
North Carolina Agricultural and Technical State University North Carolina Agricultural and Technical State University

Aggie Digital Collections and Scholarship Aggie Digital Collections and Scholarship

Dissertations Electronic Theses and Dissertations

2019

NuNet: A Deep Learning Approach for U.S. Traffic Sign NuNet: A Deep Learning Approach for U.S. Traffic Sign

Recognition Recognition

Emmanuel Borkor Nuakoh
North Carolina Agricultural and Technical State University

Follow this and additional works at: https://digital.library.ncat.edu/dissertations

Recommended Citation Recommended Citation
Nuakoh, Emmanuel Borkor, "NuNet: A Deep Learning Approach for U.S. Traffic Sign Recognition" (2019).
Dissertations. 153.
https://digital.library.ncat.edu/dissertations/153

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Aggie
Digital Collections and Scholarship. It has been accepted for inclusion in Dissertations by an authorized
administrator of Aggie Digital Collections and Scholarship. For more information, please contact iyanna@ncat.edu.

https://digital.library.ncat.edu/
https://digital.library.ncat.edu/dissertations
https://digital.library.ncat.edu/etds
https://digital.library.ncat.edu/dissertations?utm_source=digital.library.ncat.edu%2Fdissertations%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digital.library.ncat.edu/dissertations/153?utm_source=digital.library.ncat.edu%2Fdissertations%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:iyanna@ncat.edu

NuNet: A Deep Learning Approach for U.S. Traffic Sign Recognition

Emmanuel Borkor Nuakoh

North Carolina A&T State University

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department: Computer Science

Major: Computer Science

Major Professor: Dr. Kaushik Roy

Greensboro, North Carolina

2019

ii

The Graduate College

North Carolina Agricultural and Technical State University

This is to certify that the Doctoral Dissertation of

Emmanuel Borkor Nuakoh

has met the dissertation requirements of

North Carolina Agricultural and Technical State University

Greensboro, North Carolina

2019

Approved by:

Dr. Kaushik Roy
Major Professor

Dr. Jinsheng Xu
Committee Member

Dr. Xiaohong Yuan
Committee Member & Department Chair

Dr. Evelyn Sowells-Boone
Committee Member

Dr. Albert Esterline
Committee Member

Dr. Clay S. Gloster, Jr.
Interim Dean, The Graduate College

iii

© Copyright by

Emmanuel Borkor Nuakoh

2019

iv

Biographical Sketch

Emmanuel Borkor Nuakoh was born in Bibiani in the Western Region of Ghana. He

completed Ghana National College in 2004 after which he entered the University of Mines and

Technology (UMAT) to pursue his Bachelor of Science in Geological Engineering in 2007. After

receiving his Bachelor’s degree in 2011, Emmanuel worked in the mining industry in Ghana,

Burkina Faso, and Niger as an exploration geologist before starting his master’s program in 2013.

In December of 2014, he received his master’s degree in Computer Science from North Carolina

Agricultural and Technical State University (NCAT) and is due to receive his doctorate in

December 2019 at the same institution.

Whiles pursuing his Ph.D., Emmanuel got introduced into entrepreneurship and founded

SoftOffice Inc. in September of 2018. He developed a passion for entrepreneurship after being

accepted into the National Science Foundation Innovation-Corps (NSF I-Corps) program at the

University of North Carolina at Greensboro (UNCG); which ran concurrently with a 5-week

accelerator program on NCAT campus called Aggie Accelerator. After successful completion

from the I-Corps node program, he was accepted into the National I-Corps program called the I-

Corps Teams – National Innovation Network (NIN) to perform customer discovery.

v

Dedication

This work is dedicated to my mom Mrs. Comfort Nkrumah for her support, prayers, and

guidance throughout my life, my dad, Mr. Philip Nuako, for his support and encouragement, my

siblings, Kyei, Ebenezer, Kwabena, Evelyn and Serwaa for their encouragements and moral

support, and to my daughter Ama Nkrumah. Love you and God bless you!

vi

Acknowledgments

 I would like to acknowledge God for His protection and guidance. A special thank you to

my professor, Dr. Kaushik Roy for his patience and guidance. I would also like to send a special

thanks to my dissertation committee members, Dr. Albert Esterline, Dr. Jinsheng Xu and Dr.

Dorothy Yuan for your unwavering support towards the completion of this work. Last but not least,

thanks to Kelly Morgan, director of research communications for her support during this journey.

vii

Table of Contents

Table of Contents .. vii

List of Figures .. ix

List of Tables .. xii

Abstract ... 1

CHAPTER 1 Introduction... 2

1.1 Background and Motivation .. 2

1.2 Problem Statement and Hypothesis... 4

1.3 Research Questions ... 5

1.4 Contribution .. 5

CHAPTER 2 Literature Review ... 7

2.1 Background and Overview of Deep Learning... 7

2.2 Traffic Sign Recognition with Deep Learning .. 8

2.3 Traffic Sign Recognition with Traditional Machine Learning.. 13

CHAPTER 3 Methodology ... 19

3.1 Approach ... 19

3.2 Data Preparation and Exploration. .. 20

3.2.1 LISA Dataset .. 20

3.2.2 Cyber Identity Biometrics Traffic Sign (CIB TS) Dataset ... 28

3.3 VGGNet Architecture ... 31

3.4 VGGNet Feature Extraction .. 32

3.5 Results of Training VGGNet on LISA Dataset ... 35

3.6 Result of Training VGGNet on CIB TS V1 Dataset ... 38

3.7 Discussion ... 41

CHAPTER 4 NuNet Model Architecture and Results .. 43

4.1 NuNet Architecture ... 43

4.2 NuNet Feature Extraction.. 45

viii

4.3 NuNet Results on LISA Dataset ... 48

4.3.1 Result Training NuNet on LISA Dataset .. 48

4.4 NuNet Results on CIB TS V1 Dataset .. 51

4.4.1 Result Training NuNet on the CIB Dataset .. 51

4.4.2 Result Training NuNet on the 20/80 CIB Dataset Split ... 53

4.5 Discussion ... 55

CHAPTER 5 Conclusion and Future Directions .. 56

References ... 59

Appendix A ... 65

Appendix B ... 93

Appendix C ... 99

Appendix D ... 105

ix

List of Figures

Figure 1.1. Multi-Stage Convolution Neural Network Architecture .. 4

Figure 3.1. Traffic Sign Data Distribution per Class in the Entire LISA Dataset 25

Figure 3.2. Traffic Sign Distribution per Class in Training Set LISA Dataset 26

Figure 3.3. Traffic Sign Distribution per Class in validation Set LISA Dataset 27

Figure 3.4. Sample Image in Each Class in LISA Dataset ... 28

Figure 3.5. Sample Image in Each Class in CIB Dataset ... 29

Figure 3.6. Traffic Sign Distribution per Class of whole CIB Dataset .. 29

Figure 3.7. Traffic Sign Distribution per Class in Training Set of CIB Dataset 30

Figure 3.8. Traffic Sign Distribution per Class in validation Set of CIB Dataset 30

Figure 3.9. VGGNet Architecture1 ... 32

Figure 3.10. Features Extracted from First Layer of the First Stage of VGGNet Model 33

Figure 3.11. Features Extracted from First Layer of the Second Stage of VGGNet Model 34

Figure 3.12. Features Extracted from First Layer of the Third Stage of VGGNet Model 35

Figure 3.13. A Plot of Training and Validation Accuracies for VGGNet on LISA dataset 36

Figure 3.14. A Plot of Training and Validation Losses for VGGNet on LISA dataset................ 36

Figure 3.15. Confusion Matrix of VGGNet Model after Training on LISA Dataset 38

Figure 3.16. A Plot of Training and Validation Accuracies for VGGNet on CIB Dataset 39

Figure 3.17. A Plot of Training and Validation Losses for VGGNet on CIB Dataset 40

Figure 3.18. Confusion Matrix of Model after Training VGGNet on CIB Dataset 41

Figure 4.1.NuNet Model Architecture with a Single Layer ... 44

Figure 4.2. NuNet Model Architecture with Two Layers .. 44

Figure 4.3. NuNet Model Architecture with Three Layers .. 45

x

Figure 4.4. Features Extracted from the First Layer of the NuNet Model 46

Figure 4.5. Features Extracted from the Second Layer of the NuNet Model 47

Figure 4.6. Features Extracted from the Third Layer of the NuNet Model 48

Figure 4.7. A plot of Training and Validation Accuracies for NuNet on LISA 49

Figure 4.8. A Plot of Training and Validation sets Losses for NuNet on LISA 49

Figure 4.9. Confusion Matrix of NuNet Model on LISA Dataset .. 50

Figure 4.10. A Plot of Training and Validation Accuracies for the CIB Dataset 51

Figure 4.11. A Plot of Training and Validation Losses for the CIB Dataset 52

Figure 4.12. Confusion Matrix of Model after Training on CIB Dataset..................................... 53

Figure 4.13. A Plot of Training and Validation Accuracies for CIB Dataset split at 20/80 54

Figure 4.14. A Plot of Training and Validation Losses for CIB Dataset split at 20/80 54

Figure B.1. Epoch 1 Confusion Matrix for VGGNet Model on LISA Dataset 93

Figure B.2. Epoch 100 Confusion Matrix for VGGNet Model on LISA Dataset 94

Figure B.3. Epoch 200 Confusion Matrix for VGGNet Model on LISA Dataset 95

Figure B.4. Epoch 300 Confusion Matrix for VGGNet Model on LISA Dataset 96

Figure B.5. Epoch 400 Confusion Matrix for VGGNet Model on LISA Dataset 97

Figure B.6. Epoch 500 Confusion Matrix for VGGNet Model on LISA Dataset 98

Figure C.7. Epoch 1 Confusion Matrix for NuNet Model on LISA Dataset 99

Figure C.8. Epoch 100 Confusion Matrix for NuNet Model on LISA Dataset 100

Figure C.9. Epoch 200 Confusion Matrix for NuNet Model on LISA Dataset 101

Figure C.10. Epoch 300 Confusion Matrix for NuNet Model on LISA Dataset........................ 102

Figure C.11. Epoch 400 Confusion Matrix for NuNet Model on LISA Dataset........................ 103

Figure C.12. Epoch 500 Confusion Matrix for NuNet Model on LISA Dataset........................ 104

xi

Figure D.13. Epoch 1 Confusion Matrix for NuNet Model on CIB Dataset.............................. 105

Figure D.14. Confusion Matrix for NuNet Model on CIB Dataset for 100th 106

xii

List of Tables

Table 3.1. Super Class and Corresponding Classes .. 21

Table 4.1. Comparison between SVM, NuNet, and VGGNet trained on LISA and CIB Datasets.

 ... 55

Table A.1. Loss and Accuracy Values for Training and Validation ... 65

1

Abstract

Traffic Sign Recognition System (TSRS) is an Advanced Driver Assistance System

(ADAS) that helps drivers with perception to ensure road safety. Two main activities are

performed in TSRS: detection and classification. The detection aspect involves localizing traffic

signs in an image frame while the classification aspect deals with recognizing the class of the

detected sign. Research in this area has mainly focused on German, Belgium, Sweden, Chinese,

and several other datasets using different approaches. However, limited research has been

conducted using U.S. traffic signs; the ones that have been conducted are mostly concerned with

speed limit signs recognition. This work expands the classification of U.S. traffic signs to cover

all the publicly available classes.

Convolutional Neural Networks (CNN) have shown a lot of success on European datasets.

One key issue with CNN is that it requires a lot of data for training. This research introduces a new

model, called NuNet, with a new dataset, CIB TS V1. The model is used to classify the CIB dataset

and LISA benchmark (Møgelmose et al., 2012). Results from running NuNet on LISA and CIB

are then compared with those of a modified VGGNet. The new model trains and converges faster

than VGGNet and is adaptable to both large and sparse datasets. Experiments conducted with the

VGGNet show training and validation accuracies of 99.93% and 99.83, respectively on the LISA

dataset. However, it overfits on the CIB dataset with training and validation accuracies of 100%

and 96.92%, respectively. This is because the deep net cannot generalize well on small datasets

and thereby learns noise. NuNet, on the other hand, generalizes well on smaller datasets recording

accuracies of 99.73% and 99.83% on LISA for the training and validation sets respectively, and

100% for both training and validation sets on the CIB dataset. NuNet trains for 4 hours on LISA

and an hour on CIB whereas VGGNet trains for 23 hours on LISA and 8 hours on CIB.

2

CHAPTER 1

Introduction

Traffic sign recognition systems (TSRS) consist of two activities; detecting and

recognizing traffic signs (Escalera, A. d. l., et al 1997). Detecting the sign deals with localizing a

traffic sign in an image frame with background noise using shape, color or form. Recognition of a

detected sign has to do with classifying the detected sign into a given class of traffic signs. This

work focuses on the recognition aspect of the TSRS. The U.S. traffic sign has received little

research attention compared to European traffic signs. Most of the research that has been

conducted with U.S. traffic signs have focused mainly on speed limit signs or broader categories

such as warning signs, prohibitory signs or speed limit signs. This work expands the boundaries

of previous research to classify all traffic signs in the publicly available LISA dataset (Møgelmose

et al., 2012). A new dataset is also introduced for the purpose of this work.

1.1 Background and Motivation

Research that has been conducted in the area of traffic sign recognition has mostly focused

on using European traffic signs, such as the German Traffic Sign Recognition Benchmark

(GTSRB) (Stallkamp et al., 2011) and the Belgium Traffic Sign Classification (BTSC) (Timofte

et al., 2011) datasets. However, limited research has been conducted on US traffic signs (Li, Y., et

al. 2016). Most research on U.S. traffic signs relies on speed signs recognition or broader

categories of traffic signs such as speed signs, prohibitory signs, and warning signs. This research

offers a more granular classification of U.S. traffic signs to cover publicly available classes

including the LISA TS, LISA Extension benchmarks, and a newly introduced dataset, CIB TS V1

(Center for Biometrics Traffic Sign Volume 1) benchmark.

3

Several methods have been successfully applied in TSRS and shown outstanding results.

Convolutional Neural Networks (CNN) is one of the methods that has yielded high success in

classifying traffic signs. This deep learning methodology has been tested exhaustively on European

traffic signs; winning awards in the GTSRB competition (Stallkamp et al., 2011). However, little

research has been conducted using deep learning approaches to classify U.S. traffic signs. This

research proposes a CNN model to classify U.S. traffic signs.

