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Abstract 

Previous research efforts at North Carolina Agricultural and Technical State University (NCAT), 

led to the design of a morphing RAM-SCRAMJET model with superior thrust-to-drag 

performance characteristics. A literature survey, conducted as part of this MS thesis effort, 

revealed that the morphing RAM-SCRAMJET model has many attractive engineering 

characteristics and is worthy of a realistic engineering evaluation. The objective of this effort is 

to improve on the NCAT RAM-SCRAMJET model by incorporating real-world effects into the 

design process. In accomplishing this goal, a quasi-one-dimensional flow field solver with 

capabilities of modeling the real-world effects was developed, coded in object oriented 

FORTRAN, and incorporated into the NCAT original model. The improved quasi-one-

dimensional flow field solver is based on the Runge-Kutta 4th order method for solving systems 

of differential equations. In principle, the new solver allows for the flow field evaluation within 

arbitrary shaped ducts in which the influences of ‘area change’, ‘friction’, ‘heating’ and 

‘chemistry’ may be of importance. Prior to incorporating the new solver into the NCAT RAM-

SCRAMJET model, a detailed validation study was conducted. These tests demonstrated that the 

‘area change’ and ‘friction’ capabilities performed as expected. Unfortunately, the ‘heating’ and 

‘chemistry’ capabilities did not, and as such these capabilities were not added to the NCAT 

model. Now, with improved but limited real-world capability, the NCAT RAM-SCRAMJET 

model was used to conduct an updated system performance study. Engineering tests were 

conducted in the Mach number range of 4 through 12. Results showed the improved NCAT 

scramjet code performs well at low Mach numbers, but did not compare well with independent 

efforts in the high Mach number region. At this stage, the difference is attributed to the fact that 

the new flow field solver cannot predict the effects of heating.  
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Introduction 

 As part of this MS thesis requirement, a literature survey in the field of hypersonic 

technology was conducted. The goal was to identify all existing research opportunities that may 

serve the hypersonic aerodynamic needs of the air and space community. Results of this survey 

showed that hypersonic missiles and aircraft are of interest to the US military forces, and 

reusable hypersonic access to space vehicles are of interested to the National Air and Space 

Administrations. An international survey on the importance Hypersonic Aerodynamics was also 

conducted. The findings of this study are detailed in Chapter 2. NCAT has already embarked on 

a scramjet design project that will aid in the advancement of hypersonic technology. This chapter 

highlights NCAT hypersonic research efforts and puts it in perspective in relations to the 

hypersonic research activities conducted nationally. Also described in this chapter is the 

motivation behind the current research effort, and if successful, its potential contribution to the 

field.   

1.1 Objective 

The objective of this research is to independently validate the scramjet model developed 

by Dhanasar (Dhanasar, 2009) at North Carolina A&T. This scramjet model, displayed in 

Figure 1.1, was designed to be a baseline hypersonic propulsion engine model that could help 

advance hypersonic vehicle technology. Figure 1.1 represents a sample of the capabilities 

contained within the NCAT scramjet model. The scramjet model grants one the ability to 

manipulate the geometry with a series of design parameters. The focus of the current MS thesis 

research is on the development a tool capable of conducting an accurate aerodynamic analysis 

of arbitrary shaped aerodynamic ducts.  
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Figure 1.1. Computational model of the morphing ramjet-scramjet engine (Dhanasar, 2009). 

One of the design goals of this tool is to provide technical guidance prior to the much 

needed robust aerodynamic evaluation. As such processes may involve significant expenses and 

resources, for example, today’s computational fluid dynamics (CFD) tool costs the NCAT ME 

Department $25,000 annually, with no less than six months to turn around a single design. 

1.2 Motivation 

The lack of a tool with the ability to conduct an accurate aerodynamic analysis without 

the means of CFD serves as the motivation for this research. A tool capable of providing that 

analysis would allow one to quickly ensure that a scramjet model is working efficiently prior to 

doing all the preparation needed for CFD. The construction of the aforementioned tool would be 

critical in aiding the advancement of hypersonic vehicle technology. Hypersonic vehicle 

technology is developed mainly for military and space exploration related applications. 

1.2.1 Military applications. Hypersonic technology has proved itself useful in the realm 

of military applications. One future application is the Conventional Prompt Global Strike 

(CPGS) concept by Boeing ("Defense", 2014). 

file:///C:/Users/Thomas/Desktop/Thesis%20Backup/Defense%23_ENREF_2
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Figure 1.2. Conventional Prompt Global Strike concept by Boeing ("Defense", 2014). 

CGPS is a weapons system that relies on a flight-proven hypersonic configuration and 

allows rapid, global delivery of weapons within one hour of being launched. Boeing plans on 

CGPS being a key technology in future operation systems ("Defense", 2014). 

The Falcon HTV-3X shown in Figure 1.3 below is a conceptualized hypersonic aircraft 

model that is designed to take-off from a conventional runway under its turbojet power, 

accelerate to Mach 6 under combined propulsion and decelerate using its turbojet engine. 

 

Figure 1.3. Falcon HTV-3X conceptual model (Walker, 2008). 

file:///C:/Users/Thomas/Desktop/Thesis%20Backup/Defense%23_ENREF_2
file:///C:/Users/Thomas/Desktop/Thesis%20Backup/Defense%23_ENREF_2
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The combined propulsion, referred to as the Turbine-based combined cycle (TBCC) 

propulsion system utilized by the HTV-3X is explained in further detail in Figure 1.4 below 

(Walker, 2008). 

 

Figure 1.4. Turbine-based Combined Cycle Propulsion Concept (Walker, 2008). 

TBCC is three-stage engine concept with two flow paths. The upper flow path where the 

turbojet is located serves as the low-speed flow path while the lower path containing the 

ramjet/scramjet engine is the high-speed path. Each of the two paths share an inlet and exhaust 

(Walker, 2008). 

1.2.2 Space exploration applications.  The need for more inexpensive means of space 

travel can be met by advances in hypersonic technology. The Hypersonic Space and Global 

Transportation System (HSGTS), pictured in Figure 1.5, is a flight vehicle concept to help 

reduce space launch costs relative to expendable rockets (Bowcutt, 2011). 

 

Figure 1.5. Hypersonic Space and Global Transportation System (HSGTS) (Bowcutt, 2011).  
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The HSGTS was designed to be a two-stage-to-orbit (TSTO), reusable vehicle that was 

capable of taking off and landing horizontally. During takeoff and landing, air breathing 

propulsion would be employed while rocket propulsion would be used for space travel. The 

technology integrated into the HSGTS will allow it to achieve conventional airplane-like 

operations (Bowcutt, 2011). 

1.3 Problem Statement 

The scramjet model developed by Dhanasar was comprised of seven main sections. 

Those sections, depicted in Figure 1.6, included the forebody, inlet, isolator, transition zone, 

combustor, diffuser and nozzle.  

 

Figure 1.6. Ramjet-scramjet propulsion model (Dhanasar, 2009).  

The focus of this thesis is on the forebody, inlet and isolator sections. Using FORTRAN, 

a quasi-1D flow solver implementing the Runge-Kutta 4th order method is developed to 

independently validate the forebody, inlet and isolator sections of the scramjet model provided 

by Dhanasar. The flow solver is capable of providing accurate preliminary analysis of ducts of 

various shapes without the hassle of using CFD. 

1.4 Thesis Outline 

The results of a literature review is presented in Chapter 2 of this thesis. The literature 

review focuses on hypersonic programs in the United States as well as international programs. 
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Chapter 3 details the scramjet design efforts at NCAT. Chapter 4 explains the methodology 

behind the Runge-Kutta 4th order solver. In Chapter 5, the Runge-Kutta solver is validated and 

compared with results obtained from the literature review. Chapter 6 demonstrates the 

implantation of the Runge-Kutta 4th order solver as tool to quantitatively validate Dhanasar’s 

scramjet model. Finally, in Chapter 7, a conclusion is made along with future work suggestions.   
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Literature Review 

 An international survey on the importance of hypersonic aerodynamics was conducted. 

Efforts made by the United States, Russia, France, Australia, Japan and China are presented. 

Over the years, the United States has shown its technical prowess in field of hypersonics by 

producing the world’s fastest and most sustaining scramjet engines. The Russians, French, 

Australians, Japanese and Chinese have made monumental contributions toward the creation of 

scramjet missiles and hypersonic air-breathing flight models. This chapter summarizes the results 

of the international survey as they relate to this MS thesis. 

2.1 Literature Survey 

A literature survey was conducted that focuses on hypersonic propulsion programs both 

domestically, in the United States, and internationally. The international section of the literature 

review focuses on programs in Russia, France, Australia, Japan and China.  

2.1.1 Programs in the United States. There have been numerous successful scramjet 

programs in the United States since the 1960s (Curran, 2001). During the 1960s, there was an 

increased availability of funds for space related studies. Unfortunately, this was coupled along 

with a sharp decline in resources for aeronautical research.  This lead to the focus on hydrogen-

fueled scramjet work using single-stage-to-orbit (SSTO) concepts (Curran, 2001). Scramjet 

programs spearheaded by government organizations like NASA, DARPA and the US Air Force 

rose to the occasion.  

 2.1.1.1 NASA/DARPA National Aerospace Plane (NASP) program. In the 1960s, the 

US Air Force initiated first aerospace plane program (Chase, 1995). The aerospace plane 

program considered an air breathing, hydrogen-fueled aerospace vehicle that could be controlled 
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and reused like an airplane. Single-stage-to-orbit (SSTO) and two-stage-to-orbit (TSTO) 

aerospace plane concepts were also considered (Chase, 1995).  This concept came about as a 

result of the dwindling of aerospace resources.  The ideals of this concept were instrumental in 

the creation of the National Aerospace Plane (NASP) program (Curran, 2001). An illustration of 

the NASP concept vehicle is displayed in Figure 2.1. 

