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Abstract 

Traffic Sign Recognition System (TSRS) is an Advanced Driver Assistance System 

(ADAS) that helps drivers with perception to ensure road safety. Two main activities are 

performed in TSRS: detection and classification. The detection aspect involves localizing traffic 

signs in an image frame while the classification aspect deals with recognizing the class of the 

detected sign. Research in this area has mainly focused on German, Belgium, Sweden, Chinese, 

and several other datasets using different approaches. However, limited research has been 

conducted using U.S. traffic signs; the ones that have been conducted are mostly concerned with 

speed limit signs recognition. This work expands the classification of U.S. traffic signs to cover 

all the publicly available classes. 

Convolutional Neural Networks (CNN) have shown a lot of success on European datasets. 

One key issue with CNN is that it requires a lot of data for training. This research introduces a new 

model, called NuNet, with a new dataset, CIB TS V1. The model is used to classify the CIB dataset 

and LISA benchmark (Møgelmose et al., 2012). Results from running NuNet on LISA and CIB 

are then compared with those of a modified VGGNet. The new model trains and converges faster 

than VGGNet and is adaptable to both large and sparse datasets. Experiments conducted with the 

VGGNet show training and validation accuracies of 99.93% and 99.83, respectively on the LISA 

dataset. However, it overfits on the CIB dataset with training and validation accuracies of 100% 

and 96.92%, respectively. This is because the deep net cannot generalize well on small datasets 

and thereby learns noise. NuNet, on the other hand, generalizes well on smaller datasets recording 

accuracies of 99.73% and 99.83% on LISA for the training and validation sets respectively, and 

100% for both training and validation sets on the CIB dataset. NuNet trains for 4 hours on LISA 

and an hour on CIB whereas VGGNet trains for 23 hours on LISA and 8 hours on CIB.  
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CHAPTER 1 

Introduction 

Traffic sign recognition systems (TSRS) consist of two activities; detecting and 

recognizing traffic signs (Escalera, A. d. l., et al 1997). Detecting the sign deals with localizing a 

traffic sign in an image frame with background noise using shape, color or form. Recognition of a 

detected sign has to do with classifying the detected sign into a given class of traffic signs. This 

work focuses on the recognition aspect of the TSRS. The U.S. traffic sign has received little 

research attention compared to European traffic signs. Most of the research that has been 

conducted with U.S. traffic signs have focused mainly on speed limit signs or broader categories 

such as warning signs, prohibitory signs or speed limit signs. This work expands the boundaries 

of previous research to classify all traffic signs in the publicly available LISA dataset (Møgelmose 

et al., 2012). A new dataset is also introduced for the purpose of this work. 

1.1 Background and Motivation 

Research that has been conducted in the area of traffic sign recognition has mostly focused 

on using European traffic signs, such as the German Traffic Sign Recognition Benchmark 

(GTSRB) (Stallkamp et al., 2011) and the Belgium Traffic Sign Classification (BTSC) (Timofte 

et al., 2011) datasets. However, limited research has been conducted on US traffic signs (Li, Y., et 

al. 2016). Most research on U.S. traffic signs relies on speed signs recognition or broader 

categories of traffic signs such as speed signs, prohibitory signs, and warning signs. This research 

offers a more granular classification of U.S. traffic signs to cover publicly available classes 

including the LISA TS, LISA Extension benchmarks, and a newly introduced dataset, CIB TS V1 

(Center for Biometrics Traffic Sign Volume 1) benchmark. 
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Several methods have been successfully applied in TSRS and shown outstanding results. 

Convolutional Neural Networks (CNN) is one of the methods that has yielded high success in 

classifying traffic signs. This deep learning methodology has been tested exhaustively on European 

traffic signs; winning awards in the GTSRB competition (Stallkamp et al., 2011). However, little 

research has been conducted using deep learning approaches to classify U.S. traffic signs. This 

research proposes a CNN model to classify U.S. traffic signs. 

The research first adopted a publicly available deep learning model, the VGGNet, to 

classify LISA TS benchmark, a publicly available U.S. traffic signs dataset. VGGNet is a deep 

CNN with 16 layers. It was developed by the Visual Geometry Group (VGG) from the University 

of Oxford, (Simonyan & Zisserman, 2015). It recorded an error of 7.5% during validation and 

7.4% in testing on GTSRB. The model is improved with the multi-stage architecture proposed by 

(Sermanet & LeCun 2011), which helps VGGNet to generalize well with the dense network over 

multiple scales (Sermanet et al., 2013a). The VGGNet 16 used in this research adopts a multi-stage 

architecture as shown in Figure 1.1.  

Sermanet & LeCun (2011) introduced a CNN architecture that used multi-scale features to 

feed the output of the first stage after pooling operation of the second stage as shown in Figure 1.2. 

The application of a second subsampling with the output from the first stage was reported to 

increase the accuracy of the network. This work is an application of a combination of their research 

methodology (Simonyan & Zisserman, 2015) to classify the U.S. traffic sign dataset. This was to 

develop a deep neural network to classify not only U.S. speed limit signs but extended to other 

U.S. traffic signs as contained in the LISA TS dataset. A modified version of the GitHub code1 
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used in the initial experiment was reported by Nuakoh et. al., (2019) and formed an important 

motivation for the success of this research.  

 Figure 1.1. Multi-Stage Convolution Neural Network Architecture 

1.2 Problem Statement and Hypothesis 

The application of traffic sign recognition systems in ADAS has seen some commercial 

success with limited functionality (Jurišić et al., 2015). The limitation is not only linked to the 

number of supported traffic signs, but also the areas of the road network where they are most 

effective. This leaves the problem half-solved and to fully solve it, a system that is robust for all-

weather, lighting and physical sign conditions including occlusions and accommodating different 

datasets must be developed. Whereas this is a generally big problem, it can be tackled discretely; 

starting first with extending the number of signs current systems support. 

The Vienna Convention on Road Signs and Signals offers a broad category of traffic signs. 

This coupled with several modifications for individual countries makes it difficult to develop a 

multi-purpose TSRS that is adaptable in different countries. Also, the lack of standardized datasets 

for training and testing models poses another problem in this area of research, making it quite 

difficult to compare the performance of new models with old ones.  
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Unbalanced traffic sign datasets also present another layer of difficulty for developing TSR 

systems using deep learning. Machine learning depends on lots of data for training the algorithm 

to perform better on new data, however, most traffic sign datasets are porous and need to be 

augmented in other ways to balance them. While data augmentation offers some improvement, it 

is rather imperative to have a dataset that comes somehow already balanced, for real-world 

applications. 

The research hypotheses are as follows: 

• Deep neural networks with fewer layers train faster than ones with many layers, however, they 

do not generalize well. 

• Increasing the number of layers improves the model performance on sparse datasets if the 

increase can be delayed until model performance stalls. 

• The proposed architecture with fewer layers trains faster than VGGNet. 

1.3 Research Questions 

• Is there a way to improve the performance of a deep learning model while improving the speed 

at the same time? 

• Can a deep learning architecture be developed that performs well on sparse datasets? 

1.4 Contribution 

The contributions of this research are three-fold: 

• The main contribution of this work is the development of a new deep learning model 

architecture (NuNet) that was used to classify U.S. traffic signs presented in the LISA 

benchmark.  

• The research uses VGGNet, an already existing model on the LISA dataset to compare the 

performance of both models as it pertains to accuracy, error/loss, and speed during training.  
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• The research also introduces a new dataset, the CIB-TS V1 for advancing research in this area.  

Limited work has been done on U.S. traffic sign data and no known work has been done 

using a deep learning technique for classifying all the classes contained in the LISA dataset. The 

work is done by Li et. Al. (2016) only focused on speed limit signs. This research extends that 

work to cover all signs with adequate data points for training and validation.   
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CHAPTER 2 

Literature Review 

Traffic sign recognition research has gained a lot of traction in recent years. Various 

methods with wide applicability for image recognition have proven that they can be used to 

recognize traffic signs as well (Mathias et al., 2013).  

Several publicly available datasets have been used for the traffic sign classification 

problem, including but not limited to: The Belgian Traffic Sign Classification (BTSC) dataset 

(Timofte et al., 2011), the German Traffic Sign Recognition and Detection Benchmark (GTSRB 

and GTSDB) (Stallkamp et al., 2011), the Croatian traffic sign dataset (rMASTIF) (Jurišić et al., 

2015), the Dataset of Italian Traffic Signs (DITS) (Youssef et al., 2016) and the Tsinghua-Tencent 

100 K Chinese benchmark (Zhu et al., 2016). Research into TSRS was boosted since several of 

these datasets are commonly used to evaluate the performance of computer vision algorithms for 

traffic sign detection and recognition (Álvaro Arcos-García, et al. 2018) 

2.1 Background and Overview of Deep Learning 

Deep learning for image recognition has seen wide applicability from biometrics, medical 

diagnostics, text recognition, speech recognition, and traffic sign recognition just to name a few.  

According to LeCun et al. (2015) conventional machine learning had a limitation with processing 

raw data. Deep learning approaches are representation-learning based classifications; with each 

layer of representation representing the presence or absence of parts of objects such as edges and 

motif. Subsequent layers detect objects as combinations of identified parts. Unlike conventional 

machine learning, the layers of deep learning are not designed by humans, but by a general-purpose 

procedure. 
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In his technical report, Schmidhuber (2015) suggested that the Neocognitron (Fukushima, 

1979, 1980, 2013a) was perhaps the first artificial neural network that deserved rthe attribute, deep. 

It introduced convolutional neural networks that used Winner-Takes-All-based unsupervised 

learning rules and spatial averaging for downsampling. (LeCun et al., 1998) would later apply 

Back Propagation to a Neocognitron-like CNN with adaptive connections. Max-Pooling is used to 

speed up processing. Deep Neural Networks have been adopted to win many awards including 

(Cireşan et al. 2011). 

DNNs have been adopted to improve perception in autonomous vehicles as well as driver 

assistance systems. Areas of application include vehicle and lane detections (Huval et al., 2015), 

lane detection (Li et al., 2017), and pedestrian detection (Luo et al., 2014; Ouyang & Wang, 2012; 

Ouyang & Wang 2013; Sermanet et al., 2013b; Tian et al. 2015). 

2.2 Traffic Sign Recognition with Deep Learning 

Torresen et al. (2004) classified traffic speed limit signs based on the first digit of the sign. 

They used a digit classification system that used a bit array of “1” or “0” to denote a number or 

otherwise. The bit array assignment was based on how much black or white pixels were 

encountered in the image. The more the black, a bit array of 1 was assigned while the more the 

white, a bit array of 0 was assigned. The classified numbers represented by the bit array were 

further fed to a feed-forward Neural Network trained with a back-propagation algorithm in the 

final recognition stage. They tested their algorithm on Norwegian speed limit signs and achieved 

an accuracy of 91% on 198 images. 

Moutarde et al. (2007) presented an integrated system for speed limit signs detection, 

tracking, and recognition of European and U.S. speed limit signs with a similar approach as 

Torresen et al. (2004) but improved to capture the second and third digits to cater for signs that do 



9 
 

 

not end with “0” and 3-digit speed limits such as “110”. The work conducted by Torrensen et al. 

(2004) was based on Norwegian speed limit signs, which only end with a “0”, but some U.S. traffic 

signs end with a “5”. Each detected digit is normalized and fed into a multilayer perceptron neural 

network optical digit recognition (ODR) module with 10 outputs, each output represents a digit. 

The recognized signs are then assigned a confidence evaluation in a final step. Their work showed 

a performance of 89% and 90% for U.S. and European speed limit signs respectively on 281 traffic 

signs.  

Fang et al. (2004) in their work presented an automatic road-sign detection and recognition 

system that uses spatiotemporal attentional (STA) neural network, configurable adaptive 

resonance theory (CART) neural networks for classification, and configurable heteroassociative 

memory (CHAM) neural network for recognition of signs. Their system consists of a sensory 

component; 2) a perceptual component using STA and long-term memory (LTM); and 3) 

conceptual analyzers using CART and CHAM. The sensory analyzer extracts the temporal and 

spatial information from the video sequence. The extracted information then serves as the input 

stimuli to the STA neural network in the perceptual analyzer. If the stimulation continues, LTM is 

used to preserve the extracted features of interest. The extracted features from the LTM are fed to 

CART neural networks and CHAM neural networks in the final stage as conceptual analyzers to 

respectively classify and recognize signs. The system performed at 85% accuracy in the 

recognition stage on Chinese traffic signs. 

