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Abstract 

In recent years, growing attention has been devoted to the conversion of biomass into biofuels 

and biochemicals.  Biomass has several reasons to be considered as an attractive energy source.  

The main reason is that energy produced from biomass can contribute to sustainable 

development.  Aquatic biomasses—microalgae, duckweed, and cattail—are considered as 

promising biomass sources due to their favorable characteristics such as high growth rate and 

low lignin content.  The objective of this study was to produce biofuel- ethanol through 

Simultaneous Saccharification and Fermentation (SSF) of fresh algae, duckweed and cattail 

biomass by E. coli and to produce acetic acid by C. thermoaceticum fermentation of cattail, using 

ultrasonic pretreatment and 4% NaOH pretreatment, respectively.  Effect of change in process 

parameters (Enzyme concentration, temperature, E. coli concentration) on ethanol yield and 

protein content was investigated for microalgae.  For microalgae, highest ethanol yield at 77.7% 

of theoretical value was obtained at 37°C with 0.5g/L E. coli concentration, with 15 FPU 

cellulase/g glucan and with 0.5% (w/v) biomass concentration.  The protein content of fresh 

algae after SSF was increased and the highest protein of the algal residue was 10%.  For fresh 

duckweed fermentation, combined heat treatment and ultrasonic treatment resulted in the highest 

ethanol yield at 96% of theoretical value obtained at 37°C, 15FPU enzyme concentration and 1% 

(w/v) biomass concentration.  For cattail, the ethanol yield at 8% of theoretical value was 

obtained.  Although the ethanol yield from SSF of fresh cattail was very low, cattail juice was 

used successfully to grow microalgae Chlorella sp.  Acetic acid of 0.212g/g of biomass was 

obtained by Clostridium fermentation of pretreated cattail.  Production of acetic acid was 

hindered by the initial acetate concentration. 
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CHAPTER 1 

Introduction 

The quick growth of the world population and rapid progress of a number of emerging 

economies have both directed to a sharp increase in global energy consumption.  However, the 

increasing cost of fossil fuels as well as the escalating social and industrial awareness of the 

environmental impacts associated with the use of fossil fuels has created the need for more 

sustainable fuel options which are both more economic and environmentally friendly.  Biomass 

is one of the most promising renewable resources used to generate different types of biofuels 

such as biodiesel and bioethanol [1, 2].  In recent years, growing attention has been devoted to 

the conversion of biomass into fuel ethanol, considered the cleanest liquid fuel alternative to 

fossil fuels.  Significant advances have been made towards the technology of ethanol 

fermentation [3].  Biomass has several reasons to be considered as an attractive energy source.  

The main reason is that energy produced from biomass can contribute to sustainable 

development.  Resources are often locally obtainable, conversion of biomass into secondary 

energy carriers such as biofuels is feasible without high capital investments and biomass energy 

can play an important role in reducing greenhouse gas emissions.  Furthermore, since energy 

plantations may also generate new employment opportunities in rural areas, it also contributes to 

the social aspect of sustainability.  In addition, application of agro-industrial residues in 

bioprocesses not only provides alternative substrates but also helps solve their disposal problem.  

With the advent of biotechnological innovations, mainly in the area of enzyme and fermentation 

technology, many new opportunities have opened for the effective utilizations of biomass [3-5]. 
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 Corn grain is currently the dominant feedstock for bioethanol production in the United 

States [6, 7].  In 2009, the US ethanol industry produced a record of 40 billion liters of ethanol 

from corn starch, at an increase of 18% over the previous year  [6, 8].  However, since corn is 

also an important food source, its conversion for energy purposes would put much stress on food 

supplies [9].  Moreover, intensive corn production has raised environmental concerns such as 

high requirements for agricultural inputs, which results in substantial environmental pollution, 

and soil erosion than that of any other crop [5, 6].  Therefore, it is necessary to investigate novel 

biomass sources to supplement corn starch to make ethanol industry more sustainable and 

environmentally friendly [6]. 

Currently, most of bioethanol research is focused on the exploitation of (ligno-) cellulosic 

sources either from non-food crops, or waste residues from agriculture (second generation 

biofuels).  Lignocellulosic biomass generally contains 55–75% (of dry matter) carbohydrate [10].  

Although lignocellulosic biomass are favorable because of its superiority in productivity, second 

generation biofuels are uneconomic, due to high cost involved in biomass handling and 

pretreatment process.  Lignocellulosic biomass contains a large amount of lignin which reduces 

the accessibility of cellulose by cellulase enzyme.  Indeed less than 20% of cellulose in native 

biomass can be enzymatically saccharified unless effective and energy-intensive pretreatments 

are carried out [11].   

Aquatic biomass such as microalgae, duckweed and cattail are considered as promising 

biomass sources for the production of biofuels due to their favorable characteristics such as high 

growth rate and low lignin content.  Microalgae are gaining interest in the current energy 

scenario due to their high photosynthetic rate, fast growth potential coupled with relatively high 

contents of lipid, carbohydrate and nutrients.  All of these properties render them an excellent 
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source for biofuels; as well as a number of other valuable pharmaceutical products [12, 13].  The 

current interests in producing bioethanol are focused on microalgae as a feedstock for 

fermentation process [14].  Microalgae like Chlorella, Chlamydomonas, Dunaliella, 

Scenedesmus, and Tetraselmis possess high carbohydrate content.  These carbohydrate-rich 

microalgae can be used for bioethanol production via various hydrolysis strategies and 

fermentation processes.  To date, few studies have reported using microalgae for ethanol 

production [1].  Duckweed, from the family Lemnaceae, is the world’s smallest angiosperm and 

a small, free-floating aquatic plant with the characteristics of fast multiplication, easy to grow, 

and resistance to bacteria [15].  Depending on the duckweed species and the growing conditions 

applied, starch content ranging from 3 to 75% and cellulose content of 10-25% have been 

reported.  Duckweed has the potential to decontaminate effluent streams from swine wastewater 

and food processing.  Duckweed also has low-lignin content.  Hence it could provide a more 

suitable source of cellulose for the production to biofuels [6, 11].  Typha species, commonly 

known as Cattails have been identified as a particularly suitable biomass crop for wetlands 

mainly because of their superiority in productivity (40+ metric ton/ha standing crops).  

Furthermore, Cattails have better pest resistance, adaptability, and chemical composition than 

some of the available lignocellulosic biomass.  It has been reported that cattails contain 47.6% 

cellulose and 21.9% lignin.  Based on this composition, it is possible that, after appropriate 

fractionations, cattails could be a good source for the production of fuel ethanol [16, 17].   

In this study three aquatic biomasses—algae, duckweed, and cattails were chosen as 

biomass sources to produce biofuel—ethanol through simultaneous saccharification and 

fermentation process by E. coli.  Fresh biomass was used instead of dry biomass to reduce the 

cost involved drying during conventional biomass handling and to take advantage of high 
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moisture content of these three aquatic biomasses.  Besides ethanol production, cattail juice was 

used as a growth medium of microalgae and recycled to the fermentation process to enhance the 

sustainability.   

1.1 Thesis Objectives 

The overall objective of this research was sustainable production of biofuels and 

biochemicals from three fresh aquatic biomasses—algae, duckweed, and cattail (Figure 1-3).   

The specific objectives of this thesis research were to:   

1. Investigate and compare the conversion of fresh biomass of cattail, duckweed and 

microalgae into biofuel-ethanol through Simultaneous Saccharification and Fermentation 

(SSF) process using various pretreatment methods;  

2. Analyze the effect of fermentation on protein content of microalgal biomass;  

3. Investigate the usefulness of liquid juice separated from biomass as a culture medium for 

microalgae; and 

4. Investigate the conversion of lignocellulosic biomass cattail into acetic acid by the 

fermentation of Clostridium thermoaceticum. 

 

 

 

 

 

 

 

 



7 

 

 

 
 

Figure 1. Block diagram of ethanol production from fresh cattail biomass. 

 

Figure 2. Block diagram of ethanol production from duckweed and algae biomass. 
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Figure 3. Block diagram of acetic acid production from biomass. 
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CHAPTER 2 

Literature Review 

2.1 Current Status of Production and Utilization of Bioethanol 

 During the last decade, the production of ethanol from biomass materials received more 

attention in the United States (U.S.) and worldwide.  In the U.S., bioethanol is primarily 

produced from corn starch feedstocks while in Brazil biofuel is mainly produced from sugarcane 

juice and molasses.  Together, these two countries account for 89% of the current global 

bioethanol production.  Table 1 shows the world production of fuel ethanol in 2008.  According 

to the statistics conducted by the renewable fuels association, the production of bioethanol in the 

U.S. by year 2009 was 10.9 billion gallons representing 55% of the worldwide production [18].  

On average, 73% of produced ethanol worldwide corresponds to fuel ethanol, 17% to beverage 

ethanol and 10% to industrial ethanol [19].   

Table 1 

World Production of Fuel Ethanol in 2008 [20] and [21] 

Country Millions of gallons Country Millions of gallons 

USA 9000.0 Other 128.4 

Brazil 6472.2 Thailand 89.8 

European Union 733.6 Cambodia 79.29 

China 501.9 India 66.0 

Canada 237.7 Australia 26.4 

Total 17,335.2   

 

 European countries produce only 5% of the total amount of bioethanol worldwide while 

biodiesel produced in Europe primarily in France and Germany remains by far more substantial 

and accounts for approximately 56% of the global production.  Although, most of the remaining 
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countries in the world collectively account for only 5% of the global bioethanol production, 

China, Thailand as well as India are continuing to invest substantially in agricultural 

biotechnology and emerge as potential biofuel producers [18].   

2.2 Biomass for Bioethanol Production 

 Various biomass sources have been identified as alternate source of energy fuels.  These 

biomass sources range from various kinds of bio-wastes such as food wastes, municipal wastes 

and agricultural wastes, energy crops such as switchgrass, edible and non-edible oilseeds and 

various aquatic plants [13].  Currently, bioethanol is mainly derived from sucrose (e.g., 

sygarcabe) and starch crops (e.g., corn) as well as lignocellulosic materials (e.g., rice straw and 

switchgrass) [22].  However, the use of agricultural crops or agricultural wastes as feedstock for 

bioethanol production still presents a number of problems such as high demand of arable lands 

and water supply, and high costs involved in converting lignocellulosic materials into ethanol 

[1]. 

Cellulosic ethanol is attractive because feedstocks that include the crop residues such as 

wheat straw, corn stover, grass, paper, cardboard, wood chips, and other fibrous plant material, 

are cheap and abundant.  As the lignoellulosic feedstock is outside the human food chain, it does 

not raise moral or ethical issues like the use of corn.  The conversion of  cellulosic feedstocks 

into ethanol requires less fossil fuel compared to corn so the production of lignocellulosic 

ethanol  can reduce more greenhouse-gas emissions than  corn ethanol [20].   

Cellulosic biomass contains three main components: cellulose, lignin, and 

hemicelluloses.  On average, lignocellulosic biomass has around 26% lignin, 44% cellulose and 

30% hemicellulose [20, 23].  Cellulosic biomass also contains sugars, but they are much harder 

to extract than those in corn, sugarcane, and other starchy biomass.  Therefore, special 
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pretreatments are necessary to release the sugars.  Three major steps are involved in production 

of cellulosic ethanol: pretreatment, hydrolysis, and fermentation.  Several by-products formed 

during the pretreatment process can inhibit fermentation, and also some of the sugars from 

cellulosic biomass are difficult to be fermented by a microorganism.  A process flow diagram 

showing the essential steps of production of ethanol from cellulosic biomass is given in Figure 4. 

 

Figure 4. Processing of cellulosic biomass for ethanol production [20]. 

2.3 Aquatic Biomasses for the Treatment of Wastewater and Production of Biofuels 

2.3.1 Cattail.  The genus Typha, a member of the grass family group is extremely 

resilient in that it can grow in a wide variety of wet conditions.  They can tolerate high quantities 

of salts and are useful in phytoremediation, not only cleaning waste from water supplies but 

taking up heavy metals, chemicals, and consume microbes.  Cattails planted in shallow sewage 

wastewater plants can be used as effective secondary sewage treatment and achieve two to three 

times of their  growth in a natural environment [16, 24]. 

The majority of the starch in cattails is in the rhizomes which constitute the majority of 

the dry weight of the plants.  The rest of the plant is mostly cellulose with a small but significant 

quantity of fermentable sugars in the leaf and stock.  Hence the entire plant can be processed to 

supply sugars for fermentation.  It has been reported that cattails contain 47.6% cellulose and 

21.9% lignin.  Glucose from cattails cellulose can be efficiently fermented to ethanol with an 
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approximately 90% of the theoretical yield [25].  Different pretreatment methods such as dilute 

acid pretreatment, alkaline pretreatment and hot water pretreatment have been used  to treat dry 

cattail for the production of bioethanol [16, 25].  In this study fresh green cattail pretreated with 

an ultrasonic homogenizer was used for ethanol production to save the energy for drying cattail. 

2.3.2 Duckweed.  Duckweed is a small, green floating aquatic plant belonging to the 

Lemnaceae family that can be easily found in quiescent or slowly flowing waters and also in 

relatively polluted waters worldwide [26].  It has a longer production period than most other 

plants, even growing year-round in some areas with a warm climate [27].  It accumulates its 

biomass at more rapid rates than other higher plants, including agricultural crops.  Duckweed has 

a doubling time of 2–7 days [15].  Besides, duckweed shows a high ability to remove nutrients 

from wastewater, and it has been widely applied for the treatment of municipal and industrial 

wastewaters in many countries, including Bangladesh, Israel and the USA [28-30].   

Currently, duckweed is used as animal fodder due to its high protein content.  One way to 

produce large amounts of duckweed with low cost may be to use nutrients in animal waste 

lagoons [31, 32].  Lemna minor 8627 that was selected from 41 geographic isolates was found to 

remove 83% TKN, 100% NH3-N, 49% P, and 68% TOC within 12 days when grown on 50% 

swine lagoon effluent [33].  The biomass production of duckweed was higher when grown in a 

municipal settling pond with a yield ranging from 10-14 g/m
2
/day or 40-56 dry tons/hectare/year 

[26].  Thus, the co-production of protein and bio-fuels from duckweed grown in swine lagoons 

has the strong potential to be economically feasible.   

