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Abstract 

The main objective of this study was to investigate the application of chemical reactive 

separation (reactive separation, advanced oxidation) in bio-oil upgradation and air pollution 

control. Aspen simulation for reactive distillation of pyrolysis bio-oil for the reactive distillation 

with n-butanol is carried out using RADFRAC module and UNIQUAC property method by 

minimizing Gibbs free energy. The binary and ternary interaction and chemical and phase 

equilibrium (CPE) between the components were studied to determine the azeotropes and 

homogeneous region of mixture. The conversions for the esterification reactions were found to 

be 70-90% for various simulated bio-oils, and water was separated from the ester products. All 

the distillation column parameters such as condenser and reboiler heat duty, number of stages, 

reflux ratio with different inlet conditions etc., were studied to develop a completely energy cost 

minimized RD unit. The removal of nitric oxide (NO) from simulated flue gas in a bubble 

column reactor at atmospheric pressure is investigated using combined aqueous persulfate 

(Na2S2O8) and ferrous ethylenediamine tetraacetate (Fe
II
-EDTA) systems. 0.1 M persulfate 

solution with 0.01 M Fe
2+

 was used as the optimum amount of absorption-oxidation reagents and 

molar ratio of Fe
2+

 and EDTA was found to be 1:1 for maximum NO conversion. NO absorption 

experiments were carried out at 23-70 
0
C, and comparative NO concentration profiles and 

corresponding conversion (%) plotted. The results show significant improvement in NO removal 

compared with thermally and Fe
2+

 activated persulfate systems (at lower temperature 25-30% 

and at higher temperature 5-10%) and almost 100% NO conversion can be achieved at 70 
0
C. 

The detailed chemistry and kinetics are discussed. Iron species’ (Fe
2+

, Fe
3+

 and Fe
II
-EDTA) 

concentrations were measured spectrophotometrically to understand the simultaneous and 

synergistic relationship between persulfate and Fe
II
-EDTA in NO removal.  
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CHAPTER 1 

Introduction 

1.1 General Introduction  

In the 21
st
 century, sustainable energy sources and the environment are the biggest 

concern due to the diminishing world energy reserves and the destruction of global 

environmental sustainability by industrialization of human civilization. Energy drives the world 

economy and is very important for supporting the successful functioning of all sectors of our 

modern society, while its relentless use has directed the world to an environmental disaster. The 

International Panel on Climate Control (IPCC) report predicted that global average temperature 

can increase up to 1.8 °C to 4 °C by the year 2100, which could lead to the extinction of 20-30 % 

of plant and animal species and increase of sea level by 18-59 cm catastrophically impacting 

coastal based communities (IPCC, 2007). Consumption of fossil fuels is responsible for the 

majority of CO2 emissions. The concentration of CO2 continues to grow and is predicted to 

increase to over 390 ppm, or 39 % above pre-industrial point by the end of 2010. Green house 

gas (GHG) emissions must be minimized to less than half the global emission levels of 1990, in 

order to reduce global warming and related climate change impacts (IEA, 2007; IPCC, 2011).  

Renewable energy sources offer the prospect to contribute to social and economic 

progress, energy accessibility, safe and sound energy supply, climate change mitigation, and the 

reduction of negative environmental and health impacts. In general, renewable energy is defined 

as any form of energy obtained from sources that can be replenished by natural processes within 

a reasonable period of time (IPCC, 2007). Biomass is a plentiful carbon-neutral renewable 

energy source and can be obtained from any organic matter of vegetable or animal origin. It is 

available in many forms and from different sources and heat, power, liquid and gaseous fuels can 
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be produced from biomass simultaneously (Bauen et al., 2009). It also serves as a feedstock for 

materials and, when produced and used on a sustainable basis, can significantly reduce GHG 

emissions compared to fossil fuels. Biomass resources are available in most of the countries, , 

rendering biomass a more uniformly spread energy supply option across the globe (Ragauskas et 

al., 2006). 

Bioenergy is presently one of the largest renewable energy sources and is likely to remain 

for the first half of 21
st
 century. On a global basis, for the year 2008, biomass offered about 10 % 

or 50.3 Exajoules (EJ) while other RE sources contributed to about 2.9 % of the total 492 (EJ) 

primary energy supply. However, the majority (roughly 60 %) of bioenergy came from the 

traditional biomass used in cooking and heating purposes in less developed countries. This 

traditional use of biomass creates negative health impacts by producing the high concentrations 

of particulate matter and carbon monoxide, among other pollutants (IPCC, 2011). Careful 

management of bioenergy can contribute incredibly to the global primary energy supply, can 

significantly reduce the green house gas emissions in additions to the other environmental 

benefits. It can deliver improvements in energy security, by replacing imported fossil fuels with 

domestic biomass; create opportunities for economic and social development in rural 

communities; and  offer possibility for using wastes and residues, reducing waste disposal 

problems, and making better use of resources (Bauen et al., 2009). In 2008, transport sector 

contributed about 33 % of total global final energy consumption (294 EJ), while the remaining 

67 % was consumed in buildings, industry and agriculture sectors in the form of heat and 

electricity. However, only 2 % of the energy attributed to the transport sector was in the form of 

biofuels (IEA, 2010). In order to face the challenge of meeting the secure and sustainable energy 
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supply and reduction of green house gas emissions, exponential research and development in the 

field of biofuels is anticipated to play pivotal role in upcoming years.    

Air pollution has become a serious threat to human health and ecology all over the world 

as well as in United States. Continuous increase in the use of fossil fuels in industries and 

automobiles is causing a steady increase in the level of pollutants in the atmosphere. The 

Environmental Protection Agency (EPA) has defined an air pollutant to be “any substance in the 

air that can cause harm to humans or the environment.” Pollutants may be natural or man-made 

and may take the form of solid particles, liquid droplets or gases. The 1990 Clean Air Act 

Amendments (CAAA) lists 188 toxic air pollutants that EPA is required to control. These 

pollutants are divided into various groups, including particulate matter, volatile organic 

compounds (VOCs) and halogen compounds. Also included are more commonly-known 

pollutants such as lead, mercury and asbestos. The Act requires EPA to set air quality standards 

for “criteria pollutants”. Currently, NOX (nitric oxide and its group of compounds) and five other 

major pollutants (ozone, lead, carbon monoxide, sulfur oxides and particulate matter) are listed 

as criteria pollutants. The law also requires EPA to periodically review the standards and revise 

them if appropriate to ensure that they provide the requisite amount of health and environmental 

protection and to update those standards as necessary. 

Since the adoption of Clean Air Act in 1970, while the levels of NO2 and SO2 have 

decreased, the level of NO has actually increased by 20% (Environmental Defense Fund, 2010). 

The combustion of bio-fuel also emits higher NOX compared to petroleum fuels (Kiss, Dimian, 

& Rothenberg, 2007; A. A. Kiss, F. Omota, A. C. Dimian, & G. Rothenberg, 2006). The stricter 

control by state and regulatory agencies for NOX emission warrants the need for efficient and 

inexpensive NO removal technologies that can be easily retrofitted to existing power plants. 
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Currently, popular technologies for NOX abatement include SCR (selective catalytic reduction), 

SNCR (selective non-catalytic reduction), FGR (flue gas recirculation), thermal deNOX etc. All 

of these technologies suffer from some form of drawbacks including high operating and capital 

costs, high temperature and disposal problems. In this respect, NOX removal by aqueous 

scrubbing promises to be an inexpensive and efficient technology for NOX removal. However, 

while SO2 and NO2 are quite easily removed by wet scrubbing mechanisms, NO is much more 

difficult to remove due to the fact that it is very sparingly soluble in aqueous solutions, which 

greatly increases the liquid phase resistance to mass transfer. 

1.2 Biofuel Production 

Biofuels are the liquid and gaseous products obtained from the biomass. Biofuels do not 

produced larger amount of CO2 emission than the quantity consumed by photosynthesis. For this 

reason, biofuels are omitted from the CO2 balance of the Kyoto protocol from the United 

Nation’s climate panel. Replacing fossil fuels with biofuels is considered to advance desirable 

objectives such as energy security, climate protection and growth of energy usage in rural areas. 

Governments around the world have adopted policies to support advance and exploitation of 

biofuel technologies to harvest some of these benefits. In the United States, renewable energy 

standard was legislated as part of the Energy Independence and Security Act of 2007 that 

requires 1.36 x 10
8
 m

3
 of biofuels in transportation fuel mix by 2022 (US-Congress, 2007). 

Biofuels have been generally devided into three different category or ‘generations’ 

depending upon the feedstock they are prepared from and the level of their technical 

development in manufacturing processes (IEA, 2008, 2009). The 1
st
 generation includes the 

biofuels that have their production technology well understood and have already developed 

commercial markets such as the biodiesel produced from oil crops and animal fats, bioethanol 
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prepared from sugar and starch crops, and renewable diesel prepared using biomethane from 

anaerobic digestion of wet biomass. The 2
nd

 generation biofuels have undeveloped biochemical 

or thermochemical technologies including the biodiesel and bioethanol produced by using novel 

feedstocks of oil, starch and sugars; and ethanol, butanol and syndiesel produced from 

lignocellulosic. Finally, the 3
rd

 generation or advanced biofuels include biofuels such as biodiesel 

and bioethanol from algae and hydrogen from biomass. The manufacturing routes for these 

biofuels are at the infant stages of research and are noticeably away from commercialization 

(IEA, 2009; Stocker, 2008). Biofuels from waste material such as agricultural and animal wastes 

is in considerable interest and is the main topic in this work. 

 1.2.1 Biodiesel. Biodiesel is also called fatty acid methyl ester (FAME). It is a clean-

burning, renewable fuel normally obtained from vegetable oils, animal fats, recycled cooking oil 

and waste greases and virtually every waste material from animal and agricultural origin. It is 

biodegradable and non-toxic and free of sulfur compounds making it more clean burning fuel 

than petroleum diesel with lesser emission of smoke, un-burnt carbon and particulate matter, 

sulfur oxides (SOx), and carbon monoxide (CO). It has excellent lubricating properties that 

extend engine life, superior cetane number, flash point compared to conventional diesel and 

acceptable cold filter plugging point (CFPP) makes it very attractive alternative (Graboski & 

McCormick, 1998) (Boehman, 2005; Demirbas, 2005). Currently, there are modifications needed 

in the existing diesel engines to use biodiesel only but when as a blend with petroleum diesel fuel 

is used no such modifications require. The use of biodiesel is recommended by governments 

across the world to (i) improve energy supply security, (ii) reduce greenhouse gas emissions, and 

(iii) boost rural incomes and employments (Bozbas, 2008). Table 1 shows various properties of 

biodiesel in compared to petroleum diesel. From this data it can be deduced that the biodiesel 
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viscosity and specific gravity is higher than the petroleum. The boiling points are almost same 

but the flash point and cetane number (ignition quality) is higher than the petroleum. The 

presence of extra oxygen in the bio-oil yield unconverted hydrocarbon and less CO emissions in 

bio-oil combustion. Except viscosity, cloud and pour points all the property in bio-oil is rather 

good compared to petroleum fuels. That is why; biodiesel is always preferable to petroleum as a 

fuel. 

Table 1 

Comparison between Petroleum Diesel and Biodiesel 

Fuel Property Petroleum Diesel Biodiesel 

Fuel Standard ASTM D975 ASTM D6751 

Fuel Composition C10-C21 HC
a 

C10-C21 FAME
b
 

Kinetic Viscosity,mm
2
/s (at 40 

0
C) 1.3-4.1 1.9-6.0 

Specific Gravity, kg/L 0.85 0.88 

Boiling Point,
 0

C 188-343 182-338 

Flash point,
 0

C 60-80 100-170 

Cloud point,
 0

C -15 to 5 -3 to 12 

Pour point,
 0

C -35 to -15 -15 to 10 

Cetane number (ignition quality) 40-55 48-65 

Stoichiometric air/fuel ratio (AFR) 15 13.8 

Life-cycle energy balance 0.83/1 3.2/1 

a
HC-hydrocarbon; 

b
FAME-fatty acid methyl esters 

1.2.2 Life cycle analysis and current trend. The main advantage of bio based fuels is 

that they are environmental friendly because they have positive life cycle energy balance (3.2 
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units of energy produced per unit of energy consumed) compared to the petroleum diesel (0.83 

unit of energy produced per unit energy consumed). The biodiesel has less CO & CO2 emissions 

as well as other emissions. It has all the properties similar to petroleum diesel (table-5) and can 

be used as a blend with petroleum diesel in the engines and also directly (100%) with minor 

engine modification (A. Kiss, F. Omota, A. Dimian, & G. Rothenberg, 2006). 

 

Figure 1. Life cycle diagram of biodiesel compared to petroleum and US biodiesel production 

compared to European Union (EU) countries. 

1st part of Figure 1 clearly shows that bio fuels are renewable source of energy while the 

petroleum is non-renewable and non-sustainable because of no replenishment of petroleum fuels. 

Also, biofuels emit lot less greenhouse gases and thus mitigating the increase of greenhouse 

gases in Earth's Biosphere. Despite all the advantages the US and world's movement toward a 

bio-based renewable and sustainable energy system is rather slow. 2nd part of the Figure 1 shows 

US slow progress compared to the EU counterpart to bio-oil production. 

1.2.3 Bio-oil production from agricultural and animal waste. To make biodiesel from 

various sources, one can follow these primary ways: (Kiss et al., 2007) 

1. Vegetable oil direct blending 

2. Use of micro-emulsions with short chain alcohols 
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3. Thermal Pyrolysis of agricultural wastes 

4. Hydrothermal Liquefaction of animal waste  

5. Trans-esterification of triglycerides by catalytic reaction 

6. Esterification of fatty acids with alcohols using liquid and solid acid catalysts 

The simplified block diagram of the whole process of biodiesel generation from agricultural and 

animal waste is given in Figure 2. 

 

Figure 2. Process flow-sheet for producing transportation oil (biodiesel) from agricultural and 

animal waste. 

1.2.3.1 Thermal liquefaction and thermal pyrolysis of animal waste. Animal waste from 

animal farms are huge source of renewable energy as potential energy from only swine manure is 

equivalent to almost 2.1% of US annual petroleum energy consumption. In additional, animal 

waste polluts environment and it is required to treat the animal wastes for a clean environment. 

(Theegala & Midgett, 2012; Xiu, Shahbazi, Shirley, & Cheng, 2010). Figure 3 includes a block 

diagram for hydrothermal liquefaction and the temperature effect on product yield. 



11 

 

 

 

Figure 3. Conceptual diagram for the separation and quantification of the hydrothermal 

liquefaction product and effect of temperature on product yield. 

The bio-oil derived from hydrothermal liquefaction is almost similar property as 

petroleum diesel. But the oil has very high viscosity and the liquid also has significant 

corossiveness. That is why further upgradation is required to use it as transportation oil which 

will be discussed later.  

1.2.3.2 Liquefaction of biomass and thermal pyrolysis of agricultural waste. There are 

lots of ways to get bio-oil from agricultural waste residues. The thermal methods includes: direct 

combustion, pyrolysis, gasification and one of thermochemical methods is the hydrothermal 

liquefaction of wet biomass (Toor, Rosendahl, & Rudolf, 2011). Before processing the 

agricultural residues are dried and after treatment they produced bio-mass. The biomass is then 

processed via hydrothermal liquefaction where hemicellulose, cellulose and lignin of the biomass 

is broken down under heat treatment to produce thick crude bio-oil and some solid residue and 

biogas. The carbohydrade and lignin breakdown scheme is given in Figure 4. 
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Figure 4. Carbohydrate and lignin degradation in liquefaction of biomass. 

In Figure 5 products (cradle to grave) from thermal biomass conversion is given as well as fast 

pyrolysis upgrading methods is also shown. 

 

Figure 5. Products from thermal biomass conversion and fast pyrolysis upgrading methods. 
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The end products distribution (liquid oil, solid residue and gaseous products) can vary with the 

pyrolysis methods and the temperature of the process selected.  

1.2.4 The emissions from bio-oil combustion. The emissions (except NOx) from the 

biodiesel (B100) and biodiesel blends (B20 & B80) with conventionsl petroleum diesel is much 

less than the direct petroleum fuels and the Figure 6 shows the comparison between them (A. 

Kiss et al., 2006; Kiss, 2011; Kiss et al., 2007). Also, Table 2 shows the percentage change of 

emissions from petroleum diesel to biodiesel. In a typical analysis of the emissions of biodiesel 

as compared to petroleum diesel it can be seen that all the emissions except NOx is less in 

biodiesel emission. Thus, the study of NOx removal especially nitric oxide (NO) removal from 

the combustion exhaust is very important for the successful implementation of biodiesel instead 

of petroleum diesel. Also, biodiesel has virtually no Sulfur oxides (SOx) emission (100% less in 

Table 2). That is why, biodiesel and biofuels have the potential capability of replacing coal fired 

power plants if implemented in near future.  

 

Figure 6. Comparison of biodiesel combustion with petroleum diesel. 
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Table 2 

Comparison between Various Emissions of Biodiesel and Petroleum Diesel 

Emission Type B20 B100 

Total Unburned Hydrocarbons -20% -67% 

Carbon monoxide (CO) -12%
 

-48% 

CO2 (life cycle production) -16% -79% 

Particulate Matter -12% -47% 

Nitrogen Oxides (NOx) +2% +10% 

Sulfur Oxides (SOx) -20% -100% 

Polycyclic Aromatics (PAH) -13% -80% 

Nitrated PAH's (nPAH) -50% -90% 

 

1.2.5 Production of biodiesel from crude bio-oil. Biodiesel is a mixture of mono-alkyl 

esters of fatty acids that can be produced from viscous and corrosive crude bio-oil by several 

ways. Biodiesel is produced via transesterification reactions where triglycerides react with 

alcohol in the presence of acid catalysts, base catalysts or enzymes or by esterification reaction 

of organic acids with alcohols in presence of acid catalysts. The chemical composition of 

biodiesel depends on the feedstock from which it is produced, as feedstocks of different origin 

have different fatty acid composition (Pinto et al., 2005).  

1. Trans-esterification of triglycerides with short chain alcohols using liquid catalyst: 

This can be done by using acid, base or enzyme based catalysts and the composition of biodiesel 

depend on the content of raw fatty materials (fatty acid groups building triglycerides). But the 

method has significant disadvantages including the corrosiveness of the liquid catalysts. Also, 
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the  liquid catalysts must be neutralized which produce waste salt stream and the presence of free 

fatty acids tend to produce soap as a unwanted byproduct that require expensive separation.  

Typical trans-esterification reaction scheme (Gómez-Castro, Rico-Ramírez, Segovia-Hernández, 

& Hernández-Castro, 2011): 

 

2. Batch wise Esterification of fatty acids using H2SO4 as catalyst: This process is very 

suitable to control the esters with specific carbon content and has uses in cosmetics, 

pharmaceuticals and food industries. But batch process cannot handle very large-scale 

production and this also need very costly neutralization and separation and presence of sulfuric 

acid in biodiesel increase the sulfur emission. 

 

3. Continuous Reactive Distillation (RD) process using solid acid catalysts: The RD 

combines the reaction and separation in one unit and one can shift the reaction equilibrium to the 

desired point by the continuous removal of the products. This process does not produce any 

waste salt stream as all the reactions and separation can be done inside one single unit. Two-step 

reaction scheme for biodiesel production is shown in the following reaction (Gomez-Castro, 

Rico-Ramirez, Segovia-Hernandez, & Hernandez, 2010). 
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As the residence time in Reactive Distillation column is low due to the hydraulic 

constraints, the solid acid catalysts should be very strong acid and they are characterized by their 

Bronsted or Lewis Acidity. Production of biodiesel using solid acid catalysts are not well 

established in industries yet because it is difficult to find a suitable solid acid catalyst and the 

non-ideality of the mixture in reactive distillation column may result in the segregation of the 

mixture into aqueous and organic layer because of the absence of any agitating device in RD 

column.  

 

Figure 7. Schematic diagram for the production of biodiesel in RD column. 

1.2.5.1 Catalysts for reactive distillation (RD). The catalysts investigated till today for 

the solid acid catalyzed reactive distillation is given in Figure 8. 
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Figure 8. Major catalysts investigated and their effects on RD of esterification reaction. 

In the literature different solid acid catalysts including zeolites, ion exchange resins, 

sulfated carbon based catalysts, heteropoly compounds and mixed metal oxides were studied (A. 

Kiss et al., 2006). Zeolites gave  lower conversion compared to non-catalyzed reaction. The ion-

exchange resins gave good fractional conversion but resins are not stable at high temperature. 

The tungstophosphoric acid shows high activity but the acid is soluble in water and that is why 

they are not good choices as catalysts. Sulfated Zirconia (SZ) shows comparative high reaction 

rate and conversion and they are thermally stable and not soluble in water. Also SZ has large 

pore and does not limit the diffusion of fatty acid in the pore. Thus, sulfated zirconia is the most 

suitable candidate for this process.  Another crucially important catalyst characteristic is its 

hydrophobicity. If the catalyst is hydrophilic it will gradually dissolve in water and we will lose 
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costly produced catalysts. Due to this reason, tungstophosphoric acid is not a good catalysts even 

if the conversion is better than the sulfated zirconia catalysts.  

1.2.5.2 Reactive distillation (RD) design. The reactive distillation design for solid acid 

catalyzed reactions is very complicated because of the simultaneous presence of the following 

(A. Kiss et al., 2006): 

1. Chemical and Phase Equilibrium (CPE) 

2. Vapor-Liquid Equilibrium (VLE) 

3. Vapor-Liquid-Liquid Equilibrium (VLLE) 

4. Catalysts Activity and kinetics 

5. Mass Transfer in Gas-Liquid and Solid-Liquid 

6. Adsorption of The Reactants and Desorption of The Products on Catalysts Surface 

Figure 9 shows CPE diagram for esterification reaction in reactive distillation and how 

complicated the design could be. In reactive distillation of bio-oil two phase exists below 100
0
C 

and that is why the operating temperature is always selected over 100
0
C for the RD column (A. 

Kiss et al., 2006).  

 

Figure 9. Equilibrium diagram for dodecanoic acid with 2-ethylhexanol and methanol. 
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Figure 10 shows a conceptual diagram for the FAME production. The flowchart is drawn 

using ASPENPLUS for the purpose of rigorous simulation (Kiss et al., 2007). 

 

Figure 10. FAME production by reactive distillation of esterification reaction. 

UNIQUAC property model is used to combate the non-ideality of the solution. The ester 

produced and the biproduct water and unreacted alcohol is taken away continuously as the 

bottom and top products respectively to shift the reaction equilibrium towards ester formation. 

The reactants (acid and alcohol) is fed at stoichiometric ratio. The reaction takes place in the 

homogeneous phase if the mixture split into two phases. To prevent the formation of two phase 

the inlet feed ratio and the operating temperature of RD column is selected very carefully using 

the information from Chemical and Phase Equilibrium (CPE) diagram. 

The plot found from ASPEN simulation is given in Figure 11. ASPEN permits us to perform 

stage-by-stage calculation and the results can be plotted. 
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Figure 11. Liquid composition, temperature and ester formation profile in a RD column. 

For the kinetic based design bio-oil is considered composed of Tri-, Di-, and Mono-

glycerides (TG, DG, MG resp.) and the following reactions are considered and the kinetic 

constants are given (Noshadi, Amin, & Parnas, 2012): 

 

With this kinetic data the simulated results can be compared to the expermental data. 

Then the effects of various distillation parameter on conversion can be observed for both 

experimental data and simulated data. Steinigeweg, S. et al. observed such plots and in figure- 

plot of fractional conversion vs. reflux ratio is given for the comparison of experimental data and 

the simulated data (Steinigeweg & Gmehling, 2004). 
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Table 3 

Kinetic Constants in Reactive Distillation for exp( )ia

i i

E
k A

RT
= −  

Kinetic constants Conventional
 

Reactive Distillation 

A1 1.52x10
8 

7.46x10
16 

A2 1.47x10
8 

1.00x10
15 

A3 2614.24 6.17x10
8 

Ea1 14700 33870 

Ea2 14200 29850 

Ea3 6400 19470 

 

 

Figure 12. Effect of reflux ratio on conversion for both equilibrium and kinetic-based model. 

1.2.5.3 Key benefits of reactive distillation (RD). From the above discussions, it is clear 

that biodiesel can be produced from crude bio-oil by reactive distillation in presence of solid acid 

catalysts. The main advantages of Reactive Distillation process over other trans-esterification 
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and esterification can be summarized below: (Gomez-Castro et al., 2010; Jantharasuk, Gani, 

Górak, & Assabumrungrat, 2011; A. Kiss et al., 2006; Kiss et al., 2007) 

1. The RD process uses solid acid catalysts. So, sulfur contamination in product and 

subsequent extra SOx emission is free unlike other liquid acid catalyzed methods. 

2. Lower excess alcohol requirement. 

3. Capital investments and operating costs are very low compared to other processes due to 

less unit operation and lower energy consumption. 

4. High productivity (6-10 times of the other processes). 

5. No waste salt stream is generated. 

6. Higher reaction rate and selectivity and avoidance of azeotrope. 

1.3 Nitrogen Oxides (NOx) Control 

NOX is a term ascribed to seven oxides of nitrogen (N2O, NO, N2O2, N2O3, NO2, N2O4, 

N2O5) in combined. NO2 is most prevalent and anthropogenic representative of NOx family and 

actually regulated by Environmental Protection Agency (EPA). Nitric oxide (NO) is also very 

closely related to NO2, as reaction between NO and O2 produces NO2 and NO2 reacts with 

oxygen in the air in presence of UV radiation (from sunlight) to produce ozone and NO, thus the 

two compounds often exist interchangeably in the troposphere. NO can also react with the free 

radicals produced by Volatile Organic Compounds (VOC’s) in presence of UV in the higher 

atmosphere. Although NO2 is the species that is regulated by EPA, emissions of NOX from 

combustion are primarily in the form of NO. 

	�� + �• → �� + �•                                                                                                    (1.1)  

�• + �� → �� + �•																																																																																																																			(1.2)		
�• + �
• → �� + 
																																																																																																																	(1.3)		
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In the atmosphere, the species’ of NOx family are all interconvertible in gaseous, liquid 

and interfacial phase and exists as a mixture of components determined by the reversibility of 

complex interspecies reaction scheme (Owusu & Adewuyi, 2006). NO is rapidly converted to 

NO2 and hence, it is used as the representative for the NOX family and regulated by EPA. 

However, NO should be emphasized equally for the environmental protection measure as it is the 

most sparingly soluble among the species’ of the NOx family and has widespread detrimental 

environmental and health effects. 

1.3.1 Sources of NOx. Although majority of NOx is emitted from automobiles and other 

mobile sources, substantial emissions are also added by such anthropogenic industrial sources as 

electric power plant boilers, industrial boilers, incinerators, gas turbines, reciprocating spark 

ignition and Diesel engines in stationary sources, iron and steel mills, cement manufacture, glass 

manufacture, petroleum refineries, and nitric acid manufacture. Natural sources of nitrogen 

oxides include lightning, forest fires, grass fires, trees, bushes, grasses, and yeasts. From Figure 

6, it is also evident that bio-oil and biodiesel combustion produces higher NOx emission 

compared to petroleum fuel. So, successful implementation of biodiesel as an alternative energy 

also requires successful NOx emission control techniques. Figure 13 shows a graphic portrayal of 

the emissions from NOX sources. 

NOx are produced mainly by three methods in all combustion processes. These are: 

• Thermal NOX: Thermal NOx is produced when oxygen reacts with nitrogen present in the 

combustion environment and the amount of thermal NOx produced is related to the 

nitrogen and oxygen molar concentrations and the temperature of combustion. At lower 

temperature (less than 1300 
0
C) nitrogen is quite inert and does not react with oxygen in 
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the environment. But higher temperature pave the way for the reaction between nitrogen 

and oxygen and small amount of thermal NOx is produced. 

• Fuel NOX: In fossil fuels and bio-fuels, nitrogen molecules are embedded as a building 

block of several compounds. Upon combustion, this molecular nitrogen is released and 

forms “fuel NOX” when reacts with oxygen. 

• Prompt NOX: Prompt NOX is formed from molecular nitrogen in the air combining with 

fuel in fuel-rich conditions which exist, to some extent, in all combustion. This nitrogen 

then oxidizes along with the fuel and becomes NOX during combustion, just like fuel 

NOX. 

 

Figure 13. National NOx emissions by source sectors in 2005. 

1.3.2 Environmental and health effects of NOx. NOX has multiple adverse public health 

and environmental effects. Among them are increasing ground level (tropospheric) ozone 

concentration, acid deposition, drinking water nitrate levels, eutrophication, smog, global 

warming, and respiratory and heart diseases etc. The major environmental and health effects are 

discussed shortly. 
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• Ground level ozone formation: With the help of atmospheric VOC’s, NO and NO2 form 

a cycle which increases the ozone concentration in the troposphere. The interaction 

between NOX, O3 and VOC’s in the atmosphere involves complex non-linear processes 

and is influenced by complex meteorological processes such as temperature, wind 

direction and speed. Thus, it is not a local problem and effects of NOX can be felt in areas 

hundreds of miles away from the emission source. 

• Acid deposition: NOX and SO2 in the atmosphere react with the water present to form 

acids which are carried down to earth by rain and are deposited in water bodies. This has 

adverse effects on aquatic and terrestrial ecosystems, materials, visibility, and public 

health. Nitric acid deposition plays a dominant role in fish kills observed in sensitive 

water bodies. In addition, the increased amount of nitrates in stream water has adverse 

health effects, especially for infants. The added nitrate can remain in water and be 

transported long distance downstream. 

• Eutrophication: is the process in which a particular aquatic system is overloaded with 

nutrients to the point that it increases the primary productivity of the ecosystem. Nitrogen 

is the limiting nutrient for the growth of algae in most coastal waters and estuaries in 

United States. When excessive nitrogen is added accelerated algal growth causes severe 

reduction in water quality causing variety of problems including depletion of oxygen 

needed for fish to survive. Eutrophication decreases the resource value of rivers, lakes, 

and estuaries such that recreation, fishing, hunting, and aesthetic enjoyment are hindered. 

