
North Carolina Agricultural and Technical State University North Carolina Agricultural and Technical State University 

Aggie Digital Collections and Scholarship Aggie Digital Collections and Scholarship 

Theses Electronic Theses and Dissertations 

2014 

Evaluating Cecal Ligation And Puncture- Induced Kidney Injury In Evaluating Cecal Ligation And Puncture- Induced Kidney Injury In 

Diabetic Meprin Deficient Mice Diabetic Meprin Deficient Mice 

Kasheena Burris 
North Carolina Agricultural and Technical State University 

Follow this and additional works at: https://digital.library.ncat.edu/theses 

Recommended Citation Recommended Citation 
Burris, Kasheena, "Evaluating Cecal Ligation And Puncture- Induced Kidney Injury In Diabetic Meprin 
Deficient Mice" (2014). Theses. 200. 
https://digital.library.ncat.edu/theses/200 

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Aggie Digital 
Collections and Scholarship. It has been accepted for inclusion in Theses by an authorized administrator of Aggie 
Digital Collections and Scholarship. For more information, please contact iyanna@ncat.edu. 

https://digital.library.ncat.edu/
https://digital.library.ncat.edu/theses
https://digital.library.ncat.edu/etds
https://digital.library.ncat.edu/theses?utm_source=digital.library.ncat.edu%2Ftheses%2F200&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digital.library.ncat.edu/theses/200?utm_source=digital.library.ncat.edu%2Ftheses%2F200&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:iyanna@ncat.edu


Evaluating Cecal Ligation and Puncture- Induced Kidney Injury in Diabetic Meprin Deficient 

Mice  

Kasheena Burris 

North Carolina A&T State University 

 

 

 

A thesis submitted to the graduate faculty 

in partial fulfillment of the requirements for the degree of 

MASTER OF SCIENCE 

Department: Biology 

Major: Biology 

Major Professor: Dr. Elimelda Moige Ongeri 

Greensboro, North Carolina  

2014 

 



i 

 

 

The Graduate School 

North Carolina Agricultural and Technical State University 

This is to certify that the Master’s Thesis of 

 

Kasheena Burris 

 

has met the thesis requirements of 

North Carolina Agricultural and Technical State University 

 

Greensboro, North Carolina 

2014 

 

Approved by: 

 

 

  
 

Elimelda Moige Ongeri 

Major Professor 

 

Robert Newman, PhD 

Committee Member 

 

Patrick Martin, PhD 

Committee Member 

 

Dr. Sanjiv Sarin 

Dean, The Graduate School 

 

Mary Smith, PhD 

Department Chair 

 

Rosalyn Lang-Walker, PhD 

Committee Member 



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by 

Kasheena Burris 

2014 



iii 

 

Biographical Sketch 

 Kasheena Burris is a native of Los Angeles, CA. She was born on April 23
rd

, 1989 in 

Compton, CA, the middle child of her parents Kathia Brown and Gerald Burris. Kasheena is a 

loving sibling to her sisters Kyisha and Melissa Burris, and her brothers Ricky Roberts, and 

Ryan and Armond Burris. At the age of thirteen Kasheena and her sister Kyisha moved in with 

their aunt Sandra Williams in Los Angeles, CA. During her middle school years Kasheena 

played basketball and the violin. Kasheena always had a love for sports. While in high school 

Kasheena participated in Med Core Scholars at the University of Southern California as well as 

the Summer Enrichment Program at Pomona College. It was through those programs that she 

became interested in the biomedical sciences.  

 She began her college career studying laboratory animal sciences in 2007 at North 

Carolina Agricultural and Technical State University in Greensboro, NC. During her 

undergraduate career she worked in the Laboratory Animal Resource Unit and as an 

undergraduate research assistant. She learned to properly handle and treat research animals and 

conducted research alongside animal science graduate students. In 2011 she graduated with her 

Bachelor’s degree in Laboratory Animal Science. In the fall of 2012, Kasheena enrolled in the 

MS Biology program at North Carolina Agricultural & Technical State University. She worked 

as a laboratory instructor for an undergraduate-level course (BIOL 100), where she provided 

support for the course lecturer. Kasheena’s thesis research was supported by a Basic Immune 

Mechanisms Training Grant from the National Institutes of Health. 

 



iv 

 

Dedication 

This thesis is dedicated to my family and close friends, those who always believed in me.  

 

 



v 

 

Acknowledgements 

I would like to thank my thesis advisor Dr. Elimelda Moige Ongeri, for her guidance and 

motivating words through my years spent at North Carolina Agricultural and Technical State 

University. She has challenged me to think critically and always put forth my best effort. 

Members of the Ongeri lab past and present: Sabena Conely, Barry Martin, Shakiri Jones, 

Jasmine George, and Jean-Marie Niyitegeka. They welcomed me into the lab and took the time 

to help and guide me through my research. I am grateful for the feedback and support from 

members of my thesis committee, Dr. Robert Newman, Dr. Patrick Martin, and Dr. Rosalyn 

Lang-Walker. Additionally, I would like to thank the Biology Department for financial support 

through the NIH T32 (Basic Immune Mechanisms) Training Grant. 

 My close friend Sabrina Hagood was always there to provide a listening ear and good 

laugh when I felt overwhelmed with my studies. I would also like to thank my close friends back 

at home in California, Tramon Steele, Yvette Perez, for continuing to push and motivate me. 

Lastly, I would like to thank my aunt Sandra Williams, my sister Kyisha Burris, my brother 

Ricky Roberts, and my mother. They have always inspired me to achieve the goals that I set for 

myself and remain in my corner.  

