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Abstract 

Bacterial Vaginosis (BV) is the most common of vaginal infections diagnosed amongst women 

of child bearing years. Yet, there is very little insight as to how it occurs. There are a vast 

number of criteria that can be taken into consideration in determining the presence of BV. The 

purpose of this thesis is two-fold: first, to discover the most significant features necessary to 

diagnose the infection, and second, to apply various classification algorithms on the selected 

features. In order to fulfill our purpose, we conducted an array of experiments on the data. We 

tested the full set of raw data, removed the time series features, tested the medical and clinical 

features in isolation, cleaned the data and performed the same experiments on the clean full, 

clean clinical and clean medical datasets. We compared the accuracy, precision, recall and F-

measure and time elapsed for each feature selection and classification grouping. It is observed 

that certain feature selection algorithms provided only a few features; however, the classification 

results were as good as using a large number of features. After comparing all of the experiments, 

the algorithms performed best on the raw full and clean full datasets. However, the raw full 

dataset returned better comprehensive results. 
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CHAPTER 1 

Introduction 

1.1 Introduction  

Machine learning (ML) algorithms are centered around predictions based on 

generalizations created from previous examples. The provision of larger amounts of data allows 

for tackling larger problems (Domingos, 2012). ML transforms massive amounts of raw data into 

knowledge that becomes useful for the analyst. It is employed in business, academia, 

government, science and other industries. Its utilization runs the gamut and has been applied to 

many different types of data including fraud detection (Akoglu & Faloutsos, 2013), business 

negotiations (Jim, 1996), facial recognition (Joseph Shelton et al., 2011), email messages 

(Kiritchenko & Matwin, 2011) and many other applications. New ML algorithms are being 

developed and computers are becoming more powerful, which can lend itself to addressing 

complex problems with more accuracy and expeditiousness in a way that is practically 

impossible for humans. 

The medical field is quickly embracing machine learning methodologies as these 

approaches have shown progress in their usefulness in prediction and classification. This 

implementation could prove useful in discovering ways to lower the cost of medication, improve 

clinical studies and help facilitate better assessments by physicians (Salama, Abdelhalim, & 

Zeid, 2012). ML can improve the healthcare process as data continues to increase and decrease 

the human effort that would traditionally be required. It has been used in the medical field to 

diagnose lung cancer (Kancherla & Mukkamala), breast cancer (Osareh & Shadgar, 2010), 

asthma (Prasad, Prasad, & Sagar, 2011), heart disease (Al-Shayea, 2011), dementia (Williams, 

Weakley, Cook, & Schmitter-Edgecombe, 2013) and other diseases and conditions. ML has 
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recently been used to compare the performance of a variety of classification algorithms in 

detecting breast cancer (Yau & Othman, 2007). The algorithms compared were Bayes Network, 

Radial Basis Function Networks (RBF), Pruned Tree, Single Conjunctive Rule Learner and 

Nearest Neighbors Algorithm.  

There is a minimal amount of published research using supervised machine learning to 

diagnose BV. In the past few years and as recent as this year, Srinivasan et al. (2012), Ravel et 

al. (2011) and Beck & Foster (2014) have used both supervised and unsupervised machine 

learning techniques to classify BV related microbiota. However, we are expanding this research 

by conducting experiments using a different dataset. 

  In this thesis, we use a myriad of feature selection and classification algorithms to 

identify Bacterial Vaginosis (BV) in women. BV is a very common condition that is signified by 

changes in vaginal microbiota or microflora. The rest of this thesis is organized as follows. 

Section 1.2 discusses the motivation and challenges for this research. Chapter 2 features related 

work in the areas of Bacterial Vaginosis and machine learning. Chapter 3 provides details about 

machine learning, the feature selection, search method and classification algorithms used for this 

research and the Weka workbench used to process the data. Chapter 4 describes the dataset, 

experiment process and the metrics used to analyze the performance of the algorithms. Chapter 5 

examines the experiments conducted and the results. Finally, Chapter 6 will present the 

conclusion and future work. 

1.2 Motivation and Problem Statement  

There are several diseases which arise because of changes in the microbial communities 

in the body. Scientists continue to conduct research in a quest to find the catalysts that provoke 

these changes in the naturally occurring microbiota. The human body can be very sensitive to 
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change and while the structure of the body is generally the same for everyone; each person has 

unique qualities and this can include the makeup of microbial communities. Are these microbial 

differences due to genetics, environment, behavior and/or a combination of the three?  

Bacterial Vaginosis (BV) is a disease that fits the above criteria. BV afflicts 

approximately 29% of women in child bearing age. Typically women are asked a series of 

questions and are then tested via vaginal swab to confirm diagnosis, but the root causes continue 

to elude scientists. The challenge becomes finding a common set of attributes that can begin 

providing answers to the aforementioned question. The additional challenges include 

determining the optimal methods for diagnosis resulting in accuracy, efficiency and time and 

cost savings. Do we solely rely on the experience and competence of physicians or should we 

look to computer aided medical diagnosis? Machine learning has been used in many domains 

including medical diagnosis, but is it an effective tool for the diagnosis of BV? If so, which 

feature selection and classification algorithms are the best to use on a particular dataset or is it a 

“one size fits all” solution?   

This research is targeted at finding a common set of attributes or features that are 

correlated with a BV positive diagnosis and will begin looking at which machine learning feature 

selection and classification algorithm combinations that will optimize diagnosis.  
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CHAPTER 2 

Related Work 

2.1 Bacterial Vaginosis  

As highlighted in chapter 1, BV is often characterized by changes in the vaginal 

microbiota; unfortunately, the causes of those changes are not well understood. Fortunately, it is 

easily treatable with antibiotics such as metronidazole and clindamycin (Srinivasan et al., 2012). 

BV is most often diagnosed by testing the vaginal fluid via Gram stain and/or by an assessment 

based on Amsel’s clinical criteria. The Gram stain produces a Nugent Score ranging from 1 – 10. 

A score of seven or greater yields a positive BV diagnosis. On the other hand, three of the 

following four Amsel’s criteria must be present for a positive diagnosis: 1) presence of a fishy 

like odor, 2) presence of a white discharge, 3) a vaginal pH of > 4.5 and 4) a minimum of 20% 

“clue cells” detection (Brotman, 2011). However, Nugent’s criterion has become the gold 

standard for diagnosis (Rangari Amit, Parmjit, & Sharma, 2013). In many instances, a diagnosis 

is made with Amsel’s clinical criteria and confirmed with Gram stain. One of the problems 

women face is that they may be asymptomatic, however, BV positive (Sujatha et al., 2013).  BV 

can cause unfavorable outcomes for women including an odorous discharge, pelvic inflammatory 

disease (PID), premature labor and cause them to be more susceptible to contracting HIV and 

other sexually transmitted diseases (STDs), (Fredricks, Fiedler, Thomas, Oakley, & Marrazzo, 

2007). The rate at which BV reoccurs is very high and also not well understood. 

Srinivasan et al. (2012) performed deep sequencing of the 16S rRNA gene in an attempt 

to uncover the variety and make-up of vaginal bacteria in BV positive women. They discovered 

that there were only two bacteria, Leptotrichia amnionii and Eggerthella sp. that were linked to 

all four of Amsel’s criteria. They also uncovered the fact that there was a greater presence of 
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Lactobacillus crispatus or Lactobacillus iners in women without BV. Unsupervised machine 

learning (clustering) was one of the methodologies used to make taxonomic connections with 

BV. They concluded that vaginal bacteria biota in women with BV is varied and in greater 

quantities in addition, there was no single bacterium present in 100% of the women. 

Beck & Foster (2014) applied genetic programming, random forests, and logistic 

regression machine learning techniques on two BV datasets from Srinivasan et al. (2012) and 

Ravel et al. (2011) to hopefully discover BV related microbial relationships. While the 

associated microbe clusters were different in the two datasets, they did discover that some of the 

clusters had overlapping microbes. They performed experiments on both the Nugent score and 

Amsel’s criteria. Their experiments resulted in logistic regression and random forest 

outperforming genetic programming. On the Nugent score, logistic regression and random forest 

maintained accuracy between 90% and 95%. Amsel’s criteria produced slightly lower accuracy. 

However, none of the three classification algorithms fell below 80% accuracy. 

2.2 Machine Learning in Medical Diagnosis 

In the world of medicine, machine learning (ML) has been used in the process of 

simplifying diagnoses and minimizing misdiagnoses. However, it must be noted that this 

technology is a tool and does not replace the role of the physician; instead, it should be used to 

aid in the overall diagnostic process and evaluation of patients. Computer scientists’ use of ML 

techniques on medical data is continuing to rise as they look for patterns to assist with diagnoses 

and enhancement of patient care (Savage, 2012). As we see improvements and the generation of 

new ML algorithms, we will see a decrease in the time it takes to diagnose and an increase in 

precision, effectiveness and satisfied patients. ML algorithms have gained a much deserved 

reputation in research for use in assisting with the diagnoses of numerous diseases (Filippo, 
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Alberto, Eladia Maria, Petr, & Josef, 2013). We will explore a few current applications of 

machine learning in the realm of medical diagnosis research. As we will come to see, there is not 

a “one size fits all” machine learning solution for the vast variety of medical challenges.  

We will begin our exploration with heart disease, as it is the primary cause of death 

worldwide. The World Health Organization (2014) published that almost 17 million lives were 

lost in 2011 worldwide due to cardiovascular diseases. This amounts to three in ten deaths. 

While these numbers seem alarming (and they are), they were the same in 2008. With all of the 

information, research and other resources available, why aren’t these numbers decreasing? In 

2010 alone, the financial consequence (direct and indirect) in the United States was an estimated 

cost of $315.4 billion (Go et al., 2013).  

The process for diagnosing heart disease can be quite extensive requiring patients to take 

numerous tests and are many times dependent upon the experience and proficiency of the 

physician. Unfortunately, some of these tests do not lead to an accurate diagnosis and treatment 

of the disease. With the use of ML, there is the possibility of increasing accuracy and reducing 

the features in the prediction of heart disease. Anbarasi, Anupriya, & Iyengar (2010) used a 

dataset with 909 instances and 13 features. By using Correlation-Based Feature Subset 

Evaluation (CfsSubsetEval) combined with Genetic Search. They were able to achieve a reduced 

feature set containing only six key features. They chose three classification algorithms: Naïve 

Bayes, Decision Tree and Classification via Clustering. Experiments using the three 

classification algorithms were performed on both the original dataset and the dataset with 

reduced features to validate the accuracy. Decision Tree (99.2%) ranked first after applying 

feature selection, the accuracy of Naïve Bayes (96.5%) remained steady on both the original and 
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reduced datasets and Classification via Clustering (88.3%) produced low results compared to the 

other two algorithms.   

Cancer is the second leading cause of death worldwide with lung cancer as the number 

one cause of cancer death. The American Cancer Society has predicted that in 2014 there will be 

224,201 new cases of lung cancer and predicted to claim 159,260 lives in the Unites States alone 

(American Cancer Society, 2014). Lung cancer like most cancers, can begin to progressively 

spread to other organs if it goes untreated, and even then, there’s a possibility that the treatment 

may not work. In order to increase the likelihood of eradicating the cancer and increasing the 

survival rate, early detection and treatment is quintessential. Unfortunately, some of the current 

testing methods such as Computed Tomography scan (CT scan), chest radiography and Sputum 

analysis either require an extensive amount of time, money and/or can only detect the cancer in 

its advanced stage, thus, lowering the chances of survival (Taher & Sammouda, 2011).  

Researchers continue to experiment with machine learning algorithms employing mostly 

supervised learning as an alternate means for classifying cancer. Hosseinzadeh, KayvanJoo, 

Ebrahimi, & Goliaei (2013) compared Support Vector Machines (SVM), Naïve Bayes and 

Artificial Neural Networks (ANN) in their ability to accurately identify and predict the specific 

type of lung tumor based on a number of factors such as the structure of the tumor. They 

determined that the SVM algorithm at 88% accuracy was the top performer of the three and that 

classification and feature selection had great potential in simple applications.  

Only second to lung cancer, breast cancer is very invasive and the most primary cause of 

cancer related death amid women (Salama et al., 2012). ML has often been applied in diagnosing 

and detecting breast cancer because it has the ability to identify patterns that may be otherwise 

difficult to detect, as well as learn from previous instances. While there has been much research, 
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it is still unknown what causes breast cancer. Due to this fact, early detection is imperative in 

reducing the death rate. Detection should be able to reliably and accurately differentiate between 

malignant and benign tumors. The customary technique for diagnosis is usually performed by 

human observation. However, the number of patients is increasing and therefore computers to 

aid and automate the diagnosis process have been developed in the past several years. The 

qualitative data is converted to a quantitative feature classification problem which has more 

objectivity (Osareh & Shadgar, 2010).  

 Yau & Othman (2007) compare the accuracy, time and error rate of five classification 

algorithms on breast cancer data that consisted of 699 rows and 9 columns of data. The 

algorithms compared were Bayes network classifier, radial basis function, decision tree and 

single conjunctive rule learner. They determined that Bayes network classifier was the best 

algorithm of those compared based on the accuracy or the percentage of correctly classified 

instances of 89.71%, model build time of 0.19 seconds and average error at 0.2140. In 

comparison, Aruna, Rajagopalan, & Nandakishore (2011) evaluated three sets of breast cancer 

data in the areas of accuracy, precision, specificity and sensitivity. The Wisconsin Diagnostic 

Breast Cancer Dataset contained 569 instances and 32 features, Wisconsin Breast Cancer Dataset 

consisted of 683 instances (444 benign, 239 malignant) and Breast Tissue Dataset was comprised 

of 106 instances and 9 features. Naïve Bayes, SVM Gaussian RBF kernel (SVM-RBF), RBF 

neural networks, decision trees, J48 and simple classification and regression trees (CART) were 

applied to evaluate the performance of each algorithm. They determined based on their 

experiments that SVM-RBF was the top ranked performer in all areas. Both sets of breast cancer 

machine learning experiments were conducted using the Weka workbench. 
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 Asthma is a common lung disease that affects approximately 235 million people 

worldwide. That number is inclusive of the 25 million affected with asthma in the U.S. of which, 

7 million are children. In similar fashion as some of the aforementioned illnesses, the exact cause 

of asthma is unknown and may be a combination of environment and genetics. People are 

afflicted with asthma in varying degrees ranging from mild to acute and can sometimes become 

fatal if not treated timely. Typical symptoms of asthma are chest tightening, shortness of breath, 

wheezing and coughing. Asthma diagnoses is usually attained by a physician performing a series 

of tests that may include: Spirometry (tests the lung function), chest x-ray, EKG and 

bronchoprovocation among others (National Heart, Lung and Blood Institute, 2014).  

Physicians will often use a stethoscope as a non-invasive way to listen for sounds 

produced by the lungs; this method can be unreliable for many reasons including the physician’s 

hearing ability and the frequency of the sounds. There is a recent study using computerized lung 

sound analysis that has the potential to help physicians make quicker and more accurate 

diagnoses. Emanet, Öz, Bayram, & Delen (2014) use an embedded real-time microprocessor 

system and an inexpensive microphone to transmit the sounds. After the data was retrieved, they 

applied Random Forest, AdaBoost combined with Random Forest and artificial neural networks 

(ANN) machine learning algorithms for classification. Random Forest and AdaBoost combined 

with Random Forest performed well reaching an accuracy of approximately 90%, while ANNs 

were at about 80%. 

The final disease we will explore using ML techniques as a diagnostic tool is Alzheimer’s 

disease (AD). The most common cause of dementia is Alzheimer’s disease. It manifests as 

memory loss and the deterioration of other intellectual capabilities that impedes the normal way 

of living. While there has been and still is lots of research to find a cure for Alzheimer’s, one has 
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not been discovered as of yet. The best available remedies merely have the ability to retard the 

dementia symptoms in order to increase the length of experiencing a good quality of life 

(Alzheimer's Association, 2014).  

Changes in the structure and function of the brain have been assessed using diagnostic 

tools such as a magnetic resonance imaging (MRI), computer-aided diagnosis (CAD) and single-

photon emission computed tomography (SPECT). However, Yasuo et al. (2013) found that there 

was not any current research using classification based on MRI images alone. They applied a 

support vector machine (SVM) and an artificial neural network (ANN) to a dataset containing 

four morphological and six functional images on 30 patients (15 with AD and 15 without AD). 

Unfortunately, their results were much lower than classification based on data retrieved from 

baseline principal component analysis (PCA) and SPECT images. The experiments yielded 

0.660 on morphological and 0.903 on functional images using SVM for classification. They 

attributed the low rates to the meager dataset and lack of algorithm variety. 

2.3 Machine Learning in Other Real World Applications 

Machine learning (ML) not only finds its place in the field of medicine, but has also been 

very beneficial in other applications such as education, science, security, business and so on. 

Algorithm performance is often highlighted as a ML outcome, and should be, but there are others 

that should also be taken into consideration such as increase in quality of life, lives saved, 

interventions implemented and time, effort and money conserved to name a few. These 

additional outcomes can help connect ML to other real world problems.  It’s not enough to 

simply run an algorithm on dataset, it should include determining the most relevant features, 

analyzing and interpreting the results and convincing others that this technique is worthwhile for 

large scale implementation (Wagstaff, 2012). 
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The field of biometrics has embraced machine learning to assist in the identification and 

authentication process. There are several modes of biometric identification including 

fingerprints, iris, signature, voice and face.  Shelton et al. (2012) developed the Genetic and 

Evolutionary Feature Extraction – Machine Learning (GEFEML) algorithm for facial recognition 

in the area of Genetic & Evolutionary Biometrics (GEB). This algorithm works based on the 

principles of Darwinism’s natural selection. They compared the performance of their GEFEML 

with that of the traditional Local Binary Pattern (LBP) feature extraction technique. GEFEML 

accuracy was comparable to LBP and reduced processing time by 45% (in terms of 

computational complexity).  
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CHAPTER 3 

Exploring and Identifying Appropriate Feature Selection and Classification Algorithms 

3.1 Machine Learning  

Machine learning (ML) was birthed in the 1930s beginning with Ronald A. Fisher and in 

the 1950s with linear perceptron from Frank Osenblatt. From the 1960s until the late 1980s, ML 

experienced highs and lows, however, things began looking up with the entrance of neural 

networks. The 1990s brought about the resurrection of ML with support vector machines (SVM) 

(Alexander, 2013). Over the past decade, it has been a rapidly developing field and has often 

been applied successfully to complex and real world challenges.  

Machine learning utilizes a variety of artificial intelligence and statistical tools to train on 

past data in order to create reasonable generalizations, discover patterns, classify previously 

unseen data or predict new directions (Hosseinzadeh et al., 2013). The primary objective of ML 

is to minimize classification errors on the training data. It has the ability to deliver precise or 

nearly perfect predictions (Anu, Agrawal, & Bhattacharya, in-press). ML works extremely well 

on massive datasets that may go beyond the bounds of human analyzation and interpretation.  

The term machine learning is often mistakenly used interchangeably with data mining. 

While data mining can make use of ML algorithms, such as SimpleKMeans in a clustering 

application, the emphasis is different. Data mining attempts to search through data to gather 

information that can be converted into a structure that is comprehensible for further use. In other 

words, it is a knowledge discovery process. As previously mentioned, ML emphasizes 

generalization, prediction and representation. There are many machine learning packages on the 

market that each has a host of algorithms for exploration. Figure 1 displays a few of the open 

source packages. 
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Figure 1. Open source machine learning software packages. 

Machine learning algorithms are generally classified into two learning schemes: 

supervised and unsupervised learning. The type and availability of data and the anticipated 

outcome will determine which learning scheme will be employed (Dua, 2011). In supervised 

learning, the output values of the model are defined prior to creating it, such as BV positive or 

negative. In contrast, the model itself dictates its output for unsupervised learning (Kantardzic, 

2003). The most familiar tasks of supervised learning are regression and classification. This 

research focuses on the task of classification learning, which will be defined later. 

3.2 Feature Selection and Classification 

 3.2.1 Feature selection. Feature selection (FS) is the process of choosing the most 

significant features and forming a subgroup or subset that will be the most valuable for 

prediction and analysis. The goal is to discover a subset of features that perform as well (or 

better) than the original set. It is assumed that any given dataset contains data or features that are 

not relevant, duplicates and/or noisy data, thus necessitating feature selection (Hall, 1999). There 

are major benefits of applying this machine learning technique. FS reduces the amount of data 

that has to be analyzed in turn reducing storage and runtime. This pre-processing step may cost 

you time in the beginning, but will improve the outcome and efficiency in the end. This is 

especially true when dealing with enormous amounts of data. In addition, by executing FS we 
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can anticipate that algorithms will learn more quickly and accuracy will be improved because 

irrelevant features have been reduced or completely eliminated.  Simply stated, feature selection 

should produce top performance with minimal processing energy. 

Feature selection generally falls into one of two categories: minimum subset and feature 

ranking. Minimum subset algorithms produce exactly what the name suggests; it creates a subset 

of features with the least amount of relevant features that will yield maximum results. However, 

there is no distinction between the features in terms of ranking. On the other hand, feature 

ranking algorithms do not reduce the dataset, but instead it orders the features based on 

evaluation measures that have been specified (Kantardzic, 2003).  

The two primary FS approaches fall within the two categories listed above: filter methods 

and wrapper methods.  Filters create a subset before learning begins that is the most favorable. 

Based on overall characteristics, an autonomous evaluation is made. Because filters run much 

faster than wrappers, they may be the preferred method for large and highly dimensional datasets 

(Witten, Frank, & Hall, 2011).  Wrappers assess the subset by “wrapping around” a classification 

algorithm that will be used for learning. They usually outperform filters in terms of accuracy; 

however, the computational cost is very high when used on large datasets. Feature selection 

algorithms are typically coupled with a search method such as genetic search, exhaustive search 

and best first (Rajarajeswari & Somasundaram, 2012).   A given search method will roam 

through the features in order to locate good subsets.  

3.2.2 Classification. Classification, as previously mentioned, is one of two supervised 

learning techniques. The objective of a classifier algorithm is to accurately group objects into a 

predefined set of classes. In other words, it predicts the class of each instance (Dua, 2011). This 

approach is mostly used in artificial intelligence (AI), machine learning and pattern recognition. 
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Just as with machine learning, classification has been used in a variety of applications such as 

medical diagnosis, biometrics, cybersecurity, risk analysis, manufacturing, etc. (Anbarasi et al., 

2010). There are a range of major classification techniques that include: Neural networks, 

Bayesian classifiers, meta learners, decision trees, etc. (David, Saeb, & Al Rubeaan, 2013). 

Choosing the best classifier for a particular problem is extremely important, yet this task has not 

been given much research attention (Peng, Kou, Ergu, Wu, & Shi, 2012).  

3.3 Weka 

Weka (Waikato Environment for Knowledge Analysis) was created at the University of 

Waikato in New Zealand and has a compilation of data preprocessing tools and machine learning 

algorithms. Weka’s interface allows users to easily use the tools and apply algorithms on a 

variety of datasets by accessing the “Explorer” through its graphical user interface (GUI) 

pictured in Figure 2. It was written in Java and runs on most operating systems such as 

Windows, Mac OS and Linux.  

  

Figure 2. Weka GUI. 

Figure 3 displays the following features in the Weka Explorer for working with data: 

Preprocessing, classification, clustering, association rule mining, attribute selection and 

visualization. Weka imports data files that are in the Attribute-Relation File Format (ARFF), 

comma-separated values file format (CSV) as well as a few others. Once you load your dataset, 
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there are many options to choose. These include classification and clustering options such as, 

cross-validation, percentage split and classes-to-cluster evaluation.   

 

Figure 3. Weka Explorer. 

The following section will list and describe all of the feature (attribute) selection, search 

method and classification algorithms we used for this research. 

3.4 Algorithms Used in Weka 

3.4.1 Feature selection algorithms. 

 CfsSubsetEval: Produces subsets of features that have a low association with each other 

and greatly interrelated with the class (Witten et al., 2011). 

 ClassifierSubsetEval: A wrapper method that uses a classifier to approximate the value of a 

set of attributes. The attribute subsets evaluated are derived from training or an isolated 

testing set of data (Witten et al., 2011). 

 ConsistencySubsetEval: Feature sets are assessed based on the level of class consistency. It 

searches for high class consistency with minimal features; however the subset consistency 
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cannot fall below the consistency of the full feature set (Chue-Poh, Ka-Sing, & Weng-Kin, 

2008).   

 FilteredSubsetEval: A filter is applied to the training data prior to performing feature 

selection. An error message will be generated if the filter alters the original features 

number or ordering (Witten et al., 2011). 