Stallkamp et al. (2011) present the winning algorithms of the “The German Traffic Sign 

Recognition Benchmark” (GTSRB). The competition was based on multi-class traffic signs and 

the top 2 winning teams developed ConvNets to reach very high accuracy. Team IDSA (Cireşan et 

al. 2011), the winning team developed a committee of convolutional neural networks (CNN) and 
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multilayer perceptron (MLP) that were trained on HOG features (HOG3). Their input image was 

48X48 and all CNNs had seven hidden layers with the output layer having 43 neurons, each 

mapping to a class. They trained the best architecture initialized with uniformly random 

distribution weights with a hyperbolic tangent activation function. The classification had a 

combined classification rate (CCR) of 98.98%, outperforming humans in some instances. Team 

Sermanet (Sermanet & LeCun 2011) placed second with 98.97% accuracy using a multi-layer 

ConvNets with more sophisticated non-linearities such as rectified sigmoid, subtractive and 

divisive local normalizations instead of the traditional hyperbolic tangent sigmoid function. This 

was to enforce competition between neighboring features.  

Stallkamp et al. (2012) report IDSA (Cireşan et al. 2012), again won the 2012 GTSRB 

competition with a committee of 25 CNN's by using data augmentation and jittering with an 

accuracy of 99.46%. This time again, Sermanet (Sermanet et al. 2012) placed second using a 

multiscale CNN with an accuracy of 98.31%.  

Laguna et al. (2014) present technology for recognizing traffic signs using a Laplacian of 

Gaussian (LOG) filter to detect edges of regions of interest in greyscale images, comparing 

detected ROIs with shape patterns and then feeding it to a cross-correlation algorithm for 

classification. They reported an accuracy of 91.07% detection on 200 images. It is not clear where 

the data was collected, but their work comes from South Africa, so they might supposedly have 

obtained it on a South African road network. They had an accuracy of 88.24% when detecting 

octagonal shapes because octagons were mostly misclassified as circles. 

Jin et al. (2014) proposed a hinge loss of stochastic gradient descent (HLSGD) cost 

function method for training CNNs. This function is similar to support vector machines (SVM) 

hinge loss and performed faster than the SGD, which is preferred for training CNN. They achieved 
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an accuracy of 99.65% beating (Ciresan et al., 2012) during testing and a decreased error rate of 

35.19%. They reported that hinge loss allows CNN to focus on correctly classifying misclassified 

training data, unlike cross-entropy cost that tries to make a correct classification more “correct”. 

Also, unlike SGD, where each iteration must go through costly forward and backward propagation, 

hinge loss only allows useful training samples to go through backpropagation. That is, if a useless 

example is encountered, iteration is stopped, and backpropagation is aborted. This makes hinge 

loss result in a more stable convergence, as most training examples become useless as the model 

converges and only a few have an effect on the updates of parameters. This decreases the frequency 

of updates happening and gradually stops over time or rarely happens. Useless examples are 

omitted from forward propagation and rechecked after several traversals. In doing so, convergence 

is faster and training speed is improved. This method was tested with an ensemble of 20 CNN's 

following work done by Ciresan et al. (2012). 

Jurišić et al. (2015) developed OneCNN, a convolutional neural network inspired by 

Sermanet and LeCun (2011). They refrained from using a committee of neural networks for 

classification of traffic signs, but rather developed a single network that is deeper and more 

complex but less computationally costly, and used it to classify multiple datasets, particularly, 

GTSRB, BTSC, and rMASTIF. They achieved an accuracy of 99.11% as against the state-of-the-

art (Jin et al., 2014) of 99.65% for the GTSRB; 98.17% for BTSC against the state-of-the-art (Zhu 

et al.) of 98.77%, and 99.53% for rMASTIF. Their work introduced the rMASTIF dataset. Like 

this research, their work was only concerned with the classification aspect of the traffic sign 

recognition system. 

Zhu et al. (2016) introduced the Chinese traffic signs dataset called the TT100K 

benchmark. They divide the dataset into three categories based on their sizes as small, medium 
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and large.  This was to evaluate how the model detects images of different sizes. They use an 

algorithm with two trained CNNs; one for detection of traffic signs and the other for the 

classification of these traffic signs. Their algorithm outperformed Fast R-CNN (Girshick, 2015), 

they report that Fast R-CNN has better performance for recognizing larger objects, however, their 

model performs at an accuracy of 88% compared to Fast R-CNN’s accuracy of 50% on TT100K.  

Shustanov & Yakimov (2017) designed an end-to-end CNN algorithm for recognizing 

traffic signs in real-time. Their system uses the speed of the vehicle to scale the exact coordinates 

of the traffic signs in subsequent frames, thus improving the detection accuracy, while maintaining 

the computational cost. They further described how to design a CNN. They developed CNN of 7 

convolutional layers, 2 fully connected layers, and a softmax and obtained an accuracy of over 

90% on the GTSRB. The algorithm had a high overhead due to the number of layers. This made 

them reduce it to only one convolutional lay, one fully connected layer and one softmax. This 

algorithm performed worse than the first and led them to design one with three convolutional 

layers, one fully connected layer, and one softmax. The model achieved an accuracy of 99.94% 

for localization and detection of prohibitory and danger traffic signs, but this accuracy is not state-

of-the-art for the classification stage.  

Yang et al. (2017) proposed a network called deep detection network for real-time traffic 

sign recognition. Their method was an update to Faster R-CNN and outperformed Faster R-CNN 

on all levels from small to medium to large traffic signs. The network is composed of four modules: 

the first module is composed of CNN layers for computing features; the second module which runs 

parallel with the first layer, hence saving computational cost, is an attention network (AN) which 

maps attention to coarse-grained regions of interest; the third module is a fully convolutional 

network which generates a final region proposal from coarse-to-fine grained candidates and; the 
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final module, a Fast-R-CNN detects and classifies the small targets candidates resulting from the 

third module in the final recognition stage. They tested their model on the Chinese dataset, 

TT100K Benchmark, and BTSD, and achieved an accuracy of 80.31% and 94.95% respectively 

on both benchmarks. Faster R-CNN has an accuracy of 70.63% and 87.07% on the two 

benchmarks respectively.  

Arcos-García et al. (2018) designed a CNN that included Spatial Transformer Networks 

(STN) and beat work reported by Stallkamp et al. (2011) with the German Traffic Sign Recognition 

Benchmark (GTSRB) competition. Their proposed model performed at an accuracy of 99.71% at 

the 21st epoch with three spatial and SGD without momentum as the loss function optimizer on 

GTSRB. The model beat HLSGD (20 CNN ensemble) (Jin et al., 2014), MCDNN (25 CNNs 

committee); both models used data augmentation or jittering and had more trainable parameters 

than this model that only had fewer parameters and one ConvNet. The model performs at an 

accuracy of 98.87% in the 13th epoch with three spatial transformer layers and SGD without 

momentum loss optimizer algorithm on BTSC placing second behind GDBM (Yu et al., 2016) and 

beat OneCNN (Jurišić et al., 2015) and INNLP + SRC (Mathias et al., 2013).  

2.3 Traffic Sign Recognition with Traditional Machine Learning 

Maldonado-Bascón et al. (2007) used SVM with Gaussian kernels to recognize traffic signs 

from blobs which have been categorized into shape classes. To test the effect of occlusion on 

recognition, an occlusion mask was placed on the images. Small, medium-sized and large masks 

reported 93.24%, 67.85% and 44.90% probabilities of successfully recognizing the signs 

respectively. An observation made was that a large-sized occlusion mask placed in the middle of 

the pictogram showed the worst performance during recognition. 
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Keller et al. (2008) performed real-time traffic sign recognition on U.S. speed limit signs. 

they assume a unimodal Gaussian distribution for each class and used linear discriminant analysis 

(LDA) for feature transformation. After that, they used a normal distribution classifier for 

classification. Their system achieved a combined accuracy of 96.25%; scoring a 98.75% accuracy 

during detection and 97.5% during classification. This research adopts a CNN to detect 47 classes 

of U.S. signs of signs that have been already captured in an image. 

Larsson et al. (2011) demonstrated the use of Fourier descriptors (FDs) for road sign 

recognition by using synthetic images of Swedish road signs to create models that were matched 

against real images using their proposed correlation-based matching method. Local regions were 

extracted from the synthetic images using the Maximally Stable Extremal Regions (MSER) 

algorithm proposed by Matas et al. (2004), after which contour sampling of the FDs in the model 

is matched with the FDs in the extracted query images to find a match. A matching cost based on 

an empirically set threshold is set and used to accept the match if the cost is less than the threshold. 

The average precision of the method was reported to be about 95% with few false positives. 

Larsson & Felsberg (2011) proposed a method for traffic sign recognition using locally 

segmented contours described by Fourier descriptors to match prototypes of different traffic sign 

classes to a query image. A correlation-based matching scheme for Fourier descriptors is used with 

a fast-cascaded matching scheme for enforcing spatial requirements. The method first extracts 

Fourier descriptors, it then matches them and matches previously acquired prototypes with spatial 

models. They tested their method on a dataset of 216 traffic signs collected from 20,000 frames 

after driving 350km through Sweden. Their method outperformed their earlier results reported in 

Larsson et al. (2011) for “No Standing or Parking” sign type, with 100% recall and 0 False 

positives. The recall for the other sign types namely: “Pedestrian Crossing”, “Designated Lane 
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Right”, “50 kph”, “30kph”, “Priority Road” and “Give Way” were the same as reported in their 

earlier work Larsson et al. (2011). The false-positive rates were reduced to “0” in the proposed 

method except for “50 kph” and “30kph” speed signs showing no change from their previous work. 

Mathias et al. (2013) recorded an accuracy of 98.53% by combining feature extraction, 

dimensionality reduction and classification approaches for defining a classification algorithm. 

Grey-scale values of traffic signs were computed and used with a precomputed pyramid of HOG. 

This was followed by precomputed HOG1, HOG2, HOG3 features, all making up the feature 

extraction stage. The resulting dimensions were, for greyscale features – 784-dimensional, the 

pyramid of HOG – 2172-dimensional descriptors; HOG1 & HOG2 –1568-dimensional and HOG3 

– 2916-dimensional. Linear Discriminant Analysis (LDA), Sparse Representation based Linear 

Projection (SRLP) and Iterative Nearest Neighbors Linear Projection (INNLP) were then 

employed to reduce the dimensionality of the model. For classification, Nearest Neighbor 

Classifier (NN), Sparse Representation-based Classifier (SRC), Iterative Nearest Neighbors 

(INNC) and Support Vector Machines (SVM) were tested. Greyscale + pyramid of HOG + HOGs 

for feature extraction, INNLP for dimensionality reduction and INNC (K = 62) gave the best 

Accuracy of 98.53% a slight difference of about 1% less than the GTSRB competition best 

accuracy. The second-best accuracy of 98.27% was recorded for the Greyscale + pyramid of HOG 

+ HOGs for feature extraction, INNLP for dimensionality reduction and INNC (K = 14). HOG2 

with LDA and NN yielded the worst accuracy of 96.97% but had the second-best testing time of 

5s following HOG2 with SRLP and LSVM which had a testing performance time of 1s. 

Møgelmose et al. (2015) used Integral Channel Features (ICF or ChnFtrs) to detect U.S. 

traffic signs. The computed features are fed to an AdaBoost classifier with depth-2 decision trees 

as weak learners. The classifier is then run on the input image using a sliding window. Aggregate 
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Channel Features (ACF), an improved version of ICF which is faster and has better performance 

in some instances is also used to classify traffic signs. Both detectors were evaluated on the 

GTSDB and LISA-TS datasets. The GTSDB dataset is divided into 4 superclasses: “mandatory”, 

“prohibitory”, “danger” and “other”. ACF performed perfect on danger signs and near perfect on 

prohibitory signs and mandatory signs; other was ignored. Møgelmose et al. fell short on 

prohibitory signs, where Mathias et al. scored perfect, scoring an Area Under Curve (AUC) of 

99.58/99.86 for ICF/ACF while Mathias et al. scored 100. For mandatory signs, Møgelmose et al. 

scored 98 .52/98.38 against their 96.98. U.S. signs were divided into four superclasses, namely: 

“Diamond”, “Stop”, “NoTurn” and “SpeedLimit”. ACF scored 98.98 on “Diamond” and scored 

above 95 on “NoTurn” and “Stop” whiles “SpeedLimit” scored below 90. 