The research first adopted a publicly available deep learning model, the VGGNet, to

classify LISA TS benchmark, a publicly available U.S. traffic signs dataset. VGGNet is a deep

CNN with 16 layers. It was developed by the Visual Geometry Group (VGG) from the University

of Oxford, (Simonyan & Zisserman, 2015). It recorded an error of 7.5% during validation and

7.4% in testing on GTSRB. The model is improved with the multi-stage architecture proposed by

(Sermanet & LeCun 2011), which helps VGGNet to generalize well with the dense network over

multiple scales (Sermanet et al., 2013a). The VGGNet 16 used in this research adopts a multi-stage

architecture as shown in Figure 1.1.

Sermanet & LeCun (2011) introduced a CNN architecture that used multi-scale features to

feed the output of the first stage after pooling operation of the second stage as shown in Figure 1.2.

The application of a second subsampling with the output from the first stage was reported to

increase the accuracy of the network. This work is an application of a combination of their research

methodology (Simonyan & Zisserman, 2015) to classify the U.S. traffic sign dataset. This was to

develop a deep neural network to classify not only U.S. speed limit signs but extended to other

U.S. traffic signs as contained in the LISA TS dataset. A modified version of the GitHub code1

4

used in the initial experiment was reported by Nuakoh et. al., (2019) and formed an important

motivation for the success of this research.

 Figure 1.1. Multi-Stage Convolution Neural Network Architecture

1.2 Problem Statement and Hypothesis

The application of traffic sign recognition systems in ADAS has seen some commercial

success with limited functionality (Jurišić et al., 2015). The limitation is not only linked to the

number of supported traffic signs, but also the areas of the road network where they are most

effective. This leaves the problem half-solved and to fully solve it, a system that is robust for all-

weather, lighting and physical sign conditions including occlusions and accommodating different

datasets must be developed. Whereas this is a generally big problem, it can be tackled discretely;

starting first with extending the number of signs current systems support.

The Vienna Convention on Road Signs and Signals offers a broad category of traffic signs.

This coupled with several modifications for individual countries makes it difficult to develop a

multi-purpose TSRS that is adaptable in different countries. Also, the lack of standardized datasets

for training and testing models poses another problem in this area of research, making it quite

difficult to compare the performance of new models with old ones.

5

Unbalanced traffic sign datasets also present another layer of difficulty for developing TSR

systems using deep learning. Machine learning depends on lots of data for training the algorithm

to perform better on new data, however, most traffic sign datasets are porous and need to be

augmented in other ways to balance them. While data augmentation offers some improvement, it

is rather imperative to have a dataset that comes somehow already balanced, for real-world

applications.

The research hypotheses are as follows:

• Deep neural networks with fewer layers train faster than ones with many layers, however, they

do not generalize well.

• Increasing the number of layers improves the model performance on sparse datasets if the

increase can be delayed until model performance stalls.

• The proposed architecture with fewer layers trains faster than VGGNet.

1.3 Research Questions

• Is there a way to improve the performance of a deep learning model while improving the speed

at the same time?

• Can a deep learning architecture be developed that performs well on sparse datasets?

1.4 Contribution

The contributions of this research are three-fold:

• The main contribution of this work is the development of a new deep learning model

architecture (NuNet) that was used to classify U.S. traffic signs presented in the LISA

benchmark.

• The research uses VGGNet, an already existing model on the LISA dataset to compare the

performance of both models as it pertains to accuracy, error/loss, and speed during training.

6

• The research also introduces a new dataset, the CIB-TS V1 for advancing research in this area.

Limited work has been done on U.S. traffic sign data and no known work has been done

using a deep learning technique for classifying all the classes contained in the LISA dataset. The

work is done by Li et. Al. (2016) only focused on speed limit signs. This research extends that

work to cover all signs with adequate data points for training and validation.

7

CHAPTER 2

Literature Review

Traffic sign recognition research has gained a lot of traction in recent years. Various

methods with wide applicability for image recognition have proven that they can be used to

recognize traffic signs as well (Mathias et al., 2013).

Several publicly available datasets have been used for the traffic sign classification

problem, including but not limited to: The Belgian Traffic Sign Classification (BTSC) dataset

(Timofte et al., 2011), the German Traffic Sign Recognition and Detection Benchmark (GTSRB

and GTSDB) (Stallkamp et al., 2011), the Croatian traffic sign dataset (rMASTIF) (Jurišić et al.,

2015), the Dataset of Italian Traffic Signs (DITS) (Youssef et al., 2016) and the Tsinghua-Tencent

100 K Chinese benchmark (Zhu et al., 2016). Research into TSRS was boosted since several of

these datasets are commonly used to evaluate the performance of computer vision algorithms for

traffic sign detection and recognition (Álvaro Arcos-García, et al. 2018)

2.1 Background and Overview of Deep Learning

Deep learning for image recognition has seen wide applicability from biometrics, medical

diagnostics, text recognition, speech recognition, and traffic sign recognition just to name a few.

According to LeCun et al. (2015) conventional machine learning had a limitation with processing

raw data. Deep learning approaches are representation-learning based classifications; with each

layer of representation representing the presence or absence of parts of objects such as edges and

motif. Subsequent layers detect objects as combinations of identified parts. Unlike conventional

machine learning, the layers of deep learning are not designed by humans, but by a general-purpose

procedure.

8

In his technical report, Schmidhuber (2015) suggested that the Neocognitron (Fukushima,

1979, 1980, 2013a) was perhaps the first artificial neural network that deserved rthe attribute, deep.

It introduced convolutional neural networks that used Winner-Takes-All-based unsupervised

learning rules and spatial averaging for downsampling. (LeCun et al., 1998) would later apply

Back Propagation to a Neocognitron-like CNN with adaptive connections. Max-Pooling is used to

speed up processing. Deep Neural Networks have been adopted to win many awards including

(Cireşan et al. 2011).

DNNs have been adopted to improve perception in autonomous vehicles as well as driver

assistance systems. Areas of application include vehicle and lane detections (Huval et al., 2015),

lane detection (Li et al., 2017), and pedestrian detection (Luo et al., 2014; Ouyang & Wang, 2012;

Ouyang & Wang 2013; Sermanet et al., 2013b; Tian et al. 2015).

2.2 Traffic Sign Recognition with Deep Learning

Torresen et al. (2004) classified traffic speed limit signs based on the first digit of the sign.

They used a digit classification system that used a bit array of “1” or “0” to denote a number or

otherwise. The bit array assignment was based on how much black or white pixels were

encountered in the image. The more the black, a bit array of 1 was assigned while the more the

white, a bit array of 0 was assigned. The classified numbers represented by the bit array were

further fed to a feed-forward Neural Network trained with a back-propagation algorithm in the

final recognition stage. They tested their algorithm on Norwegian speed limit signs and achieved

an accuracy of 91% on 198 images.

Moutarde et al. (2007) presented an integrated system for speed limit signs detection,

tracking, and recognition of European and U.S. speed limit signs with a similar approach as

Torresen et al. (2004) but improved to capture the second and third digits to cater for signs that do

9

not end with “0” and 3-digit speed limits such as “110”. The work conducted by Torrensen et al.

(2004) was based on Norwegian speed limit signs, which only end with a “0”, but some U.S. traffic

signs end with a “5”. Each detected digit is normalized and fed into a multilayer perceptron neural

network optical digit recognition (ODR) module with 10 outputs, each output represents a digit.

The recognized signs are then assigned a confidence evaluation in a final step. Their work showed

a performance of 89% and 90% for U.S. and European speed limit signs respectively on 281 traffic

signs.

Fang et al. (2004) in their work presented an automatic road-sign detection and recognition

system that uses spatiotemporal attentional (STA) neural network, configurable adaptive

resonance theory (CART) neural networks for classification, and configurable heteroassociative

memory (CHAM) neural network for recognition of signs. Their system consists of a sensory

component; 2) a perceptual component using STA and long-term memory (LTM); and 3)

conceptual analyzers using CART and CHAM. The sensory analyzer extracts the temporal and

spatial information from the video sequence. The extracted information then serves as the input

stimuli to the STA neural network in the perceptual analyzer. If the stimulation continues, LTM is

used to preserve the extracted features of interest. The extracted features from the LTM are fed to

CART neural networks and CHAM neural networks in the final stage as conceptual analyzers to

respectively classify and recognize signs. The system performed at 85% accuracy in the

recognition stage on Chinese traffic signs.

Stallkamp et al. (2011) present the winning algorithms of the “The German Traffic Sign

Recognition Benchmark” (GTSRB). The competition was based on multi-class traffic signs and

the top 2 winning teams developed ConvNets to reach very high accuracy. Team IDSA (Cireşan et

al. 2011), the winning team developed a committee of convolutional neural networks (CNN) and

10

multilayer perceptron (MLP) that were trained on HOG features (HOG3). Their input image was

48X48 and all CNNs had seven hidden layers with the output layer having 43 neurons, each

mapping to a class. They trained the best architecture initialized with uniformly random

distribution weights with a hyperbolic tangent activation function. The classification had a

combined classification rate (CCR) of 98.98%, outperforming humans in some instances. Team

Sermanet (Sermanet & LeCun 2011) placed second with 98.97% accuracy using a multi-layer

ConvNets with more sophisticated non-linearities such as rectified sigmoid, subtractive and

divisive local normalizations instead of the traditional hyperbolic tangent sigmoid function. This

was to enforce competition between neighboring features.

Stallkamp et al. (2012) report IDSA (Cireşan et al. 2012), again won the 2012 GTSRB

competition with a committee of 25 CNN's by using data augmentation and jittering with an

accuracy of 99.46%. This time again, Sermanet (Sermanet et al. 2012) placed second using a

multiscale CNN with an accuracy of 98.31%.

Laguna et al. (2014) present technology for recognizing traffic signs using a Laplacian of

Gaussian (LOG) filter to detect edges of regions of interest in greyscale images, comparing

detected ROIs with shape patterns and then feeding it to a cross-correlation algorithm for

classification. They reported an accuracy of 91.07% detection on 200 images. It is not clear where

the data was collected, but their work comes from South Africa, so they might supposedly have

obtained it on a South African road network. They had an accuracy of 88.24% when detecting

octagonal shapes because octagons were mostly misclassified as circles.

Jin et al. (2014) proposed a hinge loss of stochastic gradient descent (HLSGD) cost

function method for training CNNs. This function is similar to support vector machines (SVM)

hinge loss and performed faster than the SGD, which is preferred for training CNN. They achieved

11

an accuracy of 99.65% beating (Ciresan et al., 2012) during testing and a decreased error rate of

35.19%. They reported that hinge loss allows CNN to focus on correctly classifying misclassified

training data, unlike cross-entropy cost that tries to make a correct classification more “correct”.

Also, unlike SGD, where each iteration must go through costly forward and backward propagation,

hinge loss only allows useful training samples to go through backpropagation. That is, if a useless

example is encountered, iteration is stopped, and backpropagation is aborted. This makes hinge

loss result in a more stable convergence, as most training examples become useless as the model

converges and only a few have an effect on the updates of parameters. This decreases the frequency

of updates happening and gradually stops over time or rarely happens. Useless examples are

omitted from forward propagation and rechecked after several traversals. In doing so, convergence

is faster and training speed is improved. This method was tested with an ensemble of 20 CNN's

following work done by Ciresan et al. (2012).

Jurišić et al. (2015) developed OneCNN, a convolutional neural network inspired by

Sermanet and LeCun (2011). They refrained from using a committee of neural networks for

classification of traffic signs, but rather developed a single network that is deeper and more

complex but less computationally costly, and used it to classify multiple datasets, particularly,

GTSRB, BTSC, and rMASTIF. They achieved an accuracy of 99.11% as against the state-of-the-

art (Jin et al., 2014) of 99.65% for the GTSRB; 98.17% for BTSC against the state-of-the-art (Zhu

et al.) of 98.77%, and 99.53% for rMASTIF. Their work introduced the rMASTIF dataset. Like

this research, their work was only concerned with the classification aspect of the traffic sign

recognition system.

Zhu et al. (2016) introduced the Chinese traffic signs dataset called the TT100K

benchmark. They divide the dataset into three categories based on their sizes as small, medium

12

and large. This was to evaluate how the model detects images of different sizes. They use an

algorithm with two trained CNNs; one for detection of traffic signs and the other for the

classification of these traffic signs. Their algorithm outperformed Fast R-CNN (Girshick, 2015),

they report that Fast R-CNN has better performance for recognizing larger objects, however, their

model performs at an accuracy of 88% compared to Fast R-CNN’s accuracy of 50% on TT100K.

Shustanov & Yakimov (2017) designed an end-to-end CNN algorithm for recognizing

traffic signs in real-time. Their system uses the speed of the vehicle to scale the exact coordinates

of the traffic signs in subsequent frames, thus improving the detection accuracy, while maintaining

the computational cost. They further described how to design a CNN. They developed CNN of 7

convolutional layers, 2 fully connected layers, and a softmax and obtained an accuracy of over

90% on the GTSRB. The algorithm had a high overhead due to the number of layers. This made

them reduce it to only one convolutional lay, one fully connected layer and one softmax. This

algorithm performed worse than the first and led them to design one with three convolutional

layers, one fully connected layer, and one softmax. The model achieved an accuracy of 99.94%

for localization and detection of prohibitory and danger traffic signs, but this accuracy is not state-

of-the-art for the classification stage.

Yang et al. (2017) proposed a network called deep detection network for real-time traffic

sign recognition. Their method was an update to Faster R-CNN and outperformed Faster R-CNN

on all levels from small to medium to large traffic signs. The network is composed of four modules:

the first module is composed of CNN layers for computing features; the second module which runs

parallel with the first layer, hence saving computational cost, is an attention network (AN) which

maps attention to coarse-grained regions of interest; the third module is a fully convolutional

network which generates a final region proposal from coarse-to-fine grained candidates and; the

13

final module, a Fast-R-CNN detects and classifies the small targets candidates resulting from the

third module in the final recognition stage. They tested their model on the Chinese dataset,

TT100K Benchmark, and BTSD, and achieved an accuracy of 80.31% and 94.95% respectively

on both benchmarks. Faster R-CNN has an accuracy of 70.63% and 87.07% on the two

benchmarks respectively.