 WrapperSubsetEval: Similar to ClassifierSubsetEval, a classifier is used to determine the 

value of a subset of features. However, cross-validation is used to approximate the 

precision of the learning scheme for the feature subset (Witten et al., 2011). 

3.4.2 Search method algorithms. 

 BestFirst: Explores a random subset of features using greedy hill climbing and 

supplemented with backtracking. Backtracking is controlled by selecting the number of 

sequential non-improving nodes allowed. An empty set of features may be initially selected 

for a forward search, a full feature set for a backward search or begin midway and search 

both ways so that all possible distinct feature additions and deletions at any location can be 

examined (Sindhu, Geetha, & Kannan, 2012). 

 RankSearch: An attribute evaluator is used to rank all of the features. A forward selection 

search produces a ranked list using the selected subset evaluator. After the list is produced, 

each subset increments in size and is then evaluated. It begins with the best feature then the 

best feature plus the next best feature until it produces the best subset which is reported 

(Witten et al., 2011). 

 GeneticSearch: Based on the principles of evolution’s survival of the fittest, the genetic 

search begins with an empty feature set along with rules generated randomly for the initial 

population. Afterwards, new populations and offspring are formed from the rules of the 
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current population. Crossover and mutation are administered to create offspring. This 

process repeats until every rule in final population fulfills the fitness threshold (Anbarasi et 

al., 2010). 

 LinearForwardSelection: Is an extension of BestFirst. The user selects m number of 

features that should not be exceeded in each step. Runtime is reduced because the number 

of evaluations has been decreased. LinearForwardSelection uses one of two methods; fixed 

set or fixed width. Both rank the features using a subset evaluator. Fixed set uses only the 

m best features in the succeeding forward selection while fixed width increases k in each 

successive step (Gutlein, Frank, Hall, & Karwath, 2009).  

 SubsetSizeForwardSelection: Is an extension of LinearForwardSelection. The search 

executes k-folds cross validation that can be specified by the user. The prime subset-size is 

then chosen by executing a LinearForwardSelection on every fold. Lastly, the whole data 

set is used to execute a LinearForwardSelection up to the prime subset-size (Gutlein et al., 

2009). 

 GreedyStepwise: Executes a greedy backward or forward search through the area of feature 

subsets. It might start from a random place in the area or may start with all or none of the 

features. The search ends when adding or deleting any of the residual features causes a 

decrease in the evaluation. GreedyStepwise also has the ability to yield a ranked list of 

features by crisscrossing through the area and recording the order of the selected features 

(Witten et al., 2011). 
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3.4.3 Classification algorithms.  

 Bagging: Uses a random classifier and combines or aggregates copies of that classifier to 

improve performance. Bagging for classification takes a majority vote for a predicted class 

by a sequence of classifiers (Breiman, 1996). 

 RandomForest: A collection or ensemble of decision trees. It uses the outcomes of the trees 

that are individually “weak” classifiers to make one strong classifier. This is done by way 

of each tree voting on the most common class (Breiman, 2001). 

 LogitBoost: A boosting algorithm that uses logistic regression. Boosting increases the 

performance of classification by joining weak classifiers. It handles noisy data very well 

(Cai, Feng, Lu, & Chou, 2006). 

 KStar (K*): A nearest neighbor instance based learner. Instance based means that it 

compares pre-classified examples to classify an instance. Nearest neighbor finds the 

instance that is most similar in the training set  (Cleary & Trigg, 1995). 

 FT: Has the capacity to process both nominal and numeric features, binary and multi-class 

variables and missing values. The leaves have linear functions and angled splits. . (Witten 

et al., 2011). 

 J48: Written in Java and is derived from the C4.5 Revision 8 algorithm for use in the Weka 

workbench. This classifier is decision tree based. This means that it is configured like a 

tree. Tests are performed on one or more features creating non-leaf nodes (i.e. root node) 

and classification results are represented by leaf nodes. Classification takes place by 

beginning at the root of the tree, testing the node specific feature and generating a branch 

for each value. The method is repeated on each of the nodes on the branch and terminates 

when a leaf node is produced (Wang, Makedon, Ford, & Pearlman, 2005). 
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 AdaBoostM1: Uses a series of iterations during training to add weak learners thereby 

creating a strong learner. Each iteration adds a new weak learner to the collection and its 

weighting vector adjusts to concentrate on misclassified examples in previous cycles 

(Friedman, Hastie, & Tibshirani, 2000). 

 NaïveBayes: A simple probabilistic classifier based on the supposition of class conditional 

independence of features and that the prediction is not biased by any concealed features 

(John & Langley, 1995). 

 RBFNetwork: Comprised of three layers: input, hidden and output. It is similar to the k-

means algorithm in that the expected target value will most likely have similar values of 

those that are nearby. The name radial basis function derived its name because it uses 

radius distance (Sherrod, 2014). 

 OneR: one feature is tested by a set of rules and creates a one level decision tree (Witten et 

al., 2011). 
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CHAPTER 4 

Our Approach to Predict the Presence of Disease with Microbiome Community Etiology 

4.1 Dataset 

In this chapter, we provide our experiment process using the machine learning techniques 

defined in chapter three. We also define the evaluation metrics used to calculate the accuracy, 

precision, recall and F-measure in predicting the presence of the disease. The dataset used in our 

experiment is comprised of 25 women studied over a 10 week period. This data is a subset of a 

larger dataset of 400 women (Ravel et al., 2011). Dr. James A. Foster and Daniel Beck form the 

University of Idaho provided us with the de-identified data in a .csv file. The study was arranged 

so that samples and information were retrieved from the women every day during the 10 week 

period, however, some women missed days. There were also a few weeks that void of any data in 

the spreadsheet. There are a total of 1601 instances and 418 features. The BV data consists of 

three sub-categories of features: time series, clinical and medical data.  

4.1.1 Time series data. The time series data documents day and week numbers for 

features “DIA_DAY” and “DIA_WEEK” respectively (day 1, week 9), day of the week for 

feature “DAYOFWK” (Monday = 2), day number of the study for feature “TIME” (1, 2…70) 

and patient id number for feature P_ID (1, 2…25). The same data is repeated with the exception 

of “TIME” beginning with “P_ID.1” and so on. For our experiments, we used the data without 

the feature names. The numeric labels for this data range from features 1 – 11. A sample of the 

time series data with feature names are shown below in Table 1.  

Table 1 

Time Series Sample 

TIME P_ID SITE2 DIA_DAY DIA_WEEK DAYOFWK 

1 1 2 1 1 3 
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Table 1 

Cont. 

2 1 2 2 1 4 
3 1 2 3 1 5 
4 1 2 4 1 6 
5 1 2 5 1 7 
6 1 2 6 1 1 
7 1 2 7 1 2 
8 1 2 1 2 2 
9 1 2 2 2 4 
10 1 2 3 2 5 
 

4.1.2 Clinical data. The clinical data is a combination of results from Amsel’s criteria 

and a questionnaire. The questionnaire included questions such as sexual activity, contraceptive 

use, tobacco use, etc. The numeric labels for this data range from features 12 – 38. The clinical 

data feature names are displayed in Table 2.  

Table 2 

Clinical Data Features 

Clinical Data Features 

Vag_Int Sper_Use Fem_Powd Meds Vag_Itch 

Anal_Sex Lubr_Use Menstrua Swabs Vag_Burn 

Oral_Sex Partner Tampon Slide Vag_Dis 

Fing_Pen Thong Pad Ph_Glove 
 

Sexy_Toy Douching Stress Vag_Odor 
 

Cond_Use Fem_Spra Tob_Use Vag_Irr   
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4.1.3 Medical data. The medical data was obtained from vaginal swabs which were used 

to perform 454 sequencing of the V12 region of the 16S gene. The numeric labels for this data 

range from features 39 – 418. Table 3 exhibits the medical data feature names. 

Table 3 

Medical Data Features 

Medical Data Features 

Acholeplasma Bosea Helcobacillus Propioniferax 
Achromobacter Brachybacterium Helcococcus Propionimicrobium 
Acidaminococcus Bradyrhizobiaceae.1 Herbaspirillum Propionivibrio 
Acidimicrobiaceae.1 Bradyrhizobium Hydrogenophaga Proteobacteria.10 
Acidimicrobiaceae.2 Brevibacillus Hydrogenophilus Proteobacteria.11 
Acidimicrobiales.1 Brevibacterium Hyphomicrobiaceae.1 Proteobacteria.12 
Acidovorax Brevundimonas Ignatzschineria Proteobacteria.14 
Acinetobacter Burkholderia Incertae_Sedis_XII.1 Proteobacteria.15 
Actinobacteria.1 Burkholderiales.1 Incertae_Sedis_XII.2 Proteobacteria.16 
Actinobacteria.2 Caenimonas Janibacter Proteobacteria.17 
Actinobaculum Caldicellulosiruptor Janthinobacterium Proteobacteria.5 
Actinomycetales.1 Campylobacter Jeotgalicoccus Proteobacteria.6 
Actinomycetales.10 Capnocytophaga Jonquetella Proteobacteria.7 
Actinomycetales.11 Carboxydocella Kingella Proteobacteria.8 
Actinomycetales.12 Carboxydothermus Klebsiella Proteobacteria.9 
Actinomycetales.13 Carnobacteriaceae.1 Kocuria Pseudomonas 
Actinomycetales.14 Carnobacteriaceae.2 L.iners Pseudonocardiaceae.1 
Actinomycetales.15 Catenibacterium L.mucosae Pseudoxanthomonas 
Actinomycetales.16 Chromatiales.1 L.otu1 Psychrobacter 
Actinomycetales.17 Chryseobacterium L.otu6 Ralstonia 
Actinomycetales.2 Cloacibacterium L.reuteri Raoultella 
Actinomycetales.3 Clostridiales.1 Lachnospiraceae.10 Rheinheimera 
Actinomycetales.4 Clostridiales.10 Lachnospiraceae.2 Rhizobiales.1 
Actinomycetales.5 Clostridiales.11 Lachnospiraceae.3 Rhizobiales.2 
Actinomycetales.6 Clostridiales.12 Lachnospiraceae.4 Rhizobium 
Actinomycetales.7 Clostridiales.13 Lachnospiraceae.5 Rhodanobacter 
Actinomycetales.8 Clostridiales.14 Lachnospiraceae.6 Rhodococcus 
Actinomycetales.9 Clostridiales.15 Lachnospiraceae.7 Roseburia 
Aeromonadaceae.1 Clostridiales.16 Lachnospiraceae.8 Roseomonas 
Aeromonas Clostridiales.17 Lactobacillales.1 Rothia 
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Table 3 

Cont. 

Akkermansia Clostridiales.18 Lactobacillales.2 Rubrobacter 
Alistipes Clostridiales.19 Lactobacillales.3 Ruminococcaceae.1 
Alloscardovia Clostridiales.2 Lactobacillales.4 Ruminococcaceae.2 
Alphaproteobacteria.1 Clostridiales.20 Lactobacillales.5 Ruminococcaceae.3 
Alphaproteobacteria.2 Clostridiales.21 Lactococcus Ruminococcaceae.5 
Amaricoccus Clostridiales.3 Leptotrichia Ruminococcaceae.7 
Anoxybacillus Clostridiales.4 Leptotrichiaceae.1 Ruminococcaceae.8 
Aquabacterium Clostridiales.6 Leptotrichiaceae.2 Ruminococcus 
Aquincola Clostridiales.7 Leuconostoc Rummeliibacillus 
Archaea.1 Clostridiales.8 Marinobacter Saprospiraceae.1 
Archaea.2 Clostridiales.9 Marinomonas Sarcina 
Archaea.3 Clostridium Marmoricola Schlegelella 
Archaea.4 Collinsella Massilia Sedimentibacter 
Archaea.5 Comamonadaceae.1 Megamonas Selenomonas 
Archaea.6 Comamonas Meiothermus Shewanella 
Archaea.7 Coprobacillus Mesorhizobium Silanimonas 
Archaea.8 Coprococcus Methylobacillus Skermanella 
Archaea.9 Cupriavidus Methylobacterium Slackia 
Arthrobacter Cytophagaceae.1 Methyloversatilis Solibacillus 
Asaccharobacter Dechloromonas Microbacterium Solobacterium 
Aspromonas Deinococcus Mitsuokella Sphingobium 
Asticcacaulis Delftia Modestobacter Sphingomonas 
Atopobacter Dermabacter Mogibacterium Sphingopyxis 
Aurantimonas Dermacoccus Moryella Sporacetigenium 
Azonexus Desulfobacterium Mucilaginibacter Sporomusa 
Azospira Devosia Mycobacterium Stenotrophomonas 
Bacillaceae.1 Diaphorobacter Mycoplasma Streptomyces 
Bacillaceae.2 Dietzia Neisseria Streptophyta 
Bacillales.1 Dolosigranulum Neisseriaceae.1 Subdoligranulum 
Bacillariophyta Dorea Nesterenkonia Succinispira 
Bacilli.1 Dyella Nitratireductor Sutterella 
Bacilli.2 Dysgonomonas Nitrobacter Symbiobacterium 
Bacilli.3 Enhydrobacter Nocardioides Syntrophomonas 

Bacillus Enterobacter Nosocomiicoccus TM7_genera 
_incertae_sedis 

Bacteria.1 Enterobacteriaceae.1 Novosphingobium Tepidimonas 
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Table 3 

Cont. 

Bacteria.10 Enterobacteriaceae.2 Ochrobactrum Thermanaeromonas 
Bacteria.11 Enterococcaceae.1 Odoribacter Thermicanus 
Bacteria.12 Eremococcus Oligella Thermobacillus 
Bacteria.13 Erysipelothrix Oribacterium Thermolithobacter 
Bacteria.14 Erythrobacter Oscillibacter Thermomicrobia.1 
Bacteria.15 Escherichia.Shigella Paenibacillus Thermomonas 
Bacteria.16 Eubacterium Paludibacter Thermus 
Bacteria.17 Exiguobacterium Pantoea Treponema 
Bacteria.18 Facklamia Parabacteroides Trichococcus 
Bacteria.19 Fangia Paracoccus Turicibacter 
Bacteria.3 Fastidiosipila Parasutterella Ureaplasma 
Bacteria.4 Firmicutes.1 Pasteurella Varibaculum 
Bacteria.5 Firmicutes.2 Patulibacter Variovorax 
Bacteria.6 Flavisolibacter Pediococcus Veillonella 
Bacteria.7 Flavobacteriaceae.1 Pedobacter Veillonellaceae.1 
Bacteria.8 Flavobacteriaceae.2 Pelagibacter Veillonellaceae.2 
Bacteroidales.1 Flavobacteriaceae.3 Pelomonas Vibrio 
Bacteroidales.2 Flavobacterium Peptococcus Vogesella 
Bacteroidales.3 Fusobacterium Petrimonas Weeksella 
Bacteroides Gallicola Petrobacter Weissella 
Bacteroidetes.1 Gammaproteobacteria.1 Phascolarctobacterium Zimmermannella 
Bacteroidetes.2 Geobacillus Phenylobacterium Zoogloea 
Bacteroidetes.4 Geothrix Planifilum corGroup1 
Bacteroidetes.5 Globicatella Planococcus corGroup2 
Barnesiella Gp10 Planomicrobium corGroup3 
Bavariicoccus Gp6 Plesiomonas corGroup4 
Bifidobacterium Granulicatella Prevotellaceae.2 corGroup5 
Blastococcus Gulosibacter Propionibacteriaceae.1 corGroup6 
Blastomonas Haematobacter Propionibacteriaceae.2 corGroup7 
Blautia Haemophilus Propionibacterium corGroup8 

 

4.2 Experiment Process 

For all of our experiments, we used the Weka workbench explorer feature. The 

experiment process shown in Figure 4 will be outlined in this section in detail. We began by 
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converting the data into a format that was acceptable for use in Weka. The first column was an 

anonymous identifier for each woman; therefore, it was deleted because it was not part of the 

feature set. The Nugent score results were contained in the second column. If the Nugent score 

was ≥ 7 and ≤ 10, it was given a score of “1” indicating BV positive otherwise it was given a 

score of “0” indicating BV negative. We converted all numeric values to nominal values: 1’s to 

“yes” and 0’s to “no” in the nugentScoreBV column to grant access to a greater number of 

Weka’s algorithms. The data in the nugentScoreBV column was moved to the last column of the 

dataset as required by Weka for supervised learning. 

 

Figure 4. Experiment process. 

We used several of Weka’s attribute selection algorithms for our feature selection process 

and classifier algorithms to test the accuracy of diagnosing the presence of Bacterial Vaginosis 

(BV). Weka has two groups of feature selection algorithms: Attribute subset evaluators and 

single-attribute evaluators. The single-attribute evaluator algorithms reduce the feature set in 

theory in that it uses the ranker method and ranks all of the features in descending order. It 

requires the user to manually set a threshold to discard the lower ranking features or specify the 

number of features to preserve. We used five of the six attribute subset evaluator algorithms 

(each defined in Chapter 3) on the full training set because they automated the feature 
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selection/reduction process (CfsSubsetEval, ClassifierSubsetEval, ConsistencySubsetEval, 

FilteredSubsetEval and WrapperSubsetEval). Note that the CostSensitiveSubsetEval algorithm 

could not to be used because it did not produce any output for this dataset.  

Weka has two types of feature selectors: Search method and ranking method (11 total 

methods). We discarded the sole ranking method because it is only used with the single-attribute 

evaluator algorithms mentioned above. We then eliminated four of the remaining ten algorithms 

for one of two reasons: Processing time exceeded eight hours or the method failed to produce 

any output. The discarded search methods were ExhaustiveSearch, RaceSearch, RandomSearch, 

and ScatterSearchV1. During our feature selection process, we decided to use only two very 

popular algorithms (NaïveBayes and Bagging) for our WrapperSubsetEval algorithm. The 

default for ClassifierSubsetEval was the ZeroR algorithm, however, it only yielded one feature. 

Therefore, we decided to choose a very similar algorithm (OneR) to use for this feature selector. 

Weka has a total of 93 classification algorithms, 27 of which were not available for the 

type of dataset used, leaving 66 for classification. We quickly realized that it would be a 

formidable task to run experiments using all of the available algorithms. So to begin the 

classification process, we initially selected six popular algorithms (Bagging, ConjunctiveRule, 

J48, NaiveBayes, OneR and RandomForest). After administering the experiments, we discovered 

that OneR and ConjuctiveRule had the same output for all of the feature sets. In addition, they 

had lower accuracy than most of the other algorithms. Therefore, we chose to eliminate the 

OneR and ConjuctiveRule algorithms and replace them with RBFNetwork and AdaBoostM1 

then added an additional three algorithms (LogitBoost, KStar and FT) to increase the variety for 

our experiments. In Weka, deterministic algorithms such as RandomForest will yield repeatable 
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experiments because Weka uses a “seed value” to remove the randomization. In order to 

randomize the results, a manual manipulation of the seed value will be necessary. 

 Table 4 features the combinations of the five feature selection, six search methods and 

three classifier algorithms (used for wrapper methods) assembled to create 20 distinct feature 

selection sets.  

Table 4 

Feature Selection Sets 

Code Attribute Evaluator Search Method Classifier Algorithms 

FS1 CfsSubsetEval BestFirst  
FS2 CfsSubsetEval GeneticSearch  
FS3 CfsSubsetEval RankSearch  
FS4 ClassifierSubsetEval GeneticSearch OneR 

FS5 ConsistencySubsetEval BestFirst  
FS6 ConsistencySubsetEval GeneticSearch  
FS7 ConsistencySubsetEval LinearForwardSelection  
FS8 ConsistencySubsetEval RankSearch  
FS9 ConsistencySubsetEval SubsetSizeForwardSelection  
FS10 FilteredSubsetEval BestFirst  
FS11 FilteredSubsetEval GeneticSearch  
FS12 FilteredSubsetEval RankSearch  
FS13 WrapperSubsetEval BestFirst NaiveBayes 

FS14 WrapperSubsetEval BestFirst Bagging 

FS15 WrapperSubsetEval GeneticSearch Bagging 

FS16 WrapperSubsetEval GreedyStepwise NaiveBayes 

FS17 WrapperSubsetEval LinearForwardSelection NaiveBayes 

FS18 WrapperSubsetEval RankSearch NaiveBayes 

FS19 WrapperSubsetEval SubsetSizeForwardSelection NaiveBayes 

FS20 WrapperSubsetEval SubsetSizeForwardSelection Bagging 
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The nine classification algorithms used for our experiments are shown in Table 5. The 

default settings were maintained for all feature selection, search method and classification 

algorithms except as noted above where search methods were required for the feature selection 

process and classifiers for the wrapper methods. We saved the feature selection reports produced 

by Weka in Notepad++.  The actual reduced feature sets were saved as *.arff files that would 

then be imported back into Weka for the classification process. 

Table 5 

Classification Algorithms 

Code Algorithm 

A1 Bagging 

A2 RBFNetwork 

A3 J48 

A4 NaiveBayes 

A5 AdaBoostM1 

A6 RandomForest 

A7 LogitBoost 

A8 KStar (K*) 

A9 FT (Functional Trees) 
 

We used 10-fold cross-validation for testing and training. Holdout methods are 

commonly used when there is a limited quantity of data. In 10-fold cross-validation, the data is 

divided into 10 approximately equal parts or folds. The first fold is used for testing and folds two 

through ten are used for training. Each successive fold is used for testing and the remainders for 

training until all ten iterations are complete. The error rate is calculated for each of the 10 folds 

and averaged to produce comprehensive error estimation. According to Witten et al. (2011), 

theoretical substantiation and large-scale testing have shown that 10-folds seem to produce prime 

error estimations. 
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4.2.1 Raw Full Data Experiment Process. We conducted our first set of experiments on 

the full set of raw data that included all three data subsets: Time series, clinical and medical data. 

This data was untouched with the exception of making the adjustments required by Weka 

mentioned in section 4.1. This dataset included the cells and sometimes rows of missing data. 

We calculated the time taken for each feature selection and classification algorithm to produce 

output. We then created an elapsed time table. We additionally created a feature set and metrics 

table that will be presented in chapter 5. 

 4.2.2 Time Series Removed Experiment Process. We removed the columns containing 

the first eleven time series features detailed in section 4.1, leaving only the clinical and medical 

features for experiments. We applied feature selection and classification to this already reduced 

dataset. We calculated the time taken for each feature selection and classification algorithm to 

produce output. We then created an elapsed time table. We additionally created a feature set and 

metrics table that will be featured in chapter 5. 

4.2.3 Clinical Experiment Process. We retained only the columns containing the clinical 

data (features 12 – 38) which includes the questionnaire results and Amsel’s clinical criteria as 

mentioned previously. Feature selection and classification algorithms were applied to both giving 

us information on time elapsed and metric results. Tables were created from this output. 

4.2.4 Medical Experiment Process. We retained only the columns containing the 

medical data (features 39 – 418) which was derived from the data obtained via the 454 

sequencing of the V12 region of the 16S gene. We calculated the time taken for each feature 

selection and classification algorithm to produce output. We then created an elapsed time table 

and additionally created feature set and metrics tables. 
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4.2.5 Clean Full Experiment Process. We decided to address the issue of missing data 

for this set of experiments. We used a simple yet laborious process of “cleaning” the data. We 

examined the data in intervals of one week (days 1-7) at a time for each woman over the 10 week 

period. If data was missing for an entire week, we simply eliminated those rows. In instances 

where less than seven days of results were shown, we inserted rows to make a complete week. 

We then calculated the mean ( ) for each feature (column of data) within the week that was 

being examined: 

   
∑  
 

 

Where   is the mean, ∑   is the sum of data for the week being examined and   is the 

number of cells with data for the week being examined. We then inserted   into all of the cells 

with missing data in the column for the week being examined. This was repeated until the entire 

table was void of missing data. We then applied feature selection and classification algorithms 

giving time elapsed and metric results. We created tables using this output. 

4.2.6 Clean Clinical Experiment Process. We retained only the columns containing the 

now clean clinical data (features 12 – 38) which includes the questionnaire results and Amsel’s 

clinical criteria as mentioned previously. As with all previous experiments, feature selection and 

classification algorithms were applied to both giving us information on time elapsed and metric 

results. Tables were created from this output. 

4.2.7 Clean Medical Experiment Process. We retained only the columns containing the 

clean medical data (features 39 – 418) that included the added   data in addition to data 

obtained via the 454 sequencing of the V12 region of the 16S gene. We calculated the time taken 

for each feature selection and classification algorithm to produce output. We then created an 

elapsed time table and additionally created feature set and metrics tables. 
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4.3 Metrics Defined 

In classification where there are solely two classes such as with our data where yes = BV 

positive and no = BV negative, there are only four possible outcomes shown in Figure 5.  

