the crack growth tests with the wavelet diagram due to the friction related signal is useful in 

understanding the source mechanisms in these three cases. The first two types of events are 

generated by a single impulse and the resulting initial segment is well separated from the 

segment corresponding to reflections from the specimen ends, as seen clearly in the waveforms 

as well as wavelet diagrams. In the case of friction related signals, the sustained activity between 

the initial segment and the reflected segment is indicative of multiple impulses occurring within 

microseconds of each other. Such a process of simultaneous or sequential interaction of 

asperities belonging to the contact surfaces has been postulated in the literature (Alam & 

Sundaresan, 2010; V.M. Baranov, et al., 2011; Fan, et al., 2010). 

AE waveform features obtained during these experiments were indicative of the 

tribological conditions. Frequency components in excess of 700 kHz were seen during these 

experiments. The characteristics of the experimentally observed acoustic emission signals were 

in general agreement with earlier numerical predictions. Friction related acoustic emission 

signals were distinguishable from those from other sources such as fatigue crack growth. The 

distinguishing features of crack related and friction related signals could serve the purpose of 

identifying signals from different sources, particularly from sources generating false positives 

which are critical in AE analysis. Also, the characterization of friction related acoustic emission 
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with the parameters governing friction conditions signals is likely to be of value in many 

tribological and structural health monitoring applications. 
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CHAPTER 7 

Conclusions and Future Work 

Three important problems that could help advance, implement AE based structural health 

monitoring on structures were addressed in this dissertation. These were examining the influence 

of attenuation on acoustic emission signals and their features, investigating damage progression 

in CFRP laminates, and identifying distinguishing features of acoustic emissions related to actual 

crack growth and emissions from other sources that give rise to false positive signals. 

Experiments were part of each research problem dealt with in the research. In addition, 

numerical simulation of acoustic emission events and wave propagation in metallic and CFRP 

laminates were also included. Numerical simulations of friction related events were reported 

(Alam & Sundaresan, 2010) and were considered preliminaries for the experimental work in 

chapter 6.  

In addition to the acoustic emission tests, several other tests were conducted. Results of 

thermography scans of the CFRP laminates used for attenuation and delamination tests were 

reported in Chapter 4. Trial tests were conducted to compare the features of wave propagation in 

composite and aluminum panels. Different sets of tests were conducted to assess the frequency 

and amplitude responses of the three types of transducers used in the experiments. The results 

from these trial tests were reported in Chapter 3.  

The important results from each part of the research are summarized below: 

Attenuation tests 

 The attenuation coefficients obtained from the experiments indicated that the 

fundamental modes of wave propagation had varying attenuation levels. The 
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antisymmetric wave propagation modes in the signals had attenuation levels that were 

three to four times those of the symmetric modes.  

 The amplitudes of the signals were dependent on the directions along which 

measurements were taken 

 The direction dependency of the attenuation coefficients was very limited. The 

obtained values were in the same order of magnitude.  

 The degree of influence of the different attenuation mechanisms on the symmetric 

and antisymmetric modes were different. The antisymmetric modes were also found 

to be more dispersive than their symmetric counterparts. 

Delamination tests 

 Some features of the acoustic emission signals were indicative of delamination 

growth even with narrow margins of variation.  

 Differences in the fiber layup of plies at the delamination growth zones were apparent 

in several of the AE related analyses and fracture mechanics behavior.  

 The different failure mechanisms were classified based on the AE signals and their 

features. Events from fiber breaks were classified into high amplitude and high 

energy events. Based on the distribution and cumulative presence on the SEM images 

and energy plots, matrix crack events were related to low energy and low amplitude 

signals. 

 Different types of wave propagation modes were identified with waveforms from 

numerically simulated acoustic events. The relative presence of the modes was 

affected by the location where the measurement was taken. Consistent with the 
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experimental waveforms, the features of the numerical waveforms were sensitive to 

the damage growth rate 

Friction and crack related acoustic emission tests 

 Friction related waveforms, in general, depicted patterns that were consistent with 

multiple asperity interactions during slip.  

 The basic features of friction related AE signals were distinct from those of other AE 

sources.  

 Acoustic emission signal frequency components in excess of 700 kHz were generated 

by friction process.  

 Crack related signal waveforms were, in some respects, similar to lead-break signal 

waveforms.  

 AE waveform features obtained during these experiments were indicative of 

tribological conditions. Clear and systematic changes in the signal characteristics that 

could be related to the parameters operating at the frictional interface were found.  

The results reported in each chapter highlight the significance of material in this 

manuscript. In traditional acoustic emission analysis, particularly AE from damage growth, the 

influence of attenuation on acoustic emission signals has been paid little attention. The findings 

from the attenuation measurements indicate that the signals experience changes within 

reasonably short distances. This could impact the interpretation of signals from different sources. 

Damage identification using AE should thus include attenuation effects. The results from 

delamination tests indicated sensitivity of AE to damage initiation and growth. Some literature 

sources are available that focus on correlation of damage mechanisms with features of acoustic 

emission signals. The results from this research are deemed to expand the current understanding 
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of damage mechanisms and their features. The other major issue in acoustic emission method has 

been the presence of noise interference. The results from the last part of this research are 

considered a significant contribution to the effort to differentiate false signals from actual 

damage related signals. 