Arcos-García et al. (2018) designed a CNN that included Spatial Transformer Networks

(STN) and beat work reported by Stallkamp et al. (2011) with the German Traffic Sign Recognition

Benchmark (GTSRB) competition. Their proposed model performed at an accuracy of 99.71% at

the 21st epoch with three spatial and SGD without momentum as the loss function optimizer on

GTSRB. The model beat HLSGD (20 CNN ensemble) (Jin et al., 2014), MCDNN (25 CNNs

committee); both models used data augmentation or jittering and had more trainable parameters

than this model that only had fewer parameters and one ConvNet. The model performs at an

accuracy of 98.87% in the 13th epoch with three spatial transformer layers and SGD without

momentum loss optimizer algorithm on BTSC placing second behind GDBM (Yu et al., 2016) and

beat OneCNN (Jurišić et al., 2015) and INNLP + SRC (Mathias et al., 2013).

2.3 Traffic Sign Recognition with Traditional Machine Learning

Maldonado-Bascón et al. (2007) used SVM with Gaussian kernels to recognize traffic signs

from blobs which have been categorized into shape classes. To test the effect of occlusion on

recognition, an occlusion mask was placed on the images. Small, medium-sized and large masks

reported 93.24%, 67.85% and 44.90% probabilities of successfully recognizing the signs

respectively. An observation made was that a large-sized occlusion mask placed in the middle of

the pictogram showed the worst performance during recognition.

14

Keller et al. (2008) performed real-time traffic sign recognition on U.S. speed limit signs.

they assume a unimodal Gaussian distribution for each class and used linear discriminant analysis

(LDA) for feature transformation. After that, they used a normal distribution classifier for

classification. Their system achieved a combined accuracy of 96.25%; scoring a 98.75% accuracy

during detection and 97.5% during classification. This research adopts a CNN to detect 47 classes

of U.S. signs of signs that have been already captured in an image.

Larsson et al. (2011) demonstrated the use of Fourier descriptors (FDs) for road sign

recognition by using synthetic images of Swedish road signs to create models that were matched

against real images using their proposed correlation-based matching method. Local regions were

extracted from the synthetic images using the Maximally Stable Extremal Regions (MSER)

algorithm proposed by Matas et al. (2004), after which contour sampling of the FDs in the model

is matched with the FDs in the extracted query images to find a match. A matching cost based on

an empirically set threshold is set and used to accept the match if the cost is less than the threshold.

The average precision of the method was reported to be about 95% with few false positives.

Larsson & Felsberg (2011) proposed a method for traffic sign recognition using locally

segmented contours described by Fourier descriptors to match prototypes of different traffic sign

classes to a query image. A correlation-based matching scheme for Fourier descriptors is used with

a fast-cascaded matching scheme for enforcing spatial requirements. The method first extracts

Fourier descriptors, it then matches them and matches previously acquired prototypes with spatial

models. They tested their method on a dataset of 216 traffic signs collected from 20,000 frames

after driving 350km through Sweden. Their method outperformed their earlier results reported in

Larsson et al. (2011) for “No Standing or Parking” sign type, with 100% recall and 0 False

positives. The recall for the other sign types namely: “Pedestrian Crossing”, “Designated Lane

15

Right”, “50 kph”, “30kph”, “Priority Road” and “Give Way” were the same as reported in their

earlier work Larsson et al. (2011). The false-positive rates were reduced to “0” in the proposed

method except for “50 kph” and “30kph” speed signs showing no change from their previous work.

Mathias et al. (2013) recorded an accuracy of 98.53% by combining feature extraction,

dimensionality reduction and classification approaches for defining a classification algorithm.

Grey-scale values of traffic signs were computed and used with a precomputed pyramid of HOG.

This was followed by precomputed HOG1, HOG2, HOG3 features, all making up the feature

extraction stage. The resulting dimensions were, for greyscale features – 784-dimensional, the

pyramid of HOG – 2172-dimensional descriptors; HOG1 & HOG2 –1568-dimensional and HOG3

– 2916-dimensional. Linear Discriminant Analysis (LDA), Sparse Representation based Linear

Projection (SRLP) and Iterative Nearest Neighbors Linear Projection (INNLP) were then

employed to reduce the dimensionality of the model. For classification, Nearest Neighbor

Classifier (NN), Sparse Representation-based Classifier (SRC), Iterative Nearest Neighbors

(INNC) and Support Vector Machines (SVM) were tested. Greyscale + pyramid of HOG + HOGs

for feature extraction, INNLP for dimensionality reduction and INNC (K = 62) gave the best

Accuracy of 98.53% a slight difference of about 1% less than the GTSRB competition best

accuracy. The second-best accuracy of 98.27% was recorded for the Greyscale + pyramid of HOG

+ HOGs for feature extraction, INNLP for dimensionality reduction and INNC (K = 14). HOG2

with LDA and NN yielded the worst accuracy of 96.97% but had the second-best testing time of

5s following HOG2 with SRLP and LSVM which had a testing performance time of 1s.

Møgelmose et al. (2015) used Integral Channel Features (ICF or ChnFtrs) to detect U.S.

traffic signs. The computed features are fed to an AdaBoost classifier with depth-2 decision trees

as weak learners. The classifier is then run on the input image using a sliding window. Aggregate

16

Channel Features (ACF), an improved version of ICF which is faster and has better performance

in some instances is also used to classify traffic signs. Both detectors were evaluated on the

GTSDB and LISA-TS datasets. The GTSDB dataset is divided into 4 superclasses: “mandatory”,

“prohibitory”, “danger” and “other”. ACF performed perfect on danger signs and near perfect on

prohibitory signs and mandatory signs; other was ignored. Møgelmose et al. fell short on

prohibitory signs, where Mathias et al. scored perfect, scoring an Area Under Curve (AUC) of

99.58/99.86 for ICF/ACF while Mathias et al. scored 100. For mandatory signs, Møgelmose et al.

scored 98 .52/98.38 against their 96.98. U.S. signs were divided into four superclasses, namely:

“Diamond”, “Stop”, “NoTurn” and “SpeedLimit”. ACF scored 98.98 on “Diamond” and scored

above 95 on “NoTurn” and “Stop” whiles “SpeedLimit” scored below 90.

Berkaya et al. (2016) proposed an SVM for classifying traffic signs using the GTSRB.

They combined local binary pattern (LBP), HOG and GABOR for feature extraction. For LBP

alone, the performance was 93.36%, GABOR alone recorded a performance of 93.90% and HOG

alone recorded 94.56%. A combination of all three yielded the best performance of 97.04%. HOG

and GABOR together had a performance of 97.00%; close to the performance of all three

combined. Their proposed algorithm was ninth overall compared to the results obtained in the

2011 GTSRB competition; however, it had the best performance for “Other Prohibitions”, and

“Mandatory”, categories scoring 99.86%, and 99.83% respectively. EBLearn 2LConvNet and

CNN HOG3 were the previous best performers in those categories scoring 99.80%, and 97.89

respectively.

Ellahyani et al. (2016) used HOG with HSI, local self-similarity (LSI) together for feature

extraction and random forests and SVM as classifiers. They tested their method on GTSDB and

Swedish Traffic Sign (STS) datasets and obtained near-state-of-the-art results. Cireşan et al. (2011)

17

and Sermanet & LeCun (2011) beat their algorithm with 99.46% and 98.31% accuracies

respectively, while they registered 97.43% accuracy on the GTSDB dataset. HIS-LSI+HOG with

Random Forest yielded the best result. STS dataset had the best recall, precision, and AUC of

93.27%, 90.27%, and 94.05% over GTSDB’s 91.07%, 90.13%, and 93.69% respectively.

Soilán et al. (2016) used HOG and SVM to detect and classify 3D traffic signs collected in

Spain. The collected signs were divided into seven superclasses: for traffic sign detection namely,

omitting direction and information signs. Pedestrian crossing and No Parking”, the two most

occurring class-specific traffic signs were further classified using a linear SVM model.

Huang et al. (2017) introduced a method for traffic sign recognition (TSR) that extracts

HOG features and then feeds them to a single-hidden-layer feedforward network (SLFN) classifier

trained on an extreme learning machine (ELM). The algorithm optimizes and generalizes

multiclass TSR and can balance the accuracy and computational cost of the model. Different HOG

descriptors were evaluated. Competing classifiers were also evaluated with SVM and SVM kernels

(with Gaussian kernels) and LDA. HLSGD beats their method when tested on GTSRB with an

accuracy of 99.65% against 99.56%; both perform better than the committee of CNNs at an

accuracy of 99.46%. The training time for HLSGD, however, is greater than 7 hours while their

method takes 209 seconds to train. Kernel ELM has the best performance in the Speed limits, Other

prohibitions, Mandatory and Unique categories with 99.54%, 100%; tying Hierarchical SVM with

99.94%, 99.95% respectively. The committee of CNNs recorded the best performance in the

Derestriction category with 99.72% over Kernel ELM’s 98.33%. On the BTSC dataset, Kernel

ELM based scored a recognition accuracy of 98.64% over INNC+INNLP’s 98.32%. Kernel ELM

achieved an accuracy of 98.12% on rMASTIF dataset beating Kernel SVM, ELM, SVM and LDA-

18

based methods. Each of these high performing accuracies was obtained using the HOGv+r feature

as a descriptor.

Aziz et al. (2018) developed a traffic sign recognition system that extracts HOG, Gabor

and compound local binary pattern (CLBP) features from images and feeds them into an ELM.

ELM was first introduced by Huang et al. (2006, 2017) as a new learning algorithm for single-

layer feedforward neural networks (SFNNs). ELM performs faster than traditional SFNNs like

backpropagation because it has fewer parameter tuning and optimum generalization. They

evaluated their approach using GTSRB and BTSC and recorded a combined accuracy of 99.10%

98.30% respectively for both datasets. The technique performs at an accuracy of 99.10% better

than SVM and K-Nearest neighbor (KNN) with 98.20% & 97.45% respectively on GTSRB. It also

performs at an accuracy of 98.30% on BTSC over 97.15% & 96.22% recorded by SVM and KNN

respectively.

19

CHAPTER 3

Methodology

3.1 Approach

Convolutional Neural Network (CNN) has made a lot of stride in the image recognition

space in recent times. It gained particular recognition in the traffic sign recognition area during

“The German Traffic Sign Recognition Benchmark” (GTSRB) competition, where the best

methods presented used CNN for classification (Stallkamp et al., 2011 & 2012).

There is limited research on traffic sign recognition using US traffic signs. malet al. (2016)

used an R-CNN algorithm to detect US traffic signs and showed some good results on the LISA-

TS Extension dataset. The classification was based on the speed limit superclass alone. This

research extends the boundaries of the previous research that adopted the LISA dataset to include

all the available classes. It introduces the CIB dataset and trains both datasets on a modified

VGGNet. It then compares the results obtained using VGGNet with that of a newly developed

deep learning model, NuNet, that trains faster and performs better.

The experimental setup consists of two main parts. Firstly, preparing the data, that spans

all the tools used to extract and separate traffic signs into their respective classes. Secondly, the

extracted data is fed to a deep neural network for classification. Experiments were carried out in

Python 3 environment running in Jupyter Notebook (Kluyver et. al., 2016) hosted on a 64-bit

desktop computer with 64 cores of 4GB RAM each. Linux 18.04 is the operating system on which

all experiments were conducted. TensorFlow (Abadi et. al., 2016) is an open-source machine

learning framework for dataflow representations that have been widely adopted for machine

learning research. TensorFlow has been used to develop several industry applications used by

companies such as Google, Airbnb, eBay, and Intel, and was adopted in this research.

20

3.2 Data Preparation and Exploration.

The LISA TS dataset is a publicly available U.S. traffic sign dataset (Møgelmose et al.,

2012) that can be used to conduct research involving U.S. traffic signs to test the performance of

models. The LISA-TS extension dataset provides additional data points for traffic sign recognition

and was adopted for this research. This study also introduces a new dataset, the CIB TS-V1 (Center

of Identity and Biometrics Traffic Sign Version 1) for comparison of the performance of the two

models.

3.2.1 LISA Dataset

Traffic sign datasets for several countries have been published and made publicly available

for researchers to train and test their models against published models. Álvaro Arcos-García et al.

(2017) introduced a Spanish dataset, the Belgium dataset was reported (Timofte et al., 2014),

Germany (Stallkamp et al., 2011), Croatia (Jurišić et al., 2015), Italy (Youssef et al., 2016), Sweden

(Larsson & Felsberg, 2011), and China (Zhu et al., 2016).

The zipped LISA TS dataset folder comes with a set of Python tools for extracting traffic

sign annotations from full frames. The “categories.txt” is a comma delimited text file (see Table

3.1) containing superclasses of traffic signs, namely: “warning”; “prohibition”; “speedLimit” and;

“speedLimitGood”. The “extractAnnotations.py” is a Python file that provides methods for

copying, marking, blackout and cropping regions of interest (ROI). After extracting annotations,

the “mergeAnnotationFiles.py” file is then used to merge multiple annotation files into one file.

The “evaluateAnnotation.py” is a Python file for detecting traffic signs – beyond the scope of this

work. The cropping feature of the “extractAnnotations.py” file was used to crop traffic signs for

classification for this work.

21

Table 3.1. Super Class and Corresponding Classes

warning prohibition speedLimit speedLimitGood

addedLane doNotPass speedLimit15 speedLimit15

curveRight keepRight speedLimit25 speedLimit25

dip rightLaneMustTurn speedLimit30 speedLimit30

intersection speedLimit15 speedLimit35 speedLimit35

laneEnds speedLimit25 speedLimit40 speedLimit40

merge speedLimit30 speedLimit45 speedLimit45

pedestrianCrossing speedLimit35 speedLimit50 speedLimit50

signalAhead speedLimit40 speedLimit55 speedLimit55

slow speedLimit45 speedLimit65 speedLimit65

stopAhead speedLimit50 speedLimitUrdbl

thruMergeLeft speedLimit55

thruMergeRight speedLimit65

turnLeft truckSpeedLimit55

turnRight

yieldAhead

LISA TS benchmark is constituted of 7,855 traffic sign images categorized into 47 traffic

sign classes as listed below:

“addedLane”, “curveRight”, “doNotEnter”, “doNotPass”, “intersection”, “keepRight”,

“laneEnds”, “merge”, “noLeftTurn”, “school”, “noRightTurn”, “pedestrianCrossing”,

“rampSpeedAdvisory20”, “dip”, “rampSpeedAdvisory35”, “rampSpeedAdvisory40”,

22

“rampSpeedAdvisory45”, “rampSpeedAdvisory50”, “curveLeft”, “rampSpeedAdvisoryUrdbl”,

“rightLaneMustTurn”, “roundabout”, “schoolSpeedLimit25”, “signalAhead”, “slow”,

“speedLimit15”, “speedLimit25”, “speedLimit30”, “speedLimit35”, “speedLimit40”,

“speedLimit45”, “speedLimit50”, “speedLimit55”, “speedLimit65”, “speedLimitUrdbl”, “stop”,

“stopAhead”, “thruMergeLeft”, “thruMergeRight”, “turnRight”, “thruTrafficMergeLeft”,

“truckSpeedLimit55”, “turnLeft”, “yield”, “yieldAhead”, “zoneAhead25”, “zoneAhead45”.