 

Figure 5. Confusion Matrix. 

In the framework of our research, the confusion matrix components have the following 

descriptions:  

 True positive (TP) is the number of correctly classified positive cases of BV, 

 False negative (FN) is the number of positive cases of BV incorrectly classified as 

negative, 

 False positive (FP) is the number of negative cases of BV incorrectly classified as 

positive, and 

 True negative (TN) is the number of correctly classified negative cases of BV. 

The overall accuracy (AC) is the percentage of correctly classified cases of BV.  It is 

calculated using the number of correctly classified instances, TP and TN divided by the total 

number of classified BV cases: 
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The precision (PR) is the percentage of positive predictions retrieved that were actually 

positive cases of BV.  It is the number of true positives divided by the number of all retrieved 

positive results:  

    
  

     
 

The recall (RC) is the percentage of positive predictions retrieved from all positive cases 

of BV.  It is the number of true positives divided by the number of all positive cases of BV:  

    
  

     
 

The F-measure (FM) is the harmonic mean of precision and recall. The harmonic mean is 

usually used when determining the average of rates:  
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CHAPTER 5 

Experiments and Results 

In this chapter we present the results from our research that includes a variety of 

experiments performed on the raw full, time series removed, clinical only, medical only, cleaned 

full, cleaned clinical only and cleaned medical only datasets.  

5.1 Raw Full Dataset   

Table 6 displays the results of the feature selection process on the raw full dataset. Based 

solely on feature reduction, FS19 was the top ranking performer by reducing the features down 

to a feature set of 6. FS6 was the lowest ranking performer by only reducing the features down to 

a feature set of 183. 

Table 6 

Raw Full Feature Set 

Raw Full Feature Set 

Set Attribute 

Evaluator 

Search 

Method 

Classifier # of 

Feat. 

Selected Feature List 

F
FS1 

Cfs Subset 
Eval 

Best 
First 

 15 34, 105, 211, 262, 285, 320, 322, 338, 357, 
404, 411, 414, 416, 417, 418 

F
FS2 

Cfs Subset 
Eval 

Genetic 
Search 

 143 1, 2, 3, 6, 9, 14, 16, 18, 19, 23, 25, 26, 30, 
34, 35, 39, 49, 54, 63, 73, 82, 86, 88, 91, 
92, 93, 96, 99, 105, 122, 129, 131, 136, 
161, 167, 169, 173, 175, 178, 187, 188, 
195, 202, 209, 219, 226, 229, 230, 231, 
234, 236, 237, 238, 239, 240, 241, 243, 
244, 245, 247, 249, 250, 252, 256, 257, 
259, 261, 262, 263, 266, 269, 270, 271, 
272, 274, 275, 278, 279, 280, 281, 282, 
283, 284, 285, 289, 290, 293, 295, 299, 
305, 306, 308, 309, 310, 314, 320, 324, 
330, 331, 333, 337, 338, 339, 340, 345, 
346, 348, 349, 350, 352, 355, 357, 359, 
360, 362, 364, 366, 368, 370, 371, 374, 
376, 377, 382, 384, 385, 386, 389, 390, 
394, 395, 399, 403, 404, 405, 407, 409, 
410, 411, 413, 414, 416, 417 
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Table 6 

Cont. 

F
FS3 

Cfs 
SubsetEval 

RankSearch  16 34, 53, 105, 112, 211, 256, 262, 285, 
320, 327, 338, 404, 411, 414, 416, 417 

F
FS4 

Classifier 
SubsetEval 

Genetic 
Search 

OneR 99 3, 4, 6, 7, 8, 9, 11, 26, 28, 35, 38, 39, 
41, 48, 61, 62, 63, 64, 68, 72, 76, 77, 
80, 84, 92, 107, 111, 127, 129, 130, 
131, 137, 140, 165, 171, 172, 181, 
184, 186, 192, 199, 205, 206, 214, 
216, 217, 220, 227, 228, 230, 232, 
235, 243, 244, 250, 251, 258, 260, 
262, 263, 266, 275, 285, 286, 289, 
290, 291, 298, 301, 302, 303, 304, 
306, 313, 315, 323, 336, 337, 338, 
341, 343, 346, 348, 349, 351, 352, 
354, 359, 361, 363, 373, 378, 381, 
382, 397, 400, 409, 411, 415 

F
FS5 

Consistency 
SubsetEval 

BestFirst  9 2, 28, 33, 285, 411, 412, 414, 416, 418 

F
FS6 

Consistency 
SubsetEval 

Genetic 
Search 

 183 6, 8, 10, 11, 12, 14, 19, 22, 24, 27, 28, 
29, 30, 33, 36, 38, 39, 40, 42, 49, 51, 
55, 57, 60, 64, 66, 71, 76, 79, 81, 86, 
89, 92, 94, 95, 99, 100, 101, 105, 106, 
108, 110, 112, 113, 115, 116, 117, 
118, 122, 123, 125, 126, 127, 128, 
131, 136, 146, 147, 149, 150, 151, 
152, 159, 162, 163, 165, 167, 168, 
169, 170, 177, 178, 179, 182, 184, 
186, 187, 188, 195, 196, 197, 198, 
201, 205, 211, 217, 218, 219, 221, 
225, 226, 227, 231, 234, 236, 239, 
240, 243, 244, 245, 248, 249, 250, 
251, 258, 260, 261, 263, 266, 267, 
273, 275, 278, 279, 281, 282, 284, 
285, 288, 289, 293, 294, 295, 301, 
303, 309, 315, 316, 321, 324, 325, 
327, 329, 330, 332, 334, 339, 340, 
341, 342, 343, 345, 348, 349, 350, 
352, 354, 358, 360, 366, 367, 368, 
369, 371, 374, 376, 379, 380, 382, 
384, 386, 387, 388, 390, 392, 393, 
394, 395, 397, 398, 404, 405, 406, 
407, 409, 410, 411, 412, 413, 414, 
416, 417, 418 
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Table 6 

Cont. 

F
FS7 

Consistency 
SubsetEval 

Linear 
Forward 
Selection 

 13 7, 34, 49, 105, 122, 285, 320, 338, 
357, 411, 414, 416, 418 

F
FS8 

Consistency 
SubsetEval 

RankSearch  91 2, 7, 16, 20, 23, 25, 29, 30, 33, 34, 40, 
43, 49, 53, 63, 64, 87, 88, 91, 104, 
105, 112, 120, 122, 123, 124, 126, 
129, 135, 139, 145, 148, 157, 159, 
162, 163, 164, 171, 172, 191, 207, 
209, 211, 218, 226, 229, 230, 245, 
246, 248, 249, 250, 251, 254, 256, 
259, 262, 275, 279, 282, 285, 296, 
297, 298, 311, 318, 320, 321, 322, 
324, 325, 327, 334, 337, 338, 339, 
355, 357, 359, 375, 394, 400, 404, 
409, 411, 412, 413, 414, 416, 417, 418 

F
FS9 

Consistency 
SubsetEval 

Subset 
SizeForwar
dSelection 

 11 7, 34, 49, 105, 122, 285, 357, 411, 
414, 416, 418 

F
FS10 

Filtered 
SubsetEval 

BestFirst  11 105, 285, 320, 338, 357, 404, 411, 
414, 416, 417, 418 

F
FS11 

FilteredS 
ubsetEval 

Genetic 
Search 

 143 1, 2, 3, 6, 9, 14, 16, 18, 19, 23, 25, 26, 
30, 34, 35, 39, 49, 54, 63, 73, 82, 86, 
88, 91, 92, 93, 96, 99, 105, 122, 129, 
131, 136, 161, 167, 169, 173, 175, 
178, 187, 188, 195, 202, 209, 219, 
226, 229, 230, 231, 234, 236, 237, 
238, 239, 240, 241, 243, 244, 245, 
247, 249, 250, 252, 256, 257, 259, 
261, 262, 263, 266, 269, 270, 271, 
272, 274, 275, 278, 279, 280, 281, 
282, 283, 284, 285, 289, 290, 293, 
295, 299, 305, 306, 308, 309, 310, 
314, 320, 324, 330, 331, 333, 337, 
338, 339, 340, 345, 346, 348, 349, 
350, 352, 355, 357, 359, 360, 362, 
364, 366, 368, 370, 371, 374, 376, 
377, 382, 384, 385, 386, 389, 390, 
394, 395, 399, 403, 404, 405, 407, 
409, 410, 411, 413, 414, 416, 417 
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Table 6 

Cont. 

F
FS12 

Filtered 
SubsetEval 

RankSearch  8 256, 320, 327, 338, 404, 411, 414, 417 

F
FS13 

Wrapper 
SubsetEval 

BestFirst Naïve 
Bayes 

14 2, 7, 29, 33, 34, 104, 130, 228, 241, 
285, 295, 411, 416, 417 

F
FS14 

Wrapper 
SubsetEval 

BestFirst Bagging 7 1, 2, 3, 12, 201, 250, 411 

F
FS15 

Wrapper 
SubsetEval 

Genetic 
Search 

Bagging 156 1, 2, 3, 9, 12, 13, 18, 20, 21, 24, 25, 
28, 29, 30, 31, 32, 33, 34, 35, 36, 40, 
42, 43, 45, 46, 47, 49, 52, 53, 54, 56, 
59, 62, 63, 64, 65, 67, 69, 72, 77, 78, 
85, 89, 92, 93, 98, 100, 101, 103, 109, 
111, 114, 123, 127, 129, 130, 131, 
132, 136, 137, 142, 151, 153, 154, 
163, 165, 171, 172, 178, 181, 184, 
186, 187, 192, 199, 201, 205, 206, 
210, 214, 216, 217, 218, 220, 221, 
222, 229, 232, 235, 243, 244, 246, 
250, 251, 258, 260, 262, 263, 266, 
267, 270, 271, 273, 275, 280, 285, 
286, 288, 289, 290, 291, 293, 294, 
298, 301, 302, 306, 310, 313, 323, 
332, 338, 339, 342, 343, 347, 348, 
349, 351, 352, 354, 359, 361, 363, 
364, 371, 373, 378, 379, 383, 386, 
389, 393, 394, 397, 402, 403, 404, 
405, 409, 410, 412, 413, 416, 417, 418 

F
FS16 

Wrapper 
SubsetEval 

Greedy 
Stepwise 

Naïve 
Bayes 

14 2, 7, 29, 33, 34, 104, 130, 228, 241, 
285, 295, 411, 416, 417 

F
FS17 

Wrapper 
SubsetEval 

Linear 
Forward 
Selection 

Naïve 
Bayes 

9 34, 105, 285, 320, 334, 337, 338, 411, 
417 

F
FS18 

Wrapper 
SubsetEval 

RankSearch Naïve 
Bayes 

10 91, 104, 256, 320, 327, 338, 404, 411, 
414, 417 

F
FS19 

Wrapper 
SubsetEval 

Subset 
SizeForwar
dSelection 

Naïve 
Bayes 

6 105, 112, 285, 320, 411, 417 

F
FS20 

Wrapper 
SubsetEval 

Subset 
SizeForwar
dSelection 

Bagging 7 2, 91, 285, 296, 334, 404, 411 

 

  



 
 

 

Table 7 

Raw Full: Precision, Recall and F-Measure Rates 

Features Classifiers 

Name Metric A1 A2 A3 A4 A5 A6 A7 A8 A9 

FS1 AC 96.3148% 95.6902% 96.2523% 96.0025% 96.1274% 96.7520% 96.5646% 96.6271% 97.0643% 
  PR 0.896 0.836 0.886 0.869 0.885 0.886 0.908 0.941 0.914 
  RC 0.863 0.9 0.871 0.876 0.863 0.908 0.867 0.835 0.896 
  FM 0.879 0.867 0.879 0.872 0.874 0.897 0.887 0.885 0.905 

FS2 AC 96.8145% 92.7545% 95.94% 94.6908% 96.4397% 97.0019% 97.0019% ERROR 96.6896% 
  PR 0.909 0.753 0.862 0.795 0.887 0.91 0.904   0.88 
  RC 0.884 0.795 0.88 0.888 0.884 0.896 0.904   0.912 
  FM 0.896 0.773 0.871 0.839 0.885 0.903 0.904   0.895 

FS3 AC 96.065% 95.94% 95.7527% 96.5646% 96.0025% 97.1268% 96.5646% 96.065% 96.8145% 
  PR 0.888 0.862 0.882 0.901 0.884 0.898 0.901 0.927 0.913 
  RC 0.855 0.88 0.839 0.876 0.855 0.92 0.876 0.811 0.88 
  FM 0.871 0.871 0.86 0.888 0.869 0.909 0.888 0.865 0.896 

FS4 AC 96.752% 91.5678% 96.3773% 93.8164% 95.8776% 95.94% 96.2523% ERROR 95.7527% 
  PR 0.909 0.75 0.89 0.793 0.865 0.862 0.883   0.847 
  RC 0.88 0.687 0.876 0.815 0.871 0.88 0.876   0.888 
  FM 0.894 0.717 0.883 0.804 0.868 0.871 0.879   0.867 

FS5 AC 96.5022% 95.8776% 96.1899% 95.3154% 95.8776% 96.9394% 96.877% 96.752% 97.1268% 
  PR 0.891 0.893 0.892 0.882 0.867 0.894 0.909 0.923 0.914 
  RC 0.884 0.835 0.859 0.807 0.867 0.912 0.888 0.863 0.9 
  FM 0.887 0.863 0.875 0.843 0.867 0.903 0.898 0.892 0.907 

FS6 AC 96.5022% 91.5678% 96.1274% 95.0031% 95.8151% 96.6271% 96.9394% ERROR 95.8151% 
  PR 0.897 0.721 0.87 0.812 0.87 0.888 0.92   0.853 
  RC 0.876 0.747 0.884 0.884 0.859 0.896 0.88   0.884 
  FM 0.886 0.734 0.876 0.846 0.865 0.892 0.899   0.868 40 



 
 

 

Table 7 

Cont. 

FS7 AC 96.1274% 96.3148% 96.1899% 96.3148% 96.1274% 95.7527% 96.752% 97.1268% 96.8145% 
  PR 0.885 0.871 0.873 0.88 0.888 0.866 0.902 0.947 0.899 
  RC 0.863 0.896 0.884 0.884 0.859 0.859 0.888 0.863 0.896 
  FM 0.874 0.883 0.878 0.882 0.873 0.863 0.895 0.903 0.897 

FS8 AC 96.752% 93.8788% 95.8151% 94.0037% 95.94% 97.1893% 96.877% 95.3779% 96.0025% 
  PR 0.912 0.796 0.855 0.772 0.877 0.902 0.916 0.903 0.86 
  RC 0.876 0.815 0.88 0.871 0.859 0.92 0.88 0.787 0.888 
  FM 0.893 0.806 0.867 0.819 0.868 0.911 0.898 0.841 0.874 

FS9 AC 96.1899% 95.6277% 96.1899% 95.5653% 96.1274% 97.1893% 96.752% 97.1268% 95.94% 
  PR 0.885 0.851 0.87 0.859 0.888 0.898 0.902 0.943 0.883 
  RC 0.867 0.871 0.888 0.855 0.859 0.924 0.888 0.867 0.851 
  FM 0.876 0.861 0.879 0.857 0.873 0.911 0.895 0.904 0.867 

FS10 AC 96.1274% 96.3148% 95.5653% 96.5022% 96.0025% 97.1893% 96.4397% 96.5646% 96.9394% 
  PR 0.888 0.886 0.871 0.897 0.878 0.905 0.897 0.937 0.91 
  RC 0.859 0.876 0.839 0.876 0.863 0.916 0.871 0.835 0.892 
  FM 0.873 0.881 0.855 0.886 0.87 0.91 0.884 0.883 0.901 

FS11 AC 96.8145% 92.7545% 95.94% 94.6908% 96.4397% 97.0019% 97.0019% ERROR 96.6896% 
  PR 0.909 0.753 0.862 0.795 0.887 0.91 0.904   0.88 
  RC 0.884 0.795 0.88 0.888 0.884 0.896 0.904   0.912 
  FM 0.896 0.773 0.871 0.839 0.885 0.903 0.904   0.895 

FS12 AC 96.065% 95.94% 95.6902% 96.1899% 95.8776% 95.253% 95.7527% 95.5653% 96.4397% 
  PR 0.904 0.883 0.913 0.912 0.865 0.847 0.866 0.964 0.94 
  RC 0.835 0.851 0.799 0.835 0.871 0.847 0.859 0.743 0.823 
  FM 0.868 0.867 0.852 0.872 0.868 0.847 0.863 0.839 0.878 

FS13 AC 96.9394% 96.5022% 96.3773% 97.3766% 96.1899% 97.1268% 96.9394% 97.3142% 97.3766% 
  PR 0.913 0.881 0.875 0.916 0.885 0.901 0.907 0.936 0.912 
  RC 0.888 0.896 0.896 0.916 0.867 0.916 0.896 0.888 0.92 
  FM 0.9 0.888 0.885 0.916 0.876 0.908 0.901 0.911 0.916 41 



 
 

 

Table 7 

Cont.  

FS14 AC 96.6896% 95.6902% 96.5022% 95.4403% 95.8776% 96.9394% 96.0025% 96.877% 95.7527% 
  PR 0.908 0.866 0.9 0.846 0.865 0.907 0.871 0.934 0.876 
  RC 0.876 0.855 0.871 0.863 0.871 0.896 0.871 0.859 0.847 
  FM 0.892 0.861 0.886 0.855 0.868 0.901 0.871 0.895 0.861 

FS15 AC 96.752% 91.8176% 95.3779% 93.6914% 96.6896% 97.5016% 96.5022% ERROR 95.8151% 
  PR 0.896 0.746 0.849 0.803 0.938 0.927 0.921   0.855 
  RC 0.896 0.719 0.855 0.787 0.843 0.912 0.847   0.88 
  FM 0.896 0.732 0.852 0.795 0.888 0.919 0.883   0.867 

FS16 AC 96.9394% 96.5022% 96.3773% 97.3766% 96.1899% 97.1268% 96.9394% 97.3142% 97.3766% 
  PR 0.913 0.881 0.875 0.916 0.885 0.901 0.907 0.936 0.912 
  RC 0.888 0.896 0.896 0.916 0.867 0.916 0.896 0.888 0.92 
  FM 0.9 0.888 0.885 0.916 0.876 0.908 0.901 0.911 0.916 

FS17 AC 96.4397% 96.1274% 96.3773% 96.9394% 95.8776% 95.6902% 95.8151% 94.6908% 96.5022% 
  PR 0.925 0.858 0.896 0.917 0.865 0.844 0.873 0.941 0.897 
  RC 0.839 0.9 0.867 0.884 0.871 0.888 0.855 0.703 0.876 
  FM 0.88 0.878 0.882 0.9 0.868 0.865 0.864 0.805 0.886 

FS18 AC 96.0650% 95.94% 95.6902% 96.3148% 95.8776% 95.5028% 95.7527% 95.4403% 96.4397% 
  PR 0.904 0.883 0.913 0.924 0.865 0.858 0.866 0.963 0.94 
  RC 0.835 0.851 0.799 0.831 0.871 0.851 0.859 0.735 0.823 
  FM 0.868 0.867 0.852 0.875 0.868 0.855 0.863 0.834 0.878 

FS19 AC 96.2523% 96.3148% 95.6277% 96.9394% 95.94% 95.7527% 96.1274% 94.6284% 96.3148% 
  PR 0.913 0.871 0.891 0.917 0.865 0.847 0.879 0.95 0.906 
  RC 0.839 0.896 0.819 0.884 0.876 0.888 0.871 0.691 0.851 
  FM 0.874 0.883 0.854 0.9 0.87 0.867 0.875 0.8 0.878 

FS20 AC 96.6896% 95.8776% 96.5022% 95.0656% 95.8776% 96.2523% 96.065% 96.1274% 96.5022% 
  PR 0.912 0.907 0.9 0.866 0.865 0.874 0.872 0.935 0.907 
  RC 0.871 0.819 0.871 0.807 0.871 0.888 0.876 0.807 0.863 
  FM 0.891 0.861 0.886 0.836 0.868 0.88 0.874 0.866 0.885 42 
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Table 7 exhibits the results of the classification process on the raw full dataset. We 

calculated the accuracy (AC), precision (PR), recall (RC) and F-measure (FM). FS15 A6 

(97.5016%) ranked highest in accuracy, FS12 A8 (0.964) in precision FS9 A6 (0.924) for recall 

and FS15 A6 for F-Measure (0.919). Based solely on AC and FM, FS15 A6 is the top ranking 

performer.  

 The raw full time elapsed table featured in Table 8 shows that based on the sum of the 

time elapsed for feature selection and classification, FS9 (0:00:21) had the best performance and 

FS15(1:17:02) had the poorest performance. 

Table 8 

Raw Full Time Elapsed 

Features Classifiers (Time Elapsed) 

Name Time A1 A2 A3 A4 A5 A6 A7 A8 A9 

FS1 0:00:01 0:00:01 0:00:01 0:00:01 0:00:00 0:00:01 0:00:01 0:00:02 0:00:15 0:00:03 
FS2 0:00:10 0:00:06 0:00:04 0:00:04 0:00:02 0:00:09 0:00:04 0:00:20 0:01:33 0:00:12 
FS3 0:00:11 0:00:00 0:00:01 0:00:00 0:00:01 0:00:01 0:00:01 0:00:02 0:00:12 0:00:02 
FS4 0:00:11 0:00:03 0:00:02 0:00:03 0:00:01 0:00:07 0:00:04 0:00:14 0:00:49 0:00:12 
FS5 0:00:05 0:00:00 0:00:01 0:00:00 0:00:00 0:00:01 0:00:01 0:00:02 0:00:12 0:00:01 
FS6 0:00:02 0:00:07 0:00:04 0:00:05 0:00:01 0:00:13 0:00:04 0:00:24 0:01:43 0:00:16 
FS7 0:00:02 0:00:00 0:00:01 0:00:01 0:00:00 0:00:01 0:00:00 0:00:02 0:00:13 0:00:02 
FS8 0:00:03 0:00:03 0:00:02 0:00:03 0:00:01 0:00:06 0:00:02 0:00:13 0:00:47 0:00:08 
FS9 0:00:02 0:00:00 0:00:00 0:00:00 0:00:00 0:00:01 0:00:01 0:00:02 0:00:13 0:00:02 
FS10 0:00:01 0:00:01 0:00:01 0:00:01 0:00:00 0:00:01 0:00:02 0:00:02 0:00:13 0:00:01 
FS11 0:00:10 0:00:05 0:00:04 0:00:04 0:00:01 0:00:10 0:00:03 0:00:19 0:01:31 0:00:11 
FS12 0:00:11 0:00:01 0:00:00 0:00:00 0:00:00 0:00:01 0:00:01 0:00:02 0:00:07 0:00:01 
FS13 0:17:07 0:00:01 0:00:01 0:00:00 0:00:00 0:00:01 0:00:01 0:00:02 0:00:11 0:00:02 
FS14 0:29:54 0:00:01 0:00:01 0:00:00 0:00:00 0:00:01 0:00:01 0:00:01 0:00:06 0:00:02 
FS15 1:14:25 0:00:06 0:00:04 0:00:06 0:00:01 0:00:11 0:00:04 0:00:21 0:01:31 0:00:13 
FS16 0:11:37 0:00:00 0:00:01 0:00:00 0:00:00 0:00:01 0:00:01 0:00:02 0:00:11 0:00:02 
FS17 0:00:54 0:00:00 0:00:01 0:00:00 0:00:00 0:00:01 0:00:02 0:00:01 0:00:05 0:00:01 
FS18 0:17:05 0:00:00 0:00:01 0:00:01 0:00:00 0:00:01 0:00:02 0:00:02 0:00:07 0:00:01 
FS19 0:00:24 0:00:00 0:00:01 0:00:00 0:00:00 0:00:00 0:00:01 0:00:01 0:00:05 0:00:02 
FS20 0:02:25 0:00:01 0:00:00 0:00:00 0:00:00 0:00:01 0:00:01 0:00:01 0:00:05 0:00:02 
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When considering runtime, reduction in features and recall in Figure 6 below, we have 

determined that FS16 A9 is the better algorithm to use for this dataset. 

       

Figure 6. Top Three Raw Full Set. 

5.2 Time Series Removed Dataset   

Table 9 displays the results of the feature selection process on time series dataset. Based 

solely on feature reduction, FS14, FS19 and FS20 were the top ranking performers by reducing 

the features down to a feature set of 6. FS15 was the lowest ranking performer by only reducing 

the features down to a feature set of 219. 

Table 9 

Time Series Removed Feature Set 

Time Series Removed  Dataset 

Set Attribute  

Evaluator 

Search  

Method 

CL # of 

Feat. 