Duckweed has a dry weight protein content around 35%, cellulose content around 12%, 

hemicellulose around 14%, lignin around 3%, starch around 3.4%, and crude fat around 3.5% 

[34].  The annual yields of the duckweed Spirodela polyrrhiza and Lemna gibba were 20.4 and 
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54.8 t/ha in dry matter (DM) [35, 36], compared to  the annual yields of 5.22 and 7.66 t/ha for  

corn and cornstover respectively [37].  With duckweed’s high biomass production rate, most 

methods to upgrade duckweed into more valuable bioethanol render yields on a per area/per year 

basis competitive with any other feedstock available.  As duckweed has a very little amount of 

lignin compared to other lignocellulosic biomass, enzymatic hydrolysis or dilute acid hydrolysis 

is the most feasible approach to release the sugars from the duckweed for the conversion of 

duckweed to bioethanol.  Additionally, duckweed contains several co-products that could reduce 

the overall cost of ethanol production.  There are several previously unaccounted benefits to 

duckweed.  First, duckweed has a high protein content of approximately 35% of its dry mass, 

which could be extracted and used as animal feed.  Secondly, when duckweed grows, it absorbs 

nutrients from the water; thus, duckweed acts as a bioremediator.  This feature would be 

beneficial to farmers with swine lagoons or potentially integrated into a waste water treatment 

facility.  Thus, when viewed as part of a bigger, integrated system designed to treat wastewater, 

to generate protein rich animal feed, and to produce cellulosic ethanol, duckweed becomes a very 

interesting plant.   

Research has also shown that duckweed is a potential starch source for ethanol 

production.  Depending on the duckweed species and the growing conditions, starch contents 

ranging from 3 to 75% have been reported.  Using enzymatic hydrolysis and yeast fermentation 

of high-starch duckweed biomass, 94.7% of the theoretical starch conversion was achieved in 

pilot scale study [6].  However, there are only a few published reports on ethanol fermentation 

from duckweed [22], [24].  This study was to improve the ethanol yield from duckweed by 

increasing sugar release through enzymatic treatment and acid hydrolysis.  Finally, ethanol 

production from pretreated duckweed by E. coli KO11 was also investigated. 
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 2.3.3 Microalgae.  Microalgae have recently been considered as a third generation 

feedstock for biofuel production [22], with the focus on the production of biodiesel from 

microalgae [38, 39].  However, since some microalgae species have high carbohydrate content in 

the forms of starch and cellulose, they are also excellent substrates for bioethanol production.  

The use of carbohydrate-rich microalgal biomass for bioethanol production is advantageous, 

since microalgae grow faster and fix CO2 at a higher rate than terrestrial plants.  In addition, 

microalgae based carbohydrates are mainly in the form of starch and cellulose with the absence 

of lignin, are thus much easier to be converted to monosaccharides compared with 

lignocellulosic materials [12, 40, 41]. 

Like other plants, many algal species have rigid cellulose-based cell walls and 

accumulate starch as their main carbohydrate storage compounds and cell wall structure, which 

contains an astonishingly diverse range of simple and complex carbohydrates.  Some of marine 

algal species contain up to 70% of polysaccharides, i.e., cell wall polysaccharides (cellulose, 

hemicelluloses, xylan, and mannan), intercellular polysaccharides (sulfated 

glucuronoxylorhamnan, algine, agar, and carrageenin), and storage polysaccharides (amino 

pectin, laminaran and floridean starch).  Both intercellular and cell wall polysaccharides can be 

converted into fermentable sugars.  The majorities of algal polysaccharides are potential 

biochemical feedstock and can be fermented into ethanol [42].  Table 2 shows the amount of 

carbohydrates and protein measured from different algal species.   
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Table 2 

Amount of Protein and Carbohydrates from Various Species of Microalgae on a Dry Matter 

Basis (%)[40, 43]. 

Algae strains Proteins Carbohydrates 

Scenedesmus obliquus 50–56 10–17 

Scenedesmus quadricauda 47 – 

Scenedesmus dimorphus 8–18 21–52 

Chlamydomonas rheinhardii 48 17 

Chlorella vulgaris 51–58 12–17 

Chlorella pyrenoidosa 57 26 

Dunaliella bioculata 49 4 

Dunaliella salina 57 32 

Euglena gracilis 39–61 14–18 

Prymnesium parvum 28–45 25–33 

Tetraselmis maculate 52 15 

Porphyridium cruentum 28–39 40–57 

Spirulina platensis 46–63 8–14 

Spirulina maxima 60–71 13–16 

Synechoccus sp. 63 15 

Anabaena cylindrical 43–56 25–30 

 

The microorganisms of bacteria, yeast or fungi are used to ferment sugars hydrolyzed 

from carbohydrates into ethanol under anaerobic conditions.  Besides the main product of 

ethanol, carbon dioxide and water are also formed as by-products.  In general, according to 

simplified reaction equation below, theoretical maximum yields are 0.51 kg ethanol and 0.49 kg 

CO2 per kg of carbon sugar, glucose [40]. 

 C6H12O6 → 2CH3CH2OH + 2CO2 
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The gross chemical composition of microalgae is highly dependent on environmental 

factors such as light intensity, temperature and availability of nutrients.  Generally, microalgae 

contain varying proportions of proteins, lipids, carbohydrates, nucleic acids, pigments and 

vitamins.  Carbohydrates in microalgae in the form of starch, glucose, sugars and other 

polysaccharides are present in concentrations ranging from 5% to 50% dry mass weight [39, 44].  

Microalgae like Chlorella, Chlamydomonas, Dunaliella, Scenedesmus, and Tetraselmis have 

been shown to accumulate a large amount of carbohydrates [45].  Microalgae are a potential 

source of fermentable substrate as they may have high levels of carbon compounds in their 

composition, directly available for fermentation or after pre-treatment depending on their growth 

conditions.  Several microalgae can be used to produce ethanol via fermentation, such as 

Chlamydomonas sp., Chlorella sp., Oscillatoria sp., Cyanothece sp., and S. platensis [46].  The 

Chlorella vulgaris microalgae can be used as a source for the production of ethanol due to its 

high carbohydrate content, with conversion efficiency above 65.0%.  Ueno et al. [46] obtained 

the maximum formation of ethanol from Chlorella sp. cultivated at 30.0°C of 448.0 µmol/g in 

dry weight [47]. 

 Figure 5 shows the summary of the upstream and downstream of microalgal processing 

steps to produce ethanol.  The carbohydrates from the cell wall must be hydrolyzed before they 

can be used as a feedstock for fermentation, which can be accomplished by pretreatment 

followed by enzymatic hydrolysis of the biomass into suitable fermentable sugars.  The most 

effective enzyme concentration for a high ethanol yield should be 0.001–0.05%, based on the 

volume unit of the enzyme for every weight unit of the feedstock [48].  Compared to untreated 

microalgae, pretreatment increased the efficiency of the fermentation process by more than 33% 

[49] and the ethanol production by more than 60%.  However, pretreatment increases the energy 
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consumption by up to 30% of the overall energy requirement for the fermentation process.  

Ethanol yields from microalgae can be further improved by combining them with a hydrolysis 

separation process.  The production of ethanol from microalgae can be improved by using yeast 

in an immobilized fermenter.  The immobilized reactor is capable of increasing ethanol yields by 

approximately five-fold relative to the 50% increases of glucose in feedstock [50].  The capital 

cost of ethanol production from algae was estimated to be approximately $1.75 per gallon 

reported by the Solution Recovery Service Company [50].  Thus, the estimated sale price of 

ethanol should be higher than this.  The net life cycle energy consumption for the production of 

ethanol from microalgae was estimated to be 0.2–0.55 MJ for every 1 MJ of ethanol produced 

[13].   

 

Figure 5. An overall summary for ethanol production from microalgae. 

Very less research work has been reported on the fermentation of algae for ethanol 

production.  Moen [51] showed that brown seaweed produced higher bioethanol than other algae 

species.  Ueda et al. [52] patented a detailed system for microalgae fermentation; where, 
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microalgae were fermented in anaerobic and dark environment to produce ethanol and remaining 

algae biomass after fermentation were used in anaerobic digestion process.  The ethanol 

produced from fermentation can be purified to be used as fuel and produced CO2 was recycled to 

algae cultivation ponds as a nutrient to grow microalgae [40].   

Even though limited reports on algae fermentation were found, a number of advantages 

were observed in order to produce bioethanol from algae.  A fermentation process requires less 

energy and is simpler than a biodiesel production process.  Besides, CO2 produced as by-product 

from fermentation process can be recycled as a carbon source to cultivate microalgae to reduce 

the overall greenhouse gases emissions of the system.  However, the production of bioethanol 

from microalgae is still under investigation and this technology has not yet been commercialized 

[40].  In this study fresh green microalgae pretreated with ultrasonic homogenizer were used for 

ethanol production and the effect of fermentation on protein content was studied. 

2.4 Process Engineering of Ethanol Production from Biomass  

The overall process of biological conversion of biomass into ethanol through 

fermentation consists of four major unit operations: pretreatment, hydrolysis, fermentation, and 

ethanol separation or purification [53]. 

 2.4.1 Pretreatment.  Biomass pre-treatment is one of the most crucial and expensive 

process steps that has been widely studied  [54].  Hemicellulose and lignin content, cellulose 

crystallinity and available surface area of biomass are some of the major factors that affect the 

hydrolysis of cellulose and xylose for fermentation.  The pretreatment step is necessary to reduce 

the crystallinity of the biomass and increase the surface area to enhance substrate digestibility.  

Pretreatment is used to improve the efficiency of hydrolysis by disrupting the cell wall  [55].  

Through the pretreatment process, carbohydrates entrapped in the cell wall  become free and it 
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also helps to breakdown complex carbohydrates into fermentable sugars for bioethanol 

production [56].  After the disruption, the carbohydrates are released from the intracellular 

medium requiring further processing to obtain monosaccharides [45].   

 Pretreatment must meet the following criteria: (a) Improve the formation of sugars or the 

ability to subsequently form sugars by enzymatic hydrolysis; (b) Avoid the degradation or loss of 

carbohydrate; (c) Avoid the formation of byproducts inhibitory to the subsequent hydrolysis and 

fermentation processes; and (d) Be cost-effective.  In order to disrupt the cell wall, various 

methods have been tested-Physical, physic-chemical, chemical, and biological processes as a 

pretreatment.  The physical methods could be high-pressure homogenizers, bead beating, 

freezing, sonication, and autoclaving [9, 45, 56]. 

2.4.1.1 Physical pretreatment.  Physical pretreatment involves the reduction of particle 

size and cellulose crystallinity.  The reduction in particle size leads to an increase in surface area.  

Physical pretreatment are normally done by the comminution of the biomass materials via 

chipping, grinding, milling, bead-beating, freeze fracturing, ultrasonic cell disruptions and other 

mechanical methods. 

Bead-beating is a method in which the mechanical damage is caused directly by the 

collision of minute glass or ceramic beads spinning on high speed with the microalgal biomass.  

The small particles are vigorously agitated by shaking or stirring.  This method has been used 

both in the laboratory and at an industrial scale [57].  Freeze-fracturing, has also been used for 

the disruption of cellular walls and membranes in microorganism concentrates and plants and in 

animal tissues.  This method consists in freezing the cells at very low temperature using liquid 

nitrogen and grounding them in a mortar.  The cells are then disrupted due to their brittle nature 

and the abrasive action of ice crystals.  The final product is a powder like material that can be 
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further processed by other methods [58].  Ultrasonic disintegrators are also widely used to 

disrupt cells.  These devices generate intense sonic pressure waves in liquid media.  Under the 

right conditions, the pressure waves cause the formation of micro bubbles which grow and then 

collapse violently in a process called cavitation.  The resulting implosion generates a shock wave 

with enough energy to break cell membranes and walls and even covalent bonds.  Ultrasonic 

disintegrators also generate a considerable amount of heat during processing, thus the sample 

should be cooled if needed [59, 60].  It was found that using sonication before enzymatic 

pretreatment increased the oil yield up to 97% for Jatropha [61]. 

2.4.1.2 Chemical pretreatment.  The chemical lysis is a different approach to the biomass 

processing, where chemical agents of an acid or alkaline must be added (e.g., hydrochloric or 

sulfuric acid, sodium hydroxide) in order to hydrolyze the biomass into its constituent molecules 

[62].  Acids are used to solubilize hemicellulose, degrade the lignin and make cellulose 

accessible to enzymatic hydrolysis.  Acid pretreatments are done with concentrated, dilute and 

weak organic acids.  Strong acids such as sulfuric acid and hydrochloric acid in their 

concentrated and dilute forms have been used in the fractionation of lignocellulosic biomass.  

Acid hydrolysis of biomass releases oligomers and monosaccharides in a homogenous reaction 

where the acid catalyzes the breakdown of cellulose to glucose [10].   

Alkaline pre-treatment has been reported to be promising in treating various biomass 

feedstocks.  This method of pre-treatment is preferable due to the lower temperature and pressure 

involved.  In addition, alkaline pre-treatment reduces the degree of inhibition during 

fermentation and provides a lower production cost compared with other pre-treatment methods.  

Dilute sodium hydroxide (NaOH) pretreatment of lignocellulosic biomass has been reported to 

cause swelling leading to a decrease in cellulosic crystallinity and degree of polymerization.  An 
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increase in biomass surface area, separation of structural linkages between lignin and 

carbohydrates and disruption of lignin structure has also been reported by dilute sodium 

hydroxide pretreatment [54, 63, 64].  The alkaline pretreatment process can be improved further 

by the application of ultrasound [65].  The acid pre-treatment is more preferable as it provides 

higher efficiency in converting cellulosic materials.  During an acid pre-treatment process, 

various parameters significantly influence the total amount of fermentable sugars released.  

