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ABSTRACT 

 

This thesis presents the application of a finite state automaton (FSA) to analytic 

modeling of Data/Frame Model (DFM) of sensemaking. A FSA is chosen for the DFM 

simulation because of its inherent characteristics to mimic changes in system behaviors 

and transitional states akin to the dynamic information changes in dynamic and 

unstructured emergencies. It also has the ability to capture feedback and loops, 

transitions, and spatio-temporal events based on iterative processes of an individual or a 

group of sensemakers. The thesis has exploited the human-driven DFM constructs for 

analytical modeling using Laboratory Virtual Instrumentation Engineering Workbench 

(LabVIEW) software system. Sensemaking times, problem stage time (PST), and node-

to-node (NTN) transition times serve as the major performance factors. The results 

obtained show differences in sensemaking times based on problem complexity and 

information uncertainty. An analysis of variance (ANOVA) statistical analysis, for three 

developed fictitious scenarios with different complexities and Hurricane Katrina, was 

conducted to investigate sensemaking performance. The results show that sensemaking 

performance was significant with an F (3,177) of 16.78 and probability value less than 

0.05, indicating an overall effect of sensemaking information flow on sensemaking. 

Tukey’s Studentized Range Test shows the significant statistical differences between the 

Codjoe, Emma A. A FINITE STATE AUTOMATON REPRESENTATION AND 

SIMULATION OF A DATA/FRAME MODEL OF SENSEMAKING. (Advisor: Dr. 

Celestine A. Ntuen), North Carolina Agricultural and Technical State University. 
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complexities of Hurricane Katrina (HK) and medium complexity scenario (MC), HK and 

low complexity scenario (LC), high complexity scenario (HC) and LC, and MC and LC. 

 



1 

 

CHAPTER 1 

Introduction 

 

1.1 Background and Definitions of Sensemaking 

When one encounters a new situation, she reasons around it; when she finds a 

shortcut or dead end, she remembers it—what she does in actual fact is learn it. We try to 

make sense of information and the situation confronting us through many phases of 

knowledge processing of which the majority is cognitive. These are aspects of 

sensemaking.  

The American Heritage College Dictionary (2002) defines the word ―sense‖ as, 

(1) understanding, (2) signification, (3) present of meaning, (4) a mechanism of faculty as 

receiving (forming) mental impression, (5) deducing from observation or unnoted stimuli 

in respect to a particular field or relation, (6) instructive comprehension, (7) discerning 

awareness, (8) opinion, view, sentiment, of something felt and held by an individual or a 

group of people, (9) awareness derived through interpretation of stimuli or sensory 

information, (10) accustomed steady ability to judge and decide between possible courses 

with intelligence and soundness. The definitions 1-10 above represent the 

epistemological aspects of sensemaking. The same dictionary defines ―make‖ to imply, 

(1) to frame or formulate in the mind; (2) form as a result of calculation of design; (3) 

enact or establish. These characteristics represent the ontological views of sensemaking. 

By combining the two words, the same referenced dictionary defines sensemaking as a 
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noun – ―sensible, reasonable, and predictable‖. Thus, sensemaking implies the ability to 

design, build, and derive an understanding of situated information. 

Sensemaking is simply making sense of situation information. Sensemaking is 

typically attributed to Weick (1995) who notes that sensemaking is an interplay of action 

and interpretation rather than the influence of evaluation on choice. Sensemaking is a 

label for a coherent set of concepts and methods used to study how people construct 

sense of their worlds—mostly, the world of information. As a human endeavor, it is 

noted by Huber and Daft (1987, p.154) that active agents construct sensible events 

through a sensemaking process. And they do so as they ―structure the unknown‖ 

(Waterman, 1990, p.41). 

Sensemaking involves putting stimuli into some kind of framework (Starbuck and 

Milliken, 1988, p.51).When people put stimuli into frameworks, this enables them to 

―comprehend, understand, explain, attribute, extrapolate and predict‖. Based on this 

perspective, Seick, Klein, Peluso, Smith and Harris-Thompson (2004) view sensemaking 

as a process of framing, or fitting data into a frame that assists us to filter and construe 

the data while examining and improving the frame. As frames form and identify the 

relevant data, data mandates frames change in nontrivial ways (Klein, et al, 2006). While 

frames define what counts as data, they themselves actually shape the data.  

Sensemaking implies the set of processes involved in the progression of a 

person’s understanding of a situation. It is noted that sensemaking manifests in situations 

with unexpected surprises such as natural disasters and emergencies (Weick, Sutcliffe 

and Obstfeld, 2005). As unexpected events usually trigger the desire for coping 
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mechanisms, Louis (1980, p.241) notes that sensemaking is a thinking process that uses 

retrospective accounts to explain surprises. Surprises, which are unexpected situations, 

have to be explicitly explained to attain situation awareness and subsequently an 

understanding of the situation.  

Sensemaking is also a process, design, or a technique of bringing together 

information, attaining situation awareness (Endsley, 1995) and interpreting the 

information in perspective so as to gain knowledge and understanding for actions (Ntuen, 

2009). Sensemaking as a tool for naturalistic knowledge discovery fits data from a 

situation of interest into a frame.  

Many experts on the subject matter confirm that sensemaking involves 

deliberately placing stimuli into some kind of framework (Seick et al., 2004; Starbuck 

and Milliken, 1988).  Weick (1995) suggests that a frame can be a story or script, a map 

or other types of depiction. Ring and Rands (1989, p.342) define sensemaking as a 

―process in which individuals develop cognitive maps of their environments‖. For 

example, experts make use of concept maps during their sensemaking process in an 

attempt to discover intrinsic knowledge within contextual information.  Ntuen (2009) 

attributes sensemaking be a naturalistic knowledge discovery tool, ―as the process 

through which people use information to construct, maintain and reconstruct 

interpretations of the world.‖  In this way, sensemaking can be seen as a tool, a process or 

theory of how people reduce uncertainty or ambiguity; socially negotiating meaning 

during decision-making events (Ntuen, 2009).  
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The differences in the ways people make sense of a situation can be ascribed to 

the depth of how they present an internal representation of a system to the external world; 

their mental models, the mental depiction of ―how things work‖ (Seick, et al, 2004). As 

observed by Snowden (2002) and Weick, et al. (2005), sensemaking is more noticeable in 

a situation of confusion, chaos, pandemonium, and emergency. In each situation, 

information is known to be characterized by uncertainty, dynamically evolving, and lacks 

crisp descriptions. Due to these characteristics, sensemaking is primarily a cognitive 

process. 

 

1.2 Sensemaking as a Cognitive Process  

Sensemaking involves the use of the most fundamental aspects of human 

cognition which include, but are not limited to, the ability to reason, recognize patterns, 

compare facts, differentiate between ―what makes sense‖ and what does not, and make 

decisions. All or some of these cognitive tasks can take place simultaneously—

sometimes inherently without our notice.  

The anecdotal sensemaking definitions above inform us of the multifaceted and 

equivocal views of sensemaking. Viewed from Polanyi’s association of sensemaking 

with tacit knowledge (Polanyi, 1967), sensemaking is a cognitive process which allows 

people to interpret information in context so as to derive knowledge for actions. Polanyi 

refers to intrinsic and private knowledge as tacit. Polanyi is cited and credited for the 

definition of tacit knowledge and how it influences the sensemaking process. According 

to Polanyi, tacit knowledge is what is known but cannot be told. The reasoning behind 
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the statement is that the knowledge has become so personal in the unconscious mind and, 

therefore, it cannot be expressed because there is no access to it through the conscious 

mind. Polanyi said "we know more than we can tell."  

 Weick (1995) states that sensemaking refers to how meaning is constructed at 

both the individual and the group levels.  This means that sensemaking is both an 

individual as well as a group cognitive process.  Sensemaking has been used to identify 

changes in existing patterns or the emergence of new patterns in information networks 

(Weick and Sutcliffe, 2001).   

As a cognitive process, information is the heart of sensemaking. However, the 

information required may be missing completely.  In this case, the sensemaking process 

starts by making guesses using retrospective knowledge.  The information may be 

incomplete, in which case, the sensemaker mentally estimates and makes connections to 

the missing information.  Finally, information may be overwhelmingly too much; 

sensemaking requires data mining techniques to discover relationships and associations in 

the context.  These situations attribute sensemaking to ―a sprawling collection of ongoing 

interpretive action, central to the conduct of everyday organizational life‖ for the simple 

fact that it creates and discovers (Smith and Hitt, 2005).  

 

1.3 Sample Sensemaking Applications 

Sensemaking is an everyday human endeavor. It occurs naturally when the 

sensemaker is using tacit knowledge and, collectively, while sharing the tacit knowledge 

with others through various interaction and communication modalities. There is no single 
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spot for sensemaking application. It is omni present and ubiquitous. For the purpose of 

this thesis, few contextual uses of sensemaking are presented below (Ntuen, Park, and 

Gwang-Myung, 2010).  

(i). Sensemaking is an aspect of information foraging: Pirolli and Card (1999) define 

information foraging theory as an approach to understanding how strategies and 

technologies for information seeking, gathering, and consumption are adapted to 

the flux of information in the environment.  The theory assumes that people, when 

possible, will modify their strategies or the structure of the environment to 

maximize their rate of gaining valuable information.  Pirolli (2007) notes that 

foraging tasks consist of information gathering, representation of the information 

in a schema that aids analysis, the development of insight through the 

manipulation of this representation, and the creation of some knowledge product 

or direct action based on the insight.   

(ii). Sensemaking is an information fusion tool: As an information fusion tool, 

sensemaking is viewed as a thinking process that uses retrospective accounts to 

explain surprises (Louis, 1980, p.241), and uses new information to update 

prospective predictive states of a situation.  Munya and Ntuen (2005) used these 

axioms to develop an information fusion model using abduction reasoning and 

Bayesian learning models.  Relevant to information fusion, Pirolli (2007) and 

Pirolli and Rao (1996) use sensemaking to refer to activities in which external 

representations such as texts, tables, or figures are interpreted into semantic 

contexts.  
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(iii). Sensemaking supports situation understanding: One of the purposes of 

sensemaking is to allow the sensemaker to understand the situation by reducing 

ambiguities and uncertainties to near crisp quantitative information values. Many 

studies (Fodor, 2000; Klein, 2003; Weick, 1995) have shown that when complex 

and chaotic situations are encountered, it is sensemaking that helps the decision-

maker to frame the context of the situation in order to develop some clues for 

situation awareness and understanding. Sensemaking also helps the decision-

makers to solve problems that require intuition and retrospective knowledge. 

 

1.4 Research Rationale 

Sensemaking process is necessary for understanding the effectiveness of 

sensemaking outcomes as viewed from different stages and sensemaking lenses. 

Currently, most of the sensemaking processes (as will be discussed in Chapter 2 of this 

thesis) are qualitative and lack the formal methods for quantitative evaluations. It is 

surmised that, by quantifying the sensemaking process, at least four advantages can be 

derived:  

a) Recognizing sensemaking break points: Determining when a sensemaker is right 

during a contextual sensemaking process is elusive and needs metrics to help 

pinpoint when breakdown in the sensemaking process occurs, for example, when 

and where in the process confusion of interpretation occurs. 

b) Reducing equivocality: It is known that sensemaking is anchored on information 

interpretation which may differ from one sensemaker to another. Through a 
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quantitative analysis, it is possible to develop a sensemaking filter or ―barometer‖ 

that uses a common metric to reduce equivocality in the way different 

sensemakers give interpretations and meanings to the same situation. 

c) Performance Assessment: A quantitative model with robust analytical rigor can be 

used to assess the performance of sensemakers, either individually or as a team. 

For instance, given a sensemaking problem situation, one may be interested in 

comparing the performance of an expert and a novice sensemaker using some 

determined metrics such as outcome effectiveness, sensemaking time, and the 

ability to discover significant information from a complex data set. 

d) Identifying Best Practices: Quantitative analysis can use simulation techniques to 

determine significant best practices for a sensemaking process at different 

problem scales and sizes. For example, a properly constructed analytical model 

can help in determining the most suitable hypotheses for a problem situation, or a 

set of recommended courses of action as outcomes of a specific sensemaking 

process. 

 

1.5 Research Objectives and Approach 

The major goal of this thesis was to develop a quantitative model for a 

sensemaking process. Specifically, there were two objectives: 

a) To use a finite state automaton (FSA) as a quantitative model to represent and 

simulate the behaviors of a sensemaking process defined by Data/Frame Model 

(DFM) of Seick, et al. (2004). 
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b) To evaluate the usefulness of the analytical model using the Hurricane Katrina 

situation. A cognitive task analysis of Hurricane Katrina was used to derive the 

basic input to the simulation model. Sensemaking performance metrics under a 

simulated domain was developed to assess the effectiveness of the FSA-DFM 

simulation.  

A FSA was selected because of its ability to model discrete or continuous state 

changes in a system, including the ability of its representation to capture feedback and 

loops, transitions, and spatio-temporal events. The features of DFM are yet to be 

exploited for analytical modeling even though it has robust characteristics for this 

purpose. The DFM has sensemaking states that are reminiscent of FSA; transitions that 

represent the progressive processing of data into information, and information to 

knowledge. These include the human cognitive tasks such as refutations, comparisons, 

pattern associations, and identifying alternatives, recognizing and isolating violations 

during the sensemaking process, and the searching for information to confirm certain 

beliefs. The mapping of these DFM properties into FSA models was the focus of this 

thesis. 

 

1.6 Chapter Summary 

Currently, sensemaking is viewed as a qualitative model of imparting 

retrospective knowledge to the understanding of complex or chaotic situations. From the 

situation understanding framework, one must be cognizant that conditions requiring 

sensemaking involve changing conditions that translate to belief changes and updates of 
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our cognitive understanding of the new contexts relative to the old ones and how states 

and/or events in the new context deviate from our previous knowledge. Generally, there 

is no converging point of focus in constructing a sensemaking model in evolving and 

dynamic /novel systems. However, the DFM has provided a benchmark for developing 

quantity models for sensemaking processes so as to measure their effectiveness—both at 

the problem levels and at the sensemaker levels. This thesis has chosen FSA as an 

analytical representation of DFM because of the procedural characteristics of DFM that 

fits into the FSA framework.  

The thesis is organized into six chapters. Chapter 1 provides the basic 

introduction of sensemaking, the rational for the study, objectives, and an approach. 

Chapter 2 includes an anecdotal literature review that complements the thesis and focuses 

on the sensemaking process. Chapter 3 introduces a theoretical framework for 

sensemaking simulation and modeling. Problems in simulation and modeling of 

sensemaking process are recognized. Chapter 4 describes the fundamental theory of DFM 

and FSA with illustrations using a case study in Hurricane Katrina. Chapter 5 includes 

the FSA-DFM computer simulation that includes the structure, representation and 

validation of the quantitative computational model. Chapter 6 discusses experiments and 

data analysis. Finally, Chapter 7 gives the thesis summary, conclusions and suggestions 

for future research. 

  



11 

 

CHAPTER 2 

Literature Review 

 

2.1 Sensemaking Making Process 

According to Albert and Hayes (2006; pp 63): 

―Sensemaking consists of a set of activities or processes in the cognitive  social 

domain that begins on the edge of the information domain with the perception of 

available information and ends prior to taking action(s) that is meant to create 

effects in any or all the domains.‖ 

The sensemaking process is about creating a common meaning, defining semantically 

and syntactically uniform interpretation across contexts, and creating a taxonomy or 

lexicon of common understanding that minimizes equivocality as much as possible 

(Weick, 1995). 

The phenomenologist view is that sensemaking starts with the fundamental 

assumption of phenomenology—that the sensemaker is inherently involved in some state 

observations, which must be understood from experience perspectives and horizons 

(Dervin, 2003). Sensemaking then brings certain assumptions together by asserting that, 

given a situation and an incomplete understanding of that situation, we arrive at an 

uncompromising position of seeking a model of situation understanding (Ntuen, 2006). 

Bergman and Mark (2002), quoting from Weick (1995), note that, ―Sensemaking 

processes are quite different than procedural processes. Sensemaking processes are 

performed when the process goals are ambiguous and need to be defined or the process 
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goals are clear but there is no known procedural (prescriptive) process that can be 

performed to satisfy the goals. Sensemaking processes are usually imprecise in 

description and indefinite in duration, although a specific limit can be specified‖. A 

sensemaking process occurs when there is a need to make a judgment about many 

competing objectives that are time bound (Weick, 1995).  

Ntuen (2006) notes that a key to developing a sensemaking process is to 

appreciate the understanding that humans bring to the information context and the 

problem situation, and the way in which that understanding is used, shared, tested and 

evolved during the process. How sensemaking occurs, and how understanding is used, is 

strongly dependent on how one thinks and how one represents the world. Sensemaking is 

the process of choosing the right set of perceptions and mental models to be able to 

understand and act successfully in this type of environment. As noted by Alberts and 

Hayes (2003), ―Sensemaking is much more than sharing information and identifying 

patterns. It goes beyond what is happening and what may happen to what can be done 

about it.  This involves generating options, predicting adversary actions and reactions, 

and understanding the effect of particular courses of action (pp. 102).‖   

Past and recent research on sensemaking has developed several variants of the 

sensemaking process. The ones that apply to this thesis are: Observe Orient Decide Act 

(OODA) model developed by Boyd (1987), Dynamic Model of Situated Cognition 

(Shattuck and Miller, 2004), Situation Handling Model (Wiig, 2002), Data/Frame Model 

(Seick, et al, 2004), and Sensemaking Process Model (Ntuen, 2006). Brief reviews of 

these models follow. 
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2.2 Observe Orient Decide Act (OODA) Model  

The OODA model was developed by Boyd (1987) to address the concerns of 

military decision-making processes that consider uncertainties. In the OODA model, the 

―Orient‖ sub-model attempts to capture the cognitive processes involved during 

sensemaking—although it was never addressed as such. The components describe the 

human cognitive tasks with feedback and feed-forward loops. Boyd describes the 

sensemaking process in four stages with the orientation stage being the stage at which 

most of the sensemaking process takes place. The generic OODA model is shown in 

Figure 2.1. 