 

 



vi 

 

Table of Contents 

List of Figures……………………………………………………………..…….………………viii 

Abbreviations and Symbols..………………………………………………………….……...…..ix 

Abstract………………………………………………………………………………………..…..2 

CHAPTER 1 Introduction……………………………………………………………………...….3 

CHAPTER 2 Literature Review 

2.1 Diabetes ……………………………………………………………………………….5 

2.1.2 Complications of Diabetes……………………………………….………….6 

2.2 Diabetic Nephropathy……………………………………………………………..…..6 

2.2.1 Histology of Diabetic Nephropathy…………………………………..……..7 

2.2.2 Role of Mesangial Cells in Diabetic Nephropathy…………...………….….9 

2.2.3 Signaling Pathways involved in Extracellular Matrix Metabolism………..10 

2.2.4 Sepsis and the Immune Response………………………………….……....11 

2.3 Meprins……………………………………………………………………………....13 

 2.3.1 Meprin Structures………………………………………………………….14 

2.3.2 Meprin Substrates…………………………………………………….........14 

2.3.3 Meprins and Diabetic Nephropathy………………………………………..15 

2.3.4 Meprins and CLP Sepsis………………………………..………………….15 

CHAPTER 3 Methodology………………………………………..………………..……………17 

3.1 Reagents………...…………………………………………………………...17 

3.2 Experimental Animals.……………..…………………………..……………17 

3.3 Induction of Diabetes in Mice…...………....………………………………..18 

3.4 Cecal Ligation and Puncture…………………………………………………………18 



vii 

 

3.5 Tissue Collection and Analysis………………………………………………19 

3.6 Blood Urea Nitrogen Assay…………………………………………….……19 

3.7 Fractionation of Kidney Proteins………………………………………….…20 

 3.8 Western Blot Analysis……………………………………………………….21 

3.9 Statistical Analysis………………………………………………………..….22 

CHAPTER 4 Results…………………………………………………………………………….23 

4.1 Blood Glucose Levels…………………………………………………….….23 

4.2 WT Pre- vs. Post-Diabetic Body Weights ……………………...…………...23 

4.3 WT BUN Levels Pre- vs. Post-CLP……………………...………………….24 

4.4 αKO BUN Pre- vs. Post-CLP …………..….……...……………..………….25 

                        4.5 WT BUN levels non-diabetic vs. Diabetic ……………....……………….....25 

4.6 Serum Creatinine Levels ………...…………………………………………..26 

4.7 CLP Mortality Rates…………………………………………………………26 

4.8 Genotype CLP Mortality Rates………………………………………………27 

CHAPTER 5 Discussion and Future Research………………………………………………….28 

References……………………………………………………………………………………….30 

 

 

  



viii 

 

List of Figures 

Figure 1. Adjusted incident rates of ESRD due to diabetes, by age, race, & 

ethnicity…………………………………………………………………………………....7 

Figure 2. Schematic of Sepsis……………………………………………………………12 

Figure 3. WT and αKO 10 Day Glucose Measurements ……..………………...……….23 

Figure 4. WT body weights 0 weeks diabetic vs. 4 Weeks diabetic……………………..24 

Figure 5. WT BUN levels 0 hour and 18 hour CLP………………………………….….24 

Figure 6. αKO BUN levels 0 hour and 18 hour CLP ………………...………………....25 

Figure 7. WT BUN levels non-diabetic vs. diabetic …………………….………...…....25 

Figure 8. Serum creatinine levels in WT mice pre and post CLP ……………………...26 

Figure 9. CLP was associated with a high mortality rate ……………………………....26 

Figure 10. Meprin A deficiency decreased CLP-associated mortality ………………....27 

             



ix 

 

Abbreviations and Symbols 

α   Greek Letter Alpha  

β   Greek Letter Beta  

μg   Micrograms  

μl   Microliter  

μm   Micrometer  

°C   Degrees Celsius  

ARF   Acute Renal Failure  

ANOVA   Analysis of Variance  

BBM   Brush-Border Membrane  

BUN   Blood Urea Nitrogen  

CO2   Carbon Dioxide  

CLP Cecal Ligation and Puncture 

ddH2O   Distilled Deionized Water  

DN   Diabetic Nephropathy  

ECM   Extracellular Matrix  

ELISA  Enzyme-Linked Immunosorbent Assay  

EDTA  Ethylenediamine Tetra-acetic Acid  

ESRD   End Stage Renal Disease  

FDA   Food and Drug Administration  

g   Gram  

G   Gauge  

GFR   Glomerular Filtration Rate  

IgG   Immunoglobulin G  

HEPES 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid  

HRP Horseradish Peroxidase  

kg Kilogram  

KO Knockout  

LPS Lipopolysaccharide  

mg Milligram  

ml Milliliter  



x 

 

M Molar  

mM Millimolar  

mRNA Messenger Ribonucleic Acid  

MyD88 Myeloid Differentiation Factor 88  

NaCl Sodium Chloride  

Na3VO4 Sodium Orthovanadate  

PAGE Polyacrylamide Gels Gel Electrophoresis 

PBS Phosphate-Buffered Saline  

RIPA Radioimmunoprecipitation Assay  

RNA Ribonucleic Acid  

SDS Sodium Dodecyl Sulfate  

SNPs Single Nucleotide Polymorphisms  

STZ Streptozotocin  

x g Relative Centrifugal Force  

TBS Tris-Buffered Saline  

TBS-T Tris-Buffered Saline with Tween 20 

TEMED Tetramethylethylenediamine  

TGF-β1 Transforming Growth Factor Beta 1  

 



2 

 

 

Abstract 

Diabetic nephropathy (DN) is the leading cause of end stage renal disease (ESRD), and is associated 

with high morbidity and mortality rates. Key histological changes observed in DN include 

accumulation of extracellular matrix (ECM) proteins and tubulointerstitial fibrosis. Meprins are 

metalloproteinases that are abundantly expressed in the brush border membranes of proximal kidney 

tubules. Meprins are also expressed in leukocytes (monocytes and macrophages) and podocytes. 

Meprins cleave/degrade extracellular matrix (ECM) proteins such as collagen IV, collagen VI, 

fibronectin, laminin, and nidogen-1 in vitro. Meprins have been implicated in the pathology of DN. 

Sepsis is a complex medical condition, where the entire body undergoes an inflammatory state 

and the presence of a known or suspected infection leads to severe consequences such as 

multiple organ failure. Acute renal failure (ARF) is a common complication of sepsis. The 

objective of this study was to evaluate cecal ligation and puncture (CLP)-induced sepsis in meprin 

deficient mice with type 1 diabetes as a co-morbidity. Low dose Streptozotocin (STZ) was used to 

induce type-1 diabetes in wild-type (WT) C57BL/6 mice which express high levels of both meprin A 

and meprin B, and meprin α knockout mice on a C57BL/6 background, which are deficient in meprin 

A. Cecal ligation and puncture was performed 4 weeks post STZ injection. Blood was collected pre 

and post CLP to evaluate blood urea nitrogen (BUN) levels. The mice were sacrificed 18hr post CLP 

and kidney tissue processed for proteomic analysis. BUN levels were significantly higher in CLP 

mice and meprin α knockout mice had lower mortality rates in comparison to wild-type mice. The 

results show that meprin deficiency protected mice from kidney injury associated with CLP, 

suggesting that meprins play a role in kidney injury following CLP-induced sepsis.  
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CHAPTER 1 

Introduction 

Diabetes is the most rampant endocrine disease and affects millions of Americans alone. 