In this research, as mentioned earlier, several problems were addressed. During the 

course of this research, some important issues were identified that could potentially be areas of 

further research. Some are listed below: 

 The frequency response of PZT transducers and the width of electrode material on the 

wafers 

 The evolution of attenuation behavior with loading 

 The selection of transducer and coupling material for sending and receiving acoustic 

waves in composite laminates 

 The examination of wave propagation features in anisotropic materials, both 

numerical and experimental 

 The numerical modeling of damage mechanisms in composite laminates 

 The analysis of acoustic emission signals generated by surface damage and wear 
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Appendix A 

Attenuation coefficients – Chapter 4 
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Appendix B 

MATLAB Code to correlate experimental crack growth signal and numerical AE waveform  - 

Chapter 6 

% Input the experimental crack and fretting signals 
% Input the rectangular pulse with its respective location 
clc 
clear 
n1 = load('60AVERAGE_Task_18.txt'); %rectangular pulse signal from 

simulation% don't forget to specify location 
n2 = load('43_1.txt'); %crack signal from PAC in one column 
n3 = load('FRETTING_SIGNAL.txt'); %fretting signal from PAC in one column 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% plot of the waveforms %%%%%%%%%%%%%%%%%% 

  
plot(n1(:,1), n1(:,2)); 
hold on 
plot(0:2E-7:(length(n2)-1237)*2E-7,n2(1237:length(n2),1)*max(n1)/max(n2),'r') 
hold off 

  
%%%%%%%%%%%%%%%%%%%%%% resampling the rectangular pulse to 0.2us interval 

  
x=n1(:,1);%x-xoordinate values 
y=n1(:,2);%y-coordinate values 
v=0;%initializing the intermediate values 
j=1;%index for matrix of interpolated values 
m=0;%initializing the matrix for interpolated values 

  
for i=1:1100 
    if x(i)== v 
        m(j)=y(i); 
        j=j+1; 
        v=v+2E-7; 
    else if (x(i)<= v)&&(x(i+1)>= v) 
        m(j)=((v-x(i))/(x(i+1)-x(i)))*(y(i+1)-y(i))+y(i); 
        j=j+1; 
        v=v+2E-7; 
        else 
            a = 1; 
        end 
    end 
end 

  
m; %numerical signal resampled at 0.2 us that is the same as crack and 

fretting signals 

  

  
%%%%%%%%%%%%%%%%%% resampling the rectangular pulse at 1 nano-sec interval 

  
b=length(m'); 
m_01=0; 
for j=1:b-1 
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    h=(j-1)*200+1; 
    for j2=1:200 
        m_01(h)= m(j)+((j2-1)/200)*(m(j+1)-m(j)); 
        h=h+1; 
    end 
end 
m_01; 
num_0001=m_01; % numerical rectangular unit signal sampled at 1nano-sec 
length(num_0001); 

  
size(num_0001) 

  

  
%%%%%%%%%%%%%%%%%%%%% resampling crack signals at 1nano-sec interval 

  
b=length(n2); 
m_01=0; 
for j=1:b-1 
    h=(j-1)*200+1; 
    for j2=1:200 
        m_01(h)= n2(j)+((j2-1)/200)*(n2(j+1)-n2(j)); 
        h=h+1; 
    end 
end 
m_01; 
c_0001=m_01; % crack signal sampled at 1nano-sec 
size(c_0001) 

  

  
%%%%%%%%%%%%%%%%%%%%%% resampling fretting signals at 1nano-sec interval 

  
b=length(n3); 
m_01=0; 
for j=1:b-1 
    h=(j-1)*200+1; 
    for j2=1:200 
        m_01(h)= n3(j)+((j2-1)/200)*(n3(j+1)-n3(j)); 
        h=h+1; 
    end 
end 
m_01; 
f_0001=m_01; % fretting signal sampled at 1nano-sec 

  
%%%%%%%%%%%%%%%%correlation%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
t=1:1:50000; 
t=t*1E-9; 

  
n1_1 = num_0001(1:50000); % 
n2_1 = c_0001(247001:247000+50000); 
n3_1 = f_0001(247001:247000+50000); 

  
%correlation with crack signal 
figure(1) 
% subplot(2,1,1) 
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plot(t*1E6,n1_1*(1/0.1336)), xlabel('Time, \mus'), ylabel('Normalized 

Amplitude') 
hold on 
plot(t*1E6,n2_1*(max(n1_1)/max(n2_1))*(1/0.1336),'r');%experimental crack red 
hold off 
R_2 = xcorr(n1_1,n2_1,'coeff'); 
R2=max(abs(R_2)) 
% subplot(2,1,2) 
% plot(R2) 

  

  
%correlation with fretting signal 
figure(2) 
% subplot(2,1,1) 
plot(t*1E-6,n1_1*(1/0.1336)), xlabel('Time, \mus'), ylabel('Normalized 

Amplitude') 
hold on 
plot(t,n3_1*(max(n1_1)/max(n3_1))*(1/0.1136),'r');%experimental fretting red 
hold off 
R_3 = xcorr(n1_1,n3_1,'coeff'); 
% subplot(2,1,2) 
R3=max(abs(R_3)) 
% plot(R3)  
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