 

Figure 2.1. NASA Hyper-X research vehicle (Curran, 2001). 

 NASP was established in 1986 by NASA and the DoD with DARPA as the lead agency 

(Curran, 2001). NASP was envisioned as an air breathing, hydrogen-fueled SSTO vehicle that 

would revolutionize space transportation and reduce costs compared to rocket launch vehicles 

(Chase, 1995). The NASP initiative was an attempt to increase the speed of air breathing aircraft 

to Mach 25 (Barthelemy, 1989). The goal of NASP was to develop an aircraft with the ability to 

use conventional airfields and accelerate to hypersonic speeds. It would be capable of delivering 

useful payloads to space and return to Earth with propulsive methods while having the 

operability and flexibility of a conventional airplane (Barthelemy, 1989). NASP was terminated 
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in 1993 (Chase, 1995). One of the biggest criticisms of the NASP program was that the scramjet 

engine tests were limited to simulated flights in wind tunnels (Harsha, 2005). The termination of 

NASP ultimately lead to the creation of the Hyper-X program. 

 2.1.1.2 NASA X-43A program. The Hyper-X program was approved by NASA in July 

1996 and started in September 1996 (McClinton, 1997). This program stemmed mostly from the 

NASP program and set out to conduct numerous flight test programs. The design and 

manufacture phase for Hyper-X was initiated in March 1997 (Harsha, 2005). One program that 

emerged from the Hyper-X program was NASA’s X-43A program. An artist’s conception of the 

X-43 can be observed below in Figure 2.2. 

 

Figure 2.2. Artist conception of the X-43A in flight ("Spinoff", 1999).  

 The X-43A had notable flight tests that took place in the early 2000s.  Its initial flight test 

on June 2, 1991 was unsuccessful due to an overload of the booster’s control surfaces (Harsha, 

2005). March 27, 2004 marked the first successful flight test of the X-43A as it maintained Mach 

7 flight under the power of its own scramjet engine for approximately 10 seconds.  This lead to a 

successful Mach 10 flight that took place later that year on November 16, 2004 (Harsha, 2005). 

file:///C:/Users/Thomas/Desktop/Thesis%20Backup/Spinoff%23_ENREF_8
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The X-43A flight tests represented the highest speeds reached by a vehicle powered by an air 

breathing engine in the atmosphere.  

 2.1.1.3 US Air Force/DARPA X-51A SED program. Upon the termination of the NASP 

program in 1993, the US Air Force initiated the HyTECH (Hypersonic Technology) program in 

1995 as a follow-up (Mercier, 1998). The overall goal of HyTECH was to demonstrate the 

operability, performance and structural durability of an expendable liquid hydrocarbon-fueled 

scramjet propulsion system that operates from Mach 4 to Mach 8 (Mercier, 1998). 

 

Figure 2.3. X-51 SED vehicle concept (Hank, 2008). 

 The X-51A Scramjet Engine Demonstrator (SED) program emerged from the HyTECH 

program in July 2005 (Hank, 2008). A concept model of the X-51A is displayed in Figure 2.3. 

The main program objective of the X-51A program was to flight test the US Air Force HyTECH 

scramjet engine, using hydrocarbon fuel, by accelerating a vehicle from boost, at approximately 

Mach 4.5 to Mach 6.5 (Hank, 2008). A flight test for the X-51A was conducted on May 1, 2013.  

A booster rocket was used to accelerate the X-51A to Mach 4.8. Once Mach 4.8 was reached, the 
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booster separated allowing the X-51A to fly under its own scramjet engine.  The X-51A was able 

to reach a speed of Mach 5.1 and maintain flight for 240 seconds until it ran out of fuel 

(Rosenburg, 2013). The X-51A broke the world record for the longest air-breathing hypersonic 

flight. It is considered to be the most successful air-breathing hypersonic flight to date 

(Rosenburg, 2013). 

 2.1.2 International Programs. Several programs dedicated to the advancement of 

hypersonic, air-breathing propulsion have been initiated since the 1960s (Curran, 2001). 

Development programs from Russia, France, Australia and Japan are highlighted in this section 

of the literature review. 

 2.1.2.1 Russian programs. Russian scramjet research and development has been in 

progress for many decades (Curran, 2001). There is a limited availability of documentation in the 

English language. Due to the increased participation in international conferences, much of the 

fundamental work became available during the 1990s.  

The institution known as the Central Institute of Aviation Motors (CIAM) led many of 

Russia’s attempts at air-breathing hypersonic flight (Curran, 2001). The Kholod, displayed in 

Figure 2.4, was a major accomplishment of CIAM in 1991 (Curran, 2001) 

 

Figure 2.4. HFL Kholod concept illustration (Curran, 2001). 
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The Kholod was an axisymmetric dual-mode ramjet with an SA-5 surface-to-air missile 

used as a non-separable booster. The Kholod also utilized a support structure known as the 

Hypersonic Flying Laboratory (HFL) that was used a launching device (Curran, 2001).  

 On November of 1991, the HFL Kholod had its first successful flight test. (Bouchez, 

2005) The engine was able to operate between Mach 3.5 – 5.7 demonstrating both subsonic and 

supersonic combustion modes. A second test for the HFL Kholod was conducted on November 

of 1992 with the help of ONERA, a French aerospace center (Bouchez, 2005). The second test 

provided results that were very similar to the first test. ONERA and CIAM collaborated once 

again for a third HFL Kholod flight test, however, the engine did not operate due to HFL system 

issues (Curran, 2001). A fourth test was conducted by CIAM and NASA on February 12, 1998 

(Bouchez, 2005). Prior to the test, the SA-5 missile was modified demonstrate the full supersonic 

combustion mode to Mach 6.5. The engine data obtained from the test showed that flight speed 

varied from Mach 3.5 – 6.4, thus showing an improvement from the previous tests (Curran, 

2001). 

 2.1.2.2 French programs. The French have been working scramjet programs since the 

early 1960s. ESOPE was a French program dedicated to the development of air-breathing 

hypersonic technology that was established in 1966 (Curran, 2001). ESOPE developed an 

axisymmetric engine with an annular combustor that utilized a dual-mode scramjet concept 

(Curran, 2001). Due to limited resources, this engine could only be ground tested.  Two tests 

were conducted between 1970 and 1972. The first test demonstrated the need for improved fuel 

injection and mixing. For the second test, modifications were made and engine performance was 

much improved (Curran, 2001). The program was terminated in 1972 in favor of the 

development of the integral rocket ramjet engine (Curran, 2001).  
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Figure 2.5. JAPHAR concept illustration ("JAPHAR", 2009). 

 Two other notable programs include PREPHA and the Joint Air-breathing Propulsion for 

Hypersonic Application Research (JAPHAR). PREPHA was established in 1992 as a follow-up 

to ESOPE. PREPHA focused primarily on hydrogen-fueled scramjet technology. (Curran, 2001) 

JAPHAR was a joint program between France and Germany that was initiated in 1997. An 

illustration of a concept vehicle from the JAPHAR program is displayed above in Figure 2.5. Its 

objective was to advance hydrogen-fueled dual-mode scramjet technology with the goal of 

testing a vehicle between Mach 4 and Mach 8. (Eggers, 2001) 

 2.1.2.3 Australian programs.  Hypersonic propulsion work in Australia started in 1981 

with the T3 hypersonic impulse facility at the Australian National University (Curran, 2001). 

This work transitioned to the T4 shock tunnel at the University of Queensland. The shock tunnel 

is capable of simulating orbital flight conditions (Curran, 2001). 

 One of Australia’s most significant flight programs was the HyShot program established 

in 2001 (Curran, 2001). A concept illustration of HyShot is shown in Figure 2.6 below. The 

file:///C:/Users/Thomas/Desktop/Thesis%20Backup/JAPHAR%23_ENREF_4
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objective of HyShot was to obtain the correlation between flight- and ground-test supersonic 

combustion data (Curran, 2001). HyShot was a missile based program that consisted of a series 

of flight tests of a simplified supersonic combustion experiment.   

 

Figure 2.6. HyShot concept illustration ("Revolutionary", 2006). 

In the HyShot experiments, a scramjet coupled along with a rocket is fired with a highly 

parabolic trajectory.  During the nearly vertical re-entry portion of the trajectory, the scramjet 

experiment is conducted (Curran, 2001). The first HyShot launch took place on October 30, 2001 

and was unsuccessful. The failure of the first experiment was due to the fins of the rocket 

breaking away during the first minute of flight. This problem was resolved by replacing the 

smaller fins with larger ones (Rosenburg, 2002). HyShot II was conducted on July 30, 2002 and 

was successful.  This run led to two other successful runs (HyShot III and IV) along with others 

planned for the upcoming years (Curran, 2001).  

 2.1.2.4 Japanese programs. Efforts toward the advancement of hypersonic air-breathing 

propulsion and reusable launch systems have been directed by the Japan Aerospace Exploration 

file:///C:/Users/Thomas/Desktop/Thesis%20Backup/Revolutionary%23_ENREF_6
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Agency (JAXA). Japanese research emphasized the development of air-breathing propulsion 

systems for space access (Dhanasar, 2009). 

 

Figure 2.7. ATREX concept illustration (Sato, 2003). 