Diabetic nephropathy (DN) is one of the major microvascular complications of diabetes and it is 

associated with a rise in the urinary albumin excretion (UAE) rate and abnormal renal function. 

Currently, changes in albuminuria are considered a hallmark of onset or progression of diabetic 

nephropathy. Approximately 20–30% of patients with type 1 or type 2 diabetes develop evidence 

of nephropathy (Ailing Lu and Anupam Agarwal 2011). Diabetic nephropathy is the leading 

cause of end stage renal disease (ESRD). Meprins are metalloproteinases that are highly 

expressed in the brush border membranes (BBM) of proximal kidney tubules (Bond & Beynon, 

1995; Kounnas et al., 1991). The self-associating homo-oligomeric complexes of meprin A are 

secreted as latent proteases (containing the prosequence) and can move through extracellular 

spaces in a non-destructive manner, and deliver a concentrated form of this metalloproteinase to 

sites that have activating proteases, such as site of inflammation, infection or cancerous growth. 

Thus, meprin structures provide means to concentrate proteolytic activity at the cell membrane 

(Bond & Beynon, 1995; Kounnas et al., 1991). Meprins have been shown to cleave ECM 

proteins such as collagen IV, collagen VI, fibronectin, laminin, and nidogen-1 in vitro (Banerjee 

& Bond, 2008; Kaushal et al., 1994; Kohler et al., 2000; Kruse et al., 2004). 

Sepsis is a complex medical condition, where the entire body undergoes an inflammatory 

state and the presence of a known or suspected infection leads to severe consequences such as 

multiple organ failure (Bone et al., 1992). Acute renal failure (ARF) is a common complication 

of sepsis and carries an ominous prognosis. Mortality was reported higher in patients with septic 

ARF (74.5%) than in those whose renal failure did not result from sepsis (45.2%) (Vriese, 

file:///K:/Biology%20Thesis/Thesis%20Draft%20Ongeri%20Revised.docx%23_ENREF_1
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2003a). Although studies have been conducted, the exact pathogenesis of diabetic nephropathy is 

complex and not completely understood.  Identifying anomalies of kidney function in the early 

stages of diabetic nephropathy is vital to developing an ideal treatment and cure. The objective of 

this research was to evaluate the role of meprins in the kidney injury associated with CLP-

induced sepsis using a meprin α deficient mouse model.  
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CHAPTER 2 

Literature Review 

2.1 Diabetes  

Diabetes is a chronic systemic disease characterized by high levels of glucose in the 

blood. Types 1 and 2 diabetes mellitus together affect more than 20 million Americans and rank 

as the sixth leading cause of disease-related death in the United States (Abdin et al., 2010; A. Red 

Eagle et al., 2005; Wada & Makino, 2013). People with diabetes have high blood glucose levels 

due to either the lack of insulin production by the pancreas or the inability of cells to process 

insulin. Patients with high blood sugar will typically experience polyuria (frequent urination), 

they will become increasingly thirsty (polydipsia) and hungry (polyphagia). In the body, the 

metabolic hormone insulin is imperative to blood glucose homeostasis. Insulin is produced by 

pancreatic β cells in the body(H.M. Wagner E., Bloom D., and Camerini D, 1998).  

The onset of type-1 diabetes is directly linked to the malfunction of these pancreatic β cells in the 

body. People usually develop type 1 diabetes before their 40th year, often in early adulthood or 

teenage years. Type 1 diabetes requires treatment with insulin or transplantation of pancreatic b 

cells. Patients with type 1 diabetes will need to take insulin injections for the rest of their 

life(H.M. Wagner E., Bloom D., and Camerini D, 1998). They must also ensure proper blood-

glucose levels by carrying out regular blood tests and following a special diet. By contrast, the 

majority of the diabetic population has type 2 diabetes, which is not insulin-dependent. In most 

cases this form of diabetes does not require insulin therapy. Type 2 diabetes is characterized by 

persistent hyperglycemia, impaired glucose tolerance, glomerular hyperfiltration, and 

progression of albuminuria, ultimately leading to renal injury(Schena, 2005). 
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The prevalence of diabetes is projected to increase from 171 million in 2000 to 366 

million in 2030, as a result of growth, aging, urbanization, and physical inactivity (Wild et al., 

2004). Type-1 and type-2 diabetes continue to increase on an epidemic scale and have become a 

major public health concern globally. Identifying new therapeutic targets are critical to 

suppressing this epidemic.   

2.1.2 Complications of Diabetes Diabetes is associated with several complications.  

These include: weight loss, polyuria, hypertension, blurred vision and diabetic nephropathy 

(DN). 

2.2 Diabetic Nephropathy 

Diabetic nephropathy is one of the most severe microvascular complications of diabetes 

mellitus and is also a major cause of end-stage renal disease(Schena, 2005). Diabetic 

nephropathy is associated with albuminuria, proteinuria and reduction in glomerular filtration 

rate (Ching Ye Hong, 1998). The elevated levels of serum creatinine and blood urea nitrogen are 

considered to be an index of diabetic nephropathy. In the glomeruli, mesangial cells are 

considered to be a primary target for the insult induced by increased glomerular capillary 

pressure and play a crucial role in the glomerular trafficking of plasma proteins, their deposition, 

and extracellular matrix (ECM) protein accumulation within the mesangium (Luca Paris, 2008). 

This leads to the development and progression of glomerular sclerotic lesions in various 

glomerular diseases such as diabetic nephropathy. The  thickening  of  basement  membranes  in  

capillaries  and  small  vessels  of  diabetic  patients  is considered  to  be a characteristic 

histological  finding in diabetic nephropathy (Rafel  Sim, 1996). 

Ethnic disposition to ESRD varies greatly across different racial groups. In figure 1 

shown below, both the rates of incident of ESRD caused by diabetes and their growth over time 
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vary widely by age and race/ethnicity (Health, 2013). Among whites age 30–39, for example, the 

rate (adjusted for gender) has increased just 3.5 percent since 2000, reaching 37 per million in 

2011. For blacks/African Americans of the same age, in contrast, the rate has increased 72 

percent since 2000, to reach 136 per million. Different patterns are seen among older populations 

in the same figure. The 2011 rate of incident ESRD due to diabetes among whites age 50–59 is 

nearly the same as in 2000, while rates have fallen 27 and 50 percent, respectively, among 

blacks/African Americans and Native Americans of the same age(Health, 2013). The wide 

variation of incidence of ESRD caused by diabetes is not fully understood.  