 

 

 

 

Figure 2.1.  Classical Cognitive Structure of the Observe, Orient, Decide and Act 

   Model (Boyd, 1987) 



14 

 

1. Observation: This stage entails the data collection process using human and 

technology sensors.  

2. Orientation: At this stage, the collected information is used to form a mental 

image of the circumstances. Here, data is converted to information, and 

information is converted to knowledge. These products are stored into adaptable 

schema codes which are later used to "deconstruct" old images and then "create" 

new images. This orientation emphasizes the context in which events occur for 

use in the understanding of future system states. Sensemaking occurs mostly 

during the orientation stage (Leedom, 2004). 

3. Decision: This task involves analysis and selection of potential courses of actions 

for execution.  

4. Action: This phase addresses the notional requirements for execution and 

evaluation of the expected consequences of the action. The evaluation loop is 

responsible for the feedback through ―lessons-learned‖ made possible through 

data collection from realistic situations. 

 

2.3 Dynamic Model of Situated Cognition (DMSC) 

Sensemaking can be viewed as a sequence of situated acts. Situatedness (Clancey, 

1997; Suchman, 1987) holds that ―where you are, what you do, when you do matters‖. 

Thus, ―situatedness‖ is concerned with locating everything in a context so that the 

decisions that are taken are a function of both the situation and the way the situation in 

constructed or interpreted. Situations may change over time therefore the cognitive 
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processes required to adapt to such changes must be dynamic. This change is dependent 

on the constructive memory which holds that memory is not a static imprint of a sensory 

experience, but is subject to continuous changes due to new information stimuli (Dietrich 

and Markman, 2000). The sensory experience is stored and the memory of it is 

constructed in response to any demand on that experience. A graphical representation of 

this model is illustrated by Figure 2.2. 

 

 

 

 

Figure 2.2.  Dynamic Model of Situated Cognition (Shattuck and Miller, 2004)  

 

 

 

Shattuck and Miller (2004) describe a DMSC as a system in which data flows 

from the environment, through sensors and other machine agents to the human agents in 

the system. This approach overcomes the biases which are inherent in analytical methods 

focusing almost exclusively either on machine agents or on human agents. The DMSC 
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posits that there are various stages of technological and cognitive system performance. 

On the technological side, all the data in the environment, data detected by technological 

systems (e.g., sensors), and data available on local command and control systems (e.g., 

workstations) are included. Each of these stages includes a subset of what was included 

in the preceding stage. Building upon this technology are the perceptual and cognitive 

systems offered by the human operator.  

 

2.4 Situation Handling Model  

According to Wiig (2002), sensemaking is a continuous integration of evolving 

situation handling activities. This requires, for example, mental reference models, 

concepts formed around situations of interest, the volition act of trying to understand the 

situation relevant to the available information, the thirst to make useful and flexible 

judgment of events and activities based on principles, facts, and theories of the universal 

constructs. Figure 2.3 illustrates Wiig’s sensemaking process. In Figure 2.3, it is assumed 

that people possess most situation handling knowledge in the form of mental models. The 

four types of mental models are: 

1. Situation Recognition Models: These are used for sensemaking and provide 

characterizations of memorized events and are recalled when comparable 

situations are perceived. People possess large libraries in the form of schemas 

with tens of thousands of situation recognition models that incorporate encoded 

information of situations they have encountered in their life. 
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Figure  2.3.  Personal Situation-Handling (Wiig, 2002) 

 

 

 

2. Decision-Making and Problem-Solving Models: Consist of a mental library of 

reference models that cover a large domain and guide the decision-making 

/problem-solving process. These mental reference models range from quite 

concrete action models to abstract and meta-knowledge models. They provide 

simple rules for the handling of routine and well-known situations by rote, to 

procedures for more complex situations which may need creation of innovative 

actions, to methodologies for problem-solving in novel situations. Selections of 

mental models that are called into action depend on the level of situation 

familiarity and understanding that result from sensemaking activities. 

3. Execution Method Models: These are used to provide guides to implement the 

desired action generated by courses of action planning exercise. Many Execution 
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Method Models are complicated and take into account trade-offs between 

available resources and decision objectives. Some also include aspects for how to 

deal with constraints of different kinds. All seem to provide dynamic perspectives 

on the evolving implementation process. 

4. Governance Approach Models: These are used for monitoring and provide both 

principles and guides for evaluating the situation-handling process. These models 

contain goals and objectives for the particular situation that is handled.  

 

2.5 Data/Frame Model (DFM) 

Framing indicates how we structure problems into a particular set of beliefs and 

perspectives that constrain data collection and analysis. The framing usually narrows the 

information search around local outcomes as opposed to issues further distant in effect. 

For example, an analyst may frame a solution for short term gains, disregarding long term 

consequences of the decision.  

Data and cues can be thought of as vocabularies from which hypotheses are 

developed into frames to guide in a sensemaking process. As postulated by Sieck, et al. 

(2004), military data will go through the military frame of reasoning, economic data will 

go through economic models, and political data will go through political frame, and so 

on. The frame paradigm is therefore sensitive to context, which makes it possible to 

capture the dynamics and continuity of information changes in the domain context. DFM 

consists of six sensemaking functions, along with temporal path relations that link the 

functions as illustrated by Figure 2.4. 
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Figure 2.4.  Data/Frame Model (Sieck, et al., 2004) 

 

 

 

1. Elaborating the frame: Information from a particular situation is gathered and it is 

analyzed with the data to see if it is adequate. It is in this stage that data is sought 

and inferred directly from a particular situation. The frame is extended and 

elaborated further as more is known about the situation.  

2. Questioning the frame: It is realized that data possessed is not adequate, 

anomalies may be detected and the expectancies of the frame are violated. This 

leads people to question the accuracy of the frame. 

3. Preserving the frame: In this stage, the inadequate/contradictory data is justified 

and its importance is minimized. Reasons why the inconsistent data does not 
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match the frame are explored and presented. The preservation of the frames 

depends on the expertise of the person trying to make sense of the situation. 

4. Comparing the frame: Information is gathered in support of the main frame and 

alternative frames are elaborated on so as to compare them with the primary 

frame. Once the frames have been elaborated and there is distinguishing 

information for each of them, the decision maker can be more effective. 

5. Seeking a frame: This is the process of selecting the most appropriate frame 

according to the key information that have been obtained. The keys driving the 

selection of a frame are called anchors and they will help the decision maker to 

construct better frames based on the previous ones. 

6. Reframing: Finally, the decision maker has the task of finding new anchors in 

order to discard unnecessary data and possibly recover previously discarded data. 

The data is interpreted again, the goals are revised, and a redirection of the 

sensemaking is performed whenever the expectations of the current situation are 

not met. 

The DFM is a follow-up to an existing model called the Framework of 

Comprehending and Understanding Situations (FOCUS). DFM was developed by 

scientists in the third year of research at Klein Associates and is a qualitative model to 

interpreting situations that do not seem to have any definite pattern or make sense after 

all. This model was contextualized through cognitive task analysis and empirical studies 

of experts versus novices. Development of DFM was preceded by several studies of 

expert sensemakers to tap into their intuitive means of breaking down complex situations. 
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2.6 Sensemaking Process Model  

Ntuen (2006) recognized eight interacting stages in a sensemaking process. The 

descriptions of these stages follow. This model is represented by Figure 2.5. 

1. Situation Framing: At this stage, sensemaking involves putting stimuli into some 

kind of framework (Starbuck and Milliken, 1988, p.51). Framing can begin with 

beliefs and take the form of arguing and expecting or, it can begin with actions 

and take the form of committing or manipulating. In both cases, sensemaking is 

an effort to tie beliefs and actions more closely together as when arguments lead 

to consensus action during team problem solving. 

 

 

 

 

Figure 2.5.  Stages in the Sensemaking Process (Ntuen, 2006) 



22 

 

2. Searching for Cues: A clue can start as a signal guided mapping where the 

sensemaker basically starts with a hypothesis and looks for data to confirm an 

assumption. On the other hand, a cue-guided search may be used; a bottom-up 

search that uses information cues as an initial data frame. From here, the 

sensemaker seeks linkages and patterns in the available information or data and 

makes classifications according to saliency of the cues in order to develop some 

sense of patterns and correlation likely to lead to a first level nominal awareness. 

It also requires recalling information relevant to a context in which these cues are 

applicable. It requires an extensive memory resource. The extent to which the 

process uses cognitive resources depends on how much adjustment the 

sensemaker decides to make in response to evolving contexts and information 

changes.  

3. Information Mapping: The next step in the sensemaking process is information 

mapping. Here, the available information cues are used by the sensemakers to 

develop a map or a relation topology where clusters of similar information stimuli 

are arranged in the form of patterns or taxonomy trees. The mapping process can 

include link maps, conceptual maps, free body diagrams, decision trees, and 

semantic diagrams.  

4. Search for Meaning in Information Pattern: Sackman (1991) views sensemaking 

as the mechanisms that organizational members use to attribute meaning to 

events. Such mechanisms include the standards and rules for perceiving, 

interpreting, believing and acting that are typically used in a given cultural setting 
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(p.33). Meaning is therefore tied to a specific context and search of how one 

concept relates to, influences or allows sensemakers to gain a first level 

interpretation of the big picture. As an epistemological construct, meaning is a 

subtle, loose, and diverse assignment of definition to a knowledge token, object, 

or artifact. In this respect, ―we know more than we can tell‖ (Polanyi, 1967). 

Polanyi describes the semantic aspect of tacit knowing, how meaning tends to be 

displaced away from ourselves, and toward the external. Meaning is also realized 

through the process of how we describe things, objects, events, and so forth 

hence, meanings are embedded in language through description (Macdonald, 

1995), implying that meaning cannot be absolute or objective in the positivist 

sense (Ambrosini, 1998).  

5. Information Comprehension: In a sensemaking task, comprehending a situation is 

synonymous to ―being aware‖ of the situation. It involves developing rules to fit 

or map information from one source or new situation to another source or 

situation. Information mapping rules are based on repetitive behaviors in which a 

set of production rules (in the form of ―If X then Y‖) are used to associate specific 

meanings and interpretations to system goals. When we comprehend a situation, 

in a nominal sense, the abstract frame of reference is concretized through 

associations with specific rules of behavior or schema. During a comprehension 

task, ―changes in the environment will often be met by an updating of the current 

schema by a subconscious reaction to cues or a consciously expressed intention‖ 

(Rasmussen, 1986; pp.151). 
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6. Interpreting Information Relevance to Goals: Feldman (1989) views sensemaking 

as an interpretive process that is necessary for ―organizational members to 

understand and share understandings about such features of the organization as 

what it is about, what it does well and poorly, what the problems it faces are and 

how it should resolve them.‖ The act of interpretation may take the form of 

explicit sensemaking through communication; it may also take place through the 

transformation and integration of representation of selected information within the 

defined context (Suthers, 2005). The key challenge, however, is minimizing the 

variance in a diversity of meanings assigned to the object of interest with its 

different interpretative viewpoints (Malhotra, 2001).  

7. Creating a Subset of Situation Understanding: Understanding a situation means 

that we have a grasp of the relevant knowledge spectra about the situation. In 

addition to being situation aware, we also possess meta-cognitive structures that 

allow us to solve problems that are not familiar that is those problems that evolve 

according to system changes, relatively unfamiliar and with novel characteristics. 

Accordingly, Polanyi’s (1967) definition of focal knowledge can be used to infer 

how individuals assign meanings to what they see and feel. As echoed by 

Malhotra (2001, 120), by understanding a situation, we can form the conceptual 

link between information available and the expected result or anticipation of task 

outcomes. It could also help us to understand the gap between performance 

expectations based on information in context.  
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8. The Stage of Actionable Knowledge: The purpose of sensemaking is to connect 

situation understanding to action or to derive some actionable knowledge. Crotty 

(1998) observes that, ―all knowledge and therefore all meaningful reality as such, 

are contingent upon human practices, being constructed in account of interaction 

between the human being and their world (pp.42).‖ The focal knowledge posited 

by Polanyi (1958) forms the theoretical basis for describing the enactment of the 

sensemaking process into an actionable knowledge. According to Polanyi, focal 

knowledge is a form of articulated knowledge or a situation understanding model 

that can be used in selecting and executing courses of actions.  

 

2.7 Gaps in Existing Sensemaking Models 

Sensemaking models in existence set the premise for improvement on their 

inherent gaps. The existing sensemaking models are qualitative and lack formal methods 

for quantitative assessment. While existing models mainly focus on either the human or 

the machine, this research bridges the gap between the sensemaker and the machine 

aiding with the sensemaking process.  

The OODA model (Boyd, 1987) has a majority of the sensemaking process 

undertaken at the orientation stage and does not show the processes through which 

meaning and satisficing understanding are attained. Feedback is not totally covered from 

the various stages in the OODA model. The DMSC model (Shattuck and Miller, 2004) 

has neither feed-forward nor feedback measures in place. The model does not account for 

evolving situational data at any point in technological and cognitive systems.  
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Wiig’s situation handling model (2002) is centered on mental models and does 

not take into consideration other avenues through which complete frames of the evolving 

situations under investigation may be drawn. The existing DFM (Seick, et al., 2004) does 

not offer any comprehensible conduit to a computational theory of how ―frame-able‖ 

things are made or influenced. The sensemaking models in existence are not presented in 

a way that allow for exploration and analytical analysis.  This makes it almost impossible 

to manipulate and study expert sensemakers for the training and education of novices.  

 

2.8 Chapter Summary 

Sensemaking is a cognitive process that is utilized to add meaning, understanding 

and clarity to minimize equivocality and aid in decisions and their executions. This 

chapter focused on five existing sensemaking models that are applicable to this thesis. 

The advantages and disadvantages of these models are discussed as well as their gaps. 

Majority of the sensemaking process is undertaken in the orientation stage of the OODA 

model. The dynamics and continuity of information changes for the sensemaking process 

are undertaken in six states in the DFM, the DMSC brings together technological and 

cognitive aspects for its sensemaking process. Due to continuous integration of evolving 

situations, the situation handling model is pivoted on four classes of mental models. The 

reviewed models provide more information on sensemaking and its cognitive 

characteristics useful to simulation. 
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CHAPTER 3 

Sensemaking Simulation and Modeling 

 

3.1 Cognitive Aspect of Sensemaking Simulation 

Sensemaking commonly relies on muddling through an information space to 

discover patterns of useful information. Weick (1995; pp.127) observed that ―if we are 

concerned with what keeps (human) actions going, we must pay attention to the sense 

people make of what they have done. Cognitively, there is a bond between what people 

do, the thinking process involved, and the sense they make of it. The sense people make 

of their actions draws upon a significant part of cognitive resources in trying to establish 

useful means to the end states‖. Thus, sensemaking knowledge is situated as a result of 

integrating and analyzing isolated chunks of knowledge blocks as events manifest 

(Ntuen, 2006). Constructively, these isolated chunks of knowledge are linked by some 

associations to form a cognitive network. Such a network is for information processing 

that seeks to discover information patterns through the use of mental models, cause-effect 

relations, et cetera. 

In terms of representing the sensemaking process as a network of tasks, it is 

assumed that sensemaking can be viewed as a sequence of situated acts. Suchman (1987) 

holds that ―where you are, when you do, what you do matters‖. In the simulation 

modeling lexicon, these three attributes translate into ―event‖, ―time‖, and ―process‖. 

These are the basic knowledge ingredients required to describe and represent 

sensemaking as a simulation model. The construction of the entire process of a 
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sensemaking model requires our intuitive modeling of ―what if‖ and ―what next‖ 

scenarios—a process that has its origin in simulation of inquiring systems (Conklin, 

1997), question-answering systems (Grosz and Davis, 1994), or systems of dialectical 

discourse (Rittel and Webber, 1973).  

Essentially, a cognitive network model of sensemaking is a simplified and 

approximate representation of reality. As noted by Busby and Hibberd (2004), ―cognition 

is not the individual, but the whole system of information processing that is involved in 

some task (pp.6198).‖  By this assumption, a constructive simulation is related to 

cognition by way of how people construct meaning out of information and information 

processing tasks. For example, people can recreate a sensemaking story out of a history 

of personal encounters with different situations. This reflexive knowledge creation is one 

aspect of building a sensemaking simulation model.  

 

3.2 Problems in Designing Simulation Models for the Sensemaking Process 

In the theory of sensemaking, it is difficult to distinguish between knowing and 

doing, since knowledge is an integral, self-sufficient substance, theoretically independent 

of the situations in which it is learned and used (diSessa, 1983). Knowledge elicitation is 

then a major requirement in the modeling exercise. In order to construct a sensemaking 

model of a situation understanding, Louis and Sutton (1991) suggest nominating a 

discrepancy among observations, expectancies and novelty as disruptions to our pre-

coded cognitive bias. Kelly’s (1955) construct theory advocates that people make sense 

of the world based on a set of self-reflexive constructs that consist of beliefs, values, 
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mental models (cognitive maps), biases and prejudices. A collection of these constructs 

helps to define the dimensions and the boundary conditions which one uses to interpret 

the world and selectively assign meaning to it. This assertion affects how a sensemaking 

process is defined and represented for computer simulation modeling. 

Another problem in modeling sensemaking is related to expertise and experience. 

In decision making models, simulation algorithms are often developed around data 

availability, which is illusively less dependent on the data source. Within the discourse in 

sensemaking, many studies have attributed sensemaking knowledge to the theory of 

expertise, which is a function of training, skill acquisition, and experience on the job 

(Ericsson and Lehmann, 1996). It is recognized that expertise gravitates around the 

domain or situational factors and not the features of the problem to be solved (Chi, 

Feltovich, and Glaser, 1981; Adelson, 1984). These situational factors are what control 

how mental models of a system are derived (―sense‖) and built (―make‖) as cognitive 

codes in the mind and how it helps the expert to deal with novel situations. For example, 

proficient sensemakers utilize knowledge structures that extend beyond those of less 

proficient ones (Ntuen, 2006). The ability to capture and represent the individual and/or 

team expertise constitutes a major challenge to building simulation models for a 

sensemaking process. There are at least seven problems responsible for this. These are 

discussed next. 