The LISA TS extension is made up of 2,498 traffic sign images comprising 19 traffic sign

classes as listed below:

“Stop”, “doNotEnter”, “pedestrianCrossing”, “speedLimit30”, “noParking”,

“speedBumpsAhead”, “speedLimit15”, “speedLimit25”, “curveRight”, “signalAhead”,

“speedLimit35”, “stopAhead”, “yieldToPedestrian”, “bicyclesMayUseFullLane”,

“noLeftAndUTurn”, “curveLeft”, “intersectionLaneControl”

The two datasets were combined into a single dataset resulting in 10,353 traffic sign images

categorized into 53 classes as listed below:

“addedLane”, “bicyclesMayUseFullLane”, “curveLeft”, “curveRight”, “dip”, “doNotEnter”,

“doNotPass”, “intersection”, “intersectionLaneControl”, “keepRight”, “laneEnds”, “merge”,

“noLeftAndUTurn”, “noLeftTurn”, “noParking”, “noRightTurn”, “pedestrianCrossing”,

roundabout”, “rampSpeedAdvisory20”, “rampSpeedAdvisory35”, “rampSpeedAdvisory40”,

“rampSpeedAdvisory45”, “rampSpeedAdvisory50”, “rampSpeedAdvisoryUrdbl”, “school”,

“rightLaneMustTurn”, “ “schoolSpeedLimit25”, “signalAhead”, “slow”, “speedBumpsAhead”,

“speedLimit15”, “speedLimit25”, “speedLimit30”, “speedLimit35”, “speedLimit40”,

“speedLimit45”, “speedLimit50”, “speedLimit55”, “speedLimit65”, “speedLimitUrdbl”, “stop”,

“stopAhead”, “thruMergeLeft”, “thruMergeRight”, “thruTrafficMergeLeft”, “turnLeft”,

23

“turnRight”, “truckSpeedLimit55”, “yield”, “yieldAhead”, “yieldToPedestrian”, “zoneAhead25”,

“zoneAhead45”.

This list was further cleaned to exclude unreadable speed signs, “speedLimitUrdbl” &

“rampSpeedAdvisoryUrdbl” and classes with less than 10 samples. 8,855 traffic sign annotations

resulted belonging to the 38 classes is listed below:

“addedLane ,”curveLeft “, “curveRight “, “dip “, “doNotEnter “, “keepRight “, “laneEnds “,

“merge “, “noLeftTurn “, “noRightTurn “, “pedestrianCrossing “, “rampSpeedAdvisory20 “,

“rampSpeedAdvisory45 “, “rampSpeedAdvisory50 “, “rightLaneMustTurn “, “roundabout “,

“school “, “schoolSpeedLimit25 “, “signalAhead “, “slow “, “speedLimit15 “, “speedLimit25 “,

“speedLimit30 “, “speedLimit35 “, “speedLimit40 “, “speedLimit45 “, “speedLimit50 “,

“speedLimit65 “, “stop “, “stopAhead “, “thruMergeLeft “, “truckSpeedLimit55 “, “turnLeft “,

“turnRight “, “yield “, “yieldAhead “, “zoneAhead25 “, “zoneAhead45”

First, the dataset is merged into one CSV file named “mergedAnnotations.csv” using the

“mergeAnnotationFiles.py” file by running the command, “python mergeAnnotationFiles.py

frame mergedAnnotations.csv annotations/”. This command combines annotation tiles in any

subdirectory matching a regex pattern of the image filenames. The merged files are copied into a

file called “allAnnotations.csv” using the commands: "python extractAnnotations.py -c [category]

copy allAnnotations.csv". the categories are “warning”, “prohibition”, "speedLimits” and

“speedLimitGood”.

The merged annotations are then split into 2 CSV files using the “splitAnnotaionsFiles.py”

file into “split1.csv” and “split2.csv”. A split percentage of 80% was specified for “split1.csv” as

the training set and the remaining annotations were put in “split2.csv” for validation. Annotations

in the two files, “split1.csv” and “split2.csv”, were then extracted into their respective class

24

subfolders under the training and validation folders, respectively. After the split, the

“extractAnnotations.py” Python file was used to crop and copy image annotations in each split

into their respective subfolders using the class label as the name of the subfolder. This exercise

was performed on both splits. The merging of LISA TS and LISA TS extension datasets resulted

in 38 classes that were cropped and copied into their respective class folders using the naming

convention: “addedLane”, “curveLeft”, “curveRight”, …, “yieldAhead”, “zoneAhead25”,

“zoneAhead45”. These subfolders were organized in the folders called “training” and “validation”,

representing training and validation sets.

Figure 3.1 shows the distribution of traffic signs for each class in the entire dataset while

figures 3.2 and 3.3 show the distribution of signs in the training and validation sets, respectively.

The most populated classes are “stop”, “pedestrianCrossing”, and “signalAhead” in an order of

decreasing magnitude. The least occurring traffic signs in the dataset are “rampSpeedAdvisory20”,

“curveRight”, “addedLane”, and “thruMergeRight”.

25

Figure 3.1. Traffic Sign Data Distribution per Class in the Entire LISA Dataset

26

Figure 3.2. Traffic Sign Distribution per Class in Training Set LISA Dataset

27

Figure 3.3. Traffic Sign Distribution per Class in validation Set LISA Dataset

Figure 3.4 shows samples of traffic sign images in each class. The images shown are the

first images in that class. It should be noted that several of these signs have numbers showing

speed limits of some sort. This raises concern for the performance of the model especially with the

limited samples in each class.

28

Figure 3.4. Sample Image in Each Class in LISA Dataset

3.2.2 Cyber Identity Biometrics Traffic Sign (CIB TS) Dataset

An industrial camera was attached to a sedan and driven around sections of the Greensboro

city, North Carolina. The dataset consists of 690 traffic signs images representing 9 classes of U.S.

traffic signs; this constitutes the first version of the Cyber Identity and Biometrics traffic sign (CIB

TS-V1) dataset. CIB is a Computer Science laboratory at North Carolina A&T State University.

Traffic sign annotation was done using a publicly available tool called “labelImg” (Tzutalin, 2015).

Traffic signs were cropped out of the image frames and saved in their respective classes. Sample

images per class are shown in figure 3.5.

29

A python script was used to split the images into training and validation sets in an 80/20

ratio respectively. The traffic sign classes present in the CIB dataset are “speedLimit20”,

“curveRight”, “noTruck”, “speedLimit30”, “pedestrianCrossing”, “bicycleLane”, “height12-9”,

“doNotEnter”, and “stop”. The class distribution for the entire CIB dataset is presented in figure

3.6. Figures 3.7 and 3.8 represent the distribution per class for the training and validation sets

respectively.

Figure 3.5. Sample Image in Each Class in CIB Dataset

Figure 3.6. Traffic Sign Distribution per Class of whole CIB Dataset

30

Figure 3.7. Traffic Sign Distribution per Class in Training Set of CIB Dataset

Figure 3.8. Traffic Sign Distribution per Class in validation Set of CIB Dataset

31

3.3 VGGNet Architecture

The VGG Network adopted from Simonyan & Zisserman (2015) has a batch normalization

layer for faster and better training, a param ReLu layer for solving dead linear rectifier issue during

training, convolution layer with parametric relay activation using Xavier Scheme for weights and

biases initialization, fully connected layer with fully connected dense layers also using Xavier

Scheme for weights and biases initializations and a max-pooling operation as its basic elements.

The VGG layer (see Figure 3.9) is made up of 2 back to back Convolutions of 2x2 kernel

size and a stride of 2. Each layer has 1 pooling layer followed by a dropout layer. The model is

made up of 4 VGG layers. The first layer extracts 32 feature maps from an input layer of 32x32x3

features while the second layer extracts 64 feature maps from a 16x16x32 input, with the third

layer extracting 128 feature maps from an 8x8x64 input and the fourth, 256 feature maps from an

input of 4x4x128. The model also has 3 fully connected layers with the 1024 hidden layers that

map to 512 hidden layers that further map to the number of classes in each dataset.

Model building parameters, including Xavier Initialization as a tuning methodology, early

stopping to restore the previous checkpoint if accuracy gains in testing do not meet current

requirements, a learning rate of 5e-5, and a regularization factor of 1e-3 are chosen as the best

choice for hyperparameters after searching over 600 Epochs. Adam Optimizer was used for

optimization. A batch size of 500 was chosen for the LISA dataset and 100 for the CIB dataset.

The modified VGGNet was adopted from a publicly available Python code on GitHub1.

1

 https://github.com/vamsiramakrishnan/TrafficSignRecognition/blob/master/TrafficSignClassifie

r.ipynb

https://github.com/vamsiramakrishnan/TrafficSignRecognition/blob/master/TrafficSignClassifier.ipynb
https://github.com/vamsiramakrishnan/TrafficSignRecognition/blob/master/TrafficSignClassifier.ipynb
https://github.com/vamsiramakrishnan/TrafficSignRecognition/blob/master/TrafficSignClassifier.ipynb
https://github.com/vamsiramakrishnan/TrafficSignRecognition/blob/master/TrafficSignClassifier.ipynb

32

3.4 VGGNet Feature Extraction

The first stage of the VGGNet has 2 layers and extracts 32 feature maps from an input layer

of 32x32x3 features while the second stage has 3 layers and extracts 64 feature maps from a

16x16x32 input. The third stage also has 3 layers extracting 128 feature maps each from an 8x8x64

input and the fourth, 256 feature maps from an input of 4x4x128. The model also has 3 Fully

Connected layers with the 1024 hidden layers that map to 512 hidden layers and further map to a

softmax layer which the number of classes in each dataset. Features from each layer are presented

by figures 3.10-3.12.

Figure 3.9. VGGNet Architecture1

33

Figure 3.10. Features Extracted from First Layer of the First Stage of VGGNet Model

34

Figure 3.11. Features Extracted from First Layer of the Second Stage of VGGNet Model

35

Figure 3.12. Features Extracted from First Layer of the Third Stage of VGGNet Model

3.5 Results of Training VGGNet on LISA Dataset

The results from training VGGNet on LISA are presented in the section. The split ratio

composed of 80% of the dataset being used as the training set and 20% as the validation set.

Training VGGNet on LISA took approximately 26 hours after which the accuracy and loss plots

36

were obtained. Figure 3.13 shows a plot of the training and validation accuracies of the model. The

loss plots for training and validation are presented in Figure 3.14 with detailed results of the loss

and accuracy for each epoch is recorded in a table in appendix A.

The original research recorded an accuracy of 98.7% on the GTSRB dataset. In the current

work, the model performs at a training accuracy of 99.93% and a validation accuracy of 99.83%

on the LISA dataset. The losses recorded for the training and validation sets were 6.6% and 7.1%

respectively. The original VGGNet showed a loss of 7.5% during validation on GTSRB.

Figure 3.13. A Plot of Training and Validation Accuracies for VGGNet on LISA dataset

Figure 3.14. A Plot of Training and Validation Losses for VGGNet on LISA dataset

37

The most occurring class in the dataset is “stop”. It was 100% accurately classified after

the first epoch, while most of the other classes were misclassified as “stop”. This important

observation follows that the model is able to learn relevant details from numerous samples and

apply them to recognize the signs better than fewer samples. The confusion matrix presented in

figure 3.15 shows which classes in the dataset the model classified correctly or misclassified. Only

3 signs in the “speedLimit15” were misclassified as “pedestrainCrossing”. All other signs were

perfectly classified into their respective classes. Intermediate confusion matrices were plotted and

presented in appendix B.

38

Figure 3.15. Confusion Matrix of VGGNet Model after Training on LISA Dataset

3.6 Result of Training VGGNet on CIB TS V1 Dataset

The result from training VGGNet on the CIB dataset is presented in this section. A training

to validation split ratio of 80/20 was used. The model recorded an accuracy of 100% on the training

set and records a validation accuracy of 96.92% on the CIB dataset. An error of 1.8% was recorded

39

for the training samples and a validation error of 5.6% was recorded. It took approximately 9 hours

to train the model. VGGNet overfits the CIB dataset as it begins to learn unnecessary details down

its depth and cannot generalize well on unseen data in the validation set. A deep model requires a

lot of data to be able to generalize classification to unseen data. The depth of VGGNet coupled

with the data input size makes it overfit. It can recognize data it has already encountered in the

training set but cannot properly recognize those in the validation set. The accuracy and loss plots

for the training and validation sets are presented in Figures 3.16 and 3.17, respectively. These plots

show how unstable the VGGNet performs on the CIB dataset. It also shows that VGGNet does not

reach a global maximum.

Figure 3.16. A Plot of Training and Validation Accuracies for VGGNet on CIB Dataset

40

Figure 3.17. A Plot of Training and Validation Losses for VGGNet on CIB Dataset

Since the training was not yielding a reliable accuracy or loss, it became pertinent to design

a model that performs well on smaller as well as larger datasets. This is one of the motivations for

the development of the NuNet, presented in the next chapter. The confusion matrix of the

experiment is presented in Figure 3.18 showing the classes in the validation set which were

correctly classified or misclassified. It should be noted that the point maximum at epoch 600 is not

the global maximum. Even though the confusion matrix mimics a perfect classification,

subsequent epochs may misclassify samples.

41

Figure 3.18. Confusion Matrix of Model after Training VGGNet on CIB Dataset

3.7 Discussion

The VGGNet is a deep neural network that extracts robust features from an image. While

this architecture offers a comprehensive selection of features, it also poses the danger of extracting

unnecessary information; especially when the training data is too small. In the case of a large

42

training set, the VGGNet is stable and generalizes well. However, when a smaller dataset is

presented, the model overfits as it overlearns from the few data it has already seen and is not able

to generalize very well to new unseen data. This issue can be addressed by augmenting the data,

adding more data samples to the training set or reducing the depth of the model. The first two are

not necessarily of interest to this research. This research seeks to develop a robust model that can

both perform when there is enough data for training or not, thereby addressing the issue of data

size requirement for deep learning object recognition.