Berkaya et al. (2016) proposed an SVM for classifying traffic signs using the GTSRB. 

They combined local binary pattern (LBP), HOG and GABOR for feature extraction. For LBP 

alone, the performance was 93.36%, GABOR alone recorded a performance of 93.90% and HOG 

alone recorded 94.56%. A combination of all three yielded the best performance of 97.04%. HOG 

and GABOR together had a performance of 97.00%; close to the performance of all three 

combined. Their proposed algorithm was ninth overall compared to the results obtained in the 

2011 GTSRB competition; however, it had the best performance for “Other Prohibitions”, and 

“Mandatory”, categories scoring 99.86%, and 99.83% respectively. EBLearn 2LConvNet and 

CNN HOG3 were the previous best performers in those categories scoring 99.80%, and 97.89 

respectively. 

Ellahyani et al. (2016) used HOG with HSI, local self-similarity (LSI) together for feature 

extraction and random forests and SVM as classifiers. They tested their method on GTSDB and 

Swedish Traffic Sign (STS) datasets and obtained near-state-of-the-art results. Cireşan et al. (2011) 
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and Sermanet & LeCun (2011) beat their algorithm with 99.46% and 98.31% accuracies 

respectively, while they registered 97.43% accuracy on the GTSDB dataset. HIS-LSI+HOG with 

Random Forest yielded the best result. STS dataset had the best recall, precision, and AUC of 

93.27%, 90.27%, and 94.05% over GTSDB’s 91.07%, 90.13%, and 93.69% respectively. 

Soilán et al. (2016) used HOG and SVM to detect and classify 3D traffic signs collected in 

Spain. The collected signs were divided into seven superclasses:  for traffic sign detection namely, 

omitting direction and information signs. Pedestrian crossing and No Parking”, the two most 

occurring class-specific traffic signs were further classified using a linear SVM model. 

Huang et al. (2017) introduced a method for traffic sign recognition (TSR) that extracts 

HOG features and then feeds them to a single-hidden-layer feedforward network (SLFN) classifier 

trained on an extreme learning machine (ELM). The algorithm optimizes and generalizes 

multiclass TSR and can balance the accuracy and computational cost of the model. Different HOG 

descriptors were evaluated. Competing classifiers were also evaluated with SVM and SVM kernels 

(with Gaussian kernels) and LDA. HLSGD beats their method when tested on GTSRB with an 

accuracy of 99.65% against 99.56%; both perform better than the committee of CNNs at an 

accuracy of 99.46%. The training time for HLSGD, however, is greater than 7 hours while their 

method takes 209 seconds to train. Kernel ELM has the best performance in the Speed limits, Other 

prohibitions, Mandatory and Unique categories with 99.54%, 100%; tying Hierarchical SVM with 

99.94%, 99.95% respectively. The committee of CNNs recorded the best performance in the 

Derestriction category with 99.72% over Kernel ELM’s 98.33%. On the BTSC dataset, Kernel 

ELM based scored a recognition accuracy of 98.64% over INNC+INNLP’s 98.32%. Kernel ELM 

achieved an accuracy of 98.12% on rMASTIF dataset beating Kernel SVM, ELM, SVM and LDA-
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based methods. Each of these high performing accuracies was obtained using the HOGv+r feature 

as a descriptor. 

Aziz et al. (2018) developed a traffic sign recognition system that extracts HOG, Gabor 

and compound local binary pattern (CLBP) features from images and feeds them into an ELM. 

ELM was first introduced by Huang et al. (2006, 2017) as a new learning algorithm for single-

layer feedforward neural networks (SFNNs). ELM performs faster than traditional SFNNs like 

backpropagation because it has fewer parameter tuning and optimum generalization. They 

evaluated their approach using GTSRB and BTSC and recorded a combined accuracy of 99.10% 

98.30% respectively for both datasets. The technique performs at an accuracy of 99.10% better 

than SVM and K-Nearest neighbor (KNN) with 98.20% & 97.45% respectively on GTSRB. It also 

performs at an accuracy of 98.30% on BTSC over 97.15% & 96.22% recorded by SVM and KNN 

respectively.  
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CHAPTER 3 

Methodology 

3.1 Approach  

Convolutional Neural Network (CNN) has made a lot of stride in the image recognition 

space in recent times. It gained particular recognition in the traffic sign recognition area during 

“The German Traffic Sign Recognition Benchmark” (GTSRB) competition, where the best 

methods presented used CNN for classification (Stallkamp et al., 2011 & 2012).  

There is limited research on traffic sign recognition using US traffic signs. malet al. (2016) 

used an R-CNN algorithm to detect US traffic signs and showed some good results on the LISA-

TS Extension dataset. The classification was based on the speed limit superclass alone. This 

research extends the boundaries of the previous research that adopted the LISA dataset to include 

all the available classes. It introduces the CIB dataset and trains both datasets on a modified 

VGGNet. It then compares the results obtained using VGGNet with that of a newly developed 

deep learning model, NuNet, that trains faster and performs better.  

The experimental setup consists of two main parts. Firstly, preparing the data, that spans 

all the tools used to extract and separate traffic signs into their respective classes. Secondly, the 

extracted data is fed to a deep neural network for classification. Experiments were carried out in 

Python 3 environment running in Jupyter Notebook (Kluyver et. al., 2016) hosted on a 64-bit 

desktop computer with 64 cores of 4GB RAM each. Linux 18.04 is the operating system on which 

all experiments were conducted. TensorFlow (Abadi et. al., 2016) is an open-source machine 

learning framework for dataflow representations that have been widely adopted for machine 

learning research. TensorFlow has been used to develop several industry applications used by 

companies such as Google, Airbnb, eBay, and Intel, and was adopted in this research. 
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3.2 Data Preparation and Exploration.  

The LISA TS dataset is a publicly available U.S. traffic sign dataset (Møgelmose et al., 

2012) that can be used to conduct research involving U.S. traffic signs to test the performance of 

models. The LISA-TS extension dataset provides additional data points for traffic sign recognition 

and was adopted for this research. This study also introduces a new dataset, the CIB TS-V1 (Center 

of Identity and Biometrics Traffic Sign Version 1) for comparison of the performance of the two 

models. 

3.2.1 LISA Dataset 

Traffic sign datasets for several countries have been published and made publicly available 

for researchers to train and test their models against published models. Álvaro Arcos-García et al. 

(2017) introduced a Spanish dataset, the Belgium dataset was reported (Timofte et al., 2014), 

Germany (Stallkamp et al., 2011), Croatia (Jurišić et al., 2015), Italy (Youssef et al., 2016), Sweden 

(Larsson & Felsberg, 2011), and China (Zhu et al., 2016). 

The zipped LISA TS dataset folder comes with a set of Python tools for extracting traffic 

sign annotations from full frames. The “categories.txt” is a comma delimited text file (see Table 

3.1) containing superclasses of traffic signs, namely: “warning”; “prohibition”; “speedLimit” and; 

“speedLimitGood”. The “extractAnnotations.py” is a Python file that provides methods for 

copying, marking, blackout and cropping regions of interest (ROI). After extracting annotations, 

the “mergeAnnotationFiles.py” file is then used to merge multiple annotation files into one file. 

The “evaluateAnnotation.py” is a Python file for detecting traffic signs – beyond the scope of this 

work. The cropping feature of the “extractAnnotations.py” file was used to crop traffic signs for 

classification for this work.  
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Table 3.1. Super Class and Corresponding Classes  

warning prohibition speedLimit speedLimitGood 

addedLane doNotPass speedLimit15 speedLimit15 

curveRight keepRight speedLimit25 speedLimit25 

dip rightLaneMustTurn speedLimit30 speedLimit30 

intersection speedLimit15 speedLimit35 speedLimit35 

laneEnds speedLimit25 speedLimit40 speedLimit40 

merge speedLimit30 speedLimit45 speedLimit45 

pedestrianCrossing speedLimit35 speedLimit50 speedLimit50 

signalAhead speedLimit40 speedLimit55 speedLimit55 

slow speedLimit45 speedLimit65 speedLimit65 

stopAhead speedLimit50 speedLimitUrdbl  

thruMergeLeft speedLimit55   

thruMergeRight speedLimit65   

turnLeft truckSpeedLimit55   

turnRight    

yieldAhead    

LISA TS benchmark is constituted of 7,855 traffic sign images categorized into 47 traffic 

sign classes as listed below: 

“addedLane”, “curveRight”, “doNotEnter”, “doNotPass”, “intersection”, “keepRight”, 

“laneEnds”, “merge”, “noLeftTurn”, “school”, “noRightTurn”, “pedestrianCrossing”, 

“rampSpeedAdvisory20”, “dip”, “rampSpeedAdvisory35”, “rampSpeedAdvisory40”, 
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“rampSpeedAdvisory45”, “rampSpeedAdvisory50”, “curveLeft”, “rampSpeedAdvisoryUrdbl”, 

“rightLaneMustTurn”, “roundabout”, “schoolSpeedLimit25”, “signalAhead”, “slow”, 

“speedLimit15”, “speedLimit25”, “speedLimit30”, “speedLimit35”, “speedLimit40”, 

“speedLimit45”, “speedLimit50”, “speedLimit55”, “speedLimit65”, “speedLimitUrdbl”, “stop”, 

“stopAhead”, “thruMergeLeft”, “thruMergeRight”, “turnRight”, “thruTrafficMergeLeft”, 

“truckSpeedLimit55”, “turnLeft”, “yield”, “yieldAhead”, “zoneAhead25”, “zoneAhead45”.  

The LISA TS extension is made up of 2,498 traffic sign images comprising 19 traffic sign 

classes as listed below:  

“Stop”, “doNotEnter”, “pedestrianCrossing”, “speedLimit30”, “noParking”, 

“speedBumpsAhead”, “speedLimit15”, “speedLimit25”, “curveRight”, “signalAhead”, 

“speedLimit35”, “stopAhead”, “yieldToPedestrian”, “bicyclesMayUseFullLane”, 

“noLeftAndUTurn”, “curveLeft”, “intersectionLaneControl” 

The two datasets were combined into a single dataset resulting in 10,353 traffic sign images 

categorized into 53 classes as listed below: 

“addedLane”, “bicyclesMayUseFullLane”, “curveLeft”, “curveRight”, “dip”, “doNotEnter”, 

“doNotPass”, “intersection”, “intersectionLaneControl”, “keepRight”, “laneEnds”, “merge”, 

“noLeftAndUTurn”, “noLeftTurn”, “noParking”, “noRightTurn”, “pedestrianCrossing”, 

roundabout”, “rampSpeedAdvisory20”, “rampSpeedAdvisory35”, “rampSpeedAdvisory40”, 

“rampSpeedAdvisory45”, “rampSpeedAdvisory50”, “rampSpeedAdvisoryUrdbl”, “school”, 

“rightLaneMustTurn”, “ “schoolSpeedLimit25”, “signalAhead”, “slow”, “speedBumpsAhead”, 

“speedLimit15”, “speedLimit25”, “speedLimit30”, “speedLimit35”, “speedLimit40”, 

“speedLimit45”, “speedLimit50”, “speedLimit55”, “speedLimit65”, “speedLimitUrdbl”, “stop”, 

“stopAhead”, “thruMergeLeft”, “thruMergeRight”, “thruTrafficMergeLeft”, “turnLeft”, 
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“turnRight”, “truckSpeedLimit55”, “yield”, “yieldAhead”, “yieldToPedestrian”, “zoneAhead25”, 

“zoneAhead45”. 