Selected Feature List 

FS1 Cfs Subset 
Eval 

BestFirst  15 34, 105, 211, 262, 285, 320, 322, 
338, 357, 404, 411, 414, 416, 417, 
418 
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Table 9 

Cont. 

FS2 Cfs Subset 
Eval 

Genetic 
Search 

 141 14, 16, 18, 20, 21, 26, 28, 29, 34, 
35, 37, 38, 42, 45, 49, 51, 52, 55, 
56, 60, 74, 75, 79, 81, 83, 87, 91, 
104, 109, 112, 114, 115, 117, 121, 
122, 125, 126, 127, 129, 132, 138, 
141, 145, 148, 157, 160, 161, 162, 
163, 167, 172, 179, 183, 188, 198, 
199, 200, 204, 210, 214, 221, 222, 
230, 233, 235, 238, 247, 253, 256, 
257, 259, 262, 268, 269, 270, 275, 
276, 278, 279, 281, 282, 283, 284, 
285, 287, 288, 294, 298, 299, 300, 
301, 307, 308, 309, 310, 312, 314, 
318, 319, 320, 321, 324, 325, 327, 
328, 329, 334, 339, 340, 342, 345, 
349, 353, 355, 357, 358, 359, 362, 
363, 364, 365, 371, 373, 383, 395, 
397, 401, 402, 404, 405, 406, 407, 
408, 409, 411, 413, 414, 415, 416, 
417, 418 

FS3 Cfs 
SubsetEval 

RankSearch  16 34, 53, 105, 112, 211, 256, 262, 
285, 320, 327, 338, 404, 411, 414, 
416, 417 

FS4 Classifier 
SubsetEval 

Genetic 
Search 

OneR 116 13, 15, 17, 29, 33, 34, 38, 39, 43, 
44, 49, 51, 52, 57, 61, 66, 68, 69, 
81, 88, 91, 96, 99, 101, 102, 104, 
108, 112, 113, 121, 124, 125, 134, 
135, 138, 141, 155, 157, 161, 164, 
174, 175, 182, 183, 184, 188, 191, 
196, 202, 206, 211, 212, 214, 216, 
217, 218, 220, 221, 222, 233, 234, 
238, 242, 243, 247, 251, 253, 254, 
262, 264, 270, 274, 279, 282, 284, 
286, 287, 290, 291, 292, 297, 299, 
301, 305, 309, 310, 311, 314, 315, 
318, 320, 324, 325, 329, 336, 339, 
342, 343, 346, 349, 358, 363, 365, 
368, 371, 373, 387, 393, 397, 400, 
402, 404, 405, 411, 416, 418 

FS5 Consistency 
SubsetEval 

BestFirst  9 28, 33, 285, 411, 413, 414, 416, 
417, 418 
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Table 9 

Cont. 

FS6 Consistency 
SubsetEval 

Genetic 
Search 

 182 12, 14, 16, 18, 20, 23, 25, 26, 27, 
28, 29, 30, 31, 33, 34, 36, 37, 45, 
49, 51, 52, 53, 55, 56, 61, 62, 69, 
71, 72, 76, 78, 80, 83, 85, 86, 89, 
96, 98, 101, 105, 107, 108, 110, 
111, 114, 115, 117, 120, 121, 123, 
125, 126, 127, 131, 132, 134, 137, 
139, 144, 145, 146, 149, 151, 153, 
154, 156, 157, 158, 160, 162, 164, 
166, 168, 170, 173, 174, 175, 176, 
183, 186, 188, 193, 195, 204, 207, 
209, 210, 212, 213, 216, 218, 221, 
223, 226, 228, 231, 232, 235, 236, 
238, 240, 241, 247, 248, 250, 253, 
255, 256, 258, 259, 261, 263, 265, 
267, 270, 271, 272, 274, 276, 277, 
279, 282, 285, 286, 288, 292, 293, 
299, 301, 304, 305, 307, 312, 315, 
318, 321, 324, 325, 328, 329, 332, 
333, 336, 338, 341, 342, 343, 344, 
347, 349, 351, 352, 355, 357, 358, 
359, 360, 361, 362, 363, 364, 365, 
368, 369, 370, 371, 374, 381, 384, 
388, 392, 394, 402, 404, 405, 407, 
408, 409, 411, 413, 416, 418 

FS7 Consistency 
SubsetEval 

Linear 
Forward 
Selection 

 13 34, 49, 105, 122, 285, 320, 338, 
357, 411, 414, 416, 417, 418 

FS8 Consistency 
SubsetEval 

RankSearch  89 16, 20, 23, 25, 29, 30, 33, 34, 40, 
43, 49, 53, 63, 64, 87, 88, 91, 104, 
105, 112, 120, 122, 123, 124, 126, 
129, 135, 139, 145, 148, 157, 159, 
162, 163, 164, 171, 172, 191, 207, 
209, 211, 218, 226, 229, 230, 245, 
246, 248, 249, 250, 251, 254, 256, 
259, 262, 275, 279, 282, 285, 296, 
297, 298, 311, 318, 320, 321, 322, 
324, 325, 327, 334, 337, 338, 339, 
355, 357, 359, 375, 394, 400, 404, 
409, 411, 412, 413, 414, 416, 417, 
418 
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Table 9 

Cont. 

FS9 Consistency 
SubsetEval 

Subset 
SizeForward
Selection 

 11 34, 49, 105, 122, 285, 357, 411, 
414, 416, 417, 418 

FS10 Filtered 
SubsetEval 

BestFirst  11 105, 285, 320, 338, 357, 404, 411, 
414, 416, 417, 418 

FS11 FilteredS 
ubsetEval 

Genetic 
Search 

 141 14, 16, 18, 20, 21, 26, 28, 29, 34, 
35, 37, 38, 42, 45, 49, 51, 52, 55, 
56, 60, 74, 75, 79, 81, 83, 87, 91, 
104, 109, 112, 114, 115, 117, 121, 
122, 125, 126, 127, 129, 132, 138, 
141, 145, 148, 157, 160, 161, 162, 
163, 167, 172, 179, 183, 188, 198, 
199, 200, 204, 210, 214, 221, 222, 
230, 233, 235, 238, 247, 253, 256, 
257, 259, 262, 268, 269, 270, 275, 
276, 278, 279, 281, 282, 283, 284, 
285, 287, 288, 294, 298, 299, 300, 
301, 307, 308, 309, 310, 312, 314, 
318, 319, 320, 321, 324, 325, 327, 
328, 329, 334, 339, 340, 342, 345, 
349, 353, 355, 357, 358, 359, 362, 
363, 364, 365, 371, 373, 383, 395, 
397, 401, 402, 404, 405, 406, 407, 
408, 409, 411, 413, 414, 415, 416, 
417, 418 

FS12 Filtered 
SubsetEval 

RankSearch  8 256, 320, 327, 338, 404, 411, 414, 
417 

FS13 Wrapper 
SubsetEval 

BestFirst Naïve 
Bayes 

12 34, 41, 130, 131, 167, 228, 241, 
285, 295, 411, 416, 417 

FS14 Wrapper 
SubsetEval 

BestFirst Bagging 6 126, 137, 139, 402, 411, 413 
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Table 9 

Cont. 

FS15 Wrapper 
SubsetEval 

Genetic 
Search 

Bagging 219 12, 14, 15, 16, 18, 19, 20, 23, 25, 29, 
30, 31, 32, 33, 34, 36, 37, 39, 40, 42, 
44, 45, 46, 50, 53, 55, 56, 58, 59, 60, 
62, 63, 65, 66, 68, 71, 72, 75, 76, 80, 
81, 83, 88, 89, 96, 98, 99, 103, 106, 
107, 108, 109, 111, 113, 114, 115, 116, 
117, 119, 120, 122, 124, 125, 128, 130, 
131, 132, 133, 139, 140, 145, 147, 148, 
154, 155, 156, 157, 159, 160, 165, 167, 
168, 170, 171, 172, 174, 176, 177, 178, 
180, 183, 185, 186, 187, 188, 190, 191, 
194, 195, 197, 199, 201, 202, 203, 204, 
206, 207, 208, 209, 210, 214, 217, 220, 
221, 222, 223, 224, 225, 226, 228, 230, 
231, 232, 233, 234, 235, 236, 237, 240, 
242, 243, 244, 248, 250, 251, 253, 254, 
255, 257, 258, 262, 263, 265, 266, 268, 
270, 275, 277, 278, 279, 283, 284, 285, 
286, 293, 294, 296, 298, 300, 302, 304, 
306, 309, 310, 312, 316, 321, 322, 325, 
327, 328, 329, 330, 332, 333, 334, 336, 
338, 339, 340, 344, 347, 348, 350, 353, 
354, 355, 357, 358, 360, 361, 362, 363, 
364, 365, 367, 369, 371, 374, 376, 384, 
386, 390, 391, 392, 394, 396, 398, 401, 
402, 404, 407, 408, 410, 411, 413, 415, 
416, 417 

FS16 Wrapper 
SubsetEval 

Greedy 
Stepwise 

Naïve 
Bayes 

12 34, 41, 130, 131, 167, 228, 241, 285, 
295, 411, 416, 417 

FS17 Wrapper 
SubsetEval 

Linear 
Forward 
Selection 

Naïve 
Bayes 

9 34, 105, 285, 320, 334, 337, 338, 411, 
417 

FS18 Wrapper 
SubsetEval 

Rank 
Search 

Naïve 
Bayes 

10 91, 104, 256, 320, 327, 338, 404, 411, 
414, 417 

FS19 Wrapper 
SubsetEval 

Subset 
SizeForwar
dSelection 

Naïve 
Bayes 

6 105, 112, 285, 320, 411, 417 

FS20 Wrapper 
SubsetEval 

Subset 
SizeForwar
dSelection 

Bagging 6 285, 357, 409, 411, 416, 417 

 



 
 

 

Table 10 

Time Series Removed: Precision, Recall and F-Measure Rates 

Features Classifiers 

Name Metric A1 A2 A3 A4 A5 A6 A7 A8 A9 

FS1 AC 96.3148% 95.6902% 96.2523% 96.0025% 96.1274% 96.7520% 96.5646% 96.6271% 97.0643% 
  PR 0.896 0.836 0.886 0.869 0.885 0.886 0.908 0.941 0.914 
  RC 0.863 0.9 0.871 0.876 0.863 0.908 0.867 0.835 0.896 
  FM 0.879 0.867 0.879 0.872 0.874 0.897 0.887 0.885 0.905 

FS2 AC 97.0643% 92.5671% 96.065% 94.8157% 96.0025% 97.1268% 96.6271% ERROR 96.5022% 
  PR 0.924 0.769 0.875 0.824 0.878 0.904 0.905   0.875 
  RC 0.884 0.747 0.871 0.847 0.863 0.912 0.876   0.904 
  FM 0.903 0.758 0.873 0.836 0.87 0.908 0.89   0.889 

FS3 AC 96.065% 95.94% 95.7527% 96.5646% 96.0025% 97.1268% 96.5646% 96.065% 96.8145% 
  PR 0.888 0.862 0.882 0.901 0.884 0.898 0.901 0.927 0.913 
  RC 0.855 0.88 0.839 0.876 0.855 0.92 0.876 0.811 0.88 
  FM 0.871 0.871 0.86 0.888 0.869 0.909 0.888 0.865 0.896 

FS4 AC 97.0019% 92.2548% 96.5022% 94.3161% 96.0025% 96.752% 96.877% ERROR 96.2523% 
  PR 0.914 0.78 0.9 0.816 0.874 0.886 0.92   0.851 
  RC 0.892 0.699 0.871 0.819 0.867 0.908 0.876   0.92 
  FM 0.902 0.737 0.886 0.818 0.871 0.897 0.897   0.884 

FS5 AC 96.6896% 96.1274% 96.3148% 96.3773% 96.065% 97.1268% 96.8145% 96.6271% 95.94% 
  PR 0.905 0.888 0.896 0.893 0.878 0.889 0.919 0.908 0.88 
  RC 0.88 0.859 0.863 0.871 0.867 0.932 0.871 0.871 0.855 
  FM 0.892 0.873 0.879 0.882 0.873 0.91 0.895 0.889 0.868 

FS6 AC 97.1268% 85.8214% 96.1899% 94.5659% 96.0025% 96.6271% 96.9394% ERROR 95.6277% 
  PR 0.911 0.615 0.879 0.793 0.874 0.888 0.917   0.871 
  RC 0.904 0.237 0.876 0.88 0.867 0.896 0.884   0.843 
  FM 0.907 0.342 0.877 0.834 0.871 0.892 0.9   0.857 49 



 
 

 

Table 10 

Cont.  

FS7 AC 96.4397% 96.0025% 96.1899% 96.4397% 96.1274% 96.9394% 96.5646% 96.9394% 96.3148% 
  PR 0.897 0.849 0.882 0.884 0.885 0.894 0.908 0.946 0.889 
  RC 0.871 0.904 0.871 0.888 0.863 0.912 0.867 0.851 0.871 
  FM 0.884 0.875 0.877 0.886 0.874 0.903 0.887 0.896 0.88 

FS8 AC 96.5022% 93.8788% 95.6902% 94.0037% 95.94% 97.1893% 96.9394% 95.0031% 96.0025% 
  PR 0.9 0.794 0.854 0.772 0.877 0.908 0.92 0.904 0.866 
  RC 0.871 0.819 0.871 0.871 0.859 0.912 0.88 0.759 0.88 
  FM 0.886 0.806 0.863 0.819 0.868 0.91 0.899 0.825 0.873 

FS9 AC 96.4397% 95.6902% 95.94% 96.065% 96.1274% 97.1268% 96.5646% 96.8145% 96.1899% 
  PR 0.897 0.833 0.874 0.866 0.885 0.901 0.908 0.942 0.87 
  RC 0.871 0.904 0.863 0.884 0.863 0.916 0.867 0.847 0.888 
  FM 0.884 0.867 0.869 0.875 0.874 0.908 0.887 0.892 0.879 

FS10 AC 96.1274% 96.3148% 95.5653% 96.5022% 96.0025% 97.1893% 96.4397% 96.5646% 96.9394% 
  PR 0.888 0.886 0.871 0.897 0.878 0.905 0.897 0.937 0.91 
  RC 0.859 0.876 0.839 0.876 0.863 0.916 0.871 0.835 0.892 
  FM 0.873 0.881 0.855 0.886 0.87 0.91 0.884 0.883 0.901 

FS11 AC 97.0643% 92.5671% 96.065% 94.8157% 96.0025% 97.1268% 96.6271% ERROR 96.5022% 
  PR 0.924 0.769 0.875 0.824 0.878 0.904 0.905   0.875 
  RC 0.884 0.747 0.871 0.847 0.863 0.912 0.876   0.904 
  FM 0.903 0.758 0.873 0.836 0.87 0.908 0.89   0.889 

FS12 AC 96.065% 95.94% 95.6902% 96.1899% 95.8776% 95.253% 95.7527% 95.5653% 96.4397% 
  PR 0.904 0.883 0.913 0.912 0.865 0.847 0.866 0.964 0.94 
  RC 0.835 0.851 0.799 0.835 0.871 0.847 0.859 0.743 0.823 
  FM 0.868 0.867 0.852 0.872 0.868 0.847 0.863 0.839 0.878 

FS13 AC 96.4397% 96.1274% 96.1274% 97.1893% 95.94% 97.1268% 96.6896% 96.3773% 96.8145% 
  PR 0.9 0.858 0.858 0.895 0.88 0.904 0.905 0.948 0.906 
  RC 0.867 0.9 0.9 0.928 0.855 0.912 0.88 0.811 0.888 
  FM 0.883 0.878 0.878 0.911 0.868 0.908 0.892 0.874 0.897 
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Table 10 

Cont.  

FS14 AC 96.6271% 93.8164% 96.4397% 94.8157% 95.8776% 96.5646% 96.4397% 93.5665% 96.1899% 
  PR 0.911 0.841 0.907 0.84 0.865 0.891 0.897 0.94 0.92 
  RC 0.867 0.743 0.859 0.823 0.871 0.888 0.871 0.627 0.827 
  FM 0.889 0.789 0.882 0.832 0.868 0.889 0.884 0.752 0.871 

FS15 AC 97.0019% 85.3217% 96.1274% 93.7539% 96.065% 97.1268% 96.8145% ERROR 95.3779% 
  PR 0.91 0.576 0.867 0.773 0.878 0.908 0.913   0.83 
  RC 0.896 0.213 0.888 0.847 0.867 0.908 0.88   0.884 
  FM 0.903 0.311 0.877 0.808 0.873 0.908 0.896   0.856 

FS16 AC 96.4397% 96.1274% 96.1274% 97.1893% 95.94% 97.1268% 96.6896% 96.3773% 96.8145% 
  PR 0.9 0.858 0.858 0.895 0.88 0.904 0.905 0.948 0.906 
  RC 0.867 0.9 0.9 0.928 0.855 0.912 0.88 0.811 0.888 
  FM 0.883 0.878 0.878 0.911 0.868 0.908 0.892 0.874 0.897 

FS17 AC 96.4397% 96.1274% 96.3773% 96.9394% 95.8776% 95.6902% 95.8151% 94.6908% 96.5022% 
  PR 0.925 0.858 0.896 0.917 0.865 0.844 0.873 0.941 0.897 
  RC 0.839 0.9 0.867 0.884 0.871 0.888 0.855 0.703 0.876 
  FM 0.88 0.878 0.882 0.9 0.868 0.865 0.864 0.805 0.886 

FS18 AC 96.0650% 95.94% 95.6902% 96.3148% 95.8776% 95.5028% 95.7527% 95.4403% 96.4397% 
  PR 0.904 0.883 0.913 0.924 0.865 0.858 0.866 0.963 0.94 
  RC 0.835 0.851 0.799 0.831 0.871 0.851 0.859 0.735 0.823 
  FM 0.868 0.867 0.852 0.875 0.868 0.855 0.863 0.834 0.878 

FS19 AC 96.2523% 96.3148% 95.6277% 96.9394% 95.94% 95.7527% 96.1274% 94.6284% 96.3148% 
  PR 0.913 0.871 0.891 0.917 0.865 0.847 0.879 0.95 0.906 
  RC 0.839 0.896 0.819 0.884 0.876 0.888 0.871 0.691 0.851 
  FM 0.874 0.883 0.854 0.9 0.87 0.867 0.875 0.8 0.878 

FS20 AC 96.3773% 95.8151% 95.94% 95.8151% 95.8151% 96.5022% 96.4397% 95.8151% 96.4397% 
  PR 0.893 0.87 0.88 0.87 0.873 0.878 0.9 0.938 0.921 
  RC 0.871 0.859 0.855 0.859 0.855 0.9 0.867 0.783 0.843 
  FM 0.882 0.865 0.868 0.865 0.864 0.889 0.883 0.853 0.881 51 
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Table 10 exhibits the results of the classification process on the time series removed 

dataset. We calculated the accuracy (AC), precision (PR), recall (RC) and F-measure (FM). FS10 

A6, FS13 A4 and FS16 A4 (97.1893%) ranked highest in accuracy, FS12 A8 (0.964) in precision 

FS5 A6 (0.932) for recall and FS13 A4 and FS16 A4 for F-Measure (0.911). Based solely on AC 

and FM, FS13 A4 and FS16 A4 are the top ranking performers.  

The raw full time elapsed table featured in Table 11 shows that based on the sum of the 

time elapsed for feature selection and classification, FS9, FS10 and FS12 (0:00:23) had the best 

performance and FS15 (1:18:57) had the poorest performance. 

Table 11 

Time Series Removed Time Elapsed 

FEATURES CLASSIFIERS (TIME ELAPSED) 

Name Time A1 A2 A3 A4 A5 A6 A7 A8 A9 

FS1 0:00:07 0:00:00 0:00:01 0:00:00 0:00:00 0:00:02 0:00:01 0:00:03 0:00:15 0:00:02 
FS2 0:00:11 0:00:04 0:00:03 0:00:07 0:00:02 0:00:00 0:00:05 0:00:21 0:01:39 0:00:16 
FS3 0:00:10 0:00:01 0:00:01 0:00:00 0:00:00 0:00:01 0:00:01 0:00:03 0:00:13 0:00:02 
FS4 0:00:43 0:00:04 0:00:03 0:00:04 0:00:01 0:00:09 0:00:04 0:00:17 0:01:13 0:00:10 
FS5 0:00:05 0:00:01 0:00:01 0:00:01 0:00:00 0:00:01 0:00:01 0:00:01 0:00:16 0:00:01 
FS6 0:00:03 0:00:06 0:00:04 0:00:05 0:00:02 0:00:14 0:00:05 0:00:27 0:01:44 0:00:18 
FS7 0:00:02 0:00:01 0:00:01 0:00:01 0:00:00 0:00:01 0:00:02 0:00:02 0:00:14 0:00:02 
FS8 0:00:03 0:00:03 0:00:03 0:00:03 0:00:01 0:00:06 0:00:03 0:00:13 0:00:48 0:00:08 
FS9 0:00:02 0:00:01 0:00:01 0:00:01 0:00:00 0:00:01 0:00:01 0:00:02 0:00:13 0:00:01 
FS10 0:00:02 0:00:01 0:00:00 0:00:00 0:00:00 0:00:01 0:00:02 0:00:02 0:00:14 0:00:01 
FS11 0:00:10 0:00:09 0:00:03 0:00:07 0:00:02 0:00:12 0:00:06 0:00:23 0:01:39 0:00:24 
FS12 0:00:10 0:00:00 0:00:01 0:00:00 0:00:00 0:00:00 0:00:01 0:00:01 0:00:08 0:00:02 
FS13 0:12:17 0:00:01 0:00:01 0:00:00 0:00:00 0:00:01 0:00:01 0:00:02 0:00:10 0:00:01 
FS14 0:24:05 0:00:01 0:00:01 0:00:00 0:00:00 0:00:00 0:00:01 0:00:01 0:00:08 0:00:01 
FS15 1:15:16 0:00:07 0:00:05 0:00:09 0:00:02 0:00:17 0:00:06 0:00:31 0:01:59 0:00:25 
FS16 0:07:48 0:00:01 0:00:01 0:00:01 0:00:00 0:00:01 0:00:01 0:00:02 0:00:12 0:00:01 
FS17 0:01:02 0:00:00 0:00:01 0:00:00 0:00:00 0:00:00 0:00:02 0:00:01 0:00:06 0:00:02 
FS18 0:12:49 0:00:01 0:00:01 0:00:00 0:00:00 0:00:01 0:00:01 0:00:02 0:00:08 0:00:01 
FS19 0:00:24 0:00:00 0:00:01 0:00:00 0:00:00 0:00:01 0:00:01 0:00:01 0:00:05 0:00:01 
FS20 0:01:57 0:00:00 0:00:00 0:00:01 0:00:00 0:00:01 0:00:01 0:00:01 0:00:08 0:00:01 
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When considering runtime, reduction in features and recall in Figure 7 below, we have 

determined that FS16 A4 is the better algorithm to use for this dataset.  

 
 

Figure 7. Top Three Time Series Removed. 

5.3 Clinical Dataset   

Table 12 displays the results of the feature selection process on the clinical dataset. Based 

solely on feature reduction, FS13, FS16, FS17 and FS19 were the top ranking performers by 

reducing the features down to a feature set of 2. FS15 was the lowest ranking performer by only 

reducing the features down to a feature set of 19.  

Table 12 

Clinical Feature Set 

Clinical  Feature Set 

Set Attribute  

Evaluator 

Search  

Method 

Classifier # of 

Feat. 

Selected Feature List 

FS1 Cfs Subset 
Eval 

BestFirst  6 20, 21, 25, 29, 33, 34 

FS2 Cfs Subset 
Eval 

Genetic 
Search 

 6 20, 21, 25, 29, 33, 34 

FS3 Cfs 
SubsetEval 

RankSearch  7 20, 21, 23, 25, 29, 33, 34 

FS4 Classifier 
SubsetEval 

Genetic 
Search 

OneR 5 13, 14, 24, 27, 34 

FS5 Consistency 
SubsetEval 

BestFirst  10 20, 21, 23, 25, 28, 29, 30, 33, 34, 38 
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Cont. 