There is a tradeoff between model accuracy and training time. Whereas Feeding the model

with lots of data improves the performance of the VGGNet model, it follows that it takes a longer

time to train the network. With modern improvements in hardware, the latter can be addressed,

however, it comes at a high financial cost. The VGGNet took approximately 26 hours to train

8,855 samples over 600 epochs on the LISA dataset. On CIB, VGGNet took approximately 9 hours

to train 552 training samples over 1000 epochs.

43

CHAPTER 4

NuNet Model Architecture and Results

4.1 NuNet Architecture

NuNet is a deep learning approach designed to tackle the issue of poor model performance

on a limited dataset and improving speed. The proposed model is a light-net architecture that has

the potential to update its parameters during training. The model starts with a single convolution

followed by a max-pool operation, then two fully connected layers and then a SoftMax. The model

takes a 32x32x3 input image and performs a convolution with a 3x3 filter and a 2x2 stride and

outputs 16 features as shown in Figure 4.1. A 2x2 max-pooling operation follows the convolution,

whose result is passed through two fully connected layers; 256x1 and 128x1. A SoftMax function

is then used to classify the result into the number of classes.

Single-layer convolutions followed by a max-pool operation train and converge faster as

fewer computations are required to extract features. At some point during training, improvements

in the accuracy and reduction of the error/loss stall. The model then makes changes to parts of its

components, such as the convolutional (filter) size, the number of layers and the number of filters

(output layers). These modifications then enhance performance during training, thereby improving

speed and accuracy.

During training, when an error reduction stalls, the model was configured to increase the

number of convolutional layers. Figures 4.2 and 4.3 represent a second and third convolutional

layers added before a max-pool operation.

The model was tested on LISA dataset and CIB-V1 with results presented below:

44

Figure 4.1.NuNet Model Architecture with a Single Layer

Figure 4.2. NuNet Model Architecture with Two Layers

45

Figure 4.3. NuNet Model Architecture with Three Layers

4.2 NuNet Feature Extraction

Features extracted from the first, second and third layers are presented in figures 4.4, 4.5

and 4.6 respectively for the “doNotEnter” traffic sign. Figure 4.4 shows 16 features extracted from

the input image by the first convolutional layer of the model. For very distinct images, this first

layer can accurately classify images at high accuracy, however, for distorted images or similar

images, it becomes challenging for the model to only use one layer to get the best results. In such

an instance, additional convolutional layers are added to improve the accuracy and reduce the error

of classification. This addition is mostly done at later epochs during training.

Figures 4.5 represents features extracted from the second layer of the adaptive model that

gets added in the event that another layer needs to be employed to enhance model performance. If

the model’s performance or error reduction stalls, another layer is added which features are

presented in figure 4.6. The more layers are added, the slower the model performs; however, the

training would have been at a later epoch before extra layers may be required. The maximum

number of layers the model can add may be capped at the discretion of the developer; this research

46

used 3 layers. The extra features the model extracts help the model learn important details that it

might have missed in previous epochs. This incremental layering is the main idea behind NuNet’s

architecture.

Figure 4.4. Features Extracted from the First Layer of the NuNet Model

47

Figure 4.5. Features Extracted from the Second Layer of the NuNet Model

48

Figure 4.6. Features Extracted from the Third Layer of the NuNet Model

4.3 NuNet Results on LISA Dataset

The results from training the NuNet model on the LISA dataset are presented in this section.

The training was carried out for two splits, the first is 80/20 for training and validation sets

respectively. The second split is an inversion of the first; using the 20% split for training and the

80% split for validation. The results from the first (80/20) split are presented in section 4.3.1 and

the results from the second split are presented in section 4.3.2.

4.3.1 Result Training NuNet on LISA Dataset

With an 80/20 split, the NuNet model took approximately 10 hours to train on the LISA

dataset (introduced in section 3.4) for 600 epochs. After the 600th epoch, the training accuracy

recorded for NuNet was 99.73%. The validation accuracy of NuNet was 99.83% is the LISA

49

dataset. The training was smooth and did not show any irregularities. Figure 4.7 shows the

accuracies plot recorded for the LISA training and validation sets. Figure 4.8 shows the losses plot

for the LISA training and validation sets. The loss recorded for NuNet trained on LISA was 7.9%

for the training set and 9.6% for the validation set for this split ratio.

Figure 4.7. A plot of Training and Validation Accuracies for NuNet on LISA

Figure 4.8. A Plot of Training and Validation sets Losses for NuNet on LISA

50

Figure 4.9 presents the confusion matrix for the validation set of the LISA dataset.

Intermediate confusion matrices were plotted during training and presented in appendix C. Only 3

samples of the “speedLimit35” class in the validation set were misclassified as

“pedestrianCrossing”.

Figure 4.9. Confusion Matrix of NuNet Model on LISA Dataset

51

4.4 NuNet Results on CIB TS V1 Dataset

The results from training the NuNet model on the CIB dataset are presented in this section.

Here, a second split, an inversion of the original 80/20 split is used for training. The results of the

original split are presented in section 4.4.1 and the results of the 20/80 split are also presented in

section 4.4.2.

4.4.1 Result Training NuNet on the CIB Dataset

The model performs at an accuracy of 100% on the training set and records a validation

accuracy of 100% on the CIB dataset. An error of 1.8% was recorded for the training samples and

a validation error of 1.9% was recorded. The model generalizes well and does not underfit or

overfit the dataset. Training took approximately 3 hours; a little less than a third the time it took

to train VGGNet on the same dataset. The accuracy plots for training and validation sets are shown

in figure 4.10. Training plateaued within the first 30 epochs. Figure 4.11 presents loss plots for the

training and validation sets.

Figure 4.10. A Plot of Training and Validation Accuracies for the CIB Dataset

52

Figure 4.11. A Plot of Training and Validation Losses for the CIB Dataset

The model was trained over 600 epochs and provides more reliable training and validation

than was encountered with VGGNet in section 3.6. The NuNet model performs well on smaller

datasets and trains faster. Figure 4.12 shows the confusion matrix for the validation set.

Intermediate confusion matrices were plotted and presented in appendix D.

53

Figure 4.12. Confusion Matrix of Model after Training on CIB Dataset

4.4.2 Result Training NuNet on the 20/80 CIB Dataset Split

NuNet performed at accuracies of 100% and recorded an error of 3.1% for both the training

and validation sets. The error in this split was higher than the previous split, which shows that

54

training with a smaller dataset can affect the error recorded; however, training is smoother than on

the 80/20 split. Accuracy and loss plots for the results are presented in figures 4.13 and 4.14 for

this split.

Figure 4.13. A Plot of Training and Validation Accuracies for CIB Dataset split at 20/80

Figure 4.14. A Plot of Training and Validation Losses for CIB Dataset split at 20/80

55

4.5 Discussion

Table 4.1 compares the results of NuNet and VGGNet based on the number of layers,

training time, and model performance for both LISA TS and CIB TS-V1 datasets. The results are

also compared against that of an SVM classifier. SVM overfits the model with 99.68% training

accuracy and 83.02% validation accuracy on LISA. SVM also overfits on CIB with 100% training

accuracy and 82.31% validation accuracy. NuNet recorded an accuracy of 100% for both training

and validation sets on CIB and recorded 99.73% and 99.83% respectively on LISA. VGGNet

recorded the best training accuracy for LISA at 99.93% and ties NuNet for the validation accuracy.

VGGNet overfits on CIB with training and validation accuracy of 100% and 96.92% respectively.

NuNet recorded the lowest error on CIB with 1.8% and 1.9% on the training and validation sets

respectively. It recorded an error of 7.9% on the training set and 9.6% on the validation set of

LISA. Whereas VGGNet recorded an error of 6.6% on the training set and 7.1 % on the validation

set of LISA. VGGNet recorded an error of 1.8% and 5.6% for training and validation sets of CIB.

Table 4.1. Comparison between SVM, NuNet, and VGGNet trained on LISA and CIB Datasets

 SVM NuNet VGGNet

LISA CIB LISA CIB LISA CIB

No. of Layers Variable Fixed

~ Training Time 12 min 1 min 10 hours 3 hours 26 hours 9 hours

Train Accuracy 99.68% 100% 99.73% 100% 99.93% 100%

Valid. Accuracy 83.02% 82.31% 99.83% 100% 99.83% 96.92%

Training Loss 7.9% 1.8% 6.6% 1.8%

Validation Loss 9.6% 1.9% 7.1% 5.6%

56

CHAPTER 5

Conclusion and Future Directions

ADAS help drivers with little things that can escape their attention. The issue of traffic sign

recognition derives its roots from the fact that certain signs, while relevant to be noticed by

humans, may go unnoticed because of the noise that might make it indistinctive, or just that humans

selectively filter things they see based on preconceived mindset. A computer is rather trained to

pick up things that the human eye may overlook. Traffic sign recognition on U.S. datasets has not

been thoroughly researched. This research introduces a deep learning technique for recognizing

U.S. traffic signs.

VGGNet obtained an accuracy of 99.93% and 99.83%, respectively on training and

validation samples on the LISA dataset. The NuNet model performs at a similar accuracy of

99.73% and 99.83% for training and validation sets, respectively. The VGGNet, however,

performs poorly on the CIB dataset at an accuracy of 100% on the training set and 96.92% on the

validation set. On the CIB dataset, NuNet performs at an accuracy of 100% on the training set and

100% on the validation set. The error recorded for VGGNet on LISA was 6.6% and 7.1%

respectively for training and validation sets. The error recorded for VGGNet on CIB was 1.8% and

5.6% respectively for training and validation sets.

The NuNet also trains faster than VGGNet as it only extracts features, necessary for

recognizing the traffic sign images. Hence, if the model is able to use fewer features to recognize

a traffic sign, the model does not extract more features to recognize that specific traffic signs as

this results in the model being slower. VGGNet also used approximately 9 hours for training on

the CIB dataset while NuNet used approximately 3 hours. On the LISA dataset, VGGNet trained

for approximately 26 hours whiles NuNet trained for approximately 10 hours.

57

A model that is able to adjust its parameters has therefore shown to be a powerful tool for

training a deep neural network than one which does not. NuNet is able to train on fewer data than

most deep models without overfitting because it does not extract unnecessary information.

However, it is able to increase the number of layers to classify large and complex datasets.

Future work will be concerned with conducting experiments to investigate automating the

number of epochs the model has to be trained for. This will consist of defining a decay function

that will allow the model to continue training as long as improvements can be made to the model’s

performance on a specific dataset. In this case, one of two things would be proposed: 1.) in a

bottom-up manner, train the model by setting a conditional statement controlled by a progression

function; 2.) in a top-down approach, set a maximum number of epochs for training and decrease

this number by a decay function. This proposed approach to stop training rather than setting a

constant number of epochs for training will allow the model to self-pace training.

An investigation would also be conducted into how the model can automatically select the

number of layers for training. Currently, the model can only add layers if a condition is satisfied.

Future work would consider the model adding or removing layers during training to further

enhance performance and probably speed. The model would be tested on multiple datasets to test

its suitability towards any object recognition task.

A proposed strategy for deciding an epoch to stop training would be looked into. The term

training decay factor, which represents a constant would be researched for automatically choosing

a stopping epoch during training. The proposal states that once the model reaches a global

maximum, let’s say of 99%, the number of epochs remaining is decayed by subtracting the decay

factor from it. This factor will be a great component if it can be modeled into a function. In that

case, the model can train itself without being given a set number of epochs to train over, but rather,

58

it will stop when the function’s condition is satisfied. This will imply that the epoch selection will

follow a bottom-up approach, where training starts from epoch one, to epoch n, with n being

decided on by the training decay function. Another way, similar to the regular way of training is

to set a number of epochs for training and let the function decay the remaining epochs when the

condition set by the function is met in a top-down approach.

59

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A.,

Dean, J., Devin, M. and Ghemawat, S., (2016). Tensorflow: Large-scale machine learning

on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.

Arcos-Garcia, A., Alvarez-Garcia, J. A., & Soria-Morillo, L. M. (2018). Evaluation of deep neural

networks for traffic sign detection systems. Neurocomputing, 316, 332-344.

Berkaya, S. K., Gunduz, H., Ozsen, O., Akinlar, C., & Gunal, S. (2016). “On circular traffic sign

detection and recognition”. Expert Systems with Applications, 48, pp. 67-75.

Cireşan, D., Meier, U., Masci, J., and Schmidhuber, J. (2011). "A Committee of Neural Networks

for Traffic Sign Classification". The 2011 International Joint Conference on Neural

Networks, San Jose, CA, 2011, pp. 1918-1921.

Cireşan, D., Meier, U., & Schmidhuber, J. (2012). “Multi-Column Deep Neural Networks for

Image Classification”. arXiv preprint arXiv:1202.2745.

Escalera, A. D. L., Moreno, L., Salichs, M. A., & Armingol, J. M. (1997). Road traffic sign

detection and classification.

Fang, C. Y., Fuh, C. S., Yen, P. S., Cherng, S., & Chen, S. W. (2004). “An Automatic Road Sign

Recognition System Based on a Computational Model of Human Recognition

Processing”. Computer vision and Image understanding, 96(2), 237-268.

Girshick, R. (2015). Fast R-CNN. In Proceedings of the IEEE international conference on

computer vision (pp. 1440-1448).

Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006) "Extreme Learning Machine: Theory and

Applications." Neurocomputing, 70(1), 489-501.

60

Huang, Z., Yu, Y., Gu, J., & Liu, H. (2017). “An Efficient Method for Traffic Sign Recognition

Based on Extreme Learning Machine”. IEEE Transactions on Cybernetics, 47(4), 920-933.

Huval, B., Wang, T., Tandon, S., Kiske, J., Song, W., Pazhayampallil, J., Andriluka, M.,

Rajpurkar, P., Migimatsu, T., Cheng-Yue, R., Mujica, F., Coates, A., & Ng, Y., A., (2015).

“An Empirical Evaluation of Deep Learning on Highway Driving”. arXiv preprint

arXiv:1504.01716.

Jin, J., Fu, K., and Zhang, C. (2014). "Traffic Sign Recognition with Hinge Loss Trained

Convolutional Neural Networks". In IEEE Transactions on Intelligent Transportation

Systems, vol. 15, no. 5, pp. 1991-2000, Oct. 2014.