3.2.1 Information Space 

Information is an important commodity for sensemaking. Two opportunities are 

available, that is there is either too much information (information glut) or too little or no 
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information (paucity). In the former case, information has to be filtered and parsed 

through the cognitive processes to link statistical similarities or existing knowledge 

patterns. In the latter, data or information estimates of the situation are developed 

statistically. In each case, the ―ghost‖ inside the black box of the data is equivocality, 

related to how individuals or groups interpret and give meaning to a situation.  

3.2.2 Operational Elements 

Operationally, sensemaking is a dynamic process in which the sensemaker 

attempts to construct intentional objects of knowledge against the reality of system goals. 

This is a problem since sensemaking is mapped against the reality of changing situations 

and changing goals over time and space. This makes time an important component since 

the current goals might not be the goals at the end of the process. 

3.2.3 Contextualization 

Knowledge is useful only if it can be understood in terms of the implications for 

action. Sensemaking involves combining multifaceted information from disparate sources 

to determine their relevance to actions. Through sensemaking, courses of actions are 

developed for a problem context. The context and situations are subject to changes and 

the courses of actions may not apply to these changes. Thus, a specific context in time 

and place requires a new sensemaking process.  

3.2.4 Interpretation and Equivocality 

Interpretation reflects an approximation of individual awareness of the situation in 

a collective sensemaking setting while ignoring some elements and only partially 

ascribing meaning to the subset of external knowledge (Leedom, 2005). Interpretation 
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leads the sensemakers to more focused knowledge required for the formalisms needed for 

intended actions. Leedom (2005) observed, ―Given the difficulty in externalizing tacit 

knowledge, these articulations, by nature, reflect only an approximation of each 

individual’s activated knowledge, ignoring some elements and only partially describing 

the remainder.‖ ―Each of us lives in what is ultimately a unique world, because it is 

uniquely interpreted and thereby uniquely experienced.‖ (Bannister and Fransella, 1986; 

pp. 10). 

The process of interpretation is not in isolation. It is affected by individual and 

group psycho-sociological characteristics such as bias, emotion, affection, thoughts, and 

actions (Duval and Wicklund, 1972). The act of interpretation may take the form of 

explicit sensemaking through communication; it may also take place through the 

transformation and integration of representation of selected information based within the 

defined context (Suthers, 2005). The key challenge is minimizing the variance in a 

diversity of meanings assigned to the object of interest with its different interpretative 

viewpoints (Malhotra, 2001). Nosek (2001) suggests that members of groups have to 

―face the existence of multiple and conflicting interpretations. which requires that 

individuals: scan for and filter relevant information to create and maintain a sufficiently 

shared mental model to act effectively as possible.‖  

3.2.5 Cognitive Task Analysis 

Cognitive task analysis (CTA) is the analysis of types of cognitive tasks and 

cognitive resources required to perform a task. Gott (1994) suggests that CTA only be 

used in situations where the task is complex, dynamic, unstable, ill structured, and 
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difficult to learn because the action occurs in the mind of the performer.  This fits the 

sensemaking process. The following are suggested CTA procedures (Randel, Pugh, and 

Wyman, 1996): 

 Development of a cognitive task process model, which is accomplished by 

interviewing the sensemaker in a specific domain or context; 

 Development of an information flow model using task diagrams and information 

processing flow diagrams to capture the sensemaker’s process; 

 Performance of a misconceptions analysis by reconciling convoluted 

terminologies and stratification of intelligence products according to the 

stakeholders; and,  

 Performance of a structural knowledge analysis by developing conceptual maps or 

cognitive network representations of the sensemaking process.  

As shown above, there are basic challenges in developing CTA for a sensemaking 

domain due to situation changes in time and space. However, some general CTA can be 

achieved. For instance, Polanyi’s (1958) definition of focal knowledge can be used to 

infer how individuals in an organization assign meaning to what they see and feel. As 

echoed by Malhotra (2001), by understanding a situation, we can form the conceptual 

link between information available and the expected result or anticipation of task 

outcomes. It could also help us to understand the gap between performance expectations 

based on information in context (Malhotra, 2001; pp. 120), skillful knowledge 

(Hodgkins, 1992; Reber, 1993), formalized team knowledge (Nonaka, 1991), and 

knowing in action (Schon, 1994). Knowing in action is embedded in a socially and 
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institutionally structured context; it goes beyond available rules, facts, theories, and 

operations.  

A CTA for sensemaking will also have to recognize how to externalize the tacit 

knowing of the sensemakers. Explicit knowledge has sometimes been expressed in terms 

of knowing-how and knowing-that, which is essentially the application of what we know 

in order to solve problems (Ryle 1984, pp. 25-61). Knowing-how, or embodied 

knowledge, is characteristic of the expert, who acts, makes judgments, and so forth, 

without explicitly reflecting on the principles or rules involved. As Dretske has pointed 

out (Dretske 1988, p. 116), knowing-how involves more than just a certain technical or 

physical "know-how"; it also involves knowing how to obtain desired end-states, 

knowing what to do in order to obtain them, and knowing when to do it. 

A CTA has many other challenges during a sensemaking process. Some of these 

are: identifying the ―primitive‖ or tacit knowledge of the sensemaker in different 

situations; understanding how a team of sensemakers achieve compromise solutions; 

determining how sensemakers translate complex information into actionable knowledge; 

and, preserving and transferring a specific knowing to different situations (this is a tacit 

knowledge generalization problem). 

3.2.6 Search for Representation 

Russell, Stefik, Pirolli and Card (1993) note that the sensemaker creates 

representations to capture important regularities; in a way that supports the use of 

instantiated representations. This means that every situation requires that the sensemaker 
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use some knowledge codification structure to cope with the emerging situation. The 

representation can be cause-effect mapping, rules of behavior, and so on.  

Pirolli and Card (1999) studied an expert intelligence business analyst and 

observed that a schema structure was developed for each dimension associated with the 

type of information required to make decisions; for example, a schema for market survey 

and analysis, report types, and market penetrations. Through interviews and protocols 

with intelligence analysts, they found the evidence of schemata used to organize 

information to support the cognitive tasks of planning, reasoning and evaluation about 

alternative courses of action. Smallwood (1967) has used schema slots to describe the 

internal models held by pilots during instrument monitoring.  Downs and Stea (1973) and 

Scholl (1987) have used schema organization of information to develop computational 

models of cognitive maps. Geiselman and Samet (1980) and Noble (1989) have applied 

schema theories to summarize military information and to elicit situation awareness 

information from the memory. 

Due to the background, the challenges in sensemaking knowledge representations 

can be as equally multi-facetted as the sensemaking constructs itself. These include, but 

are not limited to, developing representation architectures that are robust and resilient to 

changing information and situations; recognizing common practices in problem 

situations; recognizing individual differences in the way humans process information and 

react to different situations; and, the ability to develop a common representation ontology 

and general formalisms that describe a sensemaking process. 
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3.2.7 Retrospective Case-based Memory 

Based on a problem typology, a sensemaker is likely to encounter three broad 

events along a continuum of familiar to complex as noted by Vincente and Rasmussen 

(1992; pp. 589). These are: 

a. Familiar events are routine in that sensemakers experience them frequently. As a 

result of a considerable amount of experience and training, sensemakers have 

acquired the skills required to deal with these events. 

b. Unfamiliar but anticipated, events occur infrequently and, thus, the sensemakers 

do not have a great deal of experience to rely on. 

c. Unfamiliar and unanticipated events rarely occur. These may pose a surprise and 

an unexpected call for novel ideas on the part of the sensemaker.  

In each of the problem instances above, the sensemaker depends significantly on 

retrospective knowledge which would instantiate past cases from the long-term memory. 

During an occasion of panic and unpreparedness, the sensemaker is challenged on many 

fronts. These include: 

 The ease with which previous cases can be retrieved and analyzed in order to 

compare them with the current situation; 

 The availability of robust, cased-based rules to guide in the reasoning process;  

 The availability of analytic rigor for cause-effect relations based on retrospective 

memory information; and,  

 When confronted with a new novel situation, the ease of automatically matching 

similar features of the problem to those that have been encountered in the past. 
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In general, case-based sensemakers may tend to behave as if they know certain rules for 

the problem.  

 

3.3 Chapter Summary 

The ability to effectively model sensemaking has a correlation with the expertise 

level of the sensemaker. Experience makes it possible to use retrospective data to aid in 

mental simulation to make sense of novel circumstances. This thesis chapter centers on 

the challenges associated with sensemaking simulation. Our personal constructs tend to 

influence the definition and representation of the sensemaking process computationally 

during simulation. It is realized that situations are dynamic and constantly changing and, 

as the contexts change, so will the decisions and actions. Decisions for one situation 

might change as the situation develops. This indicates that sensemaking is context 

specific; therefore, what works for one situation may not work for another. Since, 

according to Polanyi (1967) we know more than we can tell, only a fraction of knowledge 

from an expert may be available to support data for simulation. 
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CHAPTER 4 

Data/Frame Modeling and Simulation 

 

4.1 Analytical Data/Frame Model 

As DFM is discussed, the Hurricane Katrina disaster (Ubilla, Abdoun, Sasanakul, 

Sharp, Steedman, Vanadit-Ellis and Zimmie, 2008) shall be used as a case study in this 

thesis to demonstrate the applications of DFM as a sensemaking process. The brevity of 

events of Hurricane Katrina that occurred in the United States during the hurricane 

season 2005 follows. 

Hurricane Katrina, dangerous Gulf hurricane that passed through New Orleans 

and many parts of Mississippi (MS) on August 29, 2010 (Bond-Graham, 2010) rained 

down destruction on humans and civil infrastructures. The devastation exceeded any level 

of preparation by the available emergency task forces, which included the Federal 

Emergency Management Agency (FEMA). Every potential situation seemed to be a 

priority: rescue operations for citizens trapped in the water; temporal shelter for survivors 

without home, food and water; tracking and recovering the dead to minimize health 

hazards; medical help; looting and so on. There was the potential for outbreaks of 

epidemiological diseases such as dysentery and influenza. There were mixed and 

confusing strategies that are mixed military and civilian relief task forces, hurried plans, 

and uncertain information. FEMA had to quickly assemble experts to help determine how 

the established national emergency policies made sense under the Katrina catastrophes. 
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The situation in New Orleans was that of panic, fear, confusion, and surprise to even the 

best planners. Information had to be managed from disparate sources. 

In this particular case, many issues remain relevant: emergency deployment 

problems, lack of incident command structure, interoperability problems with responding 

mutual aid and lack of notifications to the public such as those without television, 

internet, and other important public information media. One can also consider plan 

assessment of worst case scenario versus what actually occurred; evacuation as a function 

of time; demographic characteristics of the people who stayed versus those who left and, 

information on vandals who looted properties. Detailed chronology of response steps and 

their effects such as when were food/drugs/tents deployed to readiness, when were they 

delivered to the city of New Orleans, when were they distributed on the ground, and how 

quickly did it make a difference may also be considered. 

One of the models suited for sensemaking is the DFM, discussed earlier in 

Chapter 2. DFM is a subjective approach to information discovery. However, a discovery 

of its potential for quantitative modeling and simulation has been made during this 

research. We shall show its saliency in addressing complex problems such as Hurricane 

Katrina.  

DFM consists of six sensemaking functions along with temporal path relations 

connecting the functions. These six functions are: elaborating the frame; questioning the 

frame; preserving the frame; comparing the frame; seeking the frame and reframing 

(Figure 2.4). These DFM components are discussed with application to the Hurricane 

Katrina case.  
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4.1.1 Data 

 Sporadic data about storm, heavy rains and winds come in from the 

meteorological agencies and from satellite and radars. Media buzz about the 

situation in the Bahamas is publicized; various experts give opinions about the 

degree of possible damage and destruction to the projected hit or affected areas. 

An initial frame of the chaotic situation is outlined and drafted to from an initial 

picture of what is going on. 

4.1.2 Elaborating the Frame 

 Seeking/Inferring Data: Weather forecasts, reports and facts indicating hurricane 

and strong winds are bound for the northern Gulf Coast states are gathered and 

compared to previous weather information inferred by meteorologists and experts. 

Forecasted numbers of people to be displaced then becomes the source to indicate 

eminent danger.   

 Extending the Frame: As more reports and satellite and radar images are received, 

additional information and aspects about the circumstances such as the growth of 

the tropical depression into a category 1 hurricane are added.  

 Adding and Filling Slots: The extent of hurricane damage is amended as satellite 

and radar images of the hurricane are received. More information is sought, 

analyzed and structured to fit what was known from the Bahamas. The extent of 

damage caused by the tropical depression (turned storm) in the Bahamas is 

received. 
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 Internal Knowledge: Experiences from previous hurricanes, storms and floods aid 

to elaborate the frame and draw a clearer picture.  

4.1.3 Questioning the Frame 

 Inconsistent Data: Data being communicated does not match the frame, as 

residents and experts have received information about hurricanes of this 

magnitude in the past, which have turned out to be false alarms. Satellite and 

radar images of Hurricane Katrina are comparable to some previous hurricanes, 

but this is a storm of considerably greater magnitude. 

 Anomaly Detection: Detection of unique circumstances initiates the use of proxy 

strategies. The hurricane strengthens very quickly and a hurricane watch followed 

by a hurricane warning is issued for Southeast Florida (FL). Even though winds 

are not very high, considerable damage is done and 14 people are reported dead.  

 Violated Expectancies: Frames provide expectancies but when violated, people 

begin to question the precision of the frame. Previous false alarms violate 

people’s expectancies and this causes them to disregard the hurricane alerts and 

warnings despite the reports of the hurricane strengthening very rapidly. 

Hurricane progresses from a category 1 into a category 5.  

4.1.4 Preserving the Frame 

 Knowledge Shields/Explaining Away Data: Minimize the importance of 

conflicting data and rationalize why inconsistent data does not match frame. 

Preparing for the hurricane with its floods and winds is pertinent, but it is at the 

expense of human lives. A hurricane watch is issued for Louisiana (LA) and a 
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hurricane alert for Alabama (AL) and FL. A warning is issued from the National 

Hurricane Center (NHC) of coastal storm surge flooding and the possibility of 

some levee failure. New Orleans is issued a mandatory evacuation. 

 Distortions/ Fixation Errors: continuing in the flawed situation account despite the 

anomalous data. People ignore seriousness of warnings despite hits in other cities 

and refuse to evacuate. Nonchalance of some residents and refusal to evacuate 

poses a major issue. Authorities fail to enforce mandatory evacuation. 

4.1.5 Comparing Frames 

 Sharpening Distinctions: Congregating evidence in support of the original frame; 

satellite and radar images confirm that the hurricane is fast approaching with 

gusty winds and heavy rainfall in its trail. Reports emerge from other cities of 

gusty winds. Hurricane Katrina hits LA and later the LA-MS border leaving 

significant damage, death and many missing people. 

 Identifying Alternative Frames: Try to save engineering systems in place since 

levees will fail and cause dangerous floods (e.g. New Orleans). Hurricane Katrina 

weakens into a tropical storm in MS then later into a tropical depression in 

Tennessee. There is inadequate preparation such as allocating resources and 

training citizens to cope with degrading infrastructure and services as an 

aftermath of the hurricane.  

 Simultaneous Testing: Assessing a frame as a way of contrasting incoming media 

reports, expert opinions, meteorological information and eyewitness calls to 
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analyze situation. Sensemakers deliberate which emergency to focus on 

immediately.  

4.1.6 Seeking a Frame  

 Searching for Information and Finding Anchors: Choose a relevant frame to 

produce justification. Mandatory evacuation is effected since hurricane hits main 

land as a category 3 and levee system fails flooding New Orleans. Destruction 

occurs in Bahamas even as a category 1 hurricane and navy satellite images of a 

fast growing hurricane over a very short time period serve as anchors to draw 

initial frame. Government’s emergency response after the hurricane is long 

overdue. There are reports of violence and lawlessness in New Orleans.  

 Cause-Effect Analysis: Local cause-and-effect analysis is made to produce just-

in-time mental models of situation. Mental models abet the visualization of effects 

of failure to evacuate in the event of a terrible hurricane and flooding. 

 Constructing a New Frame: Hurricane does not cause as much damage as 

anticipated. Nonetheless, major complications may be due to the lack of 

appropriate emergency response and the failure of human systems in place, such 

as levee failure, media coverage of chaos, and inadequate education of the people 

on safety procedures resulting in their poor judgment. 

4.1.7 Reframing 

 Establishing New Anchors and Re-interpreting Data: Defines association versus 

noise so as to allow for the dispose of irrelevant data whilst giving importance to 

new data.  Reports of chaos, violence and lawlessness, indicating security unrest 
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and a stalling relief process, must be resolved. Failure of levee system indicates 

need to research and implement an engineering system that works immediately to 

curb subsequent hurricanes and flooding.  

 Recovering Discarded Data: Data hitherto discarded but is of pertinence to the 

frame such as projected financial and economic cost of Hurricane Katrina to the 

affected states and the federal government is used. 

 Revising Goals: The goal to evacuate projected hit areas to include, provision of; 

adequate emergency response, security, support for physically and financially 

challenged victims and employing intelligible action is modified. 

4.1.8 Frame 

 Sieve out and concentrate on salient data so as to define goals and connect 

information. Set-up makeshift clinics and emergency centers to treat the injured 

and contain infections. Maintain a federally funded free transportation, temporary 

accommodation and feeding to relocate residents and people from the hurricane 

hit areas. Provide joint police and army presence for safety and security 

enforcement.  

 

4.2 DFM Representation with Finite State Automata  

4.2.1 Concepts of Finite State Automata 

A FSA also referred to as a finite state machine is useful for modeling state 

changes in a system including effects of interaction with the environment (Oommen, Ng, 

and Hansen, 1991). FSA consists of a set of states and transitions between states, which 
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may be labeled with labels chosen from a set; the same label, however, may appear on 

more than one transition. The finite states are joined by a set of edges that represent 

transitions, with an edge as a pair of vertices, while a sequence of edges is referred to as a 

walk (Linz, 2006).  