 A notable Japanese program was the Air-Turbo Ramjet Expander-Cycle (ATREX).  The 

main objective of ATREX was to achieve Mach 6 flight at an altitude of 30 km (Sato, 2003). 

This program considered a TSTO concept. Development studies for ATREX have been 

conducted since 1988 by way of ground firing tests and wind tunnel tests (Sato, 2003). 

 2.1.2.5 Chinese programs. Since the end of the 1950s, China showed its interest in the 

development of hypersonic related technologies (Lin, 1991).  This section highlights a few of the 

efforts made by the Chinese. 

In the late 1970s, the People’s Republic of China began development of the C-101 (Fry, 

2004). The C-101 was designed to be a shore-based, supersonic, anti-ship missile and achieved a 

maximum cruise speed of Mach 1.8. It could also be launched from air and ship platforms. The 
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requirements of high speed and long range resulted in a large missile with two solid propellant 

boosters and two ramjet engines (Fry, 2004). 

 The C-301, was later developed to trump its predecessor, the C-101, with increased speed 

with a longer range. The C-301 variant was fitted with four boosters. It resembles a scaled-up C-

101, but has a thicker fuselage. Although first seen in a Beijing display in November 1988, 

export versions were not released until the early 1990’s (Fry, 2004). The missile employs four 

solid propellant boosters located above and below each ramjet engine. The two ramjets are 

mounted on narrow pylons extending from the sides of the fuselage. The C-301 cruises at Mach 

2 with adjustable cruising altitudes and exhibits twice the range of the C-101 (Fry, 2004). 

 In order to understand the fundamental phenomena of scramjet, studies on supersonic 

combustion have been conducted in IMCAS (Institute of Mechanics, Chinese Academy of 

Sciences) since 1994. A hypersonic propulsion test facility (HPTF) was constructed that 

dedicated itself to the fundamental studies of scramjets with the support of IMCAS (Fry, 2004). 

 In recent news, the new hypersonic glide vehicle (HGV), dubbed the WU-14 was 

allegedly spotted flying at record-breaking speeds during a flight test on January 9, 2014 

("Missile", 2014). Its hypersonic speed range reportedly lies between Mach 5 and Mach 10. 

HGVs are designed for precise targeting and rapid delivery of weapons while also acting as a 

countermeasure toward hostile defenses ("China", 2014).   

file:///C:/Users/Thomas/Desktop/Thesis%20Backup/Missile%23_ENREF_5
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Scramjet Design at NC A&T 

It is of interest to note that the MS thesis research conducted herein is a relatively small 

part of a larger hypersonic research effort at NCAT. The NCAT hypersonic research program is 

supported by the Air Force Research Laboratory at Wright Patterson Air Force Base. This 

chapter describes the NCAT Hypersonic research efforts from a historic perspective, and 

highlights its challenges and accomplishments in relations to the motivation and objectives this 

MS thesis. 

3.1 Inverse Design of a Baseline Tip-To-Tail Scramjet  

An inverse design of a baseline tip-to-tail scramjet was developed by Dhanasar at NCAT 

(Dhanasar, 2009). A schematic of this scramjet model is pictured below in Figure 3.1. The 

inverse design implied that the scramjet model was shaped by the physics of the flow field it was 

subjected to. In other words, this scramjet model was deigned to yield the ideal scramjet 

configuration for a particular given flow field.

 

Figure 3.1. Tip-to-tail scramjet model (Dhanasar, 2009). 

An incoming hypersonic flow field makes contact with the leading edge at A-Station 

creating a shock. The initial shock reflects from the upper section of B-station, known as the 

cowl lip, towards the reflection point at C-Station. The reflected shock directs itself toward the 
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isolator creating a series of weak oblique shocks, commonly referred to as a shock train 

(Dhanasar, 2009).  Using the Waverider approach (Grant, 2010) along with 2D flow fields a 3D 

model was developed. A figure of the 3D scramjet model shown is shown in Figure 3.3 

(Dhanasar, 2009).  

 

Figure 3.2. 2-D cross-section of the forebody-inlet-isolator section (Dhanasar, 2009). 

 

 

Figure 3.3. Complete 3-D scramjet model (Dhanasar, 2009). 
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3.1.1 Past CFD validation studies. Grant (Grant, 2010), a former master’s student at 

North Carolina A&T, conducted a qualitative validation of the hypersonic flow field associated 

with an inlet that was inversely generated by Dhanasar (Dhanasar, 2009). Since Grant was 

conducting a qualitative analysis, he was only concerned with making sure the correct physics 

within the inlet was captured relative to similar studies. The inlet is illustrated in Figure 3.4 

below. 

 

Figure 3.4. 4-point star inlet (Dhanasar, 2009). 

In an effort to reduce computational costs, a piece of the 4-point star inlet pictured in 

Figure 3.4 above was independently validated. Each 4-point star inlet geometry was made of four 

individual components known as streamtubes. A typical streamtube associated with the 4-point 

star inlet is shown below in Figure 3.5. 
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Figure 3.5. Waverider derived stream tube (Dhanasar, 2009). 

3.3.1.1 2-D CFD study. Using GAMBIT, a grid generation software, the geometry of the 

streamtube of interest was formulated along with the grids associated with the geometry. The 2-D 

grid generation of the streamtube is shown in Figure 3.6. Using FLUENT, a well-known CFD 

software, flow field evaluations for the streamtube were made. The stream tube was constructed 

with a wedge angle of 17.5 degrees and evaluated at a free stream Mach number of 6.0 with an 

altitude of 30 km. This 2D study took viscous effects into account. The results for the 2D 

evaluations are described in Figures 3.7 and 3.8 in the form of Mach number and pressure 

contours, respectively (Grant, 2010). 

The results of this 2D viscous evaluation showed that the expected flow field behaviors 

were recovered. In both illustrations of Figures 3.7 and 3.8, the primary and reflected shocks are 

recovered, and the primary flow field at the inlet is uniform. In Figure 3.7, a concentration of the 

Mach contour at the boundaries inside the streamtube indicated that boundary layers were 

developed. In the case of Figure 3.8, a weak shock train can be observed in the isolator (Grant, 

2010). The analysis showed that the 2D model of the 4-point star-shaped forebody performed as 

designed.  
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Figure 3.6. 2D grid of the streamtube (Grant, 2010). 

 

 

Figure 3.7. Mach 6 free stream with contours of Mach number (Grant, 2010). 
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Figure 3.8. Mach 6 free stream with contours of pressure (Grant, 2010). 

3.3.1.2 3-D CFD study. The promising 2-D viscous results from FLUENT prompted 

Grant to continue along with a 3-D CFD study. A 3-D grid of the streamtube was constructed in 

GAMBIT and is shown in Figure 3.9 below. Similar to the 2-D study, the stream tube was 

constructed with a wedge angle of 17.5 degrees and evaluated at a free stream Mach number of 

6.0 with an altitude of 30 km for the 3-D study. Viscous effects were also taken into account.  

The result from the 3-D study is depicted Figure 3.10. Figure 3.10 represents the Mach 

number distribution along the centerline geometry of the stream tube. The viscous result came 

out to be inconclusive and unsatisfactory. No convergence in any of the flow field variables was 

obtained. Due to the lack of computational resources larger grid sizes could not be tested (Grant, 

2010). 

The next 3D CFD evaluation was conducted using the Air Vehicle Unstructured Solver 

(AVUS) and Gridgen CFD software tools. The grid generation software, Gridgen, was used 

primarily to produce high quality grids. Using Gridgen, a set of grids were developed that 
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incorporated 24 layers of prism-like cells along the wall boundaries of the streamtubes. 

Illustrations of the 24 prism layers that were incorporated in the unstructured grid used in this 

analysis are presented in Figure 3.11. 

Once the grids were developed, the grid information along with the free stream data and 

CFD model information were assigned and submitted to AVUS for flow field evaluation. The 

streamtube was evaluated at the same free stream Mach number, altitude and wedge angle as the 

previous 3D CFD study. 3D Euler results from the AVUS CFD study are presented in Figures 

3.12 and 3.13 in the form of 2D data slices. Figures 3.12 and 3.13 illustrate 2D slices of the 

forebody-inlet Mach number and pressure distribution along the centerline plane of scramjet 

inlet, respectively. 

 

 

Figure 3.9. 3D grid of the streamtube (Grant, 2010). 
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Figure 3.10. 3D Mach 6 contours of Mach number, centerline z-axis (Grant, 2010). 

 

 

Figure 3.11. Cross-sectional illustration of the grid created in Gridgen (Grant, 2010). 
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Figure 3.12. 3D contours of Mach number, centerline z-axis (Grant, 2010). 

 

Figure 3.13. 3D contours of pressure, centerline z-axis (Grant, 2010). 

As noted in Figures 3.12 and 3.13, the Mach number and pressure distribution between 

the primary and reflected shock waves is uniform, respectively. This information came in as 

expected. Figure 3.13 showed distinct evidence of an oblique shock train in the isolator. 

In an effort to demonstrate that the internal flow field within the scramjet forebody is 

truly 2D in nature, a plot of density contours with 2D data slices along the z-axis was developed. 

The density contour plot is illustrated in Figure 3.14 below (Grant, 2010). This result indicates 
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that there are no movements in the z-directions, and confirms that the flow field is truly two-

dimensional.  

 

Figure 3.14. Flow visualization demonstration, contours of density at Mach 6 (Grant, 2010). 

A similar CFD study was carried out by a colleague, Nastassja Dasque, in 2008 (Ferguson, 

2009). In her study, Dasque conducted a Mach 5 inviscid analysis of the complete four-point-star 

configuration. The results from the analysis are presented in Figures 3.15 and 3.16 (Ferguson, 2009). 