Health-related problems can occur where eutrophic conditions interfere with drinking 

water treatment. 
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• Particulate matter, PM: NOX react with VOC’s in the atmosphere in presence of 

sunlight to form nitrate particles and acid aerosols. Because of their small size nitrate 

particles have a relatively long atmospheric lifetime; these small particles can also 

penetrate deeply into the lungs. In large cities where pollutant emission is high the 

particulate matter and ozone in the atmosphere create a haze which causes visibility 

impairment and a range of other adverse health effects. This is termed as smog which is a 

combination of the words “smoke” and “fog”. It can cause shortness of breath, pain when 

deeply inhaled, wheezing, and coughing. It can cause eye and nose irritation and it dries 

out the protective membranes of the nose and throat and interferes with the body's ability 

to fight infection, increasing susceptibility to illness. 

1.3.3 Government regulations. The United State government has introduced several 

regulatory drivers to reduce NOX concentration in the atmosphere time to time. The Title IV acid 

rain program, established through the 1990 Clean Air Act Amendments (CAAA) was the first 

federal regulatory driver for NOX control. This program involved two phases – Phase I started on 

January 1, 1996 and Phase II started on January 1, 2000. The implementation of this program 

was unit specific - the NOX emission rate limits ranging from 0.40 to 0.86 lb/MMBtu depending 

on the type of boiler/burner configuration and based on application of LNB technology. The 

Clean Air Act requires EPA to set National Ambient Air Quality Standards (NAAQS) for 

pollutants considered harmful to public health and the environment. The Clean Air Act 

established two types of national air quality standards. 

Primary standards set limits to protect public health, including the health of "sensitive" 

populations such as asthmatics, children, and the elderly. Secondary standards set limits to 

protect public welfare, including protection against decreased visibility, damage to animals, 
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crops, vegetation, and buildings. The second driver was the EPA's NOX State Implementation 

Plan (SIP) Call Rule in 1998 emanate from the Title I National Ambient Air Quality Standards 

(NAAQS) for ozone. This regulation required 21 eastern states and the District of Columbia to 

participate in a regional cap-and-trade program based on an equivalent NOX emission rate of 

0.15 lb/MMBtu beginning in 2003-04. Under a cap-and-trade system, a government authority 

first sets a cap, deciding how much pollution in total will be allowed. Next, companies are issued 

credits, essentially licenses to pollute, based on how large they are, what industries they work in. 

If a company comes in below its cap, it has extra credits which it may trade with other 

companies. 

A third regulatory driver is the Clean Air Interstate Rule (CAIR) finalized in May 2005. 

It resulted from EPA's revision to the fine particulate matter (PM) and ozone NAAQS in 1997. 

This regulation will set NOX emission caps of 0.15 lb/MMBtu for 2010 and 0.125 lb/MMBtu for 

2015 for the 28 eastern states and District of Columbia. It will take effect in two phases, with 

Phase I compliance date of January 1, 2009 and a Phase II compliance date of January 1, 2015. 

New coal-fired power plants are required to meet both New Source Performance 

Standard (NSPS) and New Source Review (NSR) NOX emission requirements. Under NSR, a 

new plant is required to install either Best Available Control Technology (BACT) if located in 

ozone NAAQS attainment area, or Lowest Achievable Emission Rate (LAER) technology if 

located in an ozone NAAQS nonattainment area. Recent state BACT/LAER determinations have 

established NOX emission rate limits for new coal-fired plants between 0.05 and 0.10 lb/MMBtu 

and required the installation of LNB and SCR.  

1.3.4 Removal of nitric oxide (NO). Numerous chemical oxidants have been studied for 

their effectiveness in the case of NOX removal by wet scrubbing. The various chemicals that 
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have been studied include water-soluble ferrous-chelating agents, hydrogen peroxide (H2O2) and 

peracids, yellow phosphorous, organic hydroperoxides, sodium chlorite (NaClO2), potassium 

permanganate (KMnO4), sodium hypochlorite, peroxymonosulfate (oxone) etc. (Y. Adewuyi, X. 

He, H. Shaw, & W. Lolertpihop, 1999; Y. Adewuyi & S. Owusu, 2003). Adewuyi and Owusu 

(Y. Adewuyi & S. Owusu, 2003) previously reported the absorption and oxidation of NOX in 

aqueous solutions of peroxymonosulfate or oxone (with active ingredient, HSO5
-
) in a bubble 

column reactor using NO feed concentrations of about 500 or 1000 ppm. This work completed in 

our lab at North Carolina Agricultural and Technical State University (NCATSU) showed that 

(1) the fractional removal ranged from 60 to 86%; (2) the highest removal of NO occurred at the 

lowest gas flow rate of 0.1 standard liter per minute (slpm) for the range of flow rates (0.1-1.0 

slpm) tested; (3) the NO removal efficiency was not significantly affected by temperature in the 

range of 22-55 °C; (4) the presence of SO2 increased the overall fractional conversion of nitric 

oxide (NO); and (5) the optimal fractional conversion occurred with 0.02 M oxone in the pH 

range of 6.5 to 8.5. The rate of reaction was found to be first order with respect to NO and zero 

order with respect to HSO5
-
. The results demonstrated the feasibility of removing NOX and SOx 

simultaneously by low-temperature aqueous scrubbing using oxone. 

One of the most successful remediation methods in nitric oxide removal from exhaust 

gaseous stream is advanced oxidation process (AOP) which involves the oxidation of nitric oxide 

by free radical reactions mainly hydroxyl radical (�
•) and sulfate radical (	���•�). The various 

methods of producing hydroxyl radical (�
•) include sonolysis, use of H2O2/UV radiation or by 

using Fenton’s reagent (H2O2/Fe
2+

). The complete sonochemical reactions involving �
• were 

investigated and discussed in detail by Adewuyi (2005) (Adewuyi, 2005a, 2005b). Owusu and 

Adewuyi (2006) investigated simultaneous absorption and oxidation of nitric oxide (NO) and 
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sulfur dioxide (SO2) in water in presence of ultrasonic irradiation at room temperature in a 

bubble column reactor. The results show a 65-80% removal of NO with the complete removal of 

SO2 (Owusu & Adewuyi, 2006). 

In spite of the various research efforts, the industrial use of wet scrubbing for NOX 

removal has been slow due the added cost of chemicals, disposal of the spent solution and the 

complexity of some scrubbing systems. Therefore, an inexpensive, efficient and environmentally 

benign chemical needs to be found. Sodium persulfate could be one such compound. It is a 

strong oxidant, has an excellent shelf life when stored properly and is very inexpensive; thus it 

has many of the criteria for being a candidate for the chemical oxidant in the wet scrubbing of 

NOX. Also, in the presence of impurities in the aqueous phase, such as bicarbonates, persulfate is 

far more chemically stable compared to hydrogen peroxide, which is a more widely used 

oxidant. This makes persulfate an even more attractive oxidant of choice. 

The persulfate anion is one of the strongest oxidizing agents in aqueous solutions. The 

standard oxidation-reduction potential (E
o
) (eq 1.4) for the half-cell persulfate reaction is 2.01 V 

(Latimer, 1952), comparable to ozone and hydrogen peroxide, both of which are widely used in 

wastewater treatment.  

������ + 2�� → 2�����,				E� = 2.01	V																																																																																		(1.4)		
Although persulfate anion is a strong oxidizing agent it is kinetically slow at ordinary 

conditions.(Osgerby, 2006) Persulfate can be activated by heat, photo or metal catalysts. It has 

been established that when activated it generates intermediate sulfate free radical (���.�) (House, 

1962). 

������
����	� 	�!"######$ 2���.�																																																																																																																(1.5)		

������ + &��' (��)*(�+	�(�*,��*�-"##############$ 2���.� + ����� + &�.'																																																		(1.6)		
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The sulfate free radical is very reactive and has a high oxidation potential and actively 

scavenges any oxidizable substance in the solution. It also reacts with water to form the OH 

radical, which is even more reactive (in fact, the most reactive oxidant other than fluorine). Both 

of these reactive radicals, therefore, lead to rapid destruction of any pollutant in solution. 

1.4 Scope of the Work  

Two different studies were carried out in the present thesis toward chemical reactive 

separations in energy and environmental processes. 

• In the first part (CHAPTER 3), the Aspen PLUS simulation for reactive distillation for 

esterification of pyrolysis bio-oil was done using RADFRAC module using UNIQUAC 

property model for property estimation for phase equilibrium and minimization of Gibbs 

free energy for chemical reactions. Firstly, the simulation was attempted considering bio-

oil to be the mixture of simplest components (70% acetic acid and 30% water) for 

esterification reaction with n-butanol. The simulation was then expanded for other acids, 

phenol and other complex components. Finally, rate based simulation was performed 

using RATEFRAC module. Advanced simulation tools Design Specification and 

Sensitivity Analysis were performed on each simulations to optimize the reactive 

distillation operations and to design a completely energy cost minimized reactive 

distillation unit. 

• In the second part (CHAPTER 4), studies on nitric oxide (NO) removal by combined 

aqueous persulfate and ferrous-EDTA systems were carried out in a bubble column 

reactor as bio-fuel combustion produces higher NO compared to petroleum fuel and also 

significant amount of NO is released from coal fired power plants and other industrial 

combustions. Studies were performed at different inlet concentrations, for different 
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oxidant concentrations and for different temperature and pH. The results were compared 

to the nitric oxide removal by only persulfate systems and also Fe
2+

 activated persulfate 

systems.   
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CHAPTER 2 

Instruments, Materials and Methods 

2.1 Materials  

Sodium persulfate (Na2S2O8, powder, >98%), iron (II) sulfate heptahydrate 

(FeSO4.7H2O, >99%), concentrated sulfuric acid (95-98%) and 1.0 N sodium hydroxide solution 

were obtained from Acros Organics, Morris Plains, NJ; disodium ethylenediamine tetraacetate 

(Na2-EDTA, reagent grade), 1, 10-phenanthroline monohydrate, hydroxylamine hydrochloride 

(96%), acetic acid (99.7%), anhydrous sodium acetate (99%), fuming nitric acid (90%) and 

sodium hydroxide (solid) were obtained from Fisher Chemical, Fair Lawn, NJ; and 5.0 N 

sulfuric acid from LabChem Inc., Pittsburg, PA. Extra-dry nitrogen (N2) and standard mixtures 

of NO in ultrapure nitrogen were obtained from Airgas National Welders, Charlotte, NC. 

Deionized water was obtained by using a Milli-Q Advantage A 10 purifier with Elix 5 system 

from Millipore Corporation, Bedford, MA. The resistivity of the water was always greater than 

18.2 MΩ.cm and total organic contents (TOC), silicates and heavy metals contents were 

minimized to a very low parts per billion (ppb) levels. 

2.2 Experimental Setup  

The schematic diagram for the NO absorption, consisting of a thermally jacketed bubble 

column reactor made of pyrex glass (5.1 cm i.d. × 61-cm length; Ace Glass, Inc., Vineland, NJ), 

flue gas blending system consisting of a Dynablender mass flow controller (Matheson Tri-gas, 

Montgomeryville, PA)  with two flow transducer calibrated to allow a maximum flow of 5 

standard liters per minute (SLPM) gas, and analytical train of Fourier Transform Infrared (FTIR) 

spectrometer (Tensor 27; Bruker Optics, Billerica, MA), and shown in Figure 14. The scrubber 

was operated in semibatch mode in the experiments; simulated gas at a flow rate of 0.1 SLPM 
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flowed upward continuously through 1 L total volume of stationary scrubbing solution 

(corresponding liquid height ~0.5 m). The experiments were performed at 23-70
 0

C and each 

temperature set was maintained through jacketed cooling by means of cooling/heating water 

from a refrigerated bath (Neslab RTE 7D1, Thermo Scientific, Newington, NH).  

 

Figure 14. Schematic diagram of the experimental setup. 

The exit gas from the reactor passed through a membrane dryer (MD-050-48P, Perma 

Pure, Inc.) to remove moisture prior to analysis with the Fourier transform infrared (FTIR) 

spectrometer equipped with a custom gas cell made by FTIR.com. Both the FTIR and membrane 

dryer were purged with dry, CO2 free air from laboratory gas generator (Parker Balston, 
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Haverhill, MA) to continuously remove the moisture. NOx concentration in the outlet gas was 

continuously monitored and recorded by proprietary software, Enformatic FTIR Collection 

Manager (EFCM) from FTIR.com, calibrated with standards of different gas species obtained 

from Airgas National Welders. The scrubbing solution may be analyzed before and after the 

experiment using a Dionex ICS 3000 ion chromatographic system (Dionex Corporation, 

Sunnyvale, CA) for anions. The solution pH was monitored continuously using Accumet pH 

meter 50. Initial and Final pH were recorded for each of the experiments. The details of the 

analytical procedures, including the analysis of gas-phase NOx and anions in solution are 

reported in previous studies (Khan & Adewuyi, 2010, 2011). 

2.3 Analytical Equipment and Instrumentation  

2.3.1 Fourier transform infrared spectrophotometer (FTIR). Fourier transform 

infrared (FTIR) spectrometer (Tensor 27; Bruker Optics, Billerica, MA) was used to analyze the 

inlet and outlet gas composition. The picture of the instrument and the schematic diagram are 

shown in Figure 15 and 16, respectively.  

 

Figure 15. Image of Fourier transform infrared spectroscopy (FTIR). 
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Figure 16. Schematic diagram of an FTIR. 

The instruments consist of an interferometer, a sample compartment, a beam source and a 

detector. The interferometer consists of a beamsplitter which divides the incoming infrared beam 

into two optical beams. One beam reflects off of a flat mirror which is fixed in place. The other 

beam reflects off of a flat mirror which can move to a very short distance (a few millimeters) 

away from the beamsplitter. The two beams reflect off of their respective mirrors and are 

recombined when they meet back at the beamsplitter. Because the path that one beam travels is a 

fixed length and the other is constantly changing as its mirror moves, the signal which exits the 

interferometer is the result of these two beams interfering with each other. The resulting signal is 

called an interferogram which has the unique property that every data point (a function of the 

moving mirror position) has information about every infrared frequency which comes from the 

source. However, the information in the interferogram must be decoded. This can be 
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accomplished via the Fourier transformation. This transformation is performed by the computer 

which then presents the user with the desired spectral information for analysis. The collection 

and analysis of the data were performed by the proprietary software called Enformatic FTIR 

Collection Manager (EFCM) from FTIR.com. Once the software is calibrated with standard 

gases it is able to perform online monitoring of the different species in the gas phase. Figure 17 

shows the calibration spectrums used for calibrating EFCM (Khan & Adewuyi, 2010). 

 

Figure 17. Calibration spectra for the standard concentration of NO. 

2.3.2 UV-Vis spectrophotometer. The concentration of iron species’ (Fe
2+

, Fe
3+

 and 

Fe
II
-EDTA) was determined by measuring the absorbance using Beckman DU 7500 UV-Vis 

spectrophotometer. The photograph of the instrument is given in Figure 18. 

The DU Series 7500 spectrophotometer is a flat field spectrograph. Undispersed light 

form the source passes through the sample and is dispersed by the concave holographic grating 

onto the diode array. The diode array consists of 512 elements; each diode reads 1.25 nm. 

Readings at a particular wavelength are obtained by interpolating the readings at the two 

bracketing diodes. The focal point of the beam is on the right side of the sample compartment, 

not in the middle. All sampling accessories will position the sample at the focal point. The 
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entrance slit selectively discriminates against light from sources other than the ones in the 

instruments. 

 

Figure 18. Photograph of the UV-Vis spectrophotometer. 

2.4 Aspen Simulation Frameworks 

Steps taken to carry out Aspen PLUS simulation of reactive distillation for esterification 

of pyrolysis bio-oil includes: 

• The binary and ternary interactions between the components were studied by 

using Aspen Property PLUS to understand whether and where the binary and 

ternary azeotropes present in the reaction mixtures. 

• The flow diagram (Figure 22 and 33) in Aspen for reactive distillation was drawn 

by using Aspen process flow sheet with RADFRAC Module because RADFRAC 

is a tool in Aspen that best suited with distillation and other stage separation 

processes and reactions can be easily added to the separation for a reactive 

distillation process. 

• UNIQUAC property method was used as the base method for property estimation 

because a group contribution activity coefficient method is the best suitable 
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method to represent highly non-ideal multicomponent mixtures and interaction 

parameters are readily available in Aspen. 

• The reaction equilibrium was determined by specifying Aspen to calculate it by 

minimizing Gibbs free energy. 

• The process was optimized using the Design Specification and Sensitivity 

Analysis tools by varying several parameters to obtain a minimized energy costs. 

• The fractional conversion and separation efficiency was maximized for a specific 

feed composition. 

• The temperature and composition profile was drawn along the column for 

different feed mixtures. 

• Ester flow rate and fractional conversion were drawn with alcohol and water feed 

rate. 

• All the distillation column parameters such as condenser and reboiler heat duty, 

number of stages, and reflux ratio with different inlet conditions were studied.  
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CHAPTER 3 

Simulation of Reactive Distillation for Esterification of Pyrolysis Bio-oil 

3.1 Backgrounds 

Pyrolysis bio-oil is a very complex mixture of different organic compounds mainly 

different fatty acids, water, phenols and alcohols (Junming, Jianchun, Yunjuan, & Yanju, 2008). 

The Aspen simulation considering all the components present in bio-oil is a complex task but it 

is the overall objective of this project. Our goal is to first carry out reactive distillation 

considering only one acid at first for the simulation and then expand the components to 

incorporate another short chain and long chain fatty acids. Finally, since pyrolysis bio-oil also 

consists of alcohols and phenols, alcohols and phenols will be considered part of bio-oil in 

appropriate amount and the n-butanol feed will be reduced accordingly. Also, since bio-oil 

consists of water we will consider water in bio-oil that will be separated from esterification 

products. 

A typical analysis of pyrolysis bio-oil reveals the following chemical compounds 

(Mohan, Pittman, & Steele, 2006; Mullen & Boateng, 2008): 

(i) Carboxylic acids (mainly acetic 5-15% and formic 3-5%) 

(ii) Alcohols 

(iii) Aldehydes 1-2% 

(iv) Esters 

(v) Ketones 1-2% 

(vi) Phenols and phenolic compounds 5-20% 

(vii) Guaiacols 

(viii) Syringols 

(ix) Sugars 5% 

(x) Furans 1-5% 

(xi) Alkenes 

(xii) Aromatics 

(xiii) Nitrogen compounds 0-1% 

(xiv) Miscellaneous oxygenates 3-20% 



40 

 

 

Water content varies between 15% to 40% and a mid range values of 30% was selected 

for all the simulation but the sensitivity analysis by varying water content was accomplished to 

see the effect of water content on other parameters. 

3.2 Results and Discussion 

The reactive distillation design for solid acid catalyzed reactions are very complicated 

issue because of the simultaneous presence of the following (A. Kiss et al., 2006): 

1. Chemical and Phase Equilibrium (CPE) 

2. Vapor-Liquid Equilibrium (VLE) 

3. Vapor-Liquid-Liquid Equilibrium (VLLE) 

4. Catalysts Activity and kinetics 

5. Mass Transfer in Gas-Liquid and Solid-Liquid 

6. Adsorption of The Reactants and Desorption of The Products on Catalysts Surface 

Because of many complicated interactions between the components first the binary and 

ternary interactions between the components can provide simple guide-step for the initial clue. 

Aspen Property PLUS can be used to observe the binary and ternary interactions between the 

two or three compounds. These interactive diagrams can provide the valuable foresight about the 

azeotropes present in the reactive distillation operations. Then Chemical and Phase equilibria 

should be observed to understand the liquid phase separation into two and the region in which a 

homogeneous region of mixture is present that is vital to the healthy RD operations because 

liquid phase splitting stopped the mass transfer that is very important for both reaction and 

separation. 

As an initial attempt, the bio-oil is considered to consist of acetic acid, one of the simplest 

acids, diluted in water. Since the pyrolysis bio-oil always have some amount of water in it, we 
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considered water in our simulation. The bio-oil (acetic acid with water) is reacted with n-butanol 

in esterification reaction to produce n-butyl acetate and water. 

3.2.1 Aspen simulation using Property PLUS. Binary and Ternary interection between 

the four components in the reactive distillation is studied using Aspen Property Plus. The binary 

plots for all the pairs of chemicals are plotted at average column temperature 200 
0
C and column 

pressure 1 MPa. For the property analysis and the simulation UNIQUAC property method is 

used as the base property estimation method. 

From the binary y-x diagram in Figure 19, it can be seen that, the final two product water 

and ester form a binary azeotrope as well as two reactants acetic acid and n-butanol. Acetic acid 

does not form any azeotrope with either water or ester and that is why it is easy to separate 

unreacted acid either from water and ester. N-butanol also forms a binary azeotrope with water. 

Since the reaction is equilibrium controlled, unreacted acid and alcohol are present in some 

amount with the product and the whole reaction and separation phenomena in Reactive 

Distillation unit is quite complex. In Figure 19, six binary interactions are provided at 200 
0
C and 

1MPa. The relatively high temperature and pressure is chosen to comply with the previous step 

pyrolysis and we expect the bio-oil entered the Reactive Distillation from pyrolysis unit will 

maintain high temperature and pressure, thus avoid any intermediate cooling or heating 

operation. 

The ternary interaction plots or the residue plots are provided in Figure 20. From the four ternary 

plots it can be seen that no ternary azeotrope is present. 
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Figure 19. Binary interaction between the components determined by Aspen Property PLUS. 
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Figure 20. Ternary interaction between the components determined by Aspen Property PLUS. 

Normally, in terms of reactive distillation the organic compounds are sparingly soluble in 

water. That is why sometimes the liquid mixture can be splitted into two phases (aqueous and 

organic) in the reactive distillation column, this is detrimental to our cause as the liquid phase 

splitting could stop further reaction and separation. The molar feed ratio is chosen by carefully 

observing the chemical and phase equilibrium (CPE) diagram so that the mixture in the column 

always stays in the single liquid phase region. 

  

  

(g) 
(h) 
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Following is a CPE diagram of methanol and lauric acid reactive distillation (Dimian, Bildea, 

Omota, & Kiss, 2009): 

 

Figure 21. CPE diagram for lauric acid-methanol reactive distillation system. 

From this diagram it can be clearly seen that bottom right part is the region where liquid-

liquid equilibrium region occur and the liquid phase split into two. That is why the system is 

operated in the single liquid phase region (left and upper region of the Figure 21). 

3.2.2 Aspen PLUS simulation for reactive distillation of simplest bio-oil. The reaction 

is simulated in a Reactive Distillation unit (RADFRAC module) in Aspen PLUS. All the 

components were present in Aspen data-bank. The reaction is incorporated with the RADFRAC 

distillation unit in equilibrium form (where Aspen will calculate the equilibrium constant by 

minimizing the Gibbs free energy). 

The flow diagram in Aspen for reactive distillation is drawn by using aspen process flow 

diagram with the RADFRAC Module acting as the column performing both reaction and 

separation. In the RADFRAC besides conventional distillation input parameters the reaction 

input parameters can also be given and the reactive stages can be specified. For the simulation, 

UNIQUAC property method is used as the base method for property estimation. The reaction 

equilibrium is determined by specifying Aspen to calculate it by minimizing Gibbs free energy. 
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In case of a known reaction equilibrium constants, the known parameters can be also be given as 

input to calculate the reaction products. 

 

Figure 22. Flow-diagram for the RD in Aspen PLUS using RADFRAC module. 

At first 1 kmol/hr of bio-oil is considered as 70% acetic acid and 30% water. The 

simulated bio-oil is simulated with stoichiometric amount of n-butanol (0.7 kmol/hr). The feeds 

are considered at 200 
0
C temperature and 1MPa pressure. The system is simulated using 

UNIQUAC as the base property method. The optimum distillate rate and the reflux ratio were 

found by using sensitivity analysis for the highest conversion and separation. The stream result is 

given below in Figure 23. 
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Figure 23. Stream results for the acetic acid-butanol RD column. 

From this stream result we can see the conversion was 76.7% and all the water was 

separated from the ester product. But some ester was carried away with water due to the presence 

of azeotrope as well as the unreacted n-butanol with ester. Unreacted acetic acid split between 

two streams almost equally. The temperature profile in the column is given in Figure 24. 

 

 

 

 

 

 

 

Figure 24. Temperature profile for the acetic acid-butanol RD column 

The composition profile is given in Figure 25. We can see in the reactive stages (6-30) 

the composition remains almost constant as the composition is determined by the reaction 

 



47 

 

 

equilibrium. In the stripping section (stage 31-45) composition of water decreases to zero and in 

the enriching section (stage 1-6) amount of ester remains low. The abrupt change of composition 

in stage-8 and stage-15 is due to the introduction of two feed stream. 

 

 

 

 

 

 

 

Figure 25. Composition profile for the acetic acid-butanol RD column. 

Now, sensitivity analysis can be carried out to observe the effect of changing one variable 

on other variable. The following two plots give the effect of alcohol flow rate and presence of 

water in the bio oil on reaction conversion.  

 

Figure 26. Effect of water percent in bio-oil on ester flow rate. 
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Figure 27. Effect of water percent in bio-oil on conversion of acid. 

Like these two sensitivity analysis any other can be carried out to observe the effect of 

any input variable to any output variables. Using the sensitivity analysis and design spec. the 

simulation was optimized further for the condenser heat duty, reboiler heat duty, and number of 

stages (reactive, enriching and stripping section) and a cost effective Reactive Distillation unit 

for the esterification of acetic acid can be achieved. The condenser heat duty was -19.32 kW and 

reboiler heat duty was 17.12 kW. 

3.2.3 Aspen PLUS simulation for reactive distillation of complex bio-oil. For this 

simulation bio-oil is considered is composed of formic acid, acetic acid, propionic acid with 

water. For the simulation purpose 30% water, 30% acetic acid, 20% formic acid, 20% propionic 

acid is considered our simulated bio-oil. The feed is simulated first with stoichimetric amount of 

n-butanol with the optimized parameters from the previous simulation and then further optimized 

in terms of ester flow rate in bottom and top products, conversion of acids etc to produce n-butyl 

acetate, n-butyl formate, n-butyl propionate. The stream results are given in Figure 28. 
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Figure 28. Stream results for mix acid-butanol RD column. 

From these results we can see that conversion of acid (bio-oil) is 87.1%. The conversion 

is higher from the previous simulation can be attributed to the high reaction was achieved using 

acid mixture and may be optimization was done to a superior degree. As like the previous 

simulation, water was completely separated from the ester. But the unreacted acids and tiny 

amount of ester goes with water for the presence of binary azeotrope in water-este mixture. But, 

in overall this simulation result is very good compared to the one presented in Figure 23. The 

stage by stage composition profile is given in Figure 29. 
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Figure 29. Composition profile for mix acid-butanol RD column. 

Again, the effect of the change in different input parameters on the output parameters can 

be observed by carrying out sensitivity analysis and a specific value of any output variable can 

be achieved using Design Spec. by varying any related input variables. Though this simulation is 

a very good one and the ester production is almost optimized there are more scope in 

optimization in the reboiler and condenser heat duty and subsequently reducing the cost of 

operation. The optimum reboiler and condenser heat duty were 23.18 and -24.90 kW 

respectively. Sensitivity analysis showing the effect of alcohol flow rate on acid conversion is 

given in Figure 30. 
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Figure 30. Effect of alcohol flow rate on acid conversion. 

3.2.4 Aspen PLUS simulation for reactive distillation of complex bio-oil including 

phenol and other alcohol. Phenol and phenolic compounds (lignin derived) present in small 

amount in the pyrolysis bio-oil. Phenol reacts with acids to form ester also. The reactions of 

phenol with formic acid, acetic acid and propanoic acid produce phenyl formate, phenyl acetate 

and phenyl propanoate respectively. Since, phenol reacts same way butanol reacts with acids 

total butanol feed rate was reduced. The amount of phenolic and other alcoholic compound 

typically varies 5-20% resulting in a 5-20% of the butanol feed.  

First the simulation was run including 10% phenol. It can be seen from the stream result 

that almost all the phenol reacts with formic acid to form phenyl formate. The amount of butanol 

feed is reduced accordingly and the fractional conversion of esterification reaction is 94%. 
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Figure 31. Stream results for mix acid with phenol-butanol RD column. 

 

Figure 32. Composition profile for mix acid with phenol-butanol RD column. 
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The simulation was then carried out including 5% other alcohols in the bio-oil feed with 

other previous compounds. The butanol feed was reduced 5% and the simulation results were 

similar entirely except the product includes other esters. The fractional conversion of the 

esterification reaction was 95%. The optimized reboiler and condenser heat duty were 20.84 and 

-24.15 kW respectively. 

3.2.5 Rate-based simulation of pyrolysis bio-oil. The reactive distillation unit was 

simulated using RadFrac module with equilibrium based reactions in the reactive zone of the 

column. The RadFrac module simulates the separation process based on the assumption that 

there is complete equilibrium between the liquid and vapor in every stage. On the other hand the 

RateFrac module handles the separation process in a more realistic rate-based manner 

considering actual non-equilibrium between vapor-liquid interphase. RateFrac simulates actual 

tray and packed columns rather than idealized representation of equilibrium stages by accounting 

the heat and mass transfer to determine the degree of separation. 

The previous simulation for the simple bio-oil (70% acetic acid and 30% water) was 

carried out using RadFrac module. Now, our goal is to produce a more realistic simulation using 

RateFrac module in the Aspen Plus.  
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Figure 33. Flow-diagram for the RD in Aspen PLUS using RATEFRAC module. 