This list was further cleaned to exclude unreadable speed signs, “speedLimitUrdbl” & 

“rampSpeedAdvisoryUrdbl” and classes with less than 10 samples. 8,855 traffic sign annotations 

resulted belonging to the 38 classes is listed below: 

“addedLane ,”curveLeft “, “curveRight “, “dip “, “doNotEnter “, “keepRight “, “laneEnds “, 

“merge “, “noLeftTurn “, “noRightTurn “, “pedestrianCrossing “, “rampSpeedAdvisory20 “, 

“rampSpeedAdvisory45 “, “rampSpeedAdvisory50 “, “rightLaneMustTurn “, “roundabout “, 

“school “, “schoolSpeedLimit25 “, “signalAhead “, “slow “, “speedLimit15 “, “speedLimit25 “, 

“speedLimit30 “, “speedLimit35 “, “speedLimit40 “, “speedLimit45 “, “speedLimit50 “, 

“speedLimit65 “, “stop “, “stopAhead “, “thruMergeLeft “, “truckSpeedLimit55 “, “turnLeft “, 

“turnRight “, “yield “, “yieldAhead “, “zoneAhead25 “, “zoneAhead45”  

First, the dataset is merged into one CSV file named “mergedAnnotations.csv” using the 

“mergeAnnotationFiles.py” file by running the command, “python mergeAnnotationFiles.py 

frame mergedAnnotations.csv annotations/”. This command combines annotation tiles in any 

subdirectory matching a regex pattern of the image filenames. The merged files are copied into a 

file called “allAnnotations.csv” using the commands: "python extractAnnotations.py -c [category] 

copy allAnnotations.csv". the categories are “warning”, “prohibition”, "speedLimits” and 

“speedLimitGood”. 

The merged annotations are then split into 2 CSV files using the “splitAnnotaionsFiles.py” 

file into “split1.csv” and “split2.csv”. A split percentage of 80% was specified for “split1.csv” as 

the training set and the remaining annotations were put in “split2.csv” for validation. Annotations 

in the two files, “split1.csv” and “split2.csv”, were then extracted into their respective class 
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subfolders under the training and validation folders, respectively. After the split, the 

“extractAnnotations.py” Python file was used to crop and copy image annotations in each split 

into their respective subfolders using the class label as the name of the subfolder. This exercise 

was performed on both splits. The merging of LISA TS and LISA TS extension datasets resulted 

in 38 classes that were cropped and copied into their respective class folders using the naming 

convention: “addedLane”, “curveLeft”, “curveRight”, …, “yieldAhead”, “zoneAhead25”, 

“zoneAhead45”. These subfolders were organized in the folders called “training” and “validation”, 

representing training and validation sets. 

Figure 3.1 shows the distribution of traffic signs for each class in the entire dataset while 

figures 3.2 and 3.3 show the distribution of signs in the training and validation sets, respectively. 

The most populated classes are “stop”, “pedestrianCrossing”, and “signalAhead” in an order of 

decreasing magnitude. The least occurring traffic signs in the dataset are “rampSpeedAdvisory20”, 

“curveRight”, “addedLane”, and “thruMergeRight”. 
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Figure 3.1. Traffic Sign Data Distribution per Class in the Entire LISA Dataset  
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Figure 3.2. Traffic Sign Distribution per Class in Training Set LISA Dataset 
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Figure 3.3. Traffic Sign Distribution per Class in validation Set LISA Dataset 

Figure 3.4 shows samples of traffic sign images in each class. The images shown are the 

first images in that class. It should be noted that several of these signs have numbers showing 

speed limits of some sort. This raises concern for the performance of the model especially with the 

limited samples in each class.  
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Figure 3.4. Sample Image in Each Class in LISA Dataset 

3.2.2 Cyber Identity Biometrics Traffic Sign (CIB TS) Dataset  

An industrial camera was attached to a sedan and driven around sections of the Greensboro 

city, North Carolina. The dataset consists of 690 traffic signs images representing 9 classes of U.S. 

traffic signs; this constitutes the first version of the Cyber Identity and Biometrics traffic sign (CIB 

TS-V1) dataset. CIB is a Computer Science laboratory at North Carolina A&T State University. 

Traffic sign annotation was done using a publicly available tool called “labelImg” (Tzutalin, 2015). 

Traffic signs were cropped out of the image frames and saved in their respective classes. Sample 

images per class are shown in figure 3.5. 
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A python script was used to split the images into training and validation sets in an 80/20 

ratio respectively. The traffic sign classes present in the CIB dataset are “speedLimit20”, 

“curveRight”, “noTruck”, “speedLimit30”, “pedestrianCrossing”, “bicycleLane”, “height12-9”, 

“doNotEnter”, and “stop”.  The class distribution for the entire CIB dataset is presented in figure 

3.6. Figures 3.7 and 3.8 represent the distribution per class for the training and validation sets 

respectively.  

 

Figure 3.5. Sample Image in Each Class in CIB Dataset 

 

Figure 3.6. Traffic Sign Distribution per Class of whole CIB Dataset 
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Figure 3.7. Traffic Sign Distribution per Class in Training Set of CIB Dataset 

 

Figure 3.8. Traffic Sign Distribution per Class in validation Set of CIB Dataset 
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3.3 VGGNet Architecture 

The VGG Network adopted from Simonyan & Zisserman (2015) has a batch normalization 

layer for faster and better training, a param ReLu layer for solving dead linear rectifier issue during 

training, convolution layer with parametric relay activation using Xavier Scheme for weights and 

biases initialization, fully connected layer with fully connected dense layers also using Xavier 

Scheme for weights and biases initializations and a max-pooling operation as its basic elements. 

The VGG layer (see Figure 3.9) is made up of 2 back to back Convolutions of 2x2 kernel 

size and a stride of 2. Each layer has 1 pooling layer followed by a dropout layer. The model is 

made up of 4 VGG layers. The first layer extracts 32 feature maps from an input layer of 32x32x3 

features while the second layer extracts 64 feature maps from a 16x16x32 input, with the third 

layer extracting 128 feature maps from an 8x8x64 input and the fourth, 256 feature maps from an 

input of 4x4x128. The model also has 3 fully connected layers with the 1024 hidden layers that 

map to 512 hidden layers that further map to the number of classes in each dataset. 

Model building parameters, including Xavier Initialization as a tuning methodology, early 

stopping to restore the previous checkpoint if accuracy gains in testing do not meet current 

requirements, a learning rate of 5e-5, and a regularization factor of 1e-3 are chosen as the best 

choice for hyperparameters after searching over 600 Epochs. Adam Optimizer was used for 

optimization. A batch size of 500 was chosen for the LISA dataset and 100 for the CIB dataset. 

The modified VGGNet was adopted from a publicly available Python code on GitHub1. 

 

1

 https://github.com/vamsiramakrishnan/TrafficSignRecognition/blob/master/TrafficSignClassifie

r.ipynb  

https://github.com/vamsiramakrishnan/TrafficSignRecognition/blob/master/TrafficSignClassifier.ipynb
https://github.com/vamsiramakrishnan/TrafficSignRecognition/blob/master/TrafficSignClassifier.ipynb
https://github.com/vamsiramakrishnan/TrafficSignRecognition/blob/master/TrafficSignClassifier.ipynb
https://github.com/vamsiramakrishnan/TrafficSignRecognition/blob/master/TrafficSignClassifier.ipynb
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3.4 VGGNet Feature Extraction 

The first stage of the VGGNet has 2 layers and extracts 32 feature maps from an input layer 

of 32x32x3 features while the second stage has 3 layers and extracts 64 feature maps from a 

16x16x32 input. The third stage also has 3 layers extracting 128 feature maps each from an 8x8x64 

input and the fourth, 256 feature maps from an input of 4x4x128. The model also has 3 Fully 

Connected layers with the 1024 hidden layers that map to 512 hidden layers and further map to a 

softmax layer which the number of classes in each dataset. Features from each layer are presented 

by figures 3.10-3.12. 

 

Figure 3.9. VGGNet Architecture1 
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Figure 3.10. Features Extracted from First Layer of the First Stage of VGGNet Model 

 



34 
 

 

 

Figure 3.11. Features Extracted from First Layer of the Second Stage of VGGNet Model 
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Figure 3.12. Features Extracted from First Layer of the Third Stage of VGGNet Model 

3.5 Results of Training VGGNet on LISA Dataset 

The results from training VGGNet on LISA are presented in the section. The split ratio 

composed of 80% of the dataset being used as the training set and 20% as the validation set. 

Training VGGNet on LISA took approximately 26 hours after which the accuracy and loss plots 
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were obtained. Figure 3.13 shows a plot of the training and validation accuracies of the model. The 

loss plots for training and validation are presented in Figure 3.14 with detailed results of the loss 

and accuracy for each epoch is recorded in a table in appendix A.  

The original research recorded an accuracy of 98.7% on the GTSRB dataset. In the current 

work, the model performs at a training accuracy of 99.93% and a validation accuracy of 99.83% 

on the LISA dataset. The losses recorded for the training and validation sets were 6.6% and 7.1% 

respectively. The original VGGNet showed a loss of 7.5% during validation on GTSRB.  

Figure 3.13. A Plot of Training and Validation Accuracies for VGGNet on LISA dataset 

Figure 3.14. A Plot of Training and Validation Losses for VGGNet on LISA dataset  
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The most occurring class in the dataset is “stop”. It was 100% accurately classified after 

the first epoch, while most of the other classes were misclassified as “stop”. This important 

observation follows that the model is able to learn relevant details from numerous samples and 

apply them to recognize the signs better than fewer samples. The confusion matrix presented in 

figure 3.15 shows which classes in the dataset the model classified correctly or misclassified. Only 

3 signs in the “speedLimit15” were misclassified as “pedestrainCrossing”. All other signs were 

perfectly classified into their respective classes. Intermediate confusion matrices were plotted and 

presented in appendix B. 
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Figure 3.15. Confusion Matrix of VGGNet Model after Training on LISA Dataset 

3.6 Result of Training VGGNet on CIB TS V1 Dataset 

The result from training VGGNet on the CIB dataset is presented in this section. A training 

to validation split ratio of 80/20 was used. The model recorded an accuracy of 100% on the training 

set and records a validation accuracy of 96.92% on the CIB dataset. An error of 1.8% was recorded 
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for the training samples and a validation error of 5.6% was recorded. It took approximately 9 hours 

to train the model. VGGNet overfits the CIB dataset as it begins to learn unnecessary details down 

its depth and cannot generalize well on unseen data in the validation set. A deep model requires a 

lot of data to be able to generalize classification to unseen data. The depth of VGGNet coupled 

with the data input size makes it overfit. It can recognize data it has already encountered in the 

training set but cannot properly recognize those in the validation set. The accuracy and loss plots 

for the training and validation sets are presented in Figures 3.16 and 3.17, respectively. These plots 

show how unstable the VGGNet performs on the CIB dataset. It also shows that VGGNet does not 

reach a global maximum. 

 

Figure 3.16. A Plot of Training and Validation Accuracies for VGGNet on CIB Dataset  
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Figure 3.17. A Plot of Training and Validation Losses for VGGNet on CIB Dataset  

Since the training was not yielding a reliable accuracy or loss, it became pertinent to design 

a model that performs well on smaller as well as larger datasets. This is one of the motivations for 

the development of the NuNet, presented in the next chapter. The confusion matrix of the 

experiment is presented in Figure 3.18 showing the classes in the validation set which were 

correctly classified or misclassified. It should be noted that the point maximum at epoch 600 is not 

the global maximum. Even though the confusion matrix mimics a perfect classification, 

subsequent epochs may misclassify samples. 
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Figure 3.18. Confusion Matrix of Model after Training VGGNet on CIB Dataset  

3.7 Discussion 

The VGGNet is a deep neural network that extracts robust features from an image. While 

this architecture offers a comprehensive selection of features, it also poses the danger of extracting 

unnecessary information; especially when the training data is too small. In the case of a large 
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training set, the VGGNet is stable and generalizes well. However, when a smaller dataset is 

presented, the model overfits as it overlearns from the few data it has already seen and is not able 

to generalize very well to new unseen data. This issue can be addressed by augmenting the data, 

adding more data samples to the training set or reducing the depth of the model. The first two are 

not necessarily of interest to this research. This research seeks to develop a robust model that can 

both perform when there is enough data for training or not, thereby addressing the issue of data 

size requirement for deep learning object recognition. 

There is a tradeoff between model accuracy and training time. Whereas Feeding the model 

with lots of data improves the performance of the VGGNet model, it follows that it takes a longer 

time to train the network. With modern improvements in hardware, the latter can be addressed, 

however, it comes at a high financial cost. The VGGNet took approximately 26 hours to train 

8,855 samples over 600 epochs on the LISA dataset. On CIB, VGGNet took approximately 9 hours 

to train 552 training samples over 1000 epochs.   
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CHAPTER 4 

NuNet Model Architecture and Results 

4.1 NuNet Architecture 

NuNet is a deep learning approach designed to tackle the issue of poor model performance 

on a limited dataset and improving speed. The proposed model is a light-net architecture that has 

the potential to update its parameters during training. The model starts with a single convolution 

followed by a max-pool operation, then two fully connected layers and then a SoftMax. The model 

takes a 32x32x3 input image and performs a convolution with a 3x3 filter and a 2x2 stride and 

outputs 16 features as shown in Figure 4.1. A 2x2 max-pooling operation follows the convolution, 

whose result is passed through two fully connected layers; 256x1 and 128x1. A SoftMax function 

is then used to classify the result into the number of classes.  