The results shown in Figures 3.15 and 3.16 bear a strong resemblance to the results 

generated by this study, as seen in Figures 3.12 and 3.13. Both sets of results recover the primary 

and reflective oblique shock waves. Also, there are no strong oblique or normal shock waves in 

the isolator. Although these two sets of data bear a strong resemblance to each other, there is one 

major difference. Dasque’s results do not recover the oblique shock train in the isolator. This is 

due to the fact that Dasque modeled all four stream tubes in her analysis. A consequence of this 

choice reduces the number of grid points in the isolator available to capture minute disturbances 

in the flow field (Grant, 2010). 
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Figure 3.15. Independent validation; contours of Mach number (Grant, 2010). 

 

 

Figure 3.16. Independent validation; contours of pressure (Grant, 2010). 
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3.3.1.3 Pros and cons of CFD. The use of CFD over time has proved beneficial to the 

advancement of hypersonic air-breathing propulsion. Some advantages of CFD include: the 

delivery of accurate results, ability to capture phenomenon that some numerical schemes have 

difficulty with and modeling can be constructed at a full scale. Despite the power of CFD, it has 

limitations. Pre-processing times can be rather lengthy and prolong the data collection process. 

Before anything is done, grids must be generated to simulate the region of interest. With millions 

of cells to analyze, the limitation of computational resources becomes more apparent. The entire 

analysis could take days or weeks to accomplish depending on the computer’s resources. It is 

necessary to ensure that the model of interest is tested thoroughly prior to being analyzed by 

CFD. The quasi-1D solver mentioned in the objective of this thesis can guarantee that the model 

is working efficiently before CFD analysis is conducted.  
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Methodology 

The objective of this MS thesis is to use the quasi-1D fluid dynamic equations to evaluate 

the fluid flow in arbitrary shaped ducts under the influence of aerodynamic heating, friction, 

mass addition and other fluid dynamic interactions of interest to scramjet designs. Consequently, 

it becomes important to review the quasi-1D fluid dynamic theory and the appropriate 

assumptions that this theory is built on. This chapter presents the framework upon which the 

quasi-1D fluid dynamic equations are built and highlights its use in this thesis. Also, in this 

chapter, the available analytical solutions of the quasi-1D fluid dynamic equations are also 

presented. In particular, the influence coefficient and the Runge-Kutta solution methodologies 

are described with great details, as they form the basis upon which this thesis research is built. 

4.1 Quasi-One-Dimensional Theory 

In one-dimensional flow, flow properties such as the velocity, pressure and temperature vary in 

one direction while the cross-sectional area remains constant (Anderson, 2003).  The flow is 

considered to be adiabatic and inviscid. In other words, the flow is isentropic. Quasi-one-

dimensional flow takes the same principle count except the cross-sectional area also varies in one 

direction, in this case as a function of x (Anderson, 2003). Figure 4.1 gives an illustration of 

quasi-one-dimensional flow in a duct. The governing equations for quasi-one-dimensional flow 

are derived from the three conservation laws of mass, momentum and energy.  Although the 

three conservation laws represent fully what happens in nature, the quasi-one-dimensional 

representation of them is approximate. One can achieve more accurate solutions by considering 

three-dimensional flow. However, wind tunnel and rocket engine studies have shown quasi-one-
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dimensional flow to be fairly accurate (Anderson, 2003). Equations 4.1-4.3 show the three 

conservation laws when they are applied to quasi-1D flow in a duct. 

 

 

Figure 4.1. Quasi-one dimensional flow in a duct (Anderson, 2011). 

𝜌1𝑢1𝐴1 = 𝜌2𝑢2𝐴2       (4.1) 

𝑝1𝐴1 + 𝜌1𝑢1
2𝐴1 + ∫ 𝑝𝑑𝐴

𝐴2

𝐴1
= 𝑝2𝐴2 + 𝜌2𝑢2

2𝐴2  (4.2) 
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2
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𝑢2
2
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      (4.3) 

When considering quasi-one-dimensional flow, the only mechanism responsible for any 

changes in the flow properties is the change in cross-sectional area. The area-velocity 

relationship, derived from the manipulation of the continuity and momentum equations, relates 

the area variation to the velocity variation for subsonic and supersonic flows as described by 

Equation 4.4 (Anderson, 2003). This relationship reveals trends that occur in converging and 

diverging ducts. Figure 4.2 details the area-velocity relationship in the form of a diagram. 

 

𝑑𝐴

𝐴
= (𝑀2 − 1)

𝑑𝑢

𝑢
     (4.4) 
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Figure 4.2. Compressible flow in converging and diverging ducts (Anderson, 2011). 

4.2 Fanno Flow Theory 

 Fanno flow refers to flow that is adiabatic and inviscid with effects of friction being 

considered (Anderson, 2003). In a duct, friction is modeled as a shear stress along the wall. This 

shear stress acts on the fluid in a uniform manner over any cross section (Anderson, 2003). An 

illustration of a duct subjected to Fanno flow is displayed in Figure 4.3 below. 

 

Figure 4.3. Fanno flow illustration ("Fanno", 2007).  
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The governing equations for Fanno flow are very similar to that of quasi-one-dimensional 

flow.  The only difference lies in the representation of the momentum equation. Equation 4.5 

provides the Fanno flow implementation of the momentum equation which contains the shear 

stress, unlike its quasi-1D counterpart from Equation 4.2.  

𝑝1𝐴1 + 𝜌1𝑢1
2𝐴1 = 𝑝2𝐴2 + 𝜌2𝑢2

2𝐴2 + ∫ 𝜋𝐷𝜏𝑤𝑑𝑥
𝐿

0
 (4.5) 

Similar to quasi-one-dimensional flow, there are trends for the behavior of subsonic and 

supersonic flows under Fanno flow.  For subsonic inlet flows, the Mach number increases while 

the pressure and temperature both decrease (Anderson, 2003). For supersonic inlet flows, the 

Mach number decreases while the pressure and temperature both increase (Anderson, 2003).  

 

Figure 4.4. Fanno flow curve ("Fanno", 2007). 

In nature, when a flow under the influence of friction, the Mach number is driven toward 

unity (Anderson, 2003). From the Fanno flow curve (displayed in Figure 4.4), it can be seen that 

the Mach number gets closer to sonic conditions with increasing entropy. Once the Mach number 
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reaches unity the flow becomes choked. Any points between 1 and b on the curve represent a 

duct of length L. The length that will allow the flow to be choked is what is known as the 

choking length (commonly referred to as L*).  If L were to be made larger than L*, the inlet 

conditions would have to be adjusted accordingly (Anderson, 2003). For instance, if the 

conditions at point 1 were expanded by a supersonic nozzle and L were larger than L*, a normal 

shock would form which would result in the inlet conditions becoming subsonic (Anderson, 

2003). Furthermore, it is impossible to drive a flow to sonic conditions and then further 

decelerate to subsonic conditions.  Doing so would violate the 2nd Law of Thermodynamics 

which states that the entropy of an isolated system should never decrease because an isolated 

system always strives toward thermodynamic equilibrium (maximum entropy) (Anderson, 2003). 

4.3 Runge-Kutta 4th Order Method 

Consider a quasi-one-dimensional duct with n number of unique cross sections as 

displayed in Figure 4.5. 

 

Figure 4.5. Quasi-1D duct. 
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 In Figure 4.5, every aerodynamic parameter of interest at the inlet is a known value. For 

any arbitrary cross-section xi, those parameters are unknown. A marching, iterative scheme is 

necessary in predicting the variables of interest throughout the duct for n number of cross-

sections. 

The Taylor series, portrayed by Equation 4.6, uses the derivative of a function to 

approximate the solution of a function. By knowing the conditions at one point, one can march 

forward in space and approximate the conditions at the next point.  

𝑦𝑖+1 = 𝑦𝑖 +
𝑑𝑦

𝑑𝑥
ℎ     (4.6) 

An important thing to consider would be the accuracy between each march forward.  The 

error produced from a single march forward will most certainly propagate throughout each 

forward march thereafter.  For that reason, it is necessary to implement a method capable of 

minimizing the error between each step forward.  One such method is the Runge-Kutta 4th order 

method.  The Runge-Kutta 4th order method expresses the derivative of a function with 4th order 

accuracy. 

 

Figure 4.6. Runge-Kutta 4th order diagram ("Runge-Kutta", 2008). 
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Consider the problem statement shown in Equation 4.7. 

𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦)   , 𝑦(𝑥𝑖) = 𝑦𝑖       

𝑥 ∈ (𝑥𝑖 , 𝑥𝑛)  , 𝑦 = 𝑓(𝑥)        (4.7) 

Equation 4.7 describes the derivative of a function is presented as a function of two 

variables, x and y. The independent variable x ranges between the values xi and xn. The 

dependent variable y is a function of x and has a value of yi at x = xi. The goal is to determine f(x) 

using the given information. The function f(x) can be approximated using the Runge-Kutta 4th 

order method as shown in Equations 4.8 and 4.9. 

𝑦𝑖+1 = 𝑦𝑖 +
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)ℎ   (4.8) 

Where,  

ℎ =
∆𝑥

𝑁
 ≪ 1       

𝑘1 = 𝑓(𝑥𝑖, 𝑦𝑖)       𝑘3 = 𝑓 (𝑥𝑖 +
ℎ

2
, 𝑦𝑖 +

ℎ

2
𝑘2)  

   𝑘2 = 𝑓 (𝑥𝑖 +
ℎ

2
, 𝑦𝑖 +

ℎ

2
𝑘1)      𝑘4 = 𝑓(𝑥𝑖 + ℎ, 𝑦𝑖 + ℎ𝑘3)  (4.9) 

Using the information given and selecting the proper step size h according to the above 

criteria will provide the conditions at yi+1.  Once the value of yi+1 is obtained, it can be used to 

find the value of y at the next step.  This process can be repeated until n number of steps is 

reached. 