These include process time, temperature, amount of substrate loading and acid concentration [56, 

58]. 

 2.4.1.3 Biological pretreatment.  The biological pre-treatment involves the utilization of 

microbes and enzymes to degrade the biomass in order to release the fermentable sugars [56].  

Some fungi and bacteria have been identified to have the ability to degrade lignin and some 

hemicellulose off the lignocellulosic materials.  These microorganisms have very little effect on 

cellulose since the cellulose has more resistance than the other parts of lignocelluloses to be 

biologically attacked.  Several fungal species (e.  g.  brown, white and soft rot fungi) have been 

used in biomass pretreatment [66].  For example, virus infection has been utilized to disrupt 

microalgal cell wall.  This mechanism has been reported to have the potential to be applied in the 

pretreatment of biomass [67].  However, biological pretreatment is associated with a low 

hydrolysis rate which prolongs the completion time of the process step [56, 68].  In spite of the 

many cell disruption methods tested, the most efficient pretreatment method for microalgae has 

not yet been unequivocally confirmed by the scientific world [58]. 

2.4.2 Enzymatic hydrolysis.  Enzymatic hydrolysis follows the pretreatment to break 

down the cellulose component of the lignocellulose into reducing sugars that can be further 

fermented to ethanol using a microorganism.  Hydrolysis is the process of converting 
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carbohydrate polymers into monomeric sugars including hexoses and pentoses, which can be 

done chemically by acids or enzymatically by cellulases.  Cellulases are mixtures of several 

enzymes that act as a group to reduce cellulose to glucose for fermentation.  Cellulase enzymes 

are produced by both bacteria and fungi.  Three main types of enzymes can be found in 

cellulases- endocellulases, exoglucanase or cellobiohydrolase and β-glucosidase [69].  Since the 

first application of microbial enzyme in the food industry in the early 1960s, many efforts have 

been made to replace traditional acid hydrolysis with enzymatic hydrolysis in almost all glucose 

production due to higher yields under mild conditions, less by-products, and no corrosion issues.  

Thus currently enzymatic hydrolysis is preferred in both researches and industries [68].   

Mechanisms of cellulose hydrolysis have been reviewed on numerous occasions for 

second generation bioethanol production [14].  Three steps were considered in enzymatic 

hydrolysis of cellulose: adsorption of cellulase enzymes onto the surface of the cellulose, the 

biodegradation of cellulose to fermentable sugars, and desorption of cellulase.  Cellulase activity 

decreases during the hydrolysis, which is partially due to the irreversible adsorption of cellulase 

on cellulose.  Thus some studies introduced surfactants during hydrolysis to modify the cellulose 

surface property for minimizing the irreversible binding of cellulase on cellulose [9]. 

Many factors influence the enzymatic hydrolysis of cellulose including substrate 

concentration, accessible surface area of substrate, cellulase activity, enzyme loading, presence 

of inhibitors and reaction conditions such as temperature, pH, and other parameters [68].  

Substrate concentration is one of the major factors that affects the yield and initial rate of 

enzymatic hydrolysis of cellulose.  At low substrate levels, an increase of substrate concentration 

normally consequences in an increase of the yield and reaction rate of the hydrolysis.  However, 

high substrate concentration can lead to substrate inhibition, which considerably lowers the rate 
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of hydrolysis.  The degree of substrate inhibition depends on the fraction of total substrate to 

total enzyme.  The optimum substrate concentration during enzymatic hydrolysis is 10% (w/v) if 

rheological problems are to be avoided.  Hydrolysis is carried out at specific pH and temperature 

which are normally 4.5-6.5 and 45-50°C.  The susceptibility of cellulosic substrates to cellulases 

depends on the structural features of the substrate including cellulose crystallinity, degree of 

cellulose polymerization, surface area, and content of lignin [9, 68].  Increasing the dosage of 

cellulase can enhance the yield and rate of the hydrolysis to some extent, but would significantly 

increase the cost of the process.   

A cellulase dose of 10 FPU/g-cellulose is often used in the laboratory studies because it 

provides a hydrolysis profile with high levels of glucose yield in a reasonable time (48-72 h) at a 

reasonable enzyme cost.  Cellulase enzyme loadings in hydrolysis vary from 7 to 33 FPU/g 

substrate, depending on the type and concentration of substrates [9].  The formed product ethanol 

is also an inhibitor to the yeasts/bacteria that perform the fermentation.  This puts a limit to the 

concentration of fermentable sugars.  In addition, furfural, soluble lignin compounds in the liquid 

can inhibit, or even stop the fermentation [55]. 

Effectiveness of enzymatic hydrolysis, however, is still not cheap enough to make the 

hydrolysis of cellulose economically feasible, thus it is important to identify methods to 

overcome above barriers [68]. 

2.4.3 Microorganisms.  Several reports and reviews have been published on production 

of ethanol through the fermentation by microorganisms, and several bacteria, yeasts, and fungi 

have been reportedly used for the production of ethanol [3].  Table 3 shows bacterial species 

mostly used by various researchers for production of ethanol as main fermentation product. 



24 

 

 

Table 3 

Bacterial Species Used by Various Researchers for Production of Ethanol as Main Fermentation 

Product [20, 70]. 

 

Mesophilic organisms 

mmol ethanol produced per 

mmol glucose metabolized 

Clostridium sporogenes Up to 4.15a 

Clostridium Indoli (pathogenic) 1.96a 

Clostridium sphenoides 1.8a (1.8)b 

Clostridium sordelli (pathogenic) 1.7 

Zymomonas mobilis (syn. Anaerobica) 1.9 

Zymomonas mobilis subsp. Pomaceus 1.7 

Spirochaeta aurantia 1.5 (0.8) 

Spirochaeta stenostrepta 0.84 (1.46) 

Spirochaeta litoralis 1.1 (1.4) 

Erwinia amylovora 1.2 

Escherichia coli KO11 0.7–0.1 

Escherichia coli LY01 40–50 g ethanol produced/I 

Leuconostoc mesenteroides 1.1 

Streptococcus lactis 1.0 

Klebsiella oxytoca 0.94–0.98 

Kelbsiella aerogenes 24 g ethanol produced/I 

Mucor sp. M105 – 

 

Saccharomyces Cerevisiae is the primary species that has been exploited for ethanol 

production.  Other microorganisms such as Zymomonas mobilis, and Escherichia coli have also 

been intensively studied over the past three decades [70].  S. cerevisiae can produce ethanol at a 

concentration of as high as 18% of the fermentation broth, and thus is the preferred one for most 
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ethanol fermentation processes.  This yeast can grow on both simple sugars such as glucose and 

the disaccharide sucrose [3].   

 Zymomonas mobilis is an unusual gram-negative microorganism that has several 

appealing properties as a biocatalyst for ethanol production.  The microorganism has a 

homoethanol fermentation pathway and tolerates up to 120 g/l ethanol.  It has a higher ethanol 

yield (5–10% more ethanol per fermented glucose) and has a much higher specific ethanol 

productivity than Saccharomyces sp.  Despite its advantages as an ethanologen, Z. mobilis is not 

well suited for the conversion of all the biomass resources because it ferments only glucose, 

fructose, and sucrose [3]. 

Recently, advancements in metabolic engineering and synthetic biology have led to the 

ability to use Escherichia coli as a biocatalyst for the production of a wide variety of potential 

biofuels from several biomass constituents.  High productivities and yields of biofuels can be 

attained with E. coli due to its high growth and metabolic rates and tolerance to high 

concentrations of substrate and products.  E. coli is capable of utilizing a variety of carbon 

sources such as glucose, xylose, galactose and arabinose, as well as noncarbohydrate carbon 

sources such as glycerol and fatty acids, which together encompass the main constituents of 

biomass [71].  

The native pathway for producing ethanol in E. coli starts with the intermediate 

metabolite pyruvate.  The two step reduction of acetyl-CoA to ethanol results in the consumption 

of two reducing equivalents and proceeds with acetaldehyde as the intermediate.  Therefore, on a 

3-carbon basis, the glycolytic pathway to pyruvate generates one reducing equivalent, while the 

synthesis of ethanol from pyruvate consumes two reducing equivalents (Figure 6). 
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Figure 6. Fermentative pathway for the production of biofuels in E. coli [71]. 

This hinders homoethanol fermentation, as more oxidized products such as acetic acid 

must be produced to maintain an overall redox balance.  In order to alleviate this drawback, 

metabolic engineering strategies have been implemented to enable higher yields of ethanol 

production from sugars.  In contrast to the native E. coli pathway, the pathway for ethanol 

production in Zymomonas mobilis is a two-step process in which pyruvate decarboxylase (PDC) 

converts pyruvate directly to acetaldehyde and CO2, and alcohol dehydrogense (ADH) then 

converts acetaldehyde into ethanol.  Further improvement of ethanol yield was accomplished by 

generating a strain (KO11) which reduced succinic acid production by 95% and produced 

ethanol at 100% theoretical yield when grown on glucose or xylose rich medium.  In order to 

utilize E. coli for the viable commercial production of ethanol, improvements in ethanol 

tolerance are required, as significant growth inhibition results from ethanol concentrations 
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upwards of 35 g/L while yeasts that are used to commercially produce ethanol are capable of 

exceeding 90 g/L ethanol [72].  In the past few years, a growing number of literatures have 

centered on E. coli as a model organism for optimizing metabolic pathways [73].  Bioethanol 

fermentation from wheat straw hydrolysate by the recombinant E. coli strain resulted in a 

maximum ethanol yield of 0.24 g ethanol/g biomass [74] where E. coli KO11 resulted in an 

ethanol yield of 0.4 g ethanol/g of sugars from marine algal biomass [75]. 

 2.4.4 Fermentation.  Fermentation is a biological process where microorganisms such as 

bacteria and yeast convert reducing sugars such as glucose, xylose, fructose, sucrose etc into 

ethanol and carbon-dioxide while obtaining energy for growth and maintenance.  It can be 

carried out in both anaerobic and aerobic process.  Approximately 80% of all ethanol generated 

in the world is obtained by biological fermentation and 20% by conversion of petroleum.  

Theoretically the maximum yields that can be obtained from the conversion of pentose and 

hexose sugars to ethanol are 0.51kg/kg C6 sugar and 0.49 kg/kg C5 sugar [76].  

Stoichiometrically, pentose and hexose fermentation can be represented as: 

Pentose fermentation:                       

Hexose fermentation:                      

 Two major strategies have been developed for the enzymatic and microbial conversion of 

polysaccharides to ethanol.  The process economies and optimization determine the best strategy 

for optimum yield of end products.  The two common fermentation approaches are separate 

hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) 

[77]. 

 2.4.4.1 Separate hydrolysis and fermentation (SHF).  In the SHF process, the cellulosic 

material is hydrolyzed to reducing sugars by cellulase and hemicellulase enzymes operating at 
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their optimum condition first.  In the second stage, these sugars in the hydrolyzates after 

enzymatic hydrolysis are then subjected to fermentation by yeast or other fermenting bacteria in 

another chamber under different operating conditions.  This fermentation strategy has some 

disadvantages like product inhibition during the hydrolysis stage.  The activities of the enzymes 

are lessened due to the presence of hydrolysis products such as cellobiose and glucose.  As a 

result of severe product inhibition of enzyme activity, a batch hydrolysis process of 10% 

substrate requires an enzyme loading approximately 33 FPU/g substrate if a 73-75% glucose 

yield is to be obtained.  A fivefold reduction in enzyme loading can be achieved if the product 

sugars generated can be removed gradually from the hydrolysis reactor [78].  Product removals 

or simultaneous fermentation of produced sugars are feasible remedies to alleviate the high 

enzyme loading and eliminate product inhibition. 

2.4.4.2 Simultaneous saccharification and fermentation (SSF).  Simultaneous 

saccharification and fermentation is a single stage process in which both enzymatic hydrolysis 

and alcoholic fermentation are carried out within the same reactor.  The optimum temperature for 

SSF is a compromise between that of hydrolysis (45-50°C) and fermentation (20-40°C 

depending on the microbes used for fermentation).  As a result of low temperature range under 

which SSF is conducted, hydrolytic enzymes operate below their optimum and require a longer 

period of time to fully convert cellulose to glucose for fermentation.  Depending on the type of 

substrate, SSF can be run from 3 to 7 days. 

In the SSF process, hydrolysis and fermentation are carried out simultaneously in the 

same reactor vessel.  It greatly reduces the product inhibition to the hydrolysis as the sugars that 

are produced from the hydrolysis or saccharification of cellulose are simultaneously fermented to 

ethanol.  Hydrolysis is usually the rate-limiting process in SSF.  Thermo tolerant yeasts and 
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bacteria have been used in the SSF to raise the temperature close to the optimal hydrolysis 

temperature [9].   

SSF has the following advantages: (a) Simultaneous conversion of sugars into ethanol 

increases hydrolysis rate, (b) Lower enzyme requirement, (c) Higher product yields; (d) Shorter 

process time; and (e) less reactor volume.  However, ethanol may also exhibit inhibition to the 

cellulase activity in the SSF process.  Wu and Lee [79] found that cellulase lost 9%, 36% and 

64% of its original activity at ethanol concentrations of 9, 35 and 60 g/l, respectively, at 38°C 

during a SSF process.  The disadvantages of a SSF process include: (a) Incompatible temperature 

of hydrolysis and fermentation, (b) Ethanol tolerance of microbes, and (c) Inhibition of cellulase 

enzymes by ethanol [9].   

2.5 Acetic Acid Utilization and Production 

With a US production of 2.2 billion kg/yr, acetic acid is a widely used commodity 

chemical [80].  It has wide applications in food industry (as acidulant and preservatives), plastic 

industry, textile industry and pharmaceuticals [81].  It is an important feedstock for many 

chemicals including vinyl acetate polymer, cellulose acetate, terephthalic acid/dimethyl 

terephthalate, acetic acid esters, acetic anhydride, and calcium magnesium acetate.   