Jurišić, F., Filković, I., & Kalafatić, Z. (2015). “Multiple-Dataset Traffic Sign Classification with

OneCNN”. In Pattern Recognition (ACPR), 2015 3rd IAPR Asian Conference on (pp. 614-

618). IEEE.

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B.E., Bussonnier, M., Frederic, J., Kelley, K.,

Hamrick, J.B., Grout, J., Corlay, S. and Ivanov, P. (2016). Jupyter Notebooks-a publishing

format for reproducible computational workflows. In ELPUB (pp. 87-90).

Laguna, R., Barrientos, R., Blázquez, L. F., & Miguel, L. J. (2014). “Traffic Sign Recognition

Application Based on Image Processing Techniques”. IFAC Proceedings Volumes, 47(3),

104-109.

Larsson, F., Felsberg, M., & Forssen, P. E. (2011). “Correlating Fourier Descriptors of Local

Patches for Road Sign Recognition”. IET Computer Vision, 5(4), 244-254.

Larsson, F., & Felsberg, M. (2011). Using Fourier descriptors and Spatial Models for Traffic Sign

Recognition. In the Scandinavian Conference on Image Analysis (pp. 238-249). Springer,

Berlin, Heidelberg.

61

LeCun, Y., Bengio, Y., & Hinton, G. (2015). “Deep Learning”. Nature, 521(7553), 436.

Li, J., Mei, X., Prokhorov, D., & Tao, D. (2017). “Deep Neural Network for Structural Prediction

and Lane Detection in Traffic Scene”. IEEE Transactions on Neural Networks and

Learning Systems, 28(3), 690-703.

Li, Y., Møgelmose, A., & Trivedi, M. M. (2016). “Pushing the “Speed Limit”: High-Accuracy US

Traffic Sign Recognition with Convolutional Neural Networks”. IEEE Transactions on

Intelligent Vehicles, 1(2), 167-176.

Luo, P., Tian, Y., Wang, X., & Tang, X. (2014). “Switchable Deep Network for Pedestrian

Detection”. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (pp. 899-906).

Maldonado-Bascón, S., Lafuente-Arroyo, S., Gil-Jimenez, P., Gómez-Moreno, H., & López-

Ferreras, F. (2007). “Road-sign Detection and Recognition Based on Support Vector

Machines”. IEEE transactions on intelligent transportation systems, 8(2), 264-278.

Matas, J., Chum, O., Urban, M., & Pajdla, T. (2004). “Robust Wide-Baseline Stereo from

Maximally Stable Extremal Regions”. Image and Vision Computing, 22(10), 761-767.

Mathias, M., Timofte, R., Benenson, R., & Van Gool, L. (2013). “Traffic Sign Recognition—How

Far Are We from The Solution?”. In Neural Networks (IJCNN), The 2013 International

Joint Conference on (pp. 1-8). IEEE.

Moutarde, F., Bargeton, A., Herbin, A., & Chanussot, L. (2007). "Robust on-vehicle real-time

Visual Detection of American and European Speed Limit Signs, with a Modular Traffic

Signs Recognition System". In IEEE Intelligent Vehicles Symposium, Istanbul, 2007, pp.

1122-1126.

62

Nuakoh, E. B., Roy, K., Yuan, X., & Esterline, A. (2019, July). Deep Learning Approach for US

Traffic Sign Recognition. In Proceedings of the 2019 3rd International Conference on

Deep Learning Technologies (pp. 47-50). ACM.

Ouyang, W., & Wang, X. (2013). “Joint Deep Learning for Pedestrian Detection”. In Proceedings

of the IEEE International Conference on Computer Vision (pp. 2056-2063).

Ouyang, W., & Wang, X. (2012). “A discriminative Deep Model for Pedestrian Detection with

Occlusion Handling”. In 2012 IEEE Conference on Computer Vision and Pattern

Recognition (pp. 3258-3265). IEEE.

Sermanet, P., & LeCun, Y. (2011). “Traffic Sign Recognition with Multi-Scale Convolutional

Networks”. In Neural Networks (IJCNN), The 2011 International Joint Conference on (pp.

2809-2813). IEEE.

Sermanet, P., Chintala, S., & LeCun, Y. (2012). “Convolutional Neural Networks Applied to

House Numbers Digit Classification”. In Pattern Recognition (ICPR), 2012 21st

International Conference on (pp. 3288-3291). IEEE.

Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., & LeCun, Y. (2013a). “Overfeat:

Integrated Recognition, Localization and Detection Using Convolutional Networks”. arXiv

preprint arXiv:1312.6229.

Sermanet, P., Kavukcuoglu, K., Chintala, S., & LeCun, Y. (2013b). “Pedestrian Detection with

Unsupervised Multi-Stage Feature Learning”. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (pp. 3626-3633).

Schmidhuber, J. (2015). “Deep Learning in Neural Networks: An Overview”. Neural

Networks, 61, 85-117.

63

Shustanov, A., & Yakimov, P. (2017). “CNN Design for Real-Time Traffic Sign

Recognition”. Procedia Engineering, 201, 718-725.

Stallkamp, J., Schlipsing, M., Salmen, J., & Igel, C. (2011). “The German traffic sign recognition

benchmark: a multi-class classification competition”. In Neural Networks (IJCNN), The

2011 International Joint Conference on (pp. 1453-1460). IEEE.

Stallkamp, J., Schlipsing, M., Salmen, J., & Igel, C. (2012). “Man vs. computer: Benchmarking

Machine Learning Algorithms for Traffic Sign Recognition”. Neural Networks, Volume

32, 2012, Pages 323-332.

Tian, Y., Luo, P., Wang, X., & Tang, X. (2015). “Pedestrian Detection Aided by Deep Learning

Semantic Tasks”. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (pp. 5079-5087).

Timofte, R., Zimmermann, K., & Van Gool, L. (2014). “Multi-View Traffic Sign Detection,

Recognition, and 3D Localization”. Machine vision and applications, 25(3), 633-647.

Torresen, J., Bakke, J. W., & Sekanina, L. (2004). "Efficient Recognition of Speed Limit

Signs". Proceedings. The 7th International IEEE Conference on Intelligent Transportation

Systems (IEEE Cat. No.04TH8749), Washington, WA, USA, 2004, pp. 652-656.

Tzutalin. LabelImg. Git code (2015). https://github.com/tzutalin/labelImg.

Youssef, A., Albani, D., Nardi, D., & Bloisi, D. D. (2016). “Fast Traffic Sign Recognition Using

Color Segmentation and Deep Convolutional Networks”. In International Conference on

Advanced Concepts for Intelligent Vision Systems (pp. 205-216). Springer, Cham.

Yu, Y., Li, J., Wen, C., Guan, H., Luo, H., & Wang, C. (2016). Bag-of-Visual-Phrases and

Hierarchical Deep Models for Traffic Sign Detection and Recognition in Mobile Laser

Scanning Data. ISPRS Journal of Photogrammetry and Remote Sensing, 113, 106-123.

https://github.com/tzutalin/labelImg
https://github.com/tzutalin/labelImg

64

Zhu, Z., Liang, D., Zhang, S., Huang, X., Li, B., & Hu, S. (2016). “Traffic-Sign Detection and

Classification in The Wild”. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (pp. 2110-2118).

65

Appendix A

 Appendix A presents the recorded values during training for losses and accuracies of

training and validation sets for experiments using VGGNet on the LISA dataset in section 3.5.1.