There are many variations of automaton, but those that provide thematic 

knowledge for this project are Moore and Mealy automata. Moore machine is a FSA in 

which its outputs are determined by the current state alone (and do not depend directly on 

the input). The state diagram for a Moore machine will include an output signal for each 

state. The advantage of the Moore model is a simplification of the behavior. Consider 

Hurricane Katrina and DFM data/frame stage. The state machine recognizes two 

commands: "data available" and "data not available", ―information clear‖, or 

―information not clear‖ which trigger state changes. The entry action in state ―data 

available‖ will trigger the sensemaker to start data analysis, leading to the decision 

―familiar‖ or ―not familiar‖. At the state of ―data not available‖, the action may lead to 

―search for more data‖ or ―abort data search‖.  

The Mealy FSA uses only input actions and output depends on both input and 

state. In the same example above, under Mealy FSA, there are two input actions: "analyze 

data if there is a command to determine correlation" and ―search for more information if 

the there is no familiarity with the available data.‖ The Mealy FSA is known for its 

reduction of states (Wagner, 2005). 

In practice, both Moore and Mealy automata can be used in a mixed model. Both 

methods can be deterministic. In deterministic automata, every state has exactly one 
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transition for each possible input. In non-deterministic automata, an input can lead to one, 

more than one or no transition for a given state. A non-deterministic automaton has a 

number of probable moves and may predict a set of possible actions. Instead of 

stipulating the exact action, the automaton is given a choice of possible moves. For this to 

be feasible, the transition function is described so that its range is the set of plausible 

states. The vertices represent the states. If a walk has no duplicated edge it is said to be a 

path and, if no vertex is replicated, the path then is termed simple. A walk from a vertex 

to itself without repetitive edges is a cycle and, if there is no replicate other than the 

cycle’s base, then it is simple.  Conclusively, a loop is an edge from a vertex to itself. To 

aid in the visualization and representation of FSA, transition graphs are used. Figure 4.1 

shows simple FSA components and their interaction with the environment. 

 A FSA is a device that can be in one of its finite number of states. In certain 

conditions, it can switch to another state.  This is called a transition. When the automaton 

starts working (when it is switched on) it can be in one of its initial states. There is also 

another important subset of states of the automaton: the final states. If the automaton is in 

a final state when it stops working, it is said to accept its input. The input is a sequence of 

symbols. The interpretation of the symbols depends on the application; they usually 

represent events or can be interpreted as ―the event that particular data became available.‖ 

The symbols must come from a finite set of symbols called the alphabet. If a particular 

symbol in a particular state triggers a transition from that state to another one that 

transition is labeled with that symbol. The labels of transitions can contain one particular 

symbol that is not in the alphabet (Daciuk, 1998).  
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Here is a list of terminology used throughout the remainder of the thesis:  

1. FSA: A collection of states and transitions that outline a path of actions that may 

occur. 

2. State: A state is a position in time. For example, when you are at the bus stop, you 

are currently in a waiting state. 

3. Event: An event is something that happens in time. For example, the bus has 

arrived. 

4. Action: A task performed given a certain event that occurred. For example, you 

enter the bus. 

5. Transition: A link between two states. May be unidirectional or bidirectional. 

 

 

 

Random Environment

RE

Learning Automaton

LA

={0,1}

{c1, c2,…, cr}

={1, 2,…, r}

A: ={1, 2,…, r} - r actions

 {c1, c2,…, cr} - action penalty probabilities

={0,1} - response from the Environment: reward and penalty of

sensemaking behaviors

 

Figure 4.1.  Simplified Finite State Automaton Diagram 
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Formally, a labeled transition system is a tuple (S, A, →) where S is a set of 

states, A is a set of labels or actions and →    S × A × S is a ternary relation of labeled 

transitions. If s1, s2   S and α   A, then (s1, α, s2)   → is written as s1 
α
  s2. This 

represents the transition from state s1 to state s2 with label α as the trigger or action 

enabling transition. Labels may represent different things depending on the language of 

interest. Typical uses of labels include expected input (conditions) that must be true to 

trigger the transition, or actions performed during the transition. Finite automata are 

defined as algebraic structures connecting internal states to input and output sequences 

proffering a common model of the agent (Kopecek and Skarvada, 2003).  

FSA studies of Wagner (2005) construe it as a quintuple; constituents of which 

are as indicated below. 

                   

where; 

i. Σ is the input alphabet; a finite non empty set of symbols, 

ii. S is a finite non empty set of states, 

iii. s0 is an initial state; an element of S: s0   S, 

iv. δ is the state transition function: δ: S x Σ → S, 

v. F is the set of final states, a (possibly empty) subset of S. 

The pedagogical works of Booth (1967) on FSA also define it as a five tuple 

represented in the equation below; 

                   

where; 
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i. X represents a finite set of input symbols 

ii. Q represents a set of possible internal states of the automaton 

iii. Y represents a finite set of output symbols 

iv. D represents a mapping of X × Q onto Q and is referred to as the next-state 

function 

v. W represents a mapping of X × Q onto Y and is called the output function 

The prime goal of an automaton is to study and engage the environment in its 

decision process. Therefore, a characteristic of the conventional FSA is the ability of its 

system to adapt and interact with an environment to identify the best suited 

environmental action (Oommen, et al., 1991). Inferring from Figure 4.1 the FSA 

algorithm is a simple four-stage process namely: 

a) The automaton chooses one of the possible actions () offered. 

b) The chosen action at time t is given as input to the environment. 

c) The random environment determines the rewards or penalties of the chosen 

action. 

d) The environment response to the input: the automaton chooses the next action. 

 

4.3 Theoretical Data/Frame Modeling  

The analytical model for DFM is shown in Figure 4.2 with some example inputs 

for each state. The DFM was modeled with FSA methods to illustrate the behavior 

transitions of a hurricane over time.  A decision flow encompassing sensemaking for the 

purpose of this thesis is also represented below by Figure 4.3. The decision flow below 
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was developed from the DFM. It engulfs the states from the original DFM and 

sensemaking questioning and answering. The cognitive processes of the sensemaker 

which is illustrative of the thinking path during a sensemaking process of a complex 

situation is illustrated by this figure  

 

 

 

 

Figure 4.2.  Finite State Automaton of Information Flow for Hurricanes  
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Figure 4.3.  Decision Flow of Sensemaking Process using Data/Frame Model 
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4.3.1 Sample Production Rules in FSA for Hurricanes  

The life cycle of a hurricane can be understood with Figure 4.4, which gives the 

path to formation from a tropical disturbance into a full-blown hurricane. Characteristics 

of the elements in this life cycle such as speed of accompanying winds, height of 

accompanying storm surge and depth of accompanying rainfall aided in the formulation 

of the production rules for the automaton aforementioned. 

 

 

 

 

Figure 4.4.  Life Cycle of a Hurricane 

 

 

 

The FSA for the Hurricane Katrina was designed with conditions based on the 

theory of classifications and categorizations. The National Oceanic and Atmospheric 

Administration (NOAA) rank storms with a Space Weather Scale according to the type of 

storm. The K-index for geomagnetic storms is derived in real-time from the Boulder 

Heavy Rains

Tropical 
Disturbance

Tropical 
Depression

Tropical 
Storm

Hurricane
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NOAA magnetometer. Table 4.1 below indicates three storm types and their 

corresponding attributes. Storms in this table are categorized from five to one in 

decreasing order of severity. The scale was introduced by the NOAA to communicate to 

the public and technical operators space weather conditions and their likely effects on 

technological systems in the form of a Richter scale. See (www.NOAA.gov). 

 

 

 

Table 4.1.  National Oceanic and Atmospheric Administration Space Weather Scale  
Geomagnetic Storms 

Category Physical Measure 

Scale Descriptor K-index (Kp) values 3-hour intervals 

G5 Extreme 9 

G4 Severe -9, 8 

G3 Strong 7 

G2 Moderate 6 

G1 Minor 5 

Solar Radiation Storms 

Scale Descriptor Flux level of ≥ 10MeV particles (ions) 

S5 Extreme 10
5
 

S4 Severe 10
4
 

S3 Strong 10
3
 

S2 Moderate 10
2
 

S1 Minor 10
1
 

Radio Blackouts 

Scale Descriptor X-ray peak brightness (class, flux) 

R5 Extreme X20, (2×10
-3

) 

R4 Severe X10, (10
-3

) 

R3 Strong X1, (10
-4

) 

R3 Moderate M5, (5×10
-5

) 

R1 Minor M1, (10
-5

) 

http://www.noaa.gov/
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Another categorization scale for the FSA conditions is that of hurricanes as 

illustrated below in Table 4.2. The Saffir-Simpson Scale and storm surge classifications 

of hurricane intensity (Graumann, Houston, Lawrimore, Levinson, Lott, McCown, 

Stephens and Wuertz, 2005) are in use. This table shows the categorization of hurricanes 

with their corresponding storm surge.  

 

 

 

Table 4.2.  Hurricane Intensity using Saffir-Simpson Scale and Storm Surge  

Category Effects 
Speed  

(knots) 

Speed 

 (mph) 

Storm Surge  

(ft) 

5 Catastrophic damage ≥ 136 ≥ 156 ≥ 18 

4 Catastrophic damage 114-135 131-155 13-18 

3 Devastating damage 96-113 111-130 09-12 

2 Extremely dangerous, extensive 

damage 

83-095 96-110 06-08 

1 Very dangerous, some damage 64-082 74-095 04-05 

 

 

 

 

Production rules that govern the transition of the FSA are detailed below. 

1. Initial Frame 

If         (38mph > wind speed) or  

            (2ft >storm surge) or 

            (1 >expert ratings) or 

(1 > NOAA storm rating) or  

            (rainfall < 8in) and 

            (sea surface temperature < 82⁰F) and  
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            (storm tide < 2ft)  

Then, data stream update 

ElseIf, 

If  (38mph  wind speed   73mph) or  

            (2ft  storm surge  4ft) or 

            (1  expert ratings  2) or 

(1  NOAA storm rating   2) or  

            (8in  rainfall  14in) and 

            (82⁰F  sea surface temperature  90⁰F) and  

            (2ft  storm tide  4ft)  

Then, stay home & issue storm watch 

Else, 

If         (73mph < wind speed  156mph) or  

            (4ft < storm surge  18ft) or 

            (2 < expert ratings  5) or 

            (3  NOAA storm rating   5) and  

            (rainfall > 14in) and 

            (sea surface temperature > 90⁰F) and  

            (storm tide > 4ft) 

Then, evacuate 1 
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The initial frame marks the start of the FSA. As data streams of ongoing satellite 

and radar images from National Data Buoy Center (NDBC) and NHC, phone calls, 

eyewitness news et cetera, is received, an early warning is issued by the National 

Weather Service (NWS). An initial frame of the incoming data is constructed once the 

data is recognized. The state of initial frame transits to the elaborating frame state. 

Residents are advised to stay home while a storm watch is issued for the next 36 hours. 

This action is undertaken if the weather attributes fall below that of a category 1 

hurricane together with other constraining factors such as expert ratings on potential 

danger and damage and depth of rainfall. If on the other hand, weather attributes fall 

above that of a tropical storm, with increased rainfall depth and very high storm and 

danger ratings; an evacuation 1 action is issued. Evacuation 1 encompasses the issue of 

an order to evacuate the affected or projected hit areas with no coercion on the part of the 

issuing authorities such as FEMA, Governor, et cetera. Finally, if the weather attributes 

fall below that of a tropical depression then the data stream coming in updates the 

existing data while further observation is of the situation is done. 

2. Elaborating Frame 

If         (111mph  wind speed) or  

            (9ft  storm surge) or 

            (3 < expert ratings  5) or 

(3  NOAA storm rating   5) and  

            (rainfall > 14in) and 

            (sea surface temperature > 90⁰F) and  
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            (storm tide  > 4ft)  

Then, evacuate 2 & issue hurricane alert 

ElseIf, 

If         (38mph < wind speed < 111mph) or  

            (2ft  storm surge  8ft) or 

            (2  expert ratings < 4) or 

            (2  NOAA storm rating < 4) and  

            (8in  rainfall  14in) and 

            (82⁰F  sea surface temperature  90⁰F) and  

            (2ft  storm tide  4ft) 

Then, stay home & issue hurricane alert 

Else, 

If         (wind speed < 38mph) or  

            (storm surge < 2ft) or 

            (expert ratings < 2) or 

            (NOAA storm rating < 2) and  

            (rainfall < 8in)  and 

            (sea surface temperature < 82⁰F) and  

            (storm tide < 2ft) 

Then, cancel warnings 

The next stage of the sensemaking process is the elaboration of the initial frame of 

a damaging storm, that could possible become a hurricane formed at the commencement 
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of the automaton. More data is sought and inferred for information and the existing frame 

is extended with added slots. In order to progress to the next state, questioning frame; if 

the hurricane attributes are greater than that of a category 2 with high depths of rainfall, 

expert damage and disaster ratings then, a hurricane alert must be issued and an evacuate 

2 order given. Evacuate 2 entails announcement in print, radio, television, et cetera for 

residents, tourists, workers and people in the vicinity to evacuate. Aid workers (police, 

fire personnel, coast guards, national guards, volunteers, et cetera) are sent to the area to 

encourage, assist and advice people to leave. On the other hand, if the attributes are less 

than that of a tropical depression with rainfall depth below the threshold of 8 inches then, 

warnings will be cancelled until there are new changes. Residents are advised to stay 

home while a hurricane alert is issued if the attributes are between that of a tropical 

depression and a tropical storm.  

3. Questioning Frame 

If         (wind speed  73mph) and  

            (storm surge < 3ft) and 

            (expert ratings < 2) or 

            (NOAA storm rating < 2) and  

            ((past wind speed, storm surge, rainfall, sea surface temperature, storm  

            tide, storm ratings, deaths > current wind speed, storm surge, rainfall, sea surface  

            temperature, storm tide, storm ratings, deaths)) and  

            (rainfall < 8in)  and 

            (sea surface temperature < 83⁰F) and  
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            (storm tide < 3ft) and 

 (false alarms rate < 1%) and  

 (number dead(n) <  number dead(n-1)) 

Then, recall some responders & reduce threat level 

ElseIf, 

If (73mph < wind speed < 85mph) and  

            (8in  rainfall < 14in) and 

 (83⁰F  sea surface temperature  86⁰F) and  

            (3ft storm tide < 5ft) and 

 (3ft  storm surge < 5ft) or 

 (false alarms rate > 1%) or 

 (number dead(n) ≥  number dead(n-1))  or 

            (2  expert ratings < 3) or 

(2  NOAA storm rating < 3) or  

 ((past wind speed, storm surge, rainfall, sea surface temperature, storm tide,  

            storm ratings, deaths ≥ current wind speed, storm surge, rainfall, sea surface  

    temperature,  storm tide, storm ratings, deaths))  

  Then, stay home & issue hurricane alert 

ElseIf, 

If         (100mph  wind speed) or  

            (8ft < storm surge) or 

            (4 < expert ratings  5) or 
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(4 < NOAA storm rating  5) or  

            (rainfall > 24in)  or 

            ((past wind speed, storm surge, rainfall, sea surface temperature , storm tide,  

            storm ratings, deaths  < current wind speed, storm surge, rainfall, sea surface  

            temperature, storm tide, storm ratings, deaths)) or 

 (false alarm rate > 1%) or 

 (number dead(n) ≥  number dead(n-1)) and 

            (sea surface temperature > 92⁰F)  and  

            (storm tide  > 8ft)   

Then, evacuate 3 & issue state of emergency 

Else,      

If (85mph  wind speed < 100mph) and  

            (5ft  storm surge  8ft) and 

 (14in  rainfall  24in) and 

            (87⁰F  sea surface temperature  92⁰F) and  

            (5ft  storm tide  8ft) or 

            (3  expert ratings < 5) or 

            (3 < NOAA storm rating < 5) or  

 (false alarms rate ≥ 1%) or 

 (number dead(n) ≥ number dead(n-1)) or 

 ((past wind speed, storm surge, rainfall, sea surface temperature , storm tide,  

            storm ratings, deaths  < current wind speed, storm surge, rainfall, sea surface  
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            temperature, storm tide, storm ratings, deaths))             

Then, evacuate 2 & dispatch security enforcement 

At this state, the sensemaker questions the existing frame for inconsistent data 

detection and explanations to violated expectancies making use of tacit knowledge, 

hindsight and retrospective data of memorized past similar situations amongst others. The 

comparison of past weather attributes with current weather attributes are converted to 

numerical values from 0 to 4 with zero serving as the default value. The conversion is 

interpreted as follows: past weather attributes greater than current attributes, one; past 

weather attributes greater than or equal to current attributes, two; past weather attributes 

less than or equal to current attributes, three and past weather attributes less than current 

attributes, four.  

Transition from this state to the state of comparing frames is on condition that all 

attributes of this state but storm ratings occur simultaneously. The current attributes must 

be less than that of a category 1 hurricane and past storm attributes (that caused low to no 

damage) must be greater than current storm attributes. Also, if rate of past false alarms 

(warning of storms, hurricanes or weather dangers that did not occur) is less than 1% and 

the number of dead people associated with the evolving weather occurrences reduces 

with time, then the threat levels should be reduced and some responders may be relieved 

of their duty. These occurrences should prompt the sensemaker to consider an alternate 

frame as the focus. The existing frame and alternate frames must be compared for the 

best frame. When the false alarm rates are high (greater than 1% significance level), there 

is the tendency for people to ignore eminent danger and assume it to be another false 
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alarm. High false alarm rates also introduce doubt for sensemakers. Lower rates 

nevertheless, alert everyone involved to take threats and diagnosis seriously. 

However, if the current attributes are greater than or equal to a category 2 

hurricane, past storm attributes (that caused damages) are less than the current storm 

attributes, false alarm rate is greater than 1%, the number of dead people associated with 

the evolving weather occurrences increases with time or experts rating of danger and 

damage is high then, issue a state of emergency and evacuate 3 order to transit to the state 

preserving frame. This move confirms that the current frame of a devastating hurricane 

and its complications is confirmed. Evacuate 3 engrosses an enforcement of mandatory 

evacuation of the vicinity. Rescue crews and responders are sent to the locality to aid in 

evacuation. People are escorted out of the area either willingly or unwillingly for the sake 

of their safety by joint police and army.  