Single-layer convolutions followed by a max-pool operation train and converge faster as 

fewer computations are required to extract features. At some point during training, improvements 

in the accuracy and reduction of the error/loss stall. The model then makes changes to parts of its 

components, such as the convolutional (filter) size, the number of layers and the number of filters 

(output layers). These modifications then enhance performance during training, thereby improving 

speed and accuracy.  

During training, when an error reduction stalls, the model was configured to increase the 

number of convolutional layers. Figures 4.2 and 4.3 represent a second and third convolutional 

layers added before a max-pool operation.  

The model was tested on LISA dataset and CIB-V1 with results presented below: 

 



44 
 

 

 

Figure 4.1.NuNet Model Architecture with a Single Layer 

 

Figure 4.2. NuNet Model Architecture with Two Layers 
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Figure 4.3. NuNet Model Architecture with Three Layers 

4.2 NuNet Feature Extraction 

Features extracted from the first, second and third layers are presented in figures 4.4, 4.5 

and 4.6 respectively for the “doNotEnter” traffic sign. Figure 4.4 shows 16 features extracted from 

the input image by the first convolutional layer of the model. For very distinct images, this first 

layer can accurately classify images at high accuracy, however, for distorted images or similar 

images, it becomes challenging for the model to only use one layer to get the best results. In such 

an instance, additional convolutional layers are added to improve the accuracy and reduce the error 

of classification. This addition is mostly done at later epochs during training. 

Figures 4.5 represents features extracted from the second layer of the adaptive model that 

gets added in the event that another layer needs to be employed to enhance model performance. If 

the model’s performance or error reduction stalls, another layer is added which features are 

presented in figure 4.6. The more layers are added, the slower the model performs; however, the 

training would have been at a later epoch before extra layers may be required. The maximum 

number of layers the model can add may be capped at the discretion of the developer; this research 
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used 3 layers. The extra features the model extracts help the model learn important details that it 

might have missed in previous epochs. This incremental layering is the main idea behind NuNet’s 

architecture.  

 

Figure 4.4. Features Extracted from the First Layer of the NuNet Model 



47 
 

 

 

Figure 4.5. Features Extracted from the Second Layer of the NuNet Model 
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Figure 4.6. Features Extracted from the Third Layer of the NuNet Model 

4.3 NuNet Results on LISA Dataset 

The results from training the NuNet model on the LISA dataset are presented in this section. 

The training was carried out for two splits, the first is 80/20 for training and validation sets 

respectively. The second split is an inversion of the first; using the 20% split for training and the 

80% split for validation. The results from the first (80/20) split are presented in section 4.3.1 and 

the results from the second split are presented in section 4.3.2. 

4.3.1 Result Training NuNet on LISA Dataset  

With an 80/20 split, the NuNet model took approximately 10 hours to train on the LISA 

dataset (introduced in section 3.4) for 600 epochs. After the 600th epoch, the training accuracy 

recorded for NuNet was 99.73%. The validation accuracy of NuNet was 99.83% is the LISA 
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dataset. The training was smooth and did not show any irregularities. Figure 4.7 shows the 

accuracies plot recorded for the LISA training and validation sets. Figure 4.8 shows the losses plot 

for the LISA training and validation sets. The loss recorded for NuNet trained on LISA was 7.9% 

for the training set and 9.6% for the validation set for this split ratio.  

 

Figure 4.7. A plot of Training and Validation Accuracies for NuNet on LISA  

 

Figure 4.8. A Plot of Training and Validation sets Losses for NuNet on LISA  
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Figure 4.9 presents the confusion matrix for the validation set of the LISA dataset. 

Intermediate confusion matrices were plotted during training and presented in appendix C. Only 3 

samples of the “speedLimit35” class in the validation set were misclassified as 

“pedestrianCrossing”. 

 

Figure 4.9. Confusion Matrix of NuNet Model on LISA Dataset 
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4.4 NuNet Results on CIB TS V1 Dataset 

The results from training the NuNet model on the CIB dataset are presented in this section. 

Here, a second split, an inversion of the original 80/20 split is used for training. The results of the 

original split are presented in section 4.4.1 and the results of the 20/80 split are also presented in 

section 4.4.2. 

4.4.1 Result Training NuNet on the CIB Dataset  

The model performs at an accuracy of 100% on the training set and records a validation 

accuracy of 100% on the CIB dataset. An error of 1.8% was recorded for the training samples and 

a validation error of 1.9% was recorded. The model generalizes well and does not underfit or 

overfit the dataset.  Training took approximately 3 hours; a little less than a third the time it took 

to train VGGNet on the same dataset. The accuracy plots for training and validation sets are shown 

in figure 4.10. Training plateaued within the first 30 epochs. Figure 4.11 presents loss plots for the 

training and validation sets. 

 

Figure 4.10. A Plot of Training and Validation Accuracies for the CIB Dataset 
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Figure 4.11. A Plot of Training and Validation Losses for the CIB Dataset 

The model was trained over 600 epochs and provides more reliable training and validation 

than was encountered with VGGNet in section 3.6. The NuNet model performs well on smaller 

datasets and trains faster. Figure 4.12 shows the confusion matrix for the validation set. 

Intermediate confusion matrices were plotted and presented in appendix D. 
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Figure 4.12. Confusion Matrix of Model after Training on CIB Dataset  

4.4.2 Result Training NuNet on the 20/80 CIB Dataset Split 

NuNet performed at accuracies of 100% and recorded an error of 3.1% for both the training 

and validation sets. The error in this split was higher than the previous split, which shows that 
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training with a smaller dataset can affect the error recorded; however, training is smoother than on 

the 80/20 split. Accuracy and loss plots for the results are presented in figures 4.13 and 4.14 for 

this split. 

 

Figure 4.13. A Plot of Training and Validation Accuracies for CIB Dataset split at 20/80 

 

Figure 4.14. A Plot of Training and Validation Losses for CIB Dataset split at 20/80 
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4.5 Discussion 

Table 4.1 compares the results of NuNet and VGGNet based on the number of layers, 

training time, and model performance for both LISA TS and CIB TS-V1 datasets. The results are 

also compared against that of an SVM classifier. SVM overfits the model with 99.68% training 

accuracy and 83.02% validation accuracy on LISA. SVM also overfits on CIB with 100% training 

accuracy and 82.31% validation accuracy. NuNet recorded an accuracy of 100% for both training 

and validation sets on CIB and recorded 99.73% and 99.83% respectively on LISA. VGGNet 

recorded the best training accuracy for LISA at 99.93% and ties NuNet for the validation accuracy. 

VGGNet overfits on CIB with training and validation accuracy of 100% and 96.92% respectively. 

NuNet recorded the lowest error on CIB with 1.8% and 1.9% on the training and validation sets 

respectively. It recorded an error of 7.9% on the training set and 9.6% on the validation set of 

LISA. Whereas VGGNet recorded an error of 6.6% on the training set and 7.1 % on the validation 

set of LISA. VGGNet recorded an error of 1.8% and 5.6% for training and validation sets of CIB. 

Table 4.1. Comparison between SVM, NuNet, and VGGNet trained on LISA and CIB Datasets 

 SVM NuNet VGGNet 

LISA CIB LISA CIB LISA CIB 

No. of Layers  Variable Fixed 

~ Training Time 12 min 1 min 10 hours 3 hours 26 hours 9 hours  

Train Accuracy 99.68% 100% 99.73% 100% 99.93% 100% 

Valid. Accuracy 83.02% 82.31% 99.83% 100% 99.83% 96.92% 

Training Loss   7.9% 1.8% 6.6% 1.8% 

Validation Loss   9.6% 1.9% 7.1% 5.6% 
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CHAPTER 5 

Conclusion and Future Directions 

ADAS help drivers with little things that can escape their attention. The issue of traffic sign 

recognition derives its roots from the fact that certain signs, while relevant to be noticed by 

humans, may go unnoticed because of the noise that might make it indistinctive, or just that humans 

selectively filter things they see based on preconceived mindset. A computer is rather trained to 

pick up things that the human eye may overlook. Traffic sign recognition on U.S. datasets has not 

been thoroughly researched. This research introduces a deep learning technique for recognizing 

U.S. traffic signs. 

VGGNet obtained an accuracy of 99.93% and 99.83%, respectively on training and 

validation samples on the LISA dataset. The NuNet model performs at a similar accuracy of 

99.73% and 99.83% for training and validation sets, respectively. The VGGNet, however, 

performs poorly on the CIB dataset at an accuracy of 100% on the training set and 96.92% on the 

validation set. On the CIB dataset, NuNet performs at an accuracy of 100% on the training set and 

100% on the validation set. The error recorded for VGGNet on LISA was 6.6% and 7.1% 

respectively for training and validation sets. The error recorded for VGGNet on CIB was 1.8% and 

5.6% respectively for training and validation sets. 

The NuNet also trains faster than VGGNet as it only extracts features, necessary for 

recognizing the traffic sign images. Hence, if the model is able to use fewer features to recognize 

a traffic sign, the model does not extract more features to recognize that specific traffic signs as 

this results in the model being slower. VGGNet also used approximately 9 hours for training on 

the CIB dataset while NuNet used approximately 3 hours. On the LISA dataset, VGGNet trained 

for approximately 26 hours whiles NuNet trained for approximately 10 hours. 
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A model that is able to adjust its parameters has therefore shown to be a powerful tool for 

training a deep neural network than one which does not. NuNet is able to train on fewer data than 

most deep models without overfitting because it does not extract unnecessary information. 

However, it is able to increase the number of layers to classify large and complex datasets. 

Future work will be concerned with conducting experiments to investigate automating the 

number of epochs the model has to be trained for. This will consist of defining a decay function 

that will allow the model to continue training as long as improvements can be made to the model’s 

performance on a specific dataset. In this case, one of two things would be proposed: 1.) in a 

bottom-up manner, train the model by setting a conditional statement controlled by a progression 

function; 2.) in a top-down approach, set a maximum number of epochs for training and decrease 

this number by a decay function. This proposed approach to stop training rather than setting a 

constant number of epochs for training will allow the model to self-pace training. 

An investigation would also be conducted into how the model can automatically select the 

number of layers for training. Currently, the model can only add layers if a condition is satisfied. 

Future work would consider the model adding or removing layers during training to further 

enhance performance and probably speed. The model would be tested on multiple datasets to test 

its suitability towards any object recognition task. 

A proposed strategy for deciding an epoch to stop training would be looked into. The term 

training decay factor, which represents a constant would be researched for automatically choosing 

a stopping epoch during training. The proposal states that once the model reaches a global 

maximum, let’s say of 99%, the number of epochs remaining is decayed by subtracting the decay 

factor from it. This factor will be a great component if it can be modeled into a function. In that 

case, the model can train itself without being given a set number of epochs to train over, but rather, 
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it will stop when the function’s condition is satisfied. This will imply that the epoch selection will 

follow a bottom-up approach, where training starts from epoch one, to epoch n, with n being 

decided on by the training decay function. Another way, similar to the regular way of training is 

to set a number of epochs for training and let the function decay the remaining epochs when the 

condition set by the function is met in a top-down approach. 
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Appendix A 

 Appendix A presents the recorded values during training for losses and accuracies of 

training and validation sets for experiments using VGGNet on the LISA dataset in section 3.5.1. 