In the RateFrac simulation the tray specification and packing specification was included 

as well as column diameter calculation. The RateFrac simulation is not typical stage by stage 

calculation rather it calculates separation on a segment by segment basis. The reactions were 

included in the RateFrac reactive distillation module. When using non-equilibrium realistic 

concept the percent conversion and degree of separation in reactive distillation column both 

dropped 1-2% compared to the idealized stage by stage calculation. The column diameter was 

calculated using 80% flooding in the trays.  

The Rate based RateFrac operation is very complex and I am still trying to further optimization 

of the process. It can be seen that the optimum number of segment also increased for using 

idealized situation using non-equilibrium with 80% flooding. 
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Figure 34. Stream results for mix acid-butanol RD column using RATEFRAC. 
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CHAPTER 4 

Nitric Oxide Removal by Combined Persulfate and Ferrous-EDTA Systems 

4.1 Backgrounds   

Nitrogen oxides (NOx – mainly NO2 and NO) and sulfur oxides (SOx – mainly SO2) are 

the most prominent acid gases emitted from the burning of fossil fuel, especially from the coal 

fired power plants, and are responsible for widespread problems of air pollution, health hazards, 

acid rains etc.(Adewuyi, Khan, & Sakyi, 2013; Yusuf Gbadebo Adewuyi & Nana Yaw Sakyi, 

2013; Yusuf G. Adewuyi & Nana Y. Sakyi, 2013). Of these oxides, NO2 and SO2 are very 

soluble in water and can be separated easily from the exhaust stream by simple scrubbing, but 

nitric oxide (NO) is sparingly soluble and cannot be separated easily (Yusuf Gbadebo Adewuyi 

& Nana Yaw Sakyi, 2013; Yusuf G. Adewuyi & Nana Y. Sakyi, 2013; Khan & Adewuyi, 2010). 

It is well known that the commonly practiced methods of removing NO such as selective 

catalytic and non-catalytic processes have high capital costs and undesirable problems with high 

temperatures and handling of harmful chemicals. Therefore, alternative cost-effective and 

environmentally friendlier processes, such as scrubbing suitable oxidizing agents capable of 

increasing the solubility of NO in water significantly, are of ardent interest (Y. G. Adewuyi & S. 

O. Owusu, 2003; Yusuf Gbadebo Adewuyi & Nana Yaw Sakyi, 2013; Yusuf G. Adewuyi & 

Nana Y. Sakyi, 2013; Khan & Adewuyi, 2010; Sweeney & Liu, 2001). Hence, the use of 

aqueous H2O2, aqueous H2O2 with HNO3, NaCl solutions, NaClO solutions, Na2SO3 solutions 

with FeSO4 , acidic/alkaline NaClO2 solutions, aqueous NaClO2 solutions with Na2CO3 , NaClO2 

powder, alkaline NaClO3 solutions, aqueous ClO2 solution, alkaline KMnO4 solutions, KMnO4 

solutions with (NH4)2CO3, aqueous Na2S solutions and iron/cobalt chelate compounds in 

presence or absence of SO2 is widespread in the literature (Y. G. Adewuyi, X. He, H. Shaw, & 
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W. Lolertpihop, 1999; Baveja, Rao, & Sarkar, 1979; Brogren, Karlsson, & Bjerle, 1997; Byun et 

al., 2009; Chen, Hsu, & Yang, 2005; Chen, Lin, & Yang, 2011; T.-W. Chien & Chu, 2000; T. W. 

C. H. H. H. T. Chien, 2003; Hsin Chu, Chien, & Twu, 2001; H. Chu, Chien, & Li, 2001; H. Chu, 

Li, & Chien, 1998; Deshwal, Lee, Jung, Shon, & Lee, 2008; Guo et al., 2010; Hutson, 

Krzyzynska, & Srivastava, 2008; Jin, Deshwal, Park, & Lee, 2006; Pan et al., 2013; Sada, 

Kumazawa, Hayakawa, Kudo, & Kondo, 1977; Thomas & Vanderschuren, 1996, 1997; Wei, Yu, 

Cai, Luo, & Tan, 2009). Recently a comparative study of NO removal by [Co(NH3)6]Cl2, Fe
II
-

EDTA and H2O2 is investigated (Yu, Zhu, & Tan, 2012). The experimental data suggest higher 

removal by [Co(NH3)6]Cl2 but higher pH requirement (pH 10.5) can derail its implication. In a 

previous study, oxone or potassium hydrogen peroxymonosulfate (2KHSO5.KHSO4.K2SO4) was 

used in the removal of NO in absence or presence of SO2 and detailed experimental and kinetic 

aspects of this process, including feasibility, stoichiometry, reaction pathways and the effects of 

various process parameters reported (Y. G. Adewuyi & S. O. Owusu, 2003). Owusu and 

Adewuyi (2006) investigated simultaneous absorption and oxidation of nitric oxide (NO) and 

sulfur dioxide (SO2) in water in presence of ultrasonic irradiation at room temperature in a 

bubble column reactor. The results show a 65-80% removal of NO with the complete removal of 

SO2 (Owusu & Adewuyi, 2006). 

This was followed by work on NO absorption by aqueous sodium persulfate (Na2S2O8) 

activated by temperature. The use of persulfate in NO removal was first in this kind and 

suggested to reduce the process costs as persulfate is comparatively cheaper than oxone and also, 

significant amount of NO removal could be achieved (up to 90% at 90 
0
C) (Khan & Adewuyi, 

2010). In a recent study involving the removal of NO in presence of SO2 by the aqueous 

persulfate systems, it was demonstrated that the absorption of NO was greatly enhanced in the 
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presence of SO2 (70-80% NO removal at 23-70 
0
C), while the SO2 itself was completely 

removed (Yusuf G. Adewuyi & Nana Y. Sakyi, 2013). The most recent study on the removal of 

NO using persulfate systems simultaneously activated by temperature and Fe
2+

 ion, showed that 

NO removal further increased by almost 10% in presence of Fe
2+

 at all temperatures compared to 

temperature-only activation (Yusuf Gbadebo Adewuyi & Nana Yaw Sakyi, 2013). It was 

proposed that the thermal and Fe
2+

 ion activation of the persulfate anion leads to the production 

of the sulfate radicals (SO4
•−

), which is responsible for the production of hydroxyl radical (OH
•−

) 

that acts as the main oxidant for the conversion of NO in the aqueous solution (Yusuf Gbadebo 

Adewuyi & Nana Yaw Sakyi, 2013; Khan & Adewuyi, 2010). The use of sodium persulfate as 

the oxidizing agents creates the necessary �
•radical for NO absorption-oxidation that obviates 

any ultra-violet or ultrasonic assistant as described in some advanced oxidation literatures 

(Adewuyi & Khan, 2012; Adewuyi & Owusu, 2006; Y. Liu, Zhang, & Sheng, 2011). Also, the 

safe and environmentally benign nature, water solubility, chemical stability and excellent shelf 

life in storage give sodium persulfate comparative edge over other reagents (Yusuf Gbadebo 

Adewuyi & Nana Yaw Sakyi, 2013; Yusuf G. Adewuyi & Nana Y. Sakyi, 2013; Khan & 

Adewuyi, 2010). 

It was shown that almost 100% NO removal is attainable by this system but only at very 

high temperature (90 
0
C). Hence, the energy required for the higher temperature process could be 

the main stumbling block that impedes further development. A number of reports have suggested 

NO removal by iron chelating agent, such as Ferrous NTA, HEDTA, DPTA, cobalt 

ethylenediamine solutions (Demmink & Beenackers, 1998; Demmink, van Gils, & Beenackers, 

1997; Hofele, van Velzen, Langenkamp, & Schaber, 1996; Long, Xiao, & Yuan, 2005; Long, 

Xin, Chen, Xiao, & Yuan, 2007; Wubs & Beenackers, 1993). But the use of chelated ferrous 
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ethylenediamine tetraacetic acid (Fe
II
-EDTA) with or without some other reagents (Fe

II
-citrate, 

Na2SO3, MgSO3, Na2S2O4) is the most widespread and prevalent in liturature, where NO is 

combined with Fe
II
-EDTA by reversible binding and separated from the solution (T. W. Chien, 

Hsueh, Chu, & Chu, 2009; Demmink et al., 1997; Francesca Gambardella, Alberts, Winkelman, 

& Heeres, 2005; N. Liu et al., 2012; Narita, Sato, Shioya, Ikari, & Okabe, 1984; Sada, 

Kumazawa, & Hikosaka, 1986; Sada, Kumazawa, Kudo, & Kondo, 1980; Sada, Kumazawa, & 

Takada, 1984; Suchecki, Mathews, & Kumazawa, 2005; Teramoto, Hiramine, Shimada, 

Sugimoto, & Teranishi, 1977; Wang, Zhao, & Wu, 2007). The main drawbacks of this process 

include removal of the Fe
II
-EDTA(NO) complex, fast oxidation of Fe

II
-EDTA to the inert Fe

III
-

EDTA and high cost of EDTA. The problems can be somewhat overcome in BioDeNOx process 

where Fe
II
-EDTA(NO) is broken down by denitrifying bacteria and Fe

III
-EDTA is reduced by 

iron reducing bacteria and resultant Fe
II
-EDTA is recycled back to the reactor (W. Li, Wu, & 

Shi, 2006; W. Li, Wu, Zhang, Shao, & Shi, 2007; van der Maas, Harmsen, Weelink, Klapwijk, & 

Lens, 2004; van der Maas, Peng, Klapwijk, & Lens, 2005; van der Maas, van den Bosch, 

Klapwijk, & Lens, 2005; Zhang, Mi, Cai, Jiang, & Li, 2008). But the process was impeded by 

the slow action of the biological process, uncertainty involving bacteria culture, detrimental 

effect of sulfur compounds present in flue gas and the costs of installing additional unit (N. Liu 

et al., 2012; Maas, Brink, Klapwijk, & Lens, 2009; Manconi, van der Maas, & Lens, 2006). 

Recently, some researchers have suggested denitrification and/or reduction by the catalytic 

activity of activated carbon, direct electrochemical process or bio-film electrode reactor but the 

requirement for additional complex unit still persists (Gao, Mi, Zhou, & Li, 2011; Long, Yang, 

Chou, Li, & Yuan, 2013; Mi, Gao, Zhang, Cai, & Li, 2009; Wu, Wang, & Zhao, 2008; Yang, 

Chou, Li, Long, & Yuan, 2013; Zhu et al., 2010). It is widely reported in the literature that 
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denitrification and/or reduction can also be enhanced by sulfur derived ions, from Na2SO3, 

MgSO3, Na2S2O4 etc. in a combined process with Fe
II
-EDTA (David Littlejohn & Chang, 1990; 

Narita et al., 1984; Sada et al., 1986; Sada, Kumazawa, & Yoshikawa, 1988; Suchecki et al., 

2005; Wang et al., 2007). It has also been suggested that both Fe
II
-EDTA and Fe

III
-EDTA can 

also activate persulfate anion, like ferrous ion, thus producing a complete synergistic relationship 

with the persulfate in NO removal process (Liang, Bruell, Marley, & Sperry, 2004a, 2004b; 

Liang & Lee, 2008; Liang, Lee, Hsu, Liang, & Lin, 2008; Liang, Liang, & Chen, 2009). Ahmad 

et al. (2012) investigated extensively the iron-EDTA activated persulfate systems using reactant-

specific probes and electron spin resonance (ESR) and concluded that both Fe
II
-EDTA and Fe

III
-

EDTA decompose persulfate more rapidly than only Na2-EDTA (Ahmad, Teel, Furman, Reed, & 

Watts, 2012). Additionally, Li et al. (2007) by measuring hydroxyl radical formation, suggests 

that Fenton and Fenton like reactions were never suppressed by iron-chelating agents (L. Li et 

al., 2007). However, to the best of our knowledge the simultaneous and synergistic application of 

S2O8
2-

 and Fe
II
-EDTA for NO removal has never been studied although it has the potential to be 

a solution in the decade long struggle against NO pollution. 

4.2 Experimental Procedure   

4.2.1 Experimental procedure for NO removal. Initially, the column was filed with 

around 750 ml of de-ionized water and temperature was allowed to reach the desired level and 

stabilize. Pure, dry nitrogen gas was passed through it for at least 15 min to purge it of all 

dissolved oxygen and then through a bypass line until a stable reading was obtained. Freshly 

prepared Fe
2+

, Na2EDTA and persulfate solutions of appropriate quantity to make 1.0 ± 0.05 L 

solution of desired concentration were added to the water one after another, respectively. To 

maintain the solution pH at neutral level, NaOH and/or H2SO4 solution were used. Additional 
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water was added to make the total volume of solution 1.0 ± 0.05 L and few drops of NaOH or 

H2SO4 were added to adjust the pH again before the bubbling of the gas through the solution was 

started. This additional volume of NaOH/ H2SO4 solution is insignificant compared to total 

volume and does not affect the total liquid volume or height. Once all the reagents dissolved 

completely, the solution has become greenish. The simulated flue gas was switched to the inlet 

of the reactor and bubbling through the solution. The dissolution of persulfate seemed rapid and 

even vigorous at higher temperature aided by the gas mixing action. The outlet gas reached the 

FTIR almost instantaneously and data acquisition started. 

4.2.2 Spectrophotometric determination of iron species’. Iron species’ (Fe
2+

, Fe
3+

 and 

Fe
II
-EDTA) were determined spectrophotometrically using Beckman DU-7500 

spectrophotometer (Beckman Coulter, Inc., Fullerton, CA). Fe
2+

 and (Fe
2+ 

+ Fe
3+

) ion 

concentration was determined at peak absorbance of 506-512 nm and 393-399 nm wavelength 

UV-vis spectra, respectively, by a modified 1, 10-phenanthroline colorimetric method for better 

accuracy and Fe
3+

 concentration was determined from the difference (Yusuf Gbadebo Adewuyi 

& Nana Yaw Sakyi, 2013; Harvey, Smart, & Amis, 1955; W. Li et al., 2006; W. Li et al., 2007; 

N. Liu et al., 2012). Also, at low wavelength Fe
II
-EDTA compound shows higher absorbance 

and the concentration can be determined spectrophotometrically (D. Littlejohn & Chang, 1982; 

Zang, Kotowski, & Van Eldik, 1988; Zhang, Li, Wu, Chen, & Shi, 2007). From the UV-vis 

spectrum of Fe
II
-EDTA it can be seen that there is no clear absorbance peak and a wide range of 

wavelength (270-300 nm) is selected for absorbance measurement. 

4.2.2.1 Determination of calibration curves. Standard Fe
2+

 and Na2EDTA solutions were 

prepared in different concentrations and dilutions. Previously prepared hydroxylamine 

hydrochloride and 1,10-phenanthroline solutions were added with standard Fe
2+

 solutions and pH 
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4.5 was obtained by using acetic acid-sodium acetate buffer. The standard solutions were taken 

to sampling compartment of spectrophotometer, quartz cuvettes (Spectrocell Corporation, 

Oreland, PA) after the spectrophometer is “Blanked” using blank solution (same solution except 

Fe
2+

). Absorbance was measured and recorded multiple times for each of the dilutions and 

concentrations at seven different wavelengths (506-512 nm). The corresponding absorbance of a 

particular concentration is found by discarding outlier data and then averaging the retentions.  

The calibration curves of Fe
2+ 

were drawn at different wavelengths by plotting absorbance with 

their respective concentrations. Same procedure was followed to determine (Fe
2+ 

+ Fe
3+

) 

calibration curves except the addition of hydroxylamine hydrochloride, as it is used to regenerate 

Fe
2+

 oxidized to Fe
3+

. In this case, pH was kept at 3.9 and the wavelength range was 393-399 

nm. Fe
II
-EDTA was prepared by mixing standard Fe

2+
 and Na2EDTA solutions (molar ratio 1:1) 

and adding few drops of concentrated sulfuric acid. The calibration curves of Fe
II
-EDTA were 

obtained by repeating same spectrophotometric procedure at 270-330 nm wavelength range. 

4.2.2.2 Determination of iron species concentrations. The samples were taken from the 

reactor by the side syringe as quickly as 30 s up to 3980 s in a series of test tubes. The withdrawn 

sample total volume was small compared to total liquid volume and did not affect NO absorption 

process. Each of the samples is then diluted from one-half up to one-128
th

 of the original 

strength. For the Fe
2+

 and (Fe
2+ 

+ Fe
3+

) determination 1, 10-phenanthroline is addedd to this 

samples and absorbance was measured in spectrophotometer in ranges 506-512 nm and 393-399 

nm respectively. For Fe
II
-EDTA determination absorbance was directly measured from the 

spectrophometer in the range of 270-330 nm. The “Blank” solution in these cases was prepared 

by using all the ingredients present in bubble column reactor except Fe
2+

. From these absorbance 

data using the calibration curves, the concentration of Fe
2+

, Fe
3+

 and Fe-EDTA was measured. 
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Finally, the respective concentrations were multiplied by their dilution factors, and then averaged 

to find the concentration of a particular sample. The concentrations were plotted against time to 

find iron species’ concentration profiles. 

4.3 Results and Discussion 

Simulated NO gas of 753 ppm (initial gas-phase) absorption-oxidation experiments were 

carried out at several temperatures (23, 30, 40, 50, 60 and 70 (±1) 
0
C) in 0.1 M persulfate 

solution in absence/presence of 0.05-0.02 M Fe
2+

 and 0.05-0.03 M Na2-EDTA. The pH of the 

solution was always kept near neutral acidic region (pH 6.0-7.0). The detail criteria for the 

selection of gas-phase NO and liquid-phase reagent concentrations will be discussed later in 

preliminary investigation. From the EFCM, outlet gas species concentrations were obtained as a 

profile with time and the percent conversion of NO is calculated using the initial and final steady 

state value of NO concentration from eq 4.1. 

012 = [12]56�[12]789
[12]56 × 100%                                                                                        (4.1) 

where [NO]in and [NO]out are the steady state concentration in ppm of NO at the inlet and outlet 

of the reactor, respectively. The steady state outlet concentrations of NO were calculated by 

averaging the values of the outlet concentration after 3000 s. 

4.3.1 Preliminary investigation and determination of optimum Fe
2+
:EDTA ratio. 

Because of the complex and multifarious chemical behavior of both persulfate and and Fe
II
-

EDTA oxidation, determination of appropriate concentration of persulfate, Fe
2+

 and Na2-EDTA 

is very important in NO removal process by simultaneous persulfate and Fe
II
-EDTA processes. 

From previous studies on oxidation of various contaminants by temperature and Fe
2+

 

activated persulfate systems, severance of persulfate ion (E
0
 = 2.01 V) into sulfate free radicals 

(���•�) is quite slow in ordinary conditions, but achievable by using heat, light, ultrasound and/or 
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transition metal ions (Fe
2+

 in this case) as represented by eqs 4.2 and 4.3, respectively, can 

provide the necessary initiation stage for the chain of reactions (Adewuyi, 2005a, 2005b; Yusuf 

Gbadebo Adewuyi & Nana Yaw Sakyi, 2013; Khan & Adewuyi, 2010; H. Kusic, Peternel, 

Koprivanac, & Loncaric Bozic, 2010; Liang & Bruell, 2008). 

������
	����		"##$ 	2	���•�; <� = 1.0	 × 10�=	(25°>)	?@	5.7	 × 10�=B�C(70°>)                 (4.2) 

������ + &��' DE→ ����� + ���•� + &�.'; <. = 1.7 − 2.7	?@	2.0	 × 10CG�CB�C         (4.3) 

Generation of reactive sulfate free radical (E
0
 = 2.6 V) followed by the split of the water 

molecule to produce even more reactive �
• radical (E
0
 = 2.8 V) shown in eq 4.4 (Yusuf 

Gbadebo Adewuyi & Nana Yaw Sakyi, 2013; Yusuf G. Adewuyi & Nana Y. Sakyi, 2013; Khan 

& Adewuyi, 2010). 

���•� + 
��	 DH→ 	
���� + �
•	; <�	 = 	6.6 × 10�B�C                              (4.4) 

It is quite obvious that majority of NO absorption takes place by reacting with �
• 

radical to produce  ���� (Adewuyi & Khan, 2012; Yusuf Gbadebo Adewuyi & Nana Yaw Sakyi, 

2013; Yusuf G. Adewuyi & Nana Y. Sakyi, 2013; Khan & Adewuyi, 2010).  

�
• + �� DI→
' + ����; <J	 = 	2 × 10CKG�CB�C                                                      (4.5) 

In their latest work Adewuyi and Sakyi speculate the possibility of direct oxidation of NO 

by persulfate ion to NO2 gas (Yusuf Gbadebo Adewuyi & Nana Yaw Sakyi, 2013). 

������ + 	�� + 
��	 DL		"$ 	2	
���� + ���                                                                     (4.6) 

It is quite understandable that if ������ ion with a standard reduction potential 2.01 V can 

react with NO, with 2.6 V potential ���•�can also react with NO. 

���•� + 	�� + 
��	 DM		"$ 	
���� + ���� + 
'                                                               (4.7) 
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The intermediate ���� is responsible for further asymmetric cleavage of ������ ion 

producing one ���•� ion but it can potentially attach sulfate radical to convert it to relatively inert 

����� ion (Yusuf Gbadebo Adewuyi & Nana Yaw Sakyi, 2013; Yusuf G. Adewuyi & Nana Y. 

Sakyi, 2013). 

������ + ����
DN→ ����� + ���•� + ���                     (4.8) 

���� + ���•� DO→ ����� + ��� ; <P 	= 	9.8 × 10�G�CB�C        (4.9) 

��� gas produced in Reaction 4.8 and 4.9 is readily soluble in water and reacts with 

active �
• radical producing ��.� (Yusuf Gbadebo Adewuyi & Nana Yaw Sakyi, 2013; Yusuf 

G. Adewuyi & Nana Y. Sakyi, 2013). 

��� + �
• DST"$ 
' + ��.�; <CK	 = 	4.5 × 10PG�CB�C                             (4.10) 

Eqs 4.9 and 4.10 provides the termination steps after the successive propagation through 

reaction (4.4) to (4.8) from initiation Reaction (4.2) and (4.3). Khan and Adewuyi (2010) in their 

persulfate only systems, and subsequently Adewuyi and Sakyi (2013) in their persulfate and Fe
2+

 

systems took great care in determining the optimum persulfate and Fe
2+ 

concentration in NO 

removal experiments. NO conversions (%) were determined for different persulfate 

concentration at various temperatures and it was concluded that 0.1 M persulfate concentration is 

optimum at all temperatures based on NO removal efficiency. The corresponding costs of 

chemicals associated with increase in persulfate concentration beyond 0.1 M cannot be justified 

since improvement in the removal efficiency is minimal. The inability of persulfate solution to 

further increase the removal efficiency at higher temperature and persulfate concentration was 

attributed to the radical-radical scavenging reactions such as self-recombination and inter-

combination presented in eqs 4.11, 4.12 and 4.13 (Yusuf Gbadebo Adewuyi & Nana Yaw Sakyi, 
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2013; Yusuf G. Adewuyi & Nana Y. Sakyi, 2013; Khan & Adewuyi, 2010; Lee, Lo, Kuo, & Lin, 

2012). 

���•� + �
• 	DSS"$ 	
���� + C
���; <CC	 = 	1 × 10CKG�CB�C       (4.11) 

���•� + ���•� 	DSU"$	������; <C�	 = 	7.6 × 10�G�CB�C       (4.12) 

���•� + ������ 	DSE"$	����•� + �����; <C.	 = 	7.6 × 10�G�CB�C                                   (4.13) 

They also performed detailed analysis on studies for the optimization of Fe
2+

 

concentration. NO removal was determined by varying Fe
2+

 concentration for different persulfate 

concentration. Based on the observation they concluded that the optimum concentration of Fe
2+

 

was 0.01 M with all persulfate concentration. The possible explanation they pointed out was that, 

as the Fe
2+

 concentration becomes too high, excess Fe
2+

 starts consuming ���•� and �
• radicals 

through the reaction given in eqs 4.14 and 4.15 (Yusuf Gbadebo Adewuyi & Nana Yaw Sakyi, 

2013; H. Kusic et al., 2010). 

&��' + �
• DSH"$ &�.' + �
�; <C� = 3.2	 × 10�G�CB�C                                          (4.14) 

���•� + &��' 	DSI"$	&�.' + �����; <CJ	 = 	4.6 × 10P?@	3.0 × 10�G�CB�C                 (4.15) 

Khan and Adewuyi (2010) studied pH effects on NO absorption in persulfate only system 

and found that pH effect is not that significant on NO removal at all temperatures. The possible 

reaction kinetics was studied to understand this behavior although alkaline pH was found to be 

effective in the removal of ground water contamination (Block, Brown, & Robinson, 2004; Khan 

& Adewuyi, 2010; Liang, Wang, & Bruell, 2007). Adewuyi and Sakyi (2013) expanded the work 

by introducing SO2 simultaneously with NO and found that neutral pH shows considerably 

higher removal efficiency compared to acidic and alkaline region (Yusuf G. Adewuyi & Nana Y. 

Sakyi, 2013). When Fe
2+

 activation was added, the solution pH was kept 2.5-3.0 to prevent Fe
2+
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oxidation to Fe
3+

 and the precipitation as Fe(OH)3 (Yusuf Gbadebo Adewuyi & Nana Yaw 

Sakyi, 2013; Block et al., 2004). One of the main drawbacks of this Fenton-like process is the 

low pH requirement, creating severe acidic environment and possible equipment erosion and 

corrosion. Most of the literature on NO removal by Fe
II
-EDTA suggests a neutral pH as Fe

II
-

EDTA exists as Fe
II
-H2EDTA in acidic and Fe

II
-(OH)EDTA and Fe

II
-(OH)2EDTA in alkaline 

solution (Liang et al., 2009). A pH value in a near neutral acidic region (6.0-7.0) is desirable for 

a combined persulfate Fe
II
-EDTA system to counteract the lower pH requirement in Fenton-like 

process and facilitate NO removal by Fe
II
-EDTA simultaneously working with persulfate. 

Also, the main objective of this study is to understand and quantify the simultaneous and 

synergistic NO removal by persulfate and Fe
II
-EDTA. For this reason, persulfate and Fe

2+
 

concentration and pH for all experiments were kept at 0.1 M, 0.01 M and 6.5 respectively based 

on the aforementioned investigation. Obviously, the detailed study of the effect of persulfate, 

Fe
2+

, EDTA concentration and pH on NO removal and their interdependency warrants an interest 

and will be presented in a follow-up paper. Previous studies involving the effect of NO inlet 

concentration (500-1000 ppm) at various conditions were done in detail and it can be deduced 

that NO removal efficiency does not change significantly with different inlet NO concentration 

(Khan & Adewuyi, 2010). As a result, 753 ppm inlet NO concentration was selected as it is the 

average NO concentration in typical industrial flue gases. 

The optimum molar ratio for Fe
2+

:EDTA has been investigated and widely reported in the 

literature to be around 1:1 in the removal of organic and inorganic pollutants (Francesca 

Gambardella et al., 2005; N. Liu et al., 2012; Wang et al., 2007; Wu et al., 2008; Zhu et al., 

2010). Fe
2+

 and EDTA react with one another according to the reversible reaction presented in eq 

4.16. 



68 

 

 

&��' + EDTA�� YSLZ[ &�\\-]^_`                                                                                  (4.16)  

The kinetics of this reversible reaction fixes the amount of Fe
II
-EDTA produced in the 

solution. The Fe
2+

:EDTA molar ratio of 1:1 is desirable according to the stoichiometry of this 

reaction, but, a different molar ratio other than 1:1 also observed, when Fe
II
-EDTA is used with 

other reagents in a combined NO absorption process (N. Liu et al., 2012). Since, to the best of 

our knowledge Fe
II
-EDTA is being used with persulfate for the very first time in NO absorption, 

the optimum molar ratio of Fe
2+

 and EDTA should be determined experimentally. 

Figure 35 shows the NO concentration profiles at (a) 40, (b) 50 and (c) 60 
0
C for 0.1 M 

persulfate and 0.01 M Fe
2+

 solution with different EDTA concentration (0, 0.005, 0.01, 0.015, 

0.02, 0.025 and 0.03 M). At 40 
0
C (Figure 35a) the concentration profiles were smooth and 

steady but at 50 and 60 
0
C (Figure 35b and 35c, respectively) were more chaotic, which can be 

understood by the higher activation and greater interaction between reaction species. For a better 

understanding of the effect of EDTA concentration (Fe
2+

:EDTA ratio) Table 4 and Figure 36 is 

constructed  showing the respective NO conversion (%) with EDTA concentration at 40, 50 and 

60 
0
C. At all three different temperatures, the NO conversion values suggested an increase in NO 

conversion up to 0.01M EDTA concentration. But after 0.01M EDTA the NO conversion values 

start to decrease steadily with the increase in EDTA concentration. These plots clearly 

demonstrate that NO conversion peaks at 0.01M EDTA and the ratio for ferrous ion and EDTA 

concentration 1:1 is optimum at all temperature. 