Furthermore, an order to stay home and an issue of a hurricane alert are the 

plausible causes of action that may be passed on to decision makers if the attributes are 

that of a category 1 hurricane. People in the projected hit areas or affected areas are 

advised to stay indoors in a comfortable place to wait out the hurricane while further 

observation is underway. The ―dos and don’ts‖ during a hurricane are streamed to educate 

the people. Finally, if the occurring hurricane’s attributes are between that of a category 1 

and 2 but other attributes such as expert ratings or past weather attributes suggest 

increased threats then, dispatch security enforcement and issue an evacuate 2 action to 

transit to seeking frame. The weather occurrences poses a threat but the increase in deaths 

unrelated to the direct impact of the hurricane making landfall coupled with the evolving 
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violent behaviors of the people in the affected areas such as rapes, suicide, lootings, 

burglary, vandalism, gang activities, drug and alcohol peddling, violent assaults, et cetera, 

present more eminent danger and must be curbed.  

4. Preserving Frame 

If         (Update information = (wind speed, storm surge, rainfall, sea surface temperature,  

storm tide, storm ratings, deaths)
n =

 (wind speed, storm surge, rainfall, sea surface  

            temperature, storm tide, storm ratings, deaths)
n+1

) 

Then, amend information. 

This state of the sensemaking machine preserves the existing frame and keeps the 

knowledge gained on the hurricane situation current. This state completes the loop that 

connects elaborating and questioning frame states. This state transits to elaborating frame 

state if information is updated. Update information includes current storm attributes 

replacing and keeping information current as time progresses. The monitoring and 

measurement of hurricane attributes will be on a continuous basis and existing 

information will be amended with information changes. 

5. Comparing Frames 

If (111mph  wind speed) or  

(storm surge > 8ft) or 

            (rainfall > 8in) or 

            (3  NOAA storm rating   S5) and  

            (sea surface temperature ≥ 88⁰F) and  

            (storm tide > 8ft) and 
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            (number dead(n) ≥ number dead(n-1)) and 

            (security breach areas  1) and  

            (mechanical systems and infrastructure damage(n) < mechanical systems and  

            infrastructure damage(n-1)) 

Then, evacuate 3 

Else, 

If         (wind speed < 110mph) and  

            (storm surge  8ft) and 

            (sea surface temperature < 88⁰F) and  

            (storm tide  8ft) and 

 (security breach areas > 1) and 

(mechanical systems and infrastructure damage(n) ≥ mechanical systems and  

infrastructure damage(n-1)) or 

(rainfall < 8inches) or 

(NOAA storm rating  2) or  

(number dead(n) ≥ number dead(n-1)) 

Then, enforce curfews, set-up shelters & flash- pump water 

In this state of the automaton, the original frame of a hurricane and an alternate 

frame of mechanical systems and infrastructure damage are simultaneously contrasted. 

For this state to progress to the subsequent state, if the existing hurricane frame is the best 

frame, then the frame must be preserved. On the other hand, if the alternate frame is best 

then turn to revising the goals through re-framing. Mechanical systems and infrastructure 



64 

 

damage that can be experienced during or after a hurricane makes landfall include 

flooded houses, unsteady houses, collapsed levees, collapsed or unsteady bridges, 

buildings and dams, et cetera. A category 3 hurricane or greater coupled with increased 

threats of danger and damage such as an increase in the number of dead people from the 

evolving weather occurrences warrant an evacuate 3.  

Alternatively if the hurricane attributes are those of a category 2 or lower with 

increases in rates and count of mechanical systems and infrastructure damage, focus must 

be on salvaging what is left of the infrastructure; providing medical assistance; 

maintaining order and accommodating victims by providing temporary shelter, food, 

clothing, warmth, and basic needs. The possible causes of action from the sensemaker to 

the decision maker are to enforce curfews, set-up shelters and flash-pump water. This 

transits comparing frames to the re-framing state. Curfews will enable security 

enforcement keep people in check and properly monitored in the shelters. Collapsed 

levees and water breaks causing flash flooding of streets, vehicles and building need to be 

flash-pumped in an effort to restore the affected areas and make it habitable.  

6. Seeking Frame 

If (wind speed < 110mph) and  

            (storm surge < 8ft) and 

            (flood depth < 8ft) and 

            (sea surface temperature < 88⁰F) and  

            (storm tide < 8ft) or 

 (NOAA storm rating  2) or 
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 (number dead(n) ≥ number dead(n-1)) or 

 (security breach areas > 1) or 

 (mechanical systems and infrastructure damage(n) ≥ mechanical systems or 

infrastructure damage(n-1)) or 

(mechanical systems and infrastructure damage rate ≥ 50%) or 

Then, set-up treatment centers & shelters, flash-pump water & enforce curfews 

In this state succeeding questioning frame, a realization of a new eminent danger 

leads a sensemaker to seek and construct a new frame. Increase in post hurricane dangers 

and a reduction of weather threats propel the construction of a new frame. This state 

transits to the re-framing state for goals revision when the number and rate of mechanical 

systems and infrastructure damage increases. An increase in the number of deaths caused 

by non-weather related problems lead to the construction of a new frame and the 

plausible causes of action; to set-up treatment centers (to treat the sick and injured) and 

shelters, flash-pump water, enforce curfews and security presence to prevent breaches. 

Possible security threats include rape, suicide, looting, burglary, vandalism, gang 

activities, drug and alcohol peddling, violent assaults and illegal possession of arms. 

7. Re-framing 

If (mechanical systems and infrastructure damage rate ≥ 50%) and 

 (number dead(n) ≥ number dead(n-1)) and 

 (security breaches > 1) and 

 (number of infectious disease victims(n) ≥ number of infectious disease victims(n- 

1)) and  
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 (percentage of utility cut-off ≥ 25%) 

Then, temporarily relocate people, start reconstruction planning & rehabilitation 

In this latter state of the automaton, new goals are set and new data re-interpreted 

making use of retrospective data, more information and foresight. An increase in security 

violations, rates and number of mechanical systems and infrastructural damage, number 

of deaths associated with violence and ill health, number of people affected by infectious 

diseases and percentage of utility (water, electricity, telephone, et cetera) cut-off 

instigates the temporary relocation of people, commencement of a plan for reconstruction 

of the affected areas and the rehabilitation of victims.  Victims of the disaster, their 

families and friends have to undergo a form of rehabilitation for the physical, financial, 

economic, emotional and psychological scars received as a result of injuries, angst and 

loss from the disaster. Evacuees have to be vaccinated to prevent the further spread of 

contagious illnesses such as hepatitis A and B, rubella, measles, mumps, tuberculosis, 

typhoid, influenza and other infectious diseases. 

8. Framing 

If (number of deaths, number of security breaches, number of infectious disease  

victims, number of homeless people and mechanical systems and infrastructure 

damage rate)
n 

= (number of deaths, number of security breaches, number of 

infectious disease victims, number of homeless people and mechanical systems 

and infrastructure damage rate)
n+1

)  

Then, knowledge update 



67 

 

This is the last of the states in the sensemaking automaton where goals are defined 

and data is filtered. It is also the final state in the automaton. In this state, the knowledge 

gained throughout the sensemaking process is updated and a clear picture of the evolved 

situation is formed. New information on number of deaths, security breaches, infectious 

disease victims, number of homeless victims, mechanical systems and infrastructure 

damage rate replace existing information and become the current information. 

4.3.2 Illustrative Example of FSA Simulation of Hurricane Katrina  

This model is a subset of the generic model in Figure 4.2 and is to serve as an 

illustrative example. The sequence of state changes as Hurricane Katrina evolved from 

August 23, 2005 to August 31, 2005 is represented numerically from stages 1 to 15 to aid 

in comprehension. The defining conditions governing the transition of the automaton 

from one state to the other are represented below.  

August 23, 2005 

5am: Tropical depression in Bahamas; 175 miles Southeast of Nassau 

Wind speed = 34.5mph 

Storm surge = 2ft 

Sea surface temperature = 82⁰F 

Storm tide = 2ft 

Recognize, early warning and construct frame of situation 

1. Initial Frame to Elaborating Frame 

August 24, 2005 

11am: Tropical storm, 230 miles east of Miami, FL is named Katrina 
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Wind speed = 40mph 

Storm surge = 2ft 

 Sea surface temperature = 82⁰F 

Storm tide = 2ft 

Expert rating = 1 

Action: Stay home & issue storm watch for next 36hours over FL 

2. Elaborating Frame to Questioning Frame 

August 25, 2005 

5pm: Tropical storm becomes category 1 hurricane, 15 miles east of Fort Lauderdale, FL 

Wind speed = 75mph 

Storm surge = 4ft 

 Sea surface temperature = 83⁰F 

Storm tide = 4ft 

Expert rating = 2 

Action: Stay home & issue hurricane alert over FL 

3. Questioning Frame to Preserving Frame 

August 25, 2005 

7pm: North Miami and Hallandale Beaches, Southeast FL hit 

Wind speed = 80mph 

Storm surge = 4ft 

Sea surface temperature = 85⁰F 

Storm tide = 4ft 
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Rain depth = 12in 

Expert rating = 3 

Number of deaths = 11 

Action: Stay home & issue hurricane alert over FL and surrounding States 

4. Preserving Frame to Elaborating Frame 

August 26, 2005 

1am: Hurricane Katrina weakens into a tropical storm in FL 

Wind speed = 45mph 

Storm surge = 3ft 

Sea surface temperature = 80⁰F 

Storm tide = 2ft 

Rain depth = 5in 

Number of deaths = 11 

Action: Amend information of hurricane for FL 

5. Elaborating Frame to Questioning Frame 

August 26, 2005 

5am: Hurricane Katrina strengthens over Gulf of Mexico around Key Largo, FL  

Wind speed = 70mph 

Storm surge = 4ft 

Sea surface temperature = 83⁰F 

Storm tide = 3ft 

Rain depth = 8inches 
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Expert rating = 3 

Number of deaths = 11 

Action: Stay home & issue hurricane alert over FL, AL, LA and MS.  

6. Questioning Frame to Preserving Frame 

August 26, 2005 

11:30am: NHC reports hurricane grows into category 2 and proceeds towards LA and 

MS; they predict a major hurricane 

Wind speed = 100mph 

Storm surge = 10ft 

Sea surface temperature = 93⁰F 

Storm tide = 9ft  

Rain depth = 10in 

Expert rating = 5 

Number of deaths = 11 

Action: Evacuate 3 & issue state of emergency in LA and MS. 

7. Preserving Frame to Elaborating Frame 

August 27, 2005 

5am: Hurricane grows into category 3; NOAA forecast hurricane might strengthen into a 

category 5 

Wind speed = 115mph 

Storm surge = 12ft 

Sea surface temperature = 95⁰F 
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Storm tide = 10ft  

Rain depth = 14in 

Number of deaths = 11 

Action: Amend information of hurricane for LA. 

8. Elaborating Frame to Questioning Frame 

August 28, 2005 

2am: Hurricane strengthens into category 4 with warm air over Gulf of Mexico 

Wind speed = 145mph 

Storm surge = 20ft 

Sea surface temperature = 105⁰F 

Storm tide = 16ft 

Rain depth = 15in 

Expert rating = 5 

Number of deaths = 11 

Action: Evacuate 2 & issue hurricane alert over LA 

9. Questioning Frame to Preserving Frame 

August 28, 2005 

11am: Hurricane strengthens into category 5 with warm air over Gulf of Mexico 

Wind speed = 175mph 

Storm surge = 30ft 

Sea surface temperature = 125⁰F 

Storm tide = 20ft 



72 

 

Rain depth = 20in 

Expert rating = 5 

Number of deaths = 11 

Action: Evacuate 3 & issue state of emergency in LA and MS. 

10. Preserving Frame to Elaborating Frame 

August 29, 2005 

2am: Hurricane weakens to category 4 but with high tide around New Orleans, LA 

Wind speed = 155mph 

Storm surge = 24ft 

Sea surface temperature = 107⁰F 

Storm tide = 40ft 

Rain depth = 15in 

Number of deaths = 11 

Action: Amend information of hurricane for LA 

11. Elaborating Frame to Questioning Frame 

August 29, 2005 

5am: Hurricane weakens prior to landfall 

Wind speed = 150mph 

Storm surge = 16ft 

Sea surface temperature = 104⁰F 

Storm tide = 30ft 

Rain depth = 15in 
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Number of deaths = 11 

Expert rating = 5 

Action: Evacuate 2 & issue hurricane alert in LA  

12. Questioning Frame to Seeking Frame 

August 29, 2005 

6pm: Hurricane weakens into category 3 from 6am to 11am and hits New Orleans, MS-

LA border, Biloxi and Gulfport, MS. Hurricane continues to weaken  throughout the day 

and becomes category 1 at 6pm and finally a tropical storm later in the evening. 

Wind speed = 90mph 

Storm surge = 5ft 

Sea surface temperature = 92⁰F 

Storm tide = 5ft 

Rain depth = 14in 

Number of deaths = 1220 

Expert rating = 4 

Action: Evacuate 2 & dispatch security enforcement to LA 

13. Seeking Frame to Re-Framing 

August 30, 2005 

Day: NHC reports tropical storm weakens into a tropical depression from LA to 

Tennessee and Kentucky 

Wind speed = 35mph 

Storm surge = 2ft 
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Sea surface temperature = 78⁰F 

Flood depth = 5ft 

Storm tide = 2ft 

Number of deaths = 1220 

Extent of mechanical and infrastructure damage = 85% 

Number of levee breaches = 53 

Security issues = 9  

Action: Set-up treatment centers and shelters, flash-pump water and enforce curfews 

14. Re-Framing to Framing 

August 31, 2005 

Day: Flooding of New Orleans, LA and Health and Human Hazard reports public health 

emergency in LA, MS, AL and FL 

Number of deaths = 1450 

Security issues = 10 

Number of infectious victims = 1100 

Level of utility cut-off = 95% 

Extent of mechanical and infrastructure damage = 88% 

Action: Temporarily relocate residents, reconstruct planning and rehabilitate victims. 

15. Framing 

September 1, 2005 – Present 

Number of people who became homeless = 1 million 

Total number of deaths = 1833 
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Total number of people who contracted infectious diseases = 1249 

Number of security issues = 9 

Extent of mechanical and infrastructure damage = 90% 

Total land affected by hurricane = 90,000 square miles 

Gallons of oil spilled = 8 million 

Debris created by hurricane = 118 million cubic yards 

Estimated cost of Katrina = $125 billion 

Action: Knowledge update. 

 

4.4 Illustrative Simulation Results of Hurricane Katrina 

Hurricane Katrina based on a theoretical simulation yielded behaviors of state 

changes with respect to new information and the sensemaking process. Based on the 

transitions of the FSA in Figure 4.5 below, the movement of states from one to another is 

numbered in order of progression from 1 to 15. The operation of the automaton seen 

previously by a sensemaker during the Hurricane Katrina would have provided the 

thinking path and plausible causes of action discussed below in 15 stages.  

Stage 1. Initial Frame Outcome: Since the attributes of the storm at present are 

below that of a category 1 hurricane but higher than normal, and expert opinion 

rating of danger is low; residents and people in FL are advised to stay home and a 

storm watch for the next 36 hours is issued on air, internet and television. This 

will enable meteorologists and weather experts study the behavior and attributes 

of the storm. 
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Figure 4.5. Finite State Automaton Simulation of Hurricane Katrina 

 

 

 

Stage 2. Elaborating Frame Outcome: As the storm strengthens from a tropical 

storm into a category 1 hurricane heading towards FL, residents are advised to 

stay home while a hurricane alert is issued. The status of the hurricane is updated 

as more information comes in and slots are filled. Some sensemaking questions 

asked are: what information is missing, what needs to be done, are there any 

similar hurricanes in the past, what was the behavior of past hurricanes, et cetera. 
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Stage 3. Questioning Frame Outcome: The sensemaker questions the frame and 

some sensemaking questions asked are: is this the only eminent danger; is this 

considered a false alarm; are there any contradictory or inconsistent data? Based 

on retrospective and available data and experience, residents and people in FL, 

MS, AL, and LA are advised to stay home and a hurricane alert is issued via 

radio, internet and television. The path of the evolving hurricane is continuously 

and cautiously observed.  

Stage 4. Preserving Frame Outcome: Frame of storm turned hurricane is preserved 

and the status of the hurricane and its effects in FL is updated.  

Stage 5. Elaborating Frame: The status of the hurricane is updated as more 

information comes in. Missing slots are filled. Some sensemaking questions asked 

are: what information is missing, what needs to be done, are there any similar 

hurricanes in the past, what was the behavior of past hurricanes? Residents and 

the populace of FL and surrounding states: AL, LA, and MS are advised to stay 

home and a hurricane alert is issued on air, internet and television. 

Stage 6. Questioning Frame Outcome: The sensemaker, questions the accuracy of 

the frame. Some sensemaking questions asked are what needs to be done as the 

hurricane is strengthening at a fast pace, is this hurricane bigger than Camille was, 

is this a false alarm, what are the expectations, et cetera? Based on the behavior of 

the hurricane, a state of emergency is issued in LA and MS. Fire personnel, 

National Guard, coast guard, police, army, volunteers, buses, jumbo planes, et 

cetera are dispatched to LA and MS. Evacuation 3, which is mandatory 
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evacuation, is put into effect and inhabitants of LA and some parts of MS are 

asked to evacuate the area voluntarily or be forced out involuntarily.   

Stage 7. Preserving Frame Outcome: The frame of a destructive hurricane is 

maintained and the status of orders to evacuate LA and MS is updated.  

Stage 8. Elaborating Frame Outcome: The status of the hurricane is changed into a 

category 4 as more information is received. Some sensemaking questions asked 

are what information is missing, what else needs to be done, what was the 

behavior of past hurricanes of this magnitude, et cetera? Evacuate 2, during which 

responders on site, encourage and assist people to evacuate is issued for LA. A 

hurricane alert for LA is issued on air, internet and television.  

Stage 9. Questioning Frame Outcome: The sensemaker questions the frame for 

inconsistencies and violated expectations. Some questions asked are what needs 

to be done as hurricane keeps strengthening, what are the expectations of 

residents of LA and MS, why are people not evacuating, what will be the effect if 

landfall is made as a category 5? Based on the behavior of the hurricane, a state of 

emergency in LA and MS is maintained. Additional fire personnel, National 

Guard, army, volunteers, buses, jumbo planes, et cetera are dispatched to LA and 

MS. Evacuation 3 is enforced in LA. 