Table A.2. Loss and Accuracy Values for Training and Validation

Epoch

Training

Loss

Validation

Loss

Training

Accuracy

Validation

Accuracy

1 3.097761708 2.812614 0.257746 0.25584

2 2.74759705 2.611326 0.37 0.380057

3 2.612055893 2.425479 0.384789 0.380627

4 2.402351074 2.249338 0.419859 0.435328

5 2.152300956 1.993753 0.478592 0.491168

6 1.941277798 1.860928 0.534225 0.538462

7 1.76022558 1.637012 0.616761 0.617094

8 1.632121012 1.452343 0.663944 0.678063

9 1.432769911 1.305922 0.719859 0.717379

10 1.263072603 1.16588 0.759577 0.757265

11 1.128576598 1.064556 0.778732 0.791453

12 1.004881547 0.958055 0.822676 0.825641

13 0.930744597 0.888187 0.835634 0.847863

14 0.834876621 0.777148 0.861972 0.866667

15 0.759428133 0.736702 0.87662 0.887749

16 0.709209877 0.669678 0.899859 0.896296

66

17 0.633351619 0.610647 0.912817 0.9151

18 0.563159542 0.54721 0.928873 0.938462

19 0.513774723 0.507296 0.940423 0.950997

20 0.473833224 0.482398 0.945352 0.958974

21 0.445526152 0.412484 0.959155 0.969801

22 0.414989634 0.411033 0.964507 0.97094

23 0.379712744 0.376298 0.968873 0.976638

24 0.364880943 0.362073 0.968732 0.981766

25 0.338104381 0.340451 0.97507 0.982906

26 0.324289165 0.315778 0.97831 0.986895

27 0.309020131 0.300437 0.982958 0.988034

28 0.295691185 0.298011 0.984366 0.988034

29 0.279663329 0.286916 0.982535 0.989174

30 0.267640402 0.279588 0.986338 0.989744

31 0.270089912 0.266089 0.98338 0.989744

32 0.25960971 0.261388 0.988732 0.992023

33 0.241157197 0.257769 0.987042 0.993732

34 0.240324123 0.247032 0.991972 0.990883

35 0.223828847 0.248493 0.990704 0.993162

36 0.213103104 0.222894 0.994085 0.994302

67

37 0.212142226 0.226345 0.991408 0.995442

38 0.202207726 0.223341 0.994648 0.993732

39 0.212327417 0.223873 0.994648 0.995442

40 0.19783907 0.21376 0.99507 0.994302

41 0.19226613 0.201062 0.996761 0.992023

42 0.196465741 0.217418 0.994085 0.994302

43 0.189183241 0.194391 0.994507 0.995442

44 0.179704767 0.204941 0.994648 0.994302

45 0.170688549 0.185784 0.996761 0.994872

46 0.164913765 0.179836 0.997465 0.994302

47 0.16107415 0.177198 0.997042 0.995442

48 0.157601433 0.167722 0.997887 0.995442

49 0.153525364 0.168045 0.997465 0.996581

50 0.149118491 0.167952 0.997887 0.997721

51 0.144126812 0.166545 0.998592 0.997721

52 0.141357999 0.158834 0.998451 0.997151

53 0.1387262 0.161264 0.998169 0.997151

54 0.137388932 0.155557 0.996901 0.996581

55 0.137729378 0.14896 0.997746 0.998291

56 0.141356515 0.152151 0.995915 0.996011

57 0.134909629 0.151925 0.998592 0.997721

58 0.13071579 0.141499 0.998592 0.997151

68

59 0.131283669 0.140071 0.998028 0.997721

60 0.130470107 0.14104 0.998451 0.996581

61 0.13486209 0.151188 0.995915 0.995442

62 0.134527999 0.156826 0.997042 0.996581

63 0.126976339 0.138246 0.997746 0.997721

64 0.121351666 0.133655 0.998873 0.998291

65 0.11567679 0.132374 0.999577 0.998291

66 0.117056048 0.125481 0.997746 0.996581

67 0.114088887 0.120939 0.998451 0.998291

68 0.11234433 0.118715 0.999718 0.998291

69 0.111003019 0.130121 0.998169 0.998291

70 0.107394829 0.11871 0.998592 0.998291

71 0.108562823 0.117451 0.999577 0.998291

72 0.104883381 0.116203 0.999014 0.997721

73 0.102643461 0.109029 0.998873 0.998291

74 0.106667563 0.110575 0.997746 0.997151

75 0.105868465 0.120043 0.998028 0.998291

76 0.113847493 0.124829 0.997042 0.998291

77 0.108408039 0.128345 0.998028 0.997721

78 0.110094978 0.126199 0.997746 0.997151

79 0.102781496 0.115095 0.998169 0.997721

80 0.104413322 0.119681 0.997183 0.997721

69

81 0.110846137 0.126486 0.997183 0.998291

82 0.106055579 0.115613 0.998028 0.997721

83 0.103272441 0.111051 0.998028 0.997721

84 0.102868141 0.114027 0.999155 0.998291

85 0.102510117 0.113878 0.999155 0.998291

86 0.102762544 0.12357 0.997465 0.997721

87 0.100402635 0.105502 0.997887 0.998291

88 0.100132396 0.113936 0.997887 0.997721

89 0.103828356 0.116034 0.997324 0.997151

90 0.107987113 0.12558 0.996338 0.998291

91 0.103258746 0.113905 0.998592 0.998291

92 0.101762934 0.111821 0.998451 0.998291

93 0.097466391 0.109025 0.997606 0.998291

94 0.100628683 0.109401 0.997042 0.998291

95 0.094872501 0.107419 0.998873 0.982336

96 0.090064796 0.104649 0.999014 0.998291

97 0.092836177 0.110506 0.997746 0.998291

98 0.091442583 0.097661 0.999014 0.998291

99 0.092570731 0.112891 0.99831 0.997721

100 0.08948961 0.109827 0.997746 0.998291

101 0.089143257 0.103652 0.998451 0.998291

102 0.096879486 0.108767 0.996901 0.997721

70

103 0.095775502 0.102507 0.998592 0.998291

104 0.089580127 0.102325 0.998873 0.998291

105 0.085332424 0.09662 0.998169 0.997151

106 0.088012294 0.091967 0.998592 0.998291

107 0.089153317 0.109024 0.998873 0.983476

108 0.088218677 0.111261 0.998169 0.995442

109 0.083477548 0.091369 0.999014 0.998291

110 0.085715038 0.10246 0.998028 0.998291

111 0.084544391 0.105286 0.997746 0.997721

112 0.083239266 0.098089 0.997465 0.997721

113 0.092902807 0.104665 0.996479 0.998291

114 0.085067838 0.100434 0.997887 0.997721

115 0.083951141 0.10477 0.996338 0.997721

116 0.083170018 0.097522 0.997887 0.997721

117 0.080025426 0.090901 0.998873 0.997721

118 0.084274337 0.08735 0.998732 0.997721

119 0.081533764 0.093792 0.999859 0.998291

120 0.083590259 0.115519 0.994366 0.997721

121 0.088640079 0.095787 0.997887 0.998291

122 0.085462135 0.091281 0.998592 0.998291

123 0.086426533 0.09912 0.998873 0.997721

124 0.084938435 0.099534 0.998169 0.998291

71

125 0.090667325 0.100691 0.998592 0.998291

126 0.081207441 0.095752 0.998592 0.997721

127 0.083045874 0.100969 0.998169 0.997721

128 0.081756009 0.119785 0.996056 0.983476

129 0.079671224 0.092432 0.997746 0.998291

130 0.084739199 0.088527 0.999296 0.998291

131 0.079758419 0.090257 0.999577 0.998291

132 0.074886658 0.088462 0.999437 0.998291

133 0.076498982 0.092746 0.998732 0.998291

134 0.075882708 0.087965 0.999296 0.998291

135 0.071367288 0.089318 0.999437 0.998291

136 0.070490729 0.083398 0.999014 0.998291

137 0.071217467 0.085095 0.998169 0.997721

138 0.071989853 0.091423 0.998028 0.997721

139 0.073233423 0.09088 0.998169 0.997721

140 0.07414435 0.09128 0.999014 0.998291

141 0.073933004 0.080099 0.999437 0.998291

142 0.072827883 0.096145 0.997887 0.997151

143 0.073828028 0.091136 0.998169 0.998291

144 0.096089865 0.105974 0.995634 0.997151

145 0.087503672 0.10099 0.996056 0.998291

146 0.086745189 0.098305 0.997324 0.997151

72

147 0.090264101 0.098288 0.997746 0.998291

148 0.095267341 0.105012 0.997465 0.998291

149 0.084808027 0.101358 0.999577 0.998291

150 0.082648386 0.088497 0.999437 0.998291

151 0.082515598 0.104704 0.998028 0.983476

152 0.093445161 0.115006 0.997465 0.998291

153 0.095819709 0.134853 0.993803 0.997721

154 0.093356526 0.104543 0.998169 0.998291

155 0.092690022 0.112187 0.997324 0.997151

156 0.105265884 0.119023 0.997746 0.997151

157 0.093150276 0.105438 0.99831 0.998291

158 0.085865485 0.103989 0.999155 0.997721

159 0.084260299 0.09156 0.999437 0.998291

160 0.080926149 0.095875 0.99831 0.998291

161 0.081580831 0.087464 0.999155 0.998291

162 0.079053357 0.086656 0.999437 0.998291

163 0.078466784 0.098668 0.998028 0.997151

164 0.077352652 0.092606 0.999155 0.998291

165 0.077405458 0.084284 0.998732 0.998291

166 0.076364515 0.081207 0.999155 0.998291

167 0.077878133 0.092396 0.999014 0.998291

168 0.072653512 0.078241 0.999718 0.998291

73

169 0.071105569 0.078374 0.999577 0.998291

170 0.07292468 0.08376 0.998451 0.998291

171 0.077272317 0.088885 0.99662 0.997151

172 0.08124128 0.086807 0.999437 0.998291

173 0.076449325 0.082665 0.999014 0.998291

174 0.077671162 0.084931 0.998873 0.998291

175 0.082476996 0.093815 0.996338 0.995442

176 0.087355349 0.098646 0.999014 0.998291

177 0.084597205 0.093179 0.999296 0.998291

178 0.086357427 0.104309 0.99831 0.997721

179 0.083330437 0.102786 0.998873 0.998291

180 0.082191331 0.090256 0.999155 0.998291

181 0.084583756 0.095436 0.998873 0.998291

182 0.10323477 0.109677 0.99662 0.996581

183 0.089624305 0.104584 0.997887 0.997721

184 0.093377471 0.096466 0.998732 0.998291

185 0.088096082 0.104976 0.998732 0.997721

186 0.086322267 0.091855 0.999437 0.997721

187 0.093071417 0.09981 0.996901 0.998291

188 0.099019032 0.10407 0.998028 0.997721

189 0.091236188 0.106914 0.999014 0.998291

190 0.088449859 0.092932 0.999577 0.998291

74

191 0.091027145 0.109309 0.999155 0.998291

192 0.089013257 0.097151 0.998873 0.997151

193 0.085520167 0.100935 0.998592 0.997721

194 0.082086001 0.086652 0.999577 0.998291

195 0.07891793 0.089799 0.999296 0.998291

196 0.07823303 0.085838 0.999437 0.998291

197 0.077330326 0.090483 0.999014 0.998291

198 0.076629187 0.089798 0.998873 0.998291

199 0.075477714 0.083545 0.999155 0.998291

200 0.07447986 0.106705 0.995352 0.996581

201 0.074571213 0.081344 0.999718 0.998291

202 0.07343387 0.081346 0.999014 0.998291

203 0.07076664 0.083097 0.999437 0.998291

204 0.068518095 0.076151 0.999577 0.997721

205 0.069458033 0.075292 0.999155 0.998291

206 0.067833934 0.085171 0.997465 0.998291

207 0.070170819 0.094427 0.998732 0.997721

208 0.070942571 0.077008 0.998873 0.998291

209 0.068543579 0.077344 0.999437 0.998291

210 0.068137976 0.077732 0.999155 0.998291

211 0.065034394 0.076404 0.999718 0.998291

212 0.067330495 0.072363 0.999718 0.998291

75

213 0.067975347 0.075108 0.999014 0.997721

214 0.067707643 0.079387 0.999718 0.997721

215 0.066638189 0.074189 0.998592 0.998291

216 0.066750446 0.073733 0.999155 0.998291

217 0.064074986 0.07592 0.999718 0.997721

218 0.064790712 0.072244 0.998592 0.997721

219 0.066563705 0.076794 0.999014 0.998291

220 0.073468164 0.092012 0.996056 0.998291

221 0.07176942 0.085626 0.99831 0.997721

222 0.071574721 0.090306 0.997324 0.997721

223 0.079955722 0.09135 0.997887 0.998291

224 0.076105473 0.082828 0.99831 0.997721

225 0.078961236 0.096132 0.99831 0.998291

226 0.078505139 0.082494 0.999155 0.998291

227 0.075292927 0.085538 0.999718 0.998291

228 0.074108558 0.081221 0.999014 0.998291

229 0.072197296 0.07732 0.999859 0.998291

230 0.07093558 0.076319 0.998732 0.998291

231 0.068216658 0.079378 0.999577 0.998291

232 0.06651794 0.072418 1 0.998291

233 0.066003107 0.068336 1 0.998291

234 0.064765651 0.073366 0.998873 0.998291

76

235 0.066943178 0.075269 0.999437 0.998291

236 0.066840029 0.082486 0.997465 0.998291

237 0.070722706 0.09324 0.996761 0.997721

238 0.086074304 0.089324 0.999155 0.997721

239 0.077130188 0.093186 0.997183 0.998291

240 0.075277474 0.089424 0.998873 0.998291

241 0.07289649 0.082443 0.998028 0.998291

242 0.072244006 0.079996 0.998873 0.998291

243 0.072814996 0.076893 0.999296 0.998291

244 0.069209508 0.088457 0.999437 0.998291

245 0.075068254 0.081447 0.998592 0.997721

246 0.073802345 0.080765 0.997606 0.998291

247 0.081567836 0.099199 0.996338 0.998291

248 0.09140155 0.085902 0.998732 0.998291

249 0.087247955 0.100139 0.997324 0.998291

250 0.087847923 0.109095 0.996197 0.997721

251 0.088986748 0.099718 0.998732 0.998291

252 0.088283875 0.098241 0.998028 0.998291

253 0.086023831 0.096652 0.998732 0.997151

254 0.08275367 0.094566 0.997887 0.997721

255 0.083401011 0.088065 0.999296 0.997721

256 0.082030849 0.099437 0.999014 0.997151

77

257 0.077221944 0.085443 0.999577 0.998291

258 0.074944013 0.106415 0.998592 0.998291

259 0.07703655 0.086855 0.999577 0.998291

260 0.076100379 0.081142 0.999718 0.998291

261 0.073869741 0.092248 0.997746 0.998291

262 0.072174005 0.077151 0.999437 0.998291

263 0.070478197 0.080253 0.999155 0.998291

264 0.069751929 0.076278 0.999718 0.998291

265 0.067519228 0.072411 0.999577 0.998291

266 0.068650641 0.081964 0.998592 0.998291

267 0.069240974 0.079814 0.998028 0.998291

268 0.075049031 0.096269 0.996479 0.997151

269 0.073697016 0.083411 0.997465 0.998291

270 0.092846723 0.117673 0.993521 0.994872

271 0.09148244 0.093613 0.998873 0.998291

272 0.094970753 0.131318 0.997465 0.997151

273 0.091808569 0.107817 0.999155 0.997721

274 0.090027584 0.098041 0.999155 0.998291

275 0.084941388 0.089787 0.998451 0.998291

276 0.082681434 0.097717 0.999014 0.998291

277 0.078596065 0.083072 0.999859 0.998291

278 0.076867156 0.083684 0.999437 0.998291

78

279 0.076168928 0.088651 0.999577 0.997721

280 0.074451056 0.083424 0.999577 0.998291

281 0.0768792 0.082984 0.997746 0.998291

282 0.083342038 0.100587 0.997887 0.997721

283 0.082832647 0.090523 0.997887 0.997721

284 0.085790792 0.100384 0.999155 0.997721

285 0.085592401 0.092824 0.999014 0.997721

286 0.080756908 0.094637 0.998873 0.997721

287 0.080278624 0.084923 0.999437 0.998291

288 0.077594671 0.095038 0.999155 0.998291

289 0.08300124 0.09676 0.998592 0.996581

290 0.078970228 0.087783 0.998592 0.998291

291 0.076855761 0.083549 0.999437 0.998291

292 0.073500355 0.079954 1 0.998291

293 0.071376267 0.077282 0.999577 0.998291

294 0.077592882 0.08529 0.999437 0.998291

295 0.0746906 0.08167 0.999014 0.998291

296 0.073073977 0.083583 0.999296 0.998291

297 0.072745746 0.079044 1 0.998291

298 0.06957734 0.075023 0.999437 0.998291

299 0.068791735 0.081333 0.999577 0.997151

300 0.067633089 0.080532 0.999859 0.998291

79

301 0.068551222 0.074618 0.999718 0.997721

302 0.068039486 0.073137 0.999859 0.998291

303 0.076399864 0.091786 0.996197 0.997721

304 0.075486426 0.08989 0.99831 0.998291

305 0.076699755 0.093123 0.998873 0.998291

306 0.075144218 0.080945 0.999859 0.998291

307 0.074328217 0.080127 0.999437 0.998291

308 0.07699222 0.088362 0.999296 0.998291

309 0.076933961 0.080411 0.999437 0.997721

310 0.073401457 0.083268 0.999718 0.998291

311 0.07282249 0.07916 0.998592 0.998291

312 0.071371622 0.086274 0.999296 0.998291

313 0.074887848 0.126751 0.992113 0.996581

314 0.075642924 0.087282 0.997606 0.998291

315 0.076425847 0.085895 0.999155 0.998291

316 0.073311983 0.087654 0.999296 0.997721

317 0.07424791 0.07717 0.999014 0.998291

318 0.083866941 0.134864 0.992113 0.982906

319 0.092542987 0.103944 0.997465 0.997721

320 0.089339382 0.119875 0.997042 0.998291