Table A.2. Loss and Accuracy Values for Training and Validation 

Epoch 

Training 

Loss 

Validation 

Loss 

Training 

Accuracy 

Validation 

Accuracy 

1 3.097761708 2.812614 0.257746 0.25584 

2 2.74759705 2.611326 0.37 0.380057 

3 2.612055893 2.425479 0.384789 0.380627 

4 2.402351074 2.249338 0.419859 0.435328 

5 2.152300956 1.993753 0.478592 0.491168 

6 1.941277798 1.860928 0.534225 0.538462 

7 1.76022558 1.637012 0.616761 0.617094 

8 1.632121012 1.452343 0.663944 0.678063 

9 1.432769911 1.305922 0.719859 0.717379 

10 1.263072603 1.16588 0.759577 0.757265 

11 1.128576598 1.064556 0.778732 0.791453 

12 1.004881547 0.958055 0.822676 0.825641 

13 0.930744597 0.888187 0.835634 0.847863 

14 0.834876621 0.777148 0.861972 0.866667 

15 0.759428133 0.736702 0.87662 0.887749 

16 0.709209877 0.669678 0.899859 0.896296 
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17 0.633351619 0.610647 0.912817 0.9151 

18 0.563159542 0.54721 0.928873 0.938462 

19 0.513774723 0.507296 0.940423 0.950997 

20 0.473833224 0.482398 0.945352 0.958974 

21 0.445526152 0.412484 0.959155 0.969801 

22 0.414989634 0.411033 0.964507 0.97094 

23 0.379712744 0.376298 0.968873 0.976638 

24 0.364880943 0.362073 0.968732 0.981766 

25 0.338104381 0.340451 0.97507 0.982906 

26 0.324289165 0.315778 0.97831 0.986895 

27 0.309020131 0.300437 0.982958 0.988034 

 

 

28 0.295691185 0.298011 0.984366 0.988034 

29 0.279663329 0.286916 0.982535 0.989174 

30 0.267640402 0.279588 0.986338 0.989744 

31 0.270089912 0.266089 0.98338 0.989744 

32 0.25960971 0.261388 0.988732 0.992023 

33 0.241157197 0.257769 0.987042 0.993732 

34 0.240324123 0.247032 0.991972 0.990883 

35 0.223828847 0.248493 0.990704 0.993162 

36 0.213103104 0.222894 0.994085 0.994302 
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37 0.212142226 0.226345 0.991408 0.995442 

38 0.202207726 0.223341 0.994648 0.993732 

39 0.212327417 0.223873 0.994648 0.995442 

40 0.19783907 0.21376 0.99507 0.994302 

41 0.19226613 0.201062 0.996761 0.992023 

42 0.196465741 0.217418 0.994085 0.994302 

43 0.189183241 0.194391 0.994507 0.995442 

44 0.179704767 0.204941 0.994648 0.994302 

45 0.170688549 0.185784 0.996761 0.994872 

46 0.164913765 0.179836 0.997465 0.994302 

47 0.16107415 0.177198 0.997042 0.995442 

48 0.157601433 0.167722 0.997887 0.995442 

49 0.153525364 0.168045 0.997465 0.996581 

50 0.149118491 0.167952 0.997887 0.997721 

51 0.144126812 0.166545 0.998592 0.997721 

52 0.141357999 0.158834 0.998451 0.997151 

53 0.1387262 0.161264 0.998169 0.997151 

54 0.137388932 0.155557 0.996901 0.996581 

55 0.137729378 0.14896 0.997746 0.998291 

56 0.141356515 0.152151 0.995915 0.996011 

57 0.134909629 0.151925 0.998592 0.997721 

58 0.13071579 0.141499 0.998592 0.997151 
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59 0.131283669 0.140071 0.998028 0.997721 

60 0.130470107 0.14104 0.998451 0.996581 

61 0.13486209 0.151188 0.995915 0.995442 

62 0.134527999 0.156826 0.997042 0.996581 

63 0.126976339 0.138246 0.997746 0.997721 

64 0.121351666 0.133655 0.998873 0.998291 

65 0.11567679 0.132374 0.999577 0.998291 

66 0.117056048 0.125481 0.997746 0.996581 

67 0.114088887 0.120939 0.998451 0.998291 

68 0.11234433 0.118715 0.999718 0.998291 

69 0.111003019 0.130121 0.998169 0.998291 

70 0.107394829 0.11871 0.998592 0.998291 

71 0.108562823 0.117451 0.999577 0.998291 

72 0.104883381 0.116203 0.999014 0.997721 

73 0.102643461 0.109029 0.998873 0.998291 

74 0.106667563 0.110575 0.997746 0.997151 

75 0.105868465 0.120043 0.998028 0.998291 

76 0.113847493 0.124829 0.997042 0.998291 

77 0.108408039 0.128345 0.998028 0.997721 

78 0.110094978 0.126199 0.997746 0.997151 

79 0.102781496 0.115095 0.998169 0.997721 

80 0.104413322 0.119681 0.997183 0.997721 
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81 0.110846137 0.126486 0.997183 0.998291 

82 0.106055579 0.115613 0.998028 0.997721 

83 0.103272441 0.111051 0.998028 0.997721 

84 0.102868141 0.114027 0.999155 0.998291 

85 0.102510117 0.113878 0.999155 0.998291 

86 0.102762544 0.12357 0.997465 0.997721 

87 0.100402635 0.105502 0.997887 0.998291 

88 0.100132396 0.113936 0.997887 0.997721 

89 0.103828356 0.116034 0.997324 0.997151 

90 0.107987113 0.12558 0.996338 0.998291 

91 0.103258746 0.113905 0.998592 0.998291 

92 0.101762934 0.111821 0.998451 0.998291 

93 0.097466391 0.109025 0.997606 0.998291 

94 0.100628683 0.109401 0.997042 0.998291 

95 0.094872501 0.107419 0.998873 0.982336 

96 0.090064796 0.104649 0.999014 0.998291 

97 0.092836177 0.110506 0.997746 0.998291 

98 0.091442583 0.097661 0.999014 0.998291 

99 0.092570731 0.112891 0.99831 0.997721 

100 0.08948961 0.109827 0.997746 0.998291 

101 0.089143257 0.103652 0.998451 0.998291 

102 0.096879486 0.108767 0.996901 0.997721 
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103 0.095775502 0.102507 0.998592 0.998291 

104 0.089580127 0.102325 0.998873 0.998291 

105 0.085332424 0.09662 0.998169 0.997151 

106 0.088012294 0.091967 0.998592 0.998291 

107 0.089153317 0.109024 0.998873 0.983476 

108 0.088218677 0.111261 0.998169 0.995442 

109 0.083477548 0.091369 0.999014 0.998291 

110 0.085715038 0.10246 0.998028 0.998291 

111 0.084544391 0.105286 0.997746 0.997721 

112 0.083239266 0.098089 0.997465 0.997721 

113 0.092902807 0.104665 0.996479 0.998291 

114 0.085067838 0.100434 0.997887 0.997721 

115 0.083951141 0.10477 0.996338 0.997721 

116 0.083170018 0.097522 0.997887 0.997721 

117 0.080025426 0.090901 0.998873 0.997721 

118 0.084274337 0.08735 0.998732 0.997721 

119 0.081533764 0.093792 0.999859 0.998291 

120 0.083590259 0.115519 0.994366 0.997721 

121 0.088640079 0.095787 0.997887 0.998291 

122 0.085462135 0.091281 0.998592 0.998291 

123 0.086426533 0.09912 0.998873 0.997721 

124 0.084938435 0.099534 0.998169 0.998291 
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125 0.090667325 0.100691 0.998592 0.998291 

126 0.081207441 0.095752 0.998592 0.997721 

127 0.083045874 0.100969 0.998169 0.997721 

128 0.081756009 0.119785 0.996056 0.983476 

129 0.079671224 0.092432 0.997746 0.998291 

130 0.084739199 0.088527 0.999296 0.998291 

131 0.079758419 0.090257 0.999577 0.998291 

132 0.074886658 0.088462 0.999437 0.998291 

133 0.076498982 0.092746 0.998732 0.998291 

134 0.075882708 0.087965 0.999296 0.998291 

135 0.071367288 0.089318 0.999437 0.998291 

136 0.070490729 0.083398 0.999014 0.998291 

137 0.071217467 0.085095 0.998169 0.997721 

138 0.071989853 0.091423 0.998028 0.997721 

139 0.073233423 0.09088 0.998169 0.997721 

140 0.07414435 0.09128 0.999014 0.998291 

141 0.073933004 0.080099 0.999437 0.998291 

142 0.072827883 0.096145 0.997887 0.997151 

143 0.073828028 0.091136 0.998169 0.998291 

144 0.096089865 0.105974 0.995634 0.997151 

145 0.087503672 0.10099 0.996056 0.998291 

146 0.086745189 0.098305 0.997324 0.997151 
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147 0.090264101 0.098288 0.997746 0.998291 

148 0.095267341 0.105012 0.997465 0.998291 

149 0.084808027 0.101358 0.999577 0.998291 

150 0.082648386 0.088497 0.999437 0.998291 

151 0.082515598 0.104704 0.998028 0.983476 

152 0.093445161 0.115006 0.997465 0.998291 

153 0.095819709 0.134853 0.993803 0.997721 

154 0.093356526 0.104543 0.998169 0.998291 

155 0.092690022 0.112187 0.997324 0.997151 

156 0.105265884 0.119023 0.997746 0.997151 

157 0.093150276 0.105438 0.99831 0.998291 

158 0.085865485 0.103989 0.999155 0.997721 

159 0.084260299 0.09156 0.999437 0.998291 

160 0.080926149 0.095875 0.99831 0.998291 

161 0.081580831 0.087464 0.999155 0.998291 

162 0.079053357 0.086656 0.999437 0.998291 

163 0.078466784 0.098668 0.998028 0.997151 

164 0.077352652 0.092606 0.999155 0.998291 

165 0.077405458 0.084284 0.998732 0.998291 

166 0.076364515 0.081207 0.999155 0.998291 

167 0.077878133 0.092396 0.999014 0.998291 

168 0.072653512 0.078241 0.999718 0.998291 
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169 0.071105569 0.078374 0.999577 0.998291 

170 0.07292468 0.08376 0.998451 0.998291 

171 0.077272317 0.088885 0.99662 0.997151 

172 0.08124128 0.086807 0.999437 0.998291 

173 0.076449325 0.082665 0.999014 0.998291 

174 0.077671162 0.084931 0.998873 0.998291 

175 0.082476996 0.093815 0.996338 0.995442 

176 0.087355349 0.098646 0.999014 0.998291 

177 0.084597205 0.093179 0.999296 0.998291 

178 0.086357427 0.104309 0.99831 0.997721 

179 0.083330437 0.102786 0.998873 0.998291 

180 0.082191331 0.090256 0.999155 0.998291 

181 0.084583756 0.095436 0.998873 0.998291 

182 0.10323477 0.109677 0.99662 0.996581 

183 0.089624305 0.104584 0.997887 0.997721 

184 0.093377471 0.096466 0.998732 0.998291 

185 0.088096082 0.104976 0.998732 0.997721 

186 0.086322267 0.091855 0.999437 0.997721 

187 0.093071417 0.09981 0.996901 0.998291 

188 0.099019032 0.10407 0.998028 0.997721 

189 0.091236188 0.106914 0.999014 0.998291 

190 0.088449859 0.092932 0.999577 0.998291 
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191 0.091027145 0.109309 0.999155 0.998291 

192 0.089013257 0.097151 0.998873 0.997151 

193 0.085520167 0.100935 0.998592 0.997721 

194 0.082086001 0.086652 0.999577 0.998291 

195 0.07891793 0.089799 0.999296 0.998291 

196 0.07823303 0.085838 0.999437 0.998291 

197 0.077330326 0.090483 0.999014 0.998291 

198 0.076629187 0.089798 0.998873 0.998291 

199 0.075477714 0.083545 0.999155 0.998291 

200 0.07447986 0.106705 0.995352 0.996581 

201 0.074571213 0.081344 0.999718 0.998291 

202 0.07343387 0.081346 0.999014 0.998291 

203 0.07076664 0.083097 0.999437 0.998291 

204 0.068518095 0.076151 0.999577 0.997721 

205 0.069458033 0.075292 0.999155 0.998291 

206 0.067833934 0.085171 0.997465 0.998291 

207 0.070170819 0.094427 0.998732 0.997721 

208 0.070942571 0.077008 0.998873 0.998291 

209 0.068543579 0.077344 0.999437 0.998291 

210 0.068137976 0.077732 0.999155 0.998291 

211 0.065034394 0.076404 0.999718 0.998291 

212 0.067330495 0.072363 0.999718 0.998291 
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213 0.067975347 0.075108 0.999014 0.997721 