The quasi-1D implementation of the Runge-Kutta 4th order scheme is handled similarly 

to the problem presented above.  The only difference lies in the fact that the quasi-1D version of 

this is represented in vector form.  A vector notation is necessary to solve the three primitive 

variables: Mach number (M), Pressure (P) and Temperature (T) (refer to Figure 3.7) 
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Figure 4.7. Vector implementation of RK 4th order scheme 

 In order to solve for the three primitive variables, three equations are necessary.  By 

using the three conservation laws of mass, momentum and energy, along with some 

manipulation, the Equations 4.10 – 4.12 can be derived. 

dM

dx
= −

(1+
𝛾−1

2
𝑀2)

1−𝑀2

𝑀

𝐴

𝑑𝐴

𝑑𝑥
+ (

𝛾𝑀2(1+
𝛾−1

2
𝑀2)

2(1−𝑀2)
𝑀 ) (

4𝐶𝑓

𝐷ℎ
−

2𝑦

�̇�

𝑑�̇�

𝑑𝑥
)  (4.10) 

dP

dx
=

𝛾𝑀2

1−𝑀2

𝑃

𝐴

𝑑𝐴

𝑑𝑥
+ (−

𝛾𝑀2[1+(𝛾−1)𝑀2]

2(1−𝑀2)
𝑃) (

4𝐶𝑓

𝐷ℎ
−

2𝑦

�̇�

𝑑�̇�

𝑑𝑥
)   (4.11) 

dT

dx
=

(𝛾−1)𝑀2

1−𝑀2

𝑇

𝐴

𝑑𝐴

𝑑𝑥
+ (−

𝛾(𝛾−1)𝑀4

2(1−𝑀2)
𝑇) (

4𝐶𝑓

𝐷ℎ
−

2𝑦

�̇�

𝑑�̇�

𝑑𝑥
)    (4.12) 

 The previous equations show the changes in each primitive variable across the length of 

an arbitrary duct with only the influences of area change and friction being considered. The 

influences manifest themselves in the previous equations as coefficients shown in Table 4.1 

below.  
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Table 4.1 

Shapiro’s Influence Coefficients 

  

The coefficients shown in Table 4.1 were developed by Shapiro and are known as 

influence coefficients (Shapiro, 1953). All of the coefficients are functions of the specific heat 

ratio γ and the Mach number M. The columns in Table 4.1 represent the different influences. The 

influences are shown in Table 4.1 (from left to right) to be changes in area, heat addition, 

friction, mass addition and changes in the specific heat ratio. Each row in Table 4.1 reflected 

how a particular primitive variable is affected by each of the influences mentioned. With some 

manipulation, Shapiro’s coefficients can be altered to show the changes in the primitive 

variables, as well as the influences, with respect to length. Table 4.2 below shows the altered 

coefficients. The coefficients shown in Table 4.2 are same as the coefficients implemented in 

Equations 4.10 – 4.12. The differential equations do not provide the primitive variables 

themselves. The Runge-Kutta 4th order method can use the differential equations to accurately 

approximate the solution of the primitive variables at each unique cross section of an arbitrary 

duct.  
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Table 4.2 

Modified Influence Coefficients 

 

4.4 Quasi-One-Dimensional Solver 

 A quasi-1D solver was developed in FORTRAN to implement the Runge-Kutta 4th order 

scheme. This was programmed in an object-oriented form which allowed for the grouping of 

important variables, the referencing of functions and easy interpretation of the program structure. 

The overall objective of this solver was to solve for primitive variables at n number of cross-

sections of a duct with a variable geometric configuration. To make this possible, the solver 

required the aerodynamic conditions at the inlet (primitive variables), the duct geometry and the 

skin friction coefficient at each cross-section. The basic principle behind solving for the 

primitive variables at each cross-section is represented in Equation 4.13. 

𝑃𝑉𝑛𝑒𝑤 = 𝑃𝑉𝑜𝑙𝑑 + ∆𝑃𝑉𝑜𝑙𝑑     (4.13) 

 By providing the initial set of primitive variables, one can obtain the new set of primitive 

variables by simply adding the quantity ΔPV, a change in the primitive variables. In the case of 
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the Runge-Kutta 4th order solver, ΔPV is represented more accurately as shown in Equation 4.14 

below. 

𝑃𝑉𝑛𝑒𝑤 = 𝑃𝑉𝑜𝑙𝑑 +
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)ℎ   (4.14) 

 It important to note the similarities in Equation 4.14 and 4.8. When comparing Equation 

4.6 and 4.14, it is observed that the Runge-Kutta 4th order scheme was used to represent the 

derivatives of the primitive variables with a higher degree of accuracy. This allows the primitive 

variables at the next step to be calculated with minimal error in comparison to other methods 

such as Euler. It is important to note that this solver only took changes in area and friction into 

account. Any other influences could simply be added into the differential equations with their 

respective influence coefficients. 

 4.4.1 Variable grouping. In order to fully utilize the capabilities of object-oriented 

programming, variables of interest were grouped accordingly. The most important variables of 

interest were the primitive variables: Mach number, pressure and temperature. The geometry 

along with other friction related variables were the next to be grouped. More specifically, those 

variables included the local distance x, cross-sectional area A, hydraulic diameter Dh and skin 

friction coefficient, Cf. The primitive variables, geometry and friction related variables acted as 

inputs to the code. Aside from the inputs, other variables used within the algorithm itself also 

needed to be grouped. The coefficients shown in Table 4.2 that pertained to area change and 

friction influences were grouped as a single matrix quantity. Since only the area and friction 

related coefficients were used, the coefficient matrix was defined a three-by-two matrix as shown 

in Table 4.3. The three-by-two indicates that each of the three primitive variables has the two 

influences of area change and friction acting upon them. The influences themselves were 

grouped into a single vector quantity. 
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Table 4.3 

Area Change and Friction Influence Coefficients 

  

𝑑𝐴

𝑑𝑥
 

 

 

4𝐶𝑓

𝐷ℎ
−

2𝑦

�̇�

𝑑�̇�

𝑑𝑥
 

 
dM

dx
 

 

−
(1 +

𝛾 − 1
2

𝑀2)

1 − 𝑀2

𝑀

𝐴
 

 

 

𝛾𝑀2 (1 +
𝛾 − 1

2
𝑀2)

2(1 − 𝑀2)
𝑀 

dT

dx
 

(𝛾 − 1)𝑀2

1 − 𝑀2

𝑇

𝐴
 −

𝛾(𝛾 − 1)𝑀4

2(1 − 𝑀2)
𝑇 

dP

dx
 

𝛾𝑀2

1 − 𝑀2

𝑃

𝐴
 −

𝛾𝑀2[1 + (𝛾 − 1)𝑀2]

2(1 − 𝑀2)
𝑃 

 

The variables used to calculate the coefficients and influences were each given their own 

groups as well. In Equations 4.10 – 4.12, each term was simply a coefficient multiplied by an 

influence with respect to x. In order to have control over which influences were active, a vector 

of switches were created and assigned to a group. The switches were placed inside the three 

differential equations. By assigning a value of “1” or “0”, any influence could be turned on or 

off. The basic idea behind the switches is portrayed in Equation 4.15. 

Q1D = Coefficient ∗ Influence ∗ Switch   (4.15) 

The switches were done arithmetically in this way to insure that the logic of the code was 

not separated from the algebra. The multiplication of a coefficient, influence and a switch 

constitutes a quasi-1D term. The quasi-1D terms are essentially the terms of Equations 4.10 – 

4.12. Each of the quasi-1D terms were grouped into a single matrix very similar to the coefficient 

matrix. Equation 4.13 showed that the calculation of ΔPV was needed to calculate the new PV. 
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Knowing that, the delta quantities for each primitive variable were grouped. The Runge-Kutta 4th 

order solver was designed to work with single variables that are actually comprised of a group of 

variables. 

 4.4.2 Important functions and subroutines. The functions used in the solver were 

named to accurately describe the task they are capable of while ensuring inputs are kept at a 

minimum. Three of the functions were dedicated to the creation of the coefficient matrix along 

with the influence and switch vectors. The outputs from these functions were used as inputs for a 

quasi-1D matrix function that calculated the terms of each of the three differential equations to 

be solved. The terms of the differential equations obtained from the quasi-1D matrix function 

were placed into their respective delta functions (refer to Equations 4.10 – 4.12). 

 As previously stated in Equation 4.14, the Runge-Kutta 4th order method is used to 

approximate the ΔPV quantities for each of the three primitive variables. Three functions were 

created to extract the proper elements from the quasi-1D matrix and prepare the delta quantities 

to be calculated. A subroutine used the delta functions to calculate the ΔPV values and group 

them into a single variable called DeltaPV. DeltaPV and the initial primitive variables were used 

as inputs for a subroutine that calculated the new primitive variables in the same format shown in 

Equation 4.13. As a means of consolidation, a single subroutine was made to encase all of the 

aforementioned functions and subroutines. This subroutine, known as Quasi1DFriction, could 

carry out the Runge-Kutta operations on its own using a single input that contained all of the 

input variables mentioned in the previous section. 