Stage 10. Preserving Frame Outcome: The status of the hurricane is amended as it 

weakens into a category 4 around LA. The progress of the evacuation process and 

number of casualties is also updated as more information comes in.  
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Stage 11. Elaborating Frame Outcome: The status of the hurricane is updated as it 

weakens. More information comes in and slots are filled. Some sensemaking 

questions asked are what information is missing, what else needs to be done, what 

was the behavior of past hurricanes of this magnitude, et cetera? Evacuate 2 is 

issued for LA and responders on site assist and encourage people to leave. A 

hurricane alert for LA is issued on air, internet and television. 

Stage 12. Questioning Frame Outcome: The sensemaker questions the frame for 

inconsistencies and violated expectations. Some sensemaking questions asked are 

do the goals have to be changed, is this frame worth preserving, what are the 

effects of the hurricane in LA and MS, are there other eminent dangers, et cetera? 

Based on the behavior of the hurricane and victims, evacuate 2 is issued. 

Inhabitants are encouraged to leave since New Orleans, LA begins to flood and 

violence increases as basic needs such as food, clothing and water become 

deficient. Additional security enforcement is dispatched to New Orleans to 

maintain order. 

Stage 13. Seeking Frame Outcome: With the weakening of the hurricane into a 

tropical depression, emerging danger of flooding and security leads to the 

construction of a new frame. An increase in infrastructural (houses, hospitals, 

schools, churches) and mechanical damage (levee failure) and flash flooding 

especially in New Orleans leads to the flash-pumping of the floods and the set-up 

of treatment centers and shelters. An increase in injuries and deaths as well as 

security issues such as rape, drug and alcohol peddling, weapon possession, gang 
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activity, looting, violent assaults and vandalism lead to the enforcement of 

curfews and shoot to kill.  

Stage 14. Re-framing Outcome: Unnecessary data is discarded and new anchors are 

found. Sensemaking questions asked here include are there any important 

discarded data, are the expectations of the current situation met, et cetera? As the 

numbers of infectious illnesses and deaths increase, the goals are revised to treat 

and contain the infected and temporarily relocate and settle homeless residents 

(feed, clothe and accommodate). Victims are assisted with rehabilitation for 

physical, emotional and psychological scars. Committees are appointed to oversee 

the reconstruction of the 90,000 square mileages of damaged land, clearing of 118 

million cubic yards of debris and to put in place infrastructure and systems that 

will work in the event of similar disasters.  

Stage 15. Framing: Knowledge of the situation such as total number of deaths, 

security breaches, infectious disease victims and homeless people; and rate of 

mechanical systems and infrastructural damage is updated as information is 

turned into knowledge having gained insight. Knowledge is updated. 

 

4.5 Chapter Summary 

During any disaster or situation, that causes experts to collaborate, share ideas and 

experiences in order to completely understand what is going on to make decisions and 

take actions; there is a glut of data. Such data is processed for the flow of information to 

gain knowledge and understanding of the subject matter. Analytically, the DFM captures 
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the situation and represents it with a FSA as illustrated in the model of Hurricane Katrina. 

The model depicts the various stages and transitions of the several conversions of data 

into information and then finally into knowledge and the subsequent actions 

accompanying these state transitions. It must be noted however that during the 

sensemaking process, frames change as the situation evolves and the initial frame 

constructed might not be the final frame upon completion. FSA captures the state 

transitions for such a scenario thus; the chapter presented the DFM-FSA simulation 

process, the foundation of this thesis. 
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CHAPTER 5 

Development, Implementation and Evaluation 

 

5.1 Rationale 

Determination of plausible causes of action by a sensemaker during a maelstrom 

situation may prove to be a complex task that involves several other persons and 

processes. A sensemaker is provided with context specific data from satellite and radar 

readings, eye witness reports, on the ground or field expert opinions and media coverage 

during disaster management such as a hurricane. The sensemaker using this data must be 

able to extract salient information, which will enable her to comprehend the situation at 

hand and recommend plausible causes of action to decision makers. The Hurricane 

Sensemaking Machine (HSM) developed by this research is a user-centered design that 

aids in situation awareness for the sensemaker utilizing it. 

The sensemaking process in the HSM is identified by eight states, each of which 

has specific attributes governing its transition, similar to DFM. Weather attributes, such 

as wind speed, storm surge, storm tide, rain depth, et cetera and other attributes, such as 

expert opinion ratings of damage and danger, number of reported deaths, and so on were 

used to categorize identified causes of action. The FSA and its states attributes are 

represented by decorations or widgets that provide an integrated representation to the 

sensemaker to prompt recognition.  

In the event of a hurricane, possible threats and dangers that occur include, but are 

not limited to, some or all of the following. 
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 Entrapment in an area or building caused by the inability to move around freely 

and sometimes complete isolation from the rest of the world due to flooding, 

inaccessible roads and destroyed buildings. 

 Utility cut-off that could be a result of fallen poles and broken water pipes. It may 

also be a precautionary measure by the power and water supply companies to shut 

off supply. Utility cut-off averts water, electricity and broadband supply to 

consumers in the affected vicinity.     

 Flooding from copious rains and/or failure of flood preventative systems may 

cause various degrees of damage to buildings, vehicles and mechanical systems. 

 Tornados also called cyclones or twisters, originate from moist, warm airs and 

low pressures, resulting in spinning columns of air that suck up anything in their 

trajectory. 

 Death as a result of drowning; electrocution by lightning, live wire or faulty wires 

in contact with water; trauma; violence; acute ailment; or getting struck by an 

object such as a building, tree or pole.  

The effects and causes of action below are the cues from which the HSM draws 

state attributes and plausible causes of action. Some possible causes of action that may be 

executed before, during or after a hurricane include, but are not limited to, the following.  

 Stay home and make provisions such as ready meals, drinking water, medication, 

firewood, candles and lanterns to wait out the hurricane. 

 Drainage of flood waters from streets, buildings and vehicles and reinstatement of 

utilities cut-off. 
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 Disinfection of contaminated places, treatment of sewage infested waters, 

vaccinations against the spread of infectious diseases and pest control. 

 Temporary evacuation of people and animals from the projected hit or affected 

areas. 

 Provision of relief services such as medical care for the ailing and injured, food, 

clothing and shelter for the victims. 

 Rehabilitation of victims financially, economically, physically, emotionally and 

psychologically.  

 Reconstruction of destroyed amenities, infrastructure and implementation of 

systems to prevent future devastation. 

 

5.2 Software Description 

National Instrument’s Laboratory Virtual Instrument Engineering Workbench 

(LabVIEW) 10.0 was used as the software driving the computational simulation of the 

quantitative sensemaking model discussed earlier. LabVIEW is a programming 

environment that creates programs using graphical notation instead of text, unlike 

conventional programming languages such as C++, C, Microsoft Visual Basic, Java, et 

cetera (Travis and Kring, 2007).  The graphical programming language usually called 

―G‖ makes use of graphical block diagrams that compile into the machine code. It is a 

robust, interactive and flexible instrumentation and analysis software system that is 

multiplatform and may be run on Windows, Linux and Mac OS X. The ease of use when 

programming with LabVIEW aids in problem solving in a considerably shorter period as 
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compared to the generic languages. Application of this software is seen in the sciences, 

engineering and technology. LabVIEW is essentially useful for monitoring and 

controlling processes.  

 

5.3. Representation 

The computational representation of the quantitative sensemaking model 

described in Chapter 4, Figure 4.3, is described in detail by the development phase. The 

development phase of the HSM is in two sections: the set-up phase and the design phase. 

It gives a description of the selection, assembly and configuration of widgets as well as 

the operation of the automaton.  

5.3.1. Set-up Phase 

The various components or widgets making up the HSM interfaces are 

determined along with their respective behaviors. The choices of widgets for the 

development of the model’s attributes are context specific. Widgets are selected based on 

basic human factors, fundamental to ensure the ease of use, comfort of the sensemaker 

and the efficiency of the machine. Most of the widgets are similar to their real world 

measuring tools. This is not only to increase their aesthetic sensitivity, but also to aid the 

sensemaker in recognition when using the HSM. The widgets and decorations are 

selected from the controls palette of the virtual instrumentation in LabVIEW 10.0. 

Selected widgets for the attributes of the states are configured as controls since their input 

serves as a trigger for state transitions. Properties such as color, minimum and maximum 

values, labels, default values, et cetera of the widgets selected for the states attributes are 
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configured at this phase. A total of sixteen unique controls are assigned to represent the 

various attributes at their respective states in the machine. The decorations used represent 

the various states diagram and transition lines. The states in the FSA are numbered from 

one to eight for identification and recognition; likewise the controls on the attributes 

setting are represented by their labels, then underscore, and their respective numerical 

state, as in OK_1.   

5.3.2. Design Phase 

The layout of the main HSM interface consists of strings, tabs, buttons, controls 

and decorations. The string control is used to input a password, which gives access to the 

HSM. A string indicator is also used as an activity window for the display of the current 

state and its respective causes of action. A tab control with multiple pages contains the 

three sub-interfaces, namely, FSA, attributes setting and reference database. The FSA 

sub-interface consists of the computational representation of Figure 4.2, discussed in 

Chapter 4, for the simulation. This sub-interface serves as an output of the sensemaking 

process that aids in visualization of the evolving causes of action. The breakdown of this 

sub-interface as illustrated in Figure 5.1 comprises: 

a) Eight sensemaking states from DFM built with flat, rounded boxes from the 

control palette. 

b) Round light-emitting diodes (LEDs) superimposed on thin arrows which connect 

the sensemaking states and serve as the transition lines in the machine. 

c) A horizontal toggle switch, that starts the HSM and also serves as an emergency 

stop switch for the simulation machine. 
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Figure 5.1.  Hurricane Sensemaking Machine Finite State Automaton Sub-Interface 

 

 

 

The attributes setting sub-interface serves as the input to the HSM. It serves as the 

information siphoning stage that sieves salient information needed for sensemaking from 

the pool of data received by the sensemaker. The attributes setting sub-interface 

comprises the selection of inputs that direct the thinking path of the sensemaker. This 

interface may be visualized from Figure 5.2. It consists of the following: 
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a) An eight-page tab control symbolic of the eight sensemaking states where each 

contains requisite attributes needed to propel it to the next sensemaking state. 

b) A total of 16 controls to represent the different attributes identified for the 

attributes sub-interface. Each tab control page has the respective controls such as 

square push button for input confirmation, tanks for rains and floods levels, 

thermometer for sea surface temperature, gauges for wind speed, knob for 

retrospective data and numeric controls for count and ratings. 

 

 

 

 

Figure 5.2.  Hurricane Sensemaking Machine Attributes Setting Sub-Interface  
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The last sub-interface illustrated by Figure 5.3 was developed from a tab control 

superimposed on a thick lowered box with an embedded multicolumn table. The 

reference database details the several transitions in the HSM. It outlines the source state 

and target state, the recommended causes of action and also gives an in-depth description 

of what the respective causes of action entail. 

 

 

 

 

Figure 5.3.  Hurricane Sensemaking Machine Reference Database Sub-Interface 
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5.4 Implementation 

Controls and decorations visible on the front panel of the HSM generate icons that 

are used for coding the virtual instrumentation’s block diagram. Local variables and re-

initialization icons are generated from these icons and used in coding the block diagram. 

The coding of the machine is engulfed by a decision loop within which all other 

relationships are established. The block diagram of HSM makes use of multiple case 

structures, which enable binary coding of cases when they are either true or false. A 

second decision loop and a stack of event structures allow the coding of the eight 

identified states in the HSM. Multiple case structures within these individual event 

structures facilitate the binary coding of each state and the re-initialization to the default 

states of controls and attributes used.  

A formula node with logic for the pre-determined production rules governing 

state transitions is connected to each case structure within the second decision loop. The 

logic of the production rules is written in C programming language. The local variables 

of the respective state attributes are connected as input to the formula node and a 

corresponding output variable is wired to case structures with corresponding number of 

pages as to the number of paths of that state. The various causes of action are embedded 

within these case structures on multi-framed flat sequence structures. Each flat sequence 

structure had added frames for the blinking property and activity window of each of the 

causes of action, time stamp and delay time.  
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5.4.1 Mode of Operation of HSM 

Mode of operation of the HSM when in run mode is as follows:  

1. Enter a valid password in the ―User Access (Password)‖ box in order to access the 

machine. In the event where an inaccurate password is entered, the machine will 

emit a shrill sound of 4000 Hz for 200 milliseconds and stop automatically.  

2. Select a location to record the output log data on the attributes setting sub-

interface. 

3. Turn the horizontal toggle switch on for HSM to respond to inputs otherwise, it 

will be unresponsive to all stimuli inputted. Once on, the FSA sub-interface and 

attributes setting sub-interface become activated. If the horizontal toggle switch is 

turned off at anytime during operation, the HSM stops completely. 

4. Enter values for the attributes on the pane of the initial state as the weather 

evolves and data is reported. 

5. Press the ―OK_1‖ button upon completion of attributes setting. A two button 

message box prompts the sensemaker to either ―OK‖ to confirm input data is 

accurate and proceed or ―CANCEL‖ to re-initialize all attributes on that pane to 

their default values for re-entry. The ―OK‖ button changes from its default color 

yellow to red when switched on.  

6. Confirmed values of attributes in conjunction with pre-determined production 

rules transit the initial state to the next state.  

7. Identify the transition paths with the recommended causes of action by the 

blinking round LED from the default highlighted color yellow to red.  
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8. Report activity feed of recommended causes of action automatically projected in 

the form ―source state: causes of action‖ to decision makers. 

9. Upon receipt of new data, go to the pane of elaborating frame (the next state 

transited to) and update settings. Transitions in the HSM to next states inform the 

sensemaker of which state attributes to set next. For example, if the initial frame 

transits to elaborating frame along the path ―evacuate 1‖, the next batch of 

attributes to be set with incoming data will be those on the elaborating frame pane 

of the attributes setting sub-interface. 

10. Press ―OK_2‖ button upon completion of attributes setting.  

11. Press ―OK‖ to confirm input data are accurate and proceed or ―CANCEL‖ to re-

initialize all attributes to their default values for re-entry.  

12. Identify path of transition with the recommended causes of action by the blinking 

round LED and report activity feed of recommended causes of action to decision 

makers. 

13.  Repeat steps eight (8) through eleven (11) as needed until you get to the final 

state. 

14. Print or save the output log data for analysis and future reference. 

 

5.5 Evaluation 

Assessment of the HSM was done by running the events progression of Hurricane 

Katrina from August 23, 2005 to September 1, 2005.  Reports of radar and satellite 

images of the hurricane and its accompanying rains, winds, surges, et cetera from NHC, 
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NOAA, NWC, expert meteorologists and eyewitnesses were fed into the HSM as would 

have been done by a sensemaker during the actual event in 2005.  The final FSA output 

and the recommended causes of action after each state transition were logged and 

compared with that of the illustrative simulation results of Hurricane Katrina described in 

Section 4.4.  

Input events for the simulation were the same values of attributes as those used 

for the illustrative example of FSA simulation of Hurricane Katrina discussed in Section 

4.3.2.  Subsequent to the operation of the HSM with Hurricane Katrina’s data, the FSA 

interface produced an output of 15 stages, transitions similar to the expected illustrative 

simulation depicted by Figure 4.5.  Figure 5.4 illustrates a visual representation of the 

resulting FSA captured consequent to the running of the Hurricane Katrina simulation 

with HSM. 

The walk of interest was indicated by blinking LED paths highlighted from the 

default color yellow to red.  The confirmed attributes settings produced a transition along 

a highlighted path of red LEDs. Each set of confirmed attributes inputted instigated a 

transition between states.  A sensemaking loop was formed among the states: elaborating 

frame, questioning frame and preserving frame. This occurred while the frame of dealing 

with the approaching and occurring hurricane was maintained until the hurricane passed 

and its impact and remnants became the revised prime focus.  The activity window 

provided a recommended cause of action feed each time a state transited to another. 

Figure 5.4 shows a feed of the recommended cause of action ―knowledge update‖ for the 

final or end state, framing on the FSA sub-interface.  
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Figure 5.4.  Finite State Automaton of Information Flow during Hurricane Katrina 

 

 

 

5.6 Chapter Summary 

The HSM is fashioned to aid a sensemaker connect dots and make sense out of a 

complex evolving situation similar to the qualitative DFM. This chapter delves into the 

building blocks and layout of HSM, its mode of operation and evaluation using the 

Hurricane Katrina case study. A user’s mini-manual is presented. The next chapter 

presents some data analysis from using HSM.  
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CHAPTER 6 

Data Analysis and Discussion 

 

6.1 Scenario Description 

Three scenarios of varying information flow complexities were used for 

experimental evaluation. Each scenario was replicated four times to increase the sample 

size, reduce variance and increase the robustness of the design. The three scenarios were 

high complexity (HC), medium complexity (MC) and low complexity (LC) situations. 

These three situations were contrasted with the real life Hurricane Katrina (HK) situation, 

which was also replicated four times using HSM. The magnitude of information flow for 

the various scenarios determined the resultant thinking paths. See the appendix section 

for a complete list of the various scenarios data inputs.   

The situation of HC was one with multiple data coming in from various sources 

such as experts on the field, NHC, NOAA, media reports, et cetera. Readings for the 

various state attributes reported were of extreme values. As the hurricane evolved over 

time, reports of wind speed ranged from as high as 137 mph to 84 mph. Death toll, 

security breaches and mechanical systems and infrastructure damage also increased in 

number and rate. The number of attributes manipulated for each of the active states in this 

scenario ranged from five to ten with each state attribute actively involved. The MC 

situation had information flow from several sources but not as extensive as that for the 

HC situation. Input data for this scenario were of medium values and a comprehensive 

list may be seen in the appendix section. Reported values of wind speed ranged from as 
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high as 88 mph for a category 1 hurricane to a tropical storm of 60 mph. The number of 

attributes manipulated for each of the active states in this scenario ranged from four to 

six. Information flow for the LC situation had the relatively lowest attributes values 

compared to the HC and MC situations. Wind speed ranged from a category 1 hurricane 

to a tropical depression. Attributes manipulated ranged from three to five. Most states 

involved only received data for the minimum attribute requirements needed to activate 

transition among states. A complete list of the information flow is included in the 

appendix of this document.  