214 0.067707643 0.079387 0.999718 0.997721 

215 0.066638189 0.074189 0.998592 0.998291 

216 0.066750446 0.073733 0.999155 0.998291 

217 0.064074986 0.07592 0.999718 0.997721 

218 0.064790712 0.072244 0.998592 0.997721 

219 0.066563705 0.076794 0.999014 0.998291 

220 0.073468164 0.092012 0.996056 0.998291 

221 0.07176942 0.085626 0.99831 0.997721 

222 0.071574721 0.090306 0.997324 0.997721 

223 0.079955722 0.09135 0.997887 0.998291 

224 0.076105473 0.082828 0.99831 0.997721 

225 0.078961236 0.096132 0.99831 0.998291 

226 0.078505139 0.082494 0.999155 0.998291 

227 0.075292927 0.085538 0.999718 0.998291 

228 0.074108558 0.081221 0.999014 0.998291 

229 0.072197296 0.07732 0.999859 0.998291 

230 0.07093558 0.076319 0.998732 0.998291 

231 0.068216658 0.079378 0.999577 0.998291 

232 0.06651794 0.072418 1 0.998291 

233 0.066003107 0.068336 1 0.998291 

234 0.064765651 0.073366 0.998873 0.998291 
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235 0.066943178 0.075269 0.999437 0.998291 

236 0.066840029 0.082486 0.997465 0.998291 

237 0.070722706 0.09324 0.996761 0.997721 

238 0.086074304 0.089324 0.999155 0.997721 

239 0.077130188 0.093186 0.997183 0.998291 

240 0.075277474 0.089424 0.998873 0.998291 

241 0.07289649 0.082443 0.998028 0.998291 

242 0.072244006 0.079996 0.998873 0.998291 

243 0.072814996 0.076893 0.999296 0.998291 

244 0.069209508 0.088457 0.999437 0.998291 

245 0.075068254 0.081447 0.998592 0.997721 

246 0.073802345 0.080765 0.997606 0.998291 

247 0.081567836 0.099199 0.996338 0.998291 

248 0.09140155 0.085902 0.998732 0.998291 

249 0.087247955 0.100139 0.997324 0.998291 

250 0.087847923 0.109095 0.996197 0.997721 

251 0.088986748 0.099718 0.998732 0.998291 

252 0.088283875 0.098241 0.998028 0.998291 

253 0.086023831 0.096652 0.998732 0.997151 

254 0.08275367 0.094566 0.997887 0.997721 

255 0.083401011 0.088065 0.999296 0.997721 

256 0.082030849 0.099437 0.999014 0.997151 
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257 0.077221944 0.085443 0.999577 0.998291 

258 0.074944013 0.106415 0.998592 0.998291 

259 0.07703655 0.086855 0.999577 0.998291 

260 0.076100379 0.081142 0.999718 0.998291 

261 0.073869741 0.092248 0.997746 0.998291 

262 0.072174005 0.077151 0.999437 0.998291 

263 0.070478197 0.080253 0.999155 0.998291 

264 0.069751929 0.076278 0.999718 0.998291 

265 0.067519228 0.072411 0.999577 0.998291 

266 0.068650641 0.081964 0.998592 0.998291 

267 0.069240974 0.079814 0.998028 0.998291 

268 0.075049031 0.096269 0.996479 0.997151 

269 0.073697016 0.083411 0.997465 0.998291 

270 0.092846723 0.117673 0.993521 0.994872 

271 0.09148244 0.093613 0.998873 0.998291 

272 0.094970753 0.131318 0.997465 0.997151 

273 0.091808569 0.107817 0.999155 0.997721 

274 0.090027584 0.098041 0.999155 0.998291 

275 0.084941388 0.089787 0.998451 0.998291 

276 0.082681434 0.097717 0.999014 0.998291 

277 0.078596065 0.083072 0.999859 0.998291 

278 0.076867156 0.083684 0.999437 0.998291 
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279 0.076168928 0.088651 0.999577 0.997721 

280 0.074451056 0.083424 0.999577 0.998291 

281 0.0768792 0.082984 0.997746 0.998291 

282 0.083342038 0.100587 0.997887 0.997721 

283 0.082832647 0.090523 0.997887 0.997721 

284 0.085790792 0.100384 0.999155 0.997721 

285 0.085592401 0.092824 0.999014 0.997721 

286 0.080756908 0.094637 0.998873 0.997721 

287 0.080278624 0.084923 0.999437 0.998291 

288 0.077594671 0.095038 0.999155 0.998291 

289 0.08300124 0.09676 0.998592 0.996581 

290 0.078970228 0.087783 0.998592 0.998291 

291 0.076855761 0.083549 0.999437 0.998291 

292 0.073500355 0.079954 1 0.998291 

293 0.071376267 0.077282 0.999577 0.998291 

294 0.077592882 0.08529 0.999437 0.998291 

295 0.0746906 0.08167 0.999014 0.998291 

296 0.073073977 0.083583 0.999296 0.998291 

297 0.072745746 0.079044 1 0.998291 

298 0.06957734 0.075023 0.999437 0.998291 

299 0.068791735 0.081333 0.999577 0.997151 

300 0.067633089 0.080532 0.999859 0.998291 
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301 0.068551222 0.074618 0.999718 0.997721 

302 0.068039486 0.073137 0.999859 0.998291 

303 0.076399864 0.091786 0.996197 0.997721 

304 0.075486426 0.08989 0.99831 0.998291 

305 0.076699755 0.093123 0.998873 0.998291 

306 0.075144218 0.080945 0.999859 0.998291 

307 0.074328217 0.080127 0.999437 0.998291 

308 0.07699222 0.088362 0.999296 0.998291 

309 0.076933961 0.080411 0.999437 0.997721 

310 0.073401457 0.083268 0.999718 0.998291 

311 0.07282249 0.07916 0.998592 0.998291 

312 0.071371622 0.086274 0.999296 0.998291 

313 0.074887848 0.126751 0.992113 0.996581 

314 0.075642924 0.087282 0.997606 0.998291 

315 0.076425847 0.085895 0.999155 0.998291 

316 0.073311983 0.087654 0.999296 0.997721 

317 0.07424791 0.07717 0.999014 0.998291 

318 0.083866941 0.134864 0.992113 0.982906 

319 0.092542987 0.103944 0.997465 0.997721 

320 0.089339382 0.119875 0.997042 0.998291 

321 0.092028715 0.105734 0.99831 0.998291 

322 0.08747408 0.099593 0.999014 0.998291 
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323 0.088777444 0.10093 0.997746 0.998291 

324 0.088771241 0.111281 0.998873 0.998291 

325 0.092688254 0.098953 0.998592 0.998291 

326 0.088563183 0.103604 0.999718 0.998291 

327 0.087082756 0.101171 0.996901 0.998291 

328 0.084766395 0.091997 0.999014 0.998291 

329 0.083126828 0.096631 0.998451 0.997721 

330 0.079972359 0.093093 0.999577 0.998291 

331 0.078484214 0.092402 0.99831 0.997721 

332 0.076923238 0.082808 0.999155 0.998291 

333 0.074472225 0.082551 1 0.998291 

334 0.072021626 0.077522 0.999718 0.998291 

335 0.072826476 0.0845 0.997887 0.997151 

336 0.088250805 0.110951 0.997042 0.997721 

337 0.086558928 0.096332 0.999437 0.998291 

338 0.078065781 0.090474 0.998732 0.998291 

339 0.080614428 0.086623 0.999437 0.998291 

340 0.077774033 0.091075 0.999437 0.998291 

341 0.089406069 0.097326 0.997746 0.997721 

342 0.084345886 0.091793 0.998451 0.998291 

343 0.084568884 0.093909 0.99831 0.998291 

344 0.086662417 0.099256 0.997465 0.998291 
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345 0.081669918 0.098931 0.998592 0.998291 

346 0.083982435 0.092883 0.999155 0.998291 

347 0.079623155 0.091148 0.999437 0.998291 

348 0.078367965 0.08596 0.999014 0.998291 

349 0.079004489 0.092538 0.998732 0.998291 

350 0.074933302 0.085502 0.999155 0.998291 

351 0.074456759 0.080869 0.999437 0.998291 

352 0.073585661 0.081056 0.999014 0.998291 

353 0.090598145 0.105358 0.997042 0.998291 

354 0.089775086 0.099162 0.997606 0.998291 

355 0.092807027 0.102171 0.99493 0.997721 

356 0.089422639 0.101445 0.999014 0.998291 

357 0.087527164 0.091797 0.998873 0.997151 

358 0.097168409 0.101935 0.997746 0.998291 

359 0.089046528 0.096108 0.999155 0.998291 

360 0.088486769 0.095941 0.999014 0.998291 

361 0.085036843 0.103739 0.999014 0.998291 

362 0.086661917 0.089452 0.999155 0.998291 

363 0.083052373 0.089958 0.999155 0.998291 

364 0.081776598 0.08882 0.999437 0.998291 

365 0.079112457 0.085527 0.999718 0.997721 

366 0.077540762 0.085893 0.999577 0.998291 
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367 0.086555784 0.097633 0.995634 0.997721 

368 0.089125432 0.089265 0.997465 0.997721 

369 0.081081331 0.094408 0.998873 0.998291 

370 0.083347753 0.099258 0.997606 0.998291 

371 0.084304618 0.094526 0.998451 0.997721 

372 0.079601833 0.090632 0.998732 0.998291 

373 0.079112366 0.084555 0.999859 0.998291 

374 0.078565121 0.085148 1 0.998291 

375 0.074701271 0.081265 0.999296 0.998291 

376 0.074073213 0.082128 0.999577 0.998291 

377 0.073994158 0.07873 0.999437 0.998291 

378 0.071391935 0.078496 0.999718 0.998291 

379 0.071482899 0.076107 1 0.998291 

380 0.072296049 0.100154 0.995352 0.994872 

381 0.069768117 0.085056 0.997887 0.997721 

382 0.070175775 0.082879 0.999014 0.998291 

383 0.070302563 0.080544 0.999577 0.998291 

384 0.068231202 0.082086 0.999859 0.998291 

385 0.06913286 0.077258 0.999718 0.998291 

386 0.068342101 0.082699 0.999437 0.998291 

387 0.065336354 0.074054 0.999718 0.998291 

388 0.064268089 0.096728 0.995775 0.997151 
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389 0.063772301 0.0742 0.998873 0.998291 

390 0.064001974 0.068939 0.999577 0.998291 

391 0.063292852 0.09576 0.994789 0.998291 

392 0.068586596 0.073977 0.998732 0.998291 

393 0.069446565 0.109469 0.992958 0.996011 

394 0.077054382 0.10394 0.997465 0.998291 

395 0.07606944 0.098913 0.998732 0.998291 

396 0.074330578 0.089974 0.999014 0.998291 

397 0.072142844 0.08244 0.999437 0.998291 

398 0.080048729 0.094771 0.999155 0.998291 

399 0.08335042 0.089659 0.999718 0.998291 

400 0.085961166 0.09456 0.99831 0.998291 

401 0.085264787 0.091697 0.998873 0.998291 

402 0.08039767 0.085945 0.999859 0.998291 

403 0.078038075 0.087344 0.999155 0.998291 

404 0.077635603 0.085927 0.999718 0.998291 

405 0.079466639 0.088791 0.999577 0.998291 

406 0.077377613 0.089963 0.998732 0.998291 

407 0.077678252 0.082164 0.999718 0.998291 

408 0.075260542 0.100259 0.997746 0.998291 

409 0.080320445 0.091112 0.998873 0.998291 

410 0.087706223 0.094468 0.997746 0.998291 
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411 0.082846221 0.087577 0.998732 0.998291 

412 0.078473993 0.086788 0.999296 0.998291 

413 0.080075107 0.090764 0.999296 0.998291 

414 0.07621449 0.086621 0.998873 0.998291 

415 0.076532041 0.086896 0.999437 0.998291 

416 0.072551509 0.080041 0.999577 0.998291 

417 0.074159769 0.079522 0.999296 0.998291 

418 0.078104668 0.077374 0.999577 0.998291 

419 0.073639216 0.082112 0.999014 0.998291 

420 0.075329311 0.080299 0.999577 0.997721 

421 0.070611915 0.081777 0.998169 0.998291 

422 0.070054706 0.07554 1 0.998291 

423 0.068605568 0.084455 0.999437 0.998291 

424 0.066867249 0.087648 0.998732 0.998291 

425 0.066386909 0.07035 0.999859 0.998291 

426 0.068025302 0.075802 0.999014 0.998291 

427 0.071101577 0.077829 0.997887 0.998291 

428 0.068827657 0.078934 0.998592 0.997721 

429 0.069950966 0.075735 0.99831 0.998291 

430 0.075869353 0.080808 0.997324 0.997151 

431 0.075369237 0.077802 0.999014 0.998291 

432 0.074952577 0.087478 0.998592 0.998291 
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433 0.075388784 0.082934 0.999437 0.997721 