2.5.1 Biological production of acetic acid.  Since the late 1970s, production of acetic 

acid via fermentation using renewable biomass feedstock has been studied by numerous 

researchers as an alternative to acetic acid production from petroleum or natural gas feedstocks.  

In conventional vinegar production, glucose is first fermented to ethanol by yeast and then the 

ethanol is oxidized by a bacterium to acetic acid.  The theoretical maximum yield of this 

conventional route is 2 moles of acetic acid from 1 mole of glucose or 0.67 g/g glucose.  In 

commercial practice, actual acetic acid yield is 0.50-0.55 g/g glucose or roughly 75-80% of 
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theoretical.  But this conversion route cannot utilize five carbon sugars because of the inability of 

commercially available yeast to ferment them to ethanol [82].   

Although a variety of bacteria can produce acetic acid, mostly members of acetobacter, 

gluconacetobacter, and gluconobacter are used commercially in vinegar manufacturing 

industries.  They are widespread in nature and most of them are capable of oxidizing ethanol to 

acetic acid.  This characteristic makes acetic acid bacteria to be often involved in foods and 

beverages, either in a beneficial, neutral or detrimental way [83].  Acetic acid bacteria produce 

acetic acid by oxidative fermentation.  Acetic acid bacteria (AAB) are strictly aerobic, Gram-

negative, catalase positive and rod shaped microorganisms that are characterized by a unique 

resistance to ethanol and acetic acid.  These microorganisms belong to the Acetobacteraceae 

family and are classified into 12 genera and 59 species.  Among AAB, several members of the 

genera Acetobacter and Gluconacetobacter are involved in the production of vinegar.  These 

bacteria oxidise ethanol to acetic acid by two sequential reactions equation 1 & 2.  Equation 1 & 

2 represents the conventional vinegar production. 

          

              
                          (Eq. 1) 

             

         
                       (Eq. 2) 

Species of anaerobic bacteria, including members of the genus Clostridium or Acetobacterium 

can convert sugars to acetic acid directly, without using ethanol as an intermediate.  Strains of 

Clostridium sp. mostly used are- Clostridium thermoaceticum (ATCC 27407); Clostridium 

thermoaceticum (ATCC39073); Clostridium thermocellum (ATCC27405) and Clostridium 

lentocellum SG6. 

The overall chemical reaction conducted by these bacteria may be represented as: 

C6H12O6 → 3 CH3COOH [84].  This ability of Clostridium to utilize sugars directly, or to 
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produce acetic acid from less costly inputs, means that these bacteria could potentially produce 

acetic acid more efficiently than ethanol-oxidizers like Acetobacter.  The acetate yield in batch 

fermentation by C.  formicaceticum is about 0.91 g/g fructose but the volumetric productivity is 

low (0.19 g/1 h) [85].  However, the inability of this acetogen to ferment glucose limits its utility 

as a biocatalyst.  Co-cultures of two or more organisms have been constructed to increase the 

substrate range of this acetogen [86].   

However, Clostridium bacteria are less acid-tolerant than Acetobacter.  Even the most 

acid-tolerant Clostridium strains can produce vinegar of only a few per cent acetic acid, 

compared to Acetobacter strains that can produce vinegar of up to 20% acetic acid.  At present, it 

remains more cost-effective to produce vinegar using Acetobacter than to produce it using 

Clostridium and then concentrate it.  As a result, although acetogenic bacteria have been known 

since 1940, their industrial use remains confined to a few niche applications [87]. 

2.5.1.1 Acetic acid production by Clostridium thermoaceticum.  In 1942, Fontaine and 

co-workers discovered a thermophilic bacterium, Clostridium thermoaceticum that catalyzed the 

near stoichiometric conversion of glucose to acetate via a metabolic process (Figure 7) that is 

now referred to as the acetyle-CoA pathway or Wood-Ljungdahl pathway.  C. thermoaceticum 

was reclassified as Moorella thermoacetica in the mid-1990s.  Although numerous acetogens 

have been isolated, M. thermoacetica has served and continues to serve as the primary model 

acetogen in the laboratory [84].   

Fermentation with C. thermoaceticum offers a significant advantage in terms of acetate 

yield comparing to the conventional vinegar fermentation, because C. thermoaceticum can 

theoretically produce 3 moles of acetic acid from 1 mole of glucose (equation 3).  In practice, 
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85% of the sugar may be converted to acetic acid.  C. thermoaceticum can also ferment fructose 

and xylose (Equation 4). 

                                         

                             

 Net reaction:                    (Eq. 3) 

 For C5 sugar the net reaction:                    (Eq. 4) [84] 

 

Figure 7. Homoacetogenic conversion of glucose to acetate [84]. 

The production of acetic acid by C. thermoaceticum has several important advantages 

comparing to the vinegar process.  It is an anaerobic process, and thus should be cheaper that the 

aerobic process traditionally used for vinegar production.  The process can make use of at least 

three sugars (xylose, fructose, and glucose) that can be derived from biomass, and it can produce 

high yields of acetic acid.  The theoretical yield is 1 g acetic acid per gram glucose, although 

actual yields reported in the literature are 0.8-0.93.  C. thermoacetica is a homoacetogen that is 

capable of producing acetic acid as its sole product.  Its major limitation was relatively low 

concentration produced by the wild strains (20 g/l) and low productivity (0.15-0.25 g l
-1

h
-1

) [88].   
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Numerous studies have evaluated the potential use of M. thermoacetica to commercially 

produce both acetic acid and calcium-magnesiumacetate (an environmentally safe road de-icer).  

Advantages of M. thermoacetica are: 1) it is the most metabolically diverse acetogen thus far 

characterized.  This bacterium utilizes very diverse substrates, grows both autotrophically and 

heterotrophically and has only one organic nutritional requirement, nicotinic acid; 2) M. 

thermoacetica is a robust and hearty thermophile, and its metabolic diversity is likely the 

primary basis for the organism’s ability to compete with other microbes for substrates.  However, 

other factors also contribute to the survival strategies of this acetogen.  For example, the spores 

of M. thermoacetica are among the most heat-resistant spores characterized.  The ability of M. 

thermoacetica spores to survive high temperatures demonstrates that this anaerobic bacterium 

can also survive standard commercial canning procedures.  There are several disadvantages: 1) 

M. thermoacetica can tolerate small amounts of O2; 2) M. thermoacetica is inhibited by high 

concentrations of acetate and does not grow under acidic conditions.  These limitations have 

made it impossible to commercialize the acetogenic abilities of both wild-type and mutant strains 

of M. thermoacetica [84]. 

M. thermoacetica or C. thermoaceticum needs to be acclimatized to a xylose environment 

to obtain high yields of acetic acid.  It preferentially consumes xylose over glucose when grown 

in a medium containing a mixture of glucose and xylose.  To maintain viability for xylose 

fermentation, it is necessary to grow the organism in xylose and glucose medium alternately.  In 

batch fermentation at pH 6.9 and temperature 59°C, a concentration of initial xylose 

concentration of 15 g/L resulted in a maximum yield of acetic acid at 0.84 (g acetic acid / g 

xylose consumed).  The maximum concentration of product achieved was 15.2 g/L which 

occurred with a 20 g/L xylose concentration with a yield of 76%.  With increases in xylose 
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concentration, the amount of unconsumed xylose in the medium increased which decreased the 

yield [89].  The organism consumes arabinose, mannose, and galactose only when each of these 

is present with xylose in the medium.  In a batch fermentation of a mixture of sugars, the extent 

of consumption of mannose, arabinose, and galactose is <20% in 130 h.  Fed-batch operation did 

not result in increased yield of acetic acid, because the organism lost viability after a certain 

period and was not revived by adding extra nutrients or trace elements.  This proves to be a 

major drawback for acetate production from this strain using xylose as the carbon source [90].   

2.5.2 Biological production of acetic acid from biomass.  At present all the acetate 

products are made from petroleum-derived acetic acid [90].  Fermentation is potentially a cost-

effective alternative for acetic acid production.  The advantage of the fermentation route is that it 

relies on renewable resources rather than nonrenewable (petroleum) resources.  Production of 

acetic acid via fermentation using renewable biomass feedstock has been studied extensively 

since the late 1970s.  Traditionally, hydrolyzates of corn starch and corn-steep liquor have been 

used for glucose/nitrogen sources for this process.  Cellulosic biomass (α-cellulose, pulp mill 

sludge etc), mixture of cellulose, hemicellulose and lignin-derived components (Japanese beech 

wood in hot compressed water) were also used as alternative feedstock [91, 92]. 

A strain of Clostridium thermoaceticum (ATCC 49707) best produces acetate from 

glucose at pH 6.0 and 59°C with a yield of 83% of theoretical.  In a fed-batch operation of SSF 

with a cellulosic biomass α-cellulose, an overall acetic acid yield of 60 wt% was obtained [93].  

Co-culture with C. thermoaceticum (ATCC 39073) and C.  thermocellum (ATCC 27405) 

increases the fermentability for a wide range of biomass components.  Almost all compounds 

produced from beech wood in hot-compressed water were found to be converted to acetic acid 

when using these microorganisms in combination [94]. 
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A cellulolytic, acetic acid producing anaerobic bacterial isolate identified as Clostridium 

lentocellum SG6 can become a potential strain for acetic acid production because of its high 

fermentation yield and sporulating character.  The strain SG6 can ferment cellulose at high 

substrate concentrations [81].  It produced acetic acid as a major end product from cellulose 

fermentation at 37°C and pH 7.2.  Acetic acid production was 0.67 g/g cellulose substrate 

utilized in cellulose mineral salt (CMS) medium.  This is the highest acetic acid fermentation 

yield in monoculture fermentation for direct conversion of cellulose to acetic acid [95]. 

2.6 Enzyme Assisted Extraction of Lipid and Protein from Biomass 

The common methods of oil/lipid extraction include physical or mechanical processes, 

chemical procedures or a combination of these.  During the conventional oil extraction 

processes, some of the oil not extracted remains in the solid residue.  In order to effectively 

recover oil enclosed in the cell, the cell walls must be destroyed.  Several methods including 

enzymatic pretreatment have been proposed to improve oil extraction procedures [96].  Hot acid 

hydrolysis, microwave irradiation, sonication, high-pressure homogenization, bead beating, and 

swelling by osmotic pressure have been used for cell disruption [62, 97].  These  methods have 

some restrictions.  During hot acid hydrolysis, cells are disrupted concurrently with the 

degradation of other cellular components, leading to excess acid loading and reduction of co-

products.  Physical or mechanical approaches for cell disruption are not effective for large-scale 

operations.   

Enzymatic treatment of oilseeds is an established technology in the vegetable oil industry 

[98], where enzymes are used to hydrolyze structural polysaccharides of the cell wall of oilseeds 

as well as proteins associated with lipid bodies [99].  Enzymatic processes are potentially useful 

to the edible oil industries due to their high specificity and low operating temperatures.  Enzyme 
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applications in edible oil processing include: facilitating pressing, increasing the oil yield of 

solvent extraction, and facilitating the aqueous extraction [100].  It has been demonstrated that 

pre-extraction enzyme digestion increases cellular degradation and significantly increases oil 

recovery upon extraction.  The enzyme treatment, besides giving higher oil yields, significantly 

increased the qualitative standard of the oil [101]. 

Enzymatic treatment is also used to extract lipids produced by oleaginous 

microorganisms as a potential feedstock for biodiesel production and chemical synthesis.  

Microorganisms that can accumulate lipids to more than 20% of their biomass are defined as 

oleaginous species [102].  Some yeast strains, such as Cryptococcus sp.,  Lipomyces sp., 

Rhodosporidium sp. and Rhodotorula sp. can accumulate intracellular lipids as high as 60% of its 

cell dry weight when using glucose as the carbon source [97].  Constitutive fatty acids of those 

lipids are mainly long chain ones that are quite similar to those of conventional vegetable oil.  

However, the carbon sources for oleaginous microbes need extend to lignocellulosic biomass and 

related raw materials so that large volume of microbial lipids can be secured [103].  With a heat 

pre-treatment with microwave, enzymatic treatment with the recombinant β-1,3-

glucomannanase, plMAN5C, and extraction with ethyl acetate, 96.6% of the total lipids were 

extracted from R.  toruloides cells at room temperature and atmospheric pressure directly from 

the culture without dewatering.  Therefore, this process could significantly reduce energy 

consumption and costs for lipids extraction from the yeast [99].   

Similar to the lipid/oil extraction, protein extraction can also be enhanced by enzymatic 

treatment.  There is a demand for the formulation of innovative and alternative proteinaceous 

food sources due to an insufficient supply from traditional protein sources.  Much interest has 

been focused on the potential of converting abundantly available waste to single-cell protein 
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(SCP) [104].  Algae, fungi and bacteria are the major sources of the microbial protein that can be 

utilized as SCP [105].  The production of the microbial biomass is achieved either by a 

submerged or solid state fermentation process.  After fermentation, biomass is harvested and 

may be used as a protein source or subjected to processing steps like washing, cell disruption, 

protein extraction and purification [104]. 

Aqueous extraction process (AEP) has been considered as a good option for simultaneous 

extraction of oil and protein.  AEP avoids serious damage to the oil and proteins of the seed and 

allows production of food-grade proteins instead of feed-grade products.  It also eliminates 

chemical refining steps and the oil produced through this process is more suitable for human 

consumption due to its better nutritive quality.  Nevertheless, low oil recovery is one of the major 

challenges for this process which may be overcome by utilizing selected enzymes.  Enzyme-

assisted aqueous extraction (EAAE) is gaining importance as an alternative for simultaneous 

extraction of oil and protein.  It is thought to be environmentally-friendly, safe and cheap [98, 

106]. 

Increasing in the protein content of cellulosic residues to improve their nutritional value 

has been proposed by several investigators.  This process is potentially useful in reducing the 

environmental impact of these residues and in enhancing animal feed and human food supplies.  