The main observation in this work is that when we use EDTA solution with persulfate 

and ferrous ion solution for NO removal from flue gas the NO conversion efficiency improves, 

compared to use of only persulfate and ferrous ion.  
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Figure 35. NO concentration profiles at 40, 50 and 60 
0
C for Na2S2O8 concentration of 0.1 M 

and Fe
2+

 concentration of 0.01 M for different Na2-EDTA concentration (0-0.03 M). 
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Table 4 

NO Conversion for Different EDTA Concentration for 0.01 M Fe
2+
 and 0.1 M Persulfate 

Temperature 

(
0
C) 

NO conversion (%) 

0 M 

EDTA 

0.005 M 

EDTA 

0.01 M 

EDTA 

0.015 M 

EDTA 

0.02 M 

EDTA 

0.025 M 

EDTA 

0.03 M 

EDTA 

40 52.99 58.17 65.28 64.10 63.21 61.52 60.62 

50 71.45 74.05 77.82 76.63 74.18 71.46 67.45 

60 82.07 83.45 86.99 85.56 82.12 81.16 78.13 

 

 

Figure 36. NO fractional conversion at 40, 50 and 60 
0
C for Na2S2O8 concentration of 0.1 M and 

Fe
2+

 concentration of 0.01 M for different Na2-EDTA concentration (0-0.03 M). 
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persulfate can improve the NO conversion efficiency 10% further (Yusuf Gbadebo Adewuyi & 

Nana Yaw Sakyi, 2013). These graphs clearly show that the optimum molar ratio for Fe
2+

 and 

EDTA that will be added to 0.1M persulfate is 1:1. As 0.01 M Fe
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for 0.01 M Fe
2+

 and 0.01 M Na2-EDTA with 0.1 M persulfate. Also, 0.005 and 0.02 M 

Fe
2+

/EDTA  was used in iron speciation experiments, as speciation and material balance of iron 

species’ gives us opportunity to delve into the chemical kinetics. From Figure 36 and Table 4, we 

can see NO conversion increases with additional EDTA concentration up to 0.01M and then start 

decreasing with the further addition of Na2EDTA. At 40 
0
C it can be seen that even for 0.03 M 

EDTA the NO conversion (61.62%) does not drop below the conversion of 0 M EDTA (0.01 M 

Fe
2+

 only, no EDTA) that is 52.99%. But at 50 and 60 
0
C and with 0.03M EDTA NO 

conversions are 67.45% and 78.13% respectively, which are much lower than the case without 

EDTA, that is 71.45% and 82.07% respectively, suggesting at higher temperature excess EDTA 

is more detrimental. According to the literature studies, as pointed out before, Fe
II
-EDTA 

absorbs NO by a reversible binding producing nitrosyl compound as presented in eq 17 (T. W. 

Chien et al., 2009; Demmink et al., 1997; Francesca Gambardella et al., 2005; N. Liu et al., 

2012; Narita et al., 1984; Sada et al., 1986; Sada et al., 1980; Sada et al., 1984; Suchecki et al., 

2005; Teramoto et al., 1977; Wang et al., 2007). 

&�\\-]^_` + NO YSMZ[ &�\\-]^_`(��); cC= = 3.6	 × 10d	(25°>)	?@	6	 × 10JG�C                                                      

(50°>)                                                                                                                          (4.17)  

Fe
2+

 not only reacts with EDTA according to Reaction 4.16 to produce Fe
II
-EDTA, which 

is then used to combine with NO in eq 4.17, but Fe
2+

 also activates persulfate in the solution 

according to Reaction 4.3. At higher EDTA doses, EDTA combined with too much Fe
2+

, thus 

lowering the amount of Fe
2+

 available for persulfate activation. From Figure 36 and Table 4, it 

can be seen that NO absorption capability of the solution did not drop drastically but a gradual 

decrease was observed, indicating that excess EDTA only affects iron activation of persulfate by 

scavenging Fe
2+

 required, but not the temperature activation of persulfate. 
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4.3.2 Synergistic effect of Fe
II
-EDTA with persulfate. Once the optimum concentration 

of persulfate and Fe
2+

 was established, and the molar ratio Fe
2+

:EDTA corresponds to the highest 

absorption of NO investigated, using the optimum initial Fe
2+

 and EDTA concentrations 

established with 0.1 M persulfate solution, the effect of Fe
II
-EDTA addition was compared to the 

temperature only and Fe
2+

 activated persulfate systems.  

Adewuyi and Sakyi (2013) investigated the different injection methods of Fe
2+

 and 

persulfate, and concluded that both persulfate and Fe
2+

 simultaneously introduced at the top of 

the reactor at the beginning of reaction gives best NO removal. Since EDTA reacts with Fe
2+

 by 

Reaction 4.16, Fe
2+

 solution was first added to the de-oxygenated water followed by Na2-EDTA 

reaction. After the reaction between Fe
2+

 and EDTA is completed persulfate is added from the 

top of the reactor. The reversible nature of the reaction presented in eq 4.16, dictate the presence 

of Fe
2+

, EDTA and Fe
II
-EDTA in the solution, and enough Fe

2+
 remains in the solution for 

persulfate activation. The graphs in Figure 37 demonstrate the NO concentration profile at 30 
0
C 

for 0.1M persulfate with 0.01M Fe
2+

/EDTA compared to the profiles for 0.1M persulfate only 

and for 0.1M persulfate with 0.01M Fe
2+

.  

 

Figure 37. Comparative NO concentration profiles at 30 
0
C. 
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Figure 38. Comparative NO concentration profiles at various temperatures (23-70 
0
C). 
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The conversion for 0.1M persulfate only at 30 
0
C is about 25.13%. Adding 0.01M Fe

2+
 

the conversion increases up tp 30.81%, a 5.68% increase in the NO removal efficiency. When 

0.01 M Fe
2+

 and 0.01 M EDTA is added to 0.1 M persulfate solution the conversion is 55.64%, 

an additional 24.83% increase in NO removal efficiency. The plots in Figure 38 show the 

comparative NO concentration profiles at six different temperatures (23, 30, 40, 50, 60 and 70 

0
C) between 0.1M persulfate activated by 0.1M Fe

2+
 ion and 0.1M persulfate with 0.01M Fe(II) 

and 0.01M EDTA. NO removal experiments for 0.1 M persulfate only system was not carried 

out at all temperature except 23 
0
C because NO conversion value can be found from Khan and 

Adewuyi (2010) and also, Adewuyi and Sakyi (2013) have already established the comparative 

advantage of Fe
2+

 activated persulfate system over persulfate only system (10 % more NO 

removal at all temperatures) (Yusuf Gbadebo Adewuyi & Nana Yaw Sakyi, 2013; Khan & 

Adewuyi, 2010). Addition of 0.01 M EDTA increases NO conversion efficiency by almost 28% 

at 23 
0
C, where at 30 

0
C the conversion increases by almost 25%. At 40, 50, 60 and 70 

0
C the 

conversion increases about 13%, 7%, 5% and 4%, respectively, as presented in figure 38. In 

Figure 39, NO conversion at 23-70 
0
C is compared for the three systems, where NO conversion 

values for persulfate only system were taken from Khan and Adewuyi (2013) (Khan & Adewuyi, 

2010). At higher temperature increase in NO removal efficiency by adding 0.01 M EDTA 

become less significant but maintains a higher value always. As a result, close to 100% removal 

is found at 70 
0
C by adding EDTA whereas, for the Fe

2+
 activated persulfate system 90 

0
C is 

required to obtain about 100% removal. This higher removal gives a remarkable advantage in the 

industrial flue gas treatment, as flue gas is generally obtained at 50-70 
0
C in the effluent 

treatment plant. But the fact is undeniable that comparative advantage gradually diminishes from 

lower temperature (28% at 23 
0
C) to higher temperature (4% at 70 

0
C). This may be attributed to 
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the reversible binding of NO with Fe
II
-EDTA in Reaction 4.17. As the literature values suggest, 

the forward reaction constant, k17 (6 x 10
7
 M

-1
s

-1
 at 25 

0
C) is higher in the lower temperature. At 

higher temperature k17 becomes lower (3.7 x 10
7
 M

-1
s

-1
 at 50 

0
C) where the backward reaction 

constant, k-17 increases (6 to 60 s
-1

), resulting in a lower value of equilibrium constant K17 at 

higher temperature (T. W. Chien et al., 2009; N. Liu et al., 2012). But the comparative advantage 

still holds (around 5% higher NO conversion at 70 
0
C) due to the synergistic effect of Fe

II
-EDTA 

on persulfate oxidation of NO. 

 

Figure 39. Dependence of NO fractional conversions on temperature.  
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hydroxyl and sulfate radicals, chances of this occurring is less when Fe
II
-EDTA is used instead. 

Liang et al. (2004) also worked on persulfate activation by chelated ferrous ion to destruct TCE 

and concluded that chelated iron compound is far superior to unchelated Fe
2+

 in persulfate 

activation (Liang et al., 2004b). The superiority of Fe
II
-EDTA over Fe

2+
 as a persulfte activator 

was also confirmed by ESR spectroscopy and probe compounds investigation to track different 

free radicals (Ahmad et al., 2012). It can be seen from Figure 5 that Fe
2+

 activated persulfate 

system gives higher NO removal at higher temperature compared to persulfate only system, 

which is due to the higher activation of persulfate at higher temperature. The difference between 

NO removals of Fe
II
-EDTA activated persulfate system and only persulfate system is almost 

equal at every temperature (35-40%). It can be said that Fe
II
-EDTA activation of persulfate is 

about 5% and the remaining 22-25% increase is due to the direct absorption of Fe
II
-EDTA. It 

was also reported in the literature that NO can be bound to FeSO4 solution by reaction in eq 4.18 

but the order of magnitude of the reaction constant is four times less than that of Reaction 4.17 

(Sada et al., 1980). 

&���� + NO YSNZ[ &�(��)���                                                                                      (4.18) 

Reaction 4.18 is thus very slow compared to Reaction 4.17 and considered insignificant 

for NO removal by only Fe
II
-EDTA, but can play a significant role in combined persulfate and 

Fe
II
-EDTA systems nonetheless. In Fe

2+
 activated persulfate system, all the Fe

2+
 reacts very 

quickly and remains virtually non-existent in the solution the possibility of Reaction 4.18 is 

almost none. But, in combined persulfate and Fe
II
-EDTA systems the concentration of Fe

2+
 is 

determined by the equilibrium reaction in eq 4.17 (measured by spectrophotometric method) and 

the possibility of Reaction 4.18 reinvigorates and can aid the NO removal efficiency. 
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Oxygen is considered very detrimental in NO absorption process by Fe
II
-EDTA solution 

as it reacts with Fe
II
-EDTA producing inert Fe

III
-EDTA by reaction in eq 4.19 (Francesca 

Gambardella et al., 2005; N. Liu et al., 2012; Maas et al., 2009; Mi et al., 2009; Piché, Ribeiro, 

Bacaoui, & Larachi, 2005; Sada, Kumazawa, & Machida, 1987; van der Maas, van den Brink, 

Utomo, Klapwijk, & Lens, 2006; Zhang et al., 2007). 

4&�\\-]^_` + �� +	
�� DSO	"#$	 4&�\\\-]^_` + 4�
�; 		<CP	 = 	1.09 × 10� ×
exp i− �...×CKH

jk l																																																																																																																									 (4.19) 

The reaction is studied by Sada et al. (1988) and found to be first order in O2 and half 

order in Fe
II
-EDTA, and only to suppress this reaction as much as 20% excess Fe

II
-EDTA is 

added in the system (Sada et al., 1988). In our experiment water was de-aerated completely by 

purging with dry nitrogen before starting the NO absorption and also Fe
2+

 and Na2-EDTA was 

added to the system separately without producing Fe
II
-EDTA outside the reactor. So, the system 

remained completely oxygen free throughout the experiments. There is a possibility of small 

amount oxygen production according to Reaction 4.11, but this reaction is only radical-radical 

scavenging occurs in higher persulfate doses. Also, there was no O2 could be determined in FTIR 

and no Fe
III

-EDTA found in spectrophotometric determination of iron species’. Thus, the 

systems were operated in almost completely oxygen free environment and detrimental effects of 

oxygen via Reaction 4.19 were avoided. Of course, studies of NO removal in presence of O2 and 

effect of its concentration has immense interest, but it is outside the scope of this work and will 

be reported in future publication. 

It was also reported in the literature that Fe
II
-EDTA also reacts with ���� and ��� by 

reaction presented in eqs 4.20 and 4.21, respectively, producing both Fe
II
-EDTA(NO) and Fe

III
-

EDTA (H. Li & Fang, 1988; N. Liu et al., 2012; van der Maas et al., 2004). 
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2&�\\-]^_` + ���� + 	2
' YUTZ[	 &�\\-]^_`(��) + &�\\\-]^_` + 
��               (4.20) 

2&�\\-]^_` + 2���
YUSZ[	 &�\\-]^_`(��) + &�\\\-]^_` + ��.�                          (4.21) 

The denitrification of Fe
II
-EDTA(NO) can be done in biological processes where ethanol 

acts as a electron donor compound (F. Gambardella, Winkelman, & Heeres, 2006; W. Li et al., 

2006) 

6&�\\-]^_`(��) + >�
J�
 DUU	"#$		 6&�\\-]^_` + 3�� + 3
�� + 2>��                (4.22) 

Fe
II
-EDTA can also act an electron donor. It was reported that denitrification using Fe

II
-

EDTA as an electron donor is chemical reaction rather than biological in nature, thus probable in 

our system (W. Li et al., 2006; W. Li et al., 2007; N. Liu et al., 2012; Manconi et al., 2006; van 

der Maas et al., 2004; van der Maas, van den Bosch, et al., 2005; Zhang et al., 2007). 

2&�\\-]^_`(��) + 2&�\\-]^_` + 	4
' DUE	"#$		 4&�\\\-]^_` + �� + 2
��           (4.23) 

As a result of these reactions Fe
II
-EDTA(NO) and Fe

III
-EDTA are produced in the 

system, and the absorption capability of the solution decreases with the progression of time. The 

success of an effective NO removal process by Fe
II
-EDTA lies in the efficient reduction of Fe

II
-

EDTA(NO) and Fe
III

-EDTA, and regeneration of Fe
II
-EDTA in the system. Sulfate and other 

persulfate derived ions in our system can effectively accomplish this task. It was reported in the 

literature that 
��.� and/or ��.�� can be used to reduce Fe
II
-EDTA(NO) and Fe

III
-EDTA in NO 

removal process (T. W. Chien et al., 2009; Narita et al., 1984; Sada et al., 1986; Sada et al., 

1980; Sada et al., 1984; Teramoto et al., 1977; Wang et al., 2007). According to these studies the 

following reactions are proposed in our system for the reduction of Fe
II
-EDTA(NO) and Fe

III
-

EDTA back to Fe
II
-EDTA. 

&�\\\-]^_` + 
���� DUH	"#$	 &�\\-]^_` + C
� ������ + 
'                                             (4.24) 



79 

 

 

&�\\-]^_`(��) + �����
YUIZ[		 &�\\-]^_`(��)�����                                               (4.25) 

2&�\\-]^_`(��) + 2
���� YULZ[		 2&�\\-]^_` + ��� + 2����� + 
��                  (4.26) 

With this reduction reaction scheme persulfate system also helps Fe
II
-EDTA chemistry 

producing a complete synergistic and simultaneous relationship. The literature studies for NO 

removal by Fe
II
-EDTA solution show that with the passage of time Fe

II
-EDTA solution losses 

NO removal capability and the NO conversion drops significantly as early as 2-3 hours (W. Li et 

al., 2006; N. Liu et al., 2012; Wang et al., 2007; Zhu et al., 2010). The long time viability of the 

absorbent solution was tested at 30 
0
C for both 0.01 M Fe

2+
 activated 0.1 M persulfate and 

combined 0.1 M persulfate and 0.01 M Fe
II
-EDTA processes. For the long period of time (6 h) 

NO removal efficiency was found to be 28.07% for Fe
2+

 activated persulfate sytem and 56.88% 

for the combined persulfate and Fe
2+

-EDTA system. The long time viability of the combined 

solution to sustain absorption-oxidation capability indicates the continuous reduction of Fe
II
-

EDTA(NO) to Fe
II
-EDTA by reactions in eqs 4.23, 4.24 and 4.25 for a long time, further 

confirming the beneficial action of persulfate and persulfate derived radicals and ions on Fe
II
-

EDTA. 

4.3.3 Iron speciation and material balance. The iron species’ present in the solution 

(Fe
2+

, Fe
3+

 and Fe
II
-EDTA) is determined spectrophotometrically at 50 

0
C using 0.1 M persulfate 

concentration and three different Fe
2+

 and EDTA (Fe
2+

:EDTA = 1:1) concentrations, as 

discussed earlier. 

Samples were taken by the side syringe very quickly starting as early as 30 s to the end of 

the experiment after certain time intervals. The samples were then analyzed using 

spectrophotometer. Fe
2+

 and Fe
3+

 concentrations were analyzed by using standard 1, 10-

phenanthroline colorimetric method and Fe
II
-EDTA concentration were determined using their 
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absorbances in 270-330 nm. Total measured Fe is the sum of Fe
2+

, Fe
3+

 and Fe
II
-EDTA and 

undetermined Fe is the difference between initial iron concentration and total measured iron.  

 

 

 

Figure 40. Iron species’ profiles at 50 
0
C for 0.1 M persulfate solution. 
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Figure 41. Comparative iron species’ profiles in presence and absence of EDTA. 
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Figure 40 shows the profiles of all the iron species at 50 
0
C. It can be seen from Figure 40 

that Fe
2+

 concentration remains close to zero throughout the experiment suggesting near 

complete reaction with both persulfate and EDTA. The undetermined Fe consists of non-labile 

iron hydroxides, Fe
II
-EDTA(NO) and other non-labile iron species presents in very small 

amounts. Since all other non-labile species except Fe
II
-EDTA(NO) remain constant throughout 

the experiment, the increase in the undetermined Fe suggests increase in Fe
II
-EDTA(NO) 

concentration, resulting from Reaction (4.17) progression. Since, Fe
II
-EDTA(NO) concentration 

increases very slightly and slowly throughout the experiment, it can be said that its accumulation 

in the solution is very small indicating its reduction back to Fe
II
-EDTA by persulfate and radicals 

in the system, thus confirming the synergistic action of persulfate on Fe
II
-EDTA. 

Figure 41 shows the comparison between the iron species’ concentration in Fe
2+

 activated 

persulfate system and combined persulfate and Fe
II
-EDTA system. In Figure 41a, Fe

2+
 ion 

concentration is plotted for both of Fe
2+

 activated 0.1M persulfate system and 0.1M persulfate 

with both Fe
2+

 and EDTA for 0.005M, 0.01M and 0.02M. Ferrous ion concentration for both 

systems is similar, upon addition of oxidant Fe
2+

 concentration quickly diminished to very low 

level indicating it has been oxidized to Fe
3+

 ion. To observe the difference between the Fe
2+

 

concentration profiles of two processes more closely, Figure 41b is drawn. Figure 41b is 

truncation of figure 41a from 500 s to 4000 s to show the comparative Fe
2+

 concentration more 

clearly. We can see Fe
2+

 ion increases (1×10
-5

 to 2.8×10
-4

 M on average) with the initial Fe(II) 

concentration (0.005 to 0.02M) for Fe
2+

 activated persulfate systems. But for combined 

persulfate and Fe
II
-EDTA system the concentration of Fe(II) ion remains the same (1x10

-4
 M on 

average) for 0.005M, 0.01M and 0.02M initial concentration. This can be explained by the 

reversible reaction in eq 4.16, where, the forward and backward reactions stabilize Fe
2+
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concentration in the system that facilitates the Fe
2+

 activation of persulfate. Figure 41c shows the 

Fe
3+

 ion concentration profiles determined by 1,10-phenanthroline method. As compared to Fe
2+

 

activated persulfate system Fe
3+

 ion concentration decreases significantly during the absorption 

process. The concentration of Fe
3+

 in Fe
2+

 activated persulfate systems is almost equal to sum of 

the concentration of Fe
3+

 and Fe
II
-EDTA in combined persulfate and Fe

II
-EDTA systems. This 

implies that the addition of EDTA actually formed Fe
II
-EDTA by consuming Fe

2+
 ion that are 

supposed to be converted into Fe
3+

 anyway, thus increasing the NO removal without affecting 

the temperature and Fe
2+

 activation of persulfate, and further confirming that Fe
II
-EDTA does 

not suppress persulfate activation as discussed earlier. Figure 41d shows the concentration 

profile for undetermined Fe species’. In the persulfate systems with only Fe
2+

 the undetermined 

Fe consists of only non-labile iron species’. In combined persulfate and Fe
II
-EDTA systems 

undetermined Fe also consists of Fe
II
-EDTA(NO) and Fe

III
-EDTA. Since in spectrophotometric 

determination significant amount of Fe
III

-EDTA was never found, the difference between 

undetermined Fe concentaion in two systems is Fe
II
-EDTA(NO) assuming that the non-labile 

iron species’ concentration remain same for the same initial Fe
2+

 concentration. It can be seen 

that Fe
II
-EDTA(NO) concentration (difference between two systems) is 0.001 M. Fe

II
-

EDTA(NO) does not change when Fe
II
-EDTA increased from 0.01 to 0.02 M, suggesting no 

further NO removal occurred for the increase in initial Fe
2+

 concentration from 0.01 to 0.02 M, 

thus confirming previously chosen optimum Fe
2+

 concentration of 0.01 M. Again, presence of 

only 10% of initial Fe
2+

 as Fe
II
-EDTA(NO) and absence of Fe

III
-EDTA indicates Fe

II
-

EDTA(NO) and Fe
III

-EDTA reduction by sulfate ions in the combined system is significant. 

4.3.4 Effect of initial persulfate concentration on NO removal. NO concentration 

profiles were drawn for three different persulfate concentration (0.05, 0.10 and 0.20 M) at 
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different temperature (23 to 70 
0
C). As we can see from Figure 42, when 0.05M persulfate is 

used the NO conversion rate is quite low compared to 0.1M persulfate and there was almost 6-

7% increase in NO conversion from 0.05 to 0.1 M persulfate concentration. Adewuyi and Nana 

(2013) established 0.1M persulfate as optimum concentration of persulfate. In their work, 

Adewuyi and Nana also showed that, after 0.1M persulfate there is no considerable advantage 

adding more persulfate as at 0.2M persulfate concentration there were negligible or no 

improvement in NO conversion. From Figure 42, it also can be said that at 23, 30 and 40 
0
C there 

was only 2-3% improvement in NO conversion on average upon increasing the persulfate 

concentration from 0.1 to 0.2M. However, at 50, 60 and 70 
0
C there was almost no visible 

improvement. But when persulfate is activated by only iron the improvement in NO conversion 

holds throughout the temperature range (23 to 70 
0
C). This can also be explained by the 

temperature activation of reversible reaction. At higher temperature the backward reaction 

started to influence more in the reaction equilibrium and reversible binding of NO with 

Fe(II)EDTA starts to reverse. So, considering the cost of double amount of persulfate and the 

subsequent NO removal it can be concluded that the optimum concentration of persulfate in this 

process should be 0.01M. This observation is completely relevant with the studies of Adewuyi 

and Nana (2013), who found the optimum persulfate concentration at 0.1M in the case of Fe
2+

 

activated persulfate. In the persulfate only absorption studied by Khan and Adewuyi (2010), it 

was shown that after 0.1M persulfate NO removal rate slows down considerably and steadied.  

 

 

 

 



85 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 42. NO concentration plots for different initial persulfate concentration (0.05-0.20 M) at 

different temperatures (23-70 
0
C). 
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Figure 43. NO conversion with initial persulfate concentration for different temperatures. 

 

Figure 44. NO conversion with temperature for different initial persulfate concentrations. 
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That is why, after a certain optimum level, the increase in persulfate concentration does 

not guarantee any further increase in NO removal. In this case, as well as previous studies by 

Khan and Adewuyi and Adewuyi and Nana the optimum level is demonstrably 0.1M. 

This clearly demonstrates that for every temperature from 0.05 to 0.10M persulfate concentration 

NO conversion increases and after 0.10 M NO conversion stabilizes as shown in Figure 42. 

Figure 44 is identical as Figure 43, but NO conversion plotted with temperature for different 

persulfate concentration. It can be seen from the graph that from 0.10M persulfate to 0.20M 

persulfate there is no improvement in NO conversion at higher temperature whereas at low 

temperature there is small improvement that can be deemed insignificant establishing the 

optimum concentration as 0.10M persulfate. 

4.3.5 Effect of initial Fe
2+
/EDTA (1:1) concentration on NO removal. The graphs in 

Figure 45 show the effect of different Fe
2+

/EDTA concentration (0.005 to 0.05M) on NO 

concentration profiles and NO removal at different temperature. At 23 
0
C the removal of NO 

shows significant increase from 0.005 to 0.01M EDTA (37.98% to 48.47%). But from 0.01 to 

0.02M Fe/EDTA it only increase up to 52.59% and at 0.05M Fe/EDTA the conversion actually 

decrease to 51.26%. At 30 
0
C, from 0.005 to 0.01M Fe/EDTA NO removal increase from 

48.74% to 55.64%, where at 0.02M Fe/EDTA it increases up to 61.75%. At 0.05M Fe/EDTA it 

decreases slightly to 61.15%. At 40 
0
C, NO removal increases from 60.69% to 65.07% when 

Fe/EDTA concentration is increases from 0.005M to 0.01M. At 0.02M Fe/EDTA it increases 

slightly to 66.14%. But at 0.05M Fe/EDTA the solution losses almost all its absorption capacity 

and NO profile goes upward sharply after sometime and the final NO removal was found to be 

only 19.12%. This behavior also observed at 50, 60 and 70 
0
C. 
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Figure 45. NO concentration plots for different initial Fe
2+

/EDTA concentrations. 
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At 50 
0
C, NO removal increases from 70.65% to 77.82% when Fe/EDTA concentration is 

increases from 0.005M to 0.01M. At 0.02M Fe/EDTA NO removal actually decreases to73.57%. 

But at 0.05M Fe/EDTA the solution losses almost all its absorption capacity and NO profile goes 

upward sharply after sometime and the final NO removal was found to be only 13.28%. At 60 

0
C, the NO absorption profile behaves similarly like at 50 

0
C and the final NO removal was 

found to be 77.29%, 86.99%, 76.0% and 3.85% at 0.005, 0.01, 0.02 and 0.05M Fe/EDTA, 

respectively. At 70 
0
C, NO removal increases from 83.4% to 96.28% from 0.005 to 0.01M 

Fe/EDTA. At 0.02M Fe/EDTA initially the removal was found to be 78.0%. But after around 

2200 s the solution losses its absorption capacity significantly and suddenly NO profile started to 

go upward until it stabilizes at NO removal of 29.22%. At 0.05M Fe/EDTA only after the mixing 

effect, the solution losses its absorption capacity and NO conversion is almost zero (0.4%). 

From Figure 45, it can be clearly inferred that Fe
II
-EDTA has antagonistic effect on 

persulfate solution at higher concentration similar to the antagonistic effect by Fe(II) ion shown 

in the work of Adewuyi and Sakyi (2013). The reasons given are probably similar, that is, at high 

Fe/EDTA concentration Fe(II) and Fe(II)EDTA may start to scavenge the ���•� and/or �
• 

radicals. Also, the sulfate/bisulfate ions and radicals that was helping the reversible binding of 

NO by reduced back the Fe(III)EDTA to Fe(II)EDTA also start to break down the iron-chelate 

compound entirely. That is why, whereas, at lower Fe/EDTA concentration persulfate and 

Fe(II)EDTA act synergistically to boost the NO removal to an unprecedented level, at higher 

Fe/EDTA concentration and higher temperature they act completely antagonistically to each 

other to destroy  the absorption capacity of the solution. 
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Figure 46. NO conversion with initial Fe
2+

/EDTA concentration for different temperatures. 

 

Figure 47. NO conversion with temperature for different initial Fe
2+

/EDTA concentrations. 

In Figure 46, NO conversion from the NO concentration profiles of Figure 45 is plotted 
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C). The 

data for 0M Fe/EDTA (persulfate only system) is taken from the work of Khan and Adewuyi 

(2010). It is evident that NO conversion rises from 0 to 0.01M Fe/EDTA for all temperature. 
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After that NO conversion rises or stabilizes only at lower temperature where for higher 

temperature NO conversion decreases at 0.02M Fe/EDTA. At 0.05M Fe/EDTA and higher 

temperature NO conversion falls drastically as the solution losses its absorption capacity 

completely. 

In Figure 47, NO conversion is plotted against temperature (23 to 70 
0
C) for different 

initial Fe/EDTA concentration (0 to 0.05M). It can be assumed that the excess Fe/EDTA at 

higher temperature started to consume the free radicals responsible for the persulfate absorption 

and oxidation and rendered the whole persulfate chemistry ineffective. Also, at higher 

temperature the sulfate/bi-sulfate ions that used to aid reversible binding of NO with Fe
II
EDTA 

by converting back Fe
III

EDTA to Fe
III

EDTA may destroy the ability of Fe-EDTA complex to 

bind NO by separating iron from chelate. It can be concluded safely that optimum Fe/EDTA 

concentration for 0.1M persulfate is 0.01M. 

4.3.6 Effect of pH on NO removal. NO conversion profile is obtained for different pH 

(2.0 to 12.0) for 0.1M persulfate and 0.01M Fe/EDTA concentration (optimum condition) at 40 

and 50 
0
C. It can be seen from both figure NO concentration behavior behave differently at 

acidic and alkaline pH. At neutral and slightly below neutral range (~6.5) NO removal shows its 

best efficiency. The concentration profile is almost perfectly flat after initial mixing effect 

dipping and the solution sustain its absorption capability throughout the experiment. 

It is worth saying that pH of the solution was stabilized by phosphate buffer solution for 

pH 4.0, 8.0 and 10.0. The pH of the solution was around 6.0 after the addition of persulfate and 

Fe/EDTA and few drops of 1.0N NaOH is enough to bring it near 7.0. After the experiment 

(4000 s) the pH falls by 0.2-0.3 and the average persulfate was around 6.5. For pH 2.0 and 12.0 

H2SO4 and NaOH solution were used respectively until the pH reach the desired pH. Apart from 
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the near neutral pH, the NO absorption profiles showed different behavior in acidic and alkaline 

region. In the acidic region (pH 2.0 and 4.0) after the initial dip for the mixing effect the removal 

was close to the near neutral NO removal. As time progressed, NO profiles went upward almost 

linearly and NO conversion falls accordingly. This effect was more conspicuous for pH 2.0 than 

pH 4.0. 