 

6.2 Data Collection 

In order to perform any form of analysis either descriptive or inferential, data had 

to be collected. Each of the 20 simulation runs for the four complex situations generated 

an output log file. The output log files from the HSM for the three different scenarios and 

HK had different thinking paths and contained the following data: 

 Source state: This informs the analyst of the state recommending the causes of 

actions triggering the transition. 

 Causes of action: These are the recommended actions from the sensemaker that 

may be passed on to decision makers for execution. 

 Initial start time: This is a record of the current real time instantaneously logged 

when the machine is switched on. It also serves as the start time for the initial 

frame. 
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 Start time: This is a measure of real-time (current time) as the blinking LED 

activates the causes of action. 

 Duration: This is a mimic of the human cognitive delay time. It is calculated by 

multiplying a randomly generated number between zero and one with the 

difference between maximum and minimum assigned execution times for causes 

of action plus minimum time.  

 End time: This is a real-time record of end of transition. It also serves as the new 

start time for the next transition.  

Problem stage time (PST), which is the simulated time of how long a sensemaker 

takes to realize and recommend the causes of action, is a generated measure from the 

logged output data. Likewise, node-to-node (NTN) time is the simulated transition time 

from one state to the other. PST for the initial frame is computed by subtracting the initial 

start time from the start time. All the other PSTs are computed by subtracting the 

previous state’s end time from the current start time. NTN time for the initial frame is 

calculated by subtracting the initial start time from the end time. All other NTN times are 

calculated by subtracting the previous state end time from the current state end time.  

The simulated thinking paths varied for the different scenarios. The HC situation 

completed the sensemaking process in nine stages as shown in Table 6.1. The MC 

completed the sensemaking process in six stages as illustrated by Table 6.2. The LC 

situation completed the sensemaking process in seven stages, whereas HK output had a 

thinking path with 15 stages at the end of the simulation run. These are represented by 

Table 6.3 and Table 6.4, respectively.  
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1 2 
c 

Table 6.1.  Initial Simulation Results for a High Complexity Sensemaking Situation   

 
Stages Transitions Source State Causes of Action Initial Start 

Time (p.m.) 

Start Time 

(p.m.) 

Duration 

(s) 

End Time 

(p.m.) 

PST 

(hr:min:s) 

NTN 

(hr:min:s) 

NTN (s) 

1 

 

Initial Frame Evacuate 1 4:52:07 4:55:36 7.84E+00 4:55:44 0:03:29 0:03:37 217 

2 

 

Elaborating 

Frame 

Evacuate 2 & 

issue hurricane 

alert -------------- 5:00:18 6.07E+00 5:00:24 0:04:34 0:04:40 280 

3 

 

Questioning 

Frame 

Evacuate 3 & 

issue state of 

emergency -------------- 5:05:06 5.33E+00 5:05:11 0:04:42 0:04:47 327 

4 

 

Preserving 

Frame 

Information 

amendment -------------- 5:07:49 5.47E-01 5:07:50 0:02:38 0:02:39 159 

 

5 

 

Elaborating 

Frame 

Evacuate 2 & 

issue hurricane 

alert -------------- 5:14:47 3.39E+00 5:14:51 0:06:57 0:07:01 421 

6 

 

Questioning 

Frame 

Evacuate 2, 

dispatch security 

enforcement -------------- 5:19:50 6.32E+00 5:19:56 0:04:59 0:05:05 305 

7 

 

Seeking 

Frame 

Set-up treatment 

centers & 

shelters, enforce 

curfews & flash-

pump water -------------- 5:26:04 4.74E+00 5:26:09 0:06:08 0:06:13 373 

8 

 

Re-framing 

Temporarily 

relocate people, 

reconstruction 

planning & 

rehabilitation -------------- 5:31:41 1.22E+01 5:31:53 0:05:32 0:05:44 344 

9 

 

Framing 

Knowledge 

update -------------- 5:34:01 2.91E-01 5:34:01 0:02:08 0:02:08 128 

NTN is node-to-node Total        0:41:07 0:41:54 2554 

6 7 
a 

3 4 
b 

4 2 
a 

2 3 
b 

3 6 
d 

2 3 
b 

7 8 
a 

8 8 
a 
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Table 6.2.  Initial Simulation Results for a Medium Complexity Sensemaking Situation   
Stages Transitions Source 

State 

Causes of Action Initial 

Start Time 

(p.m.) 

Start 

Time 

(p.m.) 

Duration 

(s) 

End 

Time 

(p.m.) 

PST 

(hr:min:s) 

NTN 

(hr:min:s) 

NTN 

(s) 

1 

 
Initial 

Frame 

Stay home & issue 

storm watch 4:35:53 4:39:28 3.88E+00 4:39:32 0:03:35 0:03:39 219 

2 

 
Elaborating 

Frame 

Stay home & issue 

hurricane alert -------------- 4:43:12 2.09E+00 4:43:14 0:03:40 0:03:42 222 

3 

 

Questioning 

Frame 

Evacuate 2, 

dispatch security 

enforcement -------------- 4:49:10 6.17E+00 4:49:16 0:05:56 0:06:02 362 

4 

 

Seeking 

Frame 

Set-up treatment 

centers & shelters, 

enforce curfews & 

flash-pump water -------------- 4:55:34 8.02E+00 4:55:42 0:06:18 0:06:26 386 

5 

 

Re-framing 

Temporarily 

relocate people, 

reconstruction 

planning & 

rehabilitation -------------- 5:01:16 1.10E+01 5:01:27 0:05:34 0:05:45 345 

6 

 

Framing Knowledge update -------------- 5:03:35 8.94E-01 5:03:36 0:02:08 0:02:09 129 

NTN is node-to-node Total 0:27:11 0:27:43 1663 

 

1 2 
b 

6 7 
a 

8 8 
a 

2 3 
c 

3 6 
d 

7 8 
a 
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Table 6.3.  Initial Simulation Results for a Low Complexity Sensemaking Situation 
Stages Transitions Source 

State 

Causes of Action Initial 

Start Time 

(p.m.) 

Start 

Time 

(p.m.) 

Duration 

(s) 

End 

Time 

(p.m.) 

PST 

(hr:min:s) 

NTN 

(hr:min:s) 

NTN 

(s) 

1 

 

Initial 

Frame 
Data Frame 4:23:43 4:25:02 1.12E+00 4:25:03 0:01:19 0:01:20 80 

2 
 

Initial 

Frame 

Stay home & issue 

storm watch 
-------------- 4:28:22 3.91E+00 4:28:26 0:03:19 0:03:23 203 

3 

 

Elaborating 

Frame 

Stay home & issue 

hurricane alert 
-------------- 4:31:59 2.89E+00 4:32:02 0:03:33 0:03:36 216 

 

4 

 

Questioning 

Frame 

Stay home & issue 

hurricane alert 
-------------- 4:35:55 2.69E+00 4:35:58 0:03:53 0:03:56 236 

5 

 

Preserving 

Frame 

Information 

amendment 
-------------- 4:37:55 1.23E+00 4:37:56 0:01:57 0:01:58 118 

6 

 

Elaborating 

Frame 
Cancel Warnings -------------- 4:41:38 6.96E+00 4:41:45 0:03:42 0:03:49 229 

7 

 

Initial 

Frame 
Data Frame -------------- 4:43:17 9.65E-01 4:43:18 0:01:32 0:01:33 93 

NTN is node-to-node Total 0:19:15 0:19:35 1175 

 

   

1 1 
a 

1 2 
b 

2 3 
c 

3 4 
a 

4 2 
a 

2 1 
a 

1 1 
a 
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Table 6.4.  Initial Simulation Results for Hurricane Katrina Situation  
Stages Source 

State 

Causes of 

Action 

Initial 

Start 

Time 

(a.m.) 

Start 

Time 

(a.m.) 

Duration 

(s) 

End 

Time 

(a.m.) 

PST 

(s) 

NTN 

Time  

(s) 

1 Initial Frame 

Stay home & 

issue storm 

watch 9:57:35 10:00:44 4.84E+00 10:00:48 189 193 

2 

Elaborating 

Frame 

Stay home & 

issue hurricane 

alert ------------ 10:04:42 4.09E+00 10:04:46 234 238 

3 

Questioning 

Frame 

Stay home &  

issue hurricane 

alert ------------ 10:11:01 2.57E+00 10:11:03 375 377 

4 

Preserving 

Frame 

Information 

amendment ------------ 10:14:55 1.68E+00 10:14:56 232 233 

5 

Elaborating 

Frame 

Stay home & 

issue hurricane 

alert ------------ 10:18:54 2.77E+00 10:18:56 237 239 

6 

Questioning 

Frame 

Evacuate 3 & 

issue state of 

emergency ------------ 10:24:33 1.59E+01 10:24:48 338 353 

7 

Preserving 

Frame 

Information 

amendment ------------ 10:30:23 1.75E+00 10:30:24 334 335 

8 

Elaborating 

Frame 

Evacuate 2 & 

issue hurricane 

alert ------------ 10:35:27 5.41E+00 10:35:32 304 309 

9 

Questioning 

Frame 

Evacuate 3 & 

issue state of 

emergency ------------ 10:41:56 1.75E+01 10:42:13 384 401 

10 

Preserving 

Frame 

Information 

amendment ------------ 10:46:01 9.40E-01 10:46:02 228 229 

11 

Elaborating 

Frame 

Evacuate 2 & 

issue hurricane 

alert ------------ 10:49:26 3.32E+00 10:49:29 204 207 

12 

Questioning 

Frame 

Evacuate 2, 

dispatch 

security 

enforcement ------------ 10:52:20 5.03E+00 10:52:25 172 177 

13 

Seeking 

Frame 

Set-up 

treatment 

centers & 

shelters, 

enforce curfews 

& flash-pump 

water ------------ 10:55:29 9.61E+00 10:55:38 184 193 

14 Re-framing 

Temporarily 

relocate people, 

reconstruction 

planning & 

rehabilitation ------------ 10:58:14 8.07E+00 10:58:22 156 164 

15 Framing 

Knowledge 

update ------------ 11:01:37 4.52E-01 11:01:37 194 194 

NTN is node-to-node  Total 3765 3842 
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A summation of the various NTN times after each scenario gave the sensemaking 

time for that particular scenario. Sensemaking time, therefore, is defined as the total 

duration from the initial start of HSM until its final stop. NTN results and sensemaking 

times for replicates of HC, MC, LC situations and HK are represented by Tables 6.5, 6.6, 

6.7 and 6.8, respectively. The sensemaking times for replicates of the HC ranged from 

2,557 seconds to 2,758 seconds. MC situation ranged from 1,424 seconds to 1,577 

seconds. LC situation ranged from 1,279 seconds to 1,466 seconds. HK ranged from 

3,653 seconds to 3,887 seconds.  

 

 

 

Table 6.5.  Simulation Results for Replicates of the High Complexity Situation 
Stages Source State Causes of Action Node-to-node Times of Replicates (s) 

1 2 3 4 

1 Initial Frame Evacuate 1 312 311 242 157 

2 

Elaborating 

Frame 

Evacuate 2 & issue hurricane 

alert 237 258 282 360 

3 

Questioning 

Frame 

Evacuate 3 & issue state of 

emergency 298 371 339 365 

4 

Preserving 

Frame Information amendment 382 153 249 133 

5 

Elaborating 

Frame 

Evacuate 2 & issue hurricane 

alert 228 257 441 339 

6 

Questioning 

Frame 

Evacuate 2, dispatch security 

enforcement 323 381 321 399 

7 Seeking Frame 

Set-up treatment centers & 

shelters, enforce curfews & 

flash-pump water 303 451 334 354 

8 Re-framing 

Temporarily relocate people, 

reconstruction planning & 

rehabilitation 354 295 342 380 

9 Framing Knowledge update 120 118 208 113 

Sensemaking Times for Replicates                                 = 2557 2595 2758 2600 
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Table 6.6.  Simulation Results for Replicates of the Medium Complexity Situation 
Stages Source State Causes of Action Node-to-node Times of 

Replicates (s) 

1 2 3 4 

1 Initial Frame Stay home & issue storm watch 204 76 201 149 

2 

Elaborating 

Frame 

Stay home & issue hurricane 

alert 161 164 224 356 

3 

Questioning 

Frame 

Evacuate 2, dispatch security 

enforcement 226 404 342 232 

4 Seeking Frame 

Set-up treatment centers & 

shelters, enforce curfews & flash-

pump water 308 327 335 302 

5 Re-framing 

Temporarily relocate people, 

reconstruction planning & 

rehabilitation 277 305 330 320 

6 Framing Knowledge update 248 162 145 154 

Sensemaking Times for Replicates                                          = 1424 1438 1577 1513 

 

 

 

 

Table 6.7.  Simulation Results for Replicates of the Low Complexity Situation 
Stages Source State Causes of Action Node-to-node Times of Replicates (s) 

1 2 3 4 

1 Initial Frame Data Frame 165 130 87 80 

2 Initial Frame 

Stay home & issue storm 

watch 169 194 184 158 

3 Elaborating Frame 

Stay home & issue 

hurricane alert 253 264 203 204 

4 Questioning Frame 

Stay home &  issue 

hurricane alert 203 123 343 216 

5 Preserving Frame Information amendment 222 209 156 214 

6 Elaborating Frame Cancel Warnings 90 287 133 295 

7 Initial Frame Data Frame 177 259 219 127 

Sensemaking Times for Replicates                                   =  1279 1466 1325 1294 
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Table 6.8.  Simulation Results for Replicates of Hurricane Katrina Situation  
Stages Source 

State 

Causes of Action Node-to-node Times of Replicates (s) 

1 2 3 4 

1 Initial Frame Stay home & issue storm watch 114 106 105 123 

2 

Elaborating 

Frame Stay home & issue hurricane alert 189 223 344 252 

3 

Questioning 

Frame Stay home &  issue hurricane alert 182 327 186 302 

4 

Preserving 

Frame Information amendment 351 269 173 159 

5 

Elaborating 

Frame Stay home & issue hurricane alert 183 252 237 325 

6 

Questioning 

Frame 

Evacuate 3 & issue state of 

emergency 334 390 349 403 

7 

Preserving 

Frame Information amendment 290 81 148 143 

8 

Elaborating 

Frame Evacuate 2 & issue hurricane alert 348 277 307 311 

9 

Questioning 

Frame  

Evacuate 3 & issue state of 

emergency  290 252 255 257 

10 

Preserving 

Frame  Information amendment  183 155 132 156 

11 

Elaborating 

Frame  Evacuate 2 & issue hurricane alert  272 351 249 211 

12 

Questioning 

Frame 

Evacuate 2, dispatch security 

enforcement 318 306 371 398 

13 

Seeking 

Frame 

Set-up treatment centers & shelters, 

enforce curfews & flash-pump 

water 300 269 335 342 

14 Re-framing 

Temporarily relocate people, 

reconstruction planning & 

rehabilitation 305 225 333 376 

15 Framing Knowledge update 166 170 140 129 

Sensemaking Times for Replicates                                          =  3825 3653 3664 3887 

 

 

 

 

HK had the highest sensemaking times out of the four scenarios analyzed with its 

highest sensemaking time recorded after the fourth replication at 3,884 seconds. The 

lowest recorded sensemaking time was 1,175 seconds after the initial run of LC situation. 

The extended sensemaking process duration for HK was attributed to the complexity of 

its information flow.  
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DFM nodes for the HC, MC and LC situations and HK are displayed in Tables 

6.9, 6.10, 6.11 and 6.12 below. These nodes describe the sensemaking processes 

undertaken during the breakdown of the respective situations. The activation of a DFM 

node is subject to the thinking path of the sensemaking process. The table of results from 

the HC scenario has seven active nodes out of the eight. The inactivity of comparing 

frames node is due to the nature of the situation. There was no competing alternate frame 

available for contrast with the initial frame. DFM nodes during the MC situation 

simulation were three-fourths active with six out of its eight states active. A total of four 

out of the eight DFM nodes were active for the LC situation. Active DFM nodes during 

the HK simulation were similar to those of the HC situation. This is attributed to level of 

complexity introduced via information flow. 

MC had the shortest thinking path of six stages; however, it did not record the 

lowest sensemaking time. Its lowest sensemaking time of 1,424 seconds after its first 

replication was higher than LC situation’s sensemaking time after the initial simulation of 

1,175 seconds. This may be due to the quantities of information flow used in the 

scenarios to introduce a degree of complexity.  

 

 

 

Table 6.9.  Data/Frame Model Activities for a High Complexity Situation 

DFM Nodes Action DFM Nodes Action 

Initial Frame On Comparing Frame Off 

Elaborating Frame On Seeking Frame On 

Questioning Frame On Re-framing On 

Preserving Frame On Framing On 
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Table 6.10.  Data/Frame Model Activities for a Medium Complexity Situation  

DFM Nodes Action DFM Nodes Action 

Initial Frame On Comparing Frame Off 

Elaborating Frame On Seeking Frame On 

Questioning Frame On Re-framing On 

Preserving Frame Off Framing On 

 

 

 

 

Table 6.11.  Data/Frame Model Activities for a Low Complexity Situation 

DFM Nodes Action DFM Nodes Action 

Initial Frame On Comparing Frame Off 

Elaborating Frame On Seeking Frame Off 

Questioning Frame On Re-framing Off 

Preserving Frame On Framing Off 

 

 

 

 

Table 6.12.  Data/Frame Model Activities for the Hurricane Katrina Situation 

DFM Nodes Action DFM Nodes Action 

Initial Frame On Comparing Frame Off 

Elaborating Frame On Seeking Frame On 

Questioning Frame On Re-framing On 

Preserving Frame On Framing On 
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6.3 Statistical Analysis and Discussion 

NTN times computed from the generated start and end times of each scenario 

were used in the statistical analysis. PST was not used in the statistical analysis because 

the thinking time for each state was captured by its NTN time. Differences and, in some 

cases, similarities among the generated sensemaking times and thinking paths prompted 

the following research questions:  

 Do different sensemaking processes vary in their sensemaking times due to 

complexities? 