Protein enrichment of cellulosic biomass such as sugar beet pulps, wheat bran, citrus waste etc 

has been investigated by various researchers.  Based on the original crude protein content of the 

substrates, 2-3 folds of protein increments of the cellulosic pulp were achieved by solids state 

fermentation using microorganism Neurospora sitophila [107].  Although many cellulose-

degrading microorganisms, mostly fungi, are known, few would qualify as food or feed grade 

which can be used for solid state fermentation for protein enrichment of cellulosic biomass.   
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2.7 Biorefinery of Green Biomass and Microalgae  

Green biorefineries are multiproduct systems, which utilize green biomass as an abundant 

and versatile raw material for the manufacture of industrial products.  The basic idea of this 

concept is to utilize the whole green biomass like grass, alfalfa and various other sources and 

generate a variety of products.  Besides biobased materials, fuels and energy may be supplied by 

this technology [108]. 

In green biorefinery, the first step is to use wet or green fractionation technology to 

isolate the green biomass substances in their natural form.  Thus, green biomasses are separated 

into a fiber-rich press cake and a nutrient-rich press juice.  Both fractions can produce valuable 

bioproducts through different processing operations.  Figure 8 illustrates the array of potential 

products of a green biorefinery that can be generated by the downstream processing of press 

juice and press cake. 

 

Figure 8. A green biorefinery system for green biomass utilization [108]. 
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 2.7.1 Feedstocks and Current Processing Technologies for Green Biorefinery.  

Currently, green grasses are the main feedstocks for green biorefinery.  The valuable components 

of fresh biomass are proteins, soluble sugars, and the fiber fraction (cellulose, hemicelluloses, 

and lignin part).  Table 4 shows the chemical composition of representative types of green 

biomass.  In general, biomass is typically composed of 75-90% of sugar polymers, with the other 

10-25% of biomass principally being lignin [109].   

Table 4 

Composition of Representative Biomass Resources [108] 

Biomass type Aquatic plant Herbaceous Woody 

 

Name 

Spirulina 

algae 

 

Duckweed 

Bermuda 

grass 

Switch  

grass 

 

Poplar 

 

Pine 

Component (dry wt. %) 

Celluloses <1 11.9 31.7 37 41.3 40.4 

Hemicellulose 1 13.8 40.2 29 32.9 24.9 

Lignin <1 3.2 4.1 19 25.5 34.5 

Crude protein 64 35.1 12.3 3 1.7 0.7 

Crude lipid 5 5 11.9 – – – 

Ash 11 16.5 5 6 0.8 0.5 

Total 100 92.4 93.3 94 102.9 101.0 

 

Most of attention has focused on the cellulose, hemicelluloses, and lignin presented in 

biomass materials so far.  However, there are also considerable amounts of protein available in 

these biomass materials as Table 4 indicated.  For the biomass species listed, aquatic organisms 

has higher protein content than other biomass resources.  Since a kilogram of protein is generally 

much more valuable than an equal weight of carbohydrate, aquatic organisms can be used as a 

good candidate for green biorefinery in respect of high value protein recovery.  Microalgae are 

usually composed of lipids, proteins, nucleic acids and no-cellulosic carbohydrates.  In the green 
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refinery, the wet fraction of algae can be used as nutrient-rich green juice for value-added co-

product developments like proteins [108].   

Mechanical fractionation is usually the first unit operation in green biorefinery plant.  

Machinery, screw express has been primarily used to press the green juice out of the green 

biomass.  For vegetative biomass like alfalfa, clover and grass, screw presses remove 

approximately 55-60% of the inherent liquid [110].  The green juice contains proteins, free 

amino acids, organic acids, dyes, enzymes, hormones, other organic substances and minerals.  

The green juice is a raw material for high quality fodder proteins, cosmetic proteins, human 

nutrition or platform chemicals like lactic acid and corresponding derivatives, amino acids, 

ethanol, and proteins [108].  Press juice also can be directly used as fermentation media for 

organic acids production.  It has been found that juices from grass, clover and alfalfa can easily 

be converted to a stable universal fermentation media by adding more carbohydrates or for 

production of other organic acids or amino acids in the second stage fermentation [108, 111].  

The press cake can be used for the production of green feed pellets/fodder pellet, as a raw 

material for the production of chemicals [108]. 
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CHAPTER 3 

Methodology 

3.1 Biomass Preparation for Ethanol Production 

 Three aquatic biomasses including microalgae, duckweed and cattail which can be used 

to treat wastewater were used as the biomass sources in this research.  Microalgae was cultured, 

harvested and used for pretreatment and fermentation.  Duckweed was collected from NC A&T 

State University farm and homogenized without the addition of water and used directly for 

pretreatment and fermentation.  Cattail was collected and homogenized with the addition of 

water.  Then the slurry was filtered.  Filtered solid part was used for pretreatment and 

fermentation and liquid part was used a nutrient medium to grow microalgae.   

 3.1.1 Microalgae culture and preparation.  The strain of mixed Chlorella sp. was used 

in experiments.  Figure 9 shows microalgae culture in lightbox and microalgae culture in large 

scale. 

 

Figure 9. Microalgae culture in lightbox and microalgae culture in large scale. 

 Pre-cultured algal cells were inoculated using a proteose medium which is the original 

growth medium of this species in 1 L glass bottles.  The 1 L glass bottles were kept in a light box 

at a room temperature for two weeks.  The light intensity of the light box was 600 μmol m
-2

s
-1

.  
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The medium contains proteose peptone at 1 g/L and each of the following components at 10 

ml/L: NaNO3 (2.94 mM), CaCl22H2O (0.17 mM), MgSO47H2O (0.3mM), K2HPO4 (0.43 mM), 

KH2PO4 (1.29 mM) and NaCl (0.43 mM).   

After inoculation, 40 mg/L chloramphenicol was used as an antibiotic to disinfect the 

growth medium for the growth of the algae.  Bottles caps were kept loose and bottles were 

shaken manually every day to provide carbon-dioxide and release oxygen generated.  Later, 

microalgae were grown in a large scale in the greenhouse using the same growth medium and 

antibiotic.   

Grown microalgae were centrifugated by a centra-GP8R Centrifuge (Model 120, Thermo 

IEC) at 3400 rpm for 15 minutes (Figure 10).  The liquid stream was discarded and solid streams 

of biomasses were collected to use for fermentation experiments.   

 

Figure 10. Centra-GP8R Centrifuge, model 120, by Thermo IEC. 
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 3.1.2 Duckweed Collection and preparation.  Duckweed, likely Lemna minora, was 

collected from a constructed wetland at NC A&T’s farm.  The constructed wetland contained 

some wastewater from a nearby swine unit.  Figures 11a and 11b show duckweed floating in 

swine waste water and collected & homogenized duckweed respectively.  The duckweed was 

collected between August 2013 and September 2013.  Collected duckweed was stored at -20°C 

for further usage. 

  
(a)    (b) 

Figure 11. (a) Duckweed in swinewaste water and (b) Collected and homogenized duckweed. 

 Some portion of the duckweed was spread and air-dried at the room temperature to a final 

moisture content of around 10%.  Then the air-dried duckweed was kept at 50°C for 24 hours 

and then ground in a mortar and pestle to get fine powder of dried duckweed.  Both green and 

dried ground duckweed was stored for following ethanol fermentation studies. 

 A Knife Mill Grindomix GM 200 (Figure 12) was used to homogenize fresh duckweed 

without any addition of water.  The treatment time was 5 min and rotation speed was set to 4000 

rpm. 
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Figure 12. Homogenizer Grindomix (GM 200). 

 3.1.3 Cattails collection and preparation.  The cattails, Typha latifolia, were collected 

from a constructed wetland as shown in Figure 13a at NC A&T’s farm chopped with pruning 

shears, cut into small pieces using scissors and stored at -20°C for further usage.  Laboratory 

blender (Figure 13b) was used to homogenize the cattail with addition of water.  Cattail to added 

DI water ratio was 1:5.  The slurry was filtered using the whatman grade 595 filter paper.  

Separated liquid and solid biomass as shown in 13c was stored at -20°C for future use.  Solid 

part was used for fermentation and liquid part was used for microalgae medium preparation. 

 
(a)   (b)   (c) 

Figure 13. (a) Cattail plants in the farm; (b) Laboratory blender; (c) Homogenized and filtered 

cattail. 
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3.2 Pretreatment of Green Biomass 

An ultrasonic processor (Branson Sonifier S-250D Digital Ultrasonic Cell 

Disruptor/Homogenizer) as shown in Figure 14 was used for pretreatment of biomasses.  

Prepared biomasses which were described in previous section were diluted to a certain biomass 

concentration and were used for this pretreatment.  The ultrasonic process was operated at a 

frequency of 20 kHz, supplied power of 200 W, using platinum probe with tip diameter 13 mm.  

Around 30 mL of diluted biomass sample at ambient temperature was placed in a 50 ml 

centrifuge tube.  The tube was placed in a beaker.  The ultrasonic probe was dipped at 2 cm into 

the slurry.  Pretreatment time and amplitude were adjusted for each kind of biomass.   

 

Figure 14. Branson Sonifier S-250D, Digital Ultrasonic Cell Disruptor/Homogenizer. 

3.3 Microorganisms 

3.3.1 E. coli KO11 for ethanol fermentation.  The strain of recombinant E. coli KO11 

(ATCC® 55124) was obtained from American Type Culture Collection and stored using LB 

medium (Sigma, L-3152) in the laboratory.  This medium contained 1% tryptone, 0.5% yeast 

extract and 1% NaCl.  40 mg/L of antibiotic chloramphenicol was used for the growth of KO11. 

 In order to prepare enough E. coli cells for fermentation, seeds culture was scaled up in 

this way: 1 ml of seed E. coli was added to 4 ml of LB broth.  The 5 ml of E. coli medium was 
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cultured in an incubator as shown in Figure 15 (incubator shaker series 126, New Brunswick 

Scientific Co., INC., Edison, New Jersey, USA) for 24 h at a shaking speed of 150 rpm and 

temperature of 37°C.  In the same way, the 5 ml of E. coli was scaled up to 50 ml.  All the 

transferring and operation were done on a sterilized clean bench to avoid contamination.  The E. 

coli culture was centrifuged at 3400 rpm for 10 minutes.  The supernatant was discarded.  The 

precipitated E. coli was washed three times with a peptone solution.  The washed E. coli cells 

were used for the ethanol fermentation.   

 

Figure 15. E. coli culture in environmental shaker. 

 3.3.2 Clostridium thermoaceticum (ATCC 49707) for acetic acid fermentation.  The 

strain of Clostridium thermoaceticum (ATCC 49707) was obtained from American Type Culture 

Collection.  The freeze-dried culture of C. thermoaceticum was rehydrated by Reinforced 

Clostridial Medium (BD 218081, Becton, Dickinson and company) according to the instructions 

of ATCC.  Anaerobic chamber as shown in Figure 16 was used for all culture work for 

Clostridium.  Nitrogen or carbon dioxide was used to achieve anaerobic environment. 
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Figure 16. Anaerobic chamber used during C. thermoaceticum inoculation. 

 The activated C. thermoaceticum was stored in a 15% glycerol solution and then kept at -

86°C refrigerator for future usage.  The activated culture was scaled up to 50 mL volume using 

the Reinforced Clostridial Medium, which contained 10.0 g/L peptone, 10 g/L of beef extract, 

3.0 g/L of yeast extract, 5.0 g/L of dextrose, 5.0 g/L of sodium chloride, 1.0 g/L of soluble 

starch, 0.5 g/L of cystein HCl, 3.0 g/L of sodium acetate and 0.5 g/L of agar, with a final pH of 

6.8 ± 0.2.   

3.4 Analysis of Biomass Chemical Composition 

 Compositional analysis of sugars in original air-dried biomasses was carried out 

using the Laboratory Analytical Procedures (LAP-002 and LAP-005) developed by the National 

Renewable Energy Laboratory.  In those procedures, 0.3 ± 0.01 g dry samples were weighed.  

Each sample was run in duplicate.  The first hydrolysis step was carried out by adding 3.00 ± 

0.01 ml (4.92 ± 0.01 g) of 72% H2SO4 to each sample in the test tube which was incubated in the 

water bath at 30°C for 2 h by stirring the sample with a glass rod every 15 min to assure 

complete mixing and wetting.  The second hydrolysis step was conducted by transferring each 

hydrolyzate to its own serum bottle and diluting to a 4% acid concentration by bringing the total 

weight up to 89.22 g (0.3 g sample, 4.92 g 72% H2SO4, and 84.00 g deionized water).  The 
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samples in their sealed bottles were autoclaved at 121 ± 3°C for 1 h, to make sure that all the 

sugars were released to the liquid.  After the completion of the autoclave cycle and cooling to a 

room temperature, 5 ml of each sample was obtained and neutralized with calcium carbonate to a 

pH between 5 and 6.  

Neutralized hydrolyzate was filtered using a 3 ml syringe with a 0.45 µm filter to HPLC 

vials.  The vials were stored in a 4°C refrigerator for the analysis of sugars using a HPLC 

(Waters, Milford, MA) as shown in Figure 17.  It was equipped with a KC811 ion-exchange 

column and a waters 410 refractive index detector (RID).  The mobile phase was a 0.1% H3PO4 

solution at a flow rate of 1 ml/min.  the temperatures of the detector and column were maintained 

at 35 and 50°C.  The solid residues after the vacuum filtration were assumed to be lignin and ash, 

and were dried in an oven at 105°C for 24 h.  After drying, the weight of residues was recorded. 

 

Figure 17. High Performance Liquid Chromatography, Waters, Milford, MA. 
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The ash content of the dried sample was determined in TGA shown in Figure 18.  Sample 

sizes for the analysis were in the range of 5-15 mg and air at flow rate of 100 ml/min was used as 

a purge gas.  During the analysis, air was used to combust the solid sample and the mass of final 

ash after combustion was determined.   

 

Figure 18. Thermo gravimetric analysis equipment (TGA). 