In the alkaline region (pH 8.0, 10.0 and 12.0) NO conversion profiles showed different 

kind of behavior. After the initial dip NO profile rose to a very high value and then dropped as 

the time progressed but always stays over the profile at neutral pH. At pH 12.0 NO concentration 

profile never came back to close to near neutral level and NO conversion is very low for pH 

12.0. Another important point is that at pH 12.0 NO conversion at 50 
0
C is actually low 

compared to that of at 40 
0
C. 

Figure 49 is plotted from the NO concentration profiles shown in Figure 48 at 40 and 50 

0
C and clearly illustrates behavior discussed in Figure 48. At pH 2.0 NO removal is quite low 

and at pH 4.0 it rises but best NO conversion is found at pH 6.5 (near neutral pH). After pH 6.5 

in the alkaline region NO conversion started to decrease again and falls sharply after pH 10.0. At 

pH 12.0 NO removal for 50 
0
C is actually below that of 40 

0
C. This NO conversion graph clearly 

demonstrates that neutral of near neutral acidic pH (6.5) shows the best removal for a 

persulfate/Fe
2+

/EDTA system. 
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Figure 48. NO concentration profile for different starting pH (2.0-12.0) of the solution. 
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Figure 49. NO conversion for different pH (2.0-12.0). 

 

Figure 50. Comparative NO conversion for different pH with/without Fe
2+

/EDTA. 
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The pH effect of this system is also compared to the pH effect for only persulfate system 

in Figure 50. It can be seen from Figure 50 that persulfate only system shows little variation in 

NO removal with the variation in pH but persulfate with Fe(II) and EDTA is very sensitive to pH 

change and shows the best removal at near neutral pH (~6.5). 
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CHAPTER 5 

Conclusion and Future Research 

5.1 Conclusions   

The Aspen simulation for reactive distillation of bio oil was carried out and about 90% 

conversions were found for some compositions of bio-oil. The binary and ternary interection 

between the components were studied by using Aspen Property PLUS to observe the possible 

location of azeotropes. Design specification and sensitivity analysis were also performed to 

establish the effect of various parameters and to optimize the reactive distillation process. 

Initially, 1 kmol/h of bio-oil is considered as only 70% acetic acid and 30 % water at 200 
0
C and 

1 MPa and the esterification reaction with stoichiometric amount of n-butanol was simulated and 

the optimized reaction conversion was found to be 76.7%. Then, the composition of bio-oil was 

considered 30% acetic acid, 20% formic acid, 20% propanoic acid and 30% water and overall 

reaction conversion rose to 87.1%. When 10% phenol was added to the bio-oil as a constituent 

overall reaction conversion saw another surge to 94% and the alcohol feed reduced considerably 

due to the acid-phenol reaction that reduce the alcohol requirement for the esterification reaction. 

The optimized number of stages was found to be around 45. Finally, a rate-based simulation was 

performed using RATEFRAC module with bubble cap trays and structured packing and 

considering 80% flooding in the trays. The overall reaction conversion and degree of separation 

dropped by about 5% in this simulation as rate-based simulation is more complex and requires 

additional constraints. The temperature and composition profiles for each of the simulation are 

drawn along the column length. Sensitivity Analysis was done to optimize various input 

parameters including ester flow-rate and water percent in the feed. The Aspen based simulation 

done in this work could provide valuable insight in lab-scaled and industrial reactive distillation 
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column design and the reaction parameters calculated could play a vital role in catalyst design 

for reactive distillation of pyrolysis bio-oil. 

The chemistry and removal rates of NO by combined aqueous solution of persulfate and 

Fe
II
-EDTA were studied extensively and major reaction pathways proposed. The simultaneous 

and synergistic action of persulfate and Fe
II
-EDTA for the removal of NO is demonstrated along 

with the temperature effects (23-70 
0
C) in a bubble column reactor operated in semi-batch mode. 

The ratio at which Fe
2+

 and EDTA should be added to the system prior to the beginning of the 

reaction was determined to be 1:1, and confirmed with most of the existing literature values. The 

optimum persulfate and Fe
2+

/EDTA concentration were used 0.1 M and 0.01 M, respectively, 

and the removal of NO by combined persulfate and Fe
II
-EDTA system was found to boost the 

NO conversion by almost 30% over Fe
2+

 activated persulfate system at lower temperature and by 

5% at the highest temperature. Thus, the combined persulfate and Fe
II
-EDTA system results in a 

close to 100% removal efficiency at 70 
0
C (inlet temperature for most flue gas system) where 

Fe
2+

 activated persulfate system requires 90 
0
C, thus significantly reducing the energy costs.  

Spectrophotometric determination of cationic species’ (iron) was carried out to comprehend and 

develop the reaction mechanism very clearly and precisely. The presence of Fe
II
-EDTA, was 

able to enhance persulfate activation at any temperature without suppressing the oxidation 

chemistry of persulfate resulting in a significant higher NO removal. Persulfate and other sulfur 

based ions were also able to boost Fe
II
-EDTA chemistry by reducing back reaction products Fe

II
-

EDTA(NO) and Fe
III

-EDTA to Fe
II
-EDTA and driving the forward reaction in the reversible 

binding with NO. The combined persulfate and Fe
II
-EDTA process also operated more 

effectively at near neutral pH region (pH 6.0-7.0). It can be considered a significant 

improvement over the operational and process difficulties associated in Fe
2+

 activated persulfate 
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system where the operating pH was 2.5-3.5. In practical industrial processes, oxygen presents in 

the flue gases create a major obstacle in NO treatment by Fe
II
-EDTA, as oxygen reacts with Fe

II
-

EDTA to produce inert Fe
III

-EDTA. In presence of considerable amount of oxygen the process 

can slowed down or even halt. But the synergistic effects of persulfate over Fe
II
-EDTA may be 

enough to remove oxygen enriched flue NO gases, as combined persulfate and Fe
II
-EDTA 

solution can retain separation capability longer than Fe
II
-EDTA silution. However, this needs to 

be verified by further follow up experiments. 

5.2 Recommendations for Future Research 

5.2.1 Recommendation of reactive distillation for esterification of pyrolysis bio-oil. 

Future research for the reactive distillation for esterification of pyrolysis bio-oil is summarized 

below. 

• Pyrolysis bio-oil includes significant amount of miscellaneous oxygenates (mainly 

hydroxyl-acetaldehyde). Since both hydroxyl and aldehyde functional group present in 

this compound the reaction scheme is quite complex for this compound. A simulation can 

be carried out including 10% hydroxyl-acetaldehyde with all other compounds already 

included in the simulation. 

• Detail stage by stage mathematical modeling can be carried out for one or two 

compounds in simulated bio-oil. The mathematical equations can be solved by MATLAB 

using known values of reaction constants and thermodynamic constants and the result can 

be compared to the Aspen results. 

• The short-cut RD modeling methods like (∞-∞)-analysis, (∞-Nmin)-analysis, bifurcation 

analysis can be carried out for a complete mathematical modeling to meet the ultimate 
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target of developing a simulation and model that can be readily applied in industries for 

reactive distillation of bio-oil.  

5.2.2 Recommendation of nitric oxide removal by combined aqueous persulfate and 

ferrous-EDTA systems. Future works on nitric oxide removal by combined aqueous persulfate 

and ferrous-EDTA systems includes: 

• A rigorous model can be developed with reaction kinetics and mass transfer phenomena 

based on proposed reaction scheme can be solved simultaneously by numerical method 

by predicting the kinetic and mass transfer parameters for that the model fits the 

experimental data by adjusting the parameters either Monte Carlo objective function or 

root mean square deviation (RMSD) (Cabrera Reina, Santos-Juanes Jordá, García 

Sánchez, Casas López, & Sánchez Pérez, 2012; Hrvoje Kusic et al., 2011). The estimated 

reaction constants and mass transfer coefficients will be pivotal in designing industrial 

scale NO removal by combined persulfate and ferrous-EDTA systems. 

• NO gas concentration used in these experiments was 753 ppm. The experiments can be 

carried out at different NO concentrations to perform a kinetic analysis based on film 

theory of gas absorption to determine the enhancement factors, Ei and Hatta number, 

Hα to finally determine the overall pseudo reaction order and overall reaction constants. 

• Industrial NO is often associated with SO2 gas. Thus NO removal studies in presence of 

SO2 are of immense importance. Previous studies suggested that presence of  SO2 

actually enhance NO removal efficiency in NO removal by aqueous persulfate systems 

(Yusuf G. Adewuyi & Nana Y. Sakyi, 2013). Since, combined action of persulfate and 

ferrous-EDTA systems is being used for NO removal for the first time the experiments 
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should be perform in presence of SO2 gas to observe the beneficial or detrimental effects 

of SO2 on NO removal. 

• Effects of other flue gas constituents, especially O2 on the persulfate-Fe
II
-EDTA-NO and 

persulfate-Fe
II
-EDTA-NO-SO2 systems can be observed and results can be compared to 

the similar studies available in the literature for other NO removal reagents. 

•  Design of Experimental studies can be performed using Taguchi statistical methods to 

observe the effects of different experimental parameters such as inlet gas concentrations, 

persulfate concentrations, ferrous-EDTA concentrations, temperature and pH on NO 

removal efficiency and finally to optimize the process parameters for optimum NO 

removal. 
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Appendix A 

Speciation for Different Fe
2+

/EDTA Concentration 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1. Speciation plots for different iron components for different initial Fe
2+

 concentration. 
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Figure A.2. Speciation plots for different iron components for different initial EDTA 

concentration. 
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Table A.1 

Iron Species Concentration for Different Initial Fe
2+
 and/or EDTA Concentration at 50 

0
C 

Iron 

Species’ 
Types of Values 

Concentration (M) 

Fe
2+

 Only 
Fe

2+
 / 

EDTA 
Fe

2+
 Only 

Fe
2+

 / 

EDTA 
Fe

2+
 Only 

Fe
2+

 / 

EDTA 

Initial Concentration 0.005 0.01 0.02 

Fe
2+

 

Range 

Minimu

m 
0 0.000052 0.00008 0.000076 0.00012 0.000081 

Maximu

m 

2.20 x 10
-

5 0.000099 0.00022 0.00023 0.0005 0.00016 

Steady State 

Average 

1.05 x 10
-

5 0.000078 0.00013 0.00012 0.00028 0.00011 

Fe
3+

 

Range 

Minimu

m 
0.00457 0.00264 0.00929 0.00569 0.01838 0.01279 

Maximu

m 
0.00494 0.00315 0.00986 0.00628 0.01918 0.01423 

Steady State 

Average 
0.00474 0.00286 0.00957 0.00599 0.01884 0.01337 

Fe
II
-EDTA 

Range 

Minimu

m 

- 

0.00111 

- 

0.00247 

- 

0.00468 

Maximu

m 
0.00132 0.00277 0.0059 

Steady State 

Average 
0.00123 0.00261 0.00518 

Total 

Measured Fe 

Range 

Minimu

m 
0.00458 0.00381 0.00937 0.0084 0.0185 0.01825 

Maximu

m 
0.00495 0.0045 0.01 0.00919 0.01956 0.0194 

Steady State 

Average 
0.00475 0.00416 0.00969 0.00872 0.01911 0.01866 

Undetermine

d Fe 

Range 

Minimu

m 
0.00005 0.005 0 0.00031 0.00022 0.0011 

Maximu

m 
0.00042 0.00119 0.00063 0.00151 0.00075 0.00175 

Steady State 

Average 
0.00025 0.00084 0.00031 0.00128 0.00044 0.00144 
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Appendix B 

Concentration Profile for Long Period of Time 

 

Figure B.1. NO concentration profile for 6.0 h for 0.1 M persulfate and 0.01 M Fe
2+

 (with or 

without 0.01 M EDTA) at 30 
0
C. 
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Appendix C 

Complete Proposed Reaction Scheme 

 

Table C.1 

Proposed Reaction Scheme for NO Removal by Combined Persulfate/Fe
II
-EDTA Systems 

# Reaction Kinetic Constant 

Persulfate Degradation and NO Consumption by Radicals 

1 ������ + 	ℎ�op	 DS	"$ 	2	���•� 1.0	 × 10�=	(25°>)	?@	5.7	
× 10�=B�C(70°>) 

2 ������ + &��' DU→ ����� + ���•� + &�.' 1.7 − 2.7	?@	2.0	
× 10C	G�CB�C	(70°>) 

3 ���•� + 
��	 DE	"$ 	
���� + �
• 6.6 × 10�B�C 

4 �
• + �� DH	"$ 
' + ���� 2 × 10CK	G�CB�C 

5 ������ + ����
DI→ ����� + ���•� + ���  

6 ���� + ���•� DL			"#$ ����� + ��� 9.8 × 10�	G�CB�C 

7 ��� + �
• 	DM	"$ 
' + ��.� 4.5 × 10P	G�CB�C 

Direct Consumption of NO by Persulfate 

8 ������ + 	�� + 
��	 DN		"$ 	2	
���� + ��� 
 

Reaction of Ferrous Ion with Radicals 

9 	&��' + �
• DO→ &�.' + �
� 3.2	 × 10�	G�CB�C 
10 ���•� + &��' 	DST	"#$	&�.' + ����� 4.6 × 10P?@		3.0 × 10�	G�CB�C 
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Radical-Radical Interaction 

11 ���•� + �
• 	DSS	"#$ 	
���� + 1
2�� 

1 × 10CK	G�CB�C 

12 ���•� + ���•� 	DSU	"#$	������ 7.6 × 10�	G�CB�C 
13 ���•� + ������ 	DSE	"#$	����•� + ����� 7.6 × 10�	G�CB�C 
NO Absorption Reaction by FeSO4 

14 &���� + NO YSHZ[ &�(��)��� 
 

Reaction of Fe
II
-EDTA 

15 &��' + EDTA�� YSIZ[ &�\\-]^_` 
 

16 &�\\-]^_` + NO YSLZ[ &�\\-]^_`(��) 3.6	 × 10d		G�C(25°>) 
17 4&�\\-]^_` + �� +	
�� DSM	"#$	 4&�\\\-]^_`

+ 4�
� 

 

18 2&�\\-]^_` + ���� + 	2
'

YSNZ[	 &�\\-]^_`(��)
+ &�\\\-]^_` + 
�� 

 

19 2&�\\-]^_`(��) + 2&�\\-]^_` + 	4
'

DSO	"#$		 4&�\\\-]^_` + ��

+ 2
�� 

 

20 2&�\\-]^_` + 2���
YUTZ[	 &�\\-]^_`(��)

+ &�\\\-]^_` + ��.� 
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Reaction Under Alkaline Condition 

21 2�� + 4�
� DUS	"#$ 2���� + 2
�� + 2��  

22 ���•� + �
� 	DUU	"#$ 	����� + �
• 1.4 × 10=	G�CB�C 
23 �
• + �
� YUEZ[ �•� + 
�� (at very high pH)  

Reaction Under Acidic Condition 

24 2�� + 2
�� DUH	"#$ 2
��� + 2
' + 2��  

25 3
���
YUIZ[	 ��.� + 2�� + 
' + 
��  

26 3��� + 
�� DUL	"#$ 2
��. + ��  

27 �� +��� +	
�� YUMZ[	 2
���  

28 2��� +	
�� YUNZ[	 2
' + ��.� + ����  

29 ������ + 
' DUO"$ 
�����  

30 
����� 	DET	"#$ 	��� + 
����  

31 ��� 	DES	"#$ 	��. + 1
2��  

32 ������ + 
�� rs,DEU"###$ 
���J + ����� (at very low pH)  

Reduction of Fe
II
-EDTA(NO) and Fe

III
-EDTA 

33 &�\\\-]^_` + ���•� DEE	"#$	 &�\\-]^_` + 1
2 ������  

34 3&�\\-]^_`(��) + 4
���� DEH	"#$	 3&�\\-]^_`

+ 2HON(SO�)��� + 1
2�� + 
�� 
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35 4&�\\-]^_`(��) + 4
���� DEI	"#$	 4&�\\-]^_`
+ 2HON(SO�)��� + �� +
���O� 

 

36 
���O�
DEL	"#$	 ��O + 
��  

37 2&�\\-]^_`(��) + ���•� YEMZ[		 2&�\\-]^_`
+ (��)������ 

 

38 (��)������ YENZ[		 ��O + �����  

39 &�\\-]^_`(��) + ���•� YEOZ[		 &�\\-]^_`(��)�����  
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Appendix D 

Modeling Formulation and Solution Approach 

The rate of consumption of any species i in the bulk phase can be written as, 

v(w5)
v� = −@* = −∑ @)-)yC                                                                                               (D.1) 

Where Ci and ri is the concentration and the sum of rates of reactions including the 

species i, respectively. 

The rate of individual reaction rm is, 

r{ = k{∏ C����
�yC                                                                                                       (D.2) 

Where km is the rate constant of the reaction and a� is the stoichiometric coefficient of 

species q. 

According to the film theory, the rate of transfer of gaseous species j from gas to liquid 

is, 

R�,� = K�a�(����
− C�)                                                                                                    (D.3) 

 Where K�a is the mass-transfer coefficient, H is the Henry’s law coefficient, P� is the 

partial pressure of j at the outlet. Pj is calculated as Pi = ppmi x10
-6 

x Ptotal where Ptotal is 1 atm and 

ppmi is molar ppm. The material balance of j in the gas phase yields 

��
��

���
�� = �

�� �P��� − P�� − R�,�V�	                                                                            (D.4) 

 Where V� is the gas holdup volume, R is the gas constant, T is the temperature, Q is the 

gas flow rate, P��� is the partial pressure of j at the inlet, V� is the liquid volume. Therefore, 

���
�� = �

�� �P��� − P�� − ����
�� K�a�(����

− C�)                                                                (D.5) 

 The material balance for aqueous i yields the equation 
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���
�� = K�a� �����

− C�� 	− r�                                                                                              (D.6) 

The equations found in eqs D.1, D.5 and D.6 arise a system of equation that perfectly 

represents the absorption system. The equations can be solved simultaneously by numerical 

method by predicting the kinetic and mass transfer parameters for that the model fits the 

experimental data. The parameters can be adjusted by minimizing either Monte Carlo objective 

function given in equation D.7 or root mean square deviation (RMSD) in eq D.8. 

J = ∑ i. �∑  ¡¢£¤,¥¦�¡§¨©,¥¦
¡¢£¤,¥¦  {ªyC ���yC                                                                                  (D.7) 

RMSD = ¬C
�∑ �y®¯�,� − y{��,�����yC                                                                               (D.8) 
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Appendix E 

MATLAB Code for Modeling Work 

E.1 Modeling with PSS Approach 

E.1.1 Code for 23 
0
C 

function persulfate_mak_23_13rxn() 

    clc 

      conc1=xlsread(‘\23deg.xls’,’e1’,’C:C’); 

      time30deg=xlsread(‘\23deg.xls’,’e1’,’D:D’); 

     conc2=xlsread(‘\23deg.xls’,’e1’,’F:F’); 

%     time50deg=xlsread(‘\70deg.xls’,’e1’,’D:D’); 

    conc3=xlsread(‘\23deg.xls’,’e1’,’G:G’); 

%    time60deg=xlsread(‘\70deg.xls’,’e1’,’D:D’); 

    conc4=xlsread(‘\23deg.xls’,’e1’,’I:I’); 

%    time40deg=xlsread(‘\70deg.xls’,’e1’,’D:D’); 

    figure(1) 

    plot(time30deg, conc3,’r’); 

     hold on 

%legend (‘Experimental’); 

figure(1) 

   hold on 

  plot(time30deg, conc4,’r’); 

  figure(1) 

   hold on 
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  plot(time30deg, conc2,’r’); 

  figure(1) 

   hold on 

  E1=plot(time30deg, conc1,’r’); 

  %Constants 

    R = 8.314;      %universal gas constant, J/mol.K 

    H = 5.223e4*1;    %henry’s law constant, Pa/(mol/m^3) 

    %Parameters 

    q = 1.667e-6*1;   %gas flow rate, m^3/s 

    V_gas = 1.96e-5*1; %gas holdup, m^3, based on 1 cm height increase 

    V_liq = 1e-3;   %liquid volume, m^3 

    T = 296;        %temperature, K 

    P = 101325;     %pressure, Pa 

    y_NO_in = 1010e-6; %mol fraction of NO, converted from mol fraction of 0.105% 

    V_1 = 1e-4*1;   %head space 

    V_2 = 1e-4*0; 

    %parameters to be determined 

    kLa = 1.96e-2;  %mass transfer coefficient, s^-1 1.6, .48 

    k_1 = 1.18e-8; 

    k_2 = 2.59e-4; 

    k_3 = 1.46e-2; 

    k_4 = 2.53e-3; 

    k_5 = 1.22e-8; 
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    k_6 = 1.36e-7; 

    k_7 = 5.23e-2; 

    k_sr= 6.24e-5; 

    function dydt=odefun(t, y) 

        dydt = zeros(3,1); 

        dydt(1) = kLa*P/H*y(2) – kLa*y(1) – 2*y(4)*k_1-k_2*y(1)*y(4)-

k_3*y(4)*y(5)+k_4*y(5)+k_5+k_6+k_sr*y(1);  %C_NO_liq 

        dydt(2) = q/V_gas*y_NO_in – y(2)*(q/V_gas)  - 

(y(2)+y_NO_in)*0.5*(kLa*V_liq*R*T/(H*V_gas)) … 

            + kLa*V_liq*R*T/(P*V_gas)*y(1)*1; %y_NO_gas 

        dydt(3) = q/V_1*(y(2) – y(3)); 

        dydt(4) = -k_1*y(4)-k_2*y(1)*y(4)-k_3*y(4)*y(5)+k_6; 

        dydt(5) = -k_3*y(4)*y(5)-(k_4+k_7)*y(5); %ferrous ion 

        dydt(6) = 2*k_1*y(4);   %product of reaction 3 

        %dydt(7) = 8*(y_S2O8_ini – y(4)) + q/V_liq*(y_NO_in – y(2))/(R*T);   %oxygen balance 

%        dydt(8) = 2*(y_S2O8_ini – y(4)) – 2*y(5) – y(6);   %sulfate balance 

        %dydt(5) = q/V_1*(y(2)-y(5));    %volume effect 

    end 

    tspan = [0 3200]; 

    M = [1 0 0 0 0 0% 0 0 

        0 1 0 0 0 0% 0 0 

        0 0 1 0 0 0% 0 0  

        0 0 0 1 0 0% 0 0 
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        0 0 0 0 1 0% 0 0 

        0 0 0 0 0 1];% 0 0 

        %0 0 0 0 0 0 0 0 

        %0 0 0 0 0 0 0 1]; 

    options = odeset(‘Refine’, 1, ‘NonNegative’, [1]); 

%     y_S2O8_ini = 0.01*1e3;  %concentration of persulfate, mol/m^3 

%     y0 = [0 y_NO_in y_NO_in y_S2O8_ini 0 0];% 0 0]; 

%     [t, y]=ode45(@odefun, tspan, y0, options); 

%     figure(1); 

%     t = t + 600; 

%     plot(t,y(:,2)*1e6); 

% %    plot(t,y(:,4)/y_S2O8_ini); 

%     hold on 

    y_Fe_ini = 0.01*1e3;  %concentration of persulfate, mol/m^3 

    y_S2O8_ini = 0.02*1e3;  %concentration of persulfate, mol/m^3 

    y0 = [0 y_NO_in y_NO_in y_S2O8_ini y_Fe_ini 0];% 0 0]; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 600; 

    E2=plot(t,y(:,2)*1e6); 

%    plot(t,y(:,4)/y_S2O8_ini); 

    y(end,2)*1e6 

    y_S2O8_ini = 0.05*1e3;  %concentration of persulfate, mol/m^3 
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    y0 = [0 y_NO_in y_NO_in y_S2O8_ini y_Fe_ini 0];% 0 0]; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 600; 

    plot(t,y(:,2)*1e6); 

%    plot(t,y(:,4)/y_S2O8_ini); 

    y(end,2)*1e6 

    y_S2O8_ini = 0.1*1e3;  %concentration of persulfate, mol/m^3 

    y0 = [0 y_NO_in y_NO_in y_S2O8_ini y_Fe_ini 0];% 0 0]; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 600; 

    plot(t,y(:,2)*1e6); 

%    plot(t,y(:,4)/y_S2O8_ini); 

    y(end,2)*1e6 

    y_S2O8_ini = 0.2*1e3;  %concentration of persulfate, mol/m^3 

    y0 = [0 y_NO_in y_NO_in y_S2O8_ini y_Fe_ini 0];% 0 0]; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 600; 

    plot(t,y(:,2)*1e6); 

%    plot(t,y(:,4)/y_S2O8_ini); 

    y(end,2)*1e6 
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    xlabel(‘Time(s)’) 

    ylabel(‘NO Concentration (ppm)’) 

   legend([E1 E2],’Experimental’, ‘Model’) 

end 

E.1.2 Code for 30 
0
C 

function persulfate_mak_30_13rxn() 

    clc 

      conc1=xlsread('\30deg.xls','e1','C:C'); 

      time30deg=xlsread('\30deg.xls','e1','D:D'); 

     conc2=xlsread('\30deg.xls','e1','F:F'); 

%     time50deg=xlsread('\30deg.xls','e1','D:D'); 

    conc3=xlsread('\30deg.xls','e1','G:G'); 

%    time60deg=xlsread('\30deg.xls','e1','D:D'); 

     conc4=xlsread('\30deg.xls','e1','I:I'); 

%     time40deg=xlsread('\40deg.xls','e1','D:D'); 

    figure(1) 

     plot(time30deg, conc3,'r'); 

     hold on 

figure(1) 

   hold on 

  plot(time30deg, conc4,'r'); 

  figure(1) 

   hold on 
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  plot(time30deg, conc2,'r'); 

  figure(1) 

   hold on 

  E1=plot(time30deg, conc1,'r'); 

  %Constants 

    R = 8.314;      %universal gas constant, J/mol.K 

    H = 5.223e4*1;    %henry's law constant, Pa/(mol/m^3) 

    %Parameters 

    q = 1.667e-6*1;   %gas flow rate, m^3/s 

    V_gas = 1.96e-5*1; %gas holdup, m^3, based on 1 cm height increase 

    V_liq = 1e-3;   %liquid volume, m^3 

    T = 303;        %temperature, K 

    P = 101325;     %pressure, Pa 

    y_NO_in = 1010e-6; %mol fraction of NO, converted from mol fraction of 0.105% 

    V_1 = 1e-4*1;   %head space 

    V_2 = 1e-4*0; 

    %parameters to be determined 

    kLa = 2.12e-2;  %mass transfer coefficient, s^-1 1.6, .48 

    k_1 = 1.32e-8; 

    k_2 = 3.89e-4; 

    k_3 = 3.05e-2; 

    k_4 = 3.96e-3; 

    k_5 = 1.92e-8; 



136 

 

 

    k_6 = 2.12e-7; 

    k_7 = 7.65e-2; 

    k_sr= 8.40e-5; 

    function dydt=odefun(t, y) 

        dydt = zeros(3,1); 

          dydt(1) = kLa*P/H*y(2) - kLa*y(1) - 2*y(4)*k_1-k_2*y(1)*y(4)-

k_3*y(4)*y(5)+k_4*y(5)+k_5+k_6+k_sr*y(1);  %C_NO_liq 

  

        dydt(2) = q/V_gas*y_NO_in - y(2)*(q/V_gas)  - 

(y(2)+y_NO_in)*0.5*(kLa*V_liq*R*T/(H*V_gas)) ... 