434 0.07732414 0.108077 0.996479 0.982906 

435 0.08821587 0.10033 0.994648 0.997721 

436 0.083792241 0.106837 0.996056 0.998291 

437 0.092376282 0.105223 0.998169 0.998291 

438 0.087374765 0.10508 0.999296 0.998291 

439 0.083944762 0.096784 0.998732 0.998291 

440 0.087414799 0.101377 0.999718 0.998291 

441 0.081810053 0.086273 0.999859 0.998291 

442 0.079378961 0.08316 0.999718 0.998291 

443 0.076848528 0.081562 0.999718 0.998291 

444 0.076236893 0.082849 0.999296 0.998291 

445 0.078946434 0.08721 0.998732 0.998291 

446 0.074352394 0.079882 0.999718 0.998291 

447 0.073117554 0.083236 1 0.998291 

448 0.08527474 0.087171 0.998451 0.997721 

449 0.083694746 0.119609 0.991831 0.996581 

450 0.083839961 0.093084 0.998592 0.998291 

451 0.096079425 0.110255 0.997042 0.998291 

452 0.089271456 0.105342 0.998732 0.998291 

453 0.090916554 0.106245 0.997887 0.997151 

454 0.087605213 0.104782 0.999155 0.998291 
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455 0.08955026 0.104215 0.998028 0.997151 

456 0.088622601 0.097405 0.999014 0.998291 

457 0.085356678 0.108558 0.999718 0.998291 

458 0.087252303 0.091045 0.999718 0.998291 

459 0.083631874 0.093047 0.999014 0.997721 

460 0.082978905 0.087327 0.999859 0.998291 

461 0.079602801 0.087381 0.999577 0.998291 

462 0.083948787 0.104136 0.995916 0.997151 

463 0.081716278 0.086287 0.998732 0.998291 

464 0.083392252 0.103159 0.999014 0.998291 

465 0.085228103 0.092677 0.998451 0.998291 

466 0.083458551 0.088499 0.999014 0.998291 

467 0.082297135 0.089711 0.998592 0.998291 

468 0.094772497 0.102289 0.998592 0.997721 

469 0.08647224 0.09419 0.998873 0.998291 

470 0.082684972 0.091367 0.999718 0.998291 

471 0.084276596 0.097677 0.999718 0.998291 

472 0.085452001 0.09253 0.998873 0.998291 

473 0.087896605 0.099982 0.998592 0.998291 

474 0.085615454 0.091106 0.999296 0.998291 

475 0.087280923 0.091606 0.998732 0.998291 

476 0.095429565 0.100651 0.998028 0.997721 
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477 0.08933591 0.097284 0.998451 0.998291 

478 0.089617404 0.094912 0.998169 0.998291 

479 0.088868804 0.089484 0.998732 0.998291 

480 0.088637009 0.09196 0.999014 0.998291 

481 0.08517016 0.090032 0.999577 0.998291 

482 0.089001819 0.091327 0.999577 0.998291 

483 0.085208594 0.099085 0.999155 0.998291 

484 0.085188028 0.087782 0.999296 0.998291 

485 0.081103075 0.091132 1 0.998291 

486 0.081126496 0.087586 0.999296 0.998291 

487 0.079018945 0.086959 0.999718 0.998291 

488 0.078710312 0.088814 0.999014 0.998291 

489 0.077518263 0.083004 1 0.998291 

490 0.073805267 0.083242 1 0.998291 

491 0.072263574 0.082733 0.999718 0.998291 

492 0.069989992 0.076652 0.999859 0.998291 

493 0.067963138 0.073446 0.999859 0.998291 

494 0.067035542 0.071816 0.999718 0.998291 

495 0.06625443 0.071067 1 0.998291 

496 0.065665172 0.069171 0.999718 0.998291 

497 0.065612988 0.069948 0.999718 0.998291 

498 0.065835802 0.069777 0.999718 0.998291 
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499 0.068042595 0.074381 0.999296 0.998291 

500 0.073021692 0.089022 0.997746 0.997721 

501 0.074288531 0.083992 0.999014 0.998291 

502 0.082740396 0.089164 0.997465 0.998291 

503 0.082204775 0.095773 0.996479 0.997721 

504 0.086022131 0.099001 0.998028 0.998291 

505 0.083061742 0.093403 0.999437 0.998291 

506 0.082407392 0.101043 0.997887 0.997721 

507 0.078908931 0.085275 0.999014 0.998291 

508 0.07572506 0.083212 1 0.998291 

509 0.073803193 0.080998 0.999859 0.998291 

510 0.076394818 0.078578 0.999718 0.998291 

511 0.07137094 0.076781 0.999577 0.998291 

512 0.070438991 0.077149 0.999859 0.998291 

513 0.069371752 0.07687 0.999296 0.998291 

514 0.069073951 0.075213 1 0.998291 

515 0.067546376 0.072444 0.999718 0.998291 

516 0.067592276 0.085723 0.999437 0.998291 

517 0.068334934 0.079468 0.998451 0.998291 

518 0.076819078 0.091196 0.99831 0.997721 

519 0.073794697 0.089269 0.998592 0.997721 

520 0.073551839 0.090338 0.997606 0.997721 
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521 0.072408954 0.089862 0.998451 0.998291 

522 0.072293475 0.079901 0.999014 0.998291 

523 0.070185788 0.076621 0.999577 0.998291 

524 0.070129425 0.075693 0.999859 0.998291 

525 0.072679236 0.08649 0.999437 0.998291 

526 0.070594649 0.082011 0.999155 0.998291 

527 0.070478297 0.078095 0.999155 0.998291 

528 0.071167333 0.077585 0.999437 0.998291 

529 0.073122091 0.094353 0.999437 0.998291 

530 0.070252969 0.07919 0.999437 0.998291 

531 0.069293847 0.076283 0.999718 0.998291 

532 0.068852515 0.076018 0.999296 0.997721 

533 0.069903851 0.075148 0.999296 0.998291 

534 0.072138005 0.078947 0.999296 0.998291 

535 0.075289807 0.08501 0.999014 0.998291 

536 0.069654317 0.08049 0.999296 0.998291 

537 0.072430693 0.090006 0.999014 0.997721 

538 0.072411482 0.077864 0.998732 0.998291 

539 0.076127986 0.096643 0.998732 0.996581 

540 0.073151056 0.081763 0.997324 0.998291 

541 0.073740005 0.084029 0.999014 0.998291 

542 0.077592687 0.091692 0.998451 0.998291 
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543 0.075892183 0.091426 0.99831 0.998291 

544 0.09463093 0.093883 0.998028 0.998291 

545 0.088306982 0.090646 0.998451 0.998291 

546 0.084065416 0.098616 0.998873 0.997721 

547 0.083206129 0.094877 0.997606 0.997721 

548 0.079952137 0.091343 0.999155 0.998291 

549 0.080923394 0.094432 0.997042 0.998291 

550 0.086295681 0.094261 0.999014 0.998291 

551 0.08580576 0.09041 0.998732 0.998291 

552 0.084561535 0.095451 0.999437 0.998291 

553 0.083960947 0.092304 0.999296 0.998291 

554 0.083884616 0.087377 0.999718 0.998291 

555 0.080253681 0.090835 0.998732 0.998291 

556 0.078375984 0.088223 0.999155 0.998291 

557 0.075451025 0.082292 0.999859 0.998291 

558 0.078094074 0.078957 0.999577 0.998291 

559 0.075412339 0.081902 0.999718 0.998291 

560 0.074406705 0.079846 0.999437 0.998291 

561 0.072845939 0.078278 0.999014 0.998291 

562 0.071289349 0.076534 0.999155 0.998291 

563 0.069419184 0.075426 0.999718 0.998291 

564 0.068787196 0.088592 0.999296 0.998291 
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565 0.074509737 0.08093 0.999296 0.998291 

566 0.069595683 0.082172 1 0.998291 

567 0.067841559 0.074904 0.999859 0.998291 

568 0.067653481 0.074617 0.999718 0.998291 

569 0.072555999 0.089428 0.997746 0.998291 

570 0.075850485 0.081807 0.999437 0.998291 

571 0.071585602 0.081241 0.999577 0.998291 

572 0.072482462 0.083523 0.999014 0.998291 

573 0.072121406 0.083984 0.999155 0.998291 

574 0.070977293 0.085143 0.999718 0.998291 

575 0.07464207 0.079551 0.999437 0.997721 

576 0.073981408 0.081597 0.999014 0.998291 

577 0.072253437 0.082774 0.998028 0.998291 

578 0.076008364 0.090667 0.998873 0.998291 

579 0.074754869 0.083298 0.997887 0.997721 

580 0.075452698 0.085534 0.999718 0.998291 

581 0.071623869 0.07989 0.999577 0.998291 

582 0.077450679 0.085756 0.99831 0.998291 

583 0.081252283 0.086887 0.998169 0.998291 

584 0.078533971 0.091108 0.999577 0.998291 

585 0.080389265 0.091111 0.999014 0.998291 

586 0.078516426 0.091566 0.999718 0.998291 
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587 0.076018462 0.08181 0.999155 0.998291 

588 0.077428332 0.089462 0.998451 0.997721 

589 0.074959937 0.080321 0.998873 0.998291 

590 0.072098812 0.078116 0.999577 0.998291 

591 0.07103283 0.076799 0.999859 0.998291 

592 0.0703958 0.076337 0.999718 0.998291 

593 0.069023945 0.090755 0.997324 0.996581 

594 0.067657176 0.073554 1 0.998291 

595 0.06525018 0.071993 1 0.998291 

596 0.066223342 0.071985 0.999718 0.998291 

597 0.066660618 0.08482 0.999014 0.998291 

598 0.065582235 0.076749 0.999437 0.998291 

599 0.064609947 0.076233 0.999718 0.997721 

600 0.066039903 0.071473 0.999296 0.998291 
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Appendix B 

Appendix B presents the intermediate confusion matrices for using VGGNet on the LISA 

dataset. 

 

Figure B.1. Epoch 1 Confusion Matrix for VGGNet Model on LISA Dataset 
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Figure B.2. Epoch 100 Confusion Matrix for VGGNet Model on LISA Dataset 
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Figure B.3. Epoch 200 Confusion Matrix for VGGNet Model on LISA Dataset 
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Figure B.4. Epoch 300 Confusion Matrix for VGGNet Model on LISA Dataset 
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Figure B.5. Epoch 400 Confusion Matrix for VGGNet Model on LISA Dataset 
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Figure B.6. Epoch 500 Confusion Matrix for VGGNet Model on LISA Dataset 
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Appendix C 

Appendix C presents intermediate confusion matrices for training NuNet on the LISA dataset. 

The 1st, 100th, 200th, 300th, 400th and 500th epochs are presented in this appendix. 

 

Figure C.7. Epoch 1 Confusion Matrix for NuNet Model on LISA Dataset 
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Figure C.8. Epoch 100 Confusion Matrix for NuNet Model on LISA Dataset 
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Figure C.9. Epoch 200 Confusion Matrix for NuNet Model on LISA Dataset 
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Figure C.10. Epoch 300 Confusion Matrix for NuNet Model on LISA Dataset 
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Figure C.11. Epoch 400 Confusion Matrix for NuNet Model on LISA Dataset 
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Figure C.12. Epoch 500 Confusion Matrix for NuNet Model on LISA Dataset 
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Appendix D  

Appendix D presents intermediate confusion matrices for training NuNet with CIB dataset 

at 80/20 split for training and validation sets respectively. Confusion matrices of the 1st and 100th 

epochs are presented. The 200th, 300th, 400th and 500th epochs shared the same configuration as the 

100th. 

 

Figure D.13. Epoch 1 Confusion Matrix for NuNet Model on CIB Dataset  
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Figure D.14. Confusion Matrix for NuNet Model on CIB Dataset for 100th 
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