 4.4.3 Program structure. The solver was constructed such that all the functions needed 

to perform the Runge-Kutta 4th order scheme were stored in a single module. A driver program 

that was separate from the Runge-Kutta module gathered the inputs and ran the Quasi1DFriction 
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subroutine. This program design allowed for the Runge-Kutta module to function on its own 

without the help of other modules. In the future, it can be used in conjunction with other codes to 

provide aerodynamic analysis.  
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Validation of Runge-Kutta 4th Order Solver 

The Runge-Kutta 4th order flow solver, described in Chapter 4, was designed and 

programmed in object oriented FORTRAN. The resulting code considers the effects of area 

change and friction in arbitrary quasi-one-dimensional ducts. Other influences experienced by 

ducts such as mass injection, heat addition and variable specific heat were omitted due to the 

lack of validation sources for each respective problem. The solver completes its task by 

providing it with basic information such as the length of the duct, area at each cross section, skin 

friction at each cross section, hydraulic diameter at each cross section, number of cross sections 

and the step size between each cross section.  In order to ensure the validity of the newly 

developed Runge-Kutta 4th order flow solver, validation studies were conducted. The flow solver 

gives one the ability to control the influence coefficients through the use of a simple set of ‘on-

off’ switches. In particular, validation studies were conducted for each individual influence 

coefficient, namely; area change and friction, as well as their combined effects. 

5.1 Quasi-1D Validations 

This section of the validation study considers flow through a duct with changes in the 

cross sectional area along the length of the duct. In other words, the flow is purely quasi-one-

dimensional. This updates Equations 4.10 – 4.12 to what is shown in Equations 5.1 – 5.3 below. 

Each problem will be solved using the Runge-Kutta 4th order solver and then compared to the 

analytical solution. The analytical solution to pure quasi-1D flow is shown in Equation 5.4. 

 

dM

dx
= −

(1+
𝛾−1

2
𝑀2)

1−𝑀2

𝑀

𝐴

𝑑𝐴

𝑑𝑥
     (5.1) 
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dP

dx
=

𝛾𝑀2

1−𝑀2

𝑃

𝐴

𝑑𝐴

𝑑𝑥
     (5.2) 

dT

dx
=

(𝛾−1)𝑀2

1−𝑀2

𝑇

𝐴

𝑑𝐴

𝑑𝑥
     (5.3) 

𝐴

𝐴∗
=

1

𝑀
[(

2

𝛾+1
) (1 +

𝛾−1

2
𝑀2)]

𝛾+1

2(𝛾−1)
  (5.4) 

The analytical solution provides the Mach number at each unique cross section of a duct. 

In order to retrieve the Mach number, specific heat index (γ), Area at each cross section of the 

duct (A) and the area of the duct at its throat (A*). Once the Mach number is obtained, the 

analytical solutions for the pressure and temperature can be acquired using the isentropic flow 

relations shown in Equations 5.5 and 5.6 below. 

𝑃

𝑃0
= (1 +

𝛾−1

2
𝑀2)

−𝛾

𝛾−1
    (5.5) 

𝑇

𝑇0
=

1

1+
𝛾−1

2
𝑀2

      (5.6) 

5.1.1 Pure quasi-1D converging duct. In this validation, pure quasi-1D flow through a 

convergent duct is considered. Both subsonic and supersonic inlet flow will be observed.  

5.1.1.1 Pure quasi-1D converging duct with subsonic inlet. Figure 5.1 below shows an 

illustration of the case of pure quasi-1D flow through a converging duct with subsonic inlet 

conditions. The length of the duct is given as 50 m long. The area varies only along the x-

direction and is given to be Area(x) = 17.0 – 3.0x. The inlet Mach number, pressure and 

temperature are given as 0.03, 300 kPa and 300 K respectively. Figures 5.2 – 5.4 show what was 

obtained by the analytical solution and quasi-1D solver for the Mach number, pressure and 

temperature under the conditions mentioned.  
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Figure 5.1. Quasi-1D converging duct under subsonic conditions. 

 

 

 

 

 

 

 

 

 

         

Figure 5.2. Mach number vs distance for a converging duct under subsonic conditions. 
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Figure 5.3. Pressure vs distance for a converging duct under subsonic conditions. 

 

Figure 5.4. Temperature vs distance for a converging duct under subsonic conditions. 
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It is important to note that both the pressure and temperature are scaled by the total 

pressure and total temperature respectively. Figures 5.2 – 5.4 above show that results obtained 

from the solver are consistent with that of the analytical solution. Not only do the results 

compare well with the analytical solution, they also follow the expected trends presented by any 

aerodynamic textbook. 

5.1.1.2 Pure quasi-1D converging duct with supersonic inlet. For the converging duct 

with supersonic inlet case, a converging duct with geometry identical to the previous problem is 

used. The duct along with its inlet conditions are shown in Figure 5.5. 

 

Figure 5.5. Quasi-1D converging duct under supersonic conditions. 

The inlet Mach number, pressure and temperature are given to be 4.53, 300 kPa and 300 

K respectively. Similar to the previous validation problem, the results of the quasi-1D solver are 

compared directly to the analytical solution. From the observation of Figures 5.6 – 5.8, it is noted 

the solver’s solution compares well with the analytical solution. 
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Figure 5.6. Mach number vs distance for a converging duct under supersonic conditions. 

 

Figure 5.7. Pressure vs distance for a converging duct under supersonic conditions. 
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Figure 5.8. Temperature vs distance for a converging duct under supersonic conditions. 

5.1.2 Pure quasi-1D diverging duct. In this validation, opposite to the previous, the case 

of a quasi-1D diverging duct was observed. The study was conducted for subsonic and 

supersonic inlet flow. 

5.1.2.1 Pure quasi-1D diverging duct with subsonic inlet. Figure 5.9 below depicts a 

diverging duct with subsonic inlet conditions. The diverging nozzle has a length of 5.0 m. The 

area varies along the x-direction and is given to be Area(x) = 2.0 + 3.0x.  

 

Figure 5.9. Quasi-1D diverging duct under subsonic conditions. 
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Figure 5.10. Mach number vs distance for a diverging duct under subsonic conditions. 

 

Figure 5.11. Pressure vs distance for a diverging duct under subsonic conditions. 
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Figure 5.12. Temperature vs distance for a diverging duct under subsonic conditions. 

The diverging duct with subsonic inlet conditions validation shows that the analytical 

solution compares well with the results obtained from the solver.  

5.1.2.2 Pure quasi-1D diverging duct with supersonic inlet. In this divergent case, the 

geometry of the previous validation is maintained while the inlet conditions are set to be 

supersonic. The Mach number, pressure and temperature are now 2.2, 300 kPa and 300 K 

respectively. The results provided by the quasi-1D solver are, again, compared with the 

analytical solution in Figures 5.14 – 5.16 below. 

 

Figure 5.13. Quasi-1D diverging duct under supersonic conditions. 
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Figure 5.14. Mach number vs distance for a diverging duct under supersonic conditions. 

 

Figure 5.15. Pressure vs distance for a diverging duct under supersonic conditions. 
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Figure 5.16. Temperature vs distance for a diverging duct under supersonic conditions. 

From the observation of Figures 5.14 -5.16, the results from the solver’s solution 

compares well with the analytical solution in the case of a diverging duct with supersonic inlet 

conditions. 

5.2 Fanno Flow Validations 

Fanno flow, as previously described in Chapter 4, is flow that is adiabatic and inviscid 

with effects of friction being considered. Three unique Fanno flow scenarios are used for 

validation purposes in this section.  

5.2.1 Fanno flow through a constant area duct. In this validation, air flow through a 

constant area duct with friction is presented as depicted in Figure 5.17 below.  

 

Figure 5.17. Constant area duct with constant skin friction (Bandyopadhyay, 2007). 
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The constant area duct has a diameter of 0.1524 m and a length of 81.4578 m. The length 

prescribed is equivalent to the choking length for this particular set of data given. The skin 

friction coefficient is constant throughout the length of the pipe and has a value of 0.0005. The 

inlet Mach number, pressure and temperature are given to be 0.5, 344737.865 Pa and 299.817 K 

respectively. Bandyopadhyay and Majumdar implemented a quasi-one-dimensional, finite 

volume algorithm in a flow solver called Generalized Fluid System Simulation Program 

(GFSSP) (Bandyopadhyay, 2007). Figures 5.18 – 5.20 pictured below compares the solutions 

obtained by the Runge-Kutta 4th order solver and GFSSP with the analytical solution. It is 

important to note that the temperature and pressure are scaled by T* and P*, respectively. The 

asterisks labeled next to these parameters indicates a value taken at choked flow conditions. The 

values of T* and P*, as shown in the above diagram, are 262.315 K and 161235.613 Pa 

respectively.  

 

Figure 5.18. Mach number vs distance for constant area duct with constant skin friction. 
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Figure 5.19. Pressure vs distance for constant area duct with constant skin friction. 

 

Figure 5.20. Temperature vs distance for constant area duct with constant skin friction. 
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From Figures 5.18 – 5.20 above it is clearly seen that the Runge-Kutta 4th order solver 

compares well with the analytical solution.  Not only does it compare well, it also out performs 

the solution given by GFSSP. 

5.2.2 Fanno flow with subsonic and supersonic inlet conditions by Anderson. 

Anderson (Anderson, 2003) provided two different problems that can be used to validate the 

Fanno flow portion of the Runge-Kutta 4th order solver. The two problems address subsonic and 

supersonic under the influence of skin friction. 

5.2.2.1 Fanno flow with subsonic inlet conditions. The first of Anderson’s problems 

addresses Fanno flow with subsonic inlet conditions. A diagram of this problem is shown below 

in Figure 5.21. 