            + kLa*V_liq*R*T/(P*V_gas)*y(1)*1; %y_NO_gas 

        dydt(3) = q/V_1*(y(2) - y(3)); 

        dydt(4) = -k_1*y(4)-k_2*y(1)*y(4)-k_3*y(4)*y(5)+k_6; 

        dydt(5) = -k_3*y(4)*y(5)-(k_4+k_7)*y(5); %ferrous ion 

        dydt(6) = 2*k_1*y(4);   %product of reaction 3 

        %dydt(7) = 8*(y_S2O8_ini - y(4)) + q/V_liq*(y_NO_in - y(2))/(R*T);   %oxygen balance 

%        dydt(8) = 2*(y_S2O8_ini - y(4)) - 2*y(5) - y(6);   %sulfate balance 

        %dydt(5) = q/V_1*(y(2)-y(5));    %volume effect 

    end 

    tspan = [0 3200]; 

    M = [1 0 0 0 0 0% 0 0 

        0 1 0 0 0 0% 0 0 

        0 0 1 0 0 0% 0 0  
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        0 0 0 1 0 0% 0 0 

        0 0 0 0 1 0% 0 0 

        0 0 0 0 0 1];% 0 0 

        %0 0 0 0 0 0 0 0 

        %0 0 0 0 0 0 0 1]; 

    options = odeset('Refine', 1, 'NonNegative', [1]); 

%     y_S2O8_ini = 0.01*1e3;  %concentration of persulfate, mol/m^3 

%     y0 = [0 y_NO_in y_NO_in y_S2O8_ini 0 0];% 0 0]; 

%     [t, y]=ode45(@odefun, tspan, y0, options); 

%     figure(1); 

%     t = t + 600; 

%     plot(t,y(:,2)*1e6); 

% %    plot(t,y(:,4)/y_S2O8_ini); 

%     hold on 

    y_Fe_ini = 0.01*1e3;  %concentration of persulfate, mol/m^3 

    y_S2O8_ini = 0.02*1e3;  %concentration of persulfate, mol/m^3 

    y0 = [0 y_NO_in y_NO_in y_S2O8_ini y_Fe_ini 0];% 0 0]; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 600; 

    E2=plot(t,y(:,2)*1e6); 

%    plot(t,y(:,4)/y_S2O8_ini); 

    y(end,2)*1e6 
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    y_S2O8_ini = 0.05*1e3;  %concentration of persulfate, mol/m^3 

    y0 = [0 y_NO_in y_NO_in y_S2O8_ini y_Fe_ini 0];% 0 0]; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 600; 

    plot(t,y(:,2)*1e6); 

%    plot(t,y(:,4)/y_S2O8_ini); 

    y(end,2)*1e6 

    y_S2O8_ini = 0.1*1e3;  %concentration of persulfate, mol/m^3 

    y0 = [0 y_NO_in y_NO_in y_S2O8_ini y_Fe_ini 0];% 0 0]; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 600; 

    plot(t,y(:,2)*1e6); 

%    plot(t,y(:,4)/y_S2O8_ini); 

    y(end,2)*1e6 

    y_S2O8_ini = 0.2*1e3;  %concentration of persulfate, mol/m^3 

    y0 = [0 y_NO_in y_NO_in y_S2O8_ini y_Fe_ini 0];% 0 0]; 

  

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 600; 

    plot(t,y(:,2)*1e6); 
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%    plot(t,y(:,4)/y_S2O8_ini); 

    y(end,2)*1e6 

    xlabel('Time(s)') 

    ylabel('NO Concentration (ppm)') 

   legend([E1 E2],'Experimental', 'Model') 

end 

E.1.3 Code for 40 
0
C 

function persulfate_mak_40_13rxn() 

    clc 

      conc1=xlsread(‘\40deg.xls’,’e1’,’C:C’); 

      time30deg=xlsread(‘\40deg.xls’,’e1’,’D:D’); 

     conc2=xlsread(‘\40deg.xls’,’e1’,’F:F’); 

%     time50deg=xlsread(‘\40deg.xls’,’e1’,’D:D’); 

    conc3=xlsread(‘\40deg.xls’,’e1’,’G:G’); 

%    time60deg=xlsread(‘\40deg.xls’,’e1’,’D:D’); 

    conc4=xlsread(‘\40deg.xls’,’e1’,’I:I’); 

%    time40deg=xlsread(‘\40deg.xls’,’e1’,’D:D’); 

    figure(1) 

     plot(time30deg, conc3,’r’); 

     hold on 

%length (time30deg),length(conc3)     

figure(1) 

   hold on 
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  plot(time30deg, conc4,’r’); 

  figure(1) 

   hold on 

  plot(time30deg, conc2,’r’); 

  figure(1) 

   hold on 

  E1=plot(time30deg, conc1,’r’); 

  %Constants 

    R = 8.314;      %universal gas constant, J/mol.K 

    H = 5.223e4*1;    %henry’s law constant, Pa/(mol/m^3) 

    %Parameters 

    q = 1.667e-6*1;   %gas flow rate, m^3/s 

    V_gas = 1.96e-5*1; %gas holdup, m^3, based on 1 cm height increase 

    V_liq = 1e-3;   %liquid volume, m^3 

    T = 313;        %temperature, K 

    P = 101325;     %pressure, Pa 

    y_NO_in = 1010e-6; %mol fraction of NO, converted from mol fraction of 0.105% 

    V_1 = 1e-4*1;   %head space 

    V_2 = 1e-4*0; 

    %parameters to be determined 

    kLa = 2.67e-2;  %mass transfer coefficient, s^-1 1.6, .48 

    k_1 = 2.79e-8; 

    k_2 = 4.58e-4; 
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    k_3 = 6.15e-2; 

    k_4 = 8.89e-3; 

    k_5 = 2.75e-8; 

    k_6 = 3.81e-7; 

    k_7 = 1.75e-1; 

    k_sr= 2.23e-4; 

    function dydt=odefun(t, y) 

        dydt = zeros(3,1); 

          dydt(1) = kLa*P/H*y(2) – kLa*y(1) – 2*y(4)*k_1-k_2*y(1)*y(4)-

k_3*y(4)*y(5)+k_4*y(5)+k_5+k_6+k_sr*y(1);  %C_NO_liq 

         dydt(2) = q/V_gas*y_NO_in – y(2)*(q/V_gas)  - 

(y(2)+y_NO_in)*0.5*(kLa*V_liq*R*T/(H*V_gas)) … 

            + kLa*V_liq*R*T/(P*V_gas)*y(1)*1; %y_NO_gas 

        dydt(3) = q/V_1*(y(2) – y(3)); 

        dydt(4) = -k_1*y(4)-k_2*y(1)*y(4)-k_3*y(4)*y(5)+k_6; 

        dydt(5) = -k_3*y(4)*y(5)-(k_4+k_7)*y(5); %ferrous ion 

        dydt(6) = 2*k_1*y(4);   %product of reaction 3 

        %dydt(7) = 8*(y_S2O8_ini – y(4)) + q/V_liq*(y_NO_in – y(2))/(R*T);   %oxygen balance 

%        dydt(8) = 2*(y_S2O8_ini – y(4)) – 2*y(5) – y(6);   %sulfate balance 

        %dydt(5) = q/V_1*(y(2)-y(5));    %volume effect 

    end 

    tspan = [0 3200]; 

    M = [1 0 0 0 0 0% 0 0 



142 

 

 

        0 1 0 0 0 0% 0 0 

        0 0 1 0 0 0% 0 0  

        0 0 0 1 0 0% 0 0 

        0 0 0 0 1 0% 0 0 

        0 0 0 0 0 1];% 0 0 

        %0 0 0 0 0 0 0 0 

        %0 0 0 0 0 0 0 1]; 

    options = odeset(‘Refine’, 1, ‘NonNegative’, [1]); 

%     y_S2O8_ini = 0.01*1e3;  %concentration of persulfate, mol/m^3 

%     y0 = [0 y_NO_in y_NO_in y_S2O8_ini 0 0];% 0 0]; 

%     [t, y]=ode45(@odefun, tspan, y0, options); 

%     figure(1); 

%     t = t + 600; 

%     plot(t,y(:,2)*1e6); 

% %    plot(t,y(:,4)/y_S2O8_ini); 

%     hold on 

    y_Fe_ini = 0.01*1e3;  %concentration of persulfate, mol/m^3 

    y_S2O8_ini = 0.022*1e3;  %concentration of persulfate, mol/m^3 

    y0 = [0 y_NO_in y_NO_in y_S2O8_ini y_Fe_ini 0];% 0 0]; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 600; 

    E2=plot(t,y(:,2)*1e6); 
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%    plot(t,y(:,4)/y_S2O8_ini); 

    y(end,2)*1e6 

    y_S2O8_ini = 0.05*1e3;  %concentration of persulfate, mol/m^3 

    y0 = [0 y_NO_in y_NO_in y_S2O8_ini y_Fe_ini 0];% 0 0]; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 600; 

    plot(t,y(:,2)*1e6); 

%    plot(t,y(:,4)/y_S2O8_ini); 

    y(end,2)*1e6 

    y_S2O8_ini = 0.1*1e3;  %concentration of persulfate, mol/m^3 

    y0 = [0 y_NO_in y_NO_in y_S2O8_ini y_Fe_ini 0];% 0 0]; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 600; 

    plot(t,y(:,2)*1e6); 

%    plot(t,y(:,4)/y_S2O8_ini); 

    y(end,2)*1e6 

    y_S2O8_ini = 0.22*1e3;  %concentration of persulfate, mol/m^3 

    y0 = [0 y_NO_in y_NO_in y_S2O8_ini y_Fe_ini 0];% 0 0]; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 600; 
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    plot(t,y(:,2)*1e6); 

%    plot(t,y(:,4)/y_S2O8_ini); 

    y(end,2)*1e6 

    xlabel(‘Time(s)’) 

    ylabel(‘NO Concentration (ppm)’) 

   legend([E1 E2],’Experimental’, ‘Model’) 

end 

E.1.4 Code for 50 
0
C 

function persulfate_mak_50_13rxn() 

    clc 

    clear all 

    conc1=xlsread('\50deg.xls','e1','C:C'); 

      time30deg=xlsread('\50deg.xls','e1','D:D'); 

     conc2=xlsread('\50deg.xls','e1','F:F'); 

%     time50deg=xlsread('\50deg.xls','e1','D:D'); 

    conc3=xlsread('\50deg.xls','e1','G:G'); 

%    time60deg=xlsread('\50deg.xls','e1','D:D'); 

    conc4=xlsread('\50deg.xls','e1','I:I'); 

 %   time40deg=xlsread('\40deg.xls','e1','D:D'); 

    figure(1) 

     plot(time30deg, conc3,'r'); 

     hold on 

figure(1) 



145 

 

 

   hold on 

  plot(time30deg, conc4,'r'); 

   figure(1) 

   hold on 

  plot(time30deg, conc2,'r'); 

  figure(1) 

   hold on 

  E1=plot(time30deg, conc1,'r'); 

  %Constants 

    R = 8.314;      %universal gas constant, J/mol.K 

    H = 5.223e4*1;    %henry's law constant, Pa/(mol/m^3) 

    %Parameters 

    q = 1.667e-6*1;   %gas flow rate, m^3/s 

    V_gas = 1.96e-5*1; %gas holdup, m^3, based on 1 cm height increase 

    V_liq = 1e-3;   %liquid volume, m^3 

    T = 323;        %temperature, K 

    P = 101325;     %pressure, Pa 

    y_NO_in = 1010e-6; %mol fraction of NO, converted from mol fraction of 0.105% 

    V_1 = 1e-4*1;   %head space 

    V_2 = 1e-4*0; 

    %parameters to be determined 

    kLa = 3.36e-2;  %mass transfer coefficient, s^-1 1.6, .48 

    k_1 = 4.44e-8; 
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    k_2 = 6.11e-4; 

    k_3 = 1.26e-1; 

    k_4 = 1.60e-2; 

    k_5 = 3.99e-8; 

    k_6 = 6.48e-7; 

    k_7 = 3.46e-1; 

    k_sr= 3.92e-4; 

    function dydt=odefun(t, y) 

        dydt = zeros(3,1); 

        dydt(1) = kLa*P/H*y(2) - kLa*y(1) - 2*y(4)*k_1-k_2*y(1)*y(4)-

k_3*y(4)*y(5)+k_4*y(5)+k_5+k_6+k_sr*y(1);  %C_NO_liq 

        dydt(2) = q/V_gas*y_NO_in - y(2)*(q/V_gas)  - 

(y(2)+y_NO_in)*0.5*(kLa*V_liq*R*T/(H*V_gas)) ... 

            + kLa*V_liq*R*T/(P*V_gas)*y(1)*1; %y_NO_gas 

        dydt(3) = q/V_1*(y(2) - y(3)); 

        dydt(4) = -k_1*y(4)-k_2*y(1)*y(4)-k_3*y(4)*y(5)+k_6; 

        dydt(5) = -k_3*y(4)*y(5)-(k_4+k_7)*y(5); %ferrous ion 

        dydt(6) = 2*k_1*y(4);   %product of reaction 3 

        %dydt(7) = 8*(y_S2O8_ini - y(4)) + q/V_liq*(y_NO_in - y(2))/(R*T);   %oxygen balance 

%        dydt(8) = 2*(y_S2O8_ini - y(4)) - 2*y(5) - y(6);   %sulfate balance 

        %dydt(5) = q/V_1*(y(2)-y(5));    %volume effect 

    end 

    tspan = [0 3200]; 
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    M = [1 0 0 0 0 0% 0 0 

        0 1 0 0 0 0% 0 0 

        0 0 1 0 0 0% 0 0  

        0 0 0 1 0 0% 0 0 

        0 0 0 0 1 0% 0 0 

        0 0 0 0 0 1];% 0 0 

        %0 0 0 0 0 0 0 0 

        %0 0 0 0 0 0 0 1]; 

    options = odeset('Refine', 1, 'NonNegative', [1]); 

%     y_S2O8_ini = 0.01*1e3;  %concentration of persulfate, mol/m^3 

%     y0 = [0 y_NO_in y_NO_in y_S2O8_ini 0 0];% 0 0]; 

%     [t, y]=ode45(@odefun, tspan, y0, options); 

%     figure(1); 

%     t = t + 600; 

%     plot(t,y(:,2)*1e6); 

% %    plot(t,y(:,4)/y_S2O8_ini); 

%     hold on 

    y_Fe_ini = 0.01*1e3;  %concentration of persulfate, mol/m^3 

    y_S2O8_ini = 0.02*1e3;  %concentration of persulfate, mol/m^3 

    y0 = [0 y_NO_in y_NO_in y_S2O8_ini y_Fe_ini 0];% 0 0]; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 600; 
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    E2=plot(t,y(:,2)*1e6); 

%    plot(t,y(:,4)/y_S2O8_ini); 

    y(end,2)*1e6 

    y_S2O8_ini = 0.05*1e3;  %concentration of persulfate, mol/m^3 

    y0 = [0 y_NO_in y_NO_in y_S2O8_ini y_Fe_ini 0];% 0 0]; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 600; 

    plot(t,y(:,2)*1e6); 

%    plot(t,y(:,4)/y_S2O8_ini); 

    y(end,2)*1e6 

    y_S2O8_ini = 0.1*1e3;  %concentration of persulfate, mol/m^3 

    y0 = [0 y_NO_in y_NO_in y_S2O8_ini y_Fe_ini 0];% 0 0]; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 600; 

    plot(t,y(:,2)*1e6); 

%    plot(t,y(:,4)/y_S2O8_ini); 

    y(end,2)*1e6 

    y_S2O8_ini = 0.2*1e3;  %concentration of persulfate, mol/m^3 

    y0 = [0 y_NO_in y_NO_in y_S2O8_ini y_Fe_ini 0];% 0 0]; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 
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    t = t + 600; 

    plot(t,y(:,2)*1e6); 

%    plot(t,y(:,4)/y_S2O8_ini); 

    y(end,2)*1e6 

    xlabel('Time(s)') 

    ylabel('NO Concentration (ppm)') 

   legend([E1 E2],'Experimental', 'Model') 

end 

E.1.5 Code for 60 
0
C 

function persulfate_mak_60_13rxn() 

    clc 

      conc1=xlsread('\60deg.xls','e1','C:C'); 

      time30deg=xlsread('\60deg.xls','e1','D:D'); 

     conc2=xlsread('\60deg.xls','e1','F:F'); 

%     time50deg=xlsread('\60deg.xls','e1','D:D'); 

    conc3=xlsread('\60deg.xls','e1','G:G'); 

%    time60deg=xlsread('\60deg.xls','e1','D:D'); 

    conc4=xlsread('\60deg.xls','e1','I:I'); 

%    time40deg=xlsread('\40deg.xls','e1','D:D'); 

    figure(1) 

     plot(time30deg, conc3,'r'); 

     hold on 

figure(1) 
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   hold on 

  plot(time30deg, conc4,'r'); 

   figure(1) 

   hold on 

  plot(time30deg, conc2,'r'); 

  figure(1) 

   hold on 

  E1=plot(time30deg, conc1,'r'); 

%Constants 

    R = 8.314;      %universal gas constant, J/mol.K 

    H = 5.223e4*1;    %henry's law constant, Pa/(mol/m^3) 

    %Parameters 

    q = 1.667e-6*1;   %gas flow rate, m^3/s 

    V_gas = 1.96e-5*1; %gas holdup, m^3, based on 1 cm height increase 

    V_liq = 1e-3;   %liquid volume, m^3 

    T = 333;        %temperature, K 

    P = 101325;     %pressure, Pa 

    y_NO_in = 1010e-6; %mol fraction of NO, converted from mol fraction of 0.105% 

    V_1 = 1e-4*1;   %head space 

    V_2 = 1e-4*0; 

    %parameters to be determined 

    kLa = 4.06e-2;  %mass transfer coefficient, s^-1 1.6, .48 

    k_1 = 5.57e-8; 
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    k_2 = 6.85e-4; 

    k_3 = 2.52e-1; 

    k_4 = 3.02e-2; 

    k_5 = 5.82e-8; 

    k_6 = 9.53e-7; 

    k_7 = 5.69e-1; 

    k_sr= 5.72e-4; 

    function dydt=odefun(t, y) 

        dydt = zeros(3,1); 

        dydt(1) = kLa*P/H*y(2) - kLa*y(1) - 2*y(4)*k_1-k_2*y(1)*y(4)-

k_3*y(4)*y(5)+k_4*y(5)+k_5+k_6+k_sr*y(1);  %C_NO_liq 

        dydt(2) = q/V_gas*y_NO_in - y(2)*(q/V_gas)  - 

(y(2)+y_NO_in)*0.5*(kLa*V_liq*R*T/(H*V_gas)) ... 

            + kLa*V_liq*R*T/(P*V_gas)*y(1)*1; %y_NO_gas 

        dydt(3) = q/V_1*(y(2) - y(3)); 

        dydt(4) = -k_1*y(4)-k_2*y(1)*y(4)-k_3*y(4)*y(5)+k_6; 

        dydt(5) = -k_3*y(4)*y(5)-(k_4+k_7)*y(5); %ferrous ion 

        dydt(6) = 2*k_1*y(4);   %product of reaction 3 

        %dydt(7) = 8*(y_S2O8_ini - y(4)) + q/V_liq*(y_NO_in - y(2))/(R*T);   %oxygen balance 

%        dydt(8) = 2*(y_S2O8_ini - y(4)) - 2*y(5) - y(6);   %sulfate balance 

        %dydt(5) = q/V_1*(y(2)-y(5));    %volume effect 

    end 

    tspan = [0 3200]; 
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    M = [1 0 0 0 0 0% 0 0 

        0 1 0 0 0 0% 0 0 

        0 0 1 0 0 0% 0 0  

        0 0 0 1 0 0% 0 0 

        0 0 0 0 1 0% 0 0 

        0 0 0 0 0 1];% 0 0 

        %0 0 0 0 0 0 0 0 

        %0 0 0 0 0 0 0 1]; 

    options = odeset('Refine', 1, 'NonNegative', [1]); 

%     y_S2O8_ini = 0.01*1e3;  %concentration of persulfate, mol/m^3 

%     y0 = [0 y_NO_in y_NO_in y_S2O8_ini 0 0];% 0 0]; 

%     [t, y]=ode45(@odefun, tspan, y0, options); 

%     figure(1); 

%     t = t + 600; 

%     plot(t,y(:,2)*1e6); 

% %    plot(t,y(:,4)/y_S2O8_ini); 

%     hold on 

    y_Fe_ini = 0.01*1e3;  %concentration of persulfate, mol/m^3 

    y_S2O8_ini = 0.02*1e3*.95;  %concentration of persulfate, mol/m^3 

    y0 = [0 y_NO_in y_NO_in y_S2O8_ini y_Fe_ini 0];% 0 0]; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 600; 
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    E2=plot(t,y(:,2)*1e6); 

%    plot(t,y(:,4)/y_S2O8_ini); 

    y(end,2)*1e6 

    y_S2O8_ini = 0.04*1e3;  %concentration of persulfate, mol/m^3 

    y0 = [0 y_NO_in y_NO_in y_S2O8_ini y_Fe_ini 0];% 0 0]; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 600; 

    plot(t,y(:,2)*1e6); 

%    plot(t,y(:,4)/y_S2O8_ini); 

    y(end,2)*1e6 

    y_S2O8_ini = 0.1*1e3;  %concentration of persulfate, mol/m^3 

    y0 = [0 y_NO_in y_NO_in y_S2O8_ini y_Fe_ini 0];% 0 0]; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 600; 

    plot(t,y(:,2)*1e6); 

%    plot(t,y(:,4)/y_S2O8_ini); 

    y(end,2)*1e6 

    y_S2O8_ini = 0.2*1e3;  %concentration of persulfate, mol/m^3 

    y0 = [0 y_NO_in y_NO_in y_S2O8_ini y_Fe_ini 0];% 0 0]; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 
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    t = t + 600; 

    plot(t,y(:,2)*1e6); 

%    plot(t,y(:,4)/y_S2O8_ini); 

    y(end,2)*1e6 

    xlabel('Time(s)') 

    ylabel('NO Concentration (ppm)') 

   legend([E1 E2],'Experimental', 'Model') 

end 

E.1.6 Code for 70 
0
C 

function persulfate_mak_70_13rxn() 

    clc 

      conc1=xlsread('\70deg.xls','e1','C:C'); 

      time30deg=xlsread('\70deg.xls','e1','D:D'); 

     conc2=xlsread('\70deg.xls','e1','F:F'); 

%     time50deg=xlsread('\70deg.xls','e1','D:D'); 

    conc3=xlsread('\70deg.xls','e1','G:G'); 

%    time60deg=xlsread('\70deg.xls','e1','D:D'); 

    conc4=xlsread('\70deg.xls','e1','I:I'); 

%    time40deg=xlsread('\70deg.xls','e1','D:D'); 

    figure(1) 

     plot(time30deg, conc3,'r'); 

     hold on 

figure(1) 
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   hold on 

  plot(time30deg, conc4,'r'); 

  figure(1) 

   hold on 

  plot(time30deg, conc2,'r'); 

  figure(1) 

   hold on 

  E1=plot(time30deg, conc1,'r'); 

  %Constants 

    R = 8.314;      %universal gas constant, J/mol.K 

    H = 5.223e4*1;    %henry's law constant, Pa/(mol/m^3) 

    %Parameters 

    q = 1.667e-6*1;   %gas flow rate, m^3/s 

    V_gas = 1.96e-5*1; %gas holdup, m^3, based on 1 cm height increase 

    V_liq = 1e-3;   %liquid volume, m^3 

    T = 343;        %temperature, K 

    P = 101325;     %pressure, Pa 

    y_NO_in = 1010e-6; %mol fraction of NO, converted from mol fraction of 0.105% 

    V_1 = 1e-4*1;   %head space 

    V_2 = 1e-4*0; 

    %parameters to be determined 

    kLa = 4.35e-2;  %mass transfer coefficient, s^-1 1.6, .48 

    k_1 = 6.99e-8; 
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    k_2 = 8.57e-4; 

    k_3 = 6.00e-1; 

    k_4 = 6.71e-2; 

    k_5 = 8.49e-8; 

    k_6 = 1.40e-6; 

    k_7 = 1.09e-0; 

    k_sr= 1.15e-3; 

    function dydt=odefun(t, y) 

        dydt = zeros(3,1); 

        dydt(1) = kLa*P/H*y(2) - kLa*y(1) - 2*y(4)*k_1-k_2*y(1)*y(4)-

k_3*y(4)*y(5)+k_4*y(5)+k_5+k_6+k_sr*y(1);  %C_NO_liq 

        dydt(2) = q/V_gas*y_NO_in - y(2)*(q/V_gas)  - 

(y(2)+y_NO_in)*0.5*(kLa*V_liq*R*T/(H*V_gas)) ... 

            + kLa*V_liq*R*T/(P*V_gas)*y(1)*1; %y_NO_gas 

        dydt(3) = q/V_1*(y(2) - y(3)); 

        dydt(4) = -k_1*y(4)-k_2*y(1)*y(4)-k_3*y(4)*y(5)+k_6; 

        dydt(5) = -k_3*y(4)*y(5)-(k_4+k_7)*y(5); %ferrous ion 

        dydt(6) = 2*k_1*y(4);   %product of reaction 3 

        %dydt(7) = 8*(y_S2O8_ini - y(4)) + q/V_liq*(y_NO_in - y(2))/(R*T);   %oxygen balance 

%        dydt(8) = 2*(y_S2O8_ini - y(4)) - 2*y(5) - y(6);   %sulfate balance 

        %dydt(5) = q/V_1*(y(2)-y(5));    %volume effect 

    end 

    tspan = [0 3200]; 
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     M = [1 0 0 0 0 0% 0 0 

        0 1 0 0 0 0% 0 0 

        0 0 1 0 0 0% 0 0  

        0 0 0 1 0 0% 0 0 

        0 0 0 0 1 0% 0 0 

        0 0 0 0 0 1];% 0 0 

        %0 0 0 0 0 0 0 0 

        %0 0 0 0 0 0 0 1]; 

    options = odeset('Refine', 1, 'NonNegative', [1]); 

%     y_S2O8_ini = 0.01*1e3;  %concentration of persulfate, mol/m^3 

%     y0 = [0 y_NO_in y_NO_in y_S2O8_ini 0 0];% 0 0]; 

%     [t, y]=ode45(@odefun, tspan, y0, options); 

%     figure(1); 

%     t = t + 600; 

%     plot(t,y(:,2)*1e6); 

% %    plot(t,y(:,4)/y_S2O8_ini); 

%     hold on 

    y_Fe_ini = 0.01*1e3;  %concentration of persulfate, mol/m^3 

    y_S2O8_ini = 0.02*1e3;  %concentration of persulfate, mol/m^3 

    y0 = [0 y_NO_in y_NO_in y_S2O8_ini y_Fe_ini 0];% 0 0]; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 600; 
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    E2=plot(t,y(:,2)*1e6); 

%    plot(t,y(:,4)/y_S2O8_ini); 

    y(end,2)*1e6 

    y_S2O8_ini = 0.05*1e3;  %concentration of persulfate, mol/m^3 

    y0 = [0 y_NO_in y_NO_in y_S2O8_ini y_Fe_ini 0];% 0 0]; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 600; 

    plot(t,y(:,2)*1e6); 

%    plot(t,y(:,4)/y_S2O8_ini); 

    y(end,2)*1e6 

    y_S2O8_ini = 0.1*1e3;  %concentration of persulfate, mol/m^3 

    y0 = [0 y_NO_in y_NO_in y_S2O8_ini y_Fe_ini 0];% 0 0]; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 600; 

    plot(t,y(:,2)*1e6); 

%    plot(t,y(:,4)/y_S2O8_ini); 

    y(end,2)*1e6 

    y_S2O8_ini = 0.4*1e3;  %concentration of persulfate, mol/m^3 

    y0 = [0 y_NO_in y_NO_in y_S2O8_ini y_Fe_ini 0];% 0 0]; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 
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    t = t + 600; 

    plot(t,y(:,2)*1e6); 

%    plot(t,y(:,4)/y_S2O8_ini); 

    y(end,2)*1e6 

    xlabel('Time(s)') 

    ylabel('NO Concentration (ppm)') 

   legend([E1 E2],'Experimental', 'Model') 

end 

E.1.7 Code for 23-70 
0
C 

function persulfate_mak_23to90_13rxn() 

    clc 

      conc1=xlsread('\23to90deg.xls','Sheet6','D4:D402'); 

      %time30deg=xlsread('\23deg.xls','e1','C4:C402'); 

      time30deg=0:10:3980; 

      conc2=xlsread('\23to90deg.xls','Sheet6','E4:E402'); 

%     time50deg=xlsread('\70deg.xls','e1','D:D'); 

    conc3=xlsread('\23to90deg.xls','Sheet6','F4:F402'); 

%    time60deg=xlsread('\70deg.xls','e1','D:D'); 

    conc4=xlsread('\23to90deg.xls','Sheet6','G4:G402'); 

%    time40deg=xlsread('\70deg.xls','e1','D:D'); 

conc5=xlsread('\23to90deg.xls','Sheet6','H4:H402'); 

conc6=xlsread('\23to90deg.xls','Sheet6','I4:I402'); 

conc7=xlsread('\23to90deg.xls','Sheet6','J4:J402'); 
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conc8=xlsread('\23to90deg.xls','Sheet6','K4:K402'); 

   figure(1) 

    plot(time30deg, conc3,'r'); 

     hold on 

%legend ('Experimental'); 

figure(1) 

   hold on 

  plot(time30deg, conc4,'r'); 

  figure(1) 

   hold on 

  plot(time30deg, conc2,'r'); 

  figure(1) 

   hold on 

  E1=plot(time30deg, conc5,'r'); 

  figure(1) 

   hold on 

  plot(time30deg, conc6,'r'); 

  figure(1) 

   hold on 

  plot(time30deg, conc7,'r'); 

  figure(1) 

   hold on 

  plot(time30deg, conc8,'r'); 
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  figure(1) 

   hold on 

  plot(time30deg, conc1,'r'); 

  %Constants 

    R = 8.314;      %universal gas constant, J/mol.K 

    H = 5.223e4*1;    %henry's law constant, Pa/(mol/m^3) 

    %Parameters 

    q = 1.667e-6*1;   %gas flow rate, m^3/s 

    V_gas = 1.96e-5*1; %gas holdup, m^3, based on 1 cm height increase 

    V_liq = 1e-3;   %liquid volume, m^3 

    P = 101325;     %pressure, Pa 

    y_NO_in = 1010e-6; %mol fraction of NO, converted from mol fraction of 0.105% 

    V_1 = 1e-4*1;   %head space 

    V_2 = 1e-4*0; 

     y_Fe_ini = 0.01*1e3;  %concentration of persulfate, mol/m^3 

    y_S2O8_ini = 0.1*1e3;  %concentration of persulfate, mol/m^3 

    y0 = [0 y_NO_in y_NO_in y_S2O8_ini y_Fe_ini 0];% 0 0]; 

    function dydt=odefun(t, y) 

        dydt = zeros(3,1); 

          dydt(1) = kLa*P/H*y(2) - kLa*y(1) - 2*y(4)*k_1-k_2*y(1)*y(4)-

k_3*y(4)*y(5)+k_4*y(5)+k_5+k_6+k_sr*y(1);  %C_NO_liq 

        dydt(2) = q/V_gas*y_NO_in - y(2)*(q/V_gas)  - 

(y(2)+y_NO_in)*0.5*(kLa*V_liq*R*T/(H*V_gas)) ... 
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            + kLa*V_liq*R*T/(P*V_gas)*y(1)*1; %y_NO_gas 

        dydt(3) = q/V_1*(y(2) - y(3)); 

        dydt(4) = -k_1*y(4)-k_2*y(1)*y(4)-k_3*y(4)*y(5)+k_6; 

        dydt(5) = -k_3*y(4)*y(5)-(k_4+k_7)*y(5); %ferrous ion 

        dydt(6) = 2*k_1*y(4);   %product of reaction 3 

        %dydt(7) = 8*(y_S2O8_ini - y(4)) + q/V_liq*(y_NO_in - y(2))/(R*T);   %oxygen balance 

%        dydt(8) = 2*(y_S2O8_ini - y(4)) - 2*y(5) - y(6);   %sulfate balance 

        %dydt(5) = q/V_1*(y(2)-y(5));    %volume effect 

    end 

    tspan = [0 3380]; 