3.5 Ethanol Production from Fresh Biomass 

The pretreated cattail, duckweed and algal cells rich in glucan was hydrolyzed and 

fermented into ethanol.  Total solid concentration of biomass was determined by the oven dry 

method at105°C.  Following enzymes were used to hydrolyze the pretreated cells: (a) cellulase, 

NS50013, 15 FPU/g-glucan; (b) β-glucosidase, NS50010, 20 µl/g-glucan; and (c) Hemicellulase, 

NS22002, 50µl/g-total solid.  Cellulase concentration was varied according to experimental 

design.  The optimum enzymatic hydrolysis temperature was 50°C and pH was 5.0 ± 0.1.  

Wheaton glass bottles of 150ml or 250 ml were used as bioreactors for all hydrolysis and 
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fermentation.  0.05 M buffer citrate was added to adjust the pH to 5.0±0.1 during fermentation of 

pretreated algae, duckweed, and cattail biomasses.   

 

Figure 19. Fermentation experiments in Environmental incubator shaker (New Brunswick 

Scientific I 26). 

E. coli was used for ethanol fermentation of pretreated biomass without any additional 

nutrition sources.  Both Simultaneous Saccharification and Fermentation (SSF) and Separated 

Hydrolysis and Fermentation (SHF) were carried out for ethanol fermentation of algae and 

cattail. 

3.5.1 Separated hydrolysis and fermentation (SHF).  Separated hydrolysis and 

fermentation (SHF) was the process that enzymatic hydrolysis and E. coli fermentation were 

carried out in sequence at different times; in which hydrolysis was performed for more than three 

days until the sugar concentration did not increase anymore.  Then it was followed by 

fermentation, so that both hydrolysis and fermentation could perform at their optimized 

conditions.  Pretreated cattail, duckweed and algae were loaded to 250 ml of bottles and a citrate 
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buffer solution of 0.05 M was added to adjust the pH to 5.0 ± 0.1.  These bottles were then 

autoclaved at 121°C for 15 min.  The biomass slurries in bottles were cooled to a room-

temperature and reweighed.  Sterile DI water was added to compensate for the water loss during 

autoclave.  Desired volumes of cellulase, β-glucosidase, and hemicellulose to each bottle were 

calculated based on the solid biomass concentration and the glucan content of biomass.  The 

fermentor bottles were placed in an incubator shaker (Series 126, New Brunswick Scientific Co., 

Inc., Edison, New Jersey, USA) at 150 rpm and 50°C.  Sample aliquots of the fermentation broth 

were collected at designated times of 0, 3, 6, 12, 24, 48, 72, 96 and 120 h. 

After enzymatic hydrolysis was completed when the concentrations of sugars were not 

increased anymore, the prepared E. coli was added aseptically to the hydrolyzed broth and 

fermentation was started in the shaker at 200 rpm and 37°C.  Appropriate sampling times were 0, 

3, 6, 12, 24, 48, 72, 96 and 120 h.  All the samples from hydrolysis and fermentation were 

filtered through a filter at a 0.45 µm filter into HPLC vials and stored in a refrigerator at 4°C. 

The glucose yield expressed as % of the theoretical yield (%digestibility) by using the 

following formula (LAP-008): 

%Yield Glucose = 
                             

               
 × 100% 

 where, [Glucose] – Residual glucose concentration (g/L); [Cellobiose] – residual 

cellobiose concentration (g/L); [Biomass] – Dry biomass concentration at the beginning of the 

fermentation (g/L); f-cellulose fraction in dry biomass (g/g); 1.111- Conversion factor from 

cellulose to glucose. 

 SHF was carried out for fresh algae and cattail biomass with different ultrasonic 

pretreatment conditions.   
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3.5.2 Simultaneous Saccharification and Fermentation (SSF).  Simultaneous 

Saccharification and fermentation was conducted, in which the E. coli was added at the same 

time as enzyme instead of being added after the hydrolysis.  Optimum temperature for E. coli 

fermentation is 37°C, where 50°C is the optimum hydrolysis temperature for the enzymes.  The 

compromised temperature between the optimum hydrolysis and fermentation temperatures was 

chosen at 37°C.  The fermentation was carried out in a similar manner to separate hydrolysis and 

fermentation in the shaker at 150 rpm and 37°C.   

 The ethanol yield as % of the theoretical yield by using the following formula: 

%Yield Ethanol = 
                     

               
×100% 

 Where, [Ethanol]f –Ethanol concentration at the end of the fermentation (g/L); 

[Ethanol]o-Ethanol concentration at the beginning of the fermentation (g/L); [Biomass] – Dry 

biomass concentration at the beginning of the fermentation (g/L); f- Cellulose fraction of dry 

biomass (g/g); 0.568 – Conversion factor from cellulose to ethanol (LAP-008). 

SSF was carried out for all of the three fresh biomasses.  For algae, Cellulase 

concentrations, E. coli concentrations and fermentation temperatures were varied to observe the 

effects on ethanol yield during the SSF process.  Table 5 shows the values of these parameters 

that were used in this study for algae SSF. 

Table 5 

Parameters and Levels of Algae SSF 

Parameters Levels 

Enzyme concentration 7.5, 15 and 60 FPU cellulase 

E. coli concentration 0.5 g/L and 1 g/L 

Fermentation temperature  37°C and 40°C 
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 3.5.3 Dilute Sulfuric Acid Hydrolysis and fermentation.  Only fresh duckweed was 

used for dilute sulfuric acid hydrolysis.  Around 15 grams of homogenized fresh duckweed was 

mixed with 150 mL of dilute sulfuric acid in 250 mL Wheaton glass bottles at three 

concentration levels: 1.2, 1.5, 1.8% (vol%) and placed in an autoclave for 25 min at 121°C.  

After autoclaving, pH value of the mixture was adjusted to 7.0 using 1.0 M ammonium 

hydroxide in preparation for ethanol fermentation.  This hydrolyzed biomass was used as a 

fermentation medium for E. coli without any addition of enzymes.  Fermentation was carried out 

in a similar manner described above in the shaker at 200 rpm and 37°C.  Appropriate sampling 

times were 0, 3, 6, 9, 12, 24, 48, 72, 96 and120 h. 

 3.5.4 Protein content determination of algae samples before and after SSF.  Fresh 

algae and algae fermented residues were centrifuged.  The collected solids were dried at 50°C for 

2 days.  Elemental analysis of the dried sample of fresh algae and fermented algae residue were 

done with a Carbon-Hydrogen-Nitrogen-Sulfur (CHNS) analyzer (Model 2400, Perkin-Elmer 

Inc.) as shown in Figure 20. 

 

Figure 20. Elemental analyzer (Model 2400, Perkin-Elmer Inc.) 
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The instrument oxidizes the carbon, hydrogen, nitrogen and sulfur into CO2, H2O, NxOy 

and SO2 at 980°C, and then these gases are carried with helium gas to a detector.  The measured 

gas profile was compared with known gas standards to determine the concentrations of 

individual gas components.  The results are then reported as a weight percentage of samples.  

Protein content was calculated by timing Nitrogen % by mass by 6.25 (Kjeldahl method). 

3.6 Acetic Acid Fermentation 

 3.6.1 Pretreatment of biomass.  About 50.0 g of dried ground cattail was stirred into a 

0.5 L of 4% NaOH solution and left at room temperature for 24 hours.  The mixture was then 

centrifuged at 3400 rpm for 30 min, the supernatant was discarded and the pellet was rinsed with 

water six times and twice with the 0.05 M citric acid buffer to lower down the pH to 5.0.  

Samples were centrifuged and supernatants discarded between rinses. 

3.6.2 Preparation of fermentation medium.  Reinforced Clostridial Medium was used 

first to investigate the xylose fermentability of Clostridium.  This medium contained 10.0 g/L 

peptone, 10 g/L of beef extract, 3.0 g/L of yeast extract, 5.0 g/L of dextrose, 5.0 g/L of sodium 

chloride, 1.0 g/L of soluble starch, 0.5 g/L of cystein HCl, 3.0 g/L of sodium acetate and 0.5 g/L 

of agar.  The final pH of the medium was 6.8 ± 0.2.   

Two fermentation media were prepared to study the fermentability of Clostridium first.  

These fermentation mediums were then used for biomass fermentation.  Fermentation medium-1 

was prepared using the method developed by Borden, Lee, and Yoon’s [80].  Component names 

and concentration are given in Table 6. 

 Certain weight percent of glucose and xylose or the equivalent of pretreated biomass was 

added to the medium for fermentation.  Fermentation medium-2 was prepared using the 

components given in Table 7. 
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Table 6 

Component Names and Concentrations of Fermentation Medium-1 

Components Concentration 

Yeast Extract 5 g/L 

(NH4)2SO4 1 g/L 

MgSO4.7H2O 0.25 g/L 

Fe(NH4)2(SO4)2.6H2O 0.04 g/L 

NiCl2.6H2O 0.00024 g/L 

ZnSO4.7H2O 0.00029 g/L 

Na2SeO3 0.000017 g/L 

Cystein.HCl 0.25 g/L 

Citrate Buffer 0.1 N 

 

Table 7 

Component Names and Concentration for Fermentation Medium-2 

 

 Certain weight percentage of glucose and xylose or the equivalent of pretreated biomass 

was added to the medium. 

3.6.3 Fermentation of pure xylose and pretreated biomass.  It was reported that M. 

thermoacetica or C. thermoaceticum needs to be acclimatized to a xylose environment to obtain 

high yields of acetic acid.  To maintain viability for xylose fermentation, it is necessary to grow 

Components Concentration 

Yeast Extract 5 g/L 

Peptone 10 g/L 

NaCl 5 g/L 

Cystein.HCl 0.5 g/L 

Phosphate Buffer 0.1 N 
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the organism in xylose and glucose media alternately.  For this reason, pure xylose fermentation 

was carried out. 

Pre-cultured C. thermoaceticum (ATCC49707) was used in the anaerobic fermentation of 

acetic acid using xylose in clostridial medium first.  For this purpose, 0.2, 0.5 and 1% of xylose 

solution with original clostridial medium (originally contains 0.5% glucose) were prepared.  

Fifty mL of each of these xylose containing media were loaded into 150 ml serum bottles.  The 

anaerobic condition was achieved by purging the system with carbon-dioxide gas using the set 

up as shown in Figure 21 for 30 min, which was filtrated through a 0.2µm filter first, bubbled 

from bottom to the top of the fermentors and finally exited to the atmosphere through another 

needle and filter.  The bottles were then sealed and autoclaved at 121°C for 15 min.  The bottles 

were kept at 59°C to gain the suitable temperature for the microorganism before adding 

Clostridium.  Three milliliter of pre-cultured C. thermoaceticum was added to100 ml of 

fermentation medium.  For pretreated biomass SSF, enzymes were also added.  The bottles were 

kept at 59°C which is the best growth temperature for C. thermoaceticum.  Samples were 

collected for HPLC analysis using 3 ml syringes, needles and 0.45 µm nylon filter. 

 

Figure 21. Experimental set-up to flush CO2 in acetic acid fermentation medium. 
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Two fermentation media described in previous section were also used for the 

fermentation of both pure xylose and pretreated biomass fermentation of C. thermoaceticum in a 

similar fashion (see Figure 22). 

 

Figure 22. Clostridium fermentation in oven. 

3.7 Microalgae Culture in Medium Containing Biomass Juice 

Juice of cattail was prepared by using a laboratory blender.  Cattail juice was separated 

by filtration and stored in -20°C temperature for further use.  Bristol medium was prepared using 

each of the following components at 10 ml/L: NaNO3 (2.94 mM), CaCl22H2O (0.17 mM), 

MgSO47H2O (0.3mM), K2HPO4 (0.43 mM), KH2PO4 (1.29 mM) and NaCl (0.43 mM).  Alfalfa 

and cattail juice was added to Bristol medium and DI water to prepare 1, 2, 5 and 10% (v/v) 

solution of juice and the medium.  Ten ml of seed microalgae culture was added to each 100 ml 

of culture medium. 

 Only alfalfa juice culture medium was used in photobioreactor as shown in Figure 23.  

Three tubes of the photobioreactor were used for 1, 5 and 10% alfalfa green juice containing 

Bristol medium and one for proteose medium.  A total of 80 ml volume was used for each tube 

including 5 ml seed culture inoculation.  Duplication of each experiment was conducted 

simultaneously.  Temperature was set at 25°C and light intensity at 600 µmolm
-2

s
-1

. 
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Figure 23. Photobioreactor used to culture microalgae in biomass juice. 

Similarly, 1, 2, 5 and 10% (v/v) biomass juice containing DI water medium were 

prepared.  Both green juice with Bristol medium and de-ionized water medium were used to 

grow microalgae in room temperature.  Total 100 mL of medium with inoculated algae culture in 

150 mL wheaton glass bottle was used to culture microalgae in room temperature.  They were 

kept in the lightbox with light intensity of 600 µmolm
-2

s
-1

 unit (see Figure 24). 

 

Figure 24. Microalgae culture in biomass juice containing medium at room temperature in the 

lightbox. 
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After inoculation, 40 mg/L chloramphenicol was used in each case for the growth of the 

algae.  Optical density was measured for all microalgae culture every other day by 

spectrophotometer as shown in Figure 25 at 680 nm.   

 

Figure 25. Spectrophotometer used to measure optical density. 
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CHAPTER 4 

Results 

4.1 Composition of Raw Biomass 

 Preliminary compositional analyses were conducted on the biomass raw materials 

without any pretreatment and the results are shown in Table 8. 

Table 8 

Compositions of Untreated Biomass 

 

Raw 

biomass 

Glucan %  

by mass  

(dry basis) 

Xylan %  

by mass  

(dry basis) 

Lignin %  

by mass  

(dry basis) 

Ash %  

by mass  

(dry basis) 

Moisture 

content % of 

fresh biomass 

Algae 7.18% 9.58% 2.9% 7% 97% 

Duckweed 12% 13.8% 3% 16% 92.4% 

Cattail  29.5% 18.7% 20.7% 4.7% 75% 

 

Algae and duckweed both had a low lignin content compared to cattail.  However cattail 

had more glucan and xylan than algae and duckweed.  Moisture contents of both fresh algae and 

duckweed were very high, which were above 90% and  the moisture content of fresh cattail 

biomass was 75%.  The moisture content of aquatic indicates that using fresh biomass would be 

advantageous with respect to energy required to dry them before fermentation.   