FS6 Consistency 
SubsetEval 

Genetic 
Search 

 13 18, 20, 21, 23, 25, 28, 29, 30, 31, 
33, 34, 37, 38 

FS7 Consistency 
SubsetEval 

Linear 
Forward 
Selection 

 10 20, 21, 23, 25, 28, 29, 30, 33, 34, 38 

FS8 Consistency 
SubsetEval 

RankSearch  11 16, 20, 21, 23, 25, 28, 29, 30, 33, 
34, 38 

FS9 Consistency 
SubsetEval 

Subset 
SizeForward
Selection 

 10 20, 21, 23, 25, 28, 29, 30, 33, 34, 38 

FS10 Filtered 
SubsetEval 

BestFirst  3 29, 33, 34 

FS11 FilteredS 
ubsetEval 

Genetic 
Search 

 3 29, 33, 34 

FS12 Filtered 
SubsetEval 

RankSearch  5 23, 25, 29, 33, 34 

FS13 Wrapper 
SubsetEval 

BestFirst Naïve 
Bayes 

2 20, 34 

FS14 Wrapper 
SubsetEval 

BestFirst Bagging 10 12, 13, 20, 25, 29, 30, 32, 33, 34, 37 

FS15 Wrapper 
SubsetEval 

Genetic 
Search 

Bagging 19 12, 13, 16, 19, 20, 23, 25, 26, 27, 
28, 29, 31, 32, 33, 34, 35, 36, 37, 38 

FS16 Wrapper 
SubsetEval 

Greedy 
Stepwise 

Naïve 
Bayes 

2 20, 34 

FS17 Wrapper 
SubsetEval 

Linear 
Forward 
Selection 

Naïve 
Bayes 

2 20, 34 

FS18 Wrapper 
SubsetEval 

RankSearch Naïve 
Bayes 

6 16, 23, 25, 29, 33, 34 

FS19 Wrapper 
SubsetEval 

Subset 
SizeForward
Selection 

Naïve 
Bayes 

2 20, 34 

FS20 Wrapper 
SubsetEval 

Subset 
SizeForward
Selection 

Bagging 10 12, 13, 20, 25, 29, 30, 32, 33, 34, 37 

 



 
 

 

Table 13 

Clinical: Precision, Recall and F-Measure Rates 

Features Classifiers 

Name Metric A1 A2 A3 A4 A5 A6 A7 A8 A9 

FS1 AC 88.0075% 86.1961% 87.6327% 84.5721% 86.3835% 88.1949% 87.0081% 88.3823% 88.1949% 
  PR 0.699 0.646 0.701 0.506 0.746 0.727 0.652 0.899 0.727 
  RC 0.402 0.249 0.357 0.325 0.189 0.386 0.353 0.285 0.386 
  FM 0.51 0.359 0.473 0.396 0.301 0.504 0.458 0.433 0.504 

FS2 AC 88.0075% 86.1961% 87.6327% 84.5721% 86.3835% 88.1949% 87.0081% 88.3823% 88.1949% 
  PR 0.699 0.646 0.701 0.506 0.746 0.727 0.652 0.899 0.727 
  RC 0.402 0.249 0.357 0.325 0.189 0.386 0.353 0.285 0.386 
  FM 0.51 0.359 0.473 0.396 0.301 0.504 0.458 0.433 0.504 

FS3 AC 88.0075% 86.8207% 87.5703% 84.6971% 86.3835% 88.4447% 86.8207% 88.3198% 87.8826% 
  PR 0.697 0.707 0.695 0.512 0.746 0.746 0.664 0.897 0.72 
  RC 0.406 0.261 0.357 0.333 0.189 0.39 0.309 0.281 0.361 
  FM 0.513 0.381 0.472 0.404 0.301 0.512 0.422 0.428 0.481 

FS4 AC 86.0712% 86.0712% 85.8838% 86.1337% 86.1337% 86.0087% 86.1337% 84.4472% 86.0087% 
  PR 0.75 0.75 0.745 0.737 0.737 0.766 0.737 0 0.727 
  RC 0.157 0.157 0.141 0.169 0.169 0.145 0.169 0 0.161 
  FM 0.259 0.259 0.236 0.275 0.275 0.243 0.275 0 0.263 

FS5 AC 88.9444% 86.5084% 87.7577% 82.6359% 86.1337% 88.8819% 87.4453% 88.6321% 87.5703% 
  PR 0.737 0.657 0.669 0.435 0.574 0.698 0.64 0.838 0.667 
  RC 0.45 0.277 0.422 0.39 0.422 0.502 0.442 0.333 0.402 
  FM 0.559 0.39 0.517 0.411 0.486 0.584 0.523 0.477 0.501 

FS6 AC 88.9444% 86.321% 88.1324% 83.0106% 86.1337% 88.6946% 87.4453% 88.9444% 87.8201% 
  PR 0.747 0.653 0.681 0.447 0.574 0.683 0.64 0.867 0.669 
  RC 0.438 0.257 0.446 0.386 0.422 0.51 0.442 0.341 0.43 
  FM 0.552 0.369 0.539 0.414 0.486 0.584 0.523 0.49 0.523 55 
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FS7 AC 88.9444% 86.5084% 87.7577% 82.6359% 86.1337% 88.8819% 87.4453% 88.6321% 87.5703% 
  PR 0.737 0.657 0.669 0.435 0.574 0.698 0.64 0.838 0.667 
  RC 0.45 0.277 0.422 0.39 0.422 0.502 0.442 0.333 0.402 
  FM 0.559 0.39 0.517 0.411 0.486 0.584 0.523 0.477 0.501 

FS8 AC 88.8819% 86.446% 87.6952% 82.6983% 86.1337% 88.6946% 87.4453% 88.5696% 87.5703% 
  PR 0.735 0.7 0.667 0.437 0.574 0.687 0.64 0.83 0.667 
  RC 0.446 0.225 0.418 0.39 0.422 0.502 0.442 0.333 0.402 
  FM 0.555 0.34 0.514 0.412 0.486 0.58 0.523 0.476 0.501 

FS9 AC 88.9444% 86.5084% 87.7577% 82.6359% 86.1337% 88.8819% 87.4453% 88.6321% 87.5703% 
  PR 0.737 0.657 0.669 0.435 0.574 0.698 0.64 0.838 0.667 
  RC 0.45 0.277 0.422 0.39 0.422 0.502 0.442 0.333 0.402 
  FM 0.559 0.39 0.517 0.411 0.486 0.584 0.523 0.477 0.501 

FS10 AC 86.9457% 86.0712% 86.5084% 86.0712% 86.1961% 87.258% 86.8832% 86.321% 86.9457% 
  PR 0.778 0.724 0.732 0.623 0.769 0.836 0.76 0.826 0.763 
  RC 0.225 0.169 0.209 0.265 0.161 0.225 0.229 0.153 0.233 
  FM 0.349 0.274 0.325 0.372 0.266 0.354 0.352 0.258 0.357 

FS11 AC 86.9457% 86.0712% 86.5084% 86.0712% 86.1961% 87.258% 86.8832% 86.321% 86.9457% 
  PR 0.778 0.724 0.732 0.623 0.769 0.836 0.76 0.826 0.763 
  RC 0.225 0.169 0.209 0.265 0.161 0.225 0.229 0.153 0.233 
  FM 0.349 0.274 0.325 0.372 0.266 0.354 0.352 0.258 0.357 

FS12 AC 87.6327% 86.3835% 87.3204% 86.0712% 86.321% 87.5703% 87.3204% 86.6958% 87.5703% 
  PR 0.758 0.763 0.788 0.616 0.768 0.731 0.74 0.821 0.75 
  RC 0.301 0.181 0.253 0.277 0.173 0.317 0.285 0.185 0.301 
  FM 0.431 0.292 0.383 0.382 0.282 0.443 0.412 0.302 0.43 

FS13 AC 86.321% 86.0712% 86.5084% 86.5084% 86.1337% 86.5084% 86.5084% 86.321% 86.321% 
  PR 0.778 0.741 0.824 0.824 0.737 0.824 0.824 0.969 0.778 
  RC 0.169 0.161 0.169 0.169 0.169 0.169 0.169 0.124 0.169 
  FM 0.277 0.264 0.28 0.28 0.275 0.28 0.28 0.221 0.277 56 
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FS14 AC 88.4447% 86.5084% 88.1949% 82.5734% 84.6346% 89.1318% 87.945% 88.757% 89.0693% 
  PR 0.703 0.677 0.679 0.426 0.507 0.714 0.657 0.879 0.734 
  RC 0.446 0.253 0.458 0.345 0.45 0.502 0.47 0.321 0.466 
  FM 0.545 0.368 0.547 0.381 0.477 0.59 0.548 0.471 0.57 

FS15 AC 89.6315% 85.0718% 88.6946% 83.3854% 86.0712% 88.2573% 87.0706% 88.757% 89.0069% 
  PR 0.771 0.586 0.736 0.455 0.676 0.669 0.714 0.863 0.735 
  RC 0.474 0.137 0.426 0.349 0.201 0.486 0.281 0.329 0.458 
  FM 0.587 0.221 0.539 0.395 0.31 0.563 0.403 0.477 0.564 

FS16 AC 86.321% 86.0712% 86.5084% 86.5084% 86.1337% 86.5084% 86.5084% 86.321% 86.321% 
  PR 0.778 0.741 0.824 0.824 0.737 0.824 0.824 0.969 0.778 
  RC 0.169 0.161 0.169 0.169 0.169 0.169 0.169 0.124 0.169 
  FM 0.277 0.264 0.28 0.28 0.275 0.28 0.28 0.221 0.277 

FS17 AC 86.321% 86.0712% 86.5084% 86.5084% 86.1337% 86.5084% 86.5084% 86.321% 86.321% 
  PR 0.778 0.741 0.824 0.824 0.737 0.824 0.824 0.969 0.778 
  RC 0.169 0.161 0.169 0.169 0.169 0.169 0.169 0.124 0.169 
  FM 0.277 0.264 0.28 0.28 0.275 0.28 0.28 0.221 0.277 

FS18 AC 87.5078% 86.6334% 87.4453% 86.0712% 86.321% 87.3204% 87.133% 86.6334% 87.3204% 
  PR 0.753 0.716 0.786 0.616 0.768 0.721 0.736 0.807 0.725 
  RC 0.293 0.233 0.265 0.277 0.173 0.301 0.269 0.185 0.297 
  FM 0.422 0.352 0.396 0.382 0.282 0.425 0.394 0.301 0.422 

FS19 AC 86.321% 86.0712% 86.5084% 86.5084% 86.1337% 86.5084% 86.5084% 86.321% 86.321% 
  PR 0.778 0.741 0.824 0.824 0.737 0.824 0.824 0.969 0.778 
  RC 0.169 0.161 0.169 0.169 0.169 0.169 0.169 0.124 0.169 
  FM 0.277 0.264 0.28 0.28 0.275 0.28 0.28 0.221 0.277 

FS20 AC 88.4447% 86.5084% 88.1949% 82.5734% 84.6346% 89.1318% 87.945% 88.757% 89.0693% 
  PR 0.703 0.677 0.679 0.426 0.507 0.714 0.657 0.879 0.734 
  RC 0.446 0.253 0.458 0.345 0.45 0.502 0.47 0.321 0.466 
  FM 0.545 0.368 0.547 0.381 0.477 0.59 0.548 0.471 0.57 

57 
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Table 13 exhibits the results of the classification process on the clinical dataset. We 

calculated the accuracy (AC), precision (PR), recall (RC) and F-measure (FM). FS15 A1 

(89.6315%) ranked highest in accuracy, FS13 A8, FS16 A8, FS17 A8 and FS19 A8 (0.969) in 

precision FS6 A6 (0.51) for recall and FS14 A6 and FS20 A6 for F-Measure (0.59).  

 The clinical time elapsed table featured in Table 14 shows that based on the sum of the 

time elapsed for feature selection and classification, FS11 and FS16 (0:00:04) had the best 

performance and FS15 (0:07:37) had the poorest performance. 

Table 14 

Clinical Time Elapsed 

Features Classifiers (Time Elapsed) 

Name Time A1 A2 A3 A4 A5 A6 A7 A8 A9 

FS1 0:00:00 0:00:01 0:00:00 0:00:01 0:00:00 0:00:00 0:00:01 0:00:01 0:00:03 0:00:02 
FS2 0:00:00 0:00:00 0:00:01 0:00:00 0:00:00 0:00:01 0:00:01 0:00:01 0:00:02 0:00:02 
FS3 0:00:00 0:00:00 0:00:01 0:00:00 0:00:00 0:00:00 0:00:01 0:00:02 0:00:03 0:00:02 
FS4 0:00:01 0:00:01 0:00:00 0:00:00 0:00:00 0:00:00 0:00:02 0:00:01 0:00:01 0:00:01 
FS5 0:00:00 0:00:01 0:00:01 0:00:00 0:00:00 0:00:01 0:00:02 0:00:01 0:00:04 0:00:03 
FS6 0:00:00 0:00:01 0:00:01 0:00:01 0:00:00 0:00:01 0:00:02 0:00:01 0:00:05 0:00:03 
FS7 0:00:00 0:00:01 0:00:00 0:00:00 0:00:00 0:00:01 0:00:02 0:00:01 0:00:04 0:00:03 
FS8 0:00:00 0:00:01 0:00:00 0:00:01 0:00:01 0:00:01 0:00:02 0:00:02 0:00:04 0:00:03 
FS9 0:00:00 0:00:00 0:00:00 0:00:00 0:00:01 0:00:00 0:00:01 0:00:02 0:00:04 0:00:03 
FS10 0:00:00 0:00:00 0:00:01 0:00:00 0:00:00 0:00:00 0:00:01 0:00:01 0:00:01 0:00:01 
FS11 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:01 0:00:01 0:00:01 0:00:01 
FS12 0:00:00 0:00:01 0:00:00 0:00:00 0:00:00 0:00:00 0:00:02 0:00:01 0:00:02 0:00:02 
FS13 0:00:05 0:00:01 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 
FS14 0:02:30 0:00:01 0:00:00 0:00:00 0:00:00 0:00:00 0:00:02 0:00:02 0:00:04 0:00:03 
FS15 0:07:19 0:00:01 0:00:00 0:00:00 0:00:00 0:00:01 0:00:03 0:00:03 0:00:06 0:00:04 
FS16 0:00:02 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:01 0:00:01 0:00:00 
FS17 0:00:05 0:00:00 0:00:01 0:00:00 0:00:00 0:00:00 0:00:00 0:00:01 0:00:00 0:00:00 
FS18 0:00:06 0:00:00 0:00:01 0:00:00 0:00:00 0:00:00 0:00:01 0:00:01 0:00:02 0:00:01 
FS19 0:00:02 0:00:00 0:00:00 0:00:01 0:00:00 0:00:00 0:00:01 0:00:00 0:00:01 0:00:00 
FS20 0:01:34 0:00:01 0:00:01 0:00:00 0:00:00 0:00:01 0:00:02 0:00:01 0:00:04 0:00:03 
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 When considering runtime, reduction in features and recall in Figure 8 below, we have 

determined that FS20 A6 is the better algorithm to use for this dataset. 

 

Figure 8. Top Three Clinical. 

5.4 Medical Dataset   

Table 15 displays the results of the feature selection process on the medical dataset. 

Based solely on feature reduction, FS20 was the top ranking performer by reducing the features 

down to a feature set of 7. FS6 was the lowest ranking performer by only reducing the features 

down to a feature set of 203. 

Table 15 

Medical Feature Set 

Clinical  Feature Set 

Set Attribute  

Evaluator 

Search  

Method 

Classifier # of 

Feat. 

Selected Feature List 

FS1 Cfs Subset 
Eval 

BestFirst  18 49, 104, 105, 112, 123, 129, 245, 
248, 256, 262, 282, 285, 320, 327, 
338, 355, 357, 404 
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FS2 Cfs Subset 
Eval 

Genetic 
Search 

 109 40, 42, 49, 57, 63, 71, 75, 91, 104, 
105, 106, 107, 112, 120, 122, 126, 
127, 129, 131, 137, 139, 140, 144, 
149, 156, 157, 159, 163, 173, 175, 
177, 178, 183, 186, 192, 193, 199, 
201, 209, 219, 222, 226, 228, 231, 
233, 235, 237, 245, 248, 252, 254, 
255, 256, 259, 260, 262, 263, 268, 
269, 274, 275, 276, 282, 283, 289, 
291, 293, 297, 299, 300, 306, 307, 
308, 310, 314, 317, 319, 320, 321, 
323, 327, 331, 332, 333, 334, 336, 
337, 338, 340, 352, 355, 356, 357, 
360, 362, 363, 375, 376, 381, 387, 
389, 390, 392, 397, 399, 401, 404, 
409, 410 

FS3 Cfs 
SubsetEval 

RankSearch  20 49, 63, 91, 104, 105, 112, 123, 129, 
245, 248, 256, 262, 285, 320, 327, 
338, 355, 357, 359, 404 

FS4 Classifier 
SubsetEval 

Genetic 
Search 

OneR 106 40, 41, 48, 49, 52, 54, 56, 57, 61, 
63, 67, 70, 71, 75, 88, 89, 93, 95, 
106, 107, 108, 109, 111, 113, 114, 
115, 126, 127, 129, 131, 134, 137, 
141, 148, 151, 152, 156, 157, 171, 
172, 173, 183, 190, 193, 194, 204, 
207, 208, 211, 212, 215, 216, 221, 
224, 227, 229, 232, 239, 241, 250, 
251, 252, 253, 255, 259, 263, 264, 
265, 268, 269, 276, 284, 285, 290, 
294, 296, 298, 299, 300, 308, 309, 
312, 337, 341, 342, 344, 346, 349, 
350, 359, 363, 366, 371, 376, 379, 
380, 386, 390, 391, 392, 395, 399, 
403, 404, 406, 408 

FS5 Consistency 
SubsetEval 

BestFirst  28 49, 64, 88, 91, 104, 105, 122, 123, 
129, 139, 145, 157, 159, 218, 230, 
245, 250, 262, 282, 285, 311, 320, 
327, 338, 339, 357, 399, 404 
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FS6 Consistency 
SubsetEval 

Genetic 
Search 

 203 39, 43, 47, 48, 49, 52, 53, 56, 57, 58, 61, 64, 
66, 68, 70, 74, 76, 80, 81, 83, 85, 87, 88, 90, 
91, 95, 97, 98, 100 ,101, 104, 105, 110, 111, 
115, 116, 117, 118, 120, 121, 123, 127, 128, 
132, 133, 135, 137, 138, 139, 140, 141, 146, 
147, 148, 149, 150, 152, 153, 154, 155, 157, 
158, 159, 160, 161, 162, 163, 167, 168, 170, 
171, 172, 173, 174, 175, 176, 178, 180, 183, 
184, 185, 186, 187, 188, 190, 194, 197, 198, 
202, 203, 205, 208, 209, 210, 211, 212, 217, 
218, 219, 220, 222, 223, 225, 226, 228, 234, 
235, 237, 238, 239, 240, 241, 242, 243, 244, 
245, 248, 249, 250, 252, 253, 254, 255, 258, 
259, 261, 262, 267, 269, 270, 272, 273, 274, 
275, 277, 278, 279, 281, 282, 283, 285, 287, 
288, 289, 291, 293, 294, 296, 297, 303, 307, 
310 ,311, 312, 314, 315, 317, 319, 320, 322, 
324, 326 ,327, 329, 330, 331, 334, 336, 337, 
338, 339, 343, 344, 347, 350, 351, 353, 354, 
356, 357, 364, 366, 368, 370, 371, 373, 374, 
375, 379, 385, 387, 393, 394, 395, 396, 397, 
398, 399, 401, 402, 404, 405, 406 

FS7 Consistency 
SubsetEval 

Linear 
Forward 
Selection 

 23 49, 91, 104, 105, 112, 120, 122, 129, 139, 
157, 256, 259, 262, 282, 285, 320, 325, 327, 
338, 355, 357, 404, 409 

FS8 Consistency 
SubsetEval 

Rank 
Search 

 78 40, 43, 49, 53, 63, 64, 87, 88, 91, 104, 105, 
112, 120, 122, 123, 124, 126, 129, 135, 139, 
145, 148, 157, 159, 162, 163, 164, 171, 172, 
175, 191, 207, 209, 211, 218, 222, 226, 229, 
230, 245, 246, 247, 248, 249, 250, 251, 254, 
256, 259, 262, 275, 279, 282, 285, 296 297, 
298, 311, 318, 320, 321, 322, 324, 325, 327, 
334, 337, 338, 339, 355, 357, 359, 375, 394, 
399, 400, 404, 409 

FS9 Consistency 
SubsetEval 

Subset 
Size 
Forward 
Selection 

 20 91, 104, 105, 112, 120, 129, 139, 157, 256, 
259, 262, 282, 285, 320, 325, 327, 338, 355, 
357, 404 

FS10 Filtered 
SubsetEval 

BestFirst  14 49, 104, 105, 112, 129, 256, 262, 282, 285, 
320, 327, 338, 357, 404 
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FS11 Filtered 
SubsetEval 

Genetic 
Search 

 109 40, 42, 49, 57, 63, 71, 75, 91, 104, 105, 106, 
107, 112, 120, 122, 126, 127, 129, 131, 137, 
139, 140, 144, 149, 156, 157, 159, 163, 173, 
175, 177, 178, 183, 186, 192, 193, 199, 201, 
209, 219, 222, 226, 228, 231, 233, 235, 237, 
245, 248, 252, 254, 255, 256, 259, 260, 262, 
263, 268, 269, 274, 275, 276, 282, 283, 289, 
291, 293, 297, 299, 300, 306, 307, 308, 310, 
314, 317, 319, 320, 321, 323, 327, 331, 332, 
333, 334, 336, 337, 338, 340, 352, 355, 356, 
357, 360, 362 363, 375, 376, 381, 387, 389, 
390, 392, 397, 399, 401, 404, 409, 410 

FS12 Filtered 
SubsetEval 

Rank 
Search 

 13 63, 91, 104, 112, 129, 256, 285, 320, 327, 
338, 357, 359, 404 

FS13 Wrapper 
SubsetEval 

BestFirst Naïve 
Bayes 

16 41, 56, 63, 104, 105, 123, 145, 153, 222, 
248, 249, 256, 285, 320, 338, 404 

FS14 Wrapper 
SubsetEval 

BestFirst Bagging 14 43, 49, 50, 54, 61, 256, 261, 285, 293, 298, 
320, 327, 338, 404 

FS15 Wrapper 
SubsetEval 

Genetic 
Search 

Bagging 192 39, 40, 43, 47, 50, 53, 55, 57, 60, 62, 63, 64, 
69, 70, 72, 73, 75, 77, 78, 80, 81, 82, 83, 85, 
89, 90, 91, 92, 100, 102, 103, 104, 108, 109, 
110, 112, 113, 115, 118, 119, 121, 122, 126, 
127, 129, 130, 131, 133, 135, 136, 140, 142, 
148, 152, 153, 155, 156, 157, 158, 160, 163, 
165, 168, 169, 172, 173, 174, 175, 176, 177, 
178, 181, 185, 188, 189, 192, 193, 196, 198, 
199, 201, 202, 203, 204, 205, 206, 207, 208, 
209, 210, 212, 216, 218, 221, 223, 226, 227, 
229, 231, 234, 235, 236, 237, 240, 242, 244, 
246, 248, 249, 253, 254, 255, 258, 262, 264, 
265, 269, 271, 272, 274, 277, 278, 279, 280, 
281, 282, 284, 285, 286, 287, 288, 289, 292, 
294, 296, 297, 298, 300, 302, 303, 304, 305, 
306, 309, 310, 314, 317, 318, 320, 321, 322, 
323, 325, 326, 327, 328, 335, 336, 338, 342, 
345, 346, 347, 353, 357, 360, 361, 362, 365, 
366, 367, 370, 371, 373, 375, 376, 377, 382, 
383, 386, 387, 388, 390, 392, 393, 395, 397, 
401, 403, 404, 408, 410 

FS16 Wrapper 
SubsetEval 

Greedy 
Stepwise 

Naïve 
Bayes 

16 41, 56, 63, 104, 105, 123, 145, 153, 222, 
248, 249, 256, 285, 320, 338, 404 
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FS17 Wrapper 
SubsetEval 

Linear 
Forward 
Selection 

Naïve 
Bayes 

14 64, 104, 105, 112, 129, 157, 256, 285, 320, 
327, 338, 357, 404, 409 

FS18 Wrapper 
SubsetEval 

RankSear
ch 

Naïve 
Bayes 

11 91, 104, 112, 129, 256, 285, 320, 327, 338, 
359, 404 

FS19 Wrapper 
SubsetEval 

Subset 
SizeForw
ardSelect
ion 

Naïve 
Bayes 

14 64, 104, 105, 112, 129, 157, 256, 285, 320, 
327, 338, 357, 404, 409 

FS20 Wrapper 
SubsetEval 

Subset 
SizeForw
ardSelect
ion 

Bagging 7 49, 256, 285, 320, 327, 338, 404 

 

Table 16 exhibits the results of the classification process on the medical dataset. We 

calculated the accuracy (AC), precision (PR), recall (RC) and F-measure (FM). FS14 A1 

(94.7533%) ranked highest in accuracy, FS12 A8 (0.989) in precision FS3 A6 (0.876) for recall 

and FS17 A2 and FS17 A2 for F-Measure (0.861).  