    M = [1 0 0 0 0 0% 0 0 

        0 1 0 0 0 0% 0 0 

        0 0 1 0 0 0% 0 0  

        0 0 0 1 0 0% 0 0 

        0 0 0 0 1 0% 0 0 

        0 0 0 0 0 1];% 0 0 

        %0 0 0 0 0 0 0 0 

        %0 0 0 0 0 0 0 1]; 

    options = odeset('Refine', 1, 'NonNegative', [1]); 

    T = 296;        %temperature, K 

    %parameters to be determined 

    kLa = 1.96e-2;  %mass transfer coefficient, s^-1 1.6, .48 

    k_1 = 1.18e-8; 
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    k_2 = 2.59e-4; 

    k_3 = 1.46e-2; 

    k_4 = 2.53e-3; 

    k_5 = 1.22e-8; 

    k_6 = 1.36e-7; 

    k_7 = 5.23e-2; 

    k_sr= 6.24e-5; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 600; 

    E2=plot(t,y(:,2)*1e6); 

%    plot(t,y(:,4)/y_S2O8_ini); 

    y(end,2)*1e6 

    hold on 

    T = 303;        %temperature, K 

    %parameters to be determined 

    kLa = 2.12e-2;  %mass transfer coefficient, s^-1 1.6, .48 

    k_1 = 1.32e-8; 

    k_2 = 3.89e-4; 

    k_3 = 3.05e-2; 

    k_4 = 3.96e-3; 

    k_5 = 1.92e-8; 

    k_6 = 2.12e-7; 
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    k_7 = 7.65e-2; 

    k_sr= 8.40e-5; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 600; 

    E2=plot(t,y(:,2)*1e6); 

%    plot(t,y(:,4)/y_S2O8_ini); 

    y(end,2)*1e6 

    hold on 

    T = 313;        %temperature, K 

    %parameters to be determined 

    kLa = 2.67e-2;  %mass transfer coefficient, s^-1 1.6, .48 

    k_1 = 2.79e-8; 

    k_2 = 4.58e-4; 

    k_3 = 6.15e-2; 

    k_4 = 8.89e-3; 

    k_5 = 2.75e-8; 

    k_6 = 3.81e-7; 

    k_7 = 1.75e-1; 

    k_sr= 2.23e-4; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 600; 
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    E2=plot(t,y(:,2)*1e6); 

%    plot(t,y(:,4)/y_S2O8_ini); 

    y(end,2)*1e6 

    hold on 

    T = 323;        %temperature, K 

    %parameters to be determined 

    kLa = 3.36e-2;  %mass transfer coefficient, s^-1 1.6, .48 

    k_1 = 4.44e-8; 

    k_2 = 6.11e-4; 

    k_3 = 1.26e-1; 

    k_4 = 1.60e-2; 

    k_5 = 3.99e-8; 

    k_6 = 6.48e-7; 

    k_7 = 3.46e-1; 

    k_sr= 3.92e-4; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 600; 

    E2=plot(t,y(:,2)*1e6); 

%    plot(t,y(:,4)/y_S2O8_ini); 

    y(end,2)*1e6 

    hold on 

    T = 333;        %temperature, K 
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    %parameters to be determined 

    kLa = 4.06e-2;  %mass transfer coefficient, s^-1 1.6, .48 

    k_1 = 5.57e-8; 

    k_2 = 6.85e-4; 

    k_3 = 2.52e-1; 

    k_4 = 3.02e-2; 

    k_5 = 5.82e-8; 

    k_6 = 9.53e-7; 

    k_7 = 5.69e-1; 

    k_sr= 5.72e-4; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 600; 

    E2=plot(t,y(:,2)*1e6); 

%    plot(t,y(:,4)/y_S2O8_ini); 

    y(end,2)*1e6 

    hold on 

    T = 343;        %temperature, K 

    %parameters to be determined 

    kLa = 4.35e-2;  %mass transfer coefficient, s^-1 1.6, .48 

    k_1 = 6.99e-8; 

    k_2 = 8.57e-4; 

    k_3 = 6.00e-1; 
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    k_4 = 6.71e-2; 

    k_5 = 8.49e-8; 

    k_6 = 1.40e-6; 

    k_7 = 1.09e-0; 

    k_sr= 1.15e-3; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 600; 

    E2=plot(t,y(:,2)*1e6); 

%    plot(t,y(:,4)/y_S2O8_ini); 

    y(end,2)*1e6 

    hold on 

    T = 353;        %temperature, K 

    %parameters to be determined 

    kLa = 4.64e-2;  %mass transfer coefficient, s^-1 1.6, .48 

    k_1 = 8.77e-8; 

    k_2 = 1.22e-3; 

    k_3 = 1.42e-0; 

    k_4 = 1.18e-1; 

    k_5 = 1.44e-7; 

    k_6 = 2.25e-6; 

    k_7 = 1.73e-0; 

    k_sr= 1.71e-3; 
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    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 600; 

    E2=plot(t,y(:,2)*1e6); 

%    plot(t,y(:,4)/y_S2O8_ini); 

    y(end,2)*1e6 

    hold on 

     T = 363;        %temperature, K 

    %parameters to be determined 

    kLa = 5.37e-2;  %mass transfer coefficient, s^-1 1.6, .48 

    k_1 = 1.29e-7; 

    k_2 = 1.59e-3; 

    k_3 = 2.45e-0; 

    k_4 = 2.12e-1; 

    k_5 = 2.11e-7; 

    k_6 = 3.30e-6; 

    k_7 = 3.25e-0; 

    k_sr= 2.54e-3; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 600; 

    E2=plot(t,y(:,2)*1e6); 

%    plot(t,y(:,4)/y_S2O8_ini); 
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    y(end,2)*1e6 

    xlabel('Time(s)') 

    ylabel('NO Concentration (ppm)') 

   legend([E1 E2],'Experimental','Model') 

%     

 end 

E.1.8 Code for iron with different temperature 

function iron_01M_difftemp_13rxn 

    clc 

    clear all 

%Constants 

    R = 8.314;      %universal gas constant, J/mol.K 

    H = 5.223e4*1;    %henry's law constant, Pa/(mol/m^3) 

    %Parameters 

    q = 1.667e-6*1;   %gas flow rate, m^3/s 

    V_gas = 1.96e-5*1; %gas holdup, m^3, based on 1 cm height increase 

    V_liq = 1e-3;   %liquid volume, m^3 

    P = 101325;     %pressure, Pa 

    y_NO_in = 1010e-6; %mol fraction of NO, converted from mol fraction of 0.105% 

    V_1 = 1e-4*1;   %head space 

    V_2 = 1e-4*0; 

     y_Fe_ini = 0.01*1e3;  %concentration of persulfate, mol/m^3 

    y_S2O8_ini = 0.1*1e3;  %concentration of persulfate, mol/m^3 
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    y0 = [0 y_NO_in y_NO_in y_S2O8_ini y_Fe_ini 0];% 0 0]; 

    function dydt=odefun(t, y) 

        dydt = zeros(3,1); 

        dydt(1) = kLa*P/H*y(2) - kLa*y(1) - 2*y(4)*k_1-k_2*y(1)*y(4)-

k_3*y(4)*y(5)+k_4*y(5)+k_5+k_6;  %C_NO_liq 

        dydt(2) = q/V_gas*y_NO_in - y(2)*(q/V_gas)  - 

(y(2)+y_NO_in)*0.5*(kLa*V_liq*R*T/(H*V_gas)) ... 

            + kLa*V_liq*R*T/(P*V_gas)*y(1)*1; %y_NO_gas 

        dydt(3) = q/V_1*(y(2) - y(3)); 

        dydt(4) = -k_1*y(4)-k_2*y(1)*y(4)-k_3*y(4)*y(5)+k_6; 

        dydt(5) = -k_3*y(4)*y(5)-(k_4+k_7)*y(5); %ferrous ion 

        dydt(6) = 2*k_1*y(4);   %product of reaction 3 

        %dydt(7) = 8*(y_S2O8_ini - y(4)) + q/V_liq*(y_NO_in - y(2))/(R*T);   %oxygen balance 

    %        dydt(8) = 2*(y_S2O8_ini - y(4)) - 2*y(5) - y(6);   %sulfate balance 

        %dydt(5) = q/V_1*(y(2)-y(5));    %volume effect 

    end 

    tspan = [0 3900]; 

    M = [1 0 0 0 0 0% 0 0 

        0 1 0 0 0 0% 0 0 

        0 0 1 0 0 0% 0 0  

        0 0 0 1 0 0% 0 0 

        0 0 0 0 1 0% 0 0 

        0 0 0 0 0 1];% 0 0 
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        %0 0 0 0 0 0 0 0 

        %0 0 0 0 0 0 0 1]; 

    options = odeset('Refine', 1, 'NonNegative', [1]); 

    T = 296;        %temperature, K 

    %parameters to be determined 

    kLa = 1.96e-2;  %mass transfer coefficient, s^-1 1.6, .48 

    k_1 = 1.18e-8; 

    k_2 = 2.59e-4; 

    k_3 = 1.46e-2; 

    k_4 = 2.53e-3; 

    k_5 = 1.22e-8; 

    k_6 = 1.36e-7; 

    k_7 = 5.23e-2; 

    k_sr= 6.24e-5; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 60; 

    plot(t,y(:,5)*1e-3); 

%    plot(t,y(:,4)/y_S2O8_ini); 

    hold on 

     T = 303;        %temperature, K 

    %parameters to be determined 

    kLa = 2.12e-2;  %mass transfer coefficient, s^-1 1.6, .48 
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    k_1 = 1.32e-8; 

    k_2 = 3.89e-4; 

    k_3 = 3.05e-2; 

    k_4 = 3.96e-3; 

    k_5 = 1.92e-8; 

    k_6 = 2.12e-7; 

    k_7 = 7.65e-2; 

    k_sr= 8.40e-5; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 60; 

    plot(t,y(:,5)*1e-3); 

%    plot(t,y(:,4)/y_S2O8_ini); 

    hold on 

    T = 313;        %temperature, K 

    %parameters to be determined 

    kLa = 2.67e-2;  %mass transfer coefficient, s^-1 1.6, .48 

    k_1 = 2.79e-8; 

    k_2 = 4.58e-4; 

    k_3 = 6.15e-2; 

    k_4 = 8.89e-3; 

    k_5 = 2.75e-8; 

    k_6 = 3.81e-7; 
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    k_7 = 1.75e-1; 

    k_sr= 2.23e-4; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 60; 

    plot(t,y(:,5)*1e-3); 

%    plot(t,y(:,4)/y_S2O8_ini); 

    hold on 

    T = 323;        %temperature, K 

    %parameters to be determined 

    kLa = 3.36e-2;  %mass transfer coefficient, s^-1 1.6, .48 

    k_1 = 4.44e-8; 

    k_2 = 6.11e-4; 

    k_3 = 1.26e-1; 

    k_4 = 1.60e-2; 

    k_5 = 3.99e-8; 

    k_6 = 6.48e-7; 

    k_7 = 3.46e-1; 

    k_sr= 3.92e-4; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 60; 

    plot(t,y(:,5)*1e-3); 
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%    plot(t,y(:,4)/y_S2O8_ini); 

    hold on 

    T = 333;        %temperature, K 

    %parameters to be determined 

    kLa = 4.06e-2;  %mass transfer coefficient, s^-1 1.6, .48 

    k_1 = 5.57e-8; 

    k_2 = 6.85e-4; 

    k_3 = 2.52e-1; 

    k_4 = 3.02e-2; 

    k_5 = 5.82e-8; 

    k_6 = 9.53e-7; 

    k_7 = 5.69e-1; 

    k_sr= 5.72e-4; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 60; 

    plot(t,y(:,5)*1e-3); 

%    plot(t,y(:,4)/y_S2O8_ini); 

    hold on 

    T = 343;        %temperature, K 

    %parameters to be determined 

    kLa = 4.35e-2;  %mass transfer coefficient, s^-1 1.6, .48 

    k_1 = 6.99e-8; 
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    k_2 = 8.57e-4; 

    k_3 = 6.00e-1; 

    k_4 = 6.71e-2; 

    k_5 = 8.49e-8; 

    k_6 = 1.40e-6; 

    k_7 = 1.09e-0; 

    k_sr= 1.15e-3; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 60; 

    plot(t,y(:,5)*1e-3); 

%    plot(t,y(:,4)/y_S2O8_ini); 

    hold on 

    T = 353;        %temperature, K 

    %parameters to be determined 

    kLa = 4.64e-2;  %mass transfer coefficient, s^-1 1.6, .48 

    k_1 = 8.77e-8; 

    k_2 = 1.22e-3; 

    k_3 = 1.42e-0; 

    k_4 = 1.18e-1; 

    k_5 = 1.44e-7; 

    k_6 = 2.25e-6; 

    k_7 = 1.73e-0; 
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    k_sr= 1.71e-3; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 60; 

    plot(t,y(:,5)*1e-3); 

%    plot(t,y(:,4)/y_S2O8_ini); 

    hold on 

    T = 363;        %temperature, K 

    %parameters to be determined 

    kLa = 4.69e-2;  %mass transfer coefficient, s^-1 1.6, .48 

    k_1 = 1.29e-7; 

    k_2 = 1.59e-3; 

    k_3 = 2.45e-0; 

    k_4 = 2.12e-1; 

    k_5 = 2.11e-7; 

    k_6 = 3.30e-6; 

    k_7 = 3.25e-0; 

    k_sr= 2.54e-3; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 60; 

    plot(t,y(:,5)*1e-3); 

%    plot(t,y(:,4)/y_S2O8_ini); 
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    hold on 

    xlabel('Time(s)') 

    ylabel('Fe<2+> Concentration (M)') 

   legend('at 23degC','at 30degC', 'at 40degC', 'at 50degC', 'at 60degC','at 70degC','at 80degC','at 

90degC') 

end 

E.1.9 Code for S2O8 with different temperature 

function S2O8_difftemp_13rxn 

    clc 

    clear all 

  %Constants 

    R = 8.314;      %universal gas constant, J/mol.K 

    H = 5.223e4*1;    %henry's law constant, Pa/(mol/m^3) 

    %Parameters 

    q = 1.667e-6*1;   %gas flow rate, m^3/s 

    V_gas = 1.96e-5*1; %gas holdup, m^3, based on 1 cm height increase 

    V_liq = 1e-3;   %liquid volume, m^3 

    P = 101325;     %pressure, Pa 

    y_NO_in = 1010e-6; %mol fraction of NO, converted from mol fraction of 0.105% 

    V_1 = 1e-4*1;   %head space 

    V_2 = 1e-4*0; 

    y_Fe_ini = 0.01*1e3;  %concentration of persulfate, mol/m^3 

    y_S2O8_ini = 0.1*1e3;  %concentration of persulfate, mol/m^3 
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    y0 = [0 y_NO_in y_NO_in y_S2O8_ini y_Fe_ini 0];% 0 0]; 

    function dydt=odefun(t, y) 

        dydt = zeros(3,1); 

        dydt(1) = kLa*P/H*y(2) - kLa*y(1) - 2*y(4)*k_1-k_2*y(1)*y(4)-

k_3*y(4)*y(5)+k_4*y(5)+k_5+k_6;  %C_NO_liq 

        dydt(2) = q/V_gas*y_NO_in - y(2)*(q/V_gas)  - 

(y(2)+y_NO_in)*0.5*(kLa*V_liq*R*T/(H*V_gas)) ... 

            + kLa*V_liq*R*T/(P*V_gas)*y(1)*1; %y_NO_gas 

        dydt(3) = q/V_1*(y(2) - y(3)); 

        dydt(4) = -k_1*y(4)-k_2*y(1)*y(4)-k_3*y(4)*y(5)+k_6; 

        dydt(5) = -k_3*y(4)*y(5)-(k_4+k_7)*y(5); %ferrous ion 

        dydt(6) = 2*k_1*y(4);   %product of reaction 3 

        %dydt(7) = 8*(y_S2O8_ini - y(4)) + q/V_liq*(y_NO_in - y(2))/(R*T);   %oxygen balance 

%        dydt(8) = 2*(y_S2O8_ini - y(4)) - 2*y(5) - y(6);   %sulfate balance 

        %dydt(5) = q/V_1*(y(2)-y(5));    %volume effect 

    end 

    tspan = [0 3900]; 

    M = [1 0 0 0 0 0% 0 0 

        0 1 0 0 0 0% 0 0 

        0 0 1 0 0 0% 0 0  

        0 0 0 1 0 0% 0 0 

        0 0 0 0 1 0% 0 0 

        0 0 0 0 0 1];% 0 0 
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        %0 0 0 0 0 0 0 0 

        %0 0 0 0 0 0 0 1]; 

     

    options = odeset('Refine', 1, 'NonNegative', [1]); 

    T = 296;        %temperature, K 

    %parameters to be determined 

    kLa = 1.96e-2;  %mass transfer coefficient, s^-1 1.6, .48 

    k_1 = 1.18e-8; 

    k_2 = 2.59e-4; 

    k_3 = 1.46e-2; 

    k_4 = 2.53e-3; 

    k_5 = 1.22e-8; 

    k_6 = 1.36e-7; 

    k_7 = 5.23e-2; 

    k_sr= 6.24e-5; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 60; 

    plot(t,y(:,4)*1e-3); 

%    plot(t,y(:,4)/y_S2O8_ini); 

    hold on 

    T = 303;        %temperature, K 

    %parameters to be determined 



180 

 

 

    kLa = 2.12e-2;  %mass transfer coefficient, s^-1 1.6, .48 

    k_1 = 1.32e-8; 

    k_2 = 3.89e-4; 

    k_3 = 3.05e-2; 

    k_4 = 3.96e-3; 

    k_5 = 1.92e-8; 

    k_6 = 2.12e-7; 

    k_7 = 7.65e-2; 

    k_sr= 8.40e-5; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 60; 

    plot(t,y(:,4)*1e-3); 

%    plot(t,y(:,4)/y_S2O8_ini); 

    hold on 

    T = 313;        %temperature, K 

    %parameters to be determined 

    kLa = 2.67e-2;  %mass transfer coefficient, s^-1 1.6, .48 

    k_1 = 2.79e-8; 

    k_2 = 4.58e-4; 

    k_3 = 6.15e-2; 

    k_4 = 8.89e-3; 

    k_5 = 2.75e-8; 
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    k_6 = 3.81e-7; 

    k_7 = 1.75e-1; 

    k_sr= 2.23e-4; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 60; 

    plot(t,y(:,4)*1e-3); 

%    plot(t,y(:,4)/y_S2O8_ini); 

    hold on 

    T = 323;        %temperature, K 

    %parameters to be determined 

    kLa = 3.36e-2;  %mass transfer coefficient, s^-1 1.6, .48 

    k_1 = 4.44e-8; 

    k_2 = 6.11e-4; 

    k_3 = 1.26e-1; 

    k_4 = 1.60e-2; 

    k_5 = 3.99e-8; 

    k_6 = 6.48e-7; 

    k_7 = 3.46e-1; 

    k_sr= 3.92e-4; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 60; 
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    plot(t,y(:,4)*1e-3); 

%    plot(t,y(:,4)/y_S2O8_ini); 

    hold on 

    T = 333;        %temperature, K 

    %parameters to be determined 

    kLa = 4.06e-2;  %mass transfer coefficient, s^-1 1.6, .48 

    k_1 = 5.57e-8; 

    k_2 = 6.85e-4; 

    k_3 = 2.52e-1; 

    k_4 = 3.02e-2; 

    k_5 = 5.82e-8; 

    k_6 = 9.53e-7; 

    k_7 = 5.69e-1; 

    k_sr= 5.72e-4; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 60; 

    plot(t,y(:,4)*1e-3); 

%    plot(t,y(:,4)/y_S2O8_ini); 

    hold on 

    T = 343;        %temperature, K 

    %parameters to be determined 

    kLa = 4.35e-2;  %mass transfer coefficient, s^-1 1.6, .48 
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    k_1 = 6.99e-8; 

    k_2 = 8.57e-4; 

    k_3 = 6.00e-1; 

    k_4 = 6.71e-2; 

    k_5 = 8.49e-8; 

    k_6 = 1.40e-6; 

    k_7 = 1.09e-0; 

    k_sr= 1.15e-3; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 60; 

    plot(t,y(:,4)*1e-3); 

%    plot(t,y(:,4)/y_S2O8_ini); 

    hold on 

    T = 353;        %temperature, K 

    %parameters to be determined 

    kLa = 4.64e-2;  %mass transfer coefficient, s^-1 1.6, .48 

    k_1 = 8.77e-8; 

    k_2 = 1.22e-3; 

    k_3 = 1.42e-0; 

    k_4 = 1.18e-1; 

    k_5 = 1.44e-7; 

    k_6 = 2.25e-6; 
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    k_7 = 1.73e-0; 

    k_sr= 1.71e-3; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 60; 

    plot(t,y(:,4)*1e-3); 

%    plot(t,y(:,4)/y_S2O8_ini); 

    hold on 

    T = 363;        %temperature, K 

    %parameters to be determined 

    kLa = 5.37e-2;  %mass transfer coefficient, s^-1 1.6, .48 

    k_1 = 1.29e-7; 

    k_2 = 1.59e-3; 

    k_3 = 2.45e-0; 

    k_4 = 2.12e-1; 

    k_5 = 2.11e-7; 

    k_6 = 3.30e-6; 

    k_7 = 3.25e-0; 

    k_sr= 2.54e-3; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 60; 

    plot(t,y(:,4)*1e-3); 



185 

 

 

%    plot(t,y(:,4)/y_S2O8_ini); 

    hold on 

    xlabel('Time(s)') 

    ylabel('Fe<2+> Concentration (M)') 

   legend('at 23degC','at 30degC', 'at 40degC', 'at 50degC', 'at 60degC','at 70degC','at 80degC','at 

90degC') 

end 

E.2 Modeling without PSS Approach 

function persulfate_mak_50_22rxn() 

    clc 

    clear all 

%     conc1=xlsread('\50deg.xls','e1','C:C'); 

%       time30deg=xlsread('\50deg.xls','e1','D:D'); 

%      conc2=xlsread('\50deg.xls','e1','F:F'); 

% %     time50deg=xlsread('\50deg.xls','e1','D:D'); 

%     conc3=xlsread('\50deg.xls','e1','G:G'); 

% %    time60deg=xlsread('\50deg.xls','e1','D:D'); 

%     conc4=xlsread('\50deg.xls','e1','I:I'); 

% %   time40deg=xlsread('\40deg.xls','e1','D:D'); 

%     figure(1) 

%      plot(time30deg, conc3,'r'); 

%      hold on 

% figure(1) 
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%    hold on 

%   plot(time30deg, conc4,'r'); 

%   figure(1) 

%    hold on 

%   plot(time30deg, conc2,'r'); 

%   figure(1) 

%    hold on 

%   E1=plot(time30deg, conc1,'r'); 

  %Constants 

    R = 8.314;      %universal gas constant, J/mol.K 

    H_NO = 5.223e4*1;    %henry's law constant, Pa/(mol/m^3) 

    H_NO2 = 2.48e3*1;    %henry's law constant, Pa/(mol/m^3) 

    H_SO2 = 21*1;    %henry's law constant, Pa/(mol/m^3) 

    %Parameters 

    q = 1.667e-6*1;   %gas flow rate, m^3/s 

    V_gas = 1.96e-5*1; %gas holdup, m^3, based on 1 cm height increase 

    V_liq = 1e-3;   %liquid volume, m^3 

    T = 323;        %temperature, K 

    P = 101325;     %pressure, Pa 

    y_NO_in = 1010e-6; %mol fraction of NO, converted from mol fraction of 0.105% 

    y_NO2_in = 0e-6; %mol fraction of NO2, converted from mol fraction of 0.105% 

    y_SO2_in = 1633e-6; %mol fraction of SO2, converted from mol fraction of 0.105% 

    V_1 = 1e-4*1;   %head space 
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    V_2 = 1e-4*0; 

    %parameters to be determined 

    kLa_NO = 3.36e-2;  %mass transfer coefficient, s^-1 1.6, .48 

    kLa_NO2 = 3.36e-2;  %mass transfer coefficient, s^-1 1.6, .48 

    kLa_SO2 = 3.36e-2;  %mass transfer coefficient, s^-1 1.6, .48 

    k_1 = 2.5e-7; 

    k_2 = 6.6e-2; 

    k_3 = 2.0e10; 

    k_4 = 1.0e8;% 

    k_5 = 9.8e8; 

    k_6 = 1.0e10; 

    k_7 = 4.5e9; 

    k_8_f = 1.7e-2; 

    k_8_b = 1e0; 

    k_9_f = 6.3e-8; 

    k_9_b = 1e0; 

    k_10 = 9.5e9; 

    k_11 = 5.5e9; 

    k_12 = 1.0e10;% 

    k_13 = 5.23e-8;% 

    k_14 = 6.5e-4;% 

    k_15 = 9.57e-2;% 

    k_16 = 8.62e-3;% 
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    k_17 = 4.33e-8;% 

    k_18 = 1.5e8; 

    k_19_f = 5.23e-4; 

    k_19_b = 6.48e0; 

    k_20 = 9.57e-2; 

    k_21 = 8.62e-3; 

    k_22 = 1.5e8; 

    function dydt=odefun(t, y) 

        dydt = zeros(3,1); 

        dydt(1) = q/V_gas*y_NO_in - y(1)*(q/V_gas)  - 

(y(1)+y_NO_in)*0.5*(kLa_NO*V_liq*R*T/(H_NO*V_gas)) ... 

                  + kLa_NO*V_liq*R*T/(P*V_gas)*y(2)*1; %y_NO_gas 

         dydt(2) = kLa_NO*P/H_NO*y(1) - kLa_NO*y(2) -k_3*y(2)*y(9)-k_14*y(2)*y(7);  

%C_NO_liq 

        dydt(3) = q/V_gas*y_NO2_in - y(3)*(q/V_gas)  - 

(y(3)+y_NO2_in)*0.5*(kLa_NO2*V_liq*R*T/(H_NO2*V_gas)) ... 

                  + kLa_NO2*V_liq*R*T/(P*V_gas)*y(4)*1; %y_NO2_gas 

        dydt(4) = kLa_NO2*P/H_NO2*y(3) - kLa_NO2*y(4) 

+k_4*y(7)*y(10)+k_5*y(8)*y(10)+k_6*y(9)*y(10)... 

                  +k_14*y(2)*y(7)-k_18*y(4)^2*y(14)-k_22*y(4)^2*y(12);  %C_NO2_liq 

        dydt(5) = q/V_gas*y_SO2_in - y(5)*(q/V_gas)  - 

(y(5)+y_NO_in)*0.5*(kLa_SO2*V_liq*R*T/(H_SO2*V_gas)) ... 

                  + kLa_SO2*V_liq*R*T/(P*V_gas)*y(6)*1; %y_SO2_gas 
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        dydt(6) = kLa_SO2*P/H_SO2*y(5) - kLa_SO2*y(6) -k_8_f*y(6)+k_8_b*y(11)*y(14)-

k_16*y(6)*y(7);  %C_SO2_liq 

        dydt(7) = -k_1*y(7)-k_4*y(7)*y(10)-k_13*y(7)-k_14*y(2)*y(7)-k_15*y(7)*y(14)-

k_16*y(6)*y(7)-k_17*y(7)*y(12);%S2O8<-2> ION 

        dydt(8) = 2*k_1*y(7)-k_2*y(8)-k_4*y(7)*y(10)-k_5*y(8)*y(10);% SO4<.-> ION 

        dydt(9) = k_2*y(8)-k_3*y(2)*y(9)-k_6*y(9)*y(10)-k_7*y(4)*y(9)-k_10*y(9)*y(14)-

k_11*y(9)*y(12)-k_12*y(9)*y(13); %OH<.> ion 

        dydt(10) = k_3*y(2)*y(9)-k_4*y(7)*y(10)-k_5*y(8)*y(10)-

k_6*y(9)*y(10)+2*k_18*y(4)^2*y(14)-k_19_f*y(10)*y(11)*y(14)^2 ... 

                   +k_19_b*y(15)-k_20*y(10)*y(11)*y(14)+2*k_22*y(4)^2*y(12);   %NO2<-> ION 

        dydt(11) = k_3*y(2)*y(9)+k_7*y(4)*y(9)+k_8_f*y(6)*y(10)-

k_8_b*y(11)*y(14)+k_9_f*y(14)-k_9_b*y(11)*y(12) ... 

                   +3*k_18*y(4)^2*y(14)-k_19_f*y(10)*y(11)*y(14)^2+k_19_b*y(15)-

k_20*y(10)*y(11)*y(14)+2*k_22*y(10)^2*y(12);   %H<+> ION 

        dydt(12) = k_9_f*y(14)-k_9_b*y(11)*y(12)-k_11*y(9)*y(12)-k_17*y(7)*y(12)-

k_22*y(4)^2*y(12); %SO3<2-> ION 

          dydt(13) = k_10*y(9)*y(14)+k_11*y(9)*y(12)-k_12*y(9)*y(13);    %SO3<.-> ION 

        dydt(14) = k_8_f*y(6)*y(10)-k_8_b*y(11)*y(14)+k_9_f*y(14)-k_9_b*y(11)*y(12)-

k_10*y(9)*y(14)-k_15*y(7)*y(14)-k_18*y(4)^2*y(14) ... 