321 0.092028715 0.105734 0.99831 0.998291

322 0.08747408 0.099593 0.999014 0.998291

80

323 0.088777444 0.10093 0.997746 0.998291

324 0.088771241 0.111281 0.998873 0.998291

325 0.092688254 0.098953 0.998592 0.998291

326 0.088563183 0.103604 0.999718 0.998291

327 0.087082756 0.101171 0.996901 0.998291

328 0.084766395 0.091997 0.999014 0.998291

329 0.083126828 0.096631 0.998451 0.997721

330 0.079972359 0.093093 0.999577 0.998291

331 0.078484214 0.092402 0.99831 0.997721

332 0.076923238 0.082808 0.999155 0.998291

333 0.074472225 0.082551 1 0.998291

334 0.072021626 0.077522 0.999718 0.998291

335 0.072826476 0.0845 0.997887 0.997151

336 0.088250805 0.110951 0.997042 0.997721

337 0.086558928 0.096332 0.999437 0.998291

338 0.078065781 0.090474 0.998732 0.998291

339 0.080614428 0.086623 0.999437 0.998291

340 0.077774033 0.091075 0.999437 0.998291

341 0.089406069 0.097326 0.997746 0.997721

342 0.084345886 0.091793 0.998451 0.998291

343 0.084568884 0.093909 0.99831 0.998291

344 0.086662417 0.099256 0.997465 0.998291

81

345 0.081669918 0.098931 0.998592 0.998291

346 0.083982435 0.092883 0.999155 0.998291

347 0.079623155 0.091148 0.999437 0.998291

348 0.078367965 0.08596 0.999014 0.998291

349 0.079004489 0.092538 0.998732 0.998291

350 0.074933302 0.085502 0.999155 0.998291

351 0.074456759 0.080869 0.999437 0.998291

352 0.073585661 0.081056 0.999014 0.998291

353 0.090598145 0.105358 0.997042 0.998291

354 0.089775086 0.099162 0.997606 0.998291

355 0.092807027 0.102171 0.99493 0.997721

356 0.089422639 0.101445 0.999014 0.998291

357 0.087527164 0.091797 0.998873 0.997151

358 0.097168409 0.101935 0.997746 0.998291

359 0.089046528 0.096108 0.999155 0.998291

360 0.088486769 0.095941 0.999014 0.998291

361 0.085036843 0.103739 0.999014 0.998291

362 0.086661917 0.089452 0.999155 0.998291

363 0.083052373 0.089958 0.999155 0.998291

364 0.081776598 0.08882 0.999437 0.998291

365 0.079112457 0.085527 0.999718 0.997721

366 0.077540762 0.085893 0.999577 0.998291

82

367 0.086555784 0.097633 0.995634 0.997721

368 0.089125432 0.089265 0.997465 0.997721

369 0.081081331 0.094408 0.998873 0.998291

370 0.083347753 0.099258 0.997606 0.998291

371 0.084304618 0.094526 0.998451 0.997721

372 0.079601833 0.090632 0.998732 0.998291

373 0.079112366 0.084555 0.999859 0.998291

374 0.078565121 0.085148 1 0.998291

375 0.074701271 0.081265 0.999296 0.998291

376 0.074073213 0.082128 0.999577 0.998291

377 0.073994158 0.07873 0.999437 0.998291

378 0.071391935 0.078496 0.999718 0.998291

379 0.071482899 0.076107 1 0.998291

380 0.072296049 0.100154 0.995352 0.994872

381 0.069768117 0.085056 0.997887 0.997721

382 0.070175775 0.082879 0.999014 0.998291

383 0.070302563 0.080544 0.999577 0.998291

384 0.068231202 0.082086 0.999859 0.998291

385 0.06913286 0.077258 0.999718 0.998291

386 0.068342101 0.082699 0.999437 0.998291

387 0.065336354 0.074054 0.999718 0.998291

388 0.064268089 0.096728 0.995775 0.997151

83

389 0.063772301 0.0742 0.998873 0.998291

390 0.064001974 0.068939 0.999577 0.998291

391 0.063292852 0.09576 0.994789 0.998291

392 0.068586596 0.073977 0.998732 0.998291

393 0.069446565 0.109469 0.992958 0.996011

394 0.077054382 0.10394 0.997465 0.998291

395 0.07606944 0.098913 0.998732 0.998291

396 0.074330578 0.089974 0.999014 0.998291

397 0.072142844 0.08244 0.999437 0.998291

398 0.080048729 0.094771 0.999155 0.998291

399 0.08335042 0.089659 0.999718 0.998291

400 0.085961166 0.09456 0.99831 0.998291

401 0.085264787 0.091697 0.998873 0.998291

402 0.08039767 0.085945 0.999859 0.998291

403 0.078038075 0.087344 0.999155 0.998291

404 0.077635603 0.085927 0.999718 0.998291

405 0.079466639 0.088791 0.999577 0.998291

406 0.077377613 0.089963 0.998732 0.998291

407 0.077678252 0.082164 0.999718 0.998291

408 0.075260542 0.100259 0.997746 0.998291

409 0.080320445 0.091112 0.998873 0.998291

410 0.087706223 0.094468 0.997746 0.998291

84

411 0.082846221 0.087577 0.998732 0.998291

412 0.078473993 0.086788 0.999296 0.998291

413 0.080075107 0.090764 0.999296 0.998291

414 0.07621449 0.086621 0.998873 0.998291

415 0.076532041 0.086896 0.999437 0.998291

416 0.072551509 0.080041 0.999577 0.998291

417 0.074159769 0.079522 0.999296 0.998291

418 0.078104668 0.077374 0.999577 0.998291

419 0.073639216 0.082112 0.999014 0.998291

420 0.075329311 0.080299 0.999577 0.997721

421 0.070611915 0.081777 0.998169 0.998291

422 0.070054706 0.07554 1 0.998291

423 0.068605568 0.084455 0.999437 0.998291

424 0.066867249 0.087648 0.998732 0.998291

425 0.066386909 0.07035 0.999859 0.998291

426 0.068025302 0.075802 0.999014 0.998291

427 0.071101577 0.077829 0.997887 0.998291

428 0.068827657 0.078934 0.998592 0.997721

429 0.069950966 0.075735 0.99831 0.998291

430 0.075869353 0.080808 0.997324 0.997151

431 0.075369237 0.077802 0.999014 0.998291

432 0.074952577 0.087478 0.998592 0.998291

85

433 0.075388784 0.082934 0.999437 0.997721

434 0.07732414 0.108077 0.996479 0.982906

435 0.08821587 0.10033 0.994648 0.997721

436 0.083792241 0.106837 0.996056 0.998291

437 0.092376282 0.105223 0.998169 0.998291

438 0.087374765 0.10508 0.999296 0.998291

439 0.083944762 0.096784 0.998732 0.998291

440 0.087414799 0.101377 0.999718 0.998291

441 0.081810053 0.086273 0.999859 0.998291

442 0.079378961 0.08316 0.999718 0.998291

443 0.076848528 0.081562 0.999718 0.998291

444 0.076236893 0.082849 0.999296 0.998291

445 0.078946434 0.08721 0.998732 0.998291

446 0.074352394 0.079882 0.999718 0.998291

447 0.073117554 0.083236 1 0.998291

448 0.08527474 0.087171 0.998451 0.997721

449 0.083694746 0.119609 0.991831 0.996581

450 0.083839961 0.093084 0.998592 0.998291

451 0.096079425 0.110255 0.997042 0.998291

452 0.089271456 0.105342 0.998732 0.998291

453 0.090916554 0.106245 0.997887 0.997151

454 0.087605213 0.104782 0.999155 0.998291

86

455 0.08955026 0.104215 0.998028 0.997151

456 0.088622601 0.097405 0.999014 0.998291

457 0.085356678 0.108558 0.999718 0.998291

458 0.087252303 0.091045 0.999718 0.998291

459 0.083631874 0.093047 0.999014 0.997721

460 0.082978905 0.087327 0.999859 0.998291

461 0.079602801 0.087381 0.999577 0.998291

462 0.083948787 0.104136 0.995916 0.997151

463 0.081716278 0.086287 0.998732 0.998291

464 0.083392252 0.103159 0.999014 0.998291

465 0.085228103 0.092677 0.998451 0.998291

466 0.083458551 0.088499 0.999014 0.998291

467 0.082297135 0.089711 0.998592 0.998291

468 0.094772497 0.102289 0.998592 0.997721

469 0.08647224 0.09419 0.998873 0.998291

470 0.082684972 0.091367 0.999718 0.998291

471 0.084276596 0.097677 0.999718 0.998291

472 0.085452001 0.09253 0.998873 0.998291

473 0.087896605 0.099982 0.998592 0.998291

474 0.085615454 0.091106 0.999296 0.998291

475 0.087280923 0.091606 0.998732 0.998291

476 0.095429565 0.100651 0.998028 0.997721

87

477 0.08933591 0.097284 0.998451 0.998291

478 0.089617404 0.094912 0.998169 0.998291

479 0.088868804 0.089484 0.998732 0.998291

480 0.088637009 0.09196 0.999014 0.998291

481 0.08517016 0.090032 0.999577 0.998291

482 0.089001819 0.091327 0.999577 0.998291

483 0.085208594 0.099085 0.999155 0.998291

484 0.085188028 0.087782 0.999296 0.998291

485 0.081103075 0.091132 1 0.998291

486 0.081126496 0.087586 0.999296 0.998291

487 0.079018945 0.086959 0.999718 0.998291

488 0.078710312 0.088814 0.999014 0.998291

489 0.077518263 0.083004 1 0.998291

490 0.073805267 0.083242 1 0.998291

491 0.072263574 0.082733 0.999718 0.998291

492 0.069989992 0.076652 0.999859 0.998291

493 0.067963138 0.073446 0.999859 0.998291

494 0.067035542 0.071816 0.999718 0.998291

495 0.06625443 0.071067 1 0.998291

496 0.065665172 0.069171 0.999718 0.998291

497 0.065612988 0.069948 0.999718 0.998291

498 0.065835802 0.069777 0.999718 0.998291

88

499 0.068042595 0.074381 0.999296 0.998291

500 0.073021692 0.089022 0.997746 0.997721

501 0.074288531 0.083992 0.999014 0.998291

502 0.082740396 0.089164 0.997465 0.998291

503 0.082204775 0.095773 0.996479 0.997721

504 0.086022131 0.099001 0.998028 0.998291

505 0.083061742 0.093403 0.999437 0.998291

506 0.082407392 0.101043 0.997887 0.997721

507 0.078908931 0.085275 0.999014 0.998291

508 0.07572506 0.083212 1 0.998291

509 0.073803193 0.080998 0.999859 0.998291

510 0.076394818 0.078578 0.999718 0.998291

511 0.07137094 0.076781 0.999577 0.998291

512 0.070438991 0.077149 0.999859 0.998291

513 0.069371752 0.07687 0.999296 0.998291

514 0.069073951 0.075213 1 0.998291

515 0.067546376 0.072444 0.999718 0.998291

516 0.067592276 0.085723 0.999437 0.998291

517 0.068334934 0.079468 0.998451 0.998291

518 0.076819078 0.091196 0.99831 0.997721

519 0.073794697 0.089269 0.998592 0.997721

520 0.073551839 0.090338 0.997606 0.997721

89

521 0.072408954 0.089862 0.998451 0.998291

522 0.072293475 0.079901 0.999014 0.998291

523 0.070185788 0.076621 0.999577 0.998291

524 0.070129425 0.075693 0.999859 0.998291

525 0.072679236 0.08649 0.999437 0.998291

526 0.070594649 0.082011 0.999155 0.998291

527 0.070478297 0.078095 0.999155 0.998291

528 0.071167333 0.077585 0.999437 0.998291

529 0.073122091 0.094353 0.999437 0.998291

530 0.070252969 0.07919 0.999437 0.998291

531 0.069293847 0.076283 0.999718 0.998291

532 0.068852515 0.076018 0.999296 0.997721

533 0.069903851 0.075148 0.999296 0.998291

534 0.072138005 0.078947 0.999296 0.998291

535 0.075289807 0.08501 0.999014 0.998291

536 0.069654317 0.08049 0.999296 0.998291

537 0.072430693 0.090006 0.999014 0.997721

538 0.072411482 0.077864 0.998732 0.998291

539 0.076127986 0.096643 0.998732 0.996581

540 0.073151056 0.081763 0.997324 0.998291

541 0.073740005 0.084029 0.999014 0.998291

542 0.077592687 0.091692 0.998451 0.998291

90

543 0.075892183 0.091426 0.99831 0.998291

544 0.09463093 0.093883 0.998028 0.998291

545 0.088306982 0.090646 0.998451 0.998291

546 0.084065416 0.098616 0.998873 0.997721

547 0.083206129 0.094877 0.997606 0.997721

548 0.079952137 0.091343 0.999155 0.998291

549 0.080923394 0.094432 0.997042 0.998291

550 0.086295681 0.094261 0.999014 0.998291

551 0.08580576 0.09041 0.998732 0.998291

552 0.084561535 0.095451 0.999437 0.998291

553 0.083960947 0.092304 0.999296 0.998291

554 0.083884616 0.087377 0.999718 0.998291

555 0.080253681 0.090835 0.998732 0.998291

556 0.078375984 0.088223 0.999155 0.998291

557 0.075451025 0.082292 0.999859 0.998291

558 0.078094074 0.078957 0.999577 0.998291

559 0.075412339 0.081902 0.999718 0.998291

560 0.074406705 0.079846 0.999437 0.998291

561 0.072845939 0.078278 0.999014 0.998291

562 0.071289349 0.076534 0.999155 0.998291

563 0.069419184 0.075426 0.999718 0.998291

564 0.068787196 0.088592 0.999296 0.998291

91

565 0.074509737 0.08093 0.999296 0.998291

566 0.069595683 0.082172 1 0.998291

567 0.067841559 0.074904 0.999859 0.998291

568 0.067653481 0.074617 0.999718 0.998291

569 0.072555999 0.089428 0.997746 0.998291

570 0.075850485 0.081807 0.999437 0.998291

571 0.071585602 0.081241 0.999577 0.998291

572 0.072482462 0.083523 0.999014 0.998291

573 0.072121406 0.083984 0.999155 0.998291

574 0.070977293 0.085143 0.999718 0.998291

575 0.07464207 0.079551 0.999437 0.997721

576 0.073981408 0.081597 0.999014 0.998291

577 0.072253437 0.082774 0.998028 0.998291

578 0.076008364 0.090667 0.998873 0.998291

579 0.074754869 0.083298 0.997887 0.997721

580 0.075452698 0.085534 0.999718 0.998291

581 0.071623869 0.07989 0.999577 0.998291

582 0.077450679 0.085756 0.99831 0.998291

583 0.081252283 0.086887 0.998169 0.998291

584 0.078533971 0.091108 0.999577 0.998291

585 0.080389265 0.091111 0.999014 0.998291

586 0.078516426 0.091566 0.999718 0.998291

92

587 0.076018462 0.08181 0.999155 0.998291

588 0.077428332 0.089462 0.998451 0.997721

589 0.074959937 0.080321 0.998873 0.998291

590 0.072098812 0.078116 0.999577 0.998291

591 0.07103283 0.076799 0.999859 0.998291

592 0.0703958 0.076337 0.999718 0.998291

593 0.069023945 0.090755 0.997324 0.996581

594 0.067657176 0.073554 1 0.998291

595 0.06525018 0.071993 1 0.998291

596 0.066223342 0.071985 0.999718 0.998291

597 0.066660618 0.08482 0.999014 0.998291

598 0.065582235 0.076749 0.999437 0.998291

599 0.064609947 0.076233 0.999718 0.997721

600 0.066039903 0.071473 0.999296 0.998291

93

Appendix B

Appendix B presents the intermediate confusion matrices for using VGGNet on the LISA

dataset.

Figure B.1. Epoch 1 Confusion Matrix for VGGNet Model on LISA Dataset

94

Figure B.2. Epoch 100 Confusion Matrix for VGGNet Model on LISA Dataset

95

Figure B.3. Epoch 200 Confusion Matrix for VGGNet Model on LISA Dataset

96

Figure B.4. Epoch 300 Confusion Matrix for VGGNet Model on LISA Dataset

97

Figure B.5. Epoch 400 Confusion Matrix for VGGNet Model on LISA Dataset

98

Figure B.6. Epoch 500 Confusion Matrix for VGGNet Model on LISA Dataset

99

Appendix C

Appendix C presents intermediate confusion matrices for training NuNet on the LISA dataset.

The 1st, 100th, 200th, 300th, 400th and 500th epochs are presented in this appendix.

Figure C.7. Epoch 1 Confusion Matrix for NuNet Model on LISA Dataset

100

Figure C.8. Epoch 100 Confusion Matrix for NuNet Model on LISA Dataset

101

Figure C.9. Epoch 200 Confusion Matrix for NuNet Model on LISA Dataset

102

Figure C.10. Epoch 300 Confusion Matrix for NuNet Model on LISA Dataset

103

Figure C.11. Epoch 400 Confusion Matrix for NuNet Model on LISA Dataset

104

Figure C.12. Epoch 500 Confusion Matrix for NuNet Model on LISA Dataset

105

Appendix D

Appendix D presents intermediate confusion matrices for training NuNet with CIB dataset

at 80/20 split for training and validation sets respectively. Confusion matrices of the 1st and 100th

epochs are presented. The 200th, 300th, 400th and 500th epochs shared the same configuration as the

100th.

Figure D.13. Epoch 1 Confusion Matrix for NuNet Model on CIB Dataset

106

Figure D.14. Confusion Matrix for NuNet Model on CIB Dataset for 100th

	NuNet: A Deep Learning Approach for U.S. Traffic Sign Recognition
	Recommended Citation

	tmp.1708462956.pdf.RxLsX