4.2 Fermentation of Algae 

 4.2.1 Simultaneous saccharification and fermentation of algae.  Cellulase 

concentrations, E. coli concentrations and cultivation temperatures were varied to observe the 

effects on ethanol yield during the SSF process.  Table 5 shows the values of these parameters 

that were used during SSF of algae in this study. 

4.2.1.1 Effect of enzyme concentration on SSF.  Three cellulase concentrations (7.5, 15 

and 60 FPU/ g glucan) were selected to observe the effects of cellulase concentration on SSF.  
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For all three cases, 50 ul-xylanase /g-glucan and 20 ul- β-glucosidase/g-glucan were used.  While 

changing enzyme concentration, E. coli concentration of 0.5 g/L was used and fermentation 

temperature was set at 37°C.  Figure 26, 27, and 28 show the glucose and ethanol profiles during 

fermentations with three different enzyme concentrations.  As shown in figures, the glucose 

concentration decreased rapidly with the ethanol concentration increased from zero to a high 

level.  Ethanol concentration was not increasing after 48 hours.  Enzymatic hydrolysis was the 

limiting step in SSF process, because SSF temperature was only 37°C but the optimal enzymatic 

hydrolysis temperature was 50°C, thus the enzyme activities were limited by the temperature.   

 

Figure 26. Concentrations of ethanol and glucose in a 150 ml fermentor during the SSF process 

using 15 FPU/g glucan cellulase. 
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Figure 27. Concentrations of ethanol and glucose in a 150 ml fermentor during the SSF process 

using 7.5 FPU/ g glucan cellulase. 

 

Figure 28. Concentrations of ethanol and glucose in a 150 ml fermentor during the SSF process 

using 60 FPU/g glucan. 
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 Figure 29 shows the ethanol yields in SSF of algae for different enzyme concentrations.  

Ethanol yield increased to 77.7% from 58.9% of the theoretical yield (i.e., the maximum yield), 

when enzyme concentration increased from 7.5 to 15 FPU/ g-glucan.   

 

Figure 29. The effects of three different enzyme concentrations on the ethanol yields for algae 

SSF. 

Ethanol yield increased close to 90% of the theoretical yield, when a cellulase dosage of 

60 FPU/g gulcan was used.  But as SSF temperature was 37°C where optimum enzyme 

hydrolysis temperature was 50°C, the enzyme activity was limited with respect to concentration.  

Enzymes are costly so future study would focus on optimization and higher temperature SSF. 

 4.2.1.2 Effects of E. coli concentration on SSF of microalgae.  Two E. coli 

concentrations of 0.5 g/L and 1 g/L were used to observe the effects of E. coli concentration on 

the SSF process.  Figure 30 shows that the E. coli concentration had only a slight influence on 

ethanol yields.  This means that E. coli concentration of 0.5 g/L was high enough to perform the 
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conversion of available sugars under the specified SSF conditions.  And higher E. coli 

concentration will also increase the bioprocess cost.   

 

Figure 30. The effects of E. coli concentrations on the ethanol yields for algae SSF. 
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Figure 31. The effects of the cultivation temperature on ethanol yields for algae SSF. 
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ultrasonic pretreatment can increase the ethanol yield to 56.8%.  However, the ultrasonic 

pretreatment for 60 min consumes more energy and produces a substantial amount of heat, which 

increases the bioprocessing cost.  Ten-min ultrasonic pretreatment of algae was used for all SSF 

experiments.  It was found that the ethanol yield at 58.9% of theoretical value was achieved 

during SSF using the same biomass and enzyme concentrations. 

 

Figure 32. Effects of the ultrasonic pretreatment conditions on ethanol yields for algae SHF. 
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experiment under the same fermentation condition 

4.3 Protein Content of Algae and Algal Residue after SSF  

 Another objective of this research was to investigate the effect of enzyme hydrolysis and 

ethanol fermentation on the protein content of algae during SSF.  Fresh algae and algal residues 

after SSF were centrifuged.  The solid residues were collected and dried at 50°C for 2 days.  

Elemental contents of C, H, N and S of these dried algae and fermented residues were 

0 

10 

20 

30 

40 

50 

60 

0 min  30 min  60 min 

Et
h

an
o

l y
ie

ld
 %

 o
f 

th
eo

re
ti

ca
l y

ie
ld

 

Ultrasonic pretreatment time  

ethanol yield % 



67 

 

 

determined by an elemental analyzer.  Protein content was calculated by multiplying N% by a 

factor of 6.25. 

 Table 9 shows the result obtained from elemental analyzer (i.e., elemental C, H, N and S 

content of algae and fermented residue at different fermentation conditions).  Figure 33 shows 

effects of change of protein content by fermentation of algae with different cellulase loadings.  It 

shows that protein content increased by all fermentation experiments compared to that of the 

pure algae.  The highest protein content was 71.81% which was obtained from the SSF of algae 

with 15 FPU cellulase loading while the protein content of fresh algae was 62.56%. 

 Figure 34 shows effects of change of protein content by fermentation of algae with 

different fermentation conditions.  The protein content was increased for all fermentation 

experiments.  The highest protein content determined was 71.81% from the SSF of algae with 15 

FPU cellulase loading.  So the removal of carbohydrates during SSF increases the protein 

content of algal biomass.  These nitrogen enriched fermented residue can be used as organic 

fertilizer.   

Table 9 

C, H, S, N % Obtained from Elemental Analysis and Calculated Protein Contents of the Algal 

Residues Collected from Different Fermentation Conditions 

 

 

Fermentation condition 

 

C%  

(by mass) 

 

H%  

(by mass) 

 

S%  

(by mass) 

 

N%  

(by mass) 

Protein 

content % 

by mass 

Fresh algae without 

fermentation 
42.86 6.37 1.21 10.01 62.56 

Fermentation with 7.5 FPU 

cellulase concentration 
48.87 7.04 1.38 10.73 67.06 

Fermentation with 15 FPU 

cellulase concentration 
49.81 7.10 1.33 11.49 71.81 
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Table 9 

(Cont.) 

 

 

Fermentation condition 

 

C%  

(by mass) 

 

H%  

(by mass) 

 

S%  

(by mass) 

 

N%  

(by mass) 

Protein 

content % 

by mass 

Fermentation with 60 FPU 

cellulase concentration 
49.27 6.86 1.31 10.84 67.72 

Fermentation with 1g/L E. coli 

concentration 
49.98 6.94 1.30 11.30 70.59 

Fermentation with 0.5g/L E. 

coli concentration at 40°C 
50.10 7.00 1.32 10.98 68.62 

 

 

Figure 33. Effects of change protein content by SSF of algae with different cellulase 

concentrations. 
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Figure 34. Effects of change protein content by SSF of algae with different fermentation 

conditions. 
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concentration increased from zero to a high level.  Figure 36 shows the comparison of ethanol 

yields using the three different pretreatment methods.  With the increase of pretreatment levels, 

the ethanol yield increased from 35 to 90% of the theoretical value.  It is also clear that 

autoclaving can increase the ethanol yield substantially, while 10 min of ultrasonic treatment can 

only further increase the ethanol yield slightly.  So the combination of thermal treatment by 

autoclaving and ultrasonic pretreatment is an effective pretreatment method for fresh duckweed 

fermentation. 

 

Figure 35. Ethanol and glucose profiles for SSF of ultrasonically treated duckweed. 
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Figure 36. The effects of three different pretreatment methods on ethanol yields for duckweed 

SSF with 1% (w/v) biomass concentration. 
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ethanol concentration of 0.425g/100ml was obtained from the duckweed hydrolyzed by 1.2% 

acid.   

 

Figure 37. The effects of three different acid concentrations on ethanol concentration of fresh 

duckweed fermentation. 
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Figure 38. Glucose profile for separate hydrolysis of ultrasonically treated (45% amplitude and 

15 min) cattail of 1% (w/v) biomass concentration with 7.5 FPU cellulase concentration. 

 E. coli fermentation was conducted after enzymatic hydrolysis where similar trends were 

found for ethanol and glucose profiles as algae and duckweed fermentation. 

Figure 39 shows the ethanol yields of separated hydrolysis and fermentation of fresh 

cattail for different pretreatment conditions of ultrasonic treatment. 

 

Figure 39. Glucose and ethanol yield with different ultrasonic pretreatment condition of fresh 

cattail. 
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Figure 39 shows that the increase of amplitude during ultrasonic treatment has slight 

influence on ethanol yields.  But higher amplitude will result in higher energy consumption, and 

it also produces heat which can increase bioprocess cost. 

4.6.2 Simultaneous saccharification and fermentation of cattail.  Fresh cattail was 

homogenized with DI water and then filtered to separate the juice and solid part.  That separated 

solid part was used for SSF in 150 ml fermentors.  Around 1% biomass concentration (w/v) was 

loaded for each fermentation experiment where buffer citrate with a pH value of 5.0 was used as 

a fermentation medium.  Ultrasonic pretreatment was done for 10 min at 30% amplitude and then 

the slurry was autoclaved before fermentation.  Enzyme concentration used was 15 FPU 

cellulase concentration/g-glucan.   

  

Figure 40. Ethanol concentration during SSF of fresh cattail.  

 Figure 40 shows only the ethanol profile during SSF.  The ethanol yield was only 8% of 

the theoretical value (maximum ethanol yield).  Such a low ethanol yield can be caused by 

higher lignin content of cattail biomass compared to duckweed and algae.  So ultrasonic 

pretreatment was not sufficient for the pretreatment of fresh cattail for ethanol fermentation. 
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4.7 Comparison of Ethanol Yield for The SSF of Fresh Algae, Duckweed and Cattail  

Figure 41 shows the comparison of ethanol yields achieved in SSF of fresh algae, 

duckweed and cattail at same fermentation conditions—all of them were pretreated by ultrasonic 

for 10 min and autoclaved at 121°C for 15 min.  Biomass concentration used was 1% (w/v) and 

15 FPU/g-glucan cellulase concentration was used.  Duckweed and cattail were needed to be 

homogenized before ultrasonic pretreatment where fresh algae were directly used for 

pretreatment after harvesting.   

 

Figure 41. Comparison of ethanol yields achieved during SSF of fresh algae, cattail and 

duckweed in same fermentation condition. 

According to Figure 41 in same condition, the highest ethanol yield was 86%, which was 

achieved by SSF of fresh duckweed while the SSF of fresh algae achieved a 66.31% ethanol 
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duckweed have a little amount of lignin, moderate pretreatment can make celluloses more 

accessible for enzyme hydrolysis.  Strong pretreatment like chemical pretreatment is needed to 

achieve higher ethanol yield from fresh cattail.   

4.8 Microalgae Culture in Biomass Juice 

The growth curves of microalgae Chlorella sp. were determined by measuring the optical 

density.  Two types of media containing different concentration of biomass juice were used as 

the growth medium.  One is Bristol medium and other is DI water.  The original culture medium 

of the algae was proteose medium which is modified Bristol medium with 1g/L proteose 

peptone.   

 4.8.1 Microalgae culture in Alfalfa juice  

4.8.1.1 Microalgae culture in Alfalfa juice with Bristol medium.  An objective of this research 

was to investigate the usefulness of liquid juice separated from biomass as a culture medium for 

microalgae.  The liquid juice from fresh biomass contains proteins, free amino acids, organic 

acids, dyes, enzymes, hormones, other organic substances and minerals.  So it can be a good 

source to prepare culture medium for algae.  To investigate this assumption first collected alfalfa 

juice was added into Bristol medium and DI water medium to prepare 1, 2, 5 and 10% 

concentration.  Microalgae Chlorella sp. was grown in these media at a room temperature in the 

light-box and at 25°C in the photobioreactor.  Antibiotic chloramphenicol was used to reduce 

contamination caused by bacterial growth in the culturing medium.  Original culture medium for 

Chlorella sp. (i.e., proteose medium was also used to culture microalgae in the same volume to 

compare the growth with juice contained medium).   

 Figure 42 shows the growth curves that were obtained at room temperature and 600 μmol 

m
-2

s
-1

 light intensity.  Chlorella could grow in all of the juice media.  The growth of microalgae 
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was increased with the increase of juice concentration.  Microalgae grew in a medium with 5% 

juice at a similar rate as the proteose medium.  Microalgae grew faster in the medium containing 

10% juice than the proteose medium.  Highest OD value achieved was 1.2 by 10% juice 

compared to the highest OD value of 1.0 for the proteose medium.  But for the medium 

containing 5% and 10% juice, contamination was observed after 10 days. 

 

Figure 42. Growth curves of Chlorella sp. in Bristol medium with alfalfa juice at room 

temperature and 600 μmol m
-2

s
-1 

light intensity. 

4.8.1.2 Microalgae culture in Alfalfa juice with DI water medium.  Figure 43 shows the 

growth curves of Chlorella sp. in DI water containing alfalfa juice at a room temperature.  

Contamination occurred very quickly in all DI water media.  As a result smooth curve were not 

obtained. The graph shows a high growth rate between day 0 and day 4 in all juice media.  After 

day 4, the decrease and fluctuations of growth rates indicate contaminations.  Although 1 ml/L 

chloramphenicol dissolved in ethanol was used as antibiotic to reduce contamination, ethanol can 
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accelerate contamination of yeast.  Another antibiotic ampicillin dissolved in DI water was used 

for the following culturing experiment. 

 

Figure 43. Growth curves of Chlorella sp. in DI water medium with alfalfa juice. 