                   -k_19_f*y(10)*y(11)*y(14)^2+2*k_19_b*y(15)-k_20*y(10)*y(11)*y(14)-

k_21*y(14)*y(15);   %HSO3<-> ION 

        dydt(15) = k_19_f*y(10)*y(11)*y(14)^2-k_19_b*y(15)+k_21*y(14)*y(15);    

%HON(SO3)2<2-> ION 
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        dydt(16) = k_20*y(10)*y(11)*y(14)-k_21*y(14)*y(15);    %ONSO3<-> ION 

    end 

    tspan = [0 3200]; 

    M = [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

         0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

         0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

         0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

         0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

         0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

         0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

         0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

         0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

         0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

         0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

         0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

         0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

         0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

         0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

         0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]; 

    options = odeset('Refine', 1, 'NonNegative', [1]); 

%     y_S2O8_ini = 0.01*1e3;  %concentration of persulfate, mol/m^3 

%     y0 = [0 y_NO_in y_NO_in y_S2O8_ini 0 0];% 0 0]; 

%     [t, y]=ode45(@odefun, tspan, y0, options); 
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%     figure(1); 

%     t = t + 600; 

%     plot(t,y(:,2)*1e6); 

% %    plot(t,y(:,4)/y_S2O8_ini); 

%     hold on 

    y_S2O8_ini = 0.1*1e3;  %concentration of persulfate, mol/m^3 

    y0 = [y_NO_in 0 y_NO2_in 0 y_SO2_in 0 y_S2O8_ini 0 0 0 0 0 0 0 0 0];% 0 0]; 

    [t, y]=ode45(@odefun, tspan, y0, options); 

    figure(1); 

    t = t + 600; 

    E2=plot(t,y(:,1)*1e6); 

%    plot(t,y(:,4)/y_S2O8_ini); 

    y(end,2)*1e6 

%     y_S2O8_ini = 0.05*1e3;  %concentration of persulfate, mol/m^3 

%     y0 = [0 y_NO_in y_NO_in y_S2O8_ini y_Fe_ini 0];% 0 0]; 

%     [t, y]=ode45(@odefun, tspan, y0, options); 

%     figure(1); 

%     t = t + 600; 

%     plot(t,y(:,2)*1e6); 

% %    plot(t,y(:,4)/y_S2O8_ini); 

%     y(end,2)*1e6 

%     y_S2O8_ini = 0.1*1e3;  %concentration of persulfate, mol/m^3 

%     y0 = [0 y_NO_in y_NO_in y_S2O8_ini y_Fe_ini 0];% 0 0]; 
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%     [t, y]=ode45(@odefun, tspan, y0, options); 

%     figure(1); 

%     t = t + 600; 

%     plot(t,y(:,2)*1e6); 

% %    plot(t,y(:,4)/y_S2O8_ini); 

%     y(end,2)*1e6 

%     y_S2O8_ini = 0.2*1e3;  %concentration of persulfate, mol/m^3 

%     y0 = [0 y_NO_in y_NO_in y_S2O8_ini y_Fe_ini 0];% 0 0]; 

%     [t, y]=ode45(@odefun, tspan, y0, options); 

%     figure(1); 

%     t = t + 600; 

%     plot(t,y(:,2)*1e6); 

% %    plot(t,y(:,4)/y_S2O8_ini); 

%     y(end,2)*1e6 

    xlabel('Time(s)') 

    ylabel('NO Concentration (ppm)') 

   legend([E1 E2],'Experimental', 'Model') 

end 

 

 

 



 

 

 

1
9
3

Appendix F 

Summary of Experimental Data 

Table F.1 

Experimental Data for Removal of Nitric Oxide (NO) 

Condition

/ Run No 

Temp. 

(
0
C) 

Inlet NO 

Conc. 

(ppm) 

Inlet SO2 

Conc. 

(ppm) 

Conc. of 

Persulfate 

(M) 

Conc. of 

Fe
2+

 (M) 

Conc. of 

EDTA 

(M) 

Initial pH Final pH 

NO 

Conv.** 

(%) 

SO2 

Conv.** 

(%) 

1 50 753 None 0.1 0.01 None 3.311 3.130 69.87 N/A 

2 50 753 None 0.1 0.01* None 3.342 3.202 72.19 N/A 

3 60 753 None 0.1 0.01* None 3.165 2.829 83.52 N/A 

4 60 753 None 0.1 0.01 None 3.468 2.714 82.07 N/A 

5 40 753 None 0.1 0.01 None 3.334 3.331 54.56 N/A 

6 40 753 None 0.1 0.01* None 3.289 3.220 51.23 N/A 

7 30 753 None 0.1 0.01* None 3.385 3.133 35.73 N/A 

8 30 753 None 0.1 0.01 None 3.348 3.281 31.25 N/A 

9 30 753 None 0.1 0.02* None 3.326 3.189 36.92 N/A 
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10 40 753 None 0.1 0.02* None 3.295 3.103 55.19 N/A 

11 50 753 None 0.1 0.02* None 3.010 2.749 73.84 N/A 

12 60 753 None 0.1 0.02* None 2.936 2.727 84.77 N/A 

13 70 753 None 0.1 0.02* None 3.869 3.420 94.23 N/A 

14 70 753 None 0.1 0.01* None 4.021 3.834 96.28 N/A 

15 30 753 None 0.1 0.01 0.01 5.914 5.281 55.64 N/A 

16 40 753 None 0.1 0.01 0.01 5.802 5.573 65.07 N/A 

17 50 753 None 0.1 0.01 0.01 5.849 5.018 77.20 N/A 

18 40 753 None 0.1 0.01 0.005 5.282 5.121 58.17 N/A 

19 40 753 None 0.1 0.01 0.015 5.985 5.196 64.10 N/A 

20 40 753 None 0.1 0.01 0.02 5.251 5.004 63.21 N/A 

21 40 753 None 0.1 0.01 0.025 5.381 5.222 61.52 N/A 

22 40 753 None 0.1 0.01 0.03 5.619 5.412 60.62 N/A 

23 50 753 None 0.1 0.01 0.005 5.341 5.322 74.05 N/A 

24 50 753 None 0.1 0.01 0.015 5.652 5.109 76.63 N/A 

25 50 753 None 0.1 0.01 0.02 5.231 5.089 74.18 N/A 

26 50 753 None 0.1 0.01 0.025 5.788 5.348 71.46 N/A 
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27 50 753 None 0.1 0.01 0.03 5.652 5.211 67.45 N/A 

28 60 753 None 0.1 0.01 0.005 5.952 5.096 83.45 N/A 

29 60 753 None 0.1 0.01 0.015 5.943 5.085 85.56 N/A 

30 60 753 None 0.1 0.01 0.02 5.929 5.079 82.12 N/A 

31 60 753 None 0.1 0.01 0.025 5.623 5.129 81.16 N/A 

32 60 753 None 0.1 0.01 0.03 5.792 5.146 78.13 N/A 

33 30 753 None 0.1 0.01* None 3.290 3.227 34.79 N/A 

34 50 753 None 0.1 0.01* None 3.977 3.017 73.17 N/A 

35 40 753 None 0.1 0.01* None 2.998 2.967 54.47 N/A 

36 50 753 None 0.1 0.01 None 3.006 2.924 70.92 N/A 

37 50 753 None 0.1* 0.01 None 3.185 3.119 65.87 N/A 

38 50 753 None 0.1 0.01* None 3.239 3.207 69.19 N/A 

39 50 753 None 0.1* 0.01* None 3.169 3.150 66.53 N/A 

40 50 753 None 0.1* 0.01 None 3.278 3.225 63.28 N/A 

41 50 753 None 0.1 0.01 None 3.079 2.919 69.53 N/A 

42 60 753 None 0.1 0.01 0.01 6.257 5.949 87.32 N/A 
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43 70 753 None 0.1 0.01 0.01 6.109 5.840 95.43 N/A 

44 50 753 None 0.1 0.01 None 3.695 3.520 - N/A 

45 50 753 None 0.1 0.005 None 3.775 3.592 - N/A 

46 50 753 None 0.1 0.01 None 3.714 3.571 - N/A 

47 50 753 None 0.1 0.02 None 3.629 3.471 - N/A 

48 50 753 None 0.1 0.005 None 3.539 3.229 - N/A 

49 50 753 None 0.1 0.01 0.01 6.531 6.475 - N/A 

50 50 753 None 0.1 0.02 0.01 5.876 5.578 - N/A 

51 50 753 None 0.1 0.005 0.005 5.403 5.211 - N/A 

52 50 753 None 0.1 0.01 0.01 4.279 3.971 - N/A 

53 50 753 None 0.1 0.02 0.02 7.352 6.967 - N/A 

54 50 753 None 0.1 0.01 0.01 7.438 6.292 - N/A 

55 50 753 None 0.1 0.01 0.01 10.328 9.408 60.29 N/A 

56 30 753 None 0.1 0.01 0.01 9.749 8.678 33.92 N/A 

57 40 753 None 0.1 0.01 0.01 9.104 8.461 60.02 N/A 

58 50 753 None 0.1 0.01 0.01 9.454 9.208 65.15 N/A 
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59 50 753 None 0.1 0.01 0.01 4.443 4.321 40.02 N/A 

60 50 753 None 0.1 0.02 0.02 6.336 6.223 71.23 N/A 

61 23 753 None 0.1 0.01 0.01 6.628 6.329 48.47 N/A 

62 30 753 None 0.1 0.01 0.01 5.985 5.873 55.64 N/A 

63 40 753 None 0.1 0.01 0.01 6.232 6.192 65.07 N/A 

64 50 753 None 0.1 0.01 0.01 6.251 6.102 77.82 N/A 

65 60 753 None 0.1 0.01 0.01 5.987 5.780 86.99 N/A 

67 70 753 None 0.1 0.01 0.01 6.692 6.231 96.28 N/A 

68 23 753 None 0.2 0.01 0.01 4.612 4.470 51.53 N/A 

69 30 753 None 0.2 0.01 0.01 4.881 4.588 58.57 N/A 

70 40 753 None 0.2 0.01 0.01 4.446 4.193 67.20 N/A 

71 50 753 None 0.2 0.01 0.01 4.087 3.805 78.22 N/A 

72 60 753 None 0.2 0.01 0.01 3.703 3.462 87.78 N/A 

73 70 753 None 0.2 0.01 0.01 3.861 3.637 97.34 N/A 

74 23 753 None 0.05 0.01 0.01 7.662 7.359 42.76 N/A 

75 30 753 None 0.05 0.01 0.01 7.398 7.102 49.54 N/A 
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76 40 753 None 0.05 0.01 0.01 7.432 7.156 59.50 N/A 

77 50 753 None 0.05 0.01 0.01 7.342 7.053 67.73 N/A 

78 60 753 None 0.05 0.01 0.01 7.229 6.899 79.55 N/A 

79 70 753 None 0.05 0.01 0.01 7.010 6.832 92.43 N/A 

80 23 753 None 0.1 0.02 0.02 7.323 7.143 52.59 N/A 

81 30 753 None 0.1 0.02 0.02 7.096 6.952 61.75 N/A 

82 40 753 None 0.1 0.02 0.02 7.279 7.009 66.14 N/A 

83 50 753 None 0.1 0.02 0.02 7.102 6.895 73.57 N/A 

84 60 753 None 0.1 0.02 0.02 7.082 6.765 76.00 N/A 

85 70 753 None 0.1 0.02 0.02 7.116 6.903 29.22 N/A 

86 23 753 None 0.1 0.005 0.005 4.723 4.466 37.98 N/A 

87 30 753 None 0.1 0.005 0.005 4.597 4.240 48.74 N/A 

88 40 753 None 0.1 0.005 0.005 3.821 3.652 60.69 N/A 

89 50 753 None 0.1 0.005 0.005 4.134 3.785 70.65 N/A 

90 60 753 None 0.1 0.005 0.005 4.232 3.993 77.29 N/A 

91 70 753 None 0.1 0.005 0.005 3.939 3.726 83.40 N/A 
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92 23 753 None 0.1 0.005 0.05 6.982 6.673 51.26 N/A 

93 30 753 None 0.1 0.005 0.05 7.503 7.212 61.15 N/A 

94 40 753 None 0.1 0.005 0.05 6.827 6.661 19.12 N/A 

95 50 753 None 0.1 0.005 0.05 8.102 7.853 13.28 N/A 

96 60 753 None 0.1 0.005 0.05 7.693 7.123 3.85 N/A 

97 70 753 None 0.1 0.005 0.05 7.520 6.905 0.40 N/A 

98 40 753 None 0.1 0.01 0.01 2.139 2.057 41.43 N/A 

99 40 753 None 0.1 0.01 0.01 4.346 4.187 58.03 N/A 

100 40 753 None 0.1 0.01 0.01 6.234 5.994 65.07 N/A 

101 40 753 None 0.1 0.01 0.01 7.943 7.872 62.42 N/A 

102 40 753 None 0.1 0.01 0.01 9.871 9.615 51.79 N/A 

103 40 753 None 0.1 0.01 0.01 12.331 11.564 33.33 N/A 

104 50 753 None 0.1 0.01 0.01 2.023 1.975 46.48 N/A 

105 50 753 None 0.1 0.01 0.01 3.899 3.801 66.14 N/A 

106 50 753 None 0.1 0.01 0.01 6.103 5.987 77.82 N/A 

107 50 753 None 0.1 0.01 0.01 8.521 8.220 73.97 N/A 
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108 50 753 None 0.1 0.01 0.01 10.210 9.901 61.49 N/A 

109 50 753 None 0.1 0.01 0.01 11.895 11.213 24.89 N/A 

110 30 ~500 ~1800 0.1 0.01 None 7.348 7.125 40.69 98.30 

111 30 ~500 ~1800 0.1 0.01 0.01 7.873 7.002 51.90 ~100.00 

*Injection from side, **NO and SO2 conversion determined by eq 4.1 with average output concentration ≥ 3000 s.  
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Table F.2 

Spectrophotometric Determination of Iron Species’ at 50 
0
C (Initial Persulfate 0.1 M, Initial Fe

2+
 0.005 M, Initial EDTA 0 M) 

Sample 

withdrawal 

Time (s) 

Fe
2+

 Conc. Fe
3+

 Conc. Fe
II
-EDTA Conc. Total Fe Conc. 

ppm M ppm M ppm M ppm M 

30 261.42 0.004681 12.48 0.000223 - - 273.9 0.004905 

60 263.15 0.004712 9.45 0.000169 - - 272.6 0.004881 

80 1.23 2.2E-05 270.2 0.004838 - - 271.43 0.00486 

380 1.02 1.83E-05 275.49 0.004933 - - 276.51 0.004951 

440 0.79 1.41E-05 269.46 0.004825 - - 270.25 0.004839 

500 0.75 1.34E-05 275.64 0.004936 - - 276.39 0.004949 

680 0.3 5.37E-06 259.96 0.004655 - - 260.26 0.00466 

980 0.52 9.31E-06 255.41 0.004574 - - 255.93 0.004583 

1580 0.41 7.34E-06 258.91 0.004636 - - 259.32 0.004644 

2180 0.24 4.3E-06 261 0.004674 - - 261.24 0.004678 

3980 0 0 256.19 0.004588 - - 256.19 0.004588 
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Table F.3 

Spectrophotometric Determination of Iron Species’ at 50 
0
C (Initial Persulfate 0.1 M, Initial Fe

2+
 0.01 M, Initial EDTA 0 M) 

Sample 

withdrawal 

Time (s) 

Fe
2+

 Conc. Fe
3+

 Conc. Fe
II
-EDTA Conc. Total Fe Conc. 

ppm M ppm M ppm M ppm M 

30 545.29 0.009764 14.38 0.010022 - - 559.67 0.000257 

60 540.23 0.009674 12.11 0.009891 - - 552.34 0.000217 

80 12.52 0.000224 550.45 0.010081 - - 562.97 0.009857 

380 8.28 0.000148 538.96 0.009799 - - 547.24 0.009651 

440 6.62 0.000119 535.61 0.00971 - - 542.23 0.009591 

500 7.29 0.000131 544.82 0.009886 - - 552.11 0.009756 

680 7.77 0.000139 529.76 0.009625 - - 537.53 0.009486 

980 6.23 0.000112 525 0.009513 - - 531.23 0.009401 

1580 5.78 0.000104 538.91 0.009754 - - 544.69 0.00965 

2180 5.33 9.54E-05 526.9 0.00953 - - 532.23 0.009435 

3980 4.62 8.27E-05 518.8 0.009373 - - 523.42 0.00929 
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Table F.4 

Spectrophotometric Determination of Iron Species’ at 50 
0
C (Initial Persulfate 0.1 M, Initial Fe

2+
 0.02 M, Initial EDTA 0 M) 

Sample 

withdrawal 

Time (s) 

Fe
2+

 Conc. Fe
3+

 Conc. Fe
II
-EDTA Conc. Total Fe Conc. 

ppm M ppm M ppm M ppm M 

30 1035.75 0.018547 56.81 0.001017 - - 1092.56 0.019564 

60 1033.41 0.018505 53.08 0.00095 - - 1086.49 0.019455 

80 27.94 0.0005 1057.14 0.01893 - - 1085.08 0.01943 

380 25.73 0.000461 1043.51 0.018686 - - 1069.24 0.019147 

440 21.33 0.000382 1070.88 0.019176 - - 1092.21 0.019558 

500 15.15 0.000271 1067.44 0.019114 - - 1082.59 0.019386 

680 11.29 0.000202 1064.23 0.019057 - - 1075.52 0.019259 

980 12.57 0.000225 1042.72 0.018672 - - 1055.29 0.018897 

1580 8.39 0.00015 1059.18 0.018966 - - 1067.57 0.019117 

2180 9.54 0.000171 1036.23 0.018555 - - 1045.77 0.018726 

3980 6.54 0.000117 1026.44 0.01838 - - 1032.98 0.018497 
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Table F.5 

Spectrophotometric Determination of Iron Species’ at 50 
0
C (Initial Persulfate 0.1 M, Initial Fe

2+
 0.005 M, Initial EDTA 0.005 M) 

Sample 

withdrawal 

Time (s) 

Fe
2+

 Conc. Fe
3+

 Conc. Fe
II
-EDTA Conc. Total Fe Conc. 

ppm M ppm M ppm M ppm M 

30 259.79 0.00465 15.3 0.00027 - 0 275.09 0.00493 

60 90.63 0.00162 6.2 0.00011 - 0.00315 96.83 0.00173 

80 3.67 6.6E-05 175.81 0.00315 - 0.00128 179.48 0.00321 

380 5.54 9.9E-05 163.67 0.00293 - 0.00125 169.21 0.00303 

440 4.6 8.2E-05 169.3 0.00303 - 0.00115 173.9 0.00311 

500 4.73 8.5E-05 164.09 0.00294 - 0.00134 168.82 0.00302 

680 4.03 7.2E-05 162.11 0.0029 - 0.00132 166.14 0.00298 

980 2.92 5.2E-05 154.73 0.00277 - 0.00123 157.65 0.00282 

1580 4.81 8.6E-05 147.59 0.00264 - 0.00114 152.4 0.00273 

2180 5 9E-05 153.04 0.00274 - 0.0012 158.04 0.00283 

3980 3.64 6.5E-05 147.2 0.00264 - 0.00111 150.84 0.0027 
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Table F.6 

Spectrophotometric Determination of Iron Species’ at 50 
0
C (Initial Persulfate 0.1 M, Initial Fe

2+
 0.005 M, Initial EDTA 0.01 M) 

Sample 

withdrawal 

Time (s) 

Fe
2+

 Conc. Fe
3+

 Conc. Fe
II
-EDTA Conc. Total Fe Conc. 

ppm M ppm M ppm M ppm M 

30 263.14 0.00471 12.53 0.00022 - 0 275.67 0.00494 

60 81.43 0.00146 9.83 0.00018 - 0.003347 91.26 0.00498 

80 4.29 7.7E-05 166.68 0.00298 - 0.001323 170.97 0.00438 

380 3.1 5.6E-05 154.96 0.00277 - 0.001429 158.06 0.00426 

440 3.92 7E-05 157.03 0.00281 - 0.00152 160.95 0.0044 

500 4.52 8.1E-05 145.58 0.00261 - 0.001313 150.1 0.004 

680 3.23 5.8E-05 139.88 0.0025 - 0.001312 143.11 0.00387 

980 3.53 6.3E-05 142.63 0.00255 - 0.001479 146.16 0.0041 

1580 3.28 5.9E-05 139.62 0.0025 - 0.001423 142.9 0.00398 

2180 2.67 4.8E-05 134.56 0.00241 - 0.001382 137.23 0.00384 

3980 3.82 6.8E-05 129.9 0.00233 - 0.001212 133.72 0.00361 
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Table F.7 

Spectrophotometric Determination of Iron Species’ at 50 
0
C (Initial Persulfate 0.1 M, Initial Fe

2+
 0.005 M, Initial EDTA 0.02 M) 

Sample 

withdrawal 

Time (s) 

Fe
2+

 Conc. Fe
3+

 Conc. Fe
II
-EDTA Conc. Total Fe Conc. 

ppm M ppm M ppm M ppm M 

30 252.59 0.004523 20.94 0.000375 - 0 273.53 0.004898 

60 57 0.001021 5.99 0.000107 - 0.003672 62.99 0.001128 

80 3.77 6.75E-05 153.27 0.002745 - 0.001723 157.04 0.002812 

380 2.19 3.92E-05 144.29 0.002584 - 0.001625 146.48 0.002623 

440 4.05 7.25E-05 136.23 0.002439 - 0.001523 140.28 0.002512 

500 3.47 6.21E-05 138.54 0.002481 - 0.001832 142.01 0.002543 

680 3.21 5.75E-05 149.35 0.002674 - 0.001912 152.56 0.002732 

980 2.98 5.34E-05 154.33 0.002764 - 0.00175 157.31 0.002817 

1580 3.48 6.23E-05 133.84 0.002397 - 0.001785 137.32 0.002459 

2180 2.9 5.19E-05 126.83 0.002271 - 0.001621 129.73 0.002323 

3980 3.98 7.13E-05 133.51 0.002391 - 0.001689 137.49 0.002462 
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Table F.8 

Spectrophotometric Determination of Iron Species’ at 50 
0
C (Initial Persulfate 0.1 M, Initial Fe

2+
 0.01 M, Initial EDTA 0.005 M) 

Sample 

withdrawal 

Time (s) 

Fe
2+

 Conc. Fe
3+

 Conc. Fe
II
-EDTA Conc. Total Fe Conc. 

ppm M ppm M ppm M ppm M 

30 526.45 0.00943 16.2 0.00029 - 0 542.65 0.00972 

60 280.73 0.00503 72.26 0.00129 - 0.00325 352.99 0.00632 

80 5.75 0.0001 369.69 0.00662 - 0.00221 375.44 0.00672 

380 5.47 9.8E-05 358.08 0.00641 - 0.00218 363.55 0.00651 

440 4.85 8.7E-05 348.25 0.00624 - 0.00227 353.1 0.00632 

500 4.24 7.6E-05 354.11 0.00634 - 0.00205 358.35 0.00642 

680 6.87 0.00012 355.39 0.00636 - 0.00212 362.26 0.00649 

980 6.09 0.00011 346.91 0.00621 - 0.00203 353 0.00632 

1580 5.13 9.2E-05 341.5 0.00612 - 0.00221 346.63 0.00621 

2180 4.86 8.7E-05 347.91 0.00623 - 0.00202 352.77 0.00632 

3980 5.3 9.5E-05 348.92 0.00625 - 0.00208 354.22 0.00634 

 



 

 

 

2
0
8

Table F.9 

Spectrophotometric Determination of Iron Species’ at 50 
0
C (Initial Persulfate 0.1 M, Initial Fe

2+
 0.01 M, Initial EDTA 0.01 M) 

Sample 

withdrawal 

Time (s) 

Fe
2+

 Conc. Fe
3+

 Conc. Fe
II
-EDTA Conc. Total Fe Conc. 

ppm M ppm M ppm M ppm M 

30 522.19 0.00935 35.17 0.00063 - 0 557.36 0.00998 

60 150.07 0.00269 36.99 0.00066 - 0.00652 187.06 0.00987 

80 12.78 0.00023 350.8 0.00628 - 0.00268 363.58 0.00919 

380 8.46 0.00015 346 0.0062 - 0.00268 354.46 0.00903 

440 6.62 0.00012 317.83 0.00569 - 0.00277 324.45 0.00857 

500 7.09 0.00013 329.75 0.0059 - 0.00263 336.84 0.00866 

680 6.23 0.00011 339.93 0.00609 - 0.00255 346.16 0.00875 

980 5.53 9.9E-05 325.7 0.00583 - 0.00247 331.23 0.0084 

1580 7.23 0.00013 335.67 0.00601 - 0.00261 342.9 0.00875 

2180 4.27 7.6E-05 334.46 0.00599 - 0.00261 338.73 0.00868 

3980 4.5 8.1E-05 329.23 0.0059 - 0.00251 333.73 0.00849 
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Table F.10 

Spectrophotometric Determination of Iron Species’ at 50 
0
C (Initial Persulfate 0.1 M, Initial Fe

2+
 0.01 M, Initial EDTA 0.02 M) 

Sample 

withdrawal 

Time (s) 

Fe
2+

 Conc. Fe
3+

 Conc. Fe
II
-EDTA Conc. Total Fe Conc. 

ppm M ppm M ppm M ppm M 

30 526.45 0.009427 11.84 0.000212 - 0 538.29 0.009639 

60 135.59 0.002428 29.87 0.000535 - 0.006939 165.46 0.002963 

80 8.71 0.000156 327.58 0.005866 - 0.003052 336.29 0.006022 

380 10 0.000179 332.44 0.005953 - 0.002917 342.44 0.006132 

440 10.88 0.000195 319.33 0.005718 - 0.002846 330.21 0.005913 

500 11.33 0.000203 308.77 0.005529 - 0.003012 320.1 0.005732 

680 6.31 0.000113 326.29 0.005843 - 0.002956 332.6 0.005956 

980 6.98 0.000125 326.75 0.005851 - 0.002723 333.73 0.005976 

1580 7.65 0.000137 306.2 0.005483 - 0.002815 313.85 0.00562 

2180 9.05 0.000162 331.8 0.005941 - 0.00289 340.85 0.006104 

3980 9.55 0.000171 313.23 0.005609 - 0.002733 322.78 0.00578 
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Table F.11 

Spectrophotometric Determination of Iron Species’ at 50 
0
C (Initial Persulfate 0.1 M, Initial Fe

2+
 0.02 M, Initial EDTA 0.005 M) 

Sample 

withdrawal 

Time (s) 

Fe
2+

 Conc. Fe
3+

 Conc. Fe
II
-EDTA Conc. Total Fe Conc. 

ppm M ppm M ppm M ppm M 

30 1051.17 0.01882 63.03 0.00113 - 0 1114.2 0.01995 

60 827.06 0.01481 20.14 0.00036 - 0.00433 847.2 0.01517 

80 12.45 0.00022 838.05 0.01501 - 0.00412 850.5 0.01523 

380 11 0.0002 787 0.01409 - 0.00393 798 0.01429 

440 10.33 0.00018 808.91 0.01448 - 0.004 819.24 0.01467 

500 9.6 0.00017 829.19 0.01485 - 0.00397 838.79 0.01502 

680 11.33 0.0002 814.06 0.01458 - 0.00413 825.39 0.01478 

980 11.95 0.00021 802.27 0.01437 - 0.00401 814.22 0.01458 

1580 11.61 0.00021 779.15 0.01395 - 0.00418 790.76 0.01416 

2180 9.3 0.00017 812.73 0.01455 - 0.0039 822.03 0.01472 

3980 10.78 0.00019 809.58 0.0145 - 0.0038 820.36 0.01469 
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Table F.12 

Spectrophotometric Determination of Iron Species’ at 50 
0
C (Initial Persulfate 0.1 M, Initial Fe

2+
 0.02 M, Initial EDTA 0.01 M) 

Sample 

withdrawal 

Time (s) 

Fe
2+

 Conc. Fe
3+

 Conc. Fe
II
-EDTA Conc. Total Fe Conc. 

ppm M ppm M ppm M ppm M 

30 1055.12 0.01889 59.95 0.00107 - 0 1115.07 0.019967 

60 724.57 0.01297 66.41 0.00119 - 0.005183 790.98 0.019347 

80 5.72 0.0001 781.67 0.014 - 0.004029 787.39 0.018129 

380 5.17 9.3E-05 738.83 0.01323 - 0.00435 744 0.017673 

440 7.21 0.00013 730.82 0.01309 - 0.004242 738.03 0.017458 

500 6.2 0.00011 775.86 0.01389 - 0.004129 782.06 0.018133 

680 7.57 0.00014 754.8 0.01352 - 0.004316 762.37 0.017968 

980 3.83 6.9E-05 742.33 0.01329 - 0.004621 746.16 0.017982 

1580 4.92 8.8E-05 737.98 0.01321 - 0.00492 742.9 0.018223 

2180 9.54 0.00017 729.19 0.01306 - 0.004411 738.73 0.017639 

3980 6.17 0.00011 726.55 0.01301 - 0.0044 732.72 0.017521 
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Table F.13 

Spectrophotometric Determination of Iron Species’ at 50 
0
C (Initial Persulfate 0.1 M, Initial Fe

2+
 0.02 M, Initial EDTA 0.02 M) 

Sample 

withdrawal 

Time (s) 

Fe
2+

 Conc. Fe
3+

 Conc. Fe
II
-EDTA Conc. Total Fe Conc. 

ppm M ppm M ppm M ppm M 

30 1044.86 0.01871 29.15 0.000522 - 0 1074.01 0.019232 

60 477.47 0.00855 43.28 0.000775 - 0.009874 520.75 0.009325 

80 5.64 0.000101 768.36 0.013759 - 0.004675 774 0.01386 

380 4.78 8.56E-05 794.92 0.014234 - 0.005083 799.7 0.01432 

440 4.54 8.13E-05 775.56 0.013888 - 0.004842 780.1 0.013969 

500 5.27 9.44E-05 733.56 0.013136 - 0.005163 738.83 0.01323 

680 6.75 0.000121 734.31 0.013149 - 0.00518 741.06 0.01327 

980 8.71 0.000156 740.89 0.013267 - 0.005904 749.6 0.013423 

1580 7.37 0.000132 714.13 0.012788 - 0.005569 721.5 0.01292 

2180 5.05 9.04E-05 725.15 0.012985 - 0.005176 730.2 0.013075 

3980 5.45 9.76E-05 734.44 0.013151 - 0.004997 739.89 0.013249 
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