 

Figure 1. Adjusted incident rates of ESRD due to diabetes, by age, race, & ethnicity. 

2.2.1 Histology of Diabetic Nephropathy Diabetic nephropathy development is 

characterized by the progressive change in kidney function. This change occurs in series of 

stages. During the initial stages, diabetics experience hyperglycemia and glomerular 

hyperfiltration(Ayo, 1990).  Subsequent stages include thickening of the glomerular basement 

membrane, mesangial cell expansion, proteinuria, acute and severe hypertension, and the 



8 

 

 

eventual decline in glomerular filtration rate (GFR). These stages ultimately lead to end stage 

renal disease (ESRD) (Ching Ye Hong, 1998). It should also be noted that the loss of renal 

functionality leads to a decline in nephrons and accumulation of extracellular matrix (ECM). 

ECM abundance has been linked to upregulation of transforming growth factor-β (TGF-β), a 

fibrogenic cytokine (Eddy & Neilson, 2006; Lan, 2011). Production of TGF-β stimulates ECM 

synthesis while inhibiting degradation (Lan, 2011). Treatment with anti-TGF-β in db/db mice, a 

mouse model of type-2 diabetes showed decreased glomerular basement membrane thickening 

and mesangial matrix accumulation (Chen et al., 2003). Extracellular matrix buildup in the 

diabetic kidney surpasses degradation and initiates glomerulosclerosis and tubulointerstitial 

fibrosis (Chen et al., 2003).  

Hyperglycemia also causes an increase in the synthesis of fibronectin, laminin, and type 

IV collagen in glomerular mesangial cells. Laminin,  an  adhesive  glycoprotein,  is  the  main  

non-collagenous constituent  of  the  basement membrane and is up regulated in diabetic patients 

(Rafel  Sim, 1996).  In recent  years,  biochemical  and  immunohistochemical  approaches  have  

been developed  to  characterize  the  changes  of  laminin  in  basement  membrane and  

alterations  of  the  metabolism  and  distribution of  this  protein  have  been  described  in  

diabetic  animals  and  also  in  humans (Rafel  Sim, 1996). Fibronectin is involved in 

coagulation, platelet formation, tissue repair, and may reduce erythrocyte deformity and 

filterability in diabetic patients (Ching Ye Hong, 1998). Glomerular mesangial cells are 

considered to be exposed to the stretch stress due to glomerular hypertension and are found to 

produce the excess amount of extracellular matrix (ECM) proteins including fibronectin when 

exposed to the mechanical stretch. This is important because increases in mesangial cell 
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proliferation and extracellular matrix proteins, such as  fibronectin , ultimately result in 

thickening of the glomerular basement membrane (Ailing Lu & Anupam Agarwal, 2011). 

Understanding the pathogenesis of diabetic nephropathy, along with its complications, in the 

early stages is necessary to develop targeted therapies to detect alterations in kidney function. It 

remains to be fully defined as to which pathways in diabetic complications are essentially 

protective rather than pathological, in terms of their effects on the underlying disease process. 

Today, clinical indicators of diabetic nephropathy include blood urea nitrogen (BUN), 

proteinuria, serum creatinine, and glomerular filtration rate (GFR) measurements to asses kidney 

function(Bluestone, 2010).  

2.2.2 Role of Mesangial Cells in Diabetic Nephropathy In the glomeruli, mesangial 

cells are considered to be a primary target for the insult induced by increased glomerular 

capillary pressure and play a crucial role in the glomerular trafficking of plasma proteins, their 

deposition, and extracellular matrix (ECM) protein accumulation within the mesangium (Luca 

Paris, 2008). Secretion of ECM proteins by mesangial cells could thus, lead to the development 

and progression of glomerular sclerotic lesions in various glomerular diseases such as DN. The  

thickening  of  basement  membranes  in  capillaries  and  small  vessels  of  diabetic  patients  is 

considered  to  be a characteristic histological  finding in DN (Rafel  Sim, 1996).  

Fibronectin is involved in coagulation, platelet formation, tissue repair, and may reduce 

erythrocyte deformity and filterability in diabetic patients (Ching Ye Hong, 1998). It is believed 

that mesangial cell proliferation and extracellular matrix accumulation play crucial roles in early 

renal hypertrophy and later glomerular sclerosis in diabetic nephropathy. Mesangial cells excrete 

more extracellular proteins under high glucose conditions, but the mechanism behind this is not 

understood. Glomerular mesangial cells are considered to be exposed to the stretch stress due to 
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glomerular hypertension and are found to produce the excess amount of extracellular matrix 

(ECM) proteins including fibronectin and laminin when exposed to the mechanical stretch (Luca 

Paris, 2008). This is important because increases in mesangial cell proliferation and extracellular 

matrix proteins, including  fibronectin , ultimately result in thickening of the glomerular 

basement membrane (Ailing Lu & Anupam Agarwal, 2011). This ultimately leads to impaired 

renal function.  Previous studies have demonstrated that high glucose levels stimulated 

mesangial cell proliferation and fibronectin expression leading to extracellular matrix deposition. 

Laminin,  an  adhesive  glycoprotein,  is  the  main  non-collagenous constituent  of  the  

basement membrane and is up regulated in diabetic patients.  In recent  years,  biochemical  and  

immunohistochemical  approaches  have  been developed  to  characterize  the  changes  of  

laminin  in  basement  membrane and  alterations  of  the  metabolism  and  distribution of  this  

protein  have  been  described  in  diabetic  animals  and  also  in  humans (Rafel  Sim, 1996). 

The most  widely  used  marker  for  laminin  metabolism in  humans  is  the  LPl  fragment  and  

its  assay  in serum  has  proved  useful  in  the  monitoring  of  patients  with malignancies  and  

liver  disease. These pathways ultimately lead to increased renal albumin permeability and 

extracellular matrix accumulation, resulting in increasing proteinuria, glomerulosclerosis and 

ultimately tubulointerstitial fibrosis (Luca Paris, 2008). 