 

Figure 5.21. Subsonic pipe flow with constant skin friction described by Anderson.  

Figure 5.21 depicts a pipe with a length of 30.0 m and a diameter of 0.15 m. The skin 

friction coefficient is held constant along the axial direction of the pipe and is given to be 0.005.  

The inlet Mach number, pressure, and temperature are given to be 0.3, 101352.0 Pa and 273.0 K 

respectively. Figures 5.22 – 5.24 show the comparison between the Runge-Kutta 4th order solver 

and Anderson’s solution. Since Anderson only provided the inlet and exit conditions, the 

distribution of each aerodynamic parameter is not given for his solution. The inlet and exit 

conditions provided by Anderson are depicted by the red diamonds. Just as the previous Fanno 
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flow validation scaled the Temperature and Pressure by T* and P*, the same is done in the 

following validation study as well. 

 

Figure 5.22. Mach number vs distance for subsonic pipe flow with constant skin friction. 

 

Figure 5.23. Pressure vs distance for subsonic pipe flow with constant skin friction.  
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Figure 5.24. Temperature vs distance for subsonic pipe flow with constant skin friction. 

Overall, the Runge-Kutta 4th order solver compares well to that of Anderson’s solution.  

The only inconsistency takes place in the calculation of the pressure (see Figure 5.23) that the 

solver appears to have under-predicted. 

5.2.2.2 Fanno flow with supersonic inlet conditions. The second of Anderson’s 

problems shows the scenario of Fanno flow through a pipe with supersonic inlet conditions. 

Figure 5.25 shows a diagram of this problem. The inlet conditions are given in Figure 5.25.  The 

length of the pipe is given to be 1.524 m and the diameter is given to be 0.12192 m.  The Mach 

number, pressure and temperature are given as 3.0, 101325 Pa and 300 K respectively. 

 

Figure 5.25. Supersonic pipe flow with constant skin friction described by Anderson.  
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Figure 5.26. Mach number vs distance for supersonic pipe flow with constant skin friction. 

 

Figure 5.27. Pressure vs distance for supersonic pipe flow with constant skin friction. 



62 

 

` 

 

Figure 5.28. Temperature vs distance for supersonic pipe flow with constant skin friction. 

 From Figures 5.26 – 5.28, it is evident that the results obtained from the Runge-Kutta 4th 

order solver compare well with the solution obtained by Anderson. 

5.3 Combined Quasi-1D and Fanno Flow Validation 

 5.3.1 Converging-diverging duct subjected to quasi-1D and Fanno flow. Figure 5.29 

below depicts a converging-diverging nozzle. The converging section has an inlet diameter that 

is given to be 0.2286 m.  The length of the converging section is given to be 1.27 m from the 

inlet to the throat. The inlet Mach number, pressure and temperature are 0.25, 344737.865 Pa and 

299.817 K respectively. The throat diameter is given to be 0.1524 m and the exit diameter is 

given as 0.3048 m. The distance from the throat to the exit is 5.08 m. Bandyopadhyay and 

Majumdar used GFSSP to compute the nozzle exit conditions. The results obtained from GFSSP 

are compared against the results acquired from the Runge-Kutta 4th order solver in Figures 5.30 – 

5.32. 
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Figure 5.29. Detailed sketch of and converging-diverging nozzle (Bandyopadhyay, 2007). 

 

Figure 5.30. Mach number vs distance for a converging-diverging nozzle. 
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Figure 5.31. Pressure vs distance for a converging-diverging nozzle. 

 

Figure 5.32. Temperature vs distance for a converging-diverging nozzle. 
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 From Figures 5.30 – 5.32, it is clear that the results from the Runge-Kutta 4th order solver 

compare well with the results obtained from GFSSP. There appears to be an inconsistency in the 

calculation of the pressure. It should be noted that in each figure, the conditions at the throat are 

captured more accurately with the Runge-Kutta 4th order solver.   
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Implementation of Runge-Kutta 4th Order Validation Tool 

  This chapter explores the use of the newly developed Runge-Kutta 4th order solver in 

supporting the development of NCAT scramjet design goals. Currently, the Runge-Kutta 4th 

order solver is successfully coupled to the NCAT scramjet design code. Its successfully 

integration was verified and preliminary validation studies were conducted. To date, all 

validation studies were conducted in a quantitative manner. The limited data obtained showed 

mixed results. At low Mach numbers the data seems to correlate well with flow field 

expectations, but this conclusion does not hold for the higher Mach numbers. This chapter 

describes the validations studies of interest to this thesis and highlights the challenges and short-

comings of the newly developed Runge-Kutta 4th order solver. 

6.1 Verification of the Scramjet Design Code 

 It was imperative to verify the scramjet design code prior to validating it. Independent 

calculations were done to reassure that functions within the scramjet design code were operating 

efficiently. A few select parameters relating to the forebody section of the scramjet model 

(displayed in Figure 6.1) were independently verified.  

 

Figure 6.1. Modified forebody-inlet-isolator section of NCAT scramjet model. 
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 Figure 6.1 represents a modified version of Figure 3.2. The alpha parameters, α1, α2 and 

α3 shown in Figure 6.1 will be detailed in Section 6.2.  The parameters verified, in relation to the 

forebody section, included the outlet mass flow rate and the forebody height (Ly3). Both 

parameters are plotted over the free stream Mach number range of 4 to 12. The plots for the 

outlet mass flow rate and forebody height are illustrated below in Figures 6.2 and 6.3, 

respectively. Both figures are normalized around a free stream Mach number of 8. 

 

Figure 6.2. Outlet mass rate vs free stream Mach number. 

 

Figure 6.3. Forebody exit height vs free stream Mach number. 

 In Figure 6.2, the forebody outlet mass flow rate over the range of Mach numbers 4 to 12 

has a linear correlation. Linear mass injection models would be simple to implement in reality. 

Figure 6.3 indicates that the forebody height, Ly3, decreases as the Mach number increases. 

Figure 6.3 can be interpreted as saying that a deceleration from Mach 8 to 4 would result in a 40 
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percent increase of the forebody height. An increase of that magnitude would require an 

unreasonable increase in forebody height to accommodate the deceleration from Mach 8 to 4. 

Increases in Mach number would translate to a decrease in forebody height of around 10 percent. 

These criteria only hold true for an inlet designed for Mach 8 airflow due to normalizing. 

6.2 Validation of Quasi-1D Tool 

The Runge-Kutta 4th order solver was integrated with the quasi-1D scramjet code 

developed by Dhanasar to be used as a means of validation. As previously mentioned in Chapter 

1, only the isolator zone was validated. To allow for more variation in the validation study, three 

optimization parameters were added to give flexibility to the geometry. Refer to the detailed 

schematic pictured in Figure 6.1 to give clarity on how the optimization parameters are used. 

From Figure 6.1, the three optimization parameters α1, α2 and α3 can be identified. The 

parameter α1 controls the length of the isolator while α2 and α3 each control the heights of the 

lower and upper walls of the isolator exit, respectively. A value of 1.0 for any alpha value 

signified that no modifications were made to the geometry. A value that’s smaller than 1.0 

indicated a reduction in length while a value greater than 1.0 meant an increase. For the 

validations, the primitive variable results from the quasi-1D code and Runge-Kutta 4th order 

solver were plotted against the isolator length. Each validation case was taken with a fixed set of 

optimization parameters under the free stream Mach numbers of 4, 6, 8 and 10. The altitude and 

wedge angle were held constant at values of 30 km and 12 degrees, respectively, for each free 

stream Mach number. The values for α1, α2 and α3 were 1.0, 0.8 and 1.2 respectively. This 

configuration allows the isolator exit to be widened equally on the top and bottom without 

affecting the symmetry of the isolator duct. Isolator Mach number, pressure and temperature 

were plotted against the free stream Mach number.  
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6.2.1 Isolator validations. The activity within the isolator of the scramjet model is 

highlighted below in Figures 6.4 - 6.6. Isolator Mach number, pressure and temperature are given 

under the free stream Mach numbers of 4, 6, 8 and 10. The Runge-Kutta 4th order solver is 

plotted against the quasi-1D scramjet code for validation purposes. 

            

Figure 6.4. Free stream at Mach 4: isolator Mach number vs isolator length. 

 

Figure 6.5. Free stream at Mach 4: isolator pressure vs isolator length.  
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Figure 6.6. Free stream at Mach 4: isolator temperature vs isolator length. 

 Figures 6.4 - 6.6 indicate that the solution provided by the Runge-Kutta 4th order solver 

and scramjet quasi-1D code agree closely with one another. Figures 6.7 – 6.15 illustrate the 

activities for the remaining free stream Mach numbers of 6, 8 and 10. 

 

Figure 6.7. Free stream at Mach 6: isolator Mach number vs isolator length. 
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Figure 6.8. Free stream at Mach 6: isolator pressure vs isolator length. 

 

Figure 6.9. Free stream at Mach 6: isolator temperature vs isolator length. 
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Figure 6.10. Free stream at Mach 8: isolator Mach number vs isolator length. 

 

Figure 6.11. Free stream at Mach 8: isolator pressure vs isolator length. 
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Figure 6.12. Free stream at Mach 8: isolator temperature vs isolator length. 

 

Figure 6.13. Free stream at Mach 10: isolator Mach number vs isolator length. 
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Figure 6.14. Free stream at Mach 10: isolator pressure vs isolator length. 