The medical elapsed table featured in Table 17 shows that based on the sum of the time 

elapsed for feature selection and classification, FS10 (0:00:20) had the best performance and 

FS15 (2:59:48) had the poorest performance. 

 



 
 

 

Table 16 

Medical: Precision, Recall and F-Measure Rates 

Features Classifiers 

Name Metric A1 A2 A3 A4 A5 A6 A7 A8 A9 

FS1 AC 94.5659% 95.1905% 93.6914% 95.3154% 90.2561% 95.3779% 94.3785% 90.5059% 95.253% 
  PR 0.84 0.877 0.811 0.878 0.872 0.846 0.912 0.98 0.847 
  RC 0.803 0.803 0.775 0.811 0.438 0.859 0.707 0.398 0.847 
  FM 0.821 0.839 0.793 0.843 0.583 0.853 0.796 0.566 0.847 

FS2 AC 94.6284% 92.817% 93.6914% 93.3791% 89.7564% 94.6284% 93.5041% ERROR 94.8782% 
  PR 0.856 0.775 0.846 0.783 0.851 0.841 0.892  0.849 
  RC 0.787 0.759 0.727 0.795 0.414 0.807 0.663  0.815 
  FM 0.82 0.767 0.782 0.789 0.557 0.824 0.76  0.832 

FS3 AC 94.5659% 95.128% 93.3167% 95.3779% 90.381% 95.253% 94.441% 90.9432% 95.0656% 
  PR 0.84 0.901 0.809 0.882 0.874 0.829 0.921 0.981 0.84 
  RC 0.803 0.771 0.747 0.811 0.446 0.876 0.703 0.426 0.843 
  FM 0.821 0.831 0.777 0.845 0.59 0.852 0.797 0.594 0.842 

FS4 AC 92.0675% 88.9444% 91.0681% 90.0687% 88.6321% 91.4428% 90.9432% ERROR 92.4422% 
  PR 0.777 0.698 0.765 0.718 0.813 0.728 0.806  0.776 
  RC 0.687 0.51 0.614 0.594 0.349 0.719 0.55  0.723 
  FM 0.729 0.589 0.682 0.651 0.489 0.723 0.654  0.748 

FS5 AC 94.5034% 94.5659% 94.2536% 94.5659% 90.2561% 95.6277% 94.0037% 90.0687% 94.8782% 
  PR 0.845 0.852 0.843 0.84 0.872 0.857 0.87 0.925 0.849 
  RC 0.791 0.787 0.775 0.803 0.438 0.863 0.723 0.394 0.815 
  FM 0.817 0.818 0.808 0.821 0.583 0.86 0.789 0.552 0.832 

FS6 AC 94.5659% 88.5072% 93.7539% 92.5047% 90.2561% 95.4403% 94.0037% ERROR 94.3785% 
  PR 0.846 0.637 0.828 0.738 0.872 0.879 0.856  0.809 
  RC 0.795 0.606 0.755 0.803 0.438 0.819 0.739  0.835 
  FM 0.82 0.621 0.79 0.769 0.583 0.848 0.793  0.822 64 



 
 

 

Table 16 

Cont.  

FS7 AC 94.8157% 94.5034% 94.0662% 94.7533% 89.2567% 95.128% 94.1287% 89.7564% 95.5028% 
  PR 0.855 0.858 0.85 0.842 0.789 0.846 0.886 0.967 0.864 
  RC 0.803 0.775 0.751 0.815 0.422 0.839 0.715 0.353 0.843 
  FM 0.828 0.814 0.797 0.829 0.55 0.843 0.791 0.518 0.854 

FS8 AC 94.8782% 92.3798% 94.441% 93.1918% 90.2561% 95.253% 94.1287% 89.1943% 94.6284% 
  PR 0.855 0.766 0.854 0.759 0.872 0.842 0.871 0.888 0.825 
  RC 0.807 0.735 0.775 0.823 0.438 0.855 0.731 0.349 0.831 
  FM 0.831 0.75 0.813 0.79 0.583 0.849 0.795 0.501 0.828 

FS9 AC 95.0656% 94.3161% 94.8157% 94.8782% 89.3816% 94.8157% 94.1911% 89.8813% 95.3779% 
  PR 0.863 0.819 0.864 0.861 0.793 0.835 0.868 0.958 0.866 
  RC 0.811 0.815 0.791 0.799 0.43 0.831 0.739 0.365 0.831 
  FM 0.836 0.817 0.826 0.829 0.557 0.833 0.798 0.529 0.848 

FS10 AC 95.0031% 94.7533% 94.1911% 95.0656% 89.2567% 95.1905% 94.3785% 89.8813% 95.3779% 
  PR 0.854 0.834 0.831 0.873 0.789 0.85 0.896 0.968 0.866 
  RC 0.819 0.827 0.787 0.799 0.422 0.839 0.723 0.361 0.831 
  FM 0.836 0.831 0.808 0.834 0.55 0.844 0.8 0.526 0.848 

FS11 AC 94.6284% 92.817% 93.6914% 93.3791% 89.7564% 94.6284% 93.5041% ERROR 94.8782% 
  PR 0.856 0.775 0.846 0.783 0.851 0.841 0.892  0.849 
  RC 0.787 0.759 0.727 0.795 0.414 0.807 0.663  0.815 
  FM 0.82 0.767 0.782 0.789 0.557 0.824 0.76  0.832 

FS12 AC 95.0031% 95.128% 94.3161% 95.0031% 89.6939% 95.0656% 94.5034% 90.0687% 95.3779% 
  PR 0.897 0.917 0.88 0.916 0.796 0.897 0.935 0.989 0.915 
  RC 0.767 0.755 0.735 0.747 0.454 0.771 0.695 0.365 0.775 
  FM 0.827 0.828 0.801 0.823 0.578 0.829 0.797 0.534 0.839 

FS13 AC 94.5659% 95.0031% 93.7539% 95.5653% 89.2567% 94.6908% 93.8164% 89.0693% 95.253% 
  PR 0.832 0.879 0.82 0.894 0.881 0.839 0.899 0.987 0.868 
  RC 0.815 0.787 0.767 0.811 0.357 0.815 0.679 0.301 0.819 
  FM 0.824 0.831 0.793 0.851 0.509 0.827 0.773 0.462 0.843 65 



 
 

 

Table 16 

Cont.  

FS14 AC 94.7533% 93.2542% 93.3791% 92.817% 89.1318% 94.8157% 93.3791% 88.1949% 94.6908% 
  PR 0.857 0.831 0.839 0.807 0.879 0.855 0.891 0.955 0.866 
  RC 0.795 0.711 0.711 0.707 0.349 0.803 0.655 0.253 0.779 
  FM 0.825 0.766 0.77 0.754 0.5 0.828 0.755 0.4 0.82 

FS15 AC 94.8782% 85.4466% 94.6908% 93.0668% 89.3816% 94.9407% 94.0037% ERROR 94.9407% 
  PR 0.841 0.608 0.833 0.778 0.788 0.844 0.901  0.831 
  RC 0.827 0.181 0.823 0.775 0.434 0.827 0.691  0.847 
  FM 0.834 0.279 0.828 0.777 0.56 0.836 0.782  0.839 

FS16 AC 94.5659% 95.0031% 93.7539% 95.5653% 89.2567% 94.6908% 93.8164% 89.0693% 95.2530% 
  PR 0.832 0.879 0.82 0.894 0.881 0.839 0.899 0.987 0.868 
  RC 0.815 0.787 0.767 0.811 0.357 0.815 0.679 0.301 0.819 
  FM 0.824 0.831 0.793 0.851 0.509 0.827 0.773 0.462 0.843 

FS17 AC 94.8782% 95.7527% 94.1911% 95.5028% 89.3816% 95.0031% 94.3161% 90.1936% 95.3779% 
  PR 0.861 0.876 0.855 0.9 0.793 0.848 0.873 0.979 0.876 
  RC 0.799 0.847 0.755 0.799 0.43 0.827 0.743 0.378 0.819 
  FM 0.829 0.861 0.802 0.847 0.557 0.837 0.803 0.545 0.846 

FS18 AC 94.441% 95.0656% 93.2542% 95.0031% 89.569% 95.3154% 94.5659% 89.3192% 95.253% 
  PR 0.857 0.925 0.89 0.933 0.887 0.91 0.955 0.988 0.918 
  RC 0.771 0.743 0.647 0.731 0.378 0.775 0.683 0.317 0.763 
  FM 0.812 0.824 0.749 0.82 0.53 0.837 0.796 0.48 0.833 

FS19 AC 94.8782% 95.7527% 94.1911% 95.5028% 89.3816% 95.0031% 94.3161% 90.1936% 95.3779% 
  PR 0.861 0.876 0.855 0.9 0.793 0.848 0.873 0.979 0.876 
  RC 0.799 0.847 0.755 0.799 0.43 0.827 0.743 0.378 0.819 
  FM 0.829 0.861 0.802 0.847 0.557 0.837 0.803 0.545 0.846 

FS20 AC 94.8157% 94.3785% 93.6914% 94.1287% 89.1318% 94.6284% 93.4416% 88.2573% 94.7533% 
  PR 0.861 0.866 0.856 0.886 0.879 0.853 0.891 0.969 0.863 
  RC 0.795 0.755 0.715 0.715 0.349 0.791 0.659 0.253 0.787 
  FM 0.827 0.807 0.779 0.791 0.5 0.821 0.758 0.401 0.824 66 
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Table 17 

Medical Time Elapsed 

Features Classifiers (Time Elapsed) 

Name Time A1 A2 A3 A4 A5 A6 A7 A8 A9 

FS1 0:00:02 0:00:01 0:00:00 0:00:01 0:00:00 0:00:02 0:00:04 0:00:03 0:00:10 0:00:02 
FS2 0:00:08 0:00:07 0:00:03 0:00:07 0:00:01 0:00:08 0:00:09 0:00:16 0:00:52 0:00:16 
FS3 0:00:08 0:00:25 0:00:01 0:00:02 0:00:00 0:00:04 0:00:15 0:00:05 0:00:32 0:00:03 
FS4 0:00:20 0:00:08 0:00:02 0:00:07 0:00:01 0:00:08 0:00:19 0:00:14 0:00:59 0:00:21 
FS5 0:00:14 0:00:02 0:00:01 0:00:02 0:00:00 0:00:02 0:00:04 0:00:04 0:00:16 0:00:03 
FS6 0:00:02 0:00:14 0:00:04 0:00:15 0:00:02 0:00:14 0:00:11 0:00:27 0:01:39 0:00:37 
FS7 0:00:02 0:00:11 0:00:01 0:00:02 0:00:00 0:00:01 0:00:08 0:00:03 0:00:09 0:00:03 
FS8 0:00:03 0:00:05 0:00:02 0:00:05 0:00:01 0:00:06 0:00:08 0:00:11 0:00:32 0:00:09 
FS9 0:00:02 0:00:02 0:00:01 0:00:01 0:00:00 0:00:02 0:00:07 0:00:03 0:00:09 0:00:03 
FS10 0:00:02 0:00:01 0:00:01 0:00:01 0:00:00 0:00:02 0:00:04 0:00:02 0:00:05 0:00:02 
FS11 0:00:08 0:00:06 0:00:02 0:00:08 0:00:01 0:00:07 0:00:08 0:00:15 0:00:50 0:00:15 
FS12 0:00:07 0:00:01 0:00:01 0:00:00 0:00:01 0:00:01 0:00:04 0:00:01 0:00:05 0:00:02 
FS13 0:13:53 0:00:02 0:00:01 0:00:01 0:00:00 0:00:01 0:00:05 0:00:02 0:00:07 0:00:02 
FS14 1:19:37 0:00:01 0:00:01 0:00:01 0:00:00 0:00:01 0:00:04 0:00:02 0:00:05 0:00:02 
FS15 2:56:07 0:00:17 0:00:04 0:00:14 0:00:02 0:00:13 0:00:24 0:00:26 0:01:18 0:00:43 
FS16 0:09:58 0:00:02 0:00:01 0:00:01 0:00:00 0:00:01 0:00:05 0:00:02 0:00:07 0:00:02 
FS17 0:01:32 0:00:01 0:00:01 0:00:01 0:00:00 0:00:01 0:00:04 0:00:02 0:00:06 0:00:01 
FS18 0:12:51 0:00:01 0:00:01 0:00:01 0:00:00 0:00:01 0:00:04 0:00:01 0:00:04 0:00:01 
FS19 0:01:07 0:00:01 0:00:00 0:00:01 0:00:00 0:00:01 0:00:05 0:00:02 0:00:06 0:00:01 
FS20 0:02:13 0:00:00 0:00:00 0:00:00 0:00:00 0:00:01 0:00:02 0:00:01 0:00:03 0:00:01 

 

When considering runtime, reduction in features and recall in Figure 9 below, we have 

determined that FS19 A2 is the better algorithm to use for this dataset. 

 

Figure 9. Top Three Medical. 
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5.5 Clean Full Dataset   

Table 18 displays the results of the feature selection process on the clean full dataset. 

Based solely on feature reduction, FS20 was the top ranking performer by reducing the features 

down to a feature set of 4. FS15 was the lowest ranking performer by only reducing the features 

down to a feature set of 214.  

Table 18 

Clean Full Feature Set 

Clinical  Feature Set 

Set Attribute  

Evaluator 

Search  

Method 

Classifier # of 

Feat. 

Selected Feature List 

FS1 Cfs Subset 
Eval 

BestFirs
t 

 13 34,105,248,285,320,322,338,404,411,41
4,416,417,418 

FS2 Cfs Subset 
Eval 

Genetic 
Search 

 134 3,13,19,27,29,31,34,35,54,64,67,73,75,8
2,86,87,88,96,97,104,112,122,128,129,1
31,145,147,148,155,164,167,169,173,17
5,176,181,187,188,194,196,209,218,222
,228,229,232,236,239,243,244,248,251,
252,256,258,260,261,263,266,268,271,2
74,276,280,282,287,289,291,299,301,30
2,305,306,307,308,310,311,314,316,317
,318,320,324,327,328,332,334,335,337,
338,339,340,348,350,352,353,354,356,3
57,359,360,361,362,363,364,366,370,37
5,376,379,381,382,383,384,385,387,390
,392,394,395,396,399,403,404,405,407,
410,411,413,414,415,416,417,418 

FS3 Cfs 
SubsetEval 

Rank 
Search 

 16 34,91,104,105,248,256,320,327,338,394
,404,411,414,416,417,418 

FS4 Classifier 
SubsetEval 

Genetic 
Search 

OneR 103 2,3,6,10,14,19,30,40,41,43,45,47,53,58,
62,68,69,70,74,78,89,90,91,92,93,97,10
0,101,104,108,110,111,127,129,130,131
,137,140,165,171,172,178,181,184,186,
192,199,205,206,214,216,217,220,222,2
27,228,232,235,243,244,246,250,251,25
8,260,262,263,266,275,285,286,290,291
,298,301,302,304,306,313,315,323,336,
338,343,346,348,349,351,352,354,359,3
61,363,373,378,381,382,397,400,409,41
1,415,418 
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Table 18 

Cont. 

FS5 Consistency 
SubsetEval 

BestFirst  9 2,28,33,285,411,412,414,416,418 

FS6 Consistency 
SubsetEval 

Genetic 
Search 

 170 1,2,4,5,9,12,13,17,19,22,23,25,27,28,30,
31,32,33,34,35,38,40,41,42,43,45,46,47,
50,52,53,54,57,59,60,61,62,63,65,66,67,
69,70,71,77,79,81,82,84,91,94,99,102,1
04,106,109,111,115,117,118,119,123,12
9,131,132,142,144,145,151,153,154,155
,159,161,165,171,178,181,184,186,192,
193,194,195,197,199,201,203,205,206,2
10,213,214,215,217,220,222,223,229,23
2,235,243,244,245,251,258,259,260,262
,263,267,272,274,275,276,277,281,285,
286,289,290,295,298,301,302,303,304,3
05,313,314,325,328,331,333,336,338,34
1,343,344,345,346,348,349,350,352,361
,363,366,371,372,383,386,389,392,393,
394,395,396,403,404,405,409,410,411,4
12,413,414,415,416,417 

FS7 Consistency 
SubsetEval 

Linear 
Forward 
Selection 

 12 2,34,49,105,285,320,338,357,411,414,4
16,418 

FS8 Consistency 
SubsetEval 

Rank 
Search 

 96 2,7,16,20,23,25,29,30,33,34,43,49,53,54
,63,64,69,87,88,91,104,105,112,120,122
,123,124,126,129,131,135,139,141,145,
148,157,159,162,163,164,171,172,191,2
07,209,211,218,226,229,230,245,246,24
8,249,250,251,254,256,259,262,275,279
,282,285,296,297,298,311,318,320,321,
322,324,325,327,334,335,337,338,339,3
55,357,359,375,384,394,400,404,409,41
1,412,413,414,416,417,418 

FS9 Consistency 
SubsetEval 

SubsetSize 
Forward 
Selection 

 10 2,34,49,105,285,357,411,414,416,418 

FS10 Filtered 
SubsetEval 

BestFirst  10 105,285,320,338,404,411,414,416,417,4
18 
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Table 18 

Cont. 

FS11 Filtered 
SubsetEval 

Genetic 
Search 

 134 3,13,19,27,29,31,34,35,54,64,67,73,75,82,
86,87,88,96,97,104,112,122,128,129,131,
145,147,148,155,164,167,169,173,175,17
6,181,187,188,194,196,209,218,222,228,2
29,232,236,239,243,244,248,251,252,256,
258,260,261,263,266,268,271,274,276,28
0,282,287,289,291,299,301,302,305,306,3
07,308,310,311,314,316,317,318,320,324,
327,328,332,334,335,337,338,339,340,34
8,350,352,353,354,356,357,359,360,361,3
62,363,364,366,370,375,376,379,381,382,
383,384,385,387,390,392,394,395,396,39
9,403,404,405,407,410,411,413,414,415,4
16,417,418 

FS12 Filtered 
SubsetEval 

Rank 
Search 

 10 1,104,256,320,327,338,404,411,414,417 

FS13 Wrapper 
SubsetEval 

BestFirst Naïve 
Bayes 

11 1,14,21,43,75,130,145,185,213,285,411 

FS14 Wrapper 
SubsetEval 

BestFirst Bagging 15 2,5,20,65,207,256,269,305,320,334,348,3
73,399,402,411 

FS15 Wrapper 
SubsetEval 

Genetic 
Search 

Bagging 214 1,2,7,9,10,14,15,17,19,21,23,27,28,31,32,
33,34,35,36,39,41,43,44,47,48,49,54,60,6
1,62,63,64,66,67,68,70,71,74,75,79,80,85,
92,94,96,99,100,102,103,107,112,113,114
,119,121,123,125,126,127,128,133,134,13
6,139,142,143,145,149,150,157,158,160,1
61,163,165,169,171,172,178,180,181,183,
184,185,186,188,189,190,193,194,196,20
0,201,204,206,210,212,213,215,216,217,2
18,219,220,222,223,224,225,227,228,229,
230,231,232,233,234,235,237,239,240,24
3,244,245,246,247,248,249,251,254,255,2
59,263,265,266,267,271,273,274,276,278,
279,281,283,284,286,291,292,293,294,29
5,296,299,301,302,304,306,310,313,314,3
17,318,319,320,321,322,323,326,327,330,
331,332,333,334,336,338,339,341,344,35
2,353,354,355,356,357,358,359,366,368,3
69,370,371,372,377,379,380,381,382,383,
386,387,388,389,392,393,395,396,398,40
4,405,407,409,414,416,417 
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Table 18 

Cont. 

FS16 Wrapper 
SubsetEval 

Greedy 
Stepwise 

Naïve 
Bayes 

7 14,21,130,145,185,285,411 

FS17 Wrapper 
SubsetEval 

Linear 
Forward 
Selection 

Naïve 
Bayes 

9 104,105,124,285,327,337,338,411,417 

FS18 Wrapper 
SubsetEval 

Rank 
Search 

Naïve 
Bayes 

10 91,104,256,320,327,338,404,411,414,417 

FS19 Wrapper 
SubsetEval 

SubsetSize 
Forward 
Selection 

Naïve 
Bayes 

5 104,105,285,411,417 

FS20 Wrapper 
SubsetEval 

SubsetSize 
Forward 
Selection 

Bagging 4 7,104,411,418 

 

Table 19 exhibits the results of the classification process on the clean full dataset. We 

calculated the accuracy (AC), precision (PR), recall (RC) and F-measure (FM). FS8 A6 

(97.5015%) ranked highest in accuracy, FS20 A8 (0.977) in precision, FS5 A1 (0.981) for recall 

and FS8 A6 for F-Measure (0.919). Based solely on AC and FM, FS8 A6 is the top ranking 

performer.  

 The clean full time elapsed table featured in Table 20 shows that based on the sum of the 

time elapsed for feature selection and classification, FS7 (0:00:23) had the best performance and 

FS14 (1:59:59) had the poorest performance.



 
 

 

Table 19 

Clean: Precision, Recall and F-Measure Rates 

Features Classifiers 

Name Metric A1 A2 A3 A4 A5 A6 A7 A8 A9 

FS1 AC 96.1333% 96.4902% 96.1333% 96.4902% 95.8358% 97.0851% 96.7281% 96.6686% 96.7876% 
  PR 0.887 0.878 0.893 0.87 0.87 0.935 0.916 0.941 0.895 
  RC 0.864 0.902 0.856 0.913 0.864 0.875 0.871 0.841 0.902 
  FM 0.875 0.89 0.874 0.891 0.867 0.904 0.893 0.888 0.898 

FS2 AC 96.7281% 93.0399% 97.0851% 94.5866% 96.4307% 97.1446% 97.0256% ERROR 96.0143% 
  PR 0.91 0.793 0.918 0.817 0.889 0.958 0.918  0.838 
  RC 0.879 0.754 0.894 0.845 0.883 0.856 0.89  0.924 
  FM 0.894 0.773 0.906 0.831 0.886 0.904 0.904  0.879 

FS3 AC 96.0738% 96.1927% 96.0143% 96.6092% 95.8953% 96.4902% 96.7281% 96.0738% 96.7281% 
  PR 0.884 0.888 0.899 0.894 0.871 0.915 0.91 0.93 0.92 
  RC 0.864 0.867 0.841 0.89 0.867 0.856 0.879 0.811 0.867 
  FM 0.874 0.877 0.869 0.892 0.869 0.885 0.894 0.866 0.893 

FS4 AC 96.8471% 92.9209% 96.7876% 94.884% 95.8358% 96.5497% 96.3712% ERROR 96.0143% 
  PR 0.907 0.817 0.907 0.83 0.862 0.926 0.889  0.856 
  RC 0.89 0.708 0.886 0.848 0.875 0.848 0.879  0.898 
  FM 0.899 0.759 0.897 0.839 0.868 0.885 0.884  0.876 

FS5 AC 96.4902% 96.0738% 96.0738% 95.5979% 96.0143% 97.204% 96.3712% 97.0851% 95.7168% 
  PR 0.977 0.899 0.893 0.889 0.872 0.939 0.898 0.928 0.869 
  RC 0.981 0.845 0.852 0.822 0.875 0.879 0.867 0.883 0.856 
  FM 0.979 0.871 0.872 0.854 0.873 0.908 0.882 0.905 0.863 

FS6 AC 96.9661% 85.9607% 96.4307% 95.4194% 95.9548% 96.8471% 96.9066% ERROR 97.1446% 
  PR 0.918 0.566 0.892 0.828 0.868 0.945 0.914  0.903 
  RC 0.886 0.455 0.879 0.894 0.875 0.848 0.886  0.917 
  FM 0.902 0.504 0.885 0.86 0.872 0.894 0.9  0.91 72 



 
 

 

Table 19 

Cont.  