2.2.3 Signaling Pathways Involved in Extracellular Matrix Metabolism The protein 

kinases regulate a series of cellular processes during growth and development. Protein kinases 

are an integral part of the machinery that is activated in response to stress, they are essential for 

memory, and they are directly involved in orchestrating cell death (S.S. Taylor, 2006). These 

enzymes are primary targets for therapeutic intervention. Examining the localization and 

signaling between these protein kinases will provide some explanation in the hyper-excretion of 
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these extracellular basement proteins which ultimately lead to renal fibrosis and diabetic 

nephropathy. Several treatment strategies are available to cure diabetic nephropathy or reduce its 

progression. These include modalities used to suppress the renin–angiotensin–aldosterone system 

and control blood glucose levels (Eades, 2009). However, diabetic patients are still reaching end 

stage renal disease at an alarming rate. Conventional therapeutic strategies are not fully 

efficacious in the treatment of diabetic nephropathy, suggesting an incomplete understanding of 

the gene regulation mechanisms involved in its pathogenesis (Eades, 2009). 

2.2.4 Sepsis and the Immune Response Sepsis is a complex medical condition, where 

the entire body undergoes an inflammatory state and the presence of a known or suspected 

infection leads to severe consequences such as multiple organ failure (Bone et al., 1992). Sepsis 

serves as diabetes most common co-morbidity. Acute renal failure (ARF) is a common 

complication of sepsis and carries an ominous prognosis. Mortality was reported higher in 

patients with septic ARF (74.5%) than in those whose renal failure did not result from sepsis 

(45.2%) (Vriese, 2003b). Inflammatory cells infiltrate the kidney, causing local damage by 

release of oxygen radicals, proteases, and further production of inflammatory cytokines. 

Cytokines act as polypeptides regulating inflammatory and immune responses through actions on 

cells (Hewlett M. Wagner E., Bloom D., and Camerini D, 2004). Inflammatory cytokines, 

mainly IL-1, IL-6, and IL-18, as well as TNF-α, are involved in the development and progression 

of diabetic nephropathy (Vriese, 2003b). As shown below in figure 2, the three significant steps 

in sepsis are vasodilation and vascular leak, leukocyte recruitment, and coagulation and 

neutrophil extracellular trap (NET) formation. Local inflammatory mediators, including tumor 

necrosis factor (TNF) and interleukin (IL)-1β, lead to vasodilation (Hewlett M. Wagner E., 

Bloom D., and Camerini D, 2004). This recruits leukocytes to sites of infection and sets off a 



12 

 

 

cascade of leukocyte activation, NET formation, and coagulation (Vriese, 2003b). The 

recognition of these molecules as significant pathogenic mediators in diabetic nephropathy 

leaves open the possibility of new potential therapeutic targets (Hewlett M. Wagner E., Bloom 

D., and Camerini D, 2004). Those suffering from systemic sepsis suffer from acute lung injury, 

acute kidney injury, and even death.  

 

Figure 2. Schematic of Sepsis. 

 

People with diabetes may also be at increased risk of developing acute renal failure 

(ARF). The presence of underlying diabetic nephropathy may predispose to ARF resulting from 

adverse effects such as hypotension, sepsis or exposure to nephrotoxic agents (Ching Ye Hong, 

1998). Understanding the role that the immune system plays in the pathogenesis of diabetic 

nephropathy could lead to identification of new strategies and/or additional therapeutic targets 

for prevention and treatment of diabetic nephropathy (Hewlett M. Wagner E., Bloom D., and 

Camerini D, 2004). 
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2.3 Meprins 

Meprins are cell surface and secreted proteases highly expressed in the brush border 

membranes of proximal kidney tubules (Bertenshaw et al., 2001; Bond, Matters, Banerjee, & 

Dusheck, 2005; Kounnas, Wolz, Gorbea, & Bond, 1991). Meprins are members of the astacin 8 

family of metalloproteases (Bond & Beynon, 1995). Meprin A and meprin B are disulfide-

linked, tetrameric metalloendopeptidases in renal brush border membranes. Meprins are highly 

expressed at the brush border membrane of proximal tubule cells of the kidney and epithelial 

cells of the intestine (Carlos M. Gorbea, 1991). Meprin proteases are composed of two 

evolutionarily related subunits, α and β, that are approximately 50% identical at the amino acid 

level. The subunits are encoded on two genes: the α gene is on human chromosome 6 (mouse 17) 

near the histocompatibility complex; the β subunit on chromosome 18 in both the mouse and 

human genomes (Judith S. Bond, 2005). The self-associating homo-oligomeric complexes of 

meprin A are secreted as latent proteases (containing the prosequence) and can move through 

extracellular spaces in a non-destructive manner, and deliver a concentrated form of this 

metalloproteinase to sites that have activating proteases, such as site of inflammation, infection 

or cancerous growth (Carlos M. Gorbea, 1991). In situ hybridization studies of embryonic and 

adult mice and immunohistochemistry demonstrated the tissue-specific expression of meprin 

subunits in the epithelial cells of kidney and intestine only. Kidney expressions of mouse meprin 

subunits are strain-dependent; all strains express both subunits during fetal stages. Some strains 

increase both subunits after birth (e.g., C57BL/6) while others only express meprin β, and down 

regulate mepin α (e.g., C3H/He) (Judith S. Bond, 2005). Meprin structures provide means to 

concentrate activity at the cell membrane.  
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Researchers also determined the tissue-specificity of meprin subunits in embryonic and 

adult mice. The study established that the expression of kidney meprin subunits is dependent on 

the strain of mice; C57BL/6 mice expresses both α and β meprin subunits whereas adult C3H/He 

lack the meprin α subunit (Kumar & Bond, 2001). Within the kidney, meprin expression is 

normally restricted to the brush-border membrane, however when injury occurs, meprins are 

transferred to other cell compartments. This transfer of meprins to other cellular compartments 

can increase damage to kidney tissue.  

2.3.1 Meprins Structures Meprins are composed of two subunits, alpha (α) and beta (β), 

that are evolutionarily related but differ in function and structure (Bond & Beynon, 1995; Wolz 

& Bond, 1995). The α and β subunits are encoded by two distinct genes on chromosomes 6 and 

18 in humans and 17 and 18 in mice (Bond, Rojas, Overhauser, Zoghbi, & Jiang, 1995). Meprin 

A consists of homo-oligomeric α/α complexes and hetero-oligomeric α/β complexes, while 

meprin B is a homo-oligomer of β/β complexes (Beynon, Oliver, & Robertson, 1996; Bond & 

Beynon, 1995; Gorbea et al., 1993). Meprin β subunits are integral membrane proteins that 

consist of a short cytoplasmic tail and a trans-membrane domain (Johnson & Hersh, 1994; 

Marchand, Tang, & Bond, 1994). The meprin subunits form homo or hetero complexes linked by 

disulfide bonds and can be expressed separately or coordinately (Bond et al., 2005). When the 

subunit α is associated with a β subunit, it remains attached to the cell membrane. 