 

Figure 6.15. Free stream at Mach 10: isolator temperature vs isolator length. 
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 From observation of Figures 6.7 – 6.15, it can be noticed that the Runge-Kutta 4th order 

solver and scramjet quasi-1D code begin to disagree as the free stream Mach number increases. 

A closer look can be observed in Figures 6.16, 6.17 and 6.18 below.  

 

Figure 6.16. Free stream Mach 4, 6, 8 and 10: isolator Mach number vs isolator length. 

 

Figure 6.17. Free stream Mach 4, 6, 8 and 10: isolator pressure vs isolator length. 
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Figure 6.18. Free stream Mach 4, 6, 8 and 10: isolator temperature vs isolator length. 

The discrepancy between the Runge-Kutta 4th order solver and the scramjet quasi-1D 

code can mainly be attributed to the Runge-Kutta 4th order’s ability to simulate heat addition. 

The scramjet code inherently has a means of accounting for the heat addition influence. As 

previously mentioned, the Runge-Kutta 4th order solver only takes the influences of area change 

and friction into account.  
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Conclusion and Future Work 

7.1 Conclusion 

 A Runge-Kutta 4th order solver was successfully designed and programmed. The solver 

successfully implemented two of the five influence coefficients; namely, area change and 

friction. Further, the Runge-Kutta 4th order flow solver was validated against classical fluid 

dynamic problems and was proven correct in each case. In addition, the solver was successfully 

coupled to NCAT scramjet design code where it is used as a validation tool.  In a set of 

preliminary tests, the fluid quantities, such as, Mach number, pressure and temperature were 

observed in the scramjet isolator duct. The results from the scramjet code as well as the newly 

developed solver were compared under identical scenarios. At low Mach numbers, the results 

match each other very well. However, the two codes began to deviate as the free stream Mach 

number increased. The deviation was attributed to the Runge-Kutta 4th order solver’s lack of heat 

addition influence while the quasi-1D scramjet code accounted for it. The Runge-Kutta 4th order 

solver performed well, given that every component wasn’t assembled yet. The independent 

validations of the Runge-Kutta 4th order solver (refer to Chapter 5) along with the results for low 

free stream Mach numbers (refer to Chapter 6) both supported the fact that the new Runge-Kutta 

4th order solver was accurately developed and implemented. Nevertheless, its capability is 

limited to area change and frictional effects. 

7.2 Future Work 

 For future work, it is recommended that the three influence coefficients that were 

eliminated from this analysis be added to the current solver (refer to Table 4.2). In addition, it is 

recommended that the new solver be used to analyze the entire scramjet flow path.  



78 

 

` 

References 

"China". (2014). China confirms new hypersonic glide vehicle test-flight.   Retrieved March 4th, 

2014, from http://rt.com/news/hypersonic-vehicle-missile-china-665/ 

"Defense". (2014). Defense, Space and Security.   Retrieved March 6th 2014, from 

http://www.boeing.com/boeing/defense-space/ic/icbmsys/index.page 

"Fanno". (2007). Fanno Flow.   Retrieved March 11, 2014, from 

http://www.potto.org/gasDynamics/node138.html 

"JAPHAR". (2009). Airflow Around the Hypersonic Vehicle JAPHAR.   Retrieved March 12, 

2014, from http://hathor.onera.fr/photos-en/simulations/hypersonic-vehicle-scramjet.php 

"Missile". (2014). Missile defense buster: China tests new hypersonic glide vehicle.   Retrieved 

3/4/2014, 2014, from http://rt.com/news/supersonic-china-delivery-vehicle-554/ 

"Revolutionary". (2006). Revloutionary jet engine tested.   Retrieved March 12, 2014, from 

http://news.bbc.co.uk/2/hi/4832254.stm 

"Runge-Kutta". (2008). The Runge-Kutta Method.   Retrieved October 15, 2013, from 

http://www.physics.drexel.edu/students/courses/Comp_Phys/Integrators/rk4.html 

"Spinoff". (1999). Spinoff 1999.  

Anderson, John D. (2003). Modern Compressible Flow with Historical Perspective (3rd ed.). 

New York, NY: McGraw-Hill. 

Anderson, John D. (2011). Fundamentals of Aerodynamics (5th ed.). New York, NY: McGraw-

Hill. 

Bandyopadhyay, Alak ; Majumdar, Alok. (2007). Modeling of Compressible Flow with Friction 

and Heat Transfer using the Generalized Fluid System Simulation Program (GFSSP). 

Thermal Fluid Analysis Workshop  

http://rt.com/news/hypersonic-vehicle-missile-china-665/
http://www.boeing.com/boeing/defense-space/ic/icbmsys/index.page
http://www.potto.org/gasDynamics/node138.html
http://hathor.onera.fr/photos-en/simulations/hypersonic-vehicle-scramjet.php
http://rt.com/news/supersonic-china-delivery-vehicle-554/
http://news.bbc.co.uk/2/hi/4832254.stm
http://www.physics.drexel.edu/students/courses/Comp_Phys/Integrators/rk4.html


79 

 

` 

Barthelemy, R. (1989). The National Aero-Space Plane Program. AIAA.  

Bouchez, Marc , Roudakov, Alexandre S. , Kopchenov, Valery I. , Semenov, Vyacheslav L. , 

Scherrer, Dominique. (2005). French-Russian Analysis of Kholod Dual-Mode Ramjet 

Flight Experiments. AIAA.  

Bowcutt, Kevin ; Smith, Thomas ; Kothari, Ajay ; Raghavan, Venkataraman ; Tarpley, 

Christopher. (2011). The Hypersonic Space and Global Transportation System: A 

Concept for Routine and Affordable Access to Space. Paper presented at the AIAA 

International Space Planes and Hypersonic Systems and Technologies Conference, San 

Francisco, California.  

Chase, R. L. , Tang, M. H. (1995). A History of the NASP Program from the Formation of the 

Joint Program Office to the Termination of the HySTP Scramjet Performance 

Demonstration Program. Paper presented at the Aerospace Planes and Hypersonics 

Technologies Conference Chattanooga, TN.  

Curran, Edward T. (2001). Scramjet Engines: The First Forty Years. Journal of Propulsion and 

Power, 17(6).  

Dhanasar, M. (2009). Quasi-1D Modeling of a Morphing Ramjet-Scramjet. (Ph.D. Dissertation), 

North Carolina A&T State University.    

Eggers, Th. , Novelli, Ph. , Haupt, M. (2001). Design Studies of the JAPHAR Experimental 

Vehicle for Dual Mode Ramjet Demonstration AIAA.  

Ferguson, F. ; Fiagbe, Y ; Dasque, N. (2009). Design of Optimized 3D Tip-To Tail Scramjet 

Engines. Paper presented at the 47th American Institute of Aeronautics and Astronautics 

Aerospace Sciences Meeting and Exhibit, Orlando, Florida.  



80 

 

` 

Fry, Ronald S. (2004). A Century of Ramjet Propulsion Technology Evolution. Journal of 

Propulsion and Power, 20(1), 27-58.  

Grant, Jamil D. (2010). Validation of the Forebody Design of a Ramjet-Scramjet Propulsion 

System Using Computational Fluid Dynamics. (Master of Science), North Carolina A&T 

State University.    

Hank, Joseph M. , Murphy, James S. , Mutzman, Richard C. (2008). The X-51A Scramjet 

Engine Flight Demonstration Program. AIAA.  

Harsha, Phillip T. , Keel, Lowell C. , Castrogiovanni, Anthony , Sherrill, Robert T. (2005). X-

43A Vehicle Design and Manufacture. AIAA.  

Lin, Hubao, Xue, Jizhong , Zhou, Xiaodong (1991). Development of Recovery Technology in 

China. AIAA.  

McClinton, C. R. (1997). Hyper-X Wind Tunnel Program. AIAA.  

Mercier, R. A. (1998). Hypersonic Technology (HyTech) Program Overview. AIAA.  

Rosenburg, Zach. (2002). Fins failed in HyShot scramjet flight.   Retrieved October 4, 2013, 

from http://www.flightglobal.com/news/articles/fins-failed-in-hyshot-scramjet-flight-

150149/ 

Rosenburg, Zach. (2013). Hypersonic X-51 program ends in success.   Retrieved October 4, 

2013, from http://www.flightglobal.com/news/articles/hypersonic-x-51-programme-ends-

in-success-385481/ 

Sato, Tetsuya , Tanatsugu, Nobuhiro , Kobayashi, Hiroaki , Hatta, Hiroshi , Sawai, Shujiro , 

Maru, Yusuke. (2003). Develoment Study on the Atrex Engine. Paper presented at the 

International Academy of Astronautics, Bremen, Germany.  

http://www.flightglobal.com/news/articles/fins-failed-in-hyshot-scramjet-flight-150149/
http://www.flightglobal.com/news/articles/fins-failed-in-hyshot-scramjet-flight-150149/
http://www.flightglobal.com/news/articles/hypersonic-x-51-programme-ends-in-success-385481/
http://www.flightglobal.com/news/articles/hypersonic-x-51-programme-ends-in-success-385481/


81 

 

` 

Shapiro, Asher H. (1953). The Dynamics and Thermodynamics of Compressible Flow (Vol. 1): 

The Ronald Press Company. 

Walker, Steven ; Tang, Ming ; Morris, Sue ; Mamplata, Caesar. (2008). Falcon HTV-3X - A 

Resuable Hyprsonic Test Bed. Paper presented at the AIAA International Space Planes 

and Hypersonic Systems and Technologies Conference, Dayton, Ohio.  

 

 


	The Inverse Design Of Hypersonic Flow Paths
	Recommended Citation

	tmp.1590516723.pdf.sEMfA