FS7 AC 96.6092% 96.4902% 96.1927% 96.1333% 96.0143% 96.6092% 96.5497% 97.204% 96.7876% 
  PR 0.903 0.881 0.897 0.849 0.877 0.919 0.896 0.943 0.904 
  RC 0.879 0.898 0.856 0.917 0.867 0.86 0.883 0.875 0.89 
  FM 0.891 0.889 0.876 0.882 0.872 0.888 0.889 0.908 0.897 

FS8 AC 96.7281% 94.0512% 96.4307% 93.6347% 95.9548% 97.5015% 96.8471% ERROR 96.6092% 
  PR 0.91 0.801 0.902 0.756 0.868 0.934 0.917  0.9 
  RC 0.879 0.826 0.867 0.879 0.875 0.905 0.879  0.883 
  FM 0.894 0.813 0.884 0.813 0.872 0.919 0.897  0.891 

FS9 AC 96.6092% 95.7763% 95.9548% 95.4789% 96.0143% 96.4902% 96.5497% 97.0851% 96.3117% 
  PR 0.9 0.853 0.883 0.829 0.877 0.912 0.896 0.942 0.898 
  RC 0.883 0.883 0.856 0.898 0.867 0.86 0.883 0.867 0.864 
  FM 0.891 0.868 0.869 0.862 0.872 0.885 0.889 0.903 0.88 

FS10 AC 96.3117% 96.3712% 96.1927% 96.2522% 95.9548% 96.9661% 96.4902% 96.1927% 96.4307% 
  PR 0.898 0.886 0.888 0.879 0.877 0.931 0.908 0.924 0.892 
  RC 0.864 0.883 0.867 0.883 0.864 0.871 0.864 0.826 0.879 
  FM 0.88 0.884 0.877 0.881 0.87 0.9 0.885 0.872 0.885 

FS11 AC 96.7281% 93.0399% 97.0851% 94.5866% 96.4307% 97.1446% 97.0256% ERROR 96.0143% 
  PR 0.91 0.793 0.918 0.817 0.889 0.958 0.918  0.838 
  RC 0.879 0.754 0.894 0.845 0.883 0.856 0.89  0.924 
  FM 0.894 0.773 0.906 0.831 0.886 0.904 0.904  0.879 

FS12 AC 95.8953% 95.8953% 95.7763% 96.1333% 95.8358% 95.4194% 95.9548% 95.122% 96.3117% 
  PR 0.892 0.885 0.918 0.913 0.862 0.87 0.871 0.96 0.935 
  RC 0.841 0.848 0.803 0.833 0.875 0.833 0.871 0.72 0.822 
  FM 0.865 0.867 0.857 0.871 0.868 0.851 0.871 0.823 0.875 

FS13 AC 96.7281% 96.3712% 96.5497% 96.7281% 95.8358% 96.5497% 96.3117% 94.2296% 96.6092% 
  PR 0.897 0.88 0.879 0.886 0.862 0.906 0.888 0.947 0.888 
  RC 0.894 0.89 0.905 0.909 0.875 0.871 0.875 0.67 0.898 
  FM 0.896 0.885 0.892 0.897 0.868 0.888 0.882 0.785 0.893 73 



 
 

 

Table 19 

Cont.  

FS14 AC 96.7281% 94.1701% 96.8471% 94.7055% 95.8358% 97.204% 96.0738% 96.6092% 96.1927% 
  PR 0.91 0.855 0.907 0.86 0.862 0.919 0.875 0.948 0.894 
  RC 0.879 0.758 0.89 0.792 0.875 0.902 0.875 0.83 0.86 
  FM 0.894 0.803 0.899 0.824 0.868 0.91 0.875 0.885 0.876 

FS15 AC 97.204% 91.1362% 96.3117% 94.2891% 95.8358% 96.9661% 96.4902% ERROR 96.1927% 
  PR 0.936 0.719 0.888 0.804 0.898 0.949 0.932  0.855 
  RC 0.883 0.716 0.875 0.841 0.83 0.852 0.837  0.913 
  FM 0.908 0.717 0.882 0.822 0.862 0.898 0.882  0.883 

FS16 AC 96.3117% 96.3712% 96.1333% 96.7281% 95.8358% 95.1814% 96.3117% 93.8727% 96.4902% 
  PR 0.888 0.872 0.859 0.886 0.862 0.851 0.895 0.945 0.896 
  RC 0.875 0.902 0.902 0.909 0.875 0.841 0.867 0.648 0.879 
  FM 0.882 0.886 0.88 0.897 0.868 0.846 0.881 0.769 0.887 

FS17 AC 96.1333% 96.3117% 96.0738% 97.0256% 95.8358% 96.1333% 95.8358% 94.2891% 96.6092% 
  PR 0.9 0.856 0.878 0.925 0.862 0.887 0.865 0.947 0.888 
  RC 0.848 0.92 0.871 0.883 0.875 0.864 0.871 0.674 0.898 
  FM 0.873 0.887 0.875 0.903 0.868 0.875 0.868 0.788 0.893 

FS18 AC 95.8953% 95.8953% 95.7763% 96.1333% 95.8358% 95.4194% 95.9548% 95.122% 96.3117% 
  PR 0.892 0.885 0.918 0.913 0.862 0.87 0.871 0.96 0.935 
  RC 0.841 0.848 0.803 0.833 0.875 0.833 0.871 0.72 0.822 
  FM 0.865 0.867 0.857 0.871 0.868 0.851 0.871 0.823 0.875 

FS19 AC 96.1927% 96.4902% 96.0738% 96.8471% 95.8358% 96.1927% 95.8358% 94.5271% 96.4307% 
  PR 0.903 0.873 0.878 0.901 0.862 0.882 0.865 0.943 0.889 
  RC 0.848 0.909 0.871 0.898 0.875 0.875 0.871 0.693 0.883 
  FM 0.875 0.891 0.875 0.899 0.868 0.878 0.868 0.799 0.886 

FS20 AC 96.4307% 96.0143% 96.7281% 95.6573% 95.8358% 96.6686% 96.2522% 96.3712% 96.6092% 
  PR 0.911 0.896 0.913 0.88 0.862 0.916 0.888 0.977 0.937 
  RC 0.856 0.845 0.875 0.837 0.875 0.867 0.871 0.788 0.841 
  FM 0.883 0.869 0.894 0.858 0.868 0.891 0.88 0.872 0.886 
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Table 20 

Clean Time Elapsed 

Features Classifiers (Time Elapsed) 

Name Time A1 A2 A3 A4 A5 A6 A7 A8 A9 

FS1 0:00:02 0:00:01 0:00:02 0:00:01 0:00:01 0:00:01 0:00:01 0:00:02 0:00:15 0:00:02 
FS2 0:00:10 0:00:04 0:00:02 0:00:04 0:00:01 0:00:10 0:00:04 0:00:20 0:01:39 0:00:14 
FS3 0:00:09 0:00:01 0:00:01 0:00:00 0:00:00 0:00:02 0:00:02 0:00:03 0:00:16 0:00:02 
FS4 0:00:10 0:00:04 0:00:03 0:00:03 0:00:01 0:00:08 0:00:04 0:00:16 0:01:21 0:00:12 
FS5 0:00:05 0:00:00 0:00:01 0:00:01 0:00:00 0:00:01 0:00:01 0:00:02 0:00:14 0:00:02 
FS6 0:00:02 0:00:05 0:00:05 0:00:05 0:00:02 0:00:13 0:00:04 0:00:26 0:01:52 0:00:14 
FS7 0:00:01 0:00:01 0:00:01 0:00:00 0:00:00 0:00:01 0:00:01 0:00:02 0:00:14 0:00:02 
FS8 0:00:04 0:00:04 0:00:03 0:00:03 0:00:02 0:00:07 0:00:04 0:00:14 0:00:59 0:00:10 
FS9 0:00:02 0:00:01 0:00:01 0:00:01 0:00:00 0:00:01 0:00:02 0:00:01 0:00:14 0:00:01 
FS10 0:00:01 0:00:01 0:00:01 0:00:00 0:00:00 0:00:01 0:00:01 0:00:02 0:00:14 0:00:23 
FS11 0:00:10 0:00:05 0:00:03 0:00:05 0:00:01 0:00:10 0:00:05 0:00:21 0:01:36 0:00:14 
FS12 0:00:10 0:00:01 0:00:02 0:00:01 0:00:01 0:00:01 0:00:01 0:00:02 0:00:10 0:00:02 
FS13 0:11:11 0:00:00 0:00:01 0:00:01 0:00:00 0:00:01 0:00:02 0:00:02 0:00:09 0:00:03 
FS14 1:59:40 0:00:00 0:00:01 0:00:01 0:00:00 0:00:01 0:00:01 0:00:02 0:00:10 0:00:03 
FS15 1:19:33 0:00:14 0:00:07 0:00:08 0:00:01 0:00:17 0:00:05 0:00:33 0:02:07 0:00:22 
FS16 0:03:24 0:00:00 0:00:01 0:00:01 0:00:00 0:00:01 0:00:01 0:00:01 0:00:06 0:00:02 
FS17 0:01:15 0:00:01 0:00:01 0:00:00 0:00:00 0:00:01 0:00:01 0:00:01 0:00:06 0:00:01 
FS18 0:26:58 0:00:00 0:00:00 0:00:00 0:00:00 0:00:01 0:00:01 0:00:02 0:00:08 0:00:01 
FS19 0:00:19 0:00:01 0:00:01 0:00:01 0:00:00 0:00:01 0:00:01 0:00:01 0:00:05 0:00:01 
FS20 0:01:36 0:00:01 0:00:00 0:00:00 0:00:00 0:00:01 0:00:01 0:00:01 0:00:07 0:00:01 
 

When considering runtime, reduction in features and recall in Figure 10 below, we have 

determined that FS8 A6 is the better algorithm to use for this dataset. 

 

Figure 10. Top Three Clean Full. 
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5.6 Clean Clinical Dataset   

Table 21 displays the results of the feature selection process on the clean clinical dataset. 

Based solely on feature reduction, FS13, FS16 and FS19 were the top ranking performers by 

reducing the features down to a feature set of 2. FS15 was the lowest ranking performer by only 

reducing the features down to a feature set of 16.  

Table 21 

Clean Clinical Feature Set 

Clinical  Feature Set 

Set Attribute  

Evaluator 

Search  

Method 

Classifier # of 

Feat. 

Selected Feature List 

FS1 Cfs Subset 
Eval 

BestFirst  6 20, 21, 25, 29, 33, 34 

FS2 Cfs Subset 
Eval 

Genetic 
Search 

 6 20, 21, 25, 29, 33, 34 

FS3 Cfs 
SubsetEval 

RankSearch  7 20, 21, 23, 25, 29, 33, 34 

FS4 Classifier 
SubsetEval 

Genetic 
Search 

OneR 5 13, 14, 24, 27, 34 

FS5 Consistency 
SubsetEval 

BestFirst  10 20, 21, 23, 25, 28, 29, 30, 33, 34, 38 

FS6 Consistency 
SubsetEval 

Genetic 
Search 

 14 13, 19, 20, 21, 22, 23, 24, 25, 28, 
29, 30, 33, 34, 38 

FS7 Consistency 
SubsetEval 

Linear 
Forward 
Selection 

 10 20, 21, 23, 25, 28, 29, 30, 33, 34, 38 

FS8 Consistency 
SubsetEval 

RankSearch  11 16, 20, 21, 23, 25, 28, 29, 30, 33, 
34, 38 

FS9 Consistency 
SubsetEval 

Subset 
SizeForward
Selection 

 10 20, 21, 23, 25, 28, 29, 30, 33, 34, 38 

FS10 Filtered 
SubsetEval 

BestFirst  3 29, 33, 34 

FS11 FilteredS 
ubsetEval 

Genetic 
Search 

 3 29, 33, 34 

FS12 Filtered 
SubsetEval 

RankSearch  4 23, 29, 33, 34 

FS13 Wrapper 
SubsetEval 

BestFirst Naïve 
Bayes 

2 20, 34 
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Table 21 

Cont. 

FS14 Wrapper 
SubsetEval 

BestFirst Bagging 11 12, 13, 14, 17, 20, 29, 30, 33, 34, 
37, 38 

FS15 Wrapper 
SubsetEval 

Genetic 
Search 

Bagging 16 12, 13, 16, 17, 18, 19, 20, 21, 22, 
25, 28, 29, 33, 35, 36, 37 

FS16 Wrapper 
SubsetEval 

Greedy 
Stepwise 

Naïve 
Bayes 

2 20, 34 

FS17 Wrapper 
SubsetEval 

Linear 
Forward 
Selection 

Naïve 
Bayes 

8 20, 23, 27, 28, 29, 33, 34, 38 

FS18 Wrapper 
SubsetEval 

RankSearch Naïve 
Bayes 

4 23, 29, 33, 34 

FS19 Wrapper 
SubsetEval 

Subset 
SizeForward
Selection 

Naïve 
Bayes 

2 20, 34 

FS20 Wrapper 
SubsetEval 

Subset 
SizeForward
Selection 

Bagging 11 12, 13, 14, 17, 20, 29, 30, 33, 34, 
37, 38 

 

Table 22 exhibits the results of the classification process on the clean clinical dataset. We 

calculated the accuracy (AC), precision (PR), recall (RC) and F-measure (FM). FS14 A1 and 

FS20 A1 (89.8275%) ranked highest in accuracy, FS13 A8, FS16 A8 and FS19 A8 (0.974) in 

precision FS14 A6 and FS20 A6 (0.515) for recall and FS14 A6 and FS20 A6 for F-Measure 

(0.613).  

 The clean clinical elapsed table featured in Table 23 shows that based on the sum of the 

time elapsed for feature selection and classification, FS10 and FS11 (0:00:05) had the best 

performance and FS15 (0:06:29) had the poorest performance.



 
 

 

Table 22 

Clean Clinical: Precision, Recall and F-Measure Rates 

Features Classifiers 

Name Metric A1 A2 A3 A4 A5 A6 A7 A8 A9 

FS1 AC 88.3403% 86.972% 87.6264% 86.4366% 86.2582% 88.5187% 87.091% 88.6377% 88.9352% 
  PR 0.73 0.703 0.697 0.65 0.709 0.748 0.664 0.91 0.787 
  RC 0.409 0.295 0.375 0.295 0.212 0.405 0.36 0.307 0.405 
  FM 0.524 0.416 0.488 0.406 0.327 0.526 0.467 0.459 0.535 

FS2 AC 88.3403% 86.972% 87.6264% 86.4366% 86.2582% 88.5187% 87.091% 88.6377% 88.9352% 
  PR 0.73 0.703 0.697 0.65 0.709 0.748 0.664 0.91 0.787 
  RC 0.409 0.295 0.375 0.295 0.212 0.405 0.36 0.307 0.405 
  FM 0.524 0.416 0.488 0.406 0.327 0.526 0.467 0.459 0.535 

FS3 AC 88.2808% 87.4479% 87.6264% 86.4366% 86.2582% 88.5187% 86.7936% 88.6377% 88.2808% 
  PR 0.731 0.748 0.697 0.65 0.709 0.748 0.667 0.91 0.731 
  RC 0.402 0.303 0.375 0.295 0.212 0.405 0.318 0.307 0.402 
  FM 0.518 0.431 0.488 0.406 0.327 0.526 0.431 0.459 0.518 

FS4 AC 86.3772% 86.2582% 86.3772% 86.3772% 86.3772% 86.4961% 86.3772% 84.2951% 86.1392% 
  PR 0.778 0.789 0.818 0.761 0.761 0.894 0.761 0 0.772 
  RC 0.186 0.17 0.17 0.193 0.193 0.159 0.193 0 0.167 
  FM 0.3 0.28 0.282 0.308 0.308 0.27 0.308 0 0.274 

FS5 AC 88.7567% 87.4479% 87.8049% 86.9126% 87.1505% 89.4111% 87.8049% 89.0541% 88.8162% 
  PR 0.733 0.73 0.686 0.647 0.669 0.75 0.675 0.877 0.732 
  RC 0.447 0.318 0.413 0.367 0.36 0.489 0.432 0.352 0.455 
  FM 0.555 0.443 0.515 0.469 0.468 0.592 0.527 0.503 0.561 

FS6 AC 89.3516% 87.2695% 87.9833% 86.7936% 87.1505% 89.0541% 87.8049% 88.9352% 89.2326% 
  PR 0.771 0.716 0.691 0.642 0.669 0.725 0.675 0.868 0.771 
  RC 0.458 0.314 0.424 0.36 0.36 0.489 0.432 0.348 0.447 
  FM 0.575 0.437 0.526 0.461 0.468 0.584 0.527 0.497 0.566 78 



 
 

 

Table 22 

Cont.  

FS7 AC 88.7567% 87.4479% 87.8049% 86.9126% 87.1505% 89.4111% 87.8049% 89.0541% 88.8162% 
  PR 0.733 0.73 0.686 0.647 0.669 0.75 0.675 0.877 0.732 
  RC 0.447 0.318 0.413 0.367 0.36 0.489 0.432 0.352 0.455 
  FM 0.555 0.443 0.515 0.469 0.468 0.592 0.527 0.503 0.561 

FS8 AC 88.9352% 86.3772% 87.8049% 86.9126% 87.1505% 89.2326% 87.8049% 88.9946% 88.5187% 
  PR 0.738 0.684 0.686 0.647 0.669 0.729 0.675 0.869 0.713 
  RC 0.458 0.246 0.413 0.367 0.36 0.5 0.432 0.352 0.451 
  FM 0.565 0.362 0.515 0.469 0.468 0.593 0.527 0.501 0.552 

FS9 AC 88.7567% 87.4479% 87.8049% 86.9126% 87.1505% 89.4111% 87.8049% 89.0541% 88.8162% 
  PR 0.733 0.73 0.686 0.647 0.669 0.75 0.675 0.877 0.732 
  RC 0.447 0.318 0.413 0.367 0.36 0.489 0.432 0.352 0.455 
  FM 0.555 0.443 0.515 0.469 0.468 0.592 0.527 0.503 0.561 

FS10 AC 86.9126% 85.8418% 86.3177% 86.6151% 86.1392% 86.8531% 87.1505% 86.7936% 86.7936% 
  PR 0.775 0.641 0.693 0.741 0.731 0.753 0.786 0.862 0.744 
  RC 0.235 0.223 0.231 0.227 0.186 0.242 0.25 0.189 0.242 
  FM 0.36 0.331 0.347 0.348 0.296 0.367 0.379 0.311 0.366 

FS11 AC 86.9126% 85.8418% 86.3177% 86.6151% 86.1392% 86.8531% 87.1505% 86.7936% 86.7936% 
  PR 0.775 0.641 0.693 0.741 0.731 0.753 0.786 0.862 0.744 
  RC 0.235 0.223 0.231 0.227 0.186 0.242 0.25 0.189 0.242 
  FM 0.36 0.331 0.347 0.348 0.296 0.367 0.379 0.311 0.366 

FS12 AC 86.9126% 86.1987% 86.4366% 86.8531% 86.1392% 86.972% 87.091% 86.4961% 87.0910% 
  PR 0.775 0.67 0.7 0.753 0.731 0.765 0.764 0.863 0.742 
  RC 0.235 0.239 0.239 0.242 0.186 0.246 0.258 0.167 0.273 
  FM 0.36 0.352 0.356 0.367 0.296 0.372 0.385 0.279 0.399 

FS13 AC 86.7341% 86.6151% 86.7936% 86.3772% 86.3772% 86.7341% 86.7936% 86.4961% 86.6746% 
  PR 0.847 0.81 0.85 0.761 0.761 0.847 0.85 0.974 0.845 
  RC 0.189 0.193 0.193 0.193 0.193 0.189 0.193 0.144 0.186 
  FM 0.31 0.312 0.315 0.308 0.308 0.31 0.315 0.251 0.304 79 



 
 

 

Table 22 

Cont.  

FS14 AC 89.8275% 87.4479% 89.4706% 85.5443% 85.7823% 89.768% 88.2213% 88.9352% 89.3516% 
  PR 0.782 0.785 0.754 0.571 0.575 0.756 0.672 0.842 0.746 
  RC 0.489 0.277 0.489 0.318 0.364 0.515 0.489 0.364 0.489 
  FM 0.601 0.409 0.593 0.409 0.445 0.613 0.566 0.508 0.59 

FS15 AC 89.649% 84.5925% 88.6972% 83.7002% 86.9126% 89.2326% 87.4479% 88.5782% 89.0541% 
  PR 0.788 0.619 0.715 0.473 0.69 0.755 0.651 0.853 0.753 
  RC 0.466 0.049 0.466 0.326 0.303 0.466 0.432 0.33 0.451 
  FM 0.586 0.091 0.564 0.386 0.421 0.576 0.519 0.475 0.564 

FS16 AC 86.7341% 86.6151% 86.7936% 86.3772% 86.3772% 86.7341% 86.7936% 86.4961% 86.6746% 
  PR 0.847 0.81 0.85 0.761 0.761 0.847 0.85 0.974 0.845 
  RC 0.189 0.193 0.193 0.193 0.193 0.189 0.193 0.144 0.186 
  FM 0.31 0.312 0.315 0.308 0.308 0.31 0.315 0.251 0.304 

FS17 AC 87.9833% 86.6151% 88.5187% 87.091% 86.6746% 88.4593% 86.972% 88.5782% 88.3403% 
  PR 0.691 0.714 0.713 0.753 0.756 0.719 0.669 0.909 0.687 
  RC 0.424 0.246 0.451 0.265 0.223 0.436 0.337 0.303 0.473 
  FM 0.526 0.366 0.552 0.392 0.345 0.542 0.448 0.455 0.561 

FS18 AC 86.9126% 86.1987% 86.4366% 86.8531% 86.1392% 86.972% 87.091% 86.4961% 87.091% 
  PR 0.775 0.67 0.7 0.753 0.731 0.765 0.764 0.863 0.742 
  RC 0.235 0.239 0.239 0.242 0.186 0.246 0.258 0.167 0.273 
  FM 0.36 0.352 0.356 0.367 0.296 0.372 0.385 0.279 0.399 

FS19 AC 86.7341% 86.6151% 86.7936% 86.3772% 86.3772% 86.7341% 86.7936% 86.4961% 86.6746% 
  PR 0.847 0.81 0.85 0.761 0.761 0.847 0.85 0.974 0.845 
  RC 0.189 0.193 0.193 0.193 0.193 0.189 0.193 0.144 0.186 
  FM 0.31 0.31 0.315 0.308 0.308 0.31 0.315 0.251 0.304 

FS20 AC 89.8275% 87.4479% 89.4706% 85.5443% 85.7823% 89.768% 88.2213% 88.9352% 89.3516% 
  PR 0.782 0.785 0.754 0.571 0.575 0.756 0.672 0.842 0.746 
  RC 0.489 0.277 0.489 0.318 0.364 0.515 0.489 0.364 0.489 
  FM 0.601 0.409 0.593 0.409 0.445 0.613 0.566 0.508 0.59 80 
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Table 23 

Clean Clinical Time Elapsed 

Features Classifiers (Time Elapsed) 

Name Time A1 A2 A3 A4 A5 A6 A7 A8 A9 

FS1 0:00:00 0:00:00 0:00:01 0:00:00 0:00:01 0:00:01 0:00:01 0:00:02 0:00:03 0:00:02 
FS2 0:00:00 0:00:01 0:00:00 0:00:01 0:00:00 0:00:01 0:00:01 0:00:01 0:00:02 0:00:02 
FS3 0:00:00 0:00:01 0:00:01 0:00:00 0:00:00 0:00:01 0:00:01 0:00:01 0:00:03 0:00:02 
FS4 0:00:01 0:00:01 0:00:00 0:00:00 0:00:00 0:00:01 0:00:01 0:00:01 0:00:02 0:00:01 
FS5 0:00:00 0:00:01 0:00:00 0:00:01 0:00:00 0:00:01 0:00:01 0:00:01 0:00:05 0:00:03 
FS6 0:00:00 0:00:02 0:00:01 0:00:01 0:00:00 0:00:01 0:00:02 0:00:02 0:00:06 0:00:04 
FS7 0:00:00 0:00:01 0:00:00 0:00:00 0:00:00 0:00:01 0:00:02 0:00:02 0:00:04 0:00:03 
FS8 0:00:00 0:00:01 0:00:01 0:00:00 0:00:00 0:00:01 0:00:01 0:00:02 0:00:05 0:00:03 
FS9 0:00:00 0:00:01 0:00:01 0:00:01 0:00:01 0:00:01 0:00:02 0:00:01 0:00:04 0:00:03 
FS10 0:00:00 0:00:00 0:00:01 0:00:00 0:00:00 0:00:00 0:00:01 0:00:01 0:00:01 0:00:01 
FS11 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:01 0:00:01 0:00:00 0:00:02 0:00:01 
FS12 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:01 0:00:01 0:00:01 0:00:02 0:00:01 
FS13 0:00:06 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:01 0:00:01 0:00:01 0:00:01 
FS14 0:03:40 0:00:00 0:00:01 0:00:00 0:00:00 0:00:01 0:00:02 0:00:02 0:00:04 0:00:03 
FS15 0:06:10 0:00:02 0:00:01 0:00:00 0:00:00 0:00:02 0:00:02 0:00:02 0:00:06 0:00:04 
FS16 0:00:02 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:01 0:00:00 0:00:01 0:00:01 
FS17 0:00:20 0:00:00 0:00:00 0:00:00 0:00:00 0:00:01 0:00:01 0:00:01 0:00:04 0:00:02 
FS18 0:00:06 0:00:00 0:00:01 0:00:00 0:00:00 0:00:00 0:00:01 0:00:00 0:00:02 0:00:01 
FS19 0:00:02 0:00:00 0:00:00 0:00:01 0:00:00 0:00:01 0:00:01 0:00:00 0:00:01 0:00:01 
FS20 0:02:37 0:00:01 0:00:01 0:00:00 0:00:00 0:00:01 0:00:02 0:00:01 0:00:05 0:00:03 
 

When considering runtime, reduction in features and recall in Figure 11 below, we have 

determined that FS20 A6 is the better algorithm to use for this dataset. 

 

Figure 11. Top Three Clean Clinical. 
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5.7 Clean Medical Dataset   

Table 24 displays the results of the feature selection process on the clean medical dataset. 

Based solely on feature reduction, FS16 was the top ranking performer by reducing the features 

down to a feature set of 4. FS6 was the lowest ranking performer by only reducing the features 

down to a feature set of 170.  

Table 24 

Clean Medical Feature Set 

Clinical  Feature Set 

Set Attribute  

Evaluator 

Search  

Method 

Classifier # of 

Feat. 

Selected Feature List 

FS1 Cfs Subset 
Eval 

BestFirst  13 43, 105, 248, 285, 320, 322, 338, 
404, 411, 414, 416, 417, 418 

FS2 Cfs Subset 
Eval 

Genetic 
Search 

 84 39, 53, 54, 64, 70, 73, 76, 81, 86, 
89, 90, 97, 104, 105, 108, 113, 120, 
123, 124, 125, 130, 139, 149, 151, 
152, 157, 159, 164, 174, 177, 181, 
187, 188, 195, 196, 199, 201, 206, 
208, 209, 213, 224, 226, 227, 234, 
240, 244, 247, 250, 256, 257, 263, 
264, 272, 280, 282, 295, 296, 298, 
299, 300, 301, 311, 318, 320, 332, 
338, 354, 355, 356, 375, 381, 397, 
398, 402, 404, 405, 406, 411, 412, 
413, 414, 417, 418 

FS3 Cfs 
SubsetEval 

RankSearch  16 43, 91, 104, 105, 248, 256, 320, 
327, 338, 394, 404, 411, 414, 416, 
417, 418 

FS4 Classifier 
SubsetEval 

Genetic 
Search 

OneR 39 39, 53, 64, 69, 70, 73, 86, 90, 95, 
97, 105, 113, 123, 130, 152, 164, 
195, 199, 206, 208, 224, 226, 234, 
253, 257, 272, 279, 290, 298, 301, 
313, 356, 379, 381, 406, 409, 411, 
417 

FS5 Consistency 
SubsetEval 

BestFirst  11 105, 141, 245, 248, 411, 412, 413, 
414, 416, 417, 418 
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Table 24 

Cont. 

FS6 Consistency 
SubsetEval 

Genetic 
Search 

 170 39, 40, 42, 46, 53, 54, 56, 57, 58, 
62, 63, 66, 67, 70, 71, 73, 77, 78, 
79, 81, 82, 83, 84, 86, 88, 91, 93, 
94, 97, 99, 101, 103, 105, 106, 111, 
112, 113, 115, 117, 120, 121, 122, 
123, 124, 125, 126, 128, 129, 132, 
133, 138, 139, 141, 142, 143, 145, 
146, 150, 151, 152, 153, 156, 160, 
167, 169, 170, 171, 173, 176, 180, 
182, 184, 185, 186, 187, 188, 193, 
200, 203, 205, 207, 208, 212, 213, 
214, 215, 216, 220, 223, 224, 230, 
231, 233, 239, 240, 242, 243, 245, 
247, 248, 251, 252, 254, 255, 256, 
258, 259, 260, 262, 264, 272, 276, 
277, 282, 284, 285, 299, 302, 305, 
309, 310, 312, 321, 325, 333, 334, 
335, 336, 337, 338, 344, 347, 350, 
351, 356, 357, 362, 363, 364, 365, 
366, 369, 370, 371, 372, 373, 374, 
375, 382, 383, 384, 385, 387, 390, 
391, 392, 395, 397, 398, 399, 403, 
405, 406, 410, 411, 412, 413, 415, 
416, 418 

FS7 Consistency 
SubsetEval 

Linear 
Forward 
Selection 

 11 49, 105, 285, 320, 338, 357, 411, 
414, 416, 417, 418 

FS8 Consistency 
SubsetEval 

RankSearch  82 43, 49, 53, 54, 63, 64, 69, 88, 91, 
104, 105, 112, 120, 122, 123, 124, 
126, 129, 131, 135, 139, 141, 145, 
148, 157, 159, 162, 163, 164, 171, 
172, 191, 207, 209, 218, 226, 229, 
230, 245, 248, 249, 250, 251, 254, 
256, 262, 275, 279, 282, 285, 296, 
297, 298, 311, 318, 320, 321, 322, 
324, 325, 327, 334, 335, 337, 338, 
339, 355, 357, 359, 375, 384, 394, 
400, 404, 409, 411, 412, 413, 414, 
416, 417, 418 

FS9 Consistency 
SubsetEval 

Subset 
SizeForward
Selection 

 9 49, 105, 285, 357, 411, 414, 416, 
417, 418 
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Table 24 

Cont. 

FS10 Filtered 
SubsetEval 

BestFirst  10 105, 285, 320, 338, 404, 411, 414, 416, 
417, 418 

FS11 Filtered 
SubsetEval 

Genetic 
Search 

 84 39, 53, 54, 64, 70, 73, 76, 81, 86, 89, 90, 
97, 104, 105, 108, 113, 120, 123, 124, 
125, 130, 139, 149, 151, 152, 157, 159, 
164, 174, 177, 181, 187, 188, 195, 196, 
199, 201, 206, 208, 209, 213, 224, 226, 
227, 234, 240, 244, 247, 250, 256, 257, 
263, 264, 272, 280, 282, 295, 296, 298, 
299, 300, 301, 311, 318, 320 ,332, 338, 
354, 355, 356, 375, 381, 397, 398, 402, 
404, 405, 406, 411, 412, 413, 414, 417, 
418 

FS12 Filtered 
SubsetEval 

Rank 
Search 

 10 91, 104, 256, 320, 327, 338, 404, 411, 
414, 417 

FS13 Wrapper 
SubsetEval 

BestFirst Naïve 
Bayes 

9 41, 45, 145, 172, 228, 285, 334, 411, 
416 

FS14 Wrapper 
SubsetEval 

BestFirst Bagging 8 46, 179, 244, 381, 402, 409, 411, 415 

FS15 Wrapper 
SubsetEval 

Genetic 
Search 

Bagging 169 39, 42, 43, 45, 49, 50, 51, 55, 58, 61, 63, 
65, 66, 67, 68, 70, 71, 73, 77, 78, 79, 80, 
82, 86, 88, 89, 91, 94, 97, 99, 100, 101, 
102, 105, 109, 110, 111, 112, 113, 115, 
116, 119, 121, 127, 131, 132, 137, 139, 
141, 142, 145, 147, 149, 150, 152, 153, 
155, 156, 157, 163, 164, 166, 167, 170, 
173, 174, 176, 177, 181, 183, 185, 186, 
187, 188, 189, 197, 198, 200, 202, 203, 
204, 205, 220, 223, 224, 226, 228, 231, 
233, 236, 237, 238, 242, 247, 251, 252, 
253, 255, 256, 257, 260, 262, 264, 265, 
267, 270, 272, 273, 274 277, 278, 279, 
281, 282, 284, 285, 286, 288, 289, 290, 
294, 298, 301, 305, 312, 313, 316, 321, 
324, 33,3 339, 340, 341, 345, 346, 349, 
353, 357, 360, 361, 363, 364, 365, 366, 
367, 371, 375, 380, 382, 383, 384, 387, 
388, 390, 391, 392, 395, 398, 399 403, 
404, 405, 406, 409, 411, 413, 415, 416 
417 
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Table 24 

Cont. 

FS16 Wrapper 
SubsetEval 

Greedy 
Stepwise 

Naïve 
Bayes 

4 130, 145, 285, 411 

FS17 Wrapper 
SubsetEval 

Linear 
Forward 
Selection 

Naïve 
Bayes 

9 104, 105, 124, 285, 327, 337, 338, 411, 
417 

FS18 Wrapper 
SubsetEval 

RankSearch Naïve 
Bayes 

10 91, 104, 256, 320, 327, 338, 404, 411, 
414, 417 

FS19 Wrapper 
SubsetEval 

Subset 
SizeForward
Selection 

Naïve 
Bayes 

5 104, 105, 285, 411, 417 

FS20 Wrapper 
SubsetEval 

Subset 
SizeForward
Selection 

Bagging 9 120, 276, 282, 285, 320, 404, 411, 416, 
417 

 

Table 25 exhibits the results of the classification process on the clean medical dataset. 

We calculated the accuracy (AC), precision (PR), recall (RC) and F-measure (FM). FS1 A6, FS5 

A3 and FS17 A4 (97.0256%) were equal in accuracy, FS4 A8 (0.969) in precision FS17 A2 

(0.92) for recall and FS5 A3 and FS17 A4 for F-Measure (0.903). Based solely on AC and FM, 

FS17 A4 is the top ranking performer.  

 The clean medical time elapsed table featured in Table 26 shows that based on the sum of 

the time elapsed for feature selection and classification, FS9 (0:00:22) had the best performance 

and FS15 (0:59:26) had the poorest performance.



 
 

 

Table 25 

Clean Medical: Precision, Recall and F-Measure Rates 

Features Classifiers 

Name Metric A1 A2 A3 A4 A5 A6 A7 A8 A9 

FS1 AC 96.2522% 96.6092% 96.2522% 96.4307% 95.9548% 97.0256% 96.4902% 96.3712% 96.2522% 
  PR 0.894 0.9 0.885 0.889 0.877 0.931 0.908 0.925 0.888 
  RC 0.864 0.883 0.875 0.883 0.864 0.875 0.864 0.837 0.871 
  FM 0.879 0.891 0.88 0.886 0.87 0.902 0.885 0.879 0.88 

FS2 AC 96.3712% 93.2183% 96.0738% 94.5271% 95.8358% 96.9661% 96.0143% ERROR 96.2522% 
  PR 0.944 0.762 0.899 0.795 0.862 0.946 0.883  0.897 
  RC 0.86 0.826 0.845 0.879 0.875 0.856 0.86  0.86 
  FM 0.882 0.793 0.871 0.835 0.868 0.899 0.871  0.878 

FS3 AC 96.0738% 95.8358% 96.4902% 96.2522% 95.8953% 96.6092% 96.4307% 95.8358% 96.4307% 
  PR 0.893 0.873 0.893 0.9 0.871 0.916 0.902 0.918 0.905 
  RC 0.852 0.86 0.883 0.856 0.867 0.864 0.867 0.807 0.864 
  FM 0.872 0.866 0.888 0.878 0.869 0.889 0.884 0.859 0.884 

FS4 AC 96.1927% 93.4563% 96.2522% 95.3004% 95.8358% 95.6573% 95.8953% 95.122% 95.8953% 
  PR 0.913 0.806 0.921 0.849 0.862 0.863 0.874 0.969 0.901 
  RC 0.837 0.769 0.833 0.852 0.875 0.86 0.864 0.712 0.83 
  FM 0.874 0.787 0.875 0.851 0.868 0.861 0.869 0.821 0.864 

FS5 AC 96.3712% 96.6092% 97.0256% 96.4902% 95.8358% 96.8471% 96.5497% 96.2522% 96.3117% 
  PR 0.901 0.916 0.921 0.905 0.862 0.924 0.909 0.943 0.891 
  RC 0.864 0.864 0.886 0.867 0.875 0.871 0.867 0.811 0.871 
  FM 0.882 0.889 0.903 0.886 0.868 0.897 0.888 0.872 0.881 

FS6 AC 96.6686% 86.5556% 96.6092% 94.4676% 96.2522% 96.9661% 96.8471% ERROR 95.8953% 
  PR 0.903 0.711 0.9 0.798 0.885 0.928 0.92   0.871 
  RC 0.883 0.242 0.883 0.867 0.875 0.875 0.875   0.867 
  FM 0.893 0.362 0.891 0.831 0.88 0.901 0.897   0.869 86 



 
 

 

Table 25 

Cont.  

FS7 AC 96.4307% 96.2522% 95.7763% 96.1333% 95.9548% 96.6092% 96.4902% 96.6092% 96.1333% 
  PR 0.905 0.879 0.864 0.867 0.877 0.919 0.908 0.94 0.884 
  RC 0.864 0.883 0.867 0.89 0.864 0.86 0.864 0.837 0.867 
  FM 0.884 0.881 0.866 0.879 0.87 0.888 0.885 0.886 0.876 

FS8 AC 96.6686% 93.6942% 96.6686% 93.5158% 95.8358% 96.9066% 96.5497% 60.2023% 96.3117% 
  PR 0.913 0.797 0.919 0.751 0.862 0.938 0.909 0.904 0.885 
  RC 0.871 0.803 0.864 0.879 0.875 0.86 0.867 0.688 0.879 
  FM 0.891 0.8 0.891 0.81 0.868 0.897 0.888 0.782 0.882 

FS9 AC 96.4307% 96.0143% 96.1927% 96.2522% 95.9548% 96.9661% 96.4902% 96.6092% 96.1927% 
  PR 0.902 0.866 0.885 0.865 0.877 0.921 0.908 0.94 0.882 
  RC 0.867 0.883 0.871 0.902 0.864 0.883 0.864 0.837 0.875 
  FM 0.884 0.874 0.878 0.883 0.87 0.901 0.885 0.886 0.878 

FS10 AC 96.3117% 96.3712% 96.1927% 96.2522% 95.9548% 96.9661% 96.4902% 96.1927% 96.4307% 
  PR 0.898 0.886 0.888 0.879 0.877 0.931 0.908 0.924 0.892 
  RC 0.864 0.883 0.867 0.883 0.864 0.871 0.864 0.826 0.879 
  FM 0.88 0.884 0.877 0.881 0.87 0.9 0.885 0.872 0.885 

FS11 AC 96.3712% 93.2183% 96.0738% 94.5271% 95.8358% 96.9661% 96.0143% ERROR 96.2522% 
  PR 0.904 0.762 0.899 0.795 0.862 0.946 0.883   0.897 
  RC 0.86 0.826 0.845 0.879 0.875 0.856 0.86   0.86 
  FM 0.882 0.793 0.871 0.835 0.868 0.899 0.871   0.878 

FS12 AC 95.8953% 95.8953% 95.7763% 96.1333% 95.8358% 95.4194% 95.9548% 95.122% 96.3117% 
  PR 0.892 0.885 0.918 0.913 0.862 0.87 0.871 0.96 0.935 
  RC 0.841 0.848 0.803 0.833 0.875 0.833 0.871 0.72 0.822 
  FM 0.865 0.867 0.857 0.871 0.868 0.851 0.871 0.823 0.875 

FS13 AC 96.3712% 96.7876% 96.4902% 96.9066% 95.8953% 96.4307% 96.3712% 96.4307% 96.4902% 
  PR 0.889 0.917 0.89 0.902 0.876 0.905 0.898 0.915 0.89 
  RC 0.879 0.875 0.886 0.902 0.86 0.864 0.867 0.852 0.886 
  FM 0.884 0.895 0.888 0.902 0.868 0.884 0.882 0.882 0.888 87 



 
 

 

Table 25 

Cont.  

FS14 AC 96.4902% 94.3486% 96.3712% 94.765% 95.8358% 96.1333% 96.3117% 95.4194% 96.2522% 
  PR 0.912 0.851 0.911 0.841 0.862 0.896 0.895 0.952 0.907 
  RC 0.86 0.777 0.852 0.822 0.875 0.852 0.867 0.746 0.848 
  FM 0.885 0.812 0.881 0.831 0.868 0.874 0.881 0.837 0.877 

FS15 AC 96.5497% 89.1136% 96.9066% 95.003% 96.2522% 96.7281% 96.7876% ERROR 96.3117% 
  PR 0.893 0.694 0.921 0.808 0.885 0.92 0.92   0.888 
  RC 0.886 0.549 0.879 0.894 0.875 0.867 0.871   0.875 
  FM 0.89 0.613 0.899 0.849 0.88 0.893 0.895   0.882 

FS16 AC 96.3712% 96.2522% 96.2522% 96.6686% 95.8358% 95.0625% 96.3117% 93.7537% 96.6092% 
  PR 0.889 0.894 0.868 0.882 0.862 0.849 0.888 0.954 0.897 
  RC 0.879 0.864 0.898 0.909 0.875 0.833 0.875 0.633 0.886 
  FM 0.884 0.879 0.883 0.896 0.868 0.841 0.882 0.761 0.891 

FS17 AC 96.1333% 96.3117% 96.0738% 97.0256% 95.8358% 96.1333% 95.8358% 94.2891% 96.6092% 
  PR 0.9 0.856 0.878 0.925 0.862 0.887 0.865 0.947 0.888 
  RC 0.848 0.92 0.871 0.883 0.875 0.864 0.871 0.674 0.898 
  FM 0.873 0.887 0.875 0.903 0.868 0.875 0.868 0.788 0.893 

FS18 AC 95.8953% 95.8953% 95.7763% 96.1333% 95.8358% 95.4194% 95.9548% 95.122% 96.3117% 
  PR 0.892 0.885 0.918 0.913 0.862 0.87 0.871 0.96 0.935 
  RC 0.841 0.848 0.803 0.833 0.875 0.833 0.871 0.72 0.822 
  FM 0.865 0.867 0.857 0.871 0.868 0.851 0.871 0.823 0.875 

FS19 AC 96.1927% 96.4902% 96.0738% 96.8471% 95.8358% 96.1927% 95.8358% 94.5271% 96.4307% 
  PR 0.903 0.873 0.878 0.901 0.862 0.882 0.865 0.943 0.889 
  RC 0.848 0.909 0.871 0.898 0.875 0.875 0.871 0.693 0.883 
  FM 0.875 0.891 0.875 0.899 0.868 0.878 0.868 0.799 0.886 

FS20 AC 96.6092% 96.0738% 96.1333% 96.3712% 95.8953% 96.6092% 96.3117% 96.3712% 96.0738% 
  PR 0.9 0.884 0.89 0.901 0.876 0.912 0.901 0.951 0.899 
  RC 0.883 0.864 0.86 0.864 0.86 0.867 0.86 0.811 0.845 
  FM 0.891 0.874 0.875 0.882 0.868 0.889 0.88 0.875 0.871 88 
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Table 26 

Clean Medical Time Elapsed 

Features Classifiers (Time Elapsed) 

Name Time A1 A2 A3 A4 A5 A6 A7 A8 A9 

FS1 0:00:00 0:00:01 0:00:01 0:00:01 0:00:00 0:00:01 0:00:01 0:00:02 0:00:16 0:00:02 
FS2 0:00:08 0:00:03 0:00:03 0:00:03 0:00:01 0:00:07 0:00:05 0:00:13 0:00:43 0:00:15 
FS3 0:00:09 0:00:01 0:00:02 0:00:01 0:00:00 0:00:01 0:00:01 0:00:02 0:00:17 0:00:02 
FS4 0:00:15 0:00:02 0:00:01 0:00:01 0:00:01 0:00:03 0:00:05 0:00:06 0:00:16 0:00:03 
FS5 0:00:05 0:00:00 0:00:01 0:00:00 0:00:00 0:00:01 0:00:01 0:00:02 0:00:22 0:00:02 
FS6 0:00:03 0:00:06 0:00:04 0:00:08 0:00:01 0:00:13 0:00:05 0:00:26 0:01:58 0:00:23 
FS7 0:00:02 0:00:00 0:00:01 0:00:01 0:00:00 0:00:01 0:00:01 0:00:02 0:00:15 0:00:01 
FS8 0:00:03 0:00:03 0:00:02 0:00:03 0:00:01 0:00:07 0:00:03 0:00:13 0:00:50 0:00:09 
FS9 0:00:02 0:00:00 0:00:01 0:00:00 0:00:00 0:00:01 0:00:01 0:00:01 0:00:14 0:00:02 
FS10 0:00:01 0:00:00 0:00:01 0:00:01 0:00:01 0:00:01 0:00:01 0:00:02 0:00:15 0:00:01 
FS11 0:00:08 0:00:03 0:00:03 0:00:04 0:00:01 0:00:07 0:00:05 0:00:13 0:00:42 0:00:11 
FS12 0:00:08 0:00:01 0:00:00 0:00:01 0:00:00 0:00:01 0:00:01 0:00:02 0:00:09 0:00:01 
FS13 0:07:55 0:00:01 0:00:00 0:00:00 0:00:00 0:00:01 0:00:02 0:00:02 0:00:10 0:00:01 
FS14 0:27:31 0:00:01 0:00:01 0:00:01 0:00:00 0:00:00 0:00:01 0:00:01 0:00:09 0:00:02 
FS15 0:56:05 0:00:06 0:00:06 0:00:08 0:00:01 0:00:13 0:00:06 0:00:25 0:01:53 0:00:23 
FS16 0:01:28 0:00:01 0:00:01 0:00:00 0:00:00 0:00:01 0:00:01 0:00:01 0:00:04 0:00:01 
FS17 0:01:19 0:00:01 0:00:01 0:00:00 0:00:00 0:00:01 0:00:02 0:00:02 0:00:06 0:00:01 
FS18 0:16:45 0:00:00 0:00:00 0:00:00 0:00:00 0:00:01 0:00:00 0:00:02 0:00:00 0:00:02 
FS19 0:00:20 0:00:01 0:00:01 0:00:00 0:00:00 0:00:01 0:00:01 0:00:01 0:00:05 0:00:01 
FS20 0:04:28 0:00:01 0:00:01 0:00:01 0:00:00 0:00:01 0:00:01 0:00:01 0:00:10 0:00:02 
 

When considering runtime, reduction in features and recall in Figure 12 below, we have 

determined that FS5 A3 is the better algorithm to use for this dataset. 

 

Figure 12. Top Three Clean Medical. 
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There is a vast amount of results from our experiment; however, after analyzing all of the 

experiments performed, and considering overall accuracy, runtime, reduction in features and 

recall, we have determined that FS16 A9 of the raw full dataset is the better algorithm to use for 

this problem. We gave more weight to recall than precision because if BV goes undiagnosed and 

therefore untreated, it can cause very harmful effects for women. On the other hand, if a woman 

is diagnosed as BV positive but in reality is negative (false positive); the consequence will 

merely be taking an inexpensive anti-biotic which will cause little to no harm for women. While 

the difference between the false negative outcomes for this data seems minimal, approximately 1 

million pregnant women are diagnosed with BV yearly. This fact highlights the significance of 

the results. Untreated BV in women increases the chance of pre-term labor and pelvic 

inflammatory disease (PID).  

The final feature set is constructed of features 2, 7, 29, 33, 34, 104, 130, 228, 241, 285, 

295, 411, 416 and 417. The feature names are displayed in Table 27. 

Table 27 

Final Feature Names 

P_ID VAG_ODOR Jonquetella corGroup6 

P_ID.1 Bacteria.10 Mycoplasma corGroup7 

TOB_USE Bifidobacterium Odoribacter 
 PH_GLOVE Haemophilus corGroup1 
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CHAPTER 6 

Conclusion and Future Research 

 In this thesis we conducted experiments using twenty different feature selection 

algorithms and analyzed the time taken by each of them. We used nine classification algorithms 

using the selected features in the previous step and studied the precision and recall of BV 

disease. Six additional datasets were created by conducting experiments on the data subsets and 

cleaning the data. We compared the accuracy, precision, recall, F-measure and runtime for each 

feature selection and classification combination. Some of the features were not present in many 

women and had minimal effect on the overall outcome. On the other hand, the features which 

were present in all the women have significant effect on the classification results.  

As the medical community continues to embrace machine learning approaches in order to 

discover ways to advance clinical studies, lower the cost of medication and aid physicians with 

expedited and more accurate diagnoses, research in this area must continue. Our future work will 

be dedicated towards conducting experiments with additional feature selection and classification 

algorithms, adjust the seed values of the deterministic algorithms to force randomization and 

manipulate the default settings on top performing algorithms. All of this will be done in an effort 

to find the optimal algorithm combinations to increase reduce features and increase accuracy for 

our BV dataset. 
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