2.3.2 Meprins Substrates Meprins are highly conserved among different species and are 

capable of degrading a wide range of proteins, such as ECM proteins collagen IV, collagen VI, 

fibronectin, laminin, and nidogen-1 in vitro (Banerjee & Bond, 2008; Kaushal, Walker, & Shah, 

1994; Kohler, Kruse, Stocker, & Sterchi, 2000; Kruse et al., 2004). Both α and β subunits have 

specific substrates that are capable of being degraded such as bradykinin (Bertenshaw, Villa, 
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Hengst, & Bond, 2002) for meprin A and gastrin (Bertenshaw et al., 2001) , orcokinin 

(Bertenshaw et al., 2002), pro-inflammatory cytokines (Marchand et al., 1994; Norman, Matters, 

Crisman, & Bond, 2003), E-cadherin (Huguenin et al., 2008) and protein kinases (Chestukhin, 

Litovchick, Muradov, Batkin, & Shaltiel, 1997) for meprin B. Meprins also cleave parathyroid 

hormone (Yamaguchi, Fukase, Sugimoto, Kido, & Chihara, 1994), biologically active peptides 

(Kohler et al., 2000; Sterchi, Naim, Lentze, Hauri, & Fransen, 1988) and chemokines. The 

localization of meprins at the interface with the external environment, at leukocytes at 

inflammatory sites, and in response to bacterial infections implicates them in host defense.  

2.3.3 Meprins and Diabetic Nephropathy Meprins have been linked with a variety of 

pathological conditions such as ischemia-reperfusion, induced acute renal failure, diabetic 

nephropathy, and fibrosis. Other studies demonstrate that low levels of meprin A are associated 

with the development of chronic nephropathy and fibrosis in animal models of diabetes (Bond et 

al., 2005; Mathew et al., 2005). Researchers used polymerase chain reaction to determine 

variations in the meprin β gene in Pima Indians, a Native American tribe with significantly high 

rates of type 2 diabetes and diabetic nephropathy (A. R. Red Eagle et al., 2005). This critical 

study revealed 19 single nucleotide polymorphisms (SNPs) in the meprin β gene, suggesting that 

there are genes that make individuals susceptible to diabetic nephropathy (A. R. Red Eagle et al., 

2005). Urine samples were collected from premenopausal women with histories of urinary tract 

infections (Bond et al., 2005). Researchers found that women with acute urinary tract infections 

had high or very high levels of meprin in the urine (Bond et al., 2005). 

2.3.4 Meprins and Cecal Ligation and Puncture Induced Sepsis Sepsis is a disorder 

initiated by excessive activation of innate immunity. It is a serious medical problem particularly 

in patients in the intensive care unit (ICU)
 
where it is the second leading cause of death in non-
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coronary ICU patients. Acute renal injury (AKI) occurs in 20%–50% of septic patients and 

nearly doubles the mortality rate of sepsis (A. R. Red Eagle et al., 2005). There is a growing 

recognition of the need for treatment regimens that target both the early systemic and later 

kidney-specific effects of sepsis in patients. Meprins are also capable of proteolytically 

processing cytokines and chemokines (Hewlett M. Wagner E., Bloom D., and Camerini D, 

2004). For example, meprin A and meprin α are capable of generating biologically active IL-1β 

from its precursor pro-IL-1β (Herzog C, 2009). Recent studies have demonstrated that meprin-α 

knockout mice were protected against lipopolysaccharide (LPS)-induced AKI. This finding 

supported a recent study shown that actinonin administered at the time of induction of sepsis by 

cecal ligation and puncture (CLP) in mice reduced renal injury (Holly MK, 2006). However, this 

study did not address the mechanism of protection. Since current therapy is mostly supportive 

and largely ineffective there is a critical need to uncover new therapeutic approaches because the 

incidence of sepsis-induced AKI is predicted to increase as the population ages (Jandeleit-Dahm, 

2006).  
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CHAPTER 3 

Methodology 

3.1 Reagents  

The following chemicals were purchased from Sigma-Aldrich (St Louis, MO): mannitol, 

sodium citrate, sodium chloride, sodium dodecyl sulfate, streptozotocin (STZ) 

tetramethylethylenediamine (TEMED) and triton X-100. The following chemicals were 

purchased from Fisher Scientific (Pittsburgh, PA): β-mercaptoethanol, acetic acid, ammonium 

persulfate, choloroform, ethylenediaminetetraacetic acid (EDTA), EZ-Run pre-stained rec 

protein ladder, fat-free milk, 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid (HEPES), 

isobutyl alcohol, hydrochloric acid, magnesium chloride, methanol, sodium orthovanadate, tris 

base, and tween 20. The following chemicals were purchased from Bio-Rad (Hercules, CA): 

anti-mouse IgG secondary antibody, anti-rabbit secondary antibody, Bio-Rad’s protein reagent, 

30% acrylamide (29:1 bis solution). Dr Judith Bond from Pennsylvania State University College 

of Medicine (Hershey, PA) donated anti-meprin-A polyclonal rabbit and anti-meprin-B 

polyclonal rabbit antibodies. Anti-PKA mouse monoclonal antibody was purchased from BD 

Biosciences (Greensboro, NC). The following chemicals were purchased from Thermo Scientific 

(Waltham, MA): ethyl alcohol 200 proof (Acros Organics), 100X EDTA solution, 100X halt 

protease inhibitor cocktail and West Pico ® chemiluminescent substrate. 

3.2 Experimental Animals  

Wild-type male mice on a C57BL/6 background were purchased from Charles River 

Laboratories (Wilmington, MA). Meprin α knockout (αKO) mice on a C57BL/6 background 

were bred in Laboratory Animal resource Unit (LARU) at North Carolina Agricultural & 

Technical State University.  All mice were housed in standard cages with 5 mice per cage with a 
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12:12 hour light:dark cycles and were fed a standard mouse chow (Purina Laboratory Chow 

5001; Purina Mills, St Louis, MO) and water ad libitum. All animal protocols were approved by 

the North Carolina A&T State University Institutional Animal Care and Use Committee 

(IACUC). 

3.3 Induction of Diabetes in Mice  

Low dose streptozotocin (STZ) was used to induce type-1 diabetes in 8 week old mice. 

STZ was dissolved in sodium citrate buffer (10 mmol/L, pH 4.5) to make a stock of 7.5 mg/mL. 