 What is the classification of Hurricane Katrina’s complexity? 

In answering these research questions, both descriptive and inferential statistics were 

conducted. 

6.3.1 Descriptive Statistics 

Statistical Analysis Software (SAS) by SAS Institute Incorporated (Montgomery, 

2009) was used as the statistical tool for the data analysis. The mean NTN times and their 

standard deviations for the four different scenarios, including HK, were calculated. Their 

results are represented in Table 6.13. The resulting mean and standard deviation values 

for HK and the HC situation were very similar with a difference between means of 19 

seconds. Similarities were attributed to the values of input data, active DFM nodes during 

transitions and the various paths of transition during the sensemaking process. HK and 

LC had the highest difference between means of 122 seconds. This is indicative of their 

dissimilarity. Further analyses were conducted to find out if they were either statistically 

significant from each other or the same. 
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Table 6.13.  Means and Standard Deviations of Scenarios 

Scenario Mean Node-to-node Time (s) Standard Deviation (s) 

Low Complexity 187 65 

Medium Complexity 254 88 

High Complexity 290 92 

Hurricane Katrina 309 91 

 

 

 

 

6.3.2 Inferential Statistics 

Initial simulations of the four scenarios were each replicated four times, which 

gave a total of 185 observations. The dependent variable in this analysis was NTN time 

(in seconds) and the independent variable was sensemaking information flow represented 

by scenario complexity. The four scenarios, HC, MC and LC situations and HK, served 

as the four levels of the independent variable. 

The hypothesis is that the mean NTN times of the different levels of sensemaking 

information flow; HC, MC, LC and HK, were the same. The alternate hypothesis is that 

at least one mean NTN time of one of the four levels is different from the others. A 

significance level of 0.05 is used as the probability-value (p-value) threshold, upon which 

the hypothesis is being rejected if the generated p-value is less than that of the 

significance level or accepted if it is greater.  

An analysis of variance (ANOVA) was performed on the data using SAS. The 

NTN time output data was checked for the standard model adequacy requirements. These 

were normality, homogeneity, randomness and independence prior to the acceptance or 

rejection of the null hypothesis. A simulation run served as a blocking factor to eliminate 
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the effect of nuisance factors, such as the time of day the simulation was run. The 

blocking technique is also used when the experimenter suspects that treatments are not 

homogeneous. SAS results from a plot of residuals versus sensemaking information flow 

are illustrated by Figure 6.1. This plot has a confirmed homogeneity or constant variance 

of NTN time within all four treatment levels.  

A normality check was performed on the residuals of NTN times using a normal 

probability plot. The plot showed no irregularities without unusualness. The plot of the 

univariate procedure and an accompanying box plot validate the normality of the 

residuals, which is representative of a normally distributed data. A normality plot of the 

normally distributed residuals is illustrated by Figure 6.2. 

 

 

 

 
 

Figure 6.1.  Model Adequacy Test for Homogeneity of Node-to-node Times 
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Figure 6.2.  Normal Probability Plot of Residuals 

 

 

 

 

A test for randomness of data was performed by plotting a graph of residuals 

versus predicted value (Yhat). The plot represented by Figure 6.3 shows nothing unusual. 

The distribution was neither skewed towards a positive nor negative correlation. A final 

model adequacy test for independence was done since inferences are not robust to 

dependence. The normality and randomness tests also require independence of 

experimental units. A plot of residuals versus time represented by Figure 6.4, indicates 

the residuals are independent. There is no need for transformation of the data since the 

residuals in Figure 6.3 are ―structureless.‖  
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Figure 6.3.  Model Adequacy Test for Randomness 

 

 

 

 

 
 

Figure 6.4.  Model Adequacy Test for Independence 
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An ANOVA test was conducted to check the significance of the treatment effect. 

This SAS output is illustrated in Table 6.14. The output table from the general linear 

model (GLM) procedure is comprised of  an ANOVA table and a test of effects table. 

The model is significant with an F (7,177) equal to 7.31and p-value less than 0.0001. The 

low p-value signifies the importance of the model. The test of total treatment effect, 

which is the overall total effect of sensemaking information flow on the NTN time in 

seconds, is significant. Based on the p-value being less than 0.0001, the decision is to 

reject the hypothesis. In conclusion, at least one of the mean NTN times of the treatment 

levels is not the same as the others, meaning that the level of sensemaking information 

flow has an effect on the respective sensemaking times. It can be inferred therefore that a 

situation’s complexity affects its sensemaking time. The simulation run, which is the 

blocking factor, is insignificant with a p-value of 0.9357. This infers that the number of 

simulations and time of day do not matter. The simulation run, however, was not of 

interest to the statistical study. 

 

 

 

Table 6.14.  Output of the General Linear Model Procedure 
Source Degrees of 

Freedom 

Sum of Squares Mean Square F Value P Value 

Model 7 388922.133 55560.305 7.31 <.0001 

Error 177 1345492.050 7601.650   

Corrected Total 184 1734414.184    

Source Degrees of 

Freedom 

Type III Sum of 

Squares 

Mean Square F Value P > F 

Simulation Run 4 6217.3189 1554.3297 0.20 0.9357 

Sensemaking 

Information Flow 
3 382704.8146 127568.2715 16.78 <.0001 
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Knowledge that the level of complexity of the situation affects the sensemaking 

time was not enough since the source of the difference was unknown. A pairwise 

comparison of the difference between NTN mean times was done using a Tukey’s 

Studentized Range Test. This was done to ascertain which of the pairs of means were 

significantly different or the same. The results of this post hoc test are represented in 

Table 6.15. Comparisons significant at the 0.05 significance level are indicated by three 

asterisks.  

 

 

 

Table 6.15.  Tukey's Studentized Range Test for Pairwise Comparisons 
Information 

Flow 

Comparison 

Difference 

Between Means 

Simultaneous 95%  

Confidence Limits 

Indicator of Significant 

Comparisons  

HK  – HC    18.90    -23.74   61.54  

HK  – MC    55.38       6.53 104.23 *** 

HK  – LC 122.38    76.09 168.67 *** 

HC  – HK   -18.90   -61.54   23.74  

HC  – MC    36.48   - 16.82   89.78  

HC  – LC 103.48     52.52 154.45 *** 

MC  – HK   -55.38 -104.23   -6.53 *** 

MC  – HC   -36.48   - 89.78   16.82  

MC  – LC    67.00     10.74 123.27 *** 

LC  – HK -122.38 -168.67 -76.09 *** 

LC  – HC -103.48 -154.45 -52.52 *** 

LC  – MC    -67.00 -123.27 -10.74 *** 

 

 

 

 

The pairwise comparison table above indicates that the complexity of HK was not 

significantly different from that of the HC situation used to validate the simulation model. 

at 0.05 significance level. HK’s complexity was significantly different from those of MC 

and LC situations. These findings place HK statistically in the same complexity as the 

high information flow situation. Interestingly, even though the complexity of the medium 
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information flow situation was significantly different from that of HK and low 

information flow situation, it was not significantly different from that of the HC situation. 

This can be due to the choice of MC information flow. It can also be that there are more 

levels of complexities than the three selected; high, medium and low. Unidentified levels 

may exist under which HC and MC may fall. The complexity of the low information flow 

situation was significantly different from those of high and medium information flow 

situations and HK.  

 

6.4 Chapter Summary 

The statistical analysis of sensemaking simulation data indicates that the test of 

total treatment effect on the NTN time in seconds is significant. The decision is to reject 

the hypothesis of equal mean NTN times among the four levels of information flow, HC, 

MC, LC and HK given a p-value less than 0.0001 and an F (3,177) of 16.78. A pairwise 

comparison of treatment means reveal that HK and HC situation and HC and MC 

situations are statistically the same. The other comparisons between situations, HK and 

LC, HK and MC, HC and LC, and MC and LC, are statistically significantly different.  

The nature of information flow into the HK situation as it occurred places Katrina 

and similar events of that nature into a group of highly complex situations that require 

longer sensemaking times. Each scenario had a noticeably different thinking path that 

was indicative of the fact that different situations require different approaches to the 

construction of their meaning and understanding. 
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CHAPTER 7 

Summary, Conclusion and Future Research 

 

7.1 Thesis Summary 

Current human factors research views sensemaking as a qualitative process of 

imparting retrospective knowledge to the understanding of complex or chaotic situations. 

Chapter 1 of this thesis introduced the concept of sensemaking, giving the background 

and definitions. Applications of sensemaking as an aspect of information foraging, as an 

information fusion tool, and as support for situation understanding were discussed. The 

background and possibility of quantifying the process of sensemaking and providing for 

analytical assessments of sensemaking break points and equivocality reduction were 

explored. The use of FSA was adopted based on the representation similarity to the DFM 

addressed in this thesis.  

Literature review on sensemaking, highlighting previous research and works 

dated from 1967 to 2006, were detailed in Chapter 2. Significant models of interest that 

aided in this thesis research are OODA Model, Situation Handling Model, DMSC, DFM 

and the Sensemaking Process Model. Gaps in the existing sensemaking models and 

avenues, and how this research bridges those gaps, were described. 

The cognitive aspects of sensemaking, which tie what people do, the thinking 

processes involved, and the sense they make of it, were explored with simulation 

construction in Chapter 3. This chapter also described the challenges associated with the 

design of simulation models for a sensemaking process. Difficulty associated with the 
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distinction between knowing and doing were stressed. Effects of our personal and self-

reflexive constructs on the definition of a sensemaking process and its representation for 

a computer simulation modeling were discussed. Challenges associated with the ability to 

capture and represent the individual and/or team expertise were examined in the chapter, 

detailed by the theory of expertise for building simulation models for a sensemaking 

process.  

The idea behind analytical modeling of sensemaking as a cognitive process was 

discussed in Chapter 4. The HK situation was described as a case study. DFM was 

identified as a model for quantitative modeling of a complex situation and six 

sensemaking functions, along with temporal paths linking the functions, were noted. The 

concepts and elements of FSA were discussed with respect to DFM. This led to the 

conceptual framework and computational model for FSA-DFM. An illustrative 

application of the conceptual framework to HK was emphasized. 

A computational model known as HSM was developed from the principles of 

DFM-FSA in Chapter 5. HSM is a prototype for sensemaking simulation based on DFM 

theory. LabVIEW was used as the simulation software for the development of HSM. 

HSM is a tool that supports a sensemaker during interpretation of a complex hurricane 

situation. It mimics the thinking paths and cognitive delay times of a sensemaker and 

recommends plausible causes of action through simulation.  

Chapter 6 presents anecdotal, statistical evaluations with output data generated 

from the HSM data log file after each simulation. The analyses were each replicated four 

times to give a total number of 185 observations. A performance metric using NTN time 
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in seconds and four levels of problem complexity were analyzed. The results show a test 

statistic F (3,177) of 16.78 and a p-value less than 0.0001. A post-hoc analysis of the 

observations produced statistically similar means for HK and the HC scenario and the HC 

and MC scenarios.  

 

7.2 Conclusion 

A simulation model for DFM was achieved by using FSA. FSA is an abstract 

machine that has its foundations in state transitions. DFM nodes are very similar to states 

in a FSA and this contributed to the effective modeling of the DFM. FSA introduced a 

dimension of analytical measurements into the model of DFM, which is a generic 

qualitative model. The combined theories of DFM and FSA were used in the 

development of the Hurricane Sensemaking Machine (HSM). HSM is a production rule-

driven support tool that was developed to validate DFM-FSA simulation and quantify the 

qualitative process sensemaking. Effective operation of HSM will require some level of 

expertise. This will be seen in the foraging of input data for the attributes setting, general 

operation of the automaton and interpretation of output log for analyses and inferences.  

Results from the simulation were significant at a 0.05 significance level resulting 

in the decision to reject the hypothesis that the means of the NTN times in seconds are 

the same across all four levels of complexities. A significantly low p-value of less than 

0.0001 for the levels of complexities HC, MC, LC and HK led to the conclusion that at 

least one of the mean NTN times of the different levels of complexities was different 

from the others. The lowest recorded sensemaking time of 1,175 seconds was in the 
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initial simulation run of the LC scenario, whereas the highest was recorded in the fourth 

simulation run of HK at 3,887 seconds.  

Overall, basic research findings indicate that sensemaking can be analytically 

quantified via cognitive simulation. Based on DFM-FSA, sensemaking can be 

constructed as a cognitive network and thinking (sensemaking) time can be mimicked by 

simulation. It is inferred in the analysis that problem complexity influences the 

sensemaking times of situations. The relationship between these two variables is linearly 

proportionate with sensemaking time, increasing as problem complexity increases. It can 

be said that a HC situation, such as HK will have a longer sensemaking time compared to 

a LC situation. This is illustrated in the below average sensemaking times (Figure 7.1) of 

2,612.8, 1,523, 1,307.8 and 3,774.2 seconds for HC, MC, LC and HK scenarios, 

respectively.  

 

 

 

 
 

Figure 7.1.  Plot of Mean Sensemaking Times for Levels of Complexity 
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7.3 Future Work 

Future research will include the extension of the quantitative model to capture 

group or collaborative sensemaking processes by upgrading the model to depict the 

thinking time of team members. The model will also be extended to consider the 

sensemaker’s behaviors such as biases, prejudices, values and variations in problem 

perception, otherwise known as equivocality in sensemaking. The computational model 

will be extended to incorporate realistic human experts from various work domains to 

generate sets of robust and rich production rules, which will encapsulate different 

sensemaking instances. Finally, mental models and results in cognitive processing times, 

for typical daily thinking tasks from cognitive neuroscience models, will be investigated 

and introduced into the simulation to capture the time dynamics. 
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APPENDIX 

 

Table 1.  Information Flow for Simple Complexity Scenario 
Stage Attributes Input Settings Stage Attributes Input Settings 

1 Wind speed = 25mph 

Sea surface temperature = 68⁰F 

Storm tide = 0ft 

2 Wind speed = 40mph 

Sea surface temperature = 82⁰F 

Storm tide = 2ft 

3 Wind speed = 39mph 

Sea surface temperature = 82⁰F 

Storm tide = 2ft 

Rain depth = 8in 

4 Wind speed = 84mph 

Sea surface temperature = 83⁰F 

Storm tide = 4ft 

Rain depth = 9in 

Storm surge = 4ft 

5 Wind speed = 10mph 

Sea surface temperature = 75⁰F 

Storm tide = 1ft 

Rain depth = 4in 

6 Wind speed = 10mph 

Sea surface temperature = 69⁰F 

Storm tide = 0ft 

Rain depth = 3in 

7 Wind speed = 10mph 

Sea surface temperature = 69⁰F 

Storm tide = 0ft 

Rain depth = 2in 

  

 

 

 

Table 2.  Information Flow for Medium Complexity Scenario 
Stage Attributes Input Settings Stage Attributes Input Settings 

1 Wind speed = 60mph 

Sea surface temperature = 84⁰F 

Storm tide = 3ft 

Storm surge =3ft 

2 Wind speed = 70mph 

Sea surface temperature = 85⁰F 

Storm tide = 3ft 

Storm surge =4ft 

3 Wind speed = 88mph 

Sea surface temperature = 88⁰F 

Storm tide = 6ft 

Rain depth = 14in 

Storm surge = 7ft 

No. of deaths = 10 

4 Wind speed = 67mph 

Sea surface temperature = 82⁰F 

Storm tide = 2ft 

flood depth = 2ft 

Storm surge = 3ft 

No. of deaths = 12 

5 Mechanical systems & infrastructural 

damage rate = 60% 

No. of security breaches = 2 

No. infectious disease victims = 11 

No. of deaths = 15 

Level of utility cut-off = 70% 

6 Mechanical systems & infrastructural 

damage rate = 62% 

No. of security breaches = 3 

No. infectious disease victims = 12 

No. of deaths = 17 

No. homeless victims = 100 
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Table 3.  Information Flow for High Complexity Scenario 
Stage Attributes Input Settings Stage Attributes Input Settings 

1 Wind speed = 90mph 

Storm surge =8ft 

Expert ratings = 3 

NOAA storm ratings = 3 

Rain depth = 15in 

Sea surface temperature = 92⁰F 

Storm tide = 6ft 

2 Wind speed = 112mph 

Storm surge =10ft 

Expert ratings = 4 

NOAA storm ratings = 4 

Rain depth = 16in 

Sea surface temperature = 94⁰F 

Storm tide = 8ft 

3 Wind speed = 135mph 

Storm surge =12ft 

Expert ratings = 5 

NOAA storm ratings = 5 

Rain depth = 26in 

Sea surface temperature = 95⁰F 

Storm tide = 11ft 

Past weather attributes = 4 

No. of deaths = 60 

Rate of false alarm = 2% 

4 Wind speed = 137mph 

Storm surge =12ft 

NOAA storm ratings = 4 

Rain depth = 25in 

Sea surface temperature = 95⁰F 

Storm tide = 10ft  

No. of deaths = 72 

5 Wind speed = 120mph 

Storm surge =9ft 

Expert ratings = 5 

NOAA storm ratings = 3 

Rain depth = 18in 

Sea surface temperature = 91⁰F 

Storm tide = 7ft  

6 Wind speed = 98mph 

Storm surge =7ft 

Expert ratings = 3 

NOAA storm ratings = 4 

Rain depth = 15in 

Sea surface temperature = 88⁰F 

Storm tide = 6ft 

Past weather attributes = 3 

No. of deaths = 74 

Rate of false alarm = 4% 

7 Wind speed = 84mph 

Storm surge =5ft 

NOAA storm ratings =1 

Flood depth = 4ft 

Sea surface temperature = 84⁰F 

Storm tide = 4ft 

No. of deaths = 75 

Mechanical systems & infrastructural 

damage rate = 70% 

No. of security breaches = 10 

No. mechanical systems & infrastructural 

damage = 80 (78 buildings & 2 bridges) 

8 Mechanical systems & infrastructural 

damage rate = 75% 

No. of security breaches = 30 

No. infectious disease victims = 100 

No. of deaths = 80 

Level of utility cut-off = 70% 

9 Mechanical systems & infrastructural 

damage rate = 75% 

No. of security breaches = 30 

No. infectious disease victims = 120 

No. of deaths = 82 

No. homeless victims = 200 
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