 4.8.1.3 Microalgae culture in Alfalfa juice with bristol medium in photobioreactor. 

Figure 44 shows the growth curves of Chlorella sp. in Bristol medium containing alfalfa 

juice at 25°C and 600 μmolm
2
s

-1 
light intensity in the photobioreactor.  From Figure 37, it was 

observed that in the 5% juice medium microalgae grew in a similar rate as the proteose medium 

between day 0 and day 4.  After that contamination was observed.  It also shows a similar growth 

of Chlorella sp. in both 5% and 10% juice.  Highest OD value achieved was 1.74 by 10% juice 

where highest OD value for proteose medium was 1.45 Å. 

 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

0 2 4 6 8 10 12 14 

O
p

ti
c
a

l 
D

e
n

si
ty

 a
t 

6
8
0
 n

m
 

time (day) 

Microalgae culture in DI water medium with alfalfa juice 

1% juice 

2% juice 

5% juice 

10% juice 

proteose 



79 

 

 

 

Figure 44. Growth curves of Chlorella sp. in Bristol medium with alfalfa juice at 25°C and 600 

μmolm
-2

s-
1
 in the photobioreactor. 

4.8.2 Microalgae culture in cattail juice.  Similar to the alfalfa juice cattail juice 

containing Bristol medium and DI water medium were used to grow microalgae. 

4.8.2.1 Microalgae culture in cattail juice with Bristol medium.  Figure 45 shows the 

growth curves of Chlorella sp. in Bristol medium with cattail juice that was obtained at room 

temperature and 600 μmolm
-2

s
-1

 light intensity.  Chlorella grew in all of the juice media.  The 

growth rate of microalgae increased with increasing juice concentration.  The highest growth was 

observed in 10% juice medium.  In 1% and 2% juice, the similar growth patterns of microalgae 

were observed. 
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Figure 45. Growth curves of Chlorella sp. in Bristol medium with cattail juice at room 

temperature and 600 μmolm
-2

s
-1

 light intensity. 

Contamination observed in 10% juice medium after 14 days.  No contamination was 

observed for 1, 2 and 5% juice concentration after 14 days.  Another antibiotic ampicillin 

dissolved in water was used instead of chloroamphenicol to reduce the contamination and to 

avoid adding ethanol in medium.  Highest OD value achieved was 0.84 Å by 10% juice where 

highest OD value for proteose medium was 0.85 Å. 

4.8.2.2 Microalgae culture in cattail juice with DI water medium.  Figure 46 shows the 

growth curves of Chlorella sp. in DI water medium with cattail juice.  The growth curves were 

obtained at room temperature and 600 μmolm
-2

s
-1

 light intensity.  The growth rate of microalgae 

increased with the increase of juice concentration.  The highest growth rate was observed in 10% 

juice medium.  In 1% and 2% juice, a similar growth pattern of microalgae was observed.  

Highest OD value achieved was 0.78 Å by 10% juice where highest OD value for proteose 

medium was 0.85 Å.   
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Figure 46. Growth curves of Chlorella sp. in DI water medium with cattail juice at room 

temperature and 600 μmolm
-2

s
-1

 light intensity. 

Contamination was observed in the 10% juice medium after 14 days.  According to 

Figure 46 the optical density of microalgae (or the growth of microalgae) in DI water medium 

was generally lower than that of Bristol medium, as Bristol medium contained more minerals.  

When comparing to the media with alfalfa juice, microalgae growth in the media with cattail 

juice was relatively slower.  One assumption is that the solid concentration of alfalfa juice was 

higher than cattail juice.  As cattail juice was obtained by homogenizing fresh cattail with DI 

water at 1 to 5 ratio, where alfalfa juice was obtained using 1 to 3 ratio.  However, contamination 

occurs rapidly in higher juice concentration than in lower juice concentration.  Further study 

regarding microalgae growth in juice containing medium is needed to optimize the juice 

concentration with microalgal growth. 
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4.9 Acetic Acid Production 

 4.9.1 Pure xylose fermentation by clostridium. 

 4.9.1.1 Pure xylose fermentation in original clostridial medium.  The strain of 

Clostridium thermoaceticum (ATCC 49707) was obtained from the American Type Culture 

Collection.  The freeze-dried culture of C. thermoaceticum was rehydrated by using the 

Reinforced Clostridial Medium (BD 218081, Becton, Dickinson and company) according to the 

instructions of ATCC.  The medium composition is given in Chapter 3.  It contains 0.5% 

glucose.  To check the xylose fermentability of the bacteria, pure xylose was added to the 

original medium.  Two different concentrations of xylose were used 0.2% and 0.5%.  Table 10 

shows the result of pure xylose fermentation by Clostridium. 

 As shown in Table 10, Clostridium thermoaceticum can utilize xylose and produce acetic 

acid up to 1% concentration.  Figures 47 and 48 show that Clostridium can utilize xylose faster 

in the medium containing 0.2% xylose than the medium containing 0.5% xylose.  The highest 

acetic acid concentration of 0.998 g/100 ml was achieved by 0.5% added xylose fermentation 

while the highest acetic acid concentration of 0.952 g/100 ml was obtained by 0.2% added 

xylose fermentation. 

Table 10 

Pure Xylose Fermentation by Clostridium thermoaceticum 

Xylose concentration 

added(g/100ml) 

Time 

(hour) 

Glucose 

(g/100ml) 

Xylose 

(g/100ml) 

acetic acid 

(g/100ml) 

0.5 

0 0.888 0.887 0.658 

48 0.858 0.577 0.986 

72 0.844 0.558 0.998 

96 0.840 0.556 0.998 
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Table 10 

(Cont.) 

Xylose concentration 

added(g/100ml) 

Time 

(hour) 

Glucose 

(g/100ml) 

Xylose 

(g/100ml) 

acetic acid 

(g/100ml) 

0.2 

0 0.884 0.634 0.659 

48 0.859 0.1 0.937 

72 0.831 0.0 0.951 

96 0.83 0.0 0.952 

 

 

Figure 47. The profiles of sugars and acetic acid during the fermentation of Clostridium in the 

medium containing 0.2% xylose. 
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Figure 48. The profiles of sugars and acetic acid during the fermentation of Clostridium in the 

medium containing 0.5% xylose. 

 One possible reason for the low acetic acid production is the low acetate tolerance of the 
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medium-1 was designed with the components which were reported as cellulosic biomass 

fermentation medium components for Clostridium.  But buffer citrate of pH value 5.0 was used 

which was optimal pH for the enzymes.  No acetate production was observed using this medium 

at pH 5.0 with addition of pure xylose and glucose.   

 Fermentation medium-2 was designed with phosphate buffer which has a pH value of 

6.6.  Pure xylose at different concentrations was added to check the fermentability of Clostridium 

in this new medium.  Only the medium with the additional of 0.5% pure xylose shows the 

growth of Clostridium and production of acetic acid.   

 According to the data represented in Table 11, Clostridium can grow and produce acetic 

acid in fermentation medium-2.  Though it took long time to produce acetic acid it could be 

acclimatized in this fermentation medium by alternately fermenting it in this designed medium 

and the original medium.  The highest acetic acid concentration achieved was 0.67g/100ml.  But 

as initial acetic acid concentration is 0.433g/L, only 0.237 g/100ml was produced by 0.5% added 

xylose fermentation.   

Table 11 

0.5% Pure Xylose Fermentation by Clostridium thermoaceticum in Designed Fermentation 

Medium 

 

Xylose concentration 

added(g/100ml) 

 

Time 

(day) 

 

Glucose 

(g/100ml) 

 

Xylose 

(g/100ml) 

 

acetic acid 

(g/100ml) 

Acetic acid 

production 

(g/100ml) 

0.5 

0 1.08 0.861 0.433 0 

2 1.089 0.855 0.433 0 

4 1.09 0.705 0.579 0.146 

6 1.093 0.653 0.628 0.195 

8 1.087 0.623 0.65 0.217 

10 1.087 0.6 0.67 0.237 
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 4.9.2 Biomass fermentation by Clostridium. 

4.9.2.1 Biomass fermentation by Clostridium in fermentation medium-1.  Pretreated 

cattail biomass was used to ferment in fermentation medium-1.  Initially, pH 5.0 was used for 

fermentation.  But no clostridium growth as well as acetic acid production was observed.  The 

pH value for fermentation medium-1 was increased to 5.5 to check the fermentability of 

Clostridium of treated cattail biomass to acetic acid first.  Three different enzyme concentrations 

were used 7.5 FPU, 15 FPU and 60 FPU/g glucan cellulase concentrations.  Biomass 

concentration used was 1% (w/v).  Only the experiment with 60 FPU cellulase concentration 

showed clostridium growth and acetic acid production at pH 5.5. 

 Table 12 shows highest acetic acid concentration of 0.675 g/100ml was achieved by 

fermentation.  But as initial acetic acid concentration 0.483g/100ml, only 0.212 g/100ml acetic 

acid was produced by clostridium fermentation of cattail biomass which gives acetic acid 

production of only 0.212g acetic acid/g of biomass.  Though g acetic acid/g biomass production 

is low, this result confirms that Clostridium can use lignocellulosic biomass to produce acetic 

acid. 

Table 12 

Pretreated Cattail Biomass Fermentation by Clostridium thermoaceticum in Designed 

Fermentation Medium-1 at pH 5.5 and 60 FPU/g Glucan Cellulase Concentration 

 

Time 

(day) 

 

Glucose 

(g/100ml) 

 

Xylose 

(g/100ml) 

 

acetic acid 

(g/100ml) 

Acetic acid 

production 

(g/100ml) 

0 0.466 0.420 0.483 0.000 

2 0.468 0.475 0.468 0.005 

4 0.482 0.437 0.482 0.019 

6 0.702 — 0.675 0.212 

8 0.701 0.436 0.675 0.212 
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4.9.2.2 Biomass fermentation by Clostridium in fermentation medium-2.  Pretreated 

cattail biomass was used to ferment in fermentation medium-2.  Phosphate buffer was used and 

pH 6.6 was used for fermentation.  Biomass concentration used was 1% (w/v).  Though 

clostridium growth was observed using this medium with pure xylose, no clostridium growth as 

well as acetic acid production was observed while using pretreated biomass.   

Different combinations of enzyme concentrations and pH was used to grow Clostridium 

using pretreated cattail biomass, but unfortunately no clostridium growth as well as acetic acid 

production was observed while using pretreated biomass using this fermentation medium. 

4.10 Conclusions 

 For the fermentation of algae after ultrasonic treatment, SSF resulted higher ethanol yield 

than SHF.  The highest ethanol yield was obtained at 37°C with 0.5g/L E. coli concentration and 

15 FPU cellulase/g glucan.  In this condition SSF of 0.5% (w/v) biomass resulted in 77.7% 

ethanol yield.  Increasing biomass concentration to 3% decreased the ethanol yield to 60%.  

Increasing fermentation temperature and E. coli concentration also decreased the ethanol yield.  

For scaling up, the optimization of the whole process is needed.  Protein content of fresh algae 

during SSF was increased by around 10%.  So fermented residue of fresh algae residue can be 

useful as a protein source or organic fertilizer.  For the fermentation of fresh duckweed at 1% 

(w/v) solid concentration, combined heat treatment and ultrasonic treatment could achieve 96% 

ethanol yield.  Increasing the biomass concentration decreased the ethanol yield significantly.  

Ultrasonic pretreatment was not effective for fermentation of fresh cattail as the highest ethanol 

yield obtained was only 12%.  However, cattail juice alone could be a good medium for 

microalgae culture.  Depending on the concentration, it can be a supplement to an original 

culture medium of microalgae which can be further used for ethanol fermentation.  For acetic 
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acid production from Clostridium fermentation, further research will be needed to increase the 

fermentability of lignocellulosic biomass to acetic acid and to optimize the process.  A 

considerable amount of research will need to be pursued before algae, duckweed and cattail can 

be used as viable bio-fuel and biochemical feedstock.   
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CHAPTER 5 

Discussion and Future Research 

 In recent years, growing attention has been devoted to the conversion of biomass into fuel 

ethanol, considered as the cleanest liquid fuel alternative to fossil fuels.  Significant advances 

have been made towards the technology of ethanol fermentation using various biomass sources.  

Most of attention has focused on the cellulose, hemicelluloses, and lignin present in dry 

lignocellulosic biomass materials so far where biomass handling and pretreatments are costly.  

However, few research activities have been reported on fermentation of fresh biomass and 

ethanol production.  In this research, feasibility of using fresh aquatic biomass for ethanol 

production was studied.  Future research should focus on optimization of fermentation conditions 

with various pretreatment methods. 

 Since a kilogram of protein is generally much more valuable than an equal weight of 

carbohydrate, aquatic biomasses can be used as a good candidate for green biorefinery in respect 

of high value protein recovery.  Effect of fermentation on protein content of algae biomass was 

investigated in this research.  Effect of SSF on oil extraction from fermented algae should be also 

studied as algae oil extraction is one of the more costly processes which determines the 

sustainability of algae-based biodiesel.  Hydrolysis and fermentation can break the algal cell 

walls to enhance the release of oil from the biomass matrix of microalgae.  So future research 

should focus on enhancing oil and protein extraction of algae by fermentation.  Similarly, effect 

of fermentation on protein content of duckweed should also be investigated.   

 In this study three green biomass sources including algae, duckweed and cattail were 

selected as biomass for ethanol production due to their fast growth rate, availability and high 

protein, lipid and cellulose content.  Though ethanol yield achieved was low for cattail, higher 
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ethanol yield were achieved by algae and duckweed.  Further study is needed to increase the 

growth rate and optimize the growth condition of microalgae at low cost by using cattail juice.  

Cattail biomass was also used for acetic acid production by Clostridium and 0.212g acetic acid/g 

biomass was obtained.  Different pretreatment methods and fermentation conditions should be 

used to increase and optimize the acetic acid yield by this bacteria.   

 In addition to cellulosic ethanol production from algae and duckweed, there are several 

previously unaccounted for benefits to algae and duckweed.  This feature would be beneficial to 

farmers with swine lagoons or potentially integrated into a waste water treatment facility.  Thus, 

when viewed as part of a bigger, integrated system designed to treat waste water, to generate 

protein rich animal feed, and to produce cellulosic ethanol, aquatic biomasses become interesting 

biomass source. 
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