STZ was used within 15 minutes of preparing and kept from light to avoid degradation. Mice 

were injected with STZ at 55 mg/kg using a 29G insulin needle, to induce type-1 diabetes. 

Control mice were injected with equivalent volumes of sodium citrate buffer. Injections were 

repeated for 5 consecutive days. All mice were fasted for 6 hours prior to injections. Mice were 

weighed prior to injections and every week thereafter. Blood glucose levels were measured for 

each mouse at 10 days post-STZ injections using a Reli-On
®
  Blood Glucose Monitoring System 

(ARKRAY USA, Minneapolis, MN). STZ-injected mice with a blood glucose level ˃250 mg/dL 

were considered diabetic. 

3.4 Cecal Ligation and Puncture  

Mice were anesthetized with Ketamine (100 mg/kg) and Xylazine (100 mg/kg) dissolved 

in 0.9 % sterile saline solution intraperitoneal. The lower abdominal quadrant of each mouse was 

shaved using an electric trimmer and disinfected with Betadine and Nolvasane 3x. Applied eye 

ointment to the eyes and monitored the intensity of anesthesia by a toe pinch. A midline 

longitudinal incision was made to exteriorize the cecum and contents within the cecum were 

pushed toward the blind end ~15cm from end. The ligated cecum was perforated by a single 

through-and-through puncture with a 21-gauge needle and squeezed to extrude a 1 mm column 
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of fecal material. In sham-operated mice, the cecum was located, but neither ligated nor 

punctured. The cecum was relocated into the abdominal cavity. The abdominal incision was 

closed in two layers with 5-0 nylon sutures running sutures. After surgery, 1 ml of pre-warmed 

0.9% sterile saline solution was injected intraperitoneally. Mice were allowed to recover then 

returned to cages with food and water on pre-warmed deltaphase isothermal pads. Six hours 

post-CLP mice were given Buprenorphrine (0.3 mg/ml) dissolved in 0.9 % sterile saline solution 

intraperitoneal for pain.  

3.5 Tissue Collection and Analysis  

Blood and urine samples were collected at 4 weeks post-STZ injections. Blood samples 

were collected from each C57BL/6 mouse by nicking the tail vein and drawing into 

lithium/heparin tubes (Sarstedt, Newton, NC), which prevent clotting of the blood. Blood was 

collected at 4 weeks post-STZ injections for both male and female mice. Blood samples were 

centrifuged at 10000 x g for 10 minutes at 4˚ C. Plasma was stored at -80 ˚C until used for 

kidney assessments. Spot urine samples were collected by bladder massage. To harvest kidney 

tissue, the mice were put to death by inhalation of CO2. Both left and right kidneys were 

removed and decapsulated. Half of the kidney was wrapped in aluminum foil, snap-frozen in 

liquid nitrogen and stored at -80 ˚C for proteomic analysis. Other sections of each kidney were 

cut and placed into Carnoy’s fixative (60% Methanol, 30% Chloroform, 10% Acetic Acid) 

overnight. The kidney sections were then removed from the fixative and stored in 70% Ethanol 

at 4˚C. Kidney tissue was embedded in paraffin embedded and 5 μm cross sections were cut onto 

Superfrost plus microscope slides (Fisher Scientific, Pittsburgh, PA) for histology. 
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3.6 Blood Urea Nitrogen Assay  

To evaluate kidney function, blood urea nitrogen (BUN) was measured at 4 weeks post-

STZ injections using the stored plasma samples. BUN was assessed using BUN chemistry slides 

(Ortho Clinical Diagnostics, Rochester, NY) and then analyzed on the Vitros DT6011 Analyzer 

(Ortho Clinical Diagnostics, Rochester, NY). 

3.7 Fractionation of Kidney Proteins  

Mice kidneys, previously stored at -80 ˚C were thawed and fractionated into cytosolic-, 

brush border membrane- and structural-enriched fractions. Additionally, samples containing total 

protein content were obtained. Kidneys were homogenized in 9 volumes of Kidney Brush Border 

Homogenization Buffer (2mM Tris HCl, pH 7.0 with 10 mM Mannitol). A 1 M stock of MgCl2 

was added for a final concentration of 10 mM and stirred at 4 ˚C for 14 minutes. The 

homogenate was centrifuged at 15000 x g at 4 ˚C for 15 minutes and the supernatant was 

transferred to a new microcentrifuge tube. The supernatant was centrifuged at 15000 x g at 4˚C 

for 15 minutes; afterward the supernatant was transferred into a new microcentrifuge tube and 

stored at -80 ˚C as the cytosolic-enriched fraction. The pellet was resuspended in 500 μL Kidney 

Brush Border Homogenization Buffer and centrifuged at 2200 x g at 4 ˚C for 15 minutes. The 

supernatant was centrifuged at 2200 x g for 15 minutes and discarded. The pellet was 

resuspended in 100 μL Kidney Brush Border Homogenization Buffer and stored at -80 ˚C as the 

brush border membrane-enriched fraction. Radioimmunoprecipitation Assay buffer (RIPA) (0.02 

mM HEPES pH 7.9, 0.015 mM NaCl, 0.1 mM Triton-X 100, 0.01 mM SDS, 1 mM Na3VO4) 

with 10% 0.5 M EDTA was used to extract total protein mix and kept on ice for 30 minutes. The 

homogenate was centrifuged at 16100 x g at 4 ˚C for 10 minutes and supernatant was transferred 

into a new microcentrifuge tube then stored at -80 ˚C. Supernatant is the total-enriched fraction. 
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Proteins concentrations from all fractions were determined by the Bradford Reagent Protein 

Assay Method, using Bio-Rad’s Protein Assay Reagent (Hercules, CA). 

3.8 Western Blot Analysis  

Western blot analysis was used to quantify the kidney protein levels of meprin A, meprin 

B and the catalytic subunit of protein kinase A (PKAcat). Equal amounts of kidney protein (30-

80 μg) were loaded into 10% prepared Sodium Dodecyl Sulfate Polyacrylamide Gels (SDS-

PAGE) and allowed to separate by electrophoresis for 1 hour at 200 Volts. Proteins from the gels 

were transferred to nitrocellulose membrane (Bio-Rad, Richmond, CA) using a Trans-Blot SD 

Semi-Dry Transfer Cell Unit (Bio-Rad, Richmond, CA). To block nonspecific binding sites, 

membranes were incubated in 8% fatty-free milk in Tris-buffered saline with 0.1% Tween 20 

(TBS-T) for 1 hour at room temperature with gentle shaking. Nitrocellulose membranes were 

incubated with primary antibodies overnight at 4˚C or at room temperature for 1 hour. The 

primary antibodies used were polyclonal rabbit anti-meprin α and β (Hershey Medical Center, 

Hershey, PA), diluted 1:5000 and mouse monoclonal anti-PKAcat (BD Biosciences Greensboro, 

NC), diluted 1:3300. The nitrocellulose membranes were washed three times for 10 minutes at 

room temperature. The secondary antibody mouse IgG (Bio-Rad, Hercules, CA) or rabbit IgG 

(Bio-Rad, Hercules, CA) was added to the nitrocellulose membranes using a dilution of 1:10,000 

overnight at 4˚C or at room temperature for 1 hour. The nitrocellulose membranes were washed 

three times for 15 minutes at room temperature. Nitrocellulose membranes were then exposed to 

Chemiluminescent Substrates (Thermo Scientific, Waltham, MA) and developed on X-Ray film. 

Protein bands were evaluated by densitometry using QuantityOne Software (Bio-Rad, Hercules, 

CA). 
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3.9 Statistical Analysis  

The data were analyzed by two-way ANOVA, with Bonferroni post-test pair-wise 

comparisons using Graph Pad Prism Software (GraphPad Software, La Jolla, CA). P values ≤ 0.5 

were considered statistically significant. 
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CHAPTER 4 

Results 

4.1 Blood Glucose  

Diabetes was confirmed by measuring blood glucose ten days post-STZ injections for 

each mouse. Mice with a blood glucose reading > 250 mg/dL are considered diabetic. Blood 

glucose levels for STZ-injected WT and meprin αKO mice were significantly higher in 

comparison to sodium citrate (NaC) buffer injected mice. Wild-type and meprin αKO  mice 

subjected to CLP surgery had higher glucose levels than sham operated controls. 

 

 

 

 

 

 

 

 

Figure 3. WT and αKO 10 Day Glucose Measurements (**= P<0.01;***=P<0.001)  
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4.2 WT Pre- vs. Post-Diabetic Body Weights 

Body weights were collected at 0 and 4 weeks post STZ injection in WT mice examine 

the effects of diabetes on body weight. 

 

 

 

 

 

 

 

 

Figure 4. WT body weights 0 weeks diabetic vs. 4 Weeks diabetic. (ns= P<0.05;***=P<0.001) . 

4.3 WT BUN Levels Pre- vs. Post-CLP 

Plasma samples were processed 0 and 18 hours post CLP to assay BUN in C57BL/6 (WT) 

mice. BUN levels were higher in the WT mice 18 hours post CLP surgery.  

 

 

 

 

 

 

  

 

Figure 5. WT BUN levels 0 hour and 18 hour CLP (ns= P<0.05;***=P<0.001)  
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4.4 αKO BUN Pre- vs. Post-CLP 

Plasma samples were processed 0 and 18 hours post CLP to assay BUN in αKO mice. BUN 

levels were higher in the αKO mice 18 hours post-CLP surgery.  

 

 

 

 

 

 

 

 

Figure 6. αKO BUN levels 0 hour and 18 hour CLP (ns=P<0.05;**=P<0.01)  
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Figure 7. WT BUN levels non-diabetic vs. diabetic (ns= P<0.05;***=P<0.001).  
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4.6 Serum Creatinine Levels 

 

 

 

 

 

 

 

 

 

Figure 8. Serum creatinine levels in WT mice pre and post CLP. 

4.7 CLP Mortality Rates 

Mortality rates were evaluated for both the sham and CLP induced sepsis mice. 30% of 

mice that had undergone CLP induced sepsis died overnight in comparison to 10% of the sham 

mice. 

 

 

 

 

 

 

Figure 9. CLP was associated with a high mortality rate.  
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4.8 Genotype CLP Mortality Rates 

Mortality rates were determined by genotype. 20% of the C57BL/6 (WT) mice died 18 

hours post CLP surgery in comparison to 10% of αKO mice. 

 

 

 

 

 

 

 

Figure 10. Meprin A deficiency decreased CLP-associated mortality 
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CHAPTER 5 

Discussion and Future Research 

Diabetic nephropathy is the leading cause of ESRD worldwide (Ibrahim & Hostetter, 

1997, Molitch et al., 2003; A. R. Red Eagle et al., 2005; Thrailkill et al., 2009). It has become an 

increasing concern in medicine because it is associated with high mortality and morbidity rates. 

Pathological changes observed in diabetic nephropathy include: accumulation of ECM proteins, 

proteinuria, renal hypertrophy, glomerular basement membrane thickening, mesangial expansion 

and renal fibrosis (Lan, 2011; Maxwell, 2005; Wada & Makino, 2013). Meprin metalloproteases 

are abundantly expressed in the BBM of the kidney and have been shown to degrade ECM 

proteins. Sepsis is a disorder initiated by excessive activation of innate immunity. It is a serious 

medical problem particularly in patients in the intensive care unit (ICU)
 
where it is the second 

leading cause of death in non-coronary ICU patients. There is a growing recognition of the need 

for treatment regimens that target both the early systemic and later kidney-specific effects of 

sepsis in patients. Meprins are also capable of proteolytically processing cytokines and 

chemokine. For example, meprin A and meprin α are capable of generating biologically active 

IL-1β from its precursor pro-IL-1β (Herzog C, 2009). Recent studies have demonstrated that 

meprin-α knockout mice were protected against lipopolysaccharide (LPS)-induced AKI (Hewlett 

M. Wagner E., Bloom D., and Camerini D, 2004).  

Data from this study suggests that meprin deficient mice that had undergone CLP 

induced sepsis had less severe kidney damage than WT mice in comparison to their sham 

counterparts. Both WT and αKO mice had higher BUN levels post CLP surgeries. STZ-injected 

WT mice had higher BUN levels post CLP in comparison to the control group. 
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The mechanisms by which meprins protect against sepsis in diabetic nephropathy are not 

fully understood. A potential pathway is through modulation of ECM metabolism. Further 

studies need to be done with meprin knockout mice to further evaluate mechanisms by which 

meprins protect mice from diabetic kidney damage in septic conditions. Having a suitable model 

for DN is critical in advancing research in DN and ultimately identifying biomarkers that can be 

used for early diagnosis of patients at risk for DN. Early diagnosis is important in providing 

targeted treatments to patients and decreasing both mortality and morbidity rates. 
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