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Abstract 

Twitter has emerged rapidly as an ideal platform for news updates especially during natural 

disasters. During disasters, people exchange endless amount of information on Twitter. This 

information may include warnings, evacuation orders, updates etc. Making sense of this 

information is challenging due to the limitations of available tools to analyze high-volume data. 

There have been studies done to make use of twitter data as it contains valuable information that 

has the potential to help improve the efficiency of disaster response. This research presents a 

framework to extract, automatically label, and classify tweets from two recent disaster events in 

order to make sense of the data, identify disaster-related tweets, and evaluate their credibility. The 

framework also includes classifying tweets into disaster-related or not disaster-related, and 

credible or not credible using learning-based methods. 

Many risk-factors associated with panic disorder occur amongst the public during natural 

disaster. This research presents a panic trigger identification framework to detect triggers that form 

cyber disruption threats in hurricane disaster data, and reports to emergency responders to mitigate 

such threats. The results of this research show that automated labeling can be sufficient for labeling 

tweets in accordance with relevance to the disaster and tweet credibility. For disaster relevance 

classification, using CountVectorizer word vectorizer has produced features that led to higher 

accuracies (98% on average) especially when using Decision Tree and Random Forest models. 

For classifying tweets in terms of credibility, Random Forest and Decision Tree models have given 

the best predictions with high accuracies (96% on average). For classifying tweets in terms of 

panic triggers, Random Forest and Decision Tree have given the best predictions with high 

accuracies (95% on average) when using CountVectorizer features. The contributions of this 

research include: (1) Two datasets of tweets on hurricanes were collected which will be made 
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available for future researchers; (2) An automated labeling framework were developed to label 

disaster tweets into disaster-related and not-disaster-related using dictionary-based technique, and 

credible and not credible using user-based and content-based features; and (3) A panic trigger 

detection framework was developed to improve emergency response.  



3 

 

 

CHAPTER 1 

Introduction 

The impact of social media platforms, like Twitter, has significantly increased over the past 

decade. It has significantly supplemented if not replaced more traditional means of communication 

in many areas of the U.S. (Tracie, 2015). Twitter is one of the world’s leading social media 

platforms with 330 million monthly active users (Clement, 2019). During a disaster and 

emergencies, people increasingly use microblogging platforms like Twitter during (Abbasi et al., 

2013; Alam et al., 2018). This created numerous opportunities to disseminate time-critical 

information in the form of images, videos and textual messages during disasters and emergencies 

(Abbasi et al., 2013; Alam et al., 2018; Imran et al., 2018; Starbrid et al., 2010; Vieweg et al., 

2010). Twitter postings are useful for a number of crisis response and management tasks such as 

gaining insights into the situation, identifying urgent needs of the impacted communities, and 

assessing the severity of damage (Castillo et al., 2016). Hence, many formal disaster response or 

emergency management organizations have become more interested in finding ways to quickly 

and easily locate and organize the information that is most useful, which can help track natural 

disasters in real time and alert first responders to areas that need urgent aid (Vieweg et al., 2014; 

Kathleen, 2018).   

Twitter has become an effective platform for crowdsourcing and spreading critical 

information; however, making sense of Twitter data is a challenging task due to the lack of tools 

available to analyze high-volume and high-velocity data streams (Palen et al., 2010; Collins et al., 

2016; Das et al., 2016). Therefore, there has been research studies done to make use of disaster 

Twitter data as it contains information about the disaster, expected damages, resource allocation, 

evacuation strategies, warning of unsafe areas or situations, notification of someone’s safety, 
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updates about the event and fundraising for disaster relief. Responders use this information to bring 

the emergency under control and save lives and properties. Responders range from police, fire, 

and emergency health and weather personnel, to community volunteers. Individuals on the other 

hand use the information from social media to assess the severity of the hurricane and prepare for 

evacuation when needed. 

On Twitter, people disseminate not only true information but also false information 

unintentionally (Castillo et al., 2011; Gupta et al., 2012). Thus, several research studies have been 

conducted for assessing the credibility of information or for detecting false information in a micro-

blog, (Castillo et al., 2011; Kawabe et al., 2015; Wassmer et al., 2005), to provide emergency 

responders with the credibility level of the tweet with critical information that may lead the public 

to take undesired actions. 

Since Twitter has gained a wide adoption over the years as a prominent news source, often 

disseminating information faster than traditional news media, it plays an important role during 

crises, provides valuable information to emergency responders and the public, helps reaching out 

to people in need, and assists in the coordination of relief efforts (Gupta et al., 2014). Using and 

analyzing Twitter disaster data to categorize and extract credible predictions of the data would 

provide responders and the public with the best and most reliable knowledge about a certain 

disaster, and help improve the speed, efficiency, and quality of disaster response. 

1.1 Research Problem  

 During a disaster, there is usually a high volume of posts spread across Twitter. It has been 

a challenge to identify which of these posts are actually related to the disaster since some users 

take advantage of the disaster events and promote their products. For example, some people use 

hashtags like ‘#HurricaneMichael’ in their posts to attract people to see their posts which were not 
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relevant to the hurricane as shown in Figure 1. Therefore, it is important to filter the collected 

tweets and eliminate non-related tweets since they can cause a distraction for emergency 

responders and disaster analysts as they spread abundantly during natural disasters. 

 

Figure 1. An example of a marketing post that is not related to a hurricane disaster. 

Most studies worked on categorizing tweets into disaster-related and not-related have used 

manual labeling for the data, in which they hired experts to categorize the tweets based on 

predefined criteria (Huang et al., 2015; Xia et al., 2012; Ito et al., 2015). 

When disasters occur, people increasingly post on Twitter about the disaster to learn about 

the appropriate strategies and to inform their decisions. The problem is that rumors can spread 

faster on Twitter platform. Some of these rumors can have detrimental consequences for public 

safety. For example, after both hurricanes Harvey and Irma, false information was spread over 

social media that immigration status would be checked at evacuation shelters. Rumors like this 

could affect evacuation decision-making and put both local residents and emergency responders 

at greater risk. The general public is not very good at differentiating the truth from rumors related 

to disasters. The public tends to spread rumors without verifying them (Dambroski, 2018). 
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Therefore, there is the need for tools that analyze the credibility of disaster related data. A few 

research studies have analyzed Twitter data using manual analysis methods according to 

predefined credibility criteria (Xia et al., 2012; Ito et al., 2015). Manually labeling large databases 

in any domain is costly and time-consuming (Schreiner et al., 2006; Conaire et al., 2007; Lu et al., 

2019). Therefore, there is need for automated tools to analyze the credibility of disaster-related 

Twitter data.  

Sometimes the information disseminated on Twitter contains triggers and indicators of 

evacuations that could lead people to panic (Ross et al., 2016), affecting their response and 

evacuation behavior. For example, Twitter can contain hashtags like “#evacuate”, 

“hurricaneEvacution”, “#hurricanePrep”, #findSheters and “#flood”, or contents that require the 

public to take evacuation actions. In order to avoid panics, these indicators need to be detected, 

the credibility of their source needs to be validated, and the emergency responders need to mitigate 

the risk of panic by providing optimal strategies to handle such situations. 

1.2 Summary and Contribution 

This work presents a framework to collect tweets related to Hurricane Florence and 

Hurricane Michael from Twitter API and generates datasets. The datasets created will be made 

available for researchers who seek to investigate different aspects of these disaster events. 

Compared with related work, this work presents a labeling framework which automatically labels 

tweets collected during hurricane disasters into whether a tweet is disaster-related or not disaster-

related. This labeling framework could be used to label tweets on future hurricane disasters 

according to their relevance to the disaster and would speed up the annotation process which could 

be time consuming and costly when done manually (Conaire et al., 2007; Liu et al., 2010). To 

generate features for tweet classification, the framework implements tweet classification using 



7 

 

 

TfidfVectorizer and CountVectorizer features in order to determine which of these word 

vectorizers would provide better features for classifiers that would produce more accurate 

classification. Further, for the learning-based system, the framework measures the performance of 

each classifier from the aspects of accuracy, precision, recall, and f-score. Then a comparison 

between supervised machine learning classifiers in order to gauge which classification models can 

produce most accurate predictions.  

Moreover, this work presents disaster-tweet credibility evaluation based on user features 

and tweet content features. For each tweet, attributes like text messages and associated URLs, 

number of user followers, number of likes, hashtags, etc., were extracted in order to measure the 

credibility and trustworthiness of disaster-related tweets. A 10-point scoring system is proposed to 

determine the level of tweet credibility by calculating scores based on the user and tweet features 

and assigning credibility labels based on the acquired score for each tweet. Based on the features 

analyzed and the credibility labels, the framework implements supervised machine learning to 

evaluate the credibility predictions and model performance and conducts a comparison between 

the classifiers. Finally, this work presents Panic Trigger Identification Framework (PTIF) which 

is a framework that is able to analyze disaster-related tweets to detect panic triggers, and then 

classify the tweets based on the triggers identified and the corresponding credibility level for the 

tweet assigning panic response labels. The framework implements a machine learning 

classification for the triggered tweets using two kinds of texts vectorizers: CountVectorizer, and 

TfidfVectorizer to produce features for the classification models used in the experiment, and then 

conducts a performance comparison between the models in which the accuracies and error rates 

generated by the classifiers have been analyzed. 

The main contributions of this dissertation are as follows: 
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• Collected and generated hurricane tweets datasets for two recent disaster that will be 

available for future researchers. 

• Developed an automated framework to annotate and classify disaster tweets. 

• Developed an automated framework to assess tweet credibility based on user-based 

features and content-based features. 

• Developed an automated panic trigger detection framework to improve the emergency 

response, and to suggest mitigation strategies for emergency management. 

The rest of this dissertation is organized as follows: Chapter 2 discusses what has already 

been done in the field of the emergency management enhancement and cyber disruption 

mitigation. Specifically, Chapter 2 covers areas of Twitter disaster-related data classification, 

tweet credibility analysis, and panic trigger and indicator analysis. Chapter 3 describes in detail 

the methodology used in the study, presenting the strategies and techniques utilized throughout 

each iteration of the project. Chapter 4 presents the results of experiment conducted in this project. 

Finally, Chapter 5 gives a summary of this dissertation as well as discussing directions for future 

work. 
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CHAPTER 2  

Literature Review 

This section presents some backgrounds to the readers in order to put them in the right 

context by presenting a brief overview of the previous research on Twitter disaster data and what 

approaches had been pursued to make use of the data. Also, it provides an overview which serves 

as a baseline description for the different methods used throughout this project. The first part is 

about the classification and making sense of Twitter disaster-related data and discovering valuable 

knowledge. The second part reviews the approaches taken to study and evaluate the data 

credibility. The last part presents a background of the literature on investigating Twitter disaster 

data to detect panic triggers and indicators to contribute into emergency enhancement which will 

be concerned by this research work. 

2.1 Disaster-related Tweet Classification  

During a natural disaster, a large number of messages are often posted on Twitter (Khare 

et al., 2017). A good percentage of tweets posted about a disaster tend to be irrelevant and 

unrelated. Some people use current hot trends and events to attract Twitter users to their posts or 

accounts without any intention to provide informative knowledge or helpful strategies regarding 

the disaster event occurring (Stowe et al., 2018). Olteanu et al. (2015) mentioned that natural 

disaster reporting could be classified into three main categories: a) related and informative, b) 

related but not informative, and c) not related. In this paper, we focus on the identification of 

disaster-related tweets only, since identifying informative tweets in disaster scenario is a complex 

task that requires a deeper investigation of the meaning of the information and its dimensions such 

as the freshness, location, novelty, and the scope of the disaster (Khare et al., 2017).  
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Supervised machine learning approaches have been used in Disaster-related tweets 

identification. The majority of supervised machine learning approaches used in this domain depend 

on linguistic and other statistical attributes that exist within a tweet like part of speech, user 

mentions, length of the tweet, and number of hashtags etc. (Ghosh et al., 2018; Khare et al., 2018). 

These supervised machine learning approaches include traditional classification methods such as 

Logistic Regression, Decision Tree, Support Vector Machines (SVM), Naive Bayes, Conditional 

Random Fields, etc. (Stowe et al., 2016; Imran et al., 2013; Imran et al., 2014; To et al., 2017; 

Castillo et al., 2014).  

Huang et al. (2015) presented a coding schema for categorizing Twitter messages into 

different themes according to different disaster stages. They collected tweets about Hurricane 

Sandy and filtered out the messages that were irrelevant to the disaster. They extracted all hashtags 

related to Hurricane Sandy from the collected data such as “breakingstorm”, “superstorms”, 

“hurricanesandyproblems”, and “njpower”. If a tweet did not contain any predefined keywords in 

either the message or hashtag, it would be excluded from tweets relevant to Hurricane Sandy. Once 

the relevant tweets were obtained, they manually sampled 2000 relevant tweets, and examined the 

characteristics and manually annotated tweets into different themes (mitigation, preparedness, 

emergency response, and recovery) for each tweet. They used several classification algorithms 

including K-nearest neighbors (KNN), Naïve Bayes, and logistic regression, and performed Ten-

fold cross-validation to test the classifier. 

Keyword matching is proven to be a reliable technique to filter out disaster related tweets 

and a faster way to label disaster tweets as disaster related or not disaster related. It has also been 

used to categorize tweets according the tweet contents and informativeness (To et al., 2017; 

Ashktorab et al., 2014; De Albuquerque et al., 2015; Verma et al., 2011). Guan (2014) used a 
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combination of predefined keywords and hashtags to identify and categorize disaster-related 

tweets. They used Twitter data on Hurricane Sandy and demonstrated the temporal–spatial patterns 

of Twitter activities particularly near coastal areas and in large urban areas to explore the 

relationship between hurricane damages and Twitter activities. 

To et al. (2017) used keyword and hashtag matching for identifying relevant messages from 

social media streams. The authors compared the keyword-matching approach against a learning-

based system. Their analysis includes five steps: (a) removing spam from the data, (b) mapping 

the data to affected and unaffected regions, (c) filtering of irrelevant tweets, (d) tweet sentiment 

analysis and finally (e) data visualization. They used three types of natural disasters (floods, 

earthquakes and wildfires) for their comparative study. Their results show that the learning-based 

technique collected a higher number of relevant tweets compared to the matching-based 

classification, while matching-based classification collected higher quality relevant tweets (which 

include higher percentage of disaster related tweets).  

Imran et al. (2017) proposed a platform, called AIRD, for automatic detection and 

classification of disaster-related tweets during disaster events. The system utilizes human 

intelligence and machine learning for the analysis of large dataset at high speed. The system is 

able to continuously retrieve disaster-related information. Classification categories were defined 

through crowdsourcing. The system was tested on an earthquake event in Pakistan in 2013.  

Ashktorab et al. (2014), developed a Twitter mining tool called “Tweedr” which extracts 

useful information from tweets to assist disaster relief workers during disasters. The authors used 

a combination of classification, clustering and extraction techniques. The classification was used 

to identify tweets reporting damage or casualties, and clustering was used to merge the tweets that 

are related to similar events. During the extraction phase, tokens and phrases report useful 
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information about different classes, such as infrastructure damage, damage types and casualties 

were used. They used several classification algorithms including sLDA, SVM, and logistic 

regression, and found Logistic Regression to be the most reliable on several evaluation metrics. 

For extraction, Conditional Random Fields (CRFs) with several different types of features were 

used. CRFs are a type of Discriminative classifier and they model the decision boundary between 

the different classes and used for predicting sequences. They use contextual information from 

previous labels (Zheng et al., 2015). For clustering, bloom filters (Gupta et al., 2011), and SimHash 

algorithms (Breitinger et al., 2013) were used. Tweedr was evaluated using data on twelve natural 

disaster events occurred in North America since 2006. It was shown that Tweedr performed well 

on predicting several categories such as missing persons, health and hospital infrastructures and 

electricity loss, etc. 

2.2 Tweet Credibility Analysis and Classification  

Evaluating the credibility of information is an important part of research on social media. 

Research on credibility concentrated on source credibility as well as credibility attributed to 

different media channels (Hovland et al., 1951). In social media, the credibility of the source has 

a significant effect on the process of acquiring the content and manipulation of the public attitudes, 

beliefs and reactions (Petty, 2018). As more people rely on social media, especially Twitter, to 

seek information regarding disasters, Twitter becomes more susceptible to be used to disseminate 

misinformation and rumors. Therefore, users have the challenge of distinguishing which piece of 

information is credible. They also need to find ways to assess the credibility of information. This 

problem becomes critical when the source of information is not known to the user. There have 

been many research efforts to analyze Twitter data credibility using user behavior analysis. 
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Castillo et al. (2011) discussed the information credibility of news propagated through 

Twitter. They used users’ profile information and users’ behavior to assess the credibility of 

tweets. They used features from users’ posting behavior (tweet and retweet), text, and the network 

(# of friends and # of followers) to distinguish credible from not credible tweets. They achieved a 

precision and recall of 70-80% using a decision-tree based algorithm. 

Gupta et al. (2012) analyzed the credibility of information in tweets of fourteen high impact 

news events of 2011 worldwide. Among these events there were 90,237 tweets related to Hurricane 

Irene. They were able to identify important content-based and user-based features for predicting 

the credibility of information in a tweet using logistic linear regression. The content-based features 

were the number of unique characters, swear words, pronouns, and emoticons in a tweet, and user-

based features were the number of followers and length of username. The researchers manually 

labelled the event-related tweets to obtain the ground truth regarding the presence of credible 

information. The labels included “Definitely Credible”, “Seems Credible”, “Definitely 

Incredible”, and “I can’t Decide”. Then they computed the Cronbach Alpha score, which is a tool 

for measuring internal consistency, i.e., to check the reliability of results obtained by annotators 

through inter-annotator agreement scoring. Then they selected the majority score for a tweet and 

discarded all tweets for which all three annotators gave different agreement scores. Then they 

proposed an automated ranking scheme to output of tweets ordered according to the credibility of 

information provided in them. They used a combination of supervised machine learning and 

relevance feedback approach to rank tweets according to information quality in the tweet. They 

used Ranking SVM algorithm which is an extension of SVM classifier (Joachims, 2002) to build 

a model for credibility of information in tweets. They succeeded to enhance the performance of 

their ranking algorithm and showed that extraction of credible information from Twitter can be 
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automated with high confidence. Based on their analysis, they found that on average 30% of total 

tweets posted about an event contained information about the event. Fourteen percent was spam 

and only seventeen percent of the total tweets posted was credible. 

Ross et al. (2016) created a general feature set for learning to rank tweets based on 

credibility and newsworthiness. They gathered features from previous studies that used classifiers 

to automatically predict credibility. The features included the number of retweets, tweet length, 

the number of user mentions, the number of URLs, tweet has a URL, etc. They used these features 

as a starting point for their own feature set. Then, they added two new features to capture when 

the sentiment of a tweet matches the overall sentiment of the topic it was included in, 

“differenceFromMeanPositive” and “differenceFromMeanNegative”. The tweets that have similar 

sentiment to the rest of the tweets in the topic will be considered credible. However, if a tweet does 

not have the same sentiment as the topic overall, it is considered as non-credible or not newsworthy 

tweet. The researchers ranked the entire feature set for each dataset by listing the ranked features 

in order from best to worst in order to decide credibility level for each tweet using LibSVM 

extension, which is a Support Vector Machine library for SVM classification and uses feature 

selection methods and F-Score to rank the features (Chen et al., 2006). 

Ito et al. (2015) collected trendy tweets posted in Japan in April 2014 and hired annotators 

who were widely distributed by age and sex, to label the credibility of every tweet collected. The 

labeling depended on four aspects: a) whether the tweet contained opinions or impressions, b) 

URLs in the tweet, c) credibility of the tweet, and d) the reasons why the annotator thought the 

tweet was or was not credible. They found that the most important factor in deciding the tweet’s 

credibility was whether a tweet had an information source, whether the topic of a tweet was serious, 

and whether the user of a tweet is reliable. Moreover, they found that utilizing the “tweet topic” 
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and “user topic” features obtained from the LDA model were effective when the topic size in the 

model is appropriate, and the performance was enhanced by using them to recognize reliable 

trendy topics and users. 

Gupta et al. (2014) built TweetCred which is a real-time, web-based system to assess the 

credibility of content on Twitter. While the system does not determine the truth of stories, it 

provided a credibility rating. It could be used effectively by emergency responders, firefighters, 

journalists and general users to determine credibility of Twitter content. They demonstrated that 

measuring the credibility of Twitter content using automated techniques was possible, and the 

results are valuable for end users. They collected data about many disaster events such as: Typhoon 

Haiyan in the Philippines, Cyclone Phailin in India, etc. The system provided a rating from 1 (low 

credibility) to 7 (high credibility) for each tweet on a user’s Twitter timeline. The score was 

computed using a supervised automated ranking algorithm, trained manually labeled data obtained 

using crowdsourcing. They used 45 features including the number of unique characters, the 

number of retweets, and the ratio friends/followers of the author. They evaluated the performance 

of TweetCred in terms of response time, effectiveness and usability. They observed that 80% of 

the credibility scores were computed and displayed within 6 seconds, and that 63% of users either 

agreed with the automatically generated scores or disagreed by 1 or 2 points (on a scale from 1 to 

7). Their main contribution was that the system provided an indication to Twitter users about 

trustworthiness of tweets in real-time. 

2.3 Panic Triggers  

Twitter data includes a mixture of real news, informal discussions and rumors. Such 

discussions may contain information that can trigger panic during disasters. Some people may 

consider this information from social media more trustworthy than information carried in 
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traditional media. Many risk-factors associated with post-traumatic stress disorder, major 

depressive disorder, panic disorder, and generalized anxiety disorder occur amongst the public 

during natural disasters. During hurricane Harvey, some people felt that official warnings were 

exaggerating a danger and so causing needless worry or panic, and began to take them seriously 

(King, 2018). During the hurricane, evacuees were primarily adults who had presented with varied 

diagnoses, most commonly mood, anxiety and psychotic disorders. There was a significant need 

for medications and psychosocial support to address preexisting conditions, as well as emerging 

problems such as insomnia (Storch et al., 2019). Also, Amstadter et al. (2009) highlighted that 

many risk-factors associated with post-traumatic stress disorder (PTSD), major depressive 

disorder (MDD), panic disorder (PD), and generalized anxiety disorder occur amongst the public 

during natural disasters. 

There has not been much work done in addressing panic problems during natural disasters 

using Twitter data. According to Stroud et al. (2013), indicators and triggers represent the 

information and actions that guide incident recognition, response, and recovery. Indicators are 

usually the measures or predictors of changes in demand and/or resource availability; triggers are 

decision points. It can be challenging to identify useful indicators and triggers from large and 

varied sources of available data; therefore, there is the need to understand how indicators can be 

used to support operational decision making, and to avoid panic. The following are a few examples 

of indicators and triggers during a crisis: 

▪ Indicators: 

o Impact on community, including transportation and communications infrastructure. 

▪ Triggers: 

 



17 

 

 

o Loss of paging and/or cellular service in an area. 

o Loss of phone service in a hospital. 

o Loss of electrical service in a hospital. 

o Loss of water service. 

o Closure of transit system. 

According to Stroud et al. (2013), indicators may be categorized into predictive versus 

actionable, and certain versus uncertain. Predictive indicators cannot be directly impacted by 

actions taken by the agency/facility (e.g. “a hospital receiving notification that a pandemic virus 

has been detected”); however, actionable indicators are under the control of the facility, for 

example, “a hospital detecting high patient census”. An indicator that is certain requires less 

analysis before action, while an indicator that is uncertain requires interpretation before action. 

Understanding the characteristics of the indicators helps inform decision makers about how best 

to use them. The authors proposed that four steps should be taken in response to an incident: 

(1) Identify key response strategies and actions. 

The strategies that the facility or agency would use to respond to an incident are identified. 

Such strategies could include disaster declaration, or establishment of an emergency operations. 

(2) Identify and examine potential indicators. 

Indicators that inform the decision to initiate actions are identified, for example, “a 911 call”, 

or “witnessing a tornado”. 

(3) Determine trigger points. 

Scripted triggers that may be derived from certain indicators are determined, for example, a 

mass casualty incident involves >20 victims. 

(4) Determine tactics. 
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Tactics that could be implemented at these trigger points. Scripted triggers may appropriately 

lead to scripted tactics and a rapid, predefined response. After a facility determines what actions 

or strategies should be taken during an incident, it should examine indicator data sources that 

inform the initiation of these actions. 
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CHAPTER 3  

Methodology 

This research, a Panic Trigger Identification Framework (PTIF) was developed to extract 

and to collect tweets during hurricane disaster, to classify the tweets based on their relevance to 

the disaster, and to evaluate the credibility of the disaster-related tweets, and to identify tweets that 

contain panic triggers. Figure 2 shows an overview of PTIF. This framework contributes to the 

enhancement of emergency response and management by detecting the triggers on disaster related 

tweets that may lead to panic situations.   

 

Figure 2. An overview of Panic Trigger Identification Framework (PTIF).  
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3.1 Tools and libraries 

In this project, Python Programming Language is used to develop the PTIF. The following 

main libraries were used: 

• NTLK (Natural Language Processing Toolkit). It is a platform for processing natural 

language data. 

• Regular Expressions (regex or regexp for short). It is a package for processing text string 

patterns.  

• Pandas.  It is a data analysis tool for the Python programming language. 

• NumPy. It is the fundamental package for scientific computing with Python. 

• TF-IDF/Count Vectorizer. It gives the frequency of the word in textual contents or 

documents. 

• Scikit-learn. It provides a range of supervised and unsupervised learning algorithms. 

• Matplotlib. It is a collection of command style functions that create figures, a plotting area 

in a figure, and lines in a plotting area. 

3.2 Data Collection 

In order to conduct the analysis on Twitter data, a premium full archive Twitter API was 

used to collect historical tweets before, during, and after the time when both hurricane Florence 

and hurricane Michael happened. Once the premium account was set up, a set of tokens and keys 

was provided by Twitter API, see Figure 3. These keys and tokens were integrated into the tweet 

extraction tool. More than 26,000 tweets were collected for both events (10,000 tweets for 

hurricane Michael and 16,000 tweets for hurricane Florence). The search terms used include 

“hurricane Michael”,” hurricane Florence”,” hurricane evacuation”,” hurricane warning”, etc. For 

the purpose of evaluating the credibility of the tweets, specific attributes and entities were extracted 
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for each tweet object. Table 1 shows the list of the attributes extracted and stored in the hurricane 

datasets.  

 

Figure 3. Twitter API tokens used for extracting historical tweets. 

Table 1  

The attributes extracted and stored in the hurricane datasets 

User Attributes Tweet Attributes 

username tweet 

user_profile_description URL_in_Tweet 

user_screen_name tweet_created_date 

number_of_follwers tweet_source 

number_of_friends number_of_retweets 

user_account_created_date number_of_likes 

user_likes_count length_of_tweet 

user_posts_count hashtags_contained_in_tweet 



22 

 

 

user_account_verified?  

 

3.3 Data Preprocessing 

After the data collection, Natural Language Processing such as Regular Expressions to was 

applied to clean each tweet by removing contents such as hashtags, URLs, user mentions, special 

characters, numbers, etc. The aim of the data cleaning process is to remove any unwanted content 

from the training data, since such data can create noise when implementing the classification. The 

data preprocessing step is crucial since any noise can affect the performance of machine learning 

algorithms. Once all tweets were pre-processed and, they were stored in the dataset and used for 

data annotation, see Figure 4. Data preprocessing includes the following: 

• Remove Escaping HTML Characters. Data contains many of entities such as &lt; &gt; 

&amp.  

• Punctuations and numbers. Such as {},?, !, = , &, $, 1, 6, etc. Removing hashtag and user 

mention symbols like ("#", "@"), and keep the actual words following these symbols. 

• Split Attached Word. Some of the tweets have an attached word such as 

"HurrincaneMichael","BeAwareOfTheStorm" etc. These words must be split to separate 

words. 

• Standardize Words. The users sometimes use words in improper formats. For example, the 

sentance"it's soooo windy " should be "it's so windy". Such words need to be changed to 

correct forms. 

• Remove Stop-words: Stop-words are filtered out before of natural language data is 

processed. Stop-words are generally the most common words in a language. Figure 5 shows 

a list of examples of stopwords. There is no single universal list of stop words used by all-
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Natural Language Tools (NLT); there is a built-in stopwords library within NTL in which 

it contains a list of standard words and the list can be modified and expanded. 

• Remove of URLs.  

• Removal of Emojis. Emojis are pictographs of faces, objects, and symbols, but the machine 

learning treats them as a set of Unicode characters, for example,"       " is translated as 

"U+1F60A". 

 

Figure 4. The process for data preprocessing and storing in datasets. 

 

Figure 5. Examples of stop words removed from each tweet. 
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3.4 Identifying Disaster Related Tweet 

3.4.1 Annotating disaster-related tweets  

Researchers have used manual annotation to label tweets for machine learning algorithms. 

Manual annotation can be costly and time consuming. In this research, an automated tweet 

annotation framework was implemented, as shown in Figure 6. This framework uses a disaster-

related term dictionary to automatically label the tweets in both hurricane Michael and Florence 

datasets. The disaster-related term dictionary contains predefined keywords such as 

#HurricaneMichael, #Hurricane, #hurricanewarining, #storm, #stormsurge, etc. If a tweet contains 

at least two keywords from the disaster-related term dictionary, then the tweet is automatically 

labeled as “Related”. Otherwise, it is labeled as “Not_Related”. Such a framework enables fast 

labelling for disaster-related tweets. 

In order to establish the ground truth for the labeling system, create more accurate labeling 

and evaluate the accuracy, three participants have manually checked and labeled the first 2,000 

tweets in each dataset. Thus, each hurricane related keywords the participants come across were 

appended to the disaster-related term dictionary while manually labeling the tweets. Then the 

framework was run on the rest of the tweets. The aspects considered for deciding whether a tweet 

is related to the disaster or not are as follows: 

• Does the tweet contain information about the Hurricane? 

• What is the topic of the tweet? 

• What are the hashtags contained in the tweet? 

• What is the list of keywords the tweet contains? 

The quality of the labeling highly depends on the disaster-related terms that the dictionary 

contains; the more terms included in the dictionary; the tweets that would be identified as disaster-
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related tweets. The dictionary used in this research was manually created by a) analyzing 2,000 

tweets and extracting the disaster-related keywords from them, b) adopting the keywords used in 

other work that used dictionary-based approach (To et al., 2017), and c) extracting keywords from 

hurricane disaster news articles and weather channels. The dictionary was created to cover 

hurricane disaster related terms. 

 

Figure 6. The automated tweet annotation framework. 

3.4.2 Word vectorization 

Text Analysis is a major application field for machine learning algorithms. However, raw 

data, which is a sequence of symbols, cannot be fed directly to the algorithms themselves as most 

of these classifiers expect numerical feature vectors with a fixed size rather than the raw text 

documents with variable length. On other words, machine learning algorithms operate on a 

numeric feature space, expecting input (threshold) as a two-dimensional array where rows are 

instances and columns are the features. In order to perform machine learning on text, there is the 

need to transform the tweets into vector representations such that numeric machine learning can 
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be applied. This process is called feature extraction or vectorization. This numerically 

representation gives the ability to perform meaningful analytics and also creates the instances on 

which machine learning algorithms operate. In text analysis, instances are entire documents or 

utterances, which can vary in length from quotes or tweets to entire books, but whose vectors are 

always of a uniform length. Each property of the vector representation is a feature. Therefore, the 

texts to need to be converted to vectors without losing much of the information for better 

classification accuracies. Thus, stop-words such as “and”, “or”, “hey”, “could”, “can” and “would” 

etc. are removed from the tweet texts. These words are used to construct sentences; however, such 

words would create noise that could affect the classification accuracies.  

In this research, CountVectorizer and TfidfVectorizer were used to extract features for 

classification. The two methods are described below.  

3.4.2.1 CountVectorizer  

It is a method for transforming a document into vectors by counting occurrences of each 

word in each document, Table 2 shows an example of how CountVectorizer converts words into 

counts and stored in matrix. Each element in the matrix refers to a word and its count of 

occurrences in a document. CountVectorizer is a tool provided in Scikit Learn (Pedregosa et al., 

2013). 

Table 2  

An example of the word counts for the frequencies of the terms 

Sentences 

Sentence 1 = "Apple is a beautiful fruit, monkey eats an apple" 

Sentence 2 = "monkey eats apples" 
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Sentence 3 = "monkey eats an apple and a banana" 

CountVectorizer conversion 

['an', 'and', 'apple', 'apples', 'banana', 'beautiful', 'eats', 'fruit', 'is', 'monkey'] 

[[1       0       2      0       0      1      0      1      1     0] 

[0       0       0       1       0      0     1      0      0    1] 

[1        1      1      0      1      0      1      0      0       1]] 

 

3.4.2.2 TfidfVectorizer 

TfidfVectorizer is a tool provided by Scikit Learn (Pedregosa et al., 2013). It is short for 

Term Frequency-Inverse Document Frequency, which converts a collection of raw text into a 

matrix of TF-IDF features and count the frequencies of tokens in the raw text. In the context of 

tweets, features and samples are defined as follows:  

• Each individual token occurrence frequency is treated as a feature. 

• The vector of all the token frequencies for a given tweet is considered a multivariate 

sample.  

TFIDF converts textual data to a numeric form. The vector value is the product of these 

two terms: TF (Time Frequency) and IDF (Inverse Document Frequency) (Ghosh et al., 2018). 

Table 3 shows an example of how TfidfVecctorizer converts word into weights and frequencies 

and stored into a matrix. Each weight on the matrix represents a word. Relative term frequency is 

calculated for each term within the document as follows: 

(1)  TF (t, d)   = (number of times(t)appears in tweet(d))/(total number of terms in tweet(d))    
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Next, we get the Inverse Document Frequency (IDF), which measures how important a 

word is. 

(2)  IDF (t, D)  =  log((total number of tweets(D))/(number of tweets with the terms(t)  in it )) 

Once the values for TF and IDF are calculated, TFIDF can be calculated as follows: 

(3)   TFIDF (t, d, D)   = TF (t, d) * IDF (t, d, D)  

Once TF-IDF Vectorizer is instantiated, it will calculate the scores for terms for each tweet 

in the dataset and convert textual data into numeric form. The TFIDF-transformed data is fit into 

classification algorithms. 

Table 3  

An example of the weights for the frequencies of the terms in sentences 

Sentences 

Sentence 1 = "Apple is a beautiful fruit" 

Sentence 2 = "monkey eats apples" 

Sentence 3 = "monkey eats an apple and a banana" 

TfidfVectorizer conversion 

['an', 'and', 'apple', 'apples', 'banana', 'beautiful', 'eats', 'fruit', 'is', 'monkey'] 

[0.         0.         0.40204024   0.         0.         0.52863461     0.         0.52863461 0.52863461       0.] 

[0.         0.         0.         0.68091856 0.         0.       0.51785612      0.            0.              0.51785612] 

[0.45954    0.45954    0.34949     0.         0.45954803     0.     0.34949812     0.         0. 0.34949812] 
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3.4.3 Learning-based systems for identifying disaster-related tweets 

This phase focuses on comparing the performance of different learning algorithms in 

identifying disaster related tweets. First matching based method was used to label tweets collected 

on Hurricane Florence and Hurricane Michael. The performance of using different learning 

methods using different term vectorizers – TfidfVectorizer and CountVectorizer to identify 

disaster-related tweets were compared. 

The framework for comparing learning-based methods is shown in Figure 7. First, disaster-

related data is collected from Twitter and stored. Next, the data is processed and cleaned from any 

contents that would create noise when transforming the textual data to features or when fitting the 

features into the classification models. Then the processed data is passed into a labeling module in 

which each tweet labeled as “Related” or “Not-Related” to the disaster. The next stage is to extract 

features that can be used in classification. The final stage is to apply machine learning classification 

models on testing data and measure the performance of each model. 
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Figure 7. The framework for classifying and comparing learning-based models. 

For this phase, the framework used different supervised machine learning models suitable 

for classification with discrete features (e.g., word counts for text classification) and binary 

classification to identify disaster-related tweets such as Naive Bayes, Support Vector Machine 
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(SVM), k-Nearest Neighbors (KNN), Logistic Regression, Random Forest, and Decision Tree. 

These models are briefly described below. 

3.4.3.1 Naive Bayes 

It is a machine learning algorithm that uses probabilistic classification based on Bayes 

theorem with an assumption of independence among features. This algorithm performs 

classification tasks well and learns quickly in numerous real-world supervised classification 

problems (Chandel et al., 2016). The algorithm requires a smaller number of training data 

compared with other algorithms (Deekshatulu et al., 2013). This classification method is used to 

calculate the probability of a specific tweet belonging to each class. The class which has maximum 

probability is expected to be the class of that tweet. The Naive Bayes theorem is as follows: 

(4)  P(Y/X)  =  
𝑃(

𝑋

𝑌
).𝑃(𝑌)

𝑃(𝑋)
  

3.4.3.2 Support Vector Machine (SVM)  

It is a discriminative supervised machine learning algorithm that is formally defined by a 

separating hyperplane. It has the capability to predict and analyze regression and to classify a 

dataset (Polat et al., 2017; Ashktorab et al., 2014). In other words, given labeled training tweet 

data, the algorithm outputs an optimal hyperplane which categorizes new examples in two-

dimensional space (disaster-related, or not related). This hyperplane is a line dividing a plane in 

two parts where each class lays in either side. SVM is basically a linear classification approach 

based on two classes (Boukenze et al., 2016). In this experiment, the learning of the hyperplane is 

done in linear SVM which is done by transforming the problem using a linear kernel. 

For the kernel the equation for predicting the class of a new input using the dot product 

between the tweet input (x) and each support vector (xi) is calculated as follows: 

(5)    f(x)  =  B(0) + sum( ai  *  ( x , xi ))    
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This is equation involves calculating the inner classes of a new input vector (x) with all 

support vectors in training data. The coefficients B(0) and ai (for each input) must be estimated 

from the training data by the learning model (Patel, 2017). For example, the inner product of the 

vectors [2, 3] and [5, 6] is 2*5 + 3*6 or 28. 

3.4.3.3 K-Nearest Neighbor (KNN) 

It is a supervised learning algorithm. It is a popular, simple, highly efficient and effective 

algorithm for pattern recognition (Chandel et al., 2016). It is good for a large number of records 

and fast to train the models. First, the model computes a distance value between the tweet input to 

be classified and every tweet in the training dataset. Then the model picks k data points from the 

training data that are nearest to the test data (the items with the k lowest distances). Then it conducts 

a “majority vote” among those data points to predict the class of the test data. The dominating 

classification in that pool is decided as the final classification (Soni et al., 2018). 

In KNN, the nearest class is recognized by using different distance measurements such as 

Manhattan distance, Minkowski distance, Euclidean distance, and Hamming distance. The 

distance formulas are given as follows: 

(6) Euclidean-Distance (X , Y)  = √∑ (𝑥𝑘 − 𝑦𝑘)2𝑛

𝑘=1
   

(7)  Manhattan-Distance (X , Y)  =   ∑ |𝑥𝑘 − 𝑦𝑘|𝑛
𝑘=1   

(8) Minkowski-Distance (X , Y)   =   ∑   
𝑘 (|𝑥𝑘 − 𝑦𝑘|)𝑞|)

1

𝑞   

(9) Hamming-Distance (X , Y)   =   ∑  𝑑(𝑥𝑘 − 𝑦𝑘)
𝑛

𝑘=1
 

𝑑(𝑥𝑘 − 𝑦𝑘) =   {
1     𝑠𝑖     𝑥𝑘  ≠  𝑦𝑘   
 0    𝑠𝑖     𝑥𝑘 =  𝑦𝑘
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Here, X and Y are the objects to be compared, in which X = {𝑥1, 𝑥2, … , 𝑥𝑘} and Y = 

{𝑦1, 𝑦2, … , 𝑦𝑘  }, with dimension n (attribute number), and 𝑥𝑘  and 𝑦𝑘  denote the 𝑘𝑡ℎ attributes of X 

and Y respectively (Bonet et al., 2008). 

3.4.3.4 Logistic Regression  

It represents a probabilistic machine learning model that is used to find the probability of 

a certain class or event existing such as pass/fail, win/lose, alive/dead or healthy/sick. In our case, 

the event is ‘Related’ or ‘Not Related’ tweets. Logistic regression is appropriate when the 

dependent variable is binary (0/ 1, True/ False, Yes/ No) in nature (Raghuwanshi et al., 2017). In 

this research, 1 represents the related tweets and 0 represents the non-related ones. Logistic 

regression is used to describe data and explain the relationship between one dependent binary 

variable and one or more nominal, ordinal, interval or ratio-level independent variables. Here the 

value of Y ranges from 0 to 1 and it can be represented by the following equation: 

(10)  odds  =   
𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡 𝑜𝑐𝑐𝑢𝑟𝑟𝑖𝑛𝑔

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑡𝑦 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡 𝑛𝑜𝑡 𝑜𝑐𝑐𝑢𝑟𝑖𝑛𝑔
  = ( 

𝑃

1−𝑃
 ) 

𝑝 is the probability of presence of the characteristic of interest. For example, when 𝑝 is 

larger than 0.5, then the odds will be the input belongs to one class. 

3.4.3.5 Decision Tree  

It is a classification technique that can handle both numerical and categorical data. It is a 

graph that follows a branching method to exhibit every possible outcome for a decision (Nair et 

al., 2017). A tree is constructed in a top-down recursive divide and conquer manner. All the 

training samples are placed as the root element then partitioned recursively based on the selected 

attribute. Decision tree consists of two nodes namely leaf nodes and decision nodes.  A decision 

node or internal node contains two or more sub-branches, in which each branch denotes the test 

on a particular attribute.  The leaf node contains a resulting classification decision or class label. 
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The Classification techniques of Decision tree are simple and fast, and the tree format is simple 

and easy to understand. 

3.4.3.6 Random Forest  

It is an ensemble learning method that consists of a construction of multiple decision trees 

called Forests. Individual decision trees are generated during the training time using randomly 

selected attributes in each node, in which the split is determined. Using Random Forest for 

classifying a tweet, the tweet is passed to all the trees in the forests. Each tree will give a 

classification result. That is, all the decision trees will give their vote on the classification 

individually. Then the algorithm chooses the most popular class voted. This Algorithm takes less 

time to predict the output in comparison with other classification models (Nair et al., 2017). 

3.4.4 Model Evaluation Metrics 

In this research, the following metrics were used to compare the performance of different 

learning-based methods in classifying disaster data: Confusion Metrics, Binary classification tests, 

and Receiver operating characteristic (ROC). 

3.4.4.1 Confusion Matrix 

A confusion matrix is an n x n matrix, where n is the number of classes to be predicted. For 

binary classification problems, the number of classes is two; thus, the confusion matrix has two 

rows and columns. The rows of the confusion matrix represent the target classes while the columns 

represent the output classes. The diagonal cells in each table show the number of cases that were 

correctly classified, and the off-diagonal cells show the incorrectly classified cases as showing in 

Table 4.  

Once all the instances are classified, the predicted results are compared to the actual values. 

Important parameters that can be derived from the confusion matrix, which are helpful to 
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understand the information that the matrix provides. Some of the most important ones are the 

classification Accuracy (ACC), the Error Rate (ER), the sensitivity or True Positive Rate (TPR), 

and the specificity or True Negative rate (TNR), (Salman et al., 2018, Damousis et al., 2012; 

Elamvazuthi et al., 2018). All of them are calculated by using the values TP, TN, FP and FN 

written in the confusion matrix. These values are defined below:  

• True Positive (TP): The predicted label is “Related”, and the actual is “Related”. 

• True Negative (TN): The predicted label is “Not Related”, and the actual is “Not Related”. 

• False Positive (FP): The predicted label is “Related”, but the actual is “Not Related”.  

• False Negative (FN): The predicted is label “Not Related”, but the actual is “Related”.  

The classification accuracy is the ratio of instances correctly classified, and it can be calculated 

using the following formula:  

(11) Accuracy   =   
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
      

The error rate, which is the ratio of instances misclassified, is given by:  

(12) Error Rate   =   
𝐹𝑃+𝐹𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  

The sensitivity, which is the portion of actual positives which are predicted as positives, we use 

the following expression:  

(13) Sensitivity (TPR)   =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

Finally, the specificity, which is the portion of actual negatives predicted as negative, is calculated 

as follows:  

(14) Specificity (TNR)   =    
𝑇𝑁

𝑇𝑁 +𝐹𝑁
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Table 4  

Confusion Matrix and performance metrics 

Actual 

Predicted 

Positive Negative 

Accuracy = 

TP + TN

TP + TN + FP + FN
 

Positive TP FN 

Negative FP TN 

 

Precision = 

TP

TP +  FP
 

Recall = 

TP

TP +  FN
 

F-score = 

2 ∗
Recall   ∗   Precision

Recall  +   Precision
 

 

3.4.4.2 Receiver operating characteristic (ROC)  

ROC curve is a testing method for binary classification problems. It provides a 

comprehensive and visually attractive way to summarize the accuracy of predictions and compare 

the performance of classification models (Hajian-Tilaki, 2013).  

By varying the value of the decision threshold τ between 0 and 1, we obtain a set of 

different classifiers for which we can calculate their specificity and their sensitivity. The points of 

a ROC curve represent the values of those parameters for each of the values of the decision 

threshold.  

3.4.4.3 Acceptance and rejection rates  

The False Acceptance Rate (FAR) is the measure of the likelihood that a classification 

model accepts incorrect instances while predicting when it should be rejected. FAR is the ratio of 

the number of false acceptances divided by the number of identification attempts.  

(15) 𝐹𝐴𝑅  =    
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
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The False Rejection Rate (FRR) is the measure of the likelihood that a classification model 

incorrectly rejects correct instances while predicting when it should be accepted. FRR is the ratio 

of the number of false rejections divided by the number of identification attempts. 

(16) FRR   =   
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
  

Equal error rate (EER) is used to predetermine the threshold values for its FAR and FRR. 

When the rates are equal, the common value is referred to as the equal error rate. The value 

indicates that the proportion of FAR is equal to the proportion of FRR. The lower the EER value, 

the higher the accuracy of the classification model (Salve, 2018; Salem, 2019). 

(17) 𝐸𝐸𝑅  =   
𝐹𝐴𝑅+𝐹𝑅𝑅

2
   

For each classification phase in this research the Acceptance Rate, and the Rejection Rates 

represents the classes corresponding to the features the classifiers use. For example, in this research 

the instances are: for disaster-related tweet identification the instances represent the classes: 

“related or “not related”, for the credibility analysis the instances represent the classes: “credible” 

and “not credible”, and for panic-triggering tweet the instances represent the classes “Mitigation”, 

“Mitigation_and_Correction”, and “No_Triggers Contained”. Hence, the FAR, FRR and EER 

were measured for each phase. In general, for classification systems, the main performance 

indicator is the ROC curve, which is a plot of True Acceptance Rate which is TAR=1-False 

Rejection Rate against False Acceptance Rate (FAR), which is computed as the number of false 

instances classified as positive among all instances. The closer the curve is to the top left corner, 

the better. 
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 3.5 Tweet Credibility Analysis 

3.5.1 Tweet credibility annotation 

In order to annotate the tweets and assign credibility labels for each tweet, a framework 

was implemented in which user-based features and content-based features were considered to 

evaluate the credibility and trustworthiness of each disaster-related tweet and to assign a credibility 

label. The framework uses a 10-point-scale credibility rating system in which tweets with score 

between 5-10 points are considered “Credible”, and tweets with scores lower than 5 points are 

considered “Not Credible”. The rating of each tweet depends on points given to the tweet based 

on the combination of user-based features and content-based features as explained below. 

In this step, tweet attributes were analyzed to extract new features for calculating the 

credibility of each tweet. These new features were stored in the datasets as new attributes 

corresponding to the tweets analyzed. These new attributes were used as features to classify the 

tweets into “Credible” and “Not Credible”. There are two types of features which are explained 

below.  

3.5.1.1 User-Based Features  

• Verified User Account 

In user-based analysis, first we check if the user’s account is verified by Twitter. If so, it is 

considered as “Credible” and is given the max points, since the verified badge for any Twitter 

accounts confirms that all tweets coming from that profile are credible (Pinegar, 2018). Figure 8 

shows an example of a Twitter verified account.  
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Figure 8. An example of verified Twitter account. 

• Trusted username  

The usernames and account description are checked to see if they contain trusted 

information sources using a dictionary of trusted sources. For example, if the username or 

description contains trusted names such as “”ABC News “Weather News Channel”, “news 

channel”, or “breaking news”, the user gets credibility points. 

• Slang in user profile description  

If the username and description have slang or swear words, the framework deducts 

credibility points are deducted. Figure 9 show the flow of the dictionary-based system to check the 

username and description for trusted sources.  
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Figure 9. An overview of the dictionary-based analysis to identify user-based features for 

credibility. 

• User Follower/Following Ratio  

The popularity and influence of a user measured by the follower/following ratios, assigning 

high credibility scores to high ratio is used as a feature for credibility (Zhang, 2015). Table 5 shows 

the interpretation of the ratio calculated. Follower/Following Ratio is calculated using the 

following formula (Parsons, 2017): 

(18) Follower/Following Ratio   =   
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑜𝑙𝑙𝑜𝑤𝑒𝑟𝑠

𝑇𝑜𝑡𝑎𝑙 𝐹𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔
 

Table 5  

The Follower/Following ratio indicators 

Follower/Following 

Ratio 

Influence Description Category 
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<0.5 Users that are inexperienced with Twitter and are 

spamming followers in hope for being followed. 

Spammer 

0.5-1 Users that are likely to be using Twitter automation 

tools but are following the wrong people or has poor 

quality content leading to poor number of followers. 

Suspicious 

1-2 Users that have some success with Twitter 

automation tools but need to focus on other 

strategies to drive more followers. 

Normal 

2-10 Users that are either master of Twitter automation 

tools or has incredible content to grow their account. 

Micro Influencer 

10+ Users are likely to be micro-celebrities or rising stars 

that are popular on other social media channels. 

Influencer 

 

Figure 10 show how credibility score is assigned to a tweet based on a user-features. Before 

starting the process, the overall credibility score is initiated to zero. Then the scoring is pursued as 

follows:  

• When the user is verified by Twitter the user gets a “+10” points directly as Twitter 

confirms the user’s credibility. However, if the user is not verified the framework check 

the username; when the algorithm checks whether the username is from a trusted source 

such as “weather reporter”, “news journalist” etc., it adds a “+1” point to the overall 

credibility score.  

• However, if the username is not from a trusted source, no points is deducted as the user 

could fall in the category of Micro Influencer or Influencer. Then the algorithm checks the 
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user profile description for slang and swear words; once such words detected, “-1” point is 

added to the score. Otherwise, “+1” is added. 

• The algorithm checks the Follower/Following ratio for the users; Micro Influencer and 

Influencer users get “+2” points added to the overall score, the Normal users get “+1” 

score, and the users with lower ratios get “-1” point since they fall into the Spammer or 

Suspicious user categories. 

 

Figure 10. Calculating credibility score from user- based features. 

3.5.1.2 Content-Based Features 

• Slang in tweet  
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If a tweet has slang or swear words, the credibility score is deducted. Tweets that have 

slang or swear words tends to be not credible (Afify et al., 2019). 

• Tweet has Question or Exclamation marks in tweet  

If a tweet contains Question marks “?” or Exclamation marks”!”, the credibility score is 

deducted. Tweets that contain Question or Exclamation marks tend to be not credible (Afify et al., 

2019). 

• Valid tweet length 

Credible tweets tend to be wordy and descriptive; therefore, the credibility score is 

increased for lengthy tweets (Jardaneh et al., 2019).  

• Trusted and valid URL in tweet  

Tweets that contain bad URLs tend to be less credible (Shariff et al., 2014). The URLs in 

tweets are validated in two steps: (a) Validate the domain of the URL by searching for keywords 

such as “news”, “weatherchannel”, “hurricane-michael”, “bbc-news” etc. in the URL. (b) Validate 

the URL request. The system checks whether the URL request is valid by issuing the request and 

checking the response code. Table 6 shows the interpretations of the request codes and the response 

status. Figure 11 shows an example of how the algorithm validates the URLs in tweets.  

Table 6  

URL request status codes 

Status Code Meaning Status Code Example 

2XX Success It indicates the action requested by the client 

was received, understood and accepted. 

200 OK 

3xx Redirection It indicates the client must take additional action 

to complete the request.  

301 Moved 

Permanently 
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4xx Client Errors It indicates the error seems to have been caused 

by the client.  

400 Bad Request 

5xx Server Errors It indicates the server failed to fulfill a request. 502 Bad Gateway 

 

 

Figure 11. An example of the output of the algorithm URL validation . 

• Tweet Engagement Ratio  

The tweet engagement ratio measures how a tweet was received and has been interacted 

with by other users on Twitter (Meinert et al., 2019). Table 7 shows the descriptions of the 

engagement ratio for the tweets. It is calculated as follows (Mee et al., 2018): 

(19) Engagement Ratio   =   
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑤𝑒𝑒𝑡 𝑙𝑖𝑘𝑒𝑠  +   𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑡𝑤𝑒𝑒𝑡𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑠𝑒𝑟 𝑝𝑜𝑠𝑡𝑠
 

Table 7  

Tweet Engagement ratio descriptions 

Engagement 

Ratio 

Description Engagement 

Level 
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0% - 0.02% The ratio is considered to be low. An influencer could 

expect between 0 - 0.2 reactions for every 1000 followers. 

Low 

Engagement 

0.02% - 0.09% The ratio is considered to be good. An influencer could 

expect between 0.2 - 0.9 reactions for every 1000 

followers. 

Mild 

Engagement 

0.09% - 0.33% The ratio is considered to be high. An influencer could 

expect 0.9 - 3.3 reactions for every 1000 followers on 

Twitter. 

High 

Engagement 

0.33% - 1% The ratio is considered to be very high. An influencer 

could expect 3.3 - 10 for every 1000 Twitter followers. 

Very High 

Engagement 

 

Figure 12 show how credibility score is assigned to a tweet based on a Content-features. 

At this point, the overall score is obtained based on the user-based features. It is the initial value 

before considering the content-based features. Then the scoring is pursued as follows: 

• The URLs contained in the tweet are extracted and checked for their trustworthiness and 

validity; if the URLs are valid and trusted, the credibility score gets a “+2” points. 

Otherwise, “-1” point is added to the overall score.  

• The system checks whether the tweet included slang or swear words exist. If such words 

exist, “-1” point is added to the score. If no slang or sear words exist, “+1” point is added 

to the credibility score.  

• The system checks if the tweet has question and exclamation marks, if it has, “-1” point 

from is added to the score. Otherwise, “+1” point is added.  
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• The length of the tweet; tweets is then checked. Tweets with less than twenty characters 

“-1” point is added to the credibility score. Otherwise, “+1” point is added.  

• The system checks the tweet engagement ratio aggregation. Highly engaged tweets get 

“+3” points added to the credibility score, the mildly engaged tweets get “+1” point, and 

the tweets with lower engagement ratios get “-1”. 

 

Figure 12. Calculating the credibility score based on Content-based features 

3.5.2 Tweet credibility classification 

 After classifying tweets into disaster-related and not disaster related tweets. The credibility 

of disaster-related tweets was analyzed, as the tweets that are not related to the disaster usually do 

not carry helpful information about the disaster. Learning algorithms were used to classify the 

credibility of the tweets using the user-based features and content-based features. Table 8 shows 

the features used for the credibility classification. These features were created from analyzing the 
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extracted tweet entities discussed in section 3.2. Different classification models such as:  Naive 

Bayes, Support Vector Machine (SVM), k-Nearest Neighbors (KNN), Logistic Regression, 

Random Forest, and Decision Tree, were used to classify the credibility of the tweets, and their 

performance was compared. Figure 13 shows the process of classifying the credibility of the tweets 

using different classification models. 

 

Figure 13. The process of  classifying the credibility of tweets 

Table 8  

The features extracted from the main attributes of the tweets 

User-based Features Content-based Features 
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Verified user account? Tweet has slang? 

Trusted user source? Tweet contains Question or Exclamation 

marks? 

User profile description has slang? Valid tweet length? 

User profile description has trusted 

information? 

Tweet engagement ratio 

User Follower/Following Ratio URL in tweet trusted? 

 URL in tweet valid? 

 

3.5.2.1 Manual credibility assessment  

In order to validate the accuracy and correctness of the automated labeling of the tweets, 

four participants were recruited to manually evaluate the first 500 tweets of hurricane Florence 

dataset. This is useful to establish the ground truth for labeling. Each participant was given a copy 

of the dataset and was given the following guidelines to consider while labeling the data: 

User: 

• Is the username a trusted source? (e.g. Weather Channel, ABC news) 

• Is the user account verified by Twitter? (this can be located under the “Is_verified” column 

in the dataset) 

• Does the user profile description contain slang or swear words? (profiles that contain 

slang/swear words tend to be not credible) 

• Does the user have many followers and friends? And, is the number of followers more the 

number of friends? (users with followers than friends are considered more credible) 
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• Does the user have many posts? (Users with high following ratio and actively posts 

contents are more credible) 

Tweet: 

• Is the tweet lengthy or wordy? (wordy tweets tend to be credible) 

• Does the tweet contain slang or swear words? (Tweets that contain slang/swear words tend 

to be not credible) 

• Does the tweet contain a question mark or exclamation mark? (Tweets that contain “?” or 

“!” tend to be not credible) 

• Does the tweet have many likes? (likeable tweets tend to be credible) 

• Does the tweet have many retweets? (retweeted tweets tend to be credible) 

After the dataset was labeled by the participants, the labeling was compared in order to:  

• Measure the accuracies of the automated labeling method. 

• Use the manually labeled dataset as ground truth, to train supervised machine learning 

classifiers, and evaluate the prediction performance. 

3.6 Panic Trigger Identification Framework (PTIF) 

 After the disaster-related tweets were identified and classified and their credibility levels 

were determined, PTIF was implemented to identify panic triggers and indicators that can cause 

unwanted consequences if they were acted upon and not mitigated by the emergency responders.  

Indicators data may be categorized into predictive (uncertain data indicator) and actionable 

(certain data indicator) (Stroud et al., 2013). Actionable indicators are usually scripted directly in 

the tweet content and require less analysis before taking evacuation actions; however, predictive 

(unscripted indicators) require interpretation of the data before taking actions. For example, 

“expected water rising in a certain area...” may imply that there will be “Flooding”. Understanding 
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these characteristics of indicators helps inform decisions about how best to use them. Table 9 

shows example of actionable and predictive triggers and indicators. 

Table 9  

Examples of actionable and predictive panic triggers and indicators 

Predictive (uncertain data indicator) Actionable (certain data indicator) 

- Hurricane A is approaching the southern 

area… 

- Weather update: the speed of wind is 

increasing drastically… 

- Local hospitals are receiving a large number 

of cases in critical situations… 

- a person found stuck in a certain area... 

- weather update: expected water rising in a 

certain area... 

- people must evacuate immediately… 

- no gas... 

- no water… 

- water shortage… 

- no power… 

- flooded areas… 

- Bridge breakage… 

- find shelters immediately… 

- food shortage... 

 

3.6.1 Panic triggers collection and dictionary generation 

There have not been many research studies that on panic triggers during natural disasters. 

Therefore, it was challenging to find defined triggers in the literature. In order to collect panic 

triggers, more than 150 panic triggers have been manually collected, and a panic-trigger-dictionary 

file was constructed. These triggers have been collected from weather channels, and news reports 

during natural disasters (Rubin, 2019; MHS, 2006). Usually these news mediums highlight what 

people panic about and the psychology of people during natural disasters (Heide, 2004; Gantt et 
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al., 2012). Figure 14 shows a sample of the collected panic triggers generated by Word Cloud 

Python library. 

 

 Figure 14. Panic triggers terms collected. 

3.6.2 Tweet Analysis for panic triggers  

This step needs text analysis; therefore, first, using Natural Language Processing, data 

preprocessing is conduct in order to clean tweets from unwanted characters explained in section 

3.2.1. Once all the tweet texts are processed the framework analyzes each one by checking if the 

text contains any of the predefined triggers stored in the dictionary, Figure 15 shows the process 

of checking the tweets for panic triggers and automatically labeling. If the system encounters a 

trigger within the tweet, the tweet and the trigger it contains are stored. Then the system analyzes 

the credibility of the tweets that contain the triggers, and conducts the following: 

▪ If the credibility of the tweet X is “credible”, the framework assigns a label “Mitigation”, 

which means that tweet X is credible and carries useful information, and emergency 

responders need to take actions to mitigate any actions taken by the public.  



52 

 

 

▪ If the credibility of the tweet X is “not credible”, the system assigns a label 

“Mitigation_and_Correction”, which means that emergency responders need to confirm 

the correctness of the information contained in the tweet X, and if correct, emergency 

responders need to take actions to expect and mitigate any actions taken by the public. If 

the information is incorrect, then emergency responders need to correct the information.  

 

Figure 15. Analyzing the panic triggers in tweets and assigning labels. 

3.6.3 Panic tweet classification  

After the tweets with were labeled with: “mitigation”, “Mitigation_and_Correction” and 

“No_Trggiers_Contained”, supervised machine learning classification models were used to 

classify the tweets.  
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Machine learning models suitable for classification with discrete features (e.g., word 

counts, and word frequencies for text classification) such as, K-Nearest Neighbors (KNN), 

Logistic Regression, Random Forest, and Decision Tree were used. However, the tweet raw data 

is a sequence of symbols and cannot be fed directly to the classification algorithms as most of these 

algorithms expect numerical feature vectors with a fixed size rather than the raw text documents 

with variable length. Therefore, TfidfVectorizer which converts a collection of raw documents to 

a matrix of TF-IDF features (term frequency–inverse document frequency) was used. 

TfidfVectorizer reflects how important a word is to a document in a collection. Also, 

CountVectorizer which implements both tokenization and occurrence counting in a single class 

was used. These two types of vectorizers produce features that can be used by the classification 

models, Figure 16 shows the process of classifying the tweets regarding panic triggers using 

learning-based methods. 
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Figure 16. The process of panic tweet feature generation and learning-based classification. 
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CHAPTER 4 

Results 

4.1 Historical Data Collection   

Using the Tweepy library, historical tweets have been collected using premium Twitter 

API, preprocessed and stored in datasets. The datasets contain a total of 10,898 tweets about 

Hurricane Michael and 16,086 tweets about Hurricane Florence. The keyword “hurricane 

Michael” and “hurricane Florence”, were used for searching and importing tweets. The tweets 

were collected according to pre-landfall, landfall, and post-landfall for each disaster. For the 

purpose of identifying disaster related events, evaluating the tweet credibility, and identifying 

panic triggers, specific attributes and entities were extracted for each tweet object. Table 10. Shows 

the attributes extracted from the tweet objects during the data collection process. 

Table 10  

Attributes extracted and stored in the hurricane datasets 

User Attributes Tweet Attributes 

username tweet 

user_profile_description URL_in_Tweet 

user_screen_name tweet_created_date 

number_of_followers tweet_source 

number_of_friends number_of_retweets 

user_account_created_date number_of_likes 

user_likes_count length_of_tweet 

user_posts_count hashtags_contained_in_tweet 

user_account_verified  
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Before storing to the dataset, the tweets have been preprocessed and cleaned from emojis, 

punctuation, numbers, user mentions, URLs, stop words and so on using Natural Language 

Processing and Regular Expressions. The end result is a total of two datasets processed, cleaned 

and ready for the analysis, Table 11 shows an example of one of the dataset records. 

Table 11  

An exmple of a tweet record stored in the dataset. 

Attribute Content 

username WSVN 7 News 

user_screen_name wsvn 

user_profile_description  South Florida's #1 News Station! Your 24/7 source for 

breaking news, @7Weather & @7SportsXtra powered by 

our digital team. Breaking news? newsdesk@wsvn.com 

number_of_followers 381597 

number_of_friends 1077 

user_account_created_date 9/17/2008  4:23:47 PM 

user_likes_count 4748 

user_posts_count 130662 

user_account_verified TRUE 

tweet HIGHTECH AID Hurricane season has started, and 

Miami-Dade County has created teams to use drones with 
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the ability to livestream video during search-and-rescue 

missions. Fire rescue crews gave 7News a demonstration.  

URL_in_Tweet https://wsvn.com/news/local/mdfr-teams-up-with-office-

of-emergency-management-to-show-how-drones-will-

assist-in-hurricanes/  

tweet_created_date 6/4/2019  1:55:00 AM 

tweet_source SocialNewsDesk 

number_of_retweets 143 

number_of_likes 88 

length_of_tweet 241 

hashtags_contained_in_tweet None 

 

4.2 Tweets as Disaster Related and Not Disaster Related 

In this process, each tweet is compared with the terms stored in the predefined dictionary of 

disaster-related keywords. If the tweet includes one or more keywords in the dictionary, it is given 

the label “Related”. The tweet is given the label “Not_Related” otherwise. Table 12 and Figure 17 

show that the disaster related tweets significantly outnumber the non-related tweets. The large 

number of disaster related tweets indicate that Twitter users become very concern when a disaster 

occurs, and that Twitter was used as a communication medium to share information about disaster 

events. 

https://wsvn.com/news/local/mdfr-teams-up-with-office-of-emergency-management-to-show-how-drones-will-assist-in-hurricanes/
https://wsvn.com/news/local/mdfr-teams-up-with-office-of-emergency-management-to-show-how-drones-will-assist-in-hurricanes/
https://wsvn.com/news/local/mdfr-teams-up-with-office-of-emergency-management-to-show-how-drones-will-assist-in-hurricanes/
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Figure 17. Overall counts of disaster-related and not-related tweets in both datasets. 

Table 12  

The total of automated labeled disaster tweets 

Dataset Total 

Tweets 

Number 

(percentage) of 

Disaster Related 

Tweets 

Number 

(percentage) of Not 

Disaster Related 

Tweets 

Hurricane Florence Dataset 16086 14949 (92.9%) 1137 (7.1%) 

Hurricane Michael Dataset 10898 10675 (98%) 223%) 

 

4.2.1 Validating data annotation tool  

In order to validate the quality of the labeling framework, a team consists of four 

participants manually and labelled the first 2,000 tweets in each dataset. The team was asked to 

take notes of the disaster related keywords they come across. These keywords were included in 

the disaster-related term dictionary. The following aspects were considered for deciding whether 

a tweet is related to the disaster or not: 
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- Does the tweet contain information about the Hurricane? 

- What is the topic of the tweet? 

- What are the hashtags contained in the tweet? 

- What is the list of keywords the tweet contains? 

The results from manual labeling that were compared with the results of the automatic 

labeling. The automated labeling achieved 95% accuracy. The dictionary was updated and 

included the disaster terms that existed in the remaining 5% disaster related tweets that was not 

identified by the automated labeling. Then automated labeling was run again on the dataset to 

retest the correctness of the labeling. 

4.3 Disaster Data Classification Using Machine Learning 

After applying the word vectorizers to both labeled disaster datasets and acquiring the 

TfidfVectorizer features and CountVectorizer features, these features were fed into machine 

learning algorithms for classification. In order to evaluate the performance of the classifiers, the 

accuracy, precision, recall, and f score of the test results were calculated. A good classifier 

classifies a large amount of data in a short amount of time with high precision and recall scores.  

In the experiment, the data was split into 70% training set and 30% test set. The training 

set contains the known output was used for the training the classifiers. Table 13 to and 14 show 

the overall classification accuracies of different algorithms using both TfidfVectorizer features and 

CountVectorizer features.  
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Table 13 

 The classification accuracies for Hurricane Florence dataset 

Model 

Accuracy 

TfidfVec.  

Features 

CountVec.  

Features 

Logistic Regression 98% 99% 

Multinomial Naive Bayes 97% 97% 

SVM 98% 99% 

KNN 76% 96% 

Random Forest 99% 99% 

Decision Tree 99% 99% 

 

Table 14  

The classification accuracies for hurricane Michael Dataset. 

Model 

Accuracy 

Tfidf-Vec.  

Features 

Count-Vec.  

Features 

Logistic Regression 99% 99% 

Multinomial Naive Bayes 96% 98% 

SVM 99% 99% 

KNN 90% 97% 

Random Forest 99% 99% 

Decision Tree 99% 99% 
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Most algorithms have high classification accuracies for both TfidfVectorizer features and 

CountVectorizer features. However, KNN model had the least accuracy for both datasets, 

especially when using the TfidfVectorizer features. Overall, the accuracies of the models with 

CountVectorizer features are higher than the accuracies of the models with TfidfVectorizer 

features. 

Table 15, 16, 17, and 18 show the precision, recall, and f-score values for different machine 

learning algorithms using the two vectorizers for the two datasets. It can be seen that all the models 

show high precision, recall and f-score values for the tweets in the “Related” class. The precision 

recall and f-score values for the “Not Related” classes are lower. The reason is that there are a 

much larger number of disaster-related tweets than Not Related tweets. It was also noticed that the 

models performed better using CountVectorizer features than using the TfidfVectorizer features. 

Compared with other models, KNN model has the lowest value for precision, recall and f score, 

especially when using TfidfVectorizer features.  

Table 15  

The classification performance for hurricane Michael Dataset Using TfidfVectorizer Features 

Model 

TfidfVect. 

Related Tweet 

Prediction 

Not Related Tweet 

Prediction 

Pr Re F1 Pr Re F1 

Logistic 

Regression 

0.99 0.99 0.99 0.92 0.87 0.90 
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Model 

TfidfVect. 

Related Tweet 

Prediction 

Not Related Tweet 

Prediction 

Pr Re F1 Pr Re F1 

Multinomial 

Naive Bayes 

0.98 0.99 0.98 0.84 0.81 0.83 

SVM 0.99 0.99 0.99 0.95 0.87 0.91 

KNN 0.99 0.75 0.85 0.21 0.94 0.35 

Random Forest 0.99 0.99 0.99 0.93 0.90 0.92 

Decision Tree 0.99 0.99 0.99 0.93 0.99 0.96 

 

Table 16  

The classification performance for hurricane Florence Dataset Using TfidfVectorizer Features 

Model CountVect. 

Related Tweet 

Prediction 

Not Related Tweet 

Prediction 

Pr Re F1 Pr Re F1 

Logistic 

Regression 

1.00 0.99 0.99 0.88 0.99 0.93 

Multinomial 

Naive Bayes 

0.97 0.99 0.98 0.91 0.68 0.78 

SVM 0.99 0.99 0.99 0.89 0.99 0.94 

KNN 0.99 0.96 0.97 0.64 0.98 0.77 
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Random Forest 0.99 0.99 0.99 0.91 0.94 0.92 

Decision Tree 0.99 0.99 0.99 0.92 0.96 0.94 

 

Table 17  

The classification performance for hurricane Florence Dataset Using CountVectorizer Features 

Model 

TfidfVect. 

Related Tweet 

Prediction 

Not Related Tweet 

Prediction 

Pr Re F1 Pr Re F1 

Logistic Regression 0.99 0.99 0.99 0.79 0.90 0.84 

Multinomial Naive 

Bayes 

0.99 0.97 0.98 0.40 0.83 0.54 

SVM 0.99 1.00 0.99 1.00 0.87 0.93 

KNN 1.00 0.90 0.95 0.19 0.98 0.32 

Random Forest 0.99 0.99 0.99 0.91 0.93 0.92 

Decision Tree 0.99 1.00 1.00 1.00 0.95 0.97 
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Table 18  

The classification performance for hurricane Michael Dataset Using CountVectorizer Features 

Model 

CountVect. 

Related Tweet 

Prediction 

Not Related Tweet 

Prediction 

Pr Re F1 Pr Re F1 

Logistic Regression 1.00 0.99 0.99 0.88 0.98 0.93 

Multinomial Naive 

Bayes 

0.99 0.99 0.99 0.89 0.58 0.71 

SVM 0.99 0.99 0.99 0.93 0.95 0.94 

KNN 1.00 0.97 0.98 0.51 0.98 0.67 

Random Forest 0.99 1.00 0.99 0.98 0.87 0.92 

Decision Tree 0.99 1.00 0.99 0.98 0.95 0.97 

 

It is important to interpret a classifier with its structure of Receiver Operating Characteristic 

(ROC) curve and Area Under Curve (AUC) scores. The ROC curves show the prediction success 

of the models. The framework implemented ROC curves were plotted and AUC scores were 

calculated to summarize the performance of a classifier over all possible thresholds. It is generated 

by plotting the True Positive Rate TPR (y-axis) against the False Positive Rate FPR (x-axis) as the 

thresholds were varied for assigning observations to a given class.  The plot of TPR (sensitivity) 

versus FPR (1-specificity) across varying cut-offs generates a curve in the unit square called ROC 

curve. ROC curve corresponding to progressively greater discriminant capacity of diagnostic tests 
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are located progressively closer to the upper left-hand corner in ROC area (Hajian-Tilaki, 2013). 

From Figure 18 and Figure 21, we can see that KNN classifier has the least discriminant capacity 

than other models, especially when using TfidfVectorizer features. The models have a greater 

discriminant capacity of diagnostic tests with CountVectorizer features than with TfidfVectorizer 

features. 

 

Figure 18. Overall classifiers ROC performance for Hurricane Florence dataset using 

CountVectorizer. 

 

Figure 19. Overall classifiers ROC performance for Hurricane Florence dataset using 

TfidfVectorizer. 
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Figure 20. Overall classifiers ROC performance for Hurricane Michael dataset using 

TfidfVectorizer. 

 

Figure 21. Overall classifiers ROC performance for Hurricane Michael dataset using 

CountVectorizer. 
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4.4 Tweet Credibility Analysis 

 After categorizing the tweets into disaster-related and not disaster related tweets, the 

credibility of disaster-related tweets was analyzed. User-based features and content-based features 

were used to determine the credibility of the tweets as shown in Table 19.  

Table 19 

User-based features and content-based features 

User-based Features Data Type Content-based Features Data Type 

Verified user account? Boolean  Tweet has slang? Boolean  

Trusted user source? Boolean  Tweet contains Question 

or Exclamation marks? 

Boolean  

User profile description has 

slang? 

Boolean  Valid tweet length? Boolean  

User profile description has 

trusted information? 

Boolean  Tweet engagement ratio Float 

User follower/following 

ratio 

Float URL in tweet trusted? Boolean  

 URL in tweet valid? Boolean  

 

Based on these features, the credibility score was calculated, and the credibility label was 

determined.  The credibility score has a value from 0 to 10. A tweet with a credibility score from 

0 to 4 is considered not credible, and a tweet with a score from 5 to 10 is considered credible. 

Figure 22 shows the number of credible and not credible tweets in the two datasets. As 

we can see from the Figure 22, the number of credible tweets in hurricane Florence dataset is 



68 

 

 

higher than the one in hurricane Michael datasets. Overall, the non-credible tweets appear to be 

higher than the credible ones in both datasets. 

 

Figure 22. The number of credible and non-credible tweets in both datasets 

4.4.1 Manual credibility assessment 

In order to validate the accuracy and correctness of the framework for labeling credibility, 

three participants were recruited to evaluate the first 500 tweets of hurricane Florence dataset. This 

was useful to establish the ground truth for labeling. 

The results of the manual labeling is similar to the results of the automated labeling 

framework as shown in Figure 23 to 25.  
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Figure 23. A comparison between the results of the automated labeling and manual labeling 

by participant_1. 

 

Figure 24. A comparison between the results of the automated labeling and manual labeling 

by participant_2. 
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Figure 25. A comparison between the results of the automated labeling and manual labeling by 

participant_3. 

4.5 Credibility Classification Using Machine Learning 

Once credibility labels for each tweet were obtained, supervised machine learning was 

conducted to classify the credibility of the tweets.  

4.5.1 Experiments with different machine learning algorithms   

For both hurricane Florence and Michael datasets labeled using the automated labeling, the 

data was split into 70% training set and 30% test set. The training set was used to train the 

classification models, and the models were used to predict the classification of the test data. Table 

20 and Table 21 show the performance metrics of the algorithms used in the experiment.  For each 

the classification model the following features were used: 

features = hurricane_dataset['account_Verified','trusted_username', 

'tweet_contains_Q_E_chars', 'valid_tweet_length', 'tweet_has_slang', 
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'descr_has_slang', 'trusted_user_desc', 'user_following_ratio', 

 'tweet_engagement_ratio', 'valid_url', 'trusted_url_source', 

'Credibility'] 

All these features contain Boolean values (True, False), except for 'user_following_ratio', 

and 'tweet_engagement_ratio' which are Float values produced by the automated labeling.  

Table 20  

The credibility classification performance metrics for Hurricane Michael dataset 

Classifier Labels Precision Recall F-score Accuracy 

SVM Credible 0.93       0.85       0.89         

0.97 
Not Credible 0.98      0.99      0.98       

KNN 

Credible 0.93       0.93       0.93 

0.98 

Not Credible 0.99 0.99 0.99 

Decision Tree 

Credible 0.99 0.99 0.99  

0.99 
Not Credible 1.00 1.00 1.00 

Random Forest 

Credible 0.99 0.99 0.99 

0.99 

Not Credible 1.00 1.00 1.00 

Credible 0.92 0.35 0.51 0.92 
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Logistic 

Regression 

Not Credible 0.92 1.00  0.96 

 

Table 21  

Credibility Classification performance for Hurricane Florence dataset 

Classifier Labels Precision Recall F-score Accuracy 

SVM Credible 0.96       0.92      0.94         

0.98 
Not Credible 0.98      0.99      0.99       

KNN 

Credible 0.95       0.98       0.95 

0.98 

Not Credible 0.99 0.99 0.99 

Decision Tree 

Credible 1.00 0.99 1.00  

0.99 
Not Credible 1.00 1.00 1.00 

Random Forest 

Credible 1.00 1.00 0.99 

0.99 

Not Credible 1.00 1.00 1.00 

Logistic 

Regression 

Credible 0.92 0.54 0.68 

0.91 

Not Credible 0.92 0.99  0.95 
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 Form the Table 20 and Table 21, we can see that the classifiers used in the experiment 

have produced very high classification accuracies based on the given features. The results show 

that decision-based algorithms like Decision tree and Random Forest have the best performance. 

However, Logistic Regression has shown the worst performance with an accuracy of 92% for 

classifying hurricane Michael dataset, and 91% for Florence dataset.  The performance of the 

algorithms in classifying hurricane Florence dataset is higher than classifying hurricane Michael 

dataset. The reason may be that the dataset contains more tweets which means there are more 

instances in the training set and test set. 

Figure 26 to Figure 35 show the confusion matrix for each classification model. We can 

see specifically how many instances were classified correctly and how many were classified 

incorrectly. Based on these instances’ classification the Precision, Recall, F-score, and the overall 

accuracy were calculated. As we can see, all the models can correctly classify most of the tweets. 

 

Figure 26. Confusion matrix for KNN model for credibility classification for hurricane Michael 

dataset 
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Figure 27. Confusion matrix for KNN model for credibility classification for hurricane Florence 

dataset 

 

Figure 28. Confusion matrix for Decision Tree model for credibility classification for hurricane 

Michael dataset 
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Figure 29. Confusion matrix for Decision Tree model for credibility classification for hurricane 

Florence dataset 

 

Figure 30. Confusion matrix for Random Forest model for credibility classification for hurricane 

Michael dataset 
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Figure 31. Confusion matrix for Random Forest model for credibility classification for hurricane 

Florence dataset 

 

Figure 32. Confusion matrix for Logistic Regression model for credibility classification for 

hurricane Michael dataset 
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Figure 33. Confusion matrix for Logistic Regression model for credibility classification for 

hurricane Florence dataset 

 

Figure 34. Confusion matrix for SVM model for credibility classification for hurricane Michael 

dataset  
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Figure 35. Confusion matrix for SVM model for credibility classification for hurricane Florence 

dataset 

Next, False Acceptance Rate (FAR), False Rejection Rate (FRR), and Equal Error Rate 

(EER) were calculated as shown in Table 22 and Table 23. The Receiver Operating Characteristic 

(ROC) plots were drawn to compare the algorithms. The ROC curve plots the True Positive Rate 

(TPR) against the False Negative Rate (FNR). High sensitivity (TPR) means that the model has a 

good capacity to detect the positives instances. High specificity (1 - FNR) is shows that the model 

can detect most of the negative instances. 

We can summarize from table 22 and table 23 that decision tree and random forest models 

have the lowest ERR. Also, they show high sensitivity and specificity rates in comparison to other 

classifiers, Figure 38 to Figure 47. Also, Logistic regression shows the lowest accuracy with higher 

ERR, and low sensitivity and specificity rates for both datasets (Figure 36 and Figure 37). 
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Table 22 

Credibility Classification FAR, FRR, and EER rates for Hurricane Florence dataset 

Classifier Labels FAR FRR EER 

SVM Credible 0.007 0.078 0.024 

Not Credible 0.078 0.007 0.024 

KNN 

Credible 0.0098 0.055 0.018 

Not Credible 0.055 0.009 0.018 

Decision Tree 

Credible 0.0005 0.005 0.005 

Not Credible 0.005 0.0005 0.005 

Random Forest 

Credible 0.0005 0.010 0.002 

Not Credible 0.010 0.0005 0.002 

Logistic 

Regression 

Credible 0.008 0.45 0.14 

Not Credible 0.145 0.008 0.14 
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Table 23 

Credibility Classification FAR, FRR, and ERR rates for Hurricane Michael dataset 

Classifier Labels FAR FRR EER 

SVM Credible 0.15 0.008 0.031 

Not Credible 0.008 0.15 0.031 

KNN 

Credible 0.072 0.008 0.018 

Not Credible 0.008 0.072 0.018 

Decision Tree 

Credible 0.013 0.0014 0.013 

Not Credible 0.0014 0.014 0.013 

Random Forest 

Credible 0.013 0.0017 0.0058 

Not Credible 0.0017 0.013 0.005 

Logistic 

Regression 

Credible 0.64 0.004 0.30 

Not Credible 0.30 0.64 0.30 
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Figure 36. Credibility Classification FAR, FRR, and EER rates for Hurricane Florence dataset 

 

Figure 37. Credibility Classification FAR, FRR, and EER rates for Hurricane Michael dataset 
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Figure 38. KNN classifier ROC performance for Hurricane Florence dataset 

 

Figure 39. Decision Tree classifier ROC performance for Hurricane Florence dataset 
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Figure 40. Random Forest classifier ROC performance for Hurricane Florence dataset 

 

Figure 41. Logistic Regression classifier ROC performance for Hurricane Florence dataset 
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Figure 42. SVM classifier ROC performance for Hurricane Florence dataset 

 

Figure 43. KNN classifier ROC performance for Hurricane Michael dataset 
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Figure 44. Decision Tree classifier ROC performance for Hurricane Michael dataset 

 

Figure 45. Random Forest classifier ROC performance for Hurricane Michael dataset 
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Figure 46. Logistic Regression classifier ROC performance for Hurricane Michael dataset 

 

Figure 47. SVM classifier ROC performance for Hurricane Michael dataset 

4.5.2 Using manually labeled dataset as a test set  

In this experiment, manually labeled dataset was used as a test set. Features that was not 

included in manual labeling like ‘Valid_URL’ and ‘Trused_URL_source’ were removed. Then the 

performance of the classification models was evaluated to measure that correctness of the labels 

that was produced by the automated labeling framework. Only the first 500 tweets of the hurricane 
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dataset labeled using the automated labeling was used as training set, and the 500 manually labeled 

tweets were used as a test set. After that, machine learning classification was implemented to 

analyze and compare the outcomes of the classification model predictions. The training set 

contained the known output as ground truth, and the classification algorithms use this data for 

learning. Hence, the performance of the models was measured to highlight which model performed 

the best and produced optimal accuracy. Table 24 shows the overall classification accuracies of 

the algorithms used in the study.  For the classification model, the following features for the 

training dataset were used: 

features = hurricane_dataset ['account_verified','trusted_username', 

'tweet_contains_Q_E_chars', 'valid_tweet_length', 'tweet_has_slang', 

'descr_has_slang', 'trusted_user_desc', 'user_following_ratio', 

 'tweet_engagement_ratio', 'Credibility_Level' ] 

All these features contain Boolean values (True, False) except for 'user_following_ratio', 

and 'tweet_engagement_ratio' which contain Float values. Table 24 shows the performance metrics 

obtained for each classifier for classifying hurricane Florence.  

Table 24  

Credibility Classification performance for Hurricane Florence dataset 

Classifier Labels Precision Recall F-score Accuracy 

SVM Credible 0.90 0.80 0.89 0.89 

Not Credible 0.88 0.95 0.91 
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KNN 

Credible 0.90 0.90 0.90 

0.92 

Not Credible 0.93 0.93 0.93 

Decision Tree 

Credible 0.92 0.93 0.92 0.95 

Not Credible 0.96 0.96 0.96 

Random Forest 

Credible 0.95 0.98 0.97 

0.97 

Not Credible 0.99 0.97 0.98 

Logistic 

Regression 

Credible 0.93 

 

0.69       0.80         

0.87 

Not Credible 0.83       0.97       0.89 

 

Table 24 shows that data labeled by the automated labeling framework can be sufficient. 

The majority of the classifiers produced high accuracies.  The decision-based algorithms like 

Random Forest and Decision tree preformed best with the classification accuracies of 97% and 

95% respectively. However, Logistic Regression has shown the least given accuracy performance 

with an accuracy of 87% for classifying the manually labeled data.  

Figure 48 to Figure 52 show the confusion matrix for each classification model. We can 

see specifically how many instances were classified correctly and how many were classified 

incorrectly. Based on the confusion matrix, the Precision, Recall, F-score, and the overall accuracy 

were calculated.  
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Figure 48. Confusion matrix for KNN model for classifying manually labeled dataset 

 

Figure 49. Confusion matrix for Decision Tree model for classifying manually labeled dataset 
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Figure 50. Confusion matrix for Random Forest model for classifying manually labeled dataset 

 

Figure 51. Confusion matrix for Logistic Regression model for classifying manually labeled 

dataset 
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Figure 52. Confusion matrix for SVM model for classifying manually labeled dataset 

Next, each model’s performance in terms of False Acceptance Rate (FAR), False Rejection 

Rate (FRR), and Equal Error Rate (EER) are measured and shown in Table 25 and Figure 53. 

Figure 54 to Figure 58 show the ROC plots for the classifiers. 

Table 24 and Table 25 show that decision tree and random forest models have the highest 

accuracies and the lowest ERR. Also, Figure 54 to Figure 58 show that they have high sensitivity 

and specificity rates in comparison to other classifiers, Figure 54 to Figure 59. Also, Logistic 

regression has the lowest accuracy with higher ERR, and a low sensitivity and specificity rates. 
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Table 25  

The FAR, FRR, EER rates for classifying manually labeled dataset 

Classifier Labels FAR FRR EER 

SVM Credible 0.054 0.20 0.10 

Not Credible 0.20 0.054 0.10 

KNN 

Credible 0.065 0.10 0.078 

Not Credible 0.10 0.065 0.078 

Decision Tree 

Credible 0.054 0.067 0.066  

Not Credible 0.067 0.054 0.066 

Random Forest 

Credible 0.032 0.016 0.032 

Not Credible 0.016 0.032 0.032 

Logistic 

Regression 

Credible 0.032 0.30 0.076 

Not Credible 0.30 0.032 0.076 
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Figure 53. FAR, FRR, EER performance of the credibility classification models for classifying 

manually labeled dataset. 

 

 

Figure 54. KNN model ROC performance for classifying manually labeled dataset 
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Figure 55. Decision Tree model ROC performance for classifying manually labeled dataset 

 

Figure 56. Random Forest model ROC performance for classifying manually labeled dataset 
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Figure 57. Logistic Regression model ROC performance for classifying manually labeled dataset 

 

Figure 58. SVM model ROC performance for classifying manually labeled dataset 

4.6 Panic Trigger Identification and Classification 

 In order to identify panic triggers, there was the need to construct a dictionary that contains 

panic triggers and indicators, which will be looked up when investigating each tweet.  The 

generated dictionary consisted of over 150 panic triggers. This dictionary can be expanded by 
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adding more triggers for future research. The dictionary only contains triggers regarding hurricane 

disaster. 

 Next, after cleaning each tweet, the system searches for trigger within each tweet. Once a 

match is found, the tweet and all the triggers contained in it are stored. Then the tweet is classified 

credible or not credible, and a label for response to the triggers is assigned. Figure 59 shows an 

example of the end results of the panic trigger identification process output. 

 

Figure 59.  An example of the end result of Panic Trigger Identification. 

 Figure 60 and figure 61, show the overall percentage of tweets with different trigger 

response labels on hurricane Florence and hurricane Michael datasets. machine learning 

classification is conducted using the following features:  

Classification_features = dataframe [ 'processed_tweet', 'Credibility',  

'panic_triggers_found', 'trigger_response_label] 
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Figure 60. Percentage of tweets with different panic trigger response labels on hurricane 

Florence 

 

Figure 61. Percentage of tweets with different panic trigger response labels on hurricane Michael 
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4.6.1 Classifying tweets using TfidfVectorizer 

4.6.1.1 Hurricane Florence dataset 

After applying the word vectorizers to the dataset and acquiring the TfidfVectorizer 

features, these features were fed into machine learning algorithms to classify the tweets into three 

classes: “Mitigation”, “Mitigation_and_Correction”, and “No_triggers_Contiained”. Then the 

performance of the algorithms was compared. The accuracy, precision, recall, f score and ROC, 

FAR, FRR, and EER of the test results were calculated for each algorithm. A good classifier 

identifies a large amount of data in a short amount of time with high precision and recall scores 

and low EER. 

The dataset was split into 70% training set and 30% test set. The training set contains the 

known output and the classification algorithms learn on this data in order to classify test data. 

Table 26 shows the precision, recall, and f-score and the accuracy values for all the models using 

TfidVectorizer vectorization features for hurricane Florence dataset. It can be seen that all the 

models showed high precision, recall, f-score and the accuracy values for the tweets in the 

“No_Triggers_Contained” class. However, the precision, recall, and f-score values for the 

“Mitigation” and “Mitigation_and_Correction” classes are lower. This was because there was a 

much higher number of tweets that do not contain panic triggers in the training set. Figure 62 to 

Figure 65, show the confusion matrix for each classification model.  
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Table 26  

Classification performance metrics for hurricane Florence dataset using TfidfVectorizer features 

Classifier Labels Precision Recall F-score Accuracy 

KNN 

Mitigation and correction 0.71 0.50 0.49 

0.96 mitigation 0.72 0.45 0.52 

No trigger contained 0.98 1.00 0.99 

Decision Tree 

Mitigation and correction 0.62 0.67 0.64  

0.98 
mitigation 0.65 0.62 0.62 

No trigger contained 1.00 1.00 1.00 

Random Forest 

Mitigation and correction 0.66 0.62 0.63 

0.97 mitigation 0.73 0.50 0.60 

No trigger contained 0.99 1.00 0.99 

Logistic 

Regression 

Mitigation and correction 0.73 0.45 0.40 

0.96 mitigation 0.73 0.45 0.49 

No trigger contained 0.97 1.00 0.98 
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Figure 62.  Confusion matrix for KNN model for predicting panic trigger labels for hurricane 

Florence dataset using TfidfVectorizer 

 

Figure 63.  Confusion matrix for Decision Tree model for predicting panic trigger labels for 

hurricane Florence dataset using TfidfVectorizer 
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Figure 64.  Confusion matrix for Random Forest model for predicting panic trigger labels for 

hurricane Florence dataset using TfidfVectorizer 

 

Figure 65.  Confusion matrix for Logistic Regression model for predicting panic trigger labels 

on hurricane Florence dataset using TfidfVectorizer 
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Next, each model’s performance in terms of False Acceptance Rate (FAR), False Rejection 

Rate (FRR), and Equal Error Rate (EER)is measured and shown in Table 27 and Figure 66. Figure 

68 to Figure 70 show the ROC plots for each classifier.  

We can summarize from Table 26, Table 27, and Figure 66 that decision tree and random 

forest models show the highest accuracies and the lowest ERR. Figure 68 to Figure 70 show that 

they had high sensitivity and specificity rates in comparison to other classifiers. Logistic regression 

shows the lowest accuracy with higher ERR, and a low sensitivity and specificity rates. The 

performance of KNN is the least with higher EER rates. 

Table 27  

The FAR, FRR, and ERR rates for predicting panic trigger labels for Hurricane Florence dataset 

using TfidfVectorizer 

Classifier Labels FAR FRR ERR 

KNN 

Mitigation and correction 0.003 0.62 0.28 

mitigation 0.50 0.0 0.2 

No trigger contained 0.003 0.66 0.33 

Decision Tree 

Mitigation and correction 0.0 0.43 0.26 

mitigation 0.08 0.001 0.07 

No trigger contained 0.0 0.34 0.17 

Random Forest Mitigation and correction 0.0 0.5 0.16 
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mitigation 0.25 0.46 0.09 

No trigger contained 0.0 0.49 0.09 

Logistic 

Regression 

Mitigation and correction 0.0 0.43 0.06 

mitigation 0.40 0.0 0.04 

No trigger contained 0.0 0.41 0.07 

 

 

Figure 66.  The FAR, FRR, and ERR rates for predicting panic trigger labels for Hurricane 

Florence dataset using TfidfVectorizer 
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Figure 67. ROC plot for KNN model for predicting panic trigger labels for hurricane Florence 

dataset using TfidfVectorizer 

 

Figure 68. ROC plot for Decision Tree model for predicting panic trigger labels for hurricane 

Florence dataset using TfidfVectorizer 
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Figure 69. ROC plot for Random Forest model for predicting panic trigger labels for hurricane 

Florence dataset using TfidfVectorizer 

 

Figure 70. ROC plot for Logistic Regression model for predicting panic trigger labels for 

hurricane Florence dataset using TfidfVectorizer 
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4.6.1.2 Hurricane Michael dataset 

The same experiment was conducted on hurricane Michael dataset. Table 28 shows the 

precision, recall, and f-score, and accuracy values for all the models using TfidfVectorizer 

vectorization features for hurricane Michael dataset. It can be seen that all the models showed high 

precision, recall and f-score values for the tweets in the “No_Triggers_contained” class. However, 

the precision recall and f-score values for the “Mitigation” and “Mitigation_and_Correction” 

classes are lower. This was because there was a much higher number of tweets that do not contain 

panic triggers in the training set. Figure 71 to Figure 74, show the confusion matrix for each 

classification model.  

Table 28  

Classification performance metrics for hurricane Michael dataset using TfidfVectorizer features 

Classifier Labels Precision Recall F-score Accuracy 

KNN 

Mitigation and correction 0.57 0.45 0.45 

0.94 mitigation 0.64 0.50 0.55 

No trigger contained 0.97 1.00 0.98 

Decision Tree 

Mitigation and correction 0.71 0.62 0.65  

0.96 
mitigation 0.64 0.77 0.72 

No trigger contained 1.00 1.00 1.00 

Random Forest Mitigation and correction 0.73 0.60 0.63 0.96 
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mitigation 0.72 0.75 0.74 

No trigger contained 0.99 1.00 1.00 

Logistic 

Regression 

Mitigation and correction 0.64 0.35 0.55 

0.93 mitigation 0.65 0.50 0.40 

No trigger contained 0.95 1.00 0.98 

 

 

Figure 71. Confusion matrix for KNN model for predicting panic trigger labels for hurricane 

Michael dataset using TfidfVectorizer 
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Figure 72. Confusion matrix for Decision Tree model for predicting panic trigger labels for 

hurricane Michael dataset using TfidfVectorizer 

 

Figure 73. Confusion matrix for Random Forests model for predicting panic trigger labels for 

hurricane Michael dataset using TfidfVectorizer 
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Figure 74. Confusion matrix for Logistic Regression model for predicting panic trigger labels for 

hurricane Michael dataset using TfidfVectorizer 

Next, each model’s performance in terms of False Acceptance Rate (FAR), False Rejection 

Rate (FRR), and Equal Error Rate (EER) is measured and shown in Table 29 and Figure 75. Table 

28, Table 29, and Figure 75 show that decision tree and random forest models show the highest 

accuracies and the lowest ERR. Figure 76 to Figure 79 show that they had high sensitivity and 

specificity rates in comparison to other classifiers, and Logistic regression had the lowest accuracy 

with higher ERR, and a low sensitivity and specificity rates. The KNN performance was the least 

with higher EER rates.  

Table 29 

 The FAR, FRR, and ERR rates for predicting panic trigger labels for Hurricane Michael dataset 

using TfidfVectorizer 

Classifier Labels FAR FRR ERR 
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KNN 

Mitigation and correction 0.015 0.40 0.05 

mitigation 0.21 0.0 0.05 

No trigger contained 0.01 0.5 0.16 

Decision Tree 

Mitigation and correction 0.017 0.19 0.02 

mitigation 0.0 0.001 0.001 

No trigger contained 0.01 0.3 0.05 

Random Forest 

Mitigation and correction 0.01 0.25 0.03 

mitigation 0.04 0.001 0.008 

No trigger contained 0.01 0.40 0.04 

Logistic 

Regression 

Mitigation and correction 0.01 0.25 0.03 

mitigation 0.05 0.0 0.02 

No trigger contained 0.01 0.4 0.05 
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Figure 75. The FAR, FRR, and ERR rates for predicting panic trigger labels for Hurricane 

Michael dataset using TfidfVectorizer 

 

Figure 76. ROC plot for KNN model for predicting panic trigger labels for hurricane Michael 

dataset using TfidfVectorizer 
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Figure 77. ROC plot for Decision Tree model for predicting panic trigger labels for hurricane 

Michael dataset using TfidfVectorizer 

 

Figure 78. ROC plot for Random Forest model for predicting panic trigger labels for hurricane 

Michael dataset using TfidfVectorizer 
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Figure 79. ROC plot for Logistic Regression model for predicting panic trigger labels for 

hurricane Michael dataset using TfidfVectorizer 

4.6.2 Classifying panic trigger tweets using CountVectorizer 

4.6.2.1 Hurricane Florence dataset 

After applying the word vectorizers to the dataset and acquiring the CountVectorizer 

features, these features were fed into machine learning algorithms for classification, then a 

comparison of the performance of the algorithms was conducted. The accuracy, precision, recall, 

f score ROC, FAR, FRR, and EER of the test results were calculated for each algorithm. A good 

classifier identifies a large amount of data in a short amount of time with high precision and recall 

scores and low EER. 

The dataset was split into 70% training set and 30% test set. The training set contains the 

known output and the classification algorithms learn on this data in order to classify test data. 

Table 30 shows the precision, recall, f-score, and accuracy values for all the models using 

CountVectorizer features for hurricane Florence dataset. It can be seen that all the models showed 

high precision, recall and f-score values for the tweets in the “No_Triggers_Contained” class. 
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However, the precision, recall and f-score values for the “Mitigation” and 

“Mitigation_and_Correction” classes are lower. This was because there was a much higher number 

of tweets that do not contain panic triggers in the training set. Figure 80 to Figure 83, show the 

confusion matrix for each classification model.  

Table 30  

Classification performance metrics for hurricane Florence dataset using CountVectorizer 

features 

Classifier Labels Precision Recall F-score Accuracy 

KNN 

Mitigation and correction 0.69 0.43 0.53 

0.97 Mitigation 0.67 0.40 0.50 

No trigger contained 0.98 1.00 0.90 

Decision Tree 

Mitigation and correction 0.64 0.65 0.65 0.98 

Mitigation 0.68 0.60 0.64 

No trigger contained 1.00 1.00 1.00 

Random Forest 

Mitigation and correction 0.73 0.59 0.64 

0.97 Mitigation 0.75 0.59 0.63 

No trigger contained 0.99 1.00 0.99 

Mitigation and correction 0.73 0.60 0.66 0.97 
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Logistic 

Regression 

Mitigation 0.73 0.55 0.63 

No trigger contained 0.99 1.00 0.99 

 

 

Figure 80. Confusion matrix for KNN model for predicting panic trigger labels on hurricane 

Florence dataset using CountVectorizer 
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Figure 81. Confusion matrix for Decision Tree model for predicting panic trigger labels on 

hurricane Florence dataset using CountVectorizer 
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Figure 82. Confusion matrix for Random Forest model for predicting panic trigger labels on 

hurricane Florence dataset using CountVectorizer 

 

Figure 83. Confusion matrix for Logistic Regression model for predicting panic trigger labels on 

hurricane Florence dataset using CountVectorizer 

Next, each model’s performance in terms of False Acceptance Rate (FAR), False Rejection 

Rate (FRR), and Equal Error Rate (EER) is measured and shown in Table 30 and Figure 84. Figure 

85 to Figure 88, show the ROC plots for each classifier.   

Table 30, Table 31, and Figure 84 show that decision tree and random forest models show 

the highest accuracies and the lowest ERR. Also, Figure 85 to Figure 88 show that they had high 

sensitivity and specificity rates in comparison to other classifiers, Figure 86 to Figure 89. Logistic 

regression shows the lowest accuracy, and higher ERR with a low sensitivity and specificity rates 

on datasets. The performance of KNN is the least with higher EER. 
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Table 31  

The FAR, FRR, and ERR rates for predicting panic trigger labels for Hurricane Florence dataset 

using CountVectorizer 

Classifier Labels FAR FRR ERR 

KNN 

Mitigation and correction 0.004 0.57 0.26 

mitigation 0.42 0.0 0.29 

No trigger contained 0.004 0.63 0.29 

Decision Tree 

Mitigation and correction 0.006 0.40 0.23 

mitigation 0.06 0.0 0.05 

No trigger contained 0.008 0.34 0.16 

Random Forest 

Mitigation and correction 0.004 0.45 0.08 

mitigation 0.24 0.0 0.03 

No trigger contained 0.005 0.46 0.10 

Logistic 

Regression 

Mitigation and correction 0.08 0.46 0.08 

mitigation 0.23 0.0 0.04 

No trigger contained 0.005 0.41 0.10 
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Figure 84. The FAR, FRR, and ERR rates for predicting panic trigger labels for Hurricane 

Florence dataset using CountVectorizer 
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Figure 85. ROC plot for KNN model for predicting panic trigger labels for hurricane Florence 

dataset using CountVectorizer 

 

Figure 86. ROC plot for Decision Tree model for predicting panic trigger labels for hurricane 

Florence dataset using CountVectorizer 

 

Figure 87. ROC plot for Random Forest model for predicting panic trigger labels for hurricane 

Florence dataset using CountVectorizer  
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Figure 88. ROC plot for Logistic Regression model for predicting panic trigger labels for 

hurricane Florence dataset using CountVectorizer 

4.6.2.2 Hurricane Michael dataset 

After applying the word vectorizers to the dataset and acquiring the CountVectorizer 

features, these features were fed into machine learning algorithms for, then a comparison of the 

performance of the algorithms was conducted. The accuracy, precision, recall, f score and ROC, 

FAR, FRR, and EER of the test results were calculated. A good classifier identifies a large amount 

of data in a short amount of time with high precision and recall scores and low EER. 

The dataset was split into 70% training set and 30% test set. The training set contains the 

known output and the classification algorithms learn on this data in order to classify test data. 

Table 32 shows the precision, recall, f score and the overall classification accuracies of the 

algorithms used in the experiment using CountVectorizer features.  It can be seen that all the 

models showed high precision, recall and f-score values for the tweets in the 

“No_Triggers_Contained” class. However, the precision recall and f-score values for the 

“Mitigation” and “Mitigation_and_Correction” classes are lower.  This was because there was a 
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much higher number of tweets that do not contain panic triggers in the training set. Figure 89 to 

Figure 92 show the confusion matrix for each classification model.  

Table 32  

Classification performance for hurricane Michael dataset using CountVectorizer features 

Classifier Labels Precision Recall F-score Accuracy 

KNN 

Mitigation and correction 0.60 0.59 0.59 

0.95 Mitigation 0.63 0.50 0.53 

No trigger contained 0.98 0.98 0.98 

Decision Tree 

Mitigation and correction 0.70 0.66 0.70  

0.97 
Mitigation 0.70 0.80 0.71 

No trigger contained 1.00 1.00 1.00 

Random Forest 

Mitigation and correction 0.69 0.75 0.72 

0.96 Mitigation 0.69 0.75 0.72 

No trigger contained 0.99 1.00 1.00 

Logistic 

Regression 

Mitigation and correction 0.75 0.65 0.69 

0.96 Mitigation 0.70 0.63 0.68 

No trigger contained 0.99 1.00 1.00 
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Figure 89.  Confusion matrix for KNN model for predicting panic trigger labels on hurricane 

Michael dataset using CountVectorizer 
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Figure 90.  Confusion matrix for Decision Tree model for predicting panic trigger labels on 

hurricane Michael dataset using CountVectorizer 

 

Figure 91.  Confusion matrix for Random Forests model for predicting panic trigger labels on 

hurricane Michael dataset using CountVectorizer 
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Figure 92.  Confusion matrix for Logistic Regression model for predicting panic trigger labels 

on hurricane Michael dataset using CountVectorizer 

Next, each model’s performance in terms of False Acceptance Rate (FAR), False Rejection 

Rate (FRR), and Equal Error Rate (EER) is measured and shown in Table 33 and Figure 93. Figure 

94 to Figure 97 show the ROC plots for each classification model. 

We can summarize from Table 31 and Figure 93 that decision tree and random forest 

models show the highest accuracies and the lowest ERR.   Figure 94 to Figure 97 show that they 

had high sensitivity and specificity rates in comparison to other classifiers. Logistic regression 

shows the lowest accuracy with high ERR and a low sensitivity and specificity rates. The KNN 

performance is the least with high EER rates. 

Table 33  

The FAR, FRR, and ERR rates for predicting panic trigger labels for Hurricane Michael dataset 

using CountVectorizer 

Classifier Labels FAR FRR ERR 

KNN 

Mitigation and correction 0.015 0.48 0.051 

Mitigation 0.21 0.001 0.05 

No trigger contained 0.015 0.55 0.16 

Decision Tree 

Mitigation and correction 0.017 0.19 0.026 

Mitigation 0.0 0.0013 0.0013 

No trigger contained 0.010 0.35 0.050 
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Random Forest 

Mitigation and correction 0.016 0.25 0.038 

Mitigation 0.048 0.001 0.008 

No trigger contained 0.013 0.43 0.048 

Logistic 

Regression 

Mitigation and correction 0.015 0.25 0.31 

Mitigation 0.058 0.0 0.02 

No trigger contained 0.25 0.031 0.057 

 

 

Figure 93. The FAR, FRR, and ERR rates for predicting panic trigger labels for Hurricane 

Michael dataset using CountVectorizer 



127 

 

 

 

Figure 94. ROC plot for KNN model for predicting panic trigger labels for hurricane Michael 

dataset using CountVectorizer 

 

Figure 95. ROC plot for Decision Tree model for predicting panic trigger labels for hurricane 

Michael dataset using CountVectorizer 
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Figure 96. ROC plot for Random Forest model for predicting panic trigger labels for hurricane 

Michael dataset using CountVectorizer 

 

Figure 97. ROC plot for Logistic Regression model for predicting panic trigger labels for 

hurricane Michael  dataset using CountVectorizer 

To summarize the results for classifying panic trigger response labels, overall, using both 

TfidfVectorizer and CountVectorizer features to train the classifiers led to high accuracies and 

lower FAR, FRR, EER rates on both hurricane Florence and Michael datasets. The experiment 
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shows that classifiers using CountVectorizer features generate better accuracies and lower FAR, 

FRR, EER rates. Also, Decision Tree and Random Forest have the highest performance and lowest 

EER rate especially when using CountVectorizer features.  
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CHAPTER 5 

Conclusion and Future Research 

Twitter has become an effective platform for crowdsourcing and spreading critical 

information. Any maliciously intended activity, like spreading rumors on sensitive information 

needs to be detected and curbed from spreading immediately by emergency responders. Incorrect 

information can lead to chaos and panic among people around the disaster locations. Emergency 

responders need to have reliable knowledge about a disaster and its impact in a timely matter in 

order to take actions on preparation, evacuation, and recovery. However, it can be highly time and 

resource consuming for human to manually identify disaster-related tweets, assess the credibility 

of the tweets, and identify tweet that may trigger panic. In this research, a framework was 

developed to collect disaster-related tweets, categorize the collected data into disaster-related and 

not disaster-related tweets, assess the credibility and identify tweets that may trigger panic. The 

primary goals are to provide an approach in which Twitter data on disasters can be collected and 

classified in a timely manner to assist disaster managers and first responders. 

The proposed Framework was used to collect tweets related to Hurricane Florence and 

Hurricane Michael from Twitter API. The datasets created will be made available for researchers 

who seek to investigate different aspects of these disaster events. This research first presented a 

labeling framework which automatically labeled tweets collected during hurricane disasters into 

disaster-related or not disaster-related. This labeling framework could be used to label tweets on 

future hurricane disasters according to their relevance to the disaster and would speed up the 

annotation process. Secondly, the framework implemented tweet classification using 

TfidfVectorizer and CountVectorizer features in order to determine which of these word 

vectorizers would provide better features for learning-based classifiers to produce the most 
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accurate classification. Further, for the learning-based system, a comparison was conducted 

between supervised machine learning classifiers. For the comparison, the performance of each 

classifier from the aspects of accuracy, precision, recall, and f-score were measured. Then the 

credibility of the disaster-related tweets was evaluated based on user-based features and content-

based features. For each tweet, attributes like text messages and associated URLs, number of user 

followers, number of likes, and hashtags etc. were extracted in order to measure the credibility and 

trustworthiness of disaster-related tweets. The credibility evaluation relied on a 10-point scoring 

system to determine the level of tweet credibility. Supervised machine learning methods were 

implemented to predict the credibility of the tweets and model. A comparison between the 

classifiers regarding their performance was conducted. Finally, this research presented method to 

detect panic triggers in disaster-related tweet. Then learning-based classifiers were implemented 

to classify the tweets according to the response to panic triggers using two texts vectorizers: 

CountVectorizer, and TfidfVectorizer. Then the performance of the algorithms was compared. 

The experimental results show Automated annotation can be sufficient for labeling in tweet 

as disaster-related and not disaster-related using predefined dictionary and as credible and not 

credible and Credibility using user-based and content-based features. It is possible to identify 

disaster-related tweets with high precision while maintaining fairly high recall especially when 

using CountVectorizer features. For classifying tweets into disaster-related and not disaster-

related, using CountVectorizer word vectorizer has produced higher accuracies (98% on average) 

and low false rates especially when using Decision Tree and Random Forest models. For 

classifying tweet in terms of credibility, Random Forest and Decision Tree models have given the 

best predictions with high accuracies (96% on average) and the low false rates. Moreover, panic 

triggers can be automatically detected and classified with their corresponding tweet credibility. 
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For the classification of the tweets with panic triggers, Random Forest and Decision Tree have 

given the best predictions with high accuracies (95% on average) when using CountVectorizer 

features, and low false rates.  

5.1 Future Research 

 This research can be extended with the following future research:  

Data collection. Due to the limitation of Twitter API and the costly membership to collect data, 

only 26,000 tweets were collected. Future work will include collecting more disaster-related 

tweets, for example, one million tweets. 

Image Recognition. The datasets collected do not include image data. Future work will include 

and analyzing credibility of images spread during natural disasters using machine learning 

methods.  

Predicting Credibility Based on Social Network Features. User’s behavior on Twitter, as well 

as, understand the user’s sentiment will be analyzed and used as features to predict the credibility 

disaster-related tweets. 

Panic triggers. The panic trigger terms can be expanded to cover a wide range of terms that are 

commonly used during hurricane disasters specifically, and other natural disasters generally.  

Real-time Disaster-related Tweet Analysis. Future work will include analyzing of tweets and 

identifying panic triggers in real-time and generating reports to the emergency responders. This 

would be helpful for the emergency responders to respond to users and handle disasters